Science.gov

Sample records for air-sea turbulent flux

  1. Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.

    2010-01-01

    Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.

  2. OAFlux Satellite-Based High-Resolution Analysis of Air-Sea Turbulent Heat, Moisture, and Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Yu, Lisan

    2016-04-01

    The Objectively Analyzed air-sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution has recently developed a new suite of products: the satellite-based high-resolution (HR) air-sea turbulent heat, moisture, and momentum fluxes over the global ocean from 1987 to the present. The OAFlux-HR fluxes are computed from the COARE bulk algorithm using air-sea variables (vector wind, near-surface humidity and temperature, and ocean surface temperature) derived from multiple satellite sensors and multiple missions. The vector wind time series are merged from 14 satellite sensors, including 4 scatterometers and 10 passive microwave radiometers. The near-surface humidity and temperature time series are retrieved from 11 satellite sensors, including 7 microwave imagers and 4 microwave sounders. The endeavor has greatly improved the depiction of the air-sea turbulent exchange on the frontal and meso-scales. The OAFlux-HR turbulent flux products are valuable datasets for a broad range of studies, including the study of the long-term change and variability in the oean-surface forcing functions, quantification of the large-scale budgets of mass, heat, and freshwater, and assessing the role of the ocean in the change and variability of the Earth's climate.

  3. A review of the sources of uncertainties when estimating global-scale turbulent air-sea fluxes

    NASA Astrophysics Data System (ADS)

    Brodeau, Laurent; Barnier, Bernard

    2015-04-01

    Bulk formulae are used to estimate turbulent air-sea fluxes needed to provide surface boundary conditions to most of present-day OGCMs, AGCMs and coupled Earth systems. This study aims at making an inventory of the major sources of uncertainties and errors made when estimating turbulent air-sea fluxes with the bulk method, namely wind stress, evaporation (latent heat flux) and sensible heat flux. We use 6-hourly near-surface atmospheric fields and daily SST of ERA-Interim to compute global estimates of these fluxes during the last three decades. Those fluxes are computed using different bulk routines and different types of physical and numerical simplifications widely used within the GCM community. Moreover, to assess the sensitivity of these flux estimates to possible errors in the input atmospheric fields and SST, user-controlled biases are applied to each of these fields prior to bulk computation. As a result, a quantification of the potential sources of uncertainties related to the accuracy of both the parametrization and input fields is proposed. Any parametrization-related approximation can also be expressed in terms of a bias on a given input field. We find that the largest source of flux uncertainties is the choice of the bulk algorithm used to estimate the bulk transfer coefficients. The resulting disagreement in terms of globally-averaged heat flux and evaporation is 8 W/m2 and 1 Sv. In mid latitudes, this heat flux disagreement is about 10 W/m2, which independently compares to a bias of 1 m/s in surface wind speed, 3° in SST, 0.5° in surface temperature, or a modification of 5% in the surface humidity. Our study also underlies the relative importance of the accuracy of the estimate of the air density and the specific humidity at saturation.

  4. Using an ensemble data set of turbulent air-sea fluxes to evaluate the IPSL climate model in tropical regions

    NASA Astrophysics Data System (ADS)

    Gainusa-Bogdan, Alina; Servonnat, Jerome; Braconnot, Pascale

    2014-05-01

    Low-latitude turbulent ocean-atmosphere fluxes play a major role in the ocean and atmosphere dynamics, heat distribution and availability for meridional transport to higher latitudes, as well as for the global freshwater cycle. Their representation in coupled ocean-atmosphere models is thus of chief importance in climate simulations. Despite numerous reports of important observational uncertainties in large-scale turbulent flux products, only few model flux evaluation studies attempt to quantify and directly consider these uncertainties. To address this problem for large-scale, climatological flux evaluation, we assemble a comprehensive database of 14 climatological surface flux products, including in situ-based, satellite, hybrid and reanalysis data sets. We develop an associated analysis protocol and use it together with this database to offer an observational ensemble approach to model flux evaluation. We use this approach to perform an evaluation of the representation of the intertropical turbulent air-sea fluxes in a suite of CMIP5 historical simulations run with different recent versions of the IPSL model. To enhance model understanding, we consider both coupled and forced atmospheric model configurations. For the same purpose, we not only analyze the surface fluxes, but also their associated meteorological state variables and inter-variable relationships. We identify an important, systematic underestimation of the near-surface wind speed and a significant exaggeration of the sea-air temperature contrast in all the IPSL model versions considered. Furthermore, the coupled model simulations develop important sea surface temperature and associated air humidity bias patterns. Counterintuitively, these biases do not systematically transfer to significant biases in the surface fluxes. This is due to a combination of compensation of effects and the large flux observational spread. Our analyses reveal several inconsistencies in inter-variable relationships between

  5. Climate simulations with a new air-sea turbulent flux parameterization in the National Center for Atmospheric Research Community Atmosphere Model (CAM3)

    NASA Astrophysics Data System (ADS)

    Ban, Junmei; Gao, Zhiqiu; Lenschow, Donald H.

    2010-01-01

    This study examines climate simulations with the National Center for Atmospheric Research Community Atmosphere Model version 3 (NCAR CAM3) using a new air-sea turbulent flux parameterization scheme. The current air-sea turbulent flux scheme in CAM3 consists of three basic bulk flux equations that are solved simultaneously by an iterative computational technique. We recently developed a new turbulent flux parameterization scheme where the Obukhov stability length is parameterized directly by using a bulk Richardson number, an aerodynamic roughness length, and a heat roughness length. Its advantages are that it (1) avoids the iterative process and thus increases the computational efficiency, (2) takes account of the difference between z0m and z0h and allows large z0m/z0h, and (3) preserves the accuracy of iteration. An offline test using Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) data shows that the original scheme overestimates the surface fluxes under very weak winds but the new scheme gives better results. Under identical initial and boundary conditions, the original CAM3 and CAM3 coupled with the new turbulent flux scheme are used to simulate the global distribution of air-sea surface turbulent fluxes, and precipitation. Comparisons of model outputs against the European Remote Sensing Satellites (ERS), the Objectively Analyzed air-sea Fluxes (OAFlux), and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) show that: (1) the new scheme produces more realistic surface wind stress in the North Pacific and North Atlantic trade wind belts and wintertime extratropical storm track regions; (2) the latent heat flux in the Northern Hemisphere trade wind zones shows modest improvement in the new scheme, and the latent heat flux bias in the western boundary current region of the Gulf Stream is reduced; and (3) the simulated precipitation in the new scheme is closer to observation in the Asian monsoon

  6. Accounting for observational uncertainties in the evaluation of low latitude turbulent air-sea fluxes simulated in a suite of IPSL model versions

    NASA Astrophysics Data System (ADS)

    Servonnat, Jerome; Braconnot, Pascale; Gainusa-Bogdan, Alina

    2015-04-01

    Turbulent momentum and heat (sensible and latent) fluxes at the air-sea interface are key components of the whole energetic of the Earth's climate and their good representation in climate models is of prime importance. In this work, we use the methodology developed by Braconnot & Frankignoul (1993) to perform a Hotelling T2 test on spatio-temporal fields (annual cycles). This statistic provides a quantitative measure accounting for an estimate of the observational uncertainty for the evaluation of low-latitude turbulent air-sea fluxes in a suite of IPSL model versions. The spread within the observational ensemble of turbulent flux data products assembled by Gainusa-Bogdan et al (submitted) is used as an estimate of the observational uncertainty for the different turbulent fluxes. The methodology holds on a selection of a small number of dominating variability patterns (EOFs) that are common to both the model and the observations for the comparison. Consequently it focuses on the large-scale variability patterns and avoids the possibly noisy smaller scales. The results show that different versions of the IPSL couple model share common large scale model biases, but also that there the skill on sea surface temperature is not necessarily directly related to the skill in the representation of the different turbulent fluxes. Despite the large error bars on the observations the test clearly distinguish the different merits of the different model version. The analyses of the common EOF patterns and related time series provide guidance on the major differences with the observations. This work is a first attempt to use such statistic on the evaluation of the spatio-temporal variability of the turbulent fluxes, accounting for an observational uncertainty, and represents an efficient tool for systematic evaluation of simulated air-seafluxes, considering both the fluxes and the related atmospheric variables. References Braconnot, P., and C. Frankignoul (1993), Testing Model

  7. Influence and impact of the parametrization of the turbulent air-sea fluxes on atmospheric moisture and convection in the tropics

    NASA Astrophysics Data System (ADS)

    Torres, Olivier; Braconnot, Pascale; Gainusa-Bogdan, Alina; Hourdin, Frédéric; Marti, Olivier; Pelletier, Charles

    2016-04-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation and are also responsible for various phenomena like the water supply to the atmospheric column, which itself is extremely important for atmospheric convection. Although the representation of these fluxes has been the subject of major studies, it still remains a very challenging problem. Our aim is to better understand the role of these fluxes in climate change experiments and in the equator-pole redistribution of heat and water by the oceanic and atmospheric circulation. For this, we are developing a methodology starting from idealized 1D experiments and going all the way up to fully coupled ocean-atmosphere simulations of past and future climates. The poster will propose a synthesis of different simulations we have performed with a 1D version of the LMDz atmosphere model towards a first objective of understanding how different parameterizations of the turbulent fluxes affect the moisture content of the atmosphere and the feedback with the atmospheric boundary layer and convection schemes. Air-sea fluxes are not directly resolved by the models because they are subgrid-scale phenomena and are therefore represented by parametrizations. We investigate the differences between several 1D simulations of the TOGA-COARE campaign (1992-1993, Pacific warm pool region), for which 1D boundary conditions and observations are available to test the results of atmospheric models. Each simulation considers a different version of the LMDz model in terms of bulk formula (four) used to compute the turbulent fluxes. We also consider how the representation of gustiness in these parameterizations affects the results. The use of this LMDz test case (very constrained within an idealized framework) allows us to determine how the response of surface fluxes helps to reinforce or damp the atmospheric water vapor content or cloud feedbacks

  8. Observational Buoy Studies of Coastal Air-Sea Fluxes.

    NASA Astrophysics Data System (ADS)

    Frederickson, Paul A.; Davidson, Kenneth L.

    2003-02-01

    Recent advancements in measurement and analysis techniques have allowed air-sea fluxes to be measured directly from moving platforms at sea relatively easily. These advances should lead to improved surface flux parameterizations, and thus to improved coupled atmosphere-ocean modeling. The Naval Postgraduate School has developed a `flux buoy' (FB) that directly measures air-sea fluxes, mean meteorological parameters, and one-dimensional and directional wave spectra. In this study, the FB instrumentation and data analysis techniques are described, and the data collected during two U.S. east coast buoy deployments are used to examine the impact of atmospheric and surface wave properties on air-sea momentum transfer in coastal ocean regions. Data obtained off Duck, North Carolina, clearly show that, for a given wind speed, neutral drag coefficients in offshore winds are higher than those in onshore winds. Offshore wind drag coefficients observed over the wind speed range from 5 to 21 m s1 were modeled equally well by a linear regression on wind speed, and a Charnock model with a constant of 0.016. Measurements from an FB deployment off Wallops Island, Virginia, show that neutral drag coefficients in onshore winds increase as the wind-wave direction differences increase, especially beyond ±60°.

  9. Climatic impacts of stochastic fluctuations in air-sea fluxes

    NASA Astrophysics Data System (ADS)

    Williams, Paul D.

    2012-05-01

    Air-sea fluxes vary partly on scales that are too small or fast to be resolved explicitly by global climate models. This paper proposes a nonlinear physical mechanism by which stochastic fluctuations in the air-sea buoyancy flux may modify the mean climate. The paper then demonstrates the mechanism in climate simulations with a comprehensive coupled general circulation model. Significant changes are detected in the time-mean oceanic mixed-layer depth, sea-surface temperature, atmospheric Hadley circulation, and net upward water flux at the sea surface. Also, El Niño Southern Oscillation (ENSO) variability is significantly increased. The findings demonstrate that noise-induced drift and noise-enhanced variability, which are familiar concepts from simple climate models, continue to apply in comprehensive climate models with millions of degrees of freedom. The findings also suggest that the lack of representation of sub-grid variability in air-sea fluxes may contribute to some of the biases exhibited by contemporary climate models.

  10. Impact of Sea Spray on Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Mueller, James

    2013-11-01

    The contributions of sea spray drops to the total air-sea exchanges of momentum, heat, and mass remain an open question. A number of factors obscure any simple quantification of their contribution: the number of drops formed at the ocean surface and the per-drop contribution to the fluxes. To estimate these per-droplet fluxes, we present results from a large number of drop trajectories, which are simulated with a recently developed Lagrangian Stochastic model adapted for the heavy drop transport and evaporation within the marine boundary layer. Then, using commonly accepted spray generation functions we present estimates of spray fluxes which account for the mediating feedback effects from the droplets on the atmosphere. The results suggest that common simplifications in previous sea spray models, such as the residence time in the marine boundary layer, may not be appropriate. We further show that the spray fluxes may be especially sensitive to the size distribution of the drops. The total effective air-sea fluxes lead to drag and enthalpy coefficients that increase modestly with wind speed. The rate of increase for the drag coefficient is greatest at moderate wind speeds, while the rate of increase for the enthalpy coefficient is greatest at higher wind speeds. Funded by grants OCE-0850663 and OCE-0748767 from the National Science Foundation.

  11. The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    NASA Astrophysics Data System (ADS)

    Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T. G.; Saltzman, E. S.; Christensen, K. H.; Miller, S. D.; Ward, B.

    2016-05-01

    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy ɛ. Laboratory and field measurements of k and ɛ have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling ɛ to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets.

  12. Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale

    NASA Astrophysics Data System (ADS)

    Hausmann, Ute; Czaja, Arnaud; Marshall, John

    2016-05-01

    The turbulent air-sea heat flux feedback (α , in {W m}^{-2}{ K}^{-1} ) is a major contributor to setting the damping timescale of sea surface temperature (SST) anomalies. In this study we compare the spatial distribution and magnitude of α in the North Atlantic and the Southern Ocean, as estimated from the ERA-Interim reanalysis dataset. The comparison is rationalized in terms of an upper bound on the heat flux feedback, associated with "fast" atmospheric export of temperature and moisture anomalies away from the marine boundary layer, and a lower bound associated with "slow" export. It is found that regions of cold surface waters (≤ 10° C) are best described as approaching the slow export limit. This conclusion is not only valid at the synoptic scale resolved by the reanalysis data, but also on basin scales. In particular, it applies to the heat flux feedback acting as circumpolar SST anomaly scales are approached in the Southern Ocean, with feedbacks of ≤ 10 {W m}^{-2}{ K}^{-1} . In contrast, the magnitude of the heat flux feedback is close to that expected from the fast export limit over the Gulf Stream and its recirculation with values on the order of ≈40 {W m}^{-2}{ K}^{-1} . Further analysis suggests that this high value reflects a compensation between a moderate thermodynamic adjustment of the boundary layer, which tends to weaken the heat flux feedback, and an enhancement of the surface winds over warm SST anomalies, which tend to enhance the feedback.

  13. An assessment of air-sea heat fluxes from ocean and coupled reanalyses

    NASA Astrophysics Data System (ADS)

    Valdivieso, Maria; Haines, Keith; Balmaseda, Magdalena; Chang, You-Soon; Drevillon, Marie; Ferry, Nicolas; Fujii, Yosuke; Köhl, Armin; Storto, Andrea; Toyoda, Takahiro; Wang, Xiaochun; Waters, Jennifer; Xue, Yan; Yin, Yonghong; Barnier, Bernard; Hernandez, Fabrice; Kumar, Arun; Lee, Tong; Masina, Simona; Andrew Peterson, K.

    2015-10-01

    Sixteen monthly air-sea heat flux products from global ocean/coupled reanalyses are compared over 1993-2009 as part of the Ocean Reanalysis Intercomparison Project (ORA-IP). Objectives include assessing the global heat closure, the consistency of temporal variability, comparison with other flux products, and documenting errors against in situ flux measurements at a number of OceanSITES moorings. The ensemble of 16 ORA-IP flux estimates has a global positive bias over 1993-2009 of 4.2 ± 1.1 W m-2. Residual heat gain (i.e., surface flux + assimilation increments) is reduced to a small positive imbalance (typically, +1-2 W m-2). This compensation between surface fluxes and assimilation increments is concentrated in the upper 100 m. Implied steady meridional heat transports also improve by including assimilation sources, except near the equator. The ensemble spread in surface heat fluxes is dominated by turbulent fluxes (>40 W m-2 over the western boundary currents). The mean seasonal cycle is highly consistent, with variability between products mostly <10 W m-2. The interannual variability has consistent signal-to-noise ratio (~2) throughout the equatorial Pacific, reflecting ENSO variability. Comparisons at tropical buoy sites (10°S-15°N) over 2007-2009 showed too little ocean heat gain (i.e., flux into the ocean) in ORA-IP (up to 1/3 smaller than buoy measurements) primarily due to latent heat flux errors in ORA-IP. Comparisons with the Stratus buoy (20°S, 85°W) over a longer period, 2001-2009, also show the ORA-IP ensemble has 16 W m-2 smaller net heat gain, nearly all of which is due to too much latent cooling caused by differences in surface winds imposed in ORA-IP.

  14. Air-sea CO2 fluxes measured by eddy covariance in a coastal station in Baja California, México

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, L.; Ocampo-Torres, F. J.

    2016-05-01

    The influence of wave-associated parameters controlling turbulent CO2 fluxes through the air-sea water interface is evaluated in a coastal region. The study area, located within the Todos Santos Bay, Baja California, México, was found to be a weak sink of CO2 with a mean flux of -1.32 µmol m-2s-1. The low correlation found between flux and wind speed (r = 0.09), suggests that the influence of other forcing mechanisms, besides wind, is important for gas transfer modulation through the sea surface, at least for the conditions found in this study. In addition, the results suggest that for short periods where an intensification of the wave conditions occurs, a CO2 flux response increases the transport of gas to the ocean.

  15. Climatic Impacts of a Stochastic Parameterization of Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Williams, P. D.

    2014-12-01

    The atmosphere and ocean are coupled by the exchange of fluxes across the ocean surface. Air-sea fluxes vary partly on scales that are too small and fast to be resolved explicitly in numerical models of weather and climate, making them a candidate for stochastic parameterization. This presentation proposes a nonlinear physical mechanism by which stochastic fluctuations in the air-sea buoyancy flux may modify the mean climate, even though the mean fluctuation is zero. The mechanism relies on a fundamental asymmetry in the physics of the ocean mixed layer: positive surface buoyancy fluctuations cannot undo the vertical mixing caused by negative fluctuations. The mechanism has much in common with Stommel's mixed-layer demon. The presentation demonstrates the mechanism in climate simulations with a comprehensive coupled atmosphere-ocean general circulation model (SINTEX-G). In the SINTEX-G simulations with stochastic air-sea buoyancy fluxes, significant changes are detected in the time-mean oceanic mixed-layer depth, sea-surface temperature, atmospheric Hadley circulation, and net upward water flux at the sea surface. Also, El Niño Southern Oscillation (ENSO) variability is significantly increased. The findings demonstrate that noise-induced drift and noise-enhanced variability, which are familiar concepts from simple climate models, continue to apply in comprehensive climate models with millions of degrees of freedom. The findings also suggest that the lack of representation of sub-grid variability in air-sea fluxes may contribute to some of the biases exhibited by contemporary climate models.

  16. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  17. Influence of precipitation on the CO2 air-sea flux, an eddy covariance field study

    NASA Astrophysics Data System (ADS)

    Zavarsky, Alexander; Steinhoff, Tobias; Marandino, Christa

    2016-04-01

    During the SPACES-OASIS cruise (July-August 2015) from Durban, SA to Male, MV direct fluxes of CO2 and dimethyl sulfide (DMS) were measured using the eddy covariance (EC) technique. The cruise covered areas of sources and sinks for atmospheric CO2, where the bulk concentration gradient measurements resembled the Takahashi (2009) climatology. Most of the time, bulk CO2 fluxes (F=k* [cwater-cair]), calculated with the parametrization (k) by Nightingale et al. 2000, were in general agreement with direct EC measurements. However, during heavy rain events, the directly measured CO2 fluxes were 4 times higher than predicted. It has been previously described that rain influences the k parametrization of air-sea gas exchange, but this alone cannot explain the measured discrepancy. There is evidence that freshwater input and a change in the carbonate chemistry causes the water side concentration of ?c=cwater-cair to decrease. Unfortunately this cannot be detected by most bulk measurement systems. Using the flux measurements of an additional gas like DMS, this rain influence can be evaluated as DMS does not react to changes in the carbonate system and has a different solubility. A pending question is if the enhanced flux of CO2 in the ocean is sequestered into the ocean mixed layer and below. This question will be tackled using the GOTM model to understand the implications for the global carbon cycle.

  18. Distribution and air-sea fluxes of carbon dioxide on the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Pipko, I. I.; Pugach, S. P.; Repina, I. A.; Dudarev, O. V.; Charkin, A. N.; Semiletov, I. P.

    2015-12-01

    This article presents the results of long-term studies of the dynamics of carbonate parameters and air-sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from-2.4 to-22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.

  19. The spatial-temporal variability of air-sea momentum fluxes observed at a tidal inlet

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Laxague, N. J. M.; Reniers, A. J. H. M.; Graber, H. C.

    2015-02-01

    Coastal waters are an aerodynamically unique environment that has been little explored from an air-sea interaction point of view. Consequently, most studies must assume that open ocean-derived parameterizations of the air-sea momentum flux are representative of the nearshore wind forcing. Observations made at the New River Inlet in North Carolina, during the Riverine and Estuarine Transport experiment (RIVET), were used to evaluate the suitability of wind speed-dependent, wind stress parameterizations in coastal waters. As part of the field campaign, a small, agile research vessel was deployed to make high-resolution wind velocity measurements in and around the tidal inlet. The eddy covariance method was employed to recover direct estimates of the 10 m neutral atmospheric drag coefficient from the three-dimensional winds. Observations of wind stress angle, near-surface currents, and heat flux were used to analyze the cross-shore variability of wind stress steering off the mean wind azimuth. In general, for onshore winds above 5 m/s, the drag coefficient was observed to be two and a half times the predicted open ocean value. Significant wind stress steering is observed within 2 km of the inlet mouth, which is observed to be correlated with the horizontal current shear. Other mechanisms such as the reduction in wave celerity or depth-limited breaking could also play a role. It was determined that outside the influence of these typical coastal processes, the open ocean parameterizations generally represent the wind stress field. The nearshore stress variability has significant implications for observations and simulations of coastal transport, circulation, mixing, and general surf-zone dynamics.

  20. Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering

    NASA Astrophysics Data System (ADS)

    Du, Zhenhong; Fang, Lei; Bai, Yan; Zhang, Feng; Liu, Renyi

    2015-04-01

    This paper presents a novel visualization method to show the spatio-temporal dynamics of carbon sinks and sources, and carbon fluxes in the ocean carbon cycle. The air-sea carbon budget and its process of accumulation are demonstrated in the spatial dimension, while the distribution pattern and variation of CO2 flux are expressed by color changes. In this way, we unite spatial and temporal characteristics of satellite data through visualization. A GPU-based direct volume rendering technique using half-angle slicing is adopted to dynamically visualize the released or absorbed CO2 gas with shadow effects. A data model is designed to generate four-dimensional (4D) data from satellite-derived air-sea CO2 flux products, and an out-of-core scheduling strategy is also proposed for on-the-fly rendering of time series of satellite data. The presented 4D visualization method is implemented on graphics cards with vertex, geometry and fragment shaders. It provides a visually realistic simulation and user interaction for real-time rendering. This approach has been integrated into the Information System of Ocean Satellite Monitoring for Air-sea CO2 Flux (IssCO2) for the research and assessment of air-sea CO2 flux in the China Seas.

  1. Comparisons of Ship-based Observations of Air-Sea Energy Budgets with Gridded Flux Products

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Blomquist, B.

    2015-12-01

    Air-surface interactions are characterized directly by the fluxes of momentum, heat, moisture, trace gases, and particles near the interface. In the last 20 years advances in observation technologies have greatly expanded the database of high-quality direct (covariance) turbulent flux and irradiance observations from research vessels. In this paper, we will summarize observations from the NOAA sea-going flux system from participation in various field programs executed since 1999 and discuss comparisons with several gridded flux products. We will focus on comparisons of turbulent heat fluxes and solar and IR radiative fluxes. The comparisons are done for observing programs in the equatorial Pacific and Indian Oceans and SE subtropical Pacific.

  2. Air-sea Exchange of Dimethylsulfide (DMS) - Separation of the Transfer Velocity to Buoyancy, Turbulence, and Wave Driven Components

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B.; Huebert, B. J.; Fairall, C. W.

    2009-12-01

    In the past several years, we have measured the sea-to-air flux of DMS directly with eddy covariance on five cruises in distinct oceanic environments, including the equatorial Pacific (TAO 2003), Sargasso Sea (Biocomplexity 2004), Northern Atlantic (DOGEE 2007), Southern Ocean (SO-GasEX 2008), and Peruvian/Chilean upwelling region (VOCALS-REx 2008). Normalizing DMS flux by its concurrent air-sea concentration difference gave us the transfer velocity of DMS (kDMS). Our wealth of kDMS measurements (~2000 hourly values) in very different oceans and across a wide range of wind speeds (0.5~20.5 m/s) provides an opportunity to evaluate existing parameterizations of k and quantify the importance of various controlling factors on gas exchange. Gas exchange in different wind speed regimes is driven by distinct physical mechanisms. In low winds (<4 m/s), buoyancy-driven convection results in a finite and positive kDMS. In moderate winds (4~10 m/s), turbulence from wind-stress prevails, as we found a near linear dependence of kDMS on wind speed and on friction velocity (u*). In high winds (>10 m/s), there is additional bubble-mediated exchange from wave-breaking, which depends on gas solubility (a function of temperature and to a lesser degree, salinity). When normalizing kDMS to a reference temperature of 20°C, we found the oft-used Schmidt number correction (for diffusivity) to be inadequate because it does not account for the temperature dependence in solubility. To quantify the solubility effect, we subtract the small buoyancy-driven term computed by the NOAA-COARE model 3.0a from k660 (kDMS corrected to a Schmidt number of 660). A linear fit to the residual k660 in the moderate wind regime allows us to further separate the turbulence-driven and wave-breaking components. A solubility correction is applied to the latter, which is then added back to the buoyancy and turbulence-driven terms to give k660,C. Compared to k660, k660,C shows a significant reduction in scatter

  3. Oceanic distributions and air-sea fluxes of biogenic halocarbons in the open ocean

    NASA Astrophysics Data System (ADS)

    Chuck, Adele L.; Turner, Suzanne M.; Liss, Peter S.

    2005-10-01

    Surface seawater and atmospheric concentrations of methyl iodide, chloroiodomethane, bromoform, dichlorobromomethane, and chlorodibromethane were measured during three open ocean cruises in the Atlantic and Southern oceans. The measurements spanned a longitudinal range of 115°, between 50°N and 65°S. The saturation anomalies and the instantaneous air-sea fluxes of the gases during one of these cruises (ANT XVIII/1) are presented and discussed. Methyl iodide and chloroiodomethane were highly supersaturated (>1000%) throughout the temperate and tropical regions, with calculated mean fluxes of 15 and 5.5 nmol m-2 d-1, respectively. The oceanic emissions of the brominated compounds were less substantial, and a significant area of the temperate Atlantic Ocean was found to be a sink for bromoform. Correlation analyses have been used to investigate possible controls on the concentrations of these gases. In particular, the relationship of CH3I with sea surface temperature and light is discussed, with the tentative conclusion that this compound may be formed abiotically.

  4. Biases in the air-sea flux of CO2 resulting from ocean surface temperature gradients

    NASA Astrophysics Data System (ADS)

    Ward, B.; Wanninkhof, R.; McGillis, W. R.; Jessup, A. T.; Degrandpre, M. D.; Hare, J. E.; Edson, J. B.

    2004-08-01

    The difference in the fugacities of CO2 across the diffusive sublayer at the ocean surface is the driving force behind the air-sea flux of CO2. Bulk seawater fugacity is normally measured several meters below the surface, while the fugacity at the water surface, assumed to be in equilibrium with the atmosphere, is measured several meters above the surface. Implied in these measurements is that the fugacity values are the same as those across the diffusive boundary layer. However, temperature gradients exist at the interface due to molecular transfer processes, resulting in a cool surface temperature, known as the skin effect. A warm layer from solar radiation can also result in a heterogeneous temperature profile within the upper few meters of the ocean. Here we describe measurements carried out during a 14-day study in the equatorial Pacific Ocean (GasEx-2001) aimed at estimating the gradients of CO2 near the surface and resulting flux anomalies. The fugacity measurements were corrected for temperature effects using data from the ship's thermosalinograph, a high-resolution profiler (SkinDeEP), an infrared radiometer (CIRIMS), and several point measurements at different depths on various platforms. Results from SkinDeEP show that the largest cool skin and warm layer biases occur at low winds, with maximum biases of -4% and +4%, respectively. Time series ship data show an average CO2 flux cool skin retardation of about 2%. Ship and drifter data show significant CO2 flux enhancement due to the warm layer, with maximums occurring in the afternoon. Temperature measurements were compared to predictions based on available cool skin parameterizations to predict the skin-bulk temperature difference, along with a warm layer model.

  5. Annual and seasonal fCO2 and air-sea CO2 fluxes in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Lauvset, S. K.; Chierici, M.; Counillon, F.; Omar, A.; Nondal, G.; Johannessen, T.; Olsen, A.

    2013-03-01

    The Barents Sea is the strongest CO2 sink in the Arctic region, yet estimates of the air-sea CO2 flux in this area show a large span reflecting uncertainty as well as significant variability both seasonally and regionally. Here we use a previously unpublished data set of seawater CO2 fugacity (fCO2), and map these data over the western Barents Sea through multivariable linear regressions with SeaWiFS/MODIS remote sensing and TOPAZ model data fields. We find that two algorithms are necessary in order to cover the full seasonal cycle, mainly because not all proxy variables are available for the entire year, and because variability in fCO2 is driven by different mechanisms in summer and winter. A comprehensive skill assessment indicates that there is a good overall correspondence between observations and predictions. The algorithms are also validated using two independent data sets, with good results. The gridded fCO2 fields reveal tight links between water mass distribution and fCO2 in all months, and particularly in winter. The seasonal cycle show peaks in the total air-sea CO2 influx in May and September, caused by respectively biological drawdown of CO2 and low sea ice concentration leaving a large open water area. For 2007 the annual average air-sea CO2 flux is - 48 ± 5 gC m- 2, which is comparable to previous estimates.

  6. Air-Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn

    NASA Astrophysics Data System (ADS)

    Padin, X. A.; Vázquez-Rodríguez, M.; Castaño, M.; Velo, A.; Alonso-Pérez, F.; Gago, J.; Gilcoto, M.; Álvarez, M.; Pardo, P. C.; de La Paz, M.; Ríos, A. F.; Pérez, F. F.

    2010-05-01

    A total of fourteen hydrographic cruises from 2000 to 2008 were conducted during the spring and autumn seasons between Spain and the Southern Ocean under the framework of the Spanish research project FICARAM. The underway measurements were processed and analysed to describe the meridional air-sea CO2 fluxes (FCO2) in the covered sector of the Atlantic Ocean. The data has been grouped into different biogeochemical oceanographic provinces based on thermohaline characteristics. The spatial and temporal distributions of FCO2 followed expected distributions and annual trends reproducing the recent climatological ΔfCO2 estimations with a mean difference of -3 ± 18 μatm (Takahashi et al., 2009). The reduction in the CO2 saturation along the meridional FICARAM cruises represented an increase of 0.02 ± 0.14 mol m-2 yr-1 in the ocean uptake of atmospheric CO2. The subtropical waters in both Hemispheres acted as a sink of atmospheric CO2 during the successive spring seasons and as a source in autumn. The coarse reduction of the ocean uptake of atmospheric CO2 observed in the North Atlantic Ocean was linked to conditions of negative phase of the North Atlantic Oscillation that prevailed during the FICARAM period. Surface waters in the North Equatorial Counter Current revealed a significant long-term decrease of sea surface salinity of -0.16 ± 0.01 yr-1 coinciding with a declination of -3.5 ± 0.9 μatm yr-1 in the air-sea disequilibrium of CO2 fugacity and a rise of oceanic CO2 uptake of -0.09 ± 0.03 mol m-2 yr-1. The largest CO2 source was located in the equatorial upwelling system. These tropical waters that reached emissions of 0.7 ± 0.5 and 1.0 ± 0.7 mol m-2 y-1 in spring and autumn, respectively, showed an interannual warming of 0.11 ± 0.03 °C yr-1 and a wind speed decrease of -0.58 ± 0.14 m s-1 yr-1 in spring cruises which suggest the weakening of upwelling events associated with warm El Niño - Southern Oscillation episodes. Contrary the surface waters of the

  7. Distributions and air-sea fluxes of carbon dioxide in the Western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gao, Zhongyong; Chen, Liqi; Sun, Heng; Chen, Baoshan; Cai, Wei-Jun

    2012-12-01

    The uptake of carbon dioxide (CO2) by the Arctic Ocean is most likely increasing because of the rapid sea-ice retreat that lifted the barriers preventing gas exchange and light penetration for biological growth. Measurements of atmospheric and surface sea water partial pressure of CO2 (pCO2) were conducted during the Chinese National Arctic Research Expedition (CHINARE) cruises from July to September in 2003 and 2008. The latitudinal distribution of pCO2 along the 169°W transect showed a below-atmopsheric pCO2 level in most of the Western Arctic Ocean, with distinct regional differences from Bering Strait northward to the Central Acrctic Ocean. The average air-sea CO2 fluxes on the shelf and slope of the Chukchi Sea were -17.0 and -8.1 mmol m-2 d-1 respectively. In the ice-free zone, the partially ice-covered zone, and the heavily ice-covered zone of the Canada Basin, the fluxes were -4.2, -8.6, -2.5 mmol m-2 d-1 respectively. These rates are lower than other recent estimates. Our new results not only confirmed previous observations that most areas of the Western Arctic Ocean were a CO2 sink in general, but they also revealed that the previously unsampled central basins were a moderate CO2 sink. Analysis of controlling factors in different areas shows that pCO2 in Bering Strait was influenced not only by the Bering inflow waters but also by the high biological production. However, pCO2 fluctuated sharply because of strong water mixing both laterally and vertically. In the marginal ice zone (Chukchi Sea), pCO2 was controlled by ice melt and biological production, both of which would decrease pCO2 onshore of the ice edge. In the nearly ice-free southern Canada Basin, pCO2 increasd latitudinally as a result of atmospheric CO2 uptake due to intensive gas exchange, increased temperature, and decresed biological CO2 uptake due to limited nutrient supply. Finally, pCO2 was moderately lower than the atmospheric value and was relatively stable under the ice sheet of the

  8. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  9. APO observations in Southern Greenland: evaluation of modelled air-sea O2 and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Bonne, Jean-Louis; Bopp, Laurent; Delmotte, Marc; Cadule, Patricia; Resplandy, Laure; Nevison, Cynthia; Manizza, Manfredi; Valentin Lavric, Jost; Manning, Andrew C.; Masson-Delmotte, Valérie

    2014-05-01

    Since September 2007, the atmospheric CO2 mole fraction and O2/N2 ratio (a proxy for O2 concentration) have been monitored continuously at the coastal site of Ivittuut, southern Greenland (61.21° N, 48.17° W). From 2007 to 2013, our measurements show multi-annual trends of +2.0 ppm/year and -20 per meg/year respectively for CO2 and O2/N2, with annual average peak-to-peak seasonal amplitudes of 14+/-1 ppm and 130+/-15 per meg. We investigate the implications of our data set in terms of APO (Atmospheric Potential Oxygen). This tracer, obtained by a linear combination of CO2 and O2/N2 data, is invariant to CO2 and O2 exchanges in the land biota, but sensitive to the oceanic component of the O2 cycle. It is used as a bridge to evaluate air-sea CO2 and O2 fluxes from atmospheric variations of CO2 and O2/N2. Global ocean biogeochemical models produce estimates of CO2 and O2 air-sea fluxes. Atmospheric APO variations can be simulated through transportation of these fluxes in the atmosphere by Eulerian transport models. Thus, model values of atmospheric APO can be extracted at the station location. This study is based on air-sea flux outputs from CMIP5 simulations. After atmospheric transportation, they give access to atmospheric APO climatologies which can be compared, in terms of seasonal cycles and inter-annual variability, to the in situ observations. A preliminary study is based on the CCSM ocean model air-sea fluxes transported in the atmosphere with the MATCH transport model, over the period 1979-2004. The amplitude of the APO seasonal cycle is correctly captured, but year to year variations on this seasonal cycle appears to be underestimated compared to observations. The LMDZ atmospheric transport model is also used to transport the ocean fluxes from five CMIP5 models, over the period 1979-2005, showing different amplitudes and timings of APO seasonal cycles. This methodology is a first step to evaluate the origin of observed APO variations at our site and then

  10. CLIVAR-GSOP/GODAE Ocean Synthesis Inter-Comparison of Global Air-Sea Fluxes From Ocean and Coupled Reanalyses

    NASA Astrophysics Data System (ADS)

    Valdivieso, Maria

    2014-05-01

    The GODAE OceanView and CLIVAR-GSOP ocean synthesis program has been assessing the degree of consistency between global air-sea flux data sets obtained from ocean or coupled reanalyses (Valdivieso et al., 2014). So far, fifteen global air-sea heat flux products obtained from ocean or coupled reanalyses have been examined: seven are from low-resolution ocean reanalyses (BOM PEODAS, ECMWF ORAS4, JMA/MRI MOVEG2, JMA/MRI MOVECORE, Hamburg Univ. GECCO2, JPL ECCOv4, and NCEP GODAS), five are from eddy-permitting ocean reanalyses developed as part of the EU GMES MyOcean program (Mercator GLORYS2v1, Reading Univ. UR025.3, UR025.4, UKMO GloSea5, and CMCC C-GLORS), and the remaining three are couple reanalyses based on coupled climate models (JMA/MRI MOVE-C, GFDL ECDA and NCEP CFSR). The global heat closure in the products over the period 1993-2009 spanned by all data sets is presented in comparison with observational and atmospheric reanalysis estimates. Then, global maps of ensemble spread in the seasonal cycle, and of the Signal to Noise Ratio of interannual flux variability over the 17-yr common period are shown to illustrate the consistency between the products. We have also studied regional variability in the products, particularly at the OceanSITES project locations (such as, for instance, the TAO/TRITON and PIRATA arrays in the Tropical Pacific and Atlantic, respectively). Comparisons are being made with other products such as OAFlux latent and sensible heat fluxes (Yu et al., 2008) combined with ISCCP satellite-based radiation (Zhang et al., 2004), the ship-based NOC2.0 product (Berry and Kent, 2009), the Large and Yeager (2009) hybrid flux dataset CORE.2, and two atmospheric reanalysis products, the ECMWF ERA-Interim reanalysis (referred to as ERAi, Dee et al., 2011) and the NCEP/DOE reanalysis R2 (referred to as NCEP-R2, Kanamitsu et al., 2002). Preliminary comparisons with the observational flux products from OceanSITES are also underway. References Berry, D

  11. Does atmospheric CO2 seasonality play an important role in governing the air-sea flux of CO2?

    NASA Astrophysics Data System (ADS)

    Halloran, P. R.

    2012-06-01

    The amplitude, phase, and form of the seasonal cycle of atmospheric CO2 concentrations varies on many time and space scales (Peters et al., 2007). Intra-annual CO2 variation is primarily driven by seasonal uptake and release of CO2 by the terrestrial biosphere (Machta et al., 1977; Buchwitz et al., 2007), with a small (Cadule et al., 2010; Heimann et al., 1998), but potentially changing (Gorgues et al., 2010) contribution from the ocean. Variability in the magnitude, spatial distribution, and seasonal drivers of terrestrial net primary productivity (NPP) will be induced by, amongst other factors, anthropogenic CO2 release (Keeling et al., 1996), land-use change (Zimov et al., 1999) and planetary orbital variability, and will lead to changes in CO2atm seasonality. Despite CO2atm seasonality being a dynamic and prominent feature of the Earth System, its potential to drive changes in the air-sea flux of CO2 has not previously (to the best of my knowledge) been explored. It is important that we investigate the impact of CO2atm seasonality change, and the potential for carbon-cycle feedbacks to operate through the modification of the CO2atm seasonal cycle, because the decision had been made to prescribe CO2atm concentrations (rather than emissions) within model simulations for the fifth IPCC climate assessment (Taylor et al., 2009). In this study I undertake ocean-model simulations within which different magnitude CO2atm seasonal cycles are prescribed. These simulations allow me to examine the effect of a change in CO2atm seasonal cycle magnitude on the air-sea CO2 flux. I then use an off-line model to isolate the drivers of the identified air-sea CO2 flux change, and propose mechanisms by which this change may come about. Three mechanisms are identified by which co-variability of the seasonal cycles in atmospheric CO2 concentration, and seasonality in sea-ice extent, wind-speed and ocean temperature, could potentially lead to changes in the air-sea flux of CO2 at mid

  12. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean

    PubMed Central

    Mayol, Eva; Jiménez, María A.; Herndl, Gerhard J.; Duarte, Carlos M.; Arrieta, Jesús M.

    2014-01-01

    Airborne transport of microbes may play a central role in microbial dispersal, the maintenance of diversity in aquatic systems and in meteorological processes such as cloud formation. Yet, there is almost no information about the abundance and fate of microbes over the oceans, which cover >70% of the Earth's surface and are the likely source and final destination of a large fraction of airborne microbes. We measured the abundance of microbes in the lower atmosphere over a transect covering 17° of latitude in the North Atlantic Ocean and derived estimates of air-sea exchange of microorganisms from meteorological data. The estimated load of microorganisms in the atmospheric boundary layer ranged between 6 × 104 and 1.6 × 107 microbes per m2 of ocean, indicating a very dynamic air-sea exchange with millions of microbes leaving and entering the ocean per m2 every day. Our results show that about 10% of the microbes detected in the boundary layer were still airborne 4 days later and that they could travel up to 11,000 km before they entered the ocean again. The size of the microbial pool hovering over the North Atlantic indicates that it could play a central role in the maintenance of microbial diversity in the surface ocean and contribute significantly to atmospheric processes. PMID:25400625

  13. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean.

    PubMed

    Mayol, Eva; Jiménez, María A; Herndl, Gerhard J; Duarte, Carlos M; Arrieta, Jesús M

    2014-01-01

    Airborne transport of microbes may play a central role in microbial dispersal, the maintenance of diversity in aquatic systems and in meteorological processes such as cloud formation. Yet, there is almost no information about the abundance and fate of microbes over the oceans, which cover >70% of the Earth's surface and are the likely source and final destination of a large fraction of airborne microbes. We measured the abundance of microbes in the lower atmosphere over a transect covering 17° of latitude in the North Atlantic Ocean and derived estimates of air-sea exchange of microorganisms from meteorological data. The estimated load of microorganisms in the atmospheric boundary layer ranged between 6 × 10(4) and 1.6 × 10(7) microbes per m(2) of ocean, indicating a very dynamic air-sea exchange with millions of microbes leaving and entering the ocean per m(2) every day. Our results show that about 10% of the microbes detected in the boundary layer were still airborne 4 days later and that they could travel up to 11,000 km before they entered the ocean again. The size of the microbial pool hovering over the North Atlantic indicates that it could play a central role in the maintenance of microbial diversity in the surface ocean and contribute significantly to atmospheric processes. PMID:25400625

  14. Dissolved methane concentration profiles and air-sea fluxes from 41°S to 27°N

    NASA Astrophysics Data System (ADS)

    Kelley, Cheryl A.; Jeffrey, Wade H.

    2002-07-01

    Water column samples from a transect cruise from southern Chile through the Panama Canal to the Gulf of Mexico were used to determine dissolved methane depth profiles and air-sea methane fluxes. In the Gulf of Mexico, surface concentrations were approximately 40% supersaturated with respect to the atmosphere, whereas near the equator and in the Peru upwelling region, 10-20% supersaturation generally occurred. These saturation ratios translate into an average flux of methane from the sea surface to the atmosphere of 0.38 μmol m-2 d-1. In addition, water column profiles of dissolved methane indicate that subsurface maxima in dissolved methane concentrations are a consistent feature of the open ocean, except near the equator. At the equator, the subsurface peak at the base of the mixed layer may be bowed down by the Equatorial Undercurrent. The highest methane concentration (12 nM) was observed in the Peru upwelling region.

  15. Air-sea fluxes in a climate model using hourly coupling between the atmospheric and the oceanic components

    NASA Astrophysics Data System (ADS)

    Tian, Fangxing; von Storch, Jin-Song; Hertwig, Eileen

    2016-06-01

    We analyse the changes in the air-sea fluxes of momentum, heat and fresh water flux caused by increasing the ocean-atmosphere coupling frequency from once per day to once per hour in the Max Planck Institute Earth System Model. We diagnose the relative influences of daily averaging and high-frequency feedbacks on the basic statistics of the air-sea fluxes at grid point level and quantify feedback modes responsible for large scale changes in fluxes over the Southern Ocean and the Equatorial Pacific. Coupling once per hour instead of once per day reduces the mean of the momentum-flux magnitude by up to 7 % in the tropics and increases it by up to 10 % in the Southern Ocean. These changes result solely from feedbacks between atmosphere and ocean occurring on time scales shorter than 1 day . The variance and extremes of all the fluxes are increased in most parts of the oceans. Exceptions are found for the momentum and fresh water fluxes in the tropics. The increases result mainly from the daily averaging, while the decreases in the tropics are caused by the high-frequency feedbacks. The variance increases are substantial, reaching up to 50 % for the momentum flux, 100 % for the fresh water flux, and a factor of 15 for the net heat flux. These diurnal and intra-diurnal variations account for up to 50-90 % of the total variances and exhibit distinct seasonality. The high-frequency coupling can influence the large-scale feedback modes that lead to large-scale changes in the magnitude of wind stress over the Southern Ocean and Equatorial Pacific. In the Southern Ocean, the dependence of the SST-wind-stress feedback on the mean state of SST, which is colder in the experiment with hourly coupling than in the experiment with daily coupling, leads to an increase of westerlies. In the Equatorial Pacific, Bjerknes feedback in the hourly coupled experiment reveals a diurnal cycle during the El Niño events, with the feedback being stronger in the nighttime than in the daytime and

  16. Inference of super-resolution ocean pCO2 and air-sea CO2 fluxes from non-linear and multiscale processing methods

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, Ismael; Sudre, Joel; Garçon, Veronique; Yahia, Hussein; Dewitte, Boris; Garbe, Christoph; Illig, Séréna; Montes, Ivonne; Dadou, Isabelle; Paulmier, Aurélien; Butz, André

    2014-05-01

    In recent years the role of submesoscale activity is emerging as being more and more important to understand global ocean properties, for instance, for accurately estimating the sources and sinks of Greenhouse Gases (GHGs) at the air-sea interface. The scarcity of oceanographic cruises and the lack of available satellite products for GHG concentrations at high resolution prevent from obtaining a global assessment of their spatial variability at small scales. In this work we develop a novel method to reconstruct maps of CO2 fluxes at super resolution (4km) using SST and ocean colour data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). The responsible process for propagating the information between scales is related to cascading properties and multiscale organization, typical of fully developed turbulence. The methodology, based on the Microcanonical Multifractal Formalism, makes use, from the knowledge of singularity exponents, of the optimal wavelet for the determination of the energy injection mechanism between scales. We perform a validation analysis of the results of our algorithm using pCO2 ocean data from in-situ measurements in the upwelling region off Namibia.

  17. The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air-sea gas flux studies

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.

    2015-07-01

    Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. As fCO2 is highly sensitive to temperature, the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrently with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air-sea CO2 fluxes, it is therefore desirable to calculate fCO2 valid for a more consistent and averaged SST. This paper presents the OceanFlux Greenhouse Gases methodology for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using monthly composite SST data on a 1° × 1° grid from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010, including the prediction errors of fCO2 produced by the spatial interpolation technique. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air-sea CO2 flux, and hence the presented fCO2 distributions can be used in air-sea gas flux calculations together with climatologies of other climate variables.

  18. An overview of sea state conditions and air-sea fluxes during RaDyO

    NASA Astrophysics Data System (ADS)

    Zappa, Christopher J.; Banner, Michael L.; Schultz, Howard; Gemmrich, Johannes R.; Morison, Russel P.; Lebel, Deborah A.; Dickey, Tommy

    2012-07-01

    Refining radiative-transfer modeling capabilities for light transmission through the sea surface requires a more detailed prescription of the sea surface roughness beyond the probability density function of the sea surface slope field. To meet this need, exciting new measurement methodologies now provide the opportunity to enhance present knowledge of sea surface roughness, especially at the microscale. In this context, two intensive field experiments using R/PFloating Instrument Platformwere staged within the Office of Naval Research's Radiance in a Dynamic Ocean (RaDyO) field program in the Santa Barbara Channel and in the central Pacific Ocean south of Hawaii. As part of this program, our team gathered and analyzed a comprehensive suite of sea surface roughness measurements designed to provide optimal coverage of fundamental optical distortion processes associated with the air-sea interface. This contribution describes the ensemble of instrumentation deployed. It provides a detailed documentation of the ambient environmental conditions that prevailed during the RaDyO field experiments. It also highlights exciting new sea surface roughness measurement capabilities that underpin a number of the scientific advances resulting from the RaDyO program. For instance, a new polarimetric imaging camera highlights the complex interplay of wind and surface currents in shaping the roughness of the sea surface that suggests the traditional Cox-Munk framework is not sufficient. In addition, the breaking crest length spectral density derived from visible and infrared imagery is shown to be modulated by the development of the wavefield (wave age) and alignment of wind and surface currents at the intermediate (dominant) scale of wave breaking.

  19. Influence of air-sea fluxes on chlorine isotopic composition of ocean water: implications for constancy in delta37Cl--a statistical inference.

    PubMed

    Shirodkar, P V; Xiao, Y K; Sarkar, A; Dalal, S G; Chivas, A R

    2006-02-01

    The behaviors of chlorine isotopes in relation to air-sea flux variables have been investigated through multivariate statistical analyses (MSA). The MSA technique provides an approach to reduce the data set and was applied to a set of 7 air-sea flux variables to supplement and describe the variation in chlorine isotopic compositions (delta37Cl) of ocean water. The variation in delta37Cl values of surface ocean water from 51 stations in 4 major world oceans--the Pacific, Atlantic, Indian and the Southern Ocean has been observed from -0.76 to +0.74 per thousand (av. 0.039+/-0.04 per thousand). The observed delta37Cl values show basic homogeneity and indicate that the air-sea fluxes act differently in different oceanic regions and help to maintain the balance between delta37Cl values of the world oceans. The study showed that it is possible to model the behavior of chlorine isotopes to the extent of 38-73% for different geographical regions. The models offered here are purely statistical in nature; however, the relationships uncovered by these models extend our understanding of the constancy in delta37Cl of ocean water in relation to air-sea flux variables. PMID:16214214

  20. Southern Ocean air-sea heat flux, SST spatial anomalies, and implications for multi-decadal upper ocean heat content trends.

    NASA Astrophysics Data System (ADS)

    Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.

    2014-12-01

    The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.

  1. Micrometeorological survey of air-sea ice CO2 fluxes in arctic coastal waters

    NASA Astrophysics Data System (ADS)

    Heinesch, Bernard; Tison, Jean-Louis; Carnat, Gauthier; Heicken, Hajo; Geilfus, Nicolas-Xavier; Goosens, Thomas; Papakyriakou, Tim; Yernaux, Michel; Delille, Bruno

    2010-05-01

    We carried out a 6 month study that aimed to robustly track CO2 exchange between land-fast sea-ice and the atmosphere during the winter and spring season. A meteorological mast equipped for eddy-covariance measurements was installed on land-fast sea-ice near Barrow (Alaska), 1 km off the coast, from the end of January 2009 to the beginning of June 2009, before ice break-up. These data were supported by continuous measurements of solar radiation, snow depth, ice thickness and temperature profile in the ice. Biogeochemical data necessary for the understanding of the CO2 dynamics in sea-ice were obtained through discrete ice coring. Two regimes were detected for the CO2 exchanges linked with the status of the sea-ice: a winter regime and a spring summer regime. From 27 of March onwards brine volume at the sea ice-snow interface was above the threshold of permeability for liquid according to Golden et al (1998). During this period, we observed some conspicuous CO2 fluxes events tightly linked to wind speed. The flux was directed from the sea-ice to the atmosphere and reached up to 0.6 umol m-2 s-1 (51.8 mmol m-2 d-1). This flux to the atmosphere is expected as sea-ice at the air interface is permeable during a large part of the period and brines are oversaturated compared to the atmosphere. CO2 may accumulate in the snow layer which thus acts as a buffer that is flushed under occurrence of high wind speeds and associated pressure pumping. During the spring-summer period i.e. from 27 of April onwards, we observed a marked increase in sea ice temperature. Temperature profiles suggest that convective events occurred within the ice cover between April 27 and May 05. Within these convective events, two regimes were observed. First, for a period of 5 days, pCO2 was still above the threshold of saturation and CO2 fluxes were still mainly positive but lower than in the winter period, ranging from 0.1 to 0.2 umol m-2 s-1. This flux was only moderately controlled by windspeed

  2. Sensitivity of modelled sulfate radiative forcing to DMS concentration and air-sea flux formulation

    NASA Astrophysics Data System (ADS)

    Tesdal, J.-E.; Christian, J. R.; Monahan, A. H.; von Salzen, K.

    2015-09-01

    In this study, we use an atmospheric general circulation model with explicit aerosol chemistry (CanAM4.1) and several climatologies of surface ocean DMS concentration to assess uncertainties about the climate impact of ocean DMS efflux. Despite substantial variation in the spatial pattern and seasonal evolution of simulated DMS fluxes, the global mean radiative forcing is approximately linearly proportional to the global mean surface flux of DMS; the spatial and temporal distribution of ocean DMS efflux has only a minor effect on the global radiation balance. The effect of the spatial structure, however, generates statistically significant changes in the global mean concentrations of some aerosol species. The effect of seasonality on net radiative forcing is larger than that of spatial distribution, and is significant at global scale.

  3. Air-sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK

    NASA Astrophysics Data System (ADS)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Kitidis, Vassilis; Cazenave, Pierre W.; Nightingale, Philip D.; Yelland, Margaret J.; Pascal, Robin W.; Prytherch, John; Brooks, Ian M.; Smyth, Timothy J.

    2016-05-01

    We present air-sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27 m above mean sea level, a.m.s.l.), each from a different period during 2014-2015. At sampling heights ≥ 18 m a.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable ( ≤ ±20 % in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air-sea exchange measurements in shelf regions. Covariance air-sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20 ± 3; 38 ± 3; 29 ± 6 µmole m-2 d-1 at 15, 18, 27 m a.m.s.l.) than during falling tides (14 ± 2; 22 ± 2; 21 ± 5 µmole m-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air-sea CH4 flux by eddy covariance to be 20 µmole m-2 d-1 over hourly timescales (4 µmole m-2 d-1 over 24 h).

  4. Sea surface carbon dioxide at the Georgia time series site (2006-2007): Air-sea flux and controlling processes

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Cai, Wei-Jun; Hu, Xinping; Sabine, Christopher; Jones, Stacy; Sutton, Adrienne J.; Jiang, Li-Qing; Reimer, Janet J.

    2016-01-01

    Carbon dioxide partial pressure (pCO2) in surface seawater was continuously recorded every three hours from 18 July 2006 through 31 October 2007 using a moored autonomous pCO2 (MAPCO2) system deployed on the Gray's Reef buoy off the coast of Georgia, USA. Surface water pCO2 (average 373 ± 52 μatm) showed a clear seasonal pattern, undersaturated with respect to the atmosphere in cold months and generally oversaturated in warm months. High temporal resolution observations revealed important events not captured in previous ship-based observations, such as sporadically occurring biological CO2 uptake during April-June 2007. In addition to a qualitative analysis of the primary drivers of pCO2 variability based on property regressions, we quantified contributions of temperature, air-sea exchange, mixing, and biological processes to monthly pCO2 variations using a 1-D mass budget model. Although temperature played a dominant role in the annual cycle of pCO2, river inputs especially in the wet season, biological respiration in peak summer, and biological production during April-June 2007 also substantially influenced seawater pCO2. Furthermore, sea surface pCO2 was higher in September-October 2007 than in September-October 2006, associated with increased river inputs in fall 2007. On an annual basis this site was a moderate atmospheric CO2 sink, and was autotrophic as revealed by monthly mean net community production (NCP) in the mixed layer. If the sporadic short productive events during April-May 2007 were missed by the sampling schedule, one would conclude erroneously that the site is heterotrophic. While previous ship-based pCO2 data collected around this buoy site agreed with the buoy CO2 data on seasonal scales, high resolution buoy observations revealed that the cruise-based surveys undersampled temporal variability in coastal waters, which could greatly bias the estimates of air-sea CO2 fluxes or annual NCP, and even produce contradictory results.

  5. A Multiyear Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Evaporation is a key component of the hydrological cycle and the surface heat budget, while the wind stress is the major forcing for driving the oceanic circulation. The global air-sea fluxes of momentum, latent and sensible heat, radiation, and freshwater (precipitation-evaporation) are the forcing for driving oceanic circulation and, hence, are essential for understanding the general circulation of global oceans. The global air-sea fluxes are required for driving ocean models and validating coupled ocean-atmosphere global models. We have produced a 7.5-year (July 1987-December 1994) dataset of daily surface turbulent fluxes over the global oceans from the Special Sensor microwave/Imager (SSM/I) data. Daily turbulent fluxes were derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) validated well with that of the collocated radiosonde observations over the global oceans. Furthermore, the retrieved daily wind stresses and latent heat fluxes were found to agree well with that of the in situ measurements (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE intensive observing period (November 1992-February 1993). The global distributions of 1988-94 seasonal-mean turbulent fluxes will be presented. In addition, the global distributions of 1990-93 annual-means turbulent fluxes and input variables will be compared with those of UWM/COADS covering the same period. The latter is based on the COADS (comprehensive ocean-atmosphere data set) and is recognized to be one of the best

  6. Air-sea fluxes and satellite-based estimation of water masses formation

    NASA Astrophysics Data System (ADS)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  7. Regulation of CO2 Air Sea Fluxes by Sediments in the North Sea

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Pätsch, Johannes; Clargo, Nicola; Salt, Lesley

    2016-04-01

    A multi-tracer approach is applied to assess the impact of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North Sea. Analyses of both basin-wide observations in the North Sea and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the δ13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North Sea indicates the presence of an external carbon source, which is traced to the European continental coastline using naturally-occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of metabolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e. unbuffered) release of metabolic DIC. Finally, long-term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North Sea.

  8. CO2 air-sea fluxes across the Portuguese estuaries Tagus and Sado

    NASA Astrophysics Data System (ADS)

    Oliveira, A. P.; Cabeçadas, G.; Nogueira, M.

    2009-04-01

    Generally, estuaries and proximal shelves under the direct influence of river runoff and large inputs of organic matter are mostly heterotrophic and, therefore, act as a carbon source. In this context the CO2 dynamics in Tagus and Sado estuaries (SW Portugal) was studied under two different climate and hydrological situations. These moderately productive mesotidal coastal-plain lagoon-type estuaries, localised in the center of Portugal and distant 30-40 km apart, present quite different freshwater inflows, surface areas and water residence times. A study performed in 2001 revealed that the magnitude of CO2 fluxes in the two estuarine systems varied seasonally. CO2 emissions during the huge rainfall winter were similar in both estuaries, reaching a mean value of ~50 mmol m-2 d-1, while in spring emissions from Sado were ~6 times higher then Tagus ones, attaining a mean value of 62 mmol m-2 d-1. Nevertheless, in both sampling periods, Sado estuary showed, within the upper estuary (salinity

  9. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations

    NASA Astrophysics Data System (ADS)

    Guo, X.-H.; Zhai, W.-D.; Dai, M.-H.; Zhang, C.; Bai, Y.; Xu, Y.; Li, Q.; Wang, G.-Z.

    2015-09-01

    This study reports the most comprehensive data set thus far of surface seawater pCO2 (partial pressure of CO2) and the associated air-sea CO2 fluxes in a major ocean margin, the East China Sea (ECS), based on 24 surveys conducted in 2006 to 2011. We showed highly dynamic spatial variability in sea surface pCO2 in the ECS except in winter, when it ranged across a narrow band of 330 to 360 μatm. We categorized the ECS into five different domains featuring with different physics and biogeochemistry to better characterize the seasonality of the pCO2 dynamics and to better constrain the CO2 flux. The five domains are (I) the outer Changjiang estuary and Changjiang plume, (II) the Zhejiang-Fujian coast, (III) the northern ECS shelf, (IV) the middle ECS shelf, and (V) the southern ECS shelf. In spring and summer, pCO2 off the Changjiang estuary was as low as < 100 μatm, while it was up to > 400 μatm in autumn. pCO2 along the Zhejiang-Fujian coast was low in spring, summer and winter (300 to 350 μatm) but was relatively high in autumn (> 350 μatm). On the northern ECS shelf, pCO2 in summer and autumn was > 340 μatm in most areas, higher than in winter and spring. On the middle and southern ECS shelf, pCO2 in summer ranged from 380 to 400 μatm, which was higher than in other seasons (< 350 μatm). The area-weighted CO2 flux on the entire ECS shelf was -10.0 ± 2.0 in winter, -11.7 ± 3.6 in spring, -3.5 ± 4.6 in summer and -2.3 ± 3.1 mmol m-2 d-1 in autumn. It is important to note that the standard deviations in these flux ranges mostly reflect the spatial variation in pCO2 rather than the bulk uncertainty. Nevertheless, on an annual basis, the average CO2 influx into the entire ECS shelf was 6.9 ± 4.0 mmol m-2 d-1, about twice the global average in ocean margins.

  10. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations

    NASA Astrophysics Data System (ADS)

    Guo, X.-H.; Zhai, W.-D.; Dai, M.-H.; Zhang, C.; Bai, Y.; Xu, Y.; Li, Q.; Wang, G.-Z.

    2015-04-01

    This study reports thus far a most comprehensive dataset of surface seawater pCO2 (partial pressure of CO2) and the associated air-sea CO2 fluxes in a major ocean margin, the East China Sea (ECS) based on 24 surveys conducted in 2006 to 2011. We showed highly dynamic spatial variability of sea surface pCO2 in the ECS except in winter when it ranged in a narrow band of 330 to 360 μatm. In this context, we categorized the ECS into five different domains featured with different physics and biogeochemistry to better characterize the seasonality of the pCO2 dynamics and to better constrain the CO2 flux. The five domains are (I) the outer Changjiang estuary and Changjiang plume, (II) the Zhejiang-Fujian coast, (III) the northern ECS shelf, (IV) the middle ECS shelf, and (V) the southern ECS shelf. In spring and summer, pCO2 off the Changjiang estuary was as low as < 100 μatm, while it was up to > 400 μatm in fall. pCO2 along the Zhejiang-Fujian coast was low in spring, summer and winter (300 to 350 μatm) but was relatively high in fall (> 350 μatm). In the northern ECS shelf, pCO2 in summer and fall was > 340 μatm in most areas, higher than in winter and spring. In the middle and southern ECS shelf, pCO2 in summer ranged from 380 to 400 μatm, which was higher than in other seasons (< 350 μatm). The area-weighted CO2 flux in the entire ECS shelf was -10.0 ± 2.0 mmol m-2 d-1 in winter, -11.7 ± 3.6 mmol m-2 d-1 in spring, -3.5 ± 4.6 mmol m-2 d-1 in summer and -2.3 ± 3.1 mmol m-2 d-1 in fall. It is important to note that the standard deviations in these flux ranges mostly reflect the spatial variation of pCO2, which differ from the spatial variance nor the bulk uncertainty. Nevertheless, on an annual basis, the average CO2 influx into the entire ECS shelf was -6.9 ± 4.0 mmol m-2 d-1, about twice the global average in ocean margins.

  11. Version 2 Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF2)

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.; Shie, Chung-Lin; Starr, David O'C. (Technical Monitor)

    2002-01-01

    Information on the turbulent fluxes of momentum, moisture, and heat at the air-sea interface is essential in improving model simulations of climate variations and in climate studies. We have derived a 13.5-year (July 1987-December 2000) dataset of daily surface turbulent fluxes over global oceans from the Special Sensor Mcrowave/Imager (SSM/I) radiance measurements. This dataset, version 2 Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2), has a spatial resolution of 1 degree x 1 degree latitude-longitude and a temporal resolution of 1 day. Turbulent fluxes are derived from the SSM/I surface winds and surface air humidity, as well as the 2-m air and sea surface temperatures (SST) of the NCEP/NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory.

  12. Reconstruction of super-resolution fields of ocean pCO2 and air-sea fluxes of CO2 from satellite imagery in the Southeastern Atlantic

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, I.; Sudre, J.; Garçon, V.; Yahia, H.; Garbe, C.; Paulmier, A.; Dewitte, B.; Illig, S.; Dadou, I.

    2015-01-01

    The knowledge of Green House Gases GHGs fluxes at the air-sea interface at high resolution is crucial to accurately quantify the role of the ocean in the absorption and emission of GHGs. In this paper we present a novel method to reconstruct maps of surface ocean partial pressure of CO2, pCO2, and air-sea CO2 fluxes at super resolution (4 km) using Sea Surface Temperature (SST) and Ocean Colour (OC) data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). Inference of super-resolution of pCO2, and air-sea CO2 fluxes is performed using novel nonlinear signal processing methodologies that prove efficient in the context of oceanography. The theoretical background comes from the Microcanonical Multifractal Formalism which unlocks the geometrical determination of cascading properties of physical intensive variables. As a consequence, a multiresolution analysis performed on the signal of the so-called singularity exponents allows the correct and near optimal cross-scale inference of GHGs fluxes, as the inference suits the geometric realization of the cascade. We apply such a methodology to the study offshore of the Benguela area. The inferred representation of oceanic partial pressure of CO2 improves and enhances the description provided by CarbonTracker, capturing the small scale variability. We examine different combinations of Ocean Colour and Sea Surface Temperature products in order to increase the number of valid points and the quality of the inferred pCO2 field. The methodology is validated using in-situ measurements by means of statistical errors. We obtain that mean absolute and relative errors in the inferred values of pCO2 with respect to in-situ measurements are smaller than for CarbonTracker.

  13. Reconstruction of super-resolution ocean pCO2 and air-sea fluxes of CO2 from satellite imagery in the southeastern Atlantic

    NASA Astrophysics Data System (ADS)

    Hernández-Carrasco, I.; Sudre, J.; Garçon, V.; Yahia, H.; Garbe, C.; Paulmier, A.; Dewitte, B.; Illig, S.; Dadou, I.; González-Dávila, M.; Santana-Casiano, J. M.

    2015-09-01

    An accurate quantification of the role of the ocean as source/sink of greenhouse gases (GHGs) requires to access the high-resolution of the GHG air-sea flux at the interface. In this paper we present a novel method to reconstruct maps of surface ocean partial pressure of CO2 ( pCO2) and air-sea CO2 fluxes at super resolution (4 km, i.e., 1/32° at these latitudes) using sea surface temperature (SST) and ocean color (OC) data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). Inference of super-resolution pCO2 and air-sea CO2 fluxes is performed using novel nonlinear signal processing methodologies that prove efficient in the context of oceanography. The theoretical background comes from the microcanonical multifractal formalism which unlocks the geometrical determination of cascading properties of physical intensive variables. As a consequence, a multi-resolution analysis performed on the signal of the so-called singularity exponents allows for the correct and near optimal cross-scale inference of GHG fluxes, as the inference suits the geometric realization of the cascade. We apply such a methodology to the study offshore of the Benguela area. The inferred representation of oceanic partial pressure of CO2 improves and enhances the description provided by CarbonTracker, capturing the small-scale variability. We examine different combinations of ocean color and sea surface temperature products in order to increase the number of valid points and the quality of the inferred pCO2 field. The methodology is validated using in situ measurements by means of statistical errors. We find that mean absolute and relative errors in the inferred values of pCO2 with respect to in situ measurements are smaller than for CarbonTracker.

  14. Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation

    NASA Technical Reports Server (NTRS)

    Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; Tausnev, N.

    2013-01-01

    Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).

  15. Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.

    2014-12-01

    From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to air-sea CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. Air-sea CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of air-sea CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal

  16. Response of biological production and air-sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems

    NASA Astrophysics Data System (ADS)

    Lachkar, Zouhair; Gruber, Nicolas

    2013-01-01

    Upwelling-favorable winds have increased in most Eastern Boundary Upwelling Systems (EBUS) in the last decades, and it is likely that they increase further in response to global climate change. Here, we explore the response of biological production and air-sea CO2 fluxes to upwelling intensification in two of the four major EBUS, namely the California Current System (California CS) and Canary Current System (Canary CS). To this end, we use eddy-resolving regional ocean models on the basis of the Regional Oceanic Modeling System (ROMS) to which we have coupled a NPZD-type ecosystem model and a biogeochemistry module describing the carbon cycle and subject these model configurations to an idealized increase in the wind stress. We find that a doubling of the wind-stress doubles net primary production (NPP) in the southern California CS and central and northern Canary CS, while it leads to an increase of less than 50% in the central and northern California CS as well as in the southern Canary CS. This differential response is a result of i) different nutrient limitation states with higher sensitivity to upwelling intensification in regions where nutrient limitation is stronger and ii) more efficient nutrient assimilation by biology in the Canary CS relative to the California CS because of a faster nutrient-replete growth rate and longer nearshore water residence times. In the regions where production increases commensurably with upwelling intensification, the enhanced net biological uptake of CO2 compensates the increase in upwelling driven CO2 outgassing, resulting in only a small change in the biological pump efficiency and hence in a small sensitivity of air-sea CO2 fluxes to upwelling intensification. In contrast, in the central California CS as well as in the southern Canary CS around Cape Blanc, the reduced biological efficiency enhances the CO2 outgassing and leads to a substantial sensitivity of the air-sea CO2 fluxes to upwelling intensification.

  17. The carbon dioxide system on the Mississippi River-dominated continental shelf in the northern Gulf of Mexico: 1. Distribution and air-sea CO2 flux

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Jen; Cai, Wei-Jun; Wang, Yongchen; Lohrenz, Steven E.; Murrell, Michael C.

    2015-03-01

    River-dominated continental shelf environments are active sites of air-sea CO2 exchange. We conducted 13 cruises in the northern Gulf of Mexico, a region strongly influenced by fresh water and nutrients delivered from the Mississippi and Atchafalaya River system. The sea surface partial pressure of carbon dioxide (pCO2) was measured, and the air-sea CO2 flux was calculated. Results show that CO2 exchange exhibited a distinct seasonality: the study area was a net sink of atmospheric CO2 during spring and early summer, and it was neutral or a weak source of CO2 to the atmosphere during midsummer, fall, and winter. Along the salinity gradient, across the shelf, the sea surface shifted from a source of CO2 in low-salinity zones (0≤S<17) to a strong CO2 sink in the middle-to-high-salinity zones (17≤S<33), and finally was a near-neutral state in the high-salinity areas (33≤S<35) and in the open gulf (S≥35). High pCO2 values were only observed in narrow regions near freshwater sources, and the distribution of undersaturated pCO2 generally reflected the influence of freshwater inputs along the shelf. Systematic analyses of pCO2 variation demonstrated the importance of riverine nitrogen export; that is, riverine nitrogen-enhanced biological removal, along with mixing processes, dominated pCO2 variation along the salinity gradient. In addition, extreme or unusual weather events were observed to alter the alongshore pCO2 distribution and to affect regional air-sea CO2 flux estimates. Overall, the study region acted as a net CO2 sink of 0.96 ± 3.7 mol m-2 yr-1 (1.15 ± 4.4 Tg C yr-1).

  18. Spatiotemporal variability and drivers of pCO2 and air-sea CO2 fluxes in the California Current System: an eddy-resolving modeling study

    NASA Astrophysics Data System (ADS)

    Turi, G.; Lachkar, Z.; Gruber, N.

    2014-02-01

    We quantify the CO2 source/sink nature of the California Current System (CalCS) and determine the drivers and processes behind the mean and spatiotemporal variability of the partial pressure of CO2 (pCO2) in the surface ocean. To this end, we analyze eddy-resolving, climatological simulations of a coupled physical-biogeochemical oceanic model on the basis of the Regional Oceanic Modeling System (ROMS). In the annual mean, the entire CalCS within 800 km of the coast and from ∼33° N to 46° N is essentially neutral with regard to atmospheric CO2: the model simulates an integrated uptake flux of -0.9 ± 3.6 Tg C yr-1, corresponding to an average flux density of -0.05 ± 0.20 mol C m-2 yr-1. This near zero flux is a consequence of an almost complete regional compensation between (i) strong outgassing in the nearshore region (first 100 km) that brings waters with high concentrations of dissolved inorganic carbon (DIC) to the surface and (ii) and a weaker, but more widespread uptake flux in the offshore region due to an intense biological reduction of this DIC, driven by the nutrients that are upwelled together with the DIC. The air-sea CO2 fluxes vary substantially in time, both on seasonal and sub-seasonal timescales, largely driven by variations in surface ocean pCO2. Most of the variability in pCO2 is associated with the seasonal cycle, with the exception of the nearshore region, where sub-seasonal variations driven by mesoscale processes dominate. In the regions offshore of 100 km, changes in surface temperature are the main driver, while in the nearshore region, changes in surface temperature, as well as anomalies in DIC and alkalinity (Alk) owing to changes in circulation, biological productivity and air-sea CO2 fluxes dominate. The prevalence of eddy-driven variability in the nearshore 100 km leads to a complex spatiotemporal mosaic of surface ocean pCO2 and air-sea CO2 fluxes that require a substantial observational effort to determine the source

  19. Variability of 14C reservoir age and air-sea flux of CO2 in the Peru-Chile upwelling region during the past 12,000 years

    NASA Astrophysics Data System (ADS)

    Carré, Matthieu; Jackson, Donald; Maldonado, Antonio; Chase, Brian M.; Sachs, Julian P.

    2016-01-01

    The variability of radiocarbon marine reservoir age through time and space limits the accuracy of chronologies in marine paleo-environmental archives. We report here new radiocarbon reservoir ages (ΔR) from the central coast of Chile (~ 32°S) for the Holocene period and compare these values to existing reservoir age reconstructions from southern Peru and northern Chile. Late Holocene ΔR values show little variability from central Chile to Peru. Prior to 6000 cal yr BP, however, ΔR values were markedly increased in southern Peru and northern Chile, while similar or slightly lower-than-modern ΔR values were observed in central Chile. This extended dataset suggests that the early Holocene was characterized by a substantial increase in the latitudinal gradient of marine reservoir age between central and northern Chile. This change in the marine reservoir ages indicates that the early Holocene air-sea flux of CO2 could have been up to five times more intense than in the late Holocene in the Peruvian upwelling, while slightly reduced in central Chile. Our results show that oceanic circulation changes in the Humboldt system during the Holocene have substantially modified the air-sea carbon flux in this region.

  20. An Approach to Minimizing Artifacts Caused by Cross-Sensitivity in the Determination of Air-Sea CO2 Flux Using the Eddy-Covariance Technique

    NASA Astrophysics Data System (ADS)

    Duan, Ziqiang; Gao, Huiwang; Gao, Zengxiang; Wang, Renlei; Xue, Yuhuan; Yao, Xiaohong

    2013-07-01

    The air-sea CO2 flux was measured from a research vessel in the North Yellow Sea in October 2007 using an open-path eddy-covariance technique. In 11 out of 64 samples, the normalized spectra of scalars (C}2, water vapour, and temperature) showed similarities. However, in the remaining samples, the normalized CO2 spectra were observed to be greater than those of water vapour and temperature at low frequencies. In this paper, the noise due to cross-sensitivity was identified through a combination of intercomparisons among the normalized spectra of three scalars and additional analyses. Upon examination, the cross-sensitivity noise appeared to be mainly present at frequencies {<}0.8 Hz. Our analysis also suggested that the high-frequency fluctuations of CO2 concentration (frequency {>}0.8 Hz) was probably less affected by the cross-sensitivity. To circumvent the cross-sensitivity issue, the cospectrum in the high-frequency range 0.8-1.5 Hz, instead of the whole range, was used to estimate the CO2 flux by taking the contribution of the high frequency to the CO2 flux to be the same as the contribution to the water vapour flux. The estimated air-sea CO2 flux in the North Yellow Sea was -0.039 ± 0.048 mg m^{-2} s^{-1}, a value comparable to the estimates using the inertial dissipation method and Edson's method (Edson et al., J Geophys Res 116:C00F10, 2011).

  1. Dynamics of air-sea CO2 fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Macé, E.; Morin, P.; Salt, L. A.; Vernet, M.; Taylor, B.; Paxman, K.; Bozec, Y.

    2015-09-01

    From January 2011 to December 2013, we constructed a comprehensive pCO2 data set based on voluntary observing ship (VOS) measurements in the western English Channel (WEC). We subsequently estimated surface pCO2 and air-sea CO2 fluxes in northwestern European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), wind speed (WND), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011-2013 data set (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT and LDEO databases and obtained good agreement between modeled and observed data. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of -0.6 ± 0.3, -0.9 ± 0.3 and -0.5 ± 0.3 mol C m-2 yr-1 in the northern Celtic Sea, southern Celtic sea and nWEC, respectively, whereas permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2 ± 0.2 and 0.3 ± 0.2 mol C m-2 yr-1 in the sWEC and IS, respectively. Air-sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over these provinces for the last decade and obtained the first annual average uptake of -1.11 ± 0.32 Tg C yr-1 for this part of the northwestern European continental shelf. Our study showed that combining VOS data with satellite observations can be a powerful tool to

  2. Dynamics of air-sea CO2 fluxes in the North-West European Shelf based on Voluntary Observing Ship (VOS) and satellite observations

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Macé, E.; Morin, P.; Salt, L. A.; Vernet, M.; Taylor, B.; Paxman, K.; Bozec, Y.

    2015-04-01

    From January 2011 to December 2013, we constructed a comprehensive pCO2 dataset based on voluntary observing ship (VOS) measurements in the Western English Channel (WEC). We subsequently estimated surface pCO2 and air-sea CO2 fluxes in north-west European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), the gas transfer velocity coefficient (K), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with relative uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011-2013 dataset (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish Seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT database and obtained relatively robust results with an average precision of 4 ± 22 μatm in the seasonally stratified nWEC and the southern and northern CS (sCS and nCS), but less promising results in the permanently well-mixed sWEC, IS and Cap Lizard (CL) waters. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of -0.4, -0.9 and -0.4 mol C m-2 year-1 in the nCS, sCS and nWEC, respectively, whereas, permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2, 0.4 and 0.4 mol C m-2 year-1 in the sWEC, CL and IS, respectively. Air-sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over six provinces for the last decade and obtained the first annual average uptake of -0.95 Tg C year-1 for this

  3. Eddy fluxes in baroclinic turbulence

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew F.

    The eddy heat flux generated by the statistically equilibrated baroclinic instability of a uniform, horizontal temperature gradient is studied using a two-mode quasigeostrophic model. An overview of the dependence of the eddy diffusivity of heat Dtau on the planetary potential vorticity gradient beta, the bottom friction kappa, the deformation radius lambda, the vertical shear of the large-scale flow 2U and the domain size L is provided at 70 numerical simulations with beta = 0 (f-plane) and 110 simulations with beta ≠ 0 (beta-plane). Strong, axisymmetric, well-separated baroclinic vortices dominate the equilibrated barotropic vorticity and temperature fields of f-plane turbulence. The heat flux arises from a systematic northward (southward) migration of anti-cyclonic (cyclonic) eddies with warm (cold) fluid trapped in the cores. Zonal jets form spontaneously on the beta-plane, and stationary, isotropic, jet-scale eddies align within the strong eastward-flowing regions of the jets. In both studies, the vortices and jets give rise to a strong anti-correlation between the barotropic vorticity zeta and the temperature field tau. The baroclinic mode is also an important contributor to dissipation by bottom friction and energizes the barotropic mode at scales larger than lambda. This in part explains why previous parameterizations for the eddy heat flux based on Kolmogorovian cascade theories are found to be unreliable. In a separate study, temperature and salinity profiles obtained with expendable conductivity, temperature and depth (XCTD) probes within Drake Passage, Southern Ocean are used to analyze the turbulent diapycnal eddy diffusivity kappa rho to a depth of 1000 meters. The Polar Front separates two dynamically different regions with strong, surface-intensified mixing north of the Front. South of the Polar Front mixing is weaker and peaks at a depth of approximately 500 m, near the local temperature maximum. Peak values of kapparho are found to exceed 10-3 m

  4. Spatiotemporal variability and drivers of pCO2 and air-sea CO2 fluxes in the California Current System: an eddy-resolving modeling study

    NASA Astrophysics Data System (ADS)

    Turi, G.; Lachkar, Z.; Gruber, N.

    2013-08-01

    nutrient concentrations of the upwelled waters a primary determinant of the overall source/sink nature of the CalCS. The comparison of the standard simulation with one for preindustrial conditions show that the CalCS is taking up anthropogenic CO2 at a rate of about -1 mol C m-2 yr-1, implying that the region was a small source of CO2 to the atmosphere in preindustrial times. The air-sea CO2 fluxes vary substantially in time, both on seasonal and sub-seasonal timescales, largely driven by variations in surface ocean pCO2. There are important differences among the subregions. Notably, the total variance of the fluxes in the central nearshore CalCS is roughly 4-5 times larger than elsewhere. Most of the variability in pCO2 is associated with the seasonal cycle, except in the nearshore, where sub-seasonal variations driven by mesoscale processes dominate. In the regions offshore of 100 km, changes in surface temperature are the main driver, while in the nearshore region, changes in surface temperature, as well as anomalies in DIC and alkalinity (Alk) owing to changes in circulation, biological productivity and air-sea CO2 fluxes dominate. The dominance of eddy-driven variability in the nearshore 100 km leads to a complex spatiotemporal mosaic of surface ocean pCO2 and air-sea CO2 fluxes that require a substantial observational effort to determine the source/sink nature of this region reliably.

  5. Examination of air-sea CO2 fluxes from the low-latitude coastal Eastern Pacific: Application of predictive algorithms to new VOS observations.

    NASA Astrophysics Data System (ADS)

    Hales, B.; Alin, S.; Feely, R. A.; Hernandez-Ayon, M.; Letelier, R.; Strutton, P. G.; Cosca, C.

    2008-12-01

    Coastal oceans are regions of large and highly variable air-sea CO2 fluxes, leading to highly uncertain predictions of globally significant contributions to the atmospheric carbon budget. Estimates of net annual regional fluxes are often the balance between poorly-constrained, large-magnitude sinks and sources. This is the case for the Pacific coast of North America, where a recent synthesis (Chavez et al., 2007) predicted low total fluxes resulting from the near-cancellation of large, lightly-sampled fluxes of opposite sign. In particular, the low latitude coastal waters off Central America appeared to be a large source of CO2 to the atmosphere, but there was very low spatial and temporal observational coverage in these waters. Recently, new VOS data in this region has become available that has dramatically increased both spatial and temporal sampling density in this region. In previous work we developed a new remote sensing-based synthetic approach applied to the mid-latitude regions of the North American Pacific coast that gave strong predictive power and was subsequently validated by in-water measurements in the summer of 2007. We present the results of applying this predictive approach to the target study region, and the predictive relationship is then combined with seasonally resolved remote sensing data to generate annual net flux estimates and to evaluate the prediction of strong efflux from these low-latitude waters based on the sparse historical data.

  6. Quantifying air-sea gas exchange using noble gases in a coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Manning, C. C.; Stanley, R. H. R.; Nicholson, D. P.; Squibb, M. E.

    2016-05-01

    The diffusive and bubble-mediated components of air-sea gas exchange can be quantified separately using time-series measurements of a suite of dissolved inert gases. We have evaluated the performance of four published air-sea gas exchange parameterizations using a five-day time-series of dissolved He, Ne, Ar, Kr, and Xe concentration in Monterey Bay, CA. We constructed a vertical model including surface air-sea gas exchange and vertical diffusion. Diffusivity was measured throughout the cruise from profiles of turbulent microstructure. We corrected the mixed layer gas concentrations for an upwelling event that occurred partway through the cruise. All tested parameterizations gave similar results for Ar, Kr, and Xe; their air-sea fluxes were dominated by diffusive gas exchange during our study. For He and Ne, which are less soluble, and therefore more sensitive to differences in the treatment of bubble-mediated exchange, the parameterizations gave widely different results with respect to the net gas exchange flux and the bubble flux. This study demonstrates the value of using a suite of inert gases, especially the lower solubility ones, to parameterize air-sea gas exchange.

  7. Turbulent energy flux generated by shock/homogeneous-turbulence interaction

    NASA Astrophysics Data System (ADS)

    Sinha, Krishnendu; Quadros, Russell; Larsson, Johan

    2015-11-01

    High-speed turbulent flows with shock waves are characterized by high localized surface heat transfer rates. Computational predictions are often inaccurate due to the limitations in modeling of the unclosed turbulent energy flux in the highly non-equilibrium regions of shock interaction. In this paper, we investigate the turbulent energy flux generated when homogeneous isotropic turbulence passes through a nominally normal shock wave. We use linear interaction analysis where the incoming turbulence is idealized as being composed of a collection of two-dimensional planar vorticity waves, and the shock wave is taken to be a discontinuity. The nature of the post-shock turbulent energy flux is predicted to be strongly dependent on the incidence angle of the incoming waves. The energy flux correlation is also decomposed into its vortical, entropy and acoustic contributions to understand its rapid non-monotonic variation behind the shock. Three-dimensional statistics, calculated by integrating two-dimensional results over a prescribed upstream energy spectrum, are compared with available direct numerical simulation data. A detailed budget of the governing equation is also considered in order to gain insight into the underlying physics.

  8. Effect of gas-transfer-velocity parameterization choice on CO2 air-sea fluxes in the North Atlantic and European Arctic

    NASA Astrophysics Data System (ADS)

    Wróbel, I.; Piskozub, J.

    2015-11-01

    The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, understanding the uncertainties the net flux into the ocean sink is crucial for understanding the global carbon cycle. One of the sources of uncertainty is the parameterization of CO2 gas transfer velocity. We used a recently developed software tool, FluxEngine, to calculate monthly net carbon air-sea flux for the extratropical North Atlantic, European Arctic as well as global values (or comparison) using several available parameterizations of gas transfer velocity of different dependence of wind speed, both quadratic and cubic. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic, a large sink of CO2 and a region with good measurement coverage, characterized by strong winds. We show that this uncertainty is smaller in the North Atlantic and in the Arctic than globally, within 5 % in the North Atlantic and 4 % in the European Arctic, comparing to 9 % for the World Ocean when restricted to functions with quadratic wind dependence and respectively 42, 40 and 67 % for all studied parameterizations. We propose an explanation of this smaller uncertainty due to the combination of higher than global average wind speeds in the North Atlantic and lack of seasonal changes in the flux direction in most of the region. We also compare the available pCO2 climatologies (Takahashi and SOCAT) pCO2 discrepancy in annual flux values of 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal flux changes in the Arctic have inverse seasonal change in both climatologies, caused most probably by insufficient data coverage, especially in winter.

  9. Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel

  10. Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2013-10-01

    The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h-1) blowing from the N-E and a decaying ice cover (<80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2 with a mean uptake rate of -2.0 ± 3.3 mmol C m-2d-1. We attribute this discrepancy to: (1) elevated PP rates (>600 mg C m-2d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m-2d-1). Although generally <100 mg C m-2d-1, daily PP rates cumulated to a total PP of ~437.6 × 103 t C, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the

  11. Roles of biological and physical processes in driving seasonal air-sea CO2 flux in the Southern Ocean: New insights from CARIOCA pCO2

    NASA Astrophysics Data System (ADS)

    Merlivat, L.; Boutin, J.; Antoine, D.

    2015-07-01

    On a mean annual basis, the Southern Ocean is a sink for atmospheric CO2. However the seasonality of the air-sea CO2 flux in this region is poorly documented. We investigate processes regulating air-sea CO2 flux in a large area of the Southern Ocean (38°S-55°S, 60°W-60°E) that represents nearly one third of the subantarctic zone. A seasonal budget of CO2 partial pressure, pCO2 and of dissolved inorganic carbon, DIC in the mixed layer is assessed by quantifying the impacts of biology, physics and thermodynamical effect on seawater pCO2. A focus is made on the quantification at a monthly scale of the biological consumption as it is the dominant process removing carbon from surface waters. In situ biological carbon production rates are estimated from high frequency estimates of DIC along the trajectories of CARIOCA drifters in the Atlantic and Indian sector of the Southern Ocean during four spring-summer seasons over the 2006-2009 period. Net community production (NCP) integrated over the mixed layer is derived from the daily change of DIC, and mixed layer depth estimated from Argo profiles. Eleven values of NCP are estimated and range from 30 to 130 mmol C m- 2 d- 1. They are used as a constraint for validating satellite net primary production (NPP). A satellite data-based global model is used to compute depth integrated net primary production, NPP, for the same periods along the trajectories of the buoys. Realistic NCP/NPP ratios are obtained under the condition that the SeaWiFS chlorophyll are corrected by a factor of ≈ 2-3, which is an underestimation previously reported for the Southern Ocean. Monthly satellite based NPP are computed over the 38°S-55°S, 60°W-60°E area. pCO2 derived from these NPP combined with an export ratio, and taking into account the impact of physics and thermodynamics is in good agreement with the pCO2 seasonal climatology of Takahashi (2009). On an annual timescale, mean NCP values, 4.4 to 4.9 mol C m- 2 yr- 1 are ≈ 4-5 times

  12. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    NASA Astrophysics Data System (ADS)

    Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.

    2016-02-01

    The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.

  13. Interannual and seasonal variabilities in air-sea CO2 fluxes along the U.S. eastern continental shelf and their sensitivity to increasing air temperatures and variable winds

    NASA Astrophysics Data System (ADS)

    Cahill, Bronwyn; Wilkin, John; Fennel, Katja; Vandemark, Doug; Friedrichs, Marjorie A. M.

    2016-02-01

    Uncertainty in continental shelf air-sea CO2 fluxes motivated us to investigate the impact of interannual and seasonal variabilities in atmospheric forcing on the capacity of three shelf regions along the U.S. eastern continental shelf to act as a sink or source of atmospheric CO2. Our study uses a coupled biogeochemical-circulation model to simulate scenarios of "present-day" and "future-perturbed" mesoscale forcing variability. Overall, the U.S. eastern continental shelf acts as a sink for atmospheric CO2. There is a clear gradient in air-sea CO2 flux along the shelf region, with estimates ranging from -0.6 Mt C yr-1 in the South Atlantic Bight (SAB) to -1.0 Mt C yr-1 in the Mid-Atlantic Bight (MAB) and -2.5 Mt C yr-1 in the Gulf of Maine (GOM). These fluxes are associated with considerable interannual variability, with the largest interannual signal exhibited in the Gulf of Maine. Seasonal variability in the fluxes is also evident, with autumn and winter being the strongest CO2 sink periods and summer months exhibiting some outgassing. In our future-perturbed scenario spatial differences tend to cancel each other out when the fluxes are integrated over the MAB and GOM, resulting in only minor differences between future-perturbed and present-day air-sea CO2 fluxes. This is not the case in the SAB where the position of the along-shelf gradient shifts northward and the SAB becomes a source of CO2 to the atmosphere (0.7 Mt C yr-1) primarily in response to surface warming. Our results highlight the importance of temperature in regulating air-sea CO2 flux variability.

  14. Assessing the Potential to Derive Air-Sea Freshwater Fluxes from Aquarius-Like Observations of Surface Salinity

    NASA Technical Reports Server (NTRS)

    Zhen, Li; Adamec, David

    2009-01-01

    A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.

  15. The effects of sea surface temperature gradients on surface turbulent fluxes

    NASA Astrophysics Data System (ADS)

    Steffen, John

    A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (DeltaSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near-surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air--sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air--sea interactions, a flux model was forced with and without SST--induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary-Layer (UWPBL) model. Other input parameters include 2-m air temperature, 2-m dew point temperature, surface pressure (all from ERA--interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between DeltaSST and no DeltaSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December-January-February (DJF) seasons were analyzed for 1987--1990 and 1999--2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002---2003 DJF seasonal differences in SHF

  16. NONLINEAR MULTISCALE SIMULATION OF TURBULENT FLUX TUBES

    SciTech Connect

    Ragot, B. R.

    2011-10-20

    A new method for the full nonlinear computation of sets of turbulent field lines has recently been introduced that allows inclusion of the equivalent of more than four decades of turbulent scales with a fully three-dimensional distribution of wavevectors. The integration scheme is here detailed, which, through transformation of the set of differential equations into mappings, compounds the efficiency and accuracy of the method. The potential of the method is then demonstrated with multiscale simulations of magnetic flux tubes ranging over nearly four decades of length scales both along and across the background field. Magnetic flux tubes of various sizes are computed for a turbulence spectrum typical of the quiet slow solar wind near 1 AU. Implications of the simulation results for the transport of energetic particles, and in particular, for the interpretation of impulsive solar-energetic-particle and upstream ion-event observations are discussed.

  17. Development of an Eddy Covariance System for Air-Sea Carbon Dioxide Exchange

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Marandino, C. A.; McCormick, C.; Saltzman, E. S.

    2006-12-01

    We are developing a ship-based system to measure the air-sea pCO2 gradient and air-sea turbulent flux of CO2 over the ocean. The eddy covariance flux system uses off-the-shelf instruments to measure the turbulent wind vector (Campbell Scientific CSAT3 sonic anemometer), platform motion (Systron Donner Motion Pak II), and carbon dioxide molar density (LiCor 7000 Infrared Gas Analyzer). Two major sources of uncertainty in calculated fluxes are the effect of water vapor fluctuations on air density fluctuations (the WPL effect, Webb, Pearman and Leuning. 1980), and a spurious CO2 signal due to the sensitivity of the gas analyzer to platform motion (McGillis et al., 1998). Two flux systems were deployed side-by-side on a cruise from Manzanillo, Mexico to Puntas Arenas, Chile, in January 2006. Results from the cruise are presented, with a focus on our attempts to reduce biases in the calculated air-sea CO2 flux due to the WPL effect and the motion sensitivity of the gas analyzer.

  18. Dimethyl sulfide air-sea fluxes and biogenic sulfur as a source of new aerosols in the Arctic fall

    NASA Astrophysics Data System (ADS)

    Rempillo, Ofelia; Seguin, Alison Michelle; Norman, Ann-Lise; Scarratt, Michael; Michaud, Sonia; Chang, Rachel; Sjostedt, Steve; Abbatt, Jon; Else, Brent; Papakyriakou, Tim; Sharma, Sangeeta; Grasby, Steve; Levasseur, Maurice

    2011-09-01

    Dimethyl sulfide (DMS) and its oxidation products, which have been proposed to provide a climate feedback mechanism by affecting aerosol and cloud radiative properties, were measured on board the Canadian Coast Guard ship Amundsen in sampling campaigns in the Arctic in the fall of 2007 and 2008. DMS flux was calculated based on the surface water measurements and yielded 0.1-2.6 μmol m-2 d-1 along the Northwest Passage in 2007 and 0.2-1.3 μmol m-2 d-1 along Baffin Bay in 2008. DMS oxidation products, sulfur dioxide (SO2), methane sulfonic acid (MSA), and sulfate in aerosols were also measured. The amounts of biogenic SO2 and sulfate were approximated using stable isotope apportionment techniques. Calculating the threshold amount of SO2 needed for significant new particle formation from the formulation by Pirjola et al. (1999), the study suggests that instances of elevated biogenic SO2 concentrations (between 8 and 9 September 2008) derived using conservative assumptions may have been sufficient to form new aerosols in clean air conditions in the Arctic region.

  19. Energy balance and non-turbulent fluxes

    NASA Astrophysics Data System (ADS)

    Moderow, Uta; Feigenwinter, Christian; Bernhofer, Christian

    2010-05-01

    Often, the sum of the turbulent fluxes of sensible heat and latent heat from eddy covariance (EC) measurements does not match the available energy (sum of net radiation, ground heat flux and storage changes). This is referred to as energy balance closure gap. The reported imbalances vary between 0% and 50% (Laubach 1996). In various publications, it has been shown that the uncertainty of the available energy itself does not explain the gap (Vogt et al. 1996; Moderow et al. 2009). Among other reasons, the underestimation is attributed to an underestimation of turbulent fluxes and undetected non-turbulent transport processes, i.e. advection (e.g. Foken et al. 2006). The imbalance is typically larger during nighttime than during daytime as the EC method fails to capture non-turbulent transports that can be significant during night (e.g. Aubinet 2008). Results for the budget of CO2 showed that including non-turbulent fluxes can change the budgets considerably. Hence, it is interesting to see how the budget of energy is changed. Here, the consequences of including advective fluxes of sensible heat and latent heat in the energy balance are explored with focus on nighttime conditions. Non-turbulent fluxes will be inspected critically regarding their plausibility. Following Bernhofer et al. (2003), a ratio similar to Bowen's ratio of the turbulent fluxes are defined for the non-turbulent fluxes and compared to each other. This might have implications for the partitioning of the available energy into sensible heat and latent heat. Data of the ADVEX-campaigns (Feigenwinter et al. 2008) of three different sites across Europe are used and selected periods are inspected. References Aubinet M (2008) Eddy covariance CO2-flux measurements in nocturnal conditions: An analysis of the problem. Ecol Appl 18: 1368-1378 Bernhofer C, Grünwald T, Schwiebus A, Vogt R (2003) Exploring the consequences of non-zero energy balance closure for total surface flux. In: Bernhofer C (ed

  20. Synoptic evaluation of carbon cycling in the Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2014-05-01

    The accelerated decline in Arctic sea ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in the southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h-1) from the NE. A decaying ice cover (< 80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2, with an uptake rate of -2.0 ± 3.3 mmol C m-2 d-1 (mean ± standard deviation associated with spatial variability). We attribute this discrepancy to (1) elevated PP rates (> 600 mg C m-2 d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m-2 d-1). Daily PP rates were generally < 100 mg C m-2 d-1 and cumulated to a total PP of ~ 437.6 × 103 t C for the region over a 35-day period. This amount was about twice the

  1. Flux Correlations in Supersonic Isothermal Turbulence

    NASA Astrophysics Data System (ADS)

    Wagner, Richard P.; Kritsuk, A. G.; Norman, M. L.

    2011-05-01

    Knowing the properties of turbulence and their physical origins is necessary for our complete understanding of star formation within molecular clouds. However, until recently, there were no analytic models specific to compressible turbulence, and most work focused on adapting what is known from incompressible fluids, such as the Kolmogorov four-fifths law. Using data from a large-scale three-dimensional simulation of supersonic (M=6) isothermal turbulence, we verify an exact flux relation derived analytically from the Navier-Stokes equations by Falkovich, Fouxon, and Oz [Journal of Fluid Mechanics 644, 465 (2010)], which serves as the compressible case analogue of the Kolmogorov four-fifths law. We find strong support for the new relation; recovering both the predicted linear scaling and an excellent agreement with the predicted slope value.

  2. Air-Sea CO2 fluxes and NEP changes in a Baja California Coastal Lagoon during the anomalous North Pacific warm condition in 2014

    NASA Astrophysics Data System (ADS)

    Ávila López, M. D. C.; Martin Hernandez-Ayon, J. M.; Camacho-Ibar, V.; Sandoval Gil, J.; Mejía-Trejo, A.; Félix-Bermudez, A.; Pacheco-Ruiz, I.

    2015-12-01

    The present study examines the temporal variability of seawater carbonate chemistry and air-sea CO2 fluxes (FCO2) in a Baja California Mediterranean-climate coastal lagoon. This study was carried out from Nov-2013 to Nov-2014, a period in which anomalous warm conditions were present in the North Pacific Ocean influenced the local oceanography in the adjacent coastal waters off Baja California. These ocean conditions resulted on a negative anomaly of upwelling index, which led to summer-like season (weak upwelling condition) that could be observed in the response of carbon dynamics and metabolic status in San Quintín Bay. Minor changes in dissolved inorganic carbon (DIC) concentration during spring months (~100 µmol kg-1) where observed and were associated to biological processes within the lagoon. High DIC (~2200 µmol kg-1), pCO2 (~800 μatm), and minimum pH (~7.8) values were observed in summer, reflecting the predominance of respiration processes apparently mostly linked to the remineralization of sedimentary organic matter supplied from macroalgal blooms. San Quintín Bay acted as a weak source of CO2 to the atmosphere during the study period, with maximum value observed in July (~10 mmol C m-2 d-1). Temporal biomass production of macroalgae contributed to about 50% of total FCO2 estimated in spring-summer seasons, that was a potencial internal source of organic matter to fuel respiration processes in San Quintín Bay. Eelgrass metabolism contributes in a lower degree in total FCO2. During the anomalous ocean conditions in 2014, the lagoon switched seasonally between net heterotrophy and net autotrophy during the study period, where photosynthesis and respiration processes in the lagoon were closer to a balance. Whole-system metabolism and FCO2 clearly indicated the strong dependence of San Quintín Bay on upwelling conditions and benthic metabolism activity, which was mainly controlled by dominant primary producer communities.

  3. Regional coupled ocean-atmosphere downscaling in the Southeast Pacific: impacts on upwelling, mesoscale air-sea fluxes, and ocean eddies

    NASA Astrophysics Data System (ADS)

    Putrasahan, Dian A.; Miller, Arthur J.; Seo, Hyodae

    2013-05-01

    Ocean-atmosphere coupling in the Humboldt Current System (HCS) of the Southeast Pacific is studied using the Scripps Coupled Ocean-atmosphere Regional (SCOAR) model, which is used to downscale the National Center for Environmental Prediction (NCEP) Reanalysis-2 (RA2) product for the period 2000-2007 at 20-km resolution. An interactive 2-D spatial smoother within the sea-surface temperature (SST)-flux coupler is invoked in a separate run to isolate the impact of the mesoscale (˜50-200 km, in the oceanic sense) SST field felt by the atmosphere in the fully coupled run. For the HCS, SCOAR produces seasonal wind stress and wind stress curl patterns that agree better with QuikSCAT winds than those from RA2. The SCOAR downscaled wind stress distribution has substantially different impacts on the magnitude and structure of wind-driven upwelling processes along the coast compared to RA2. Along coastal locations such as Arica and Taltal, SCOAR and RA2 produce seasonally opposite signs in the total wind-driven upwelling transport. At San Juan, SCOAR shows that upwelling is mainly due to coastal Ekman upwelling transport, while in RA2 upwelling is mostly attributed to Ekman pumping. Fully coupled SCOAR shows significant SST-wind stress coupling during fall and winter, while smoothed SCOAR shows insignificant coupling throughout, indicating the important role of ocean mesoscale eddies on air-sea coupling in HCS. Coupling between SST, wind speed, and latent heat flux is incoherent in large-scale coupling and full coupling mode. In contrast, coupling between these three variables is clearly identified for oceanic mesoscales, which suggests that mesoscale SST affects latent heat directly through the bulk formulation, as well as indirectly through stability changes on the overlying atmosphere, which affects surface wind speeds. The SST-wind stress and SST-heat-flux couplings, however, fail to produce a strong change in the ocean eddy statistics. No rectified effects of ocean

  4. A climatology of air-sea interactions at the Mediterranean LION and AZUR buoys

    NASA Astrophysics Data System (ADS)

    Caniaux, Guy; Prieur, Louis; Bouin, Marie-Noëlle; Giordani, Hervé

    2014-05-01

    The LION and AZUR buoys (respectively at 42.1°N 4.7°E and 43.4°N 7.8°E) provide an extended data set since respectively 1999 and 2001 to present for studying air-sea interactions in the northwestern Mediterranean basin. The two buoys are located where high wind events occur (resp. north western and north easterly gale winds), that force and condition deep oceanic winter convection in that region. A short-term climatology (resp. 13 and 11 years) of air-sea interactions has been developed, which includes classical meteo-oceanic parameters, but also waves period and significant wave heights and radiative fluxes. Moreover turbulent surface fluxes have been estimated from various bulk parameterizations, in order to estimate uncertainties on fluxes. An important dispersion of turbulent fluxes is found at high wind speeds according to the parameterization used, larger than taking into account the second order effects of cool skin, warm layer and waves. An important annual cycle affects air temperatures (ATs), SSTs and turbulent fluxes at the two buoys. The annual cycle of ATs and SSTs can be well reconstructed from the first two annual harmonics, while for the turbulent heat fluxes the erratic occurrence of high and low flux events, well correlated with high/dry and low windy periods, strongly affect their annual and interannual cycles. The frequency of high surface heat fluxes and high wind stress is found highest during the autumn and winter months, despite the fact that north-westerly gale winds occur all year long at LION buoy. During calm weather period, ATs and SSTs experience an important diurnal cycle (on average 1 and 0.5°C respectively), that affect latent and sensible heat fluxes. Finally, an estimate of the interannual variability of the turbulent fluxes in Autumn and Winter is discussed, in order to characterize their potential role on deep ocean convection.

  5. Nitrous oxide and methane in Atlantic and Mediterranean waters in the Strait of Gibraltar: Air-sea fluxes and inter-basin exchange

    NASA Astrophysics Data System (ADS)

    de la Paz, M.; Huertas, I. E.; Flecha, S.; Ríos, A. F.; Pérez, F. F.

    2015-11-01

    The global ocean plays an important role in the overall budget of nitrous oxide (N2O) and methane (CH4), as both gases are produced within the ocean and released to the atmosphere. However, for large parts of the open and coastal oceans there is little or no spatial data coverage for N2O and CH4. Hence, a better assessment of marine emissions estimates is necessary. As a contribution to remedying the scarcity of data on marine regions, N2O and CH4 concentrations have been determined in the Strait of Gibraltar at the ocean Fixed Time series (GIFT). During six cruises performed between July 2011 and November 2014 samples were collected at the surface and various depths in the water column, and subsequently measured using gas chromatography. From this we were able to quantify the temporal variability of the gas air-sea exchange in the area and examine the vertical distribution of N2O and CH4 in Atlantic and Mediterranean waters. Results show that surface Atlantic waters are nearly in equilibrium with the atmosphere whereas deeper Mediterranean waters are oversaturated in N2O, and a gradient that gradually increases with depth was detected in the water column. Temperature was found to be the main factor responsible for the seasonal variability of N2O in the surface layer. Furthermore, although CH4 levels did not reveal any feature clearly associated with the circulation of water masses, vertical distributions showed that higher concentrations are generally observed in the Atlantic layer, and that the deeper Mediterranean waters are considerably undersaturated (by up to 50%). Even though surface waters act as a source of atmospheric N2O during certain periods, on an annual basis the net N2O flux in the Strait of Gibraltar is only 0.35 ± 0.27 μmol m-2 d-1, meaning that these waters are almost in a neutral status with respect to the atmosphere. Seasonally, the region behaves as a slight sink for atmospheric CH4 in winter and as a source in spring and fall. Approximating

  6. Turbulent fluxes by "Conditional Eddy Sampling"

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2015-04-01

    Turbulent flux measurements are key to understanding ecosystem scale energy and matter exchange, including atmospheric trace gases. While the eddy covariance approach has evolved as an invaluable tool to quantify fluxes of e.g. CO2 and H2O continuously, it is limited to very few atmospheric constituents for which sufficiently fast analyzers exist. High instrument cost, lack of field-readiness or high power consumption (e.g. many recent laser-based systems requiring strong vacuum) further impair application to other tracers. Alternative micrometeorological approaches such as conditional sampling might overcome major limitations. Although the idea of eddy accumulation has already been proposed by Desjardin in 1972 (Desjardin, 1977), at the time it could not be realized for trace gases. Major simplifications by Businger and Oncley (1990) lead to it's widespread application as 'Relaxed Eddy Accumulation' (REA). However, those simplifications (flux gradient similarity with constant flow rate sampling irrespective of vertical wind velocity and introduction of a deadband around zero vertical wind velocity) have degraded eddy accumulation to an indirect method, introducing issues of scalar similarity and often lack of suitable scalar flux proxies. Here we present a real implementation of a true eddy accumulation system according to the original concept. Key to our approach, which we call 'Conditional Eddy Sampling' (CES), is the mathematical formulation of conditional sampling in it's true form of a direct eddy flux measurement paired with a performant real implementation. Dedicated hardware controlled by near-real-time software allows full signal recovery at 10 or 20 Hz, very fast valve switching, instant vertical wind velocity proportional flow rate control, virtually no deadband and adaptive power management. Demonstrated system performance often exceeds requirements for flux measurements by orders of magnitude. The system's exceptionally low power consumption is ideal

  7. Model estimating the effect of marginal ice zone processes on the phytoplankton primary production and air-sea flux of CO2 in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Dvornikov, Anton; Sein, Dmitry; Ryabchenko, Vladimir; Gorchakov, Victor; Martjyanov, Stanislav

    2016-04-01

    This study is aimed to assess the impact of sea ice on the primary production of phytoplankton (PPP) and air-sea CO2 flux in the Barents Sea. To get the estimations, we apply a three-dimensional eco-hydrodynamic model based on the Princeton Ocean Model which includes: 1) a module of sea ice with 7 categories, and 2) the 11-component module of marine pelagic ecosystem developed in the St. Petersburg Branch, Institute of Oceanology. The model is driven by atmospheric forcing, prescribed from the reanalysis NCEP / NCAR, and conditions on the open sea boundary, prescribed from the regional model of the atmosphere-ocean-sea ice-ocean biogeochemistry, developed at Max Planck Institute for Meteorology, Hamburg. Comparison of the model results for the period 1998-2007 with satellite data showed that the model reproduces the main features of the evolution of the sea surface temperature, seasonal changes in the ice extent, surface chlorophyll "a" concentration and PPP in the Barents Sea. Model estimates of the annual PPP for whole sea, APPmod, appeared in 1.5-2.3 times more than similar estimates, APPdata, from satellite data. The main reasons for this discrepancy are: 1) APPdata refers to the open water, while APPmod, to the whole sea area (under the pack ice and marginal ice zone (MIZ) was produced 16 - 38% of PPP); and 2) values of APPdata are underestimated because of the subsurface chlorophyll maximum. During the period 1998-2007, the modelled maximal (in the seasonal cycle) sea ice area has decreased by 15%. This reduction was accompanied by an increase in annual PPP of the sea at 54 and 63%, based, respectively, on satellite data and the model for the open water. According to model calculations for the whole sea area, the increase is only 19%. Using a simple 7-component model of oceanic carbon cycle incorporated into the above hydrodynamic model, the CO2 exchange between the atmosphere and sea has been estimated in different conditions. In the absence of biological

  8. Elemental mercury (Hg(0)) in air and surface waters of the Yellow Sea during late spring and late fall 2012: concentration, spatial-temporal distribution and air/sea flux.

    PubMed

    Ci, Zhijia; Wang, Chunjie; Wang, Zhangwei; Zhang, Xiaoshan

    2015-01-01

    The Yellow Sea in East Asia receives great Hg input from regional emissions. However, Hg cycling in this marine system is poorly investigated. In late spring and late fall 2012, we determined gaseous elemental Hg (GEM or Hg(0)) in air and dissolved gaseous Hg (DGM, mainly Hg(0)) in surface waters to explore the spatial-temporal variations of Hg(0) and further to estimate the air/sea Hg(0) flux in the Yellow Sea. The results showed that the GEM concentrations in the two cruises were similar (spring: 1.86±0.40 ng m(-3); fall: 1.84±0.50 ng m(-3)) and presented similar spatial variation pattern with elevated concentrations along the coast of China and lower concentrations in the open ocean. The DGM concentrations of the two cruises were also similar with 27.0±6.8 pg L(-1) in the spring cruise and 28.2±9.0 pg L(-1) in the fall cruise and showed substantial spatial variation. The air/sea Hg(0) fluxes in the spring cruise and fall cruise were estimated to be 1.06±0.86 ng m(-2) h(-1) and 2.53±2.12 ng m(-2) h(-1), respectively. The combination of this study and our previous summer cruise showed that the summer cruise presented enhanced values of GEM, DGM and air/sea Hg(0) flux. The possible reason for this trend was that high solar radiation in summer promoted Hg(0) formation in seawater, and the high wind speed during the summer cruise significantly increased Hg(0) emission from sea surface to atmosphere and subsequently enhanced the GEM levels. PMID:24999267

  9. Observational Studies of Parameters Influencing Air-sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.

    A physically-based modeling of the air-sea gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using heat as a proxy tracer for gases the exchange process at the air/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net heat flux at the ocean surface, the temperature gradient across the air/sea interface and thus the heat transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled flux technique by applying differ- ent tracers for the gas exchange in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port processes across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.

  10. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  11. Assessing air-sea interaction in the evolving NASA GEOS model

    NASA Astrophysics Data System (ADS)

    Clayson, C. A.; Roberts, J. B.

    2014-12-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  12. Magnetic flux concentrations from turbulent stratified convection

    NASA Astrophysics Data System (ADS)

    Käpylä, P. J.; Brandenburg, A.; Kleeorin, N.; Käpylä, M. J.; Rogachevskii, I.

    2016-04-01

    Context. The formation of magnetic flux concentrations within the solar convection zone leading to sunspot formation is unexplained. Aims: We study the self-organization of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection. Methods: We perform simulations of magnetoconvection in Cartesian domains representing the uppermost 8.5-24 Mm of the solar convection zone with the horizontal size of the domain varying between 34 and 96 Mm. The density contrast in the 24 Mm deep models is more than 3 × 103 or eight density scale heights, corresponding to a little over 12 pressure scale heights. We impose either a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow in set-ups where no small-scale dynamos are present. In the most highly stratified cases we employ the reduced sound speed method to relax the time step constraint arising from the high sound speed in the deep layers. We model radiation via the diffusion approximation and neglect detailed radiative transfer in order to concentrate on purely magnetohydrodynamic effects. Results: We find that super-equipartition magnetic flux concentrations are formed near the surface in cases with moderate and high density stratification, corresponding to domain depths of 12.5 and 24 Mm. The size of the concentrations increases as the box size increases and the largest structures (20 Mm horizontally near the surface) are obtained in the models that are 24 Mm deep. The field strength in the concentrations is in the range of 3-5 kG, almost independent of the magnitude of the imposed field. The amplitude of the concentrations grows approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and negative in the bulk of the convection zone. Its derivative with respect to the mean magnetic field, however, is positive in most of the domain, which is unfavourable for the operation of the negative

  13. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  14. Linking air-sea energy exchanges and European anchovy potential spawning ground

    NASA Astrophysics Data System (ADS)

    Grammauta, R.; Molteni, D.; Basilone, G.; Guisande, C.; Bonanno, A.; Aronica, S.; Giacalone, G.; Fontana, I.; Zora, M.; Patti, B.; Cuttitta, A.; Buscaino, G.; Sorgente, R.; Mazzola, S.

    2008-10-01

    The physical and chemical processes of the sea greatly affect the reproductive biology of fishes, mainly influencing both the numbers of spawned eggs and the survivorship of early stages up to the recruitment period. In the central Mediterranean, the European anchovy constitutes one of the most important fishery resource. Because of its short living nature and of its recruitment variability, associated to high environmental variability, this small pelagic species undergo high interannual fluctuation in the biomass levels. Despite several efforts were addressed to characterize fishes spawning habitat from the oceanographic point of view, very few studies analyze the air-sea exchanges effects. To characterize the spawning habitat of these resources a specific technique (quotient rule analysis) was applied on air-sea heat fluxes, wind stress, sea surface temperature and turbulence data, collected in three oceanographic surveys during the summer period of 2004, 2005 and 2006. The results showed the existence of preferred values in the examined physical variables, associated to anchovy spawning areas. Namely, for heat fluxes the values were around -40 W/m2, for wind stress 0.04-0.11 N/m2, for SST 23°C, and 300 - 500 m3s-3 for wind mixing. Despite the obtained results are preliminary, this is the first relevant analysis on the air-sea exchanges and their relationship with the fish biology of pelagic species.

  15. The marine atmospheric boundary layer during the HyMeX-ASICS-MED campaign: characterization of coherent structures and impact on turbulent flux estimates

    NASA Astrophysics Data System (ADS)

    Brilouet, Pierre-Etienne; Canut, Guylaine; Durand, Pierre

    2015-04-01

    During winter, the North Western Mediterranean Sea is characterised by intense air-sea exchanges linked to regional strong winds (Mistral or Tramontana) which bring cold and dry continental air over a warmer sea. The HyMeX-ASICS-MED field campaign, devoted to intense sea-atmosphere exchange and deep oceanic convection analysis took place in the Gulf of Lion during winter 2013. The French ATR42 aircraft was operated to document the mean and turbulent structure of the atmospheric boundary layer (ABL) during strong wind conditions. The aircraft was equipped to measure turbulence fluctuations, thus allowing the computation of turbulence parameters. The flight strategy consisted of stacked horizontal legs oriented along and across the wind direction, in order to obtain information about the isotropy of the turbulent field and about coherent structures. Strong wind events were documented with 11 flights during which latent heat flux up to 600 W.m-2 were observed. The structure of the turbulent field is analysed through the integral length scale and the wavelength of the spectrum peak of the vertical velocity which represent the size of the large and the most energetic eddies, respectively. It reveals a stretching of turbulent eddies along the mean wind. This kind of organized structures plays a major role by modulating the transfers inside the ABL. In particular, this non-isotropic behaviour alters the flux estimates from along-wind samples. This last point is critical because surface and entrainment fluxes, deduced from extrapolation of the flux profiles, are essential parameters to characterise the coupling between air-sea exchanges and the ABL structure.

  16. Ocean-atmosphere dynamics changes associated with prominent ocean surface turbulent heat fluxes trends during 1958-2013

    NASA Astrophysics Data System (ADS)

    Yang, Hu; Liu, Jiping; Lohmann, Gerrit; Shi, Xiaoxu; Hu, Yongyun; Chen, Xueen

    2016-03-01

    Three prominent features of ocean surface turbulent heat fluxes (THF) trends during 1958-2013 are identified based on the Objectively Analyzed air-sea Fluxes (OAFlux) data set. The associated ocean-atmosphere dynamics changes are further investigated based on the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. First, the THF are enhanced over the mid-latitude expansions of the subtropical western boundary currents (WBCs). An intensified oceanic heat transport, forced by stronger near-surface zonal wind, is likely to be the cause of such THF tendency. Second, the THF are reduced over the tropical eastern Pacific Ocean, which is primarily caused by the decreasing near-surface wind speed and sea surface temperature (SST), associated with a local coupled ocean-atmosphere cooling mode. Finally, the THF are reduced over the northern tropical Atlantic Ocean, which is attributed to the decreasing air-sea humidity and temperature differences as a result of the convergence of near-surface air and the divergence of ocean currents (upwelling).

  17. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L.

    2012-04-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes from the ocean to the atmosphere, the amount of heat available to the tropical cyclone is predicated by the initial depth of the mixed layer and strength of the stratification level that set the level of entrainment mixing at the base of the oceanic mixed layer. For example in oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean (and sea surface temperatures) quickly which reduces the air-sea fluxes. This is an example of negative feedback from the ocean to the atmosphere. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture is available through the sea surface. When tropical cyclones move into favorable or neutral atmospheric conditions (low vertical shear, anticyclonic circulation aloft), tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina and Rita in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. These effects and possible impact on TC deepening and weakening underscores the necessity of having complete 3-D ocean measurements juxtaposed with atmospheric profiler measurements.

  18. Air-Sea Exchange Of CO2: A Multi-Technology Approach

    NASA Astrophysics Data System (ADS)

    Tengberg, A.; Almroth, E.; Anderson, L.; Hall, P.; Hjalmarsson, S.; Lefevre, D.; Omstedt, A.; Rutgersson, A.; Sahlee, E.; Smedman, A.; Wesslander, K.

    2006-12-01

    We report on experiences and results from a multidisciplinary project in which we try to elucidate the complex processes involved in air-sea exchange of CO2. This study was performed in the Baltic Sea (off the Swedish island Gotland) and combined the following technologies: - Meteorological measurements of wind, turbulence, temperature, humidity, humidity flux, CO2 and CO2 flux at several levels from a fixed observation tower - Hourly PCO2 measurements with a moored automatic instrument - Collection of dissolved oxygen, temperature, salinity and turbidity data at different levels in the water column at 1-minute intervals - Daily light (PAR) and primary production measurements obtained with a moored automatic incubator - Daily primary production measurements using manual methods - Use of an acoustic current profiler to collect water column information on currents, turbulence, water level and waves - Repetitive water column profiles, from a ship, of dissolved inorganic carbon, oxygen, nutrients, alkalinity, pH, PAR, Chlorophyll A, salinity and temperature

  19. Estimating Seasonal Cycles of Atmospheric CO2 and APO Resulting from Terrestrial NEE and Air-Sea O2 Fluxes using the Transcom T3L2 Pulse-Response Functions

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.

    2011-12-01

    We present a method for translating modeled terrestrial net ecosystem exchange (NEE) fluxes of carbon into the corresponding annual mean cycles in atmospheric CO2. The method is based on the pulse-response functions from the Transcom 3 atmospheric tracer transport model (ATM) intercomparison. An oceanic version of the method is applied to air-sea O2 fluxes to estimate the corresponding annual mean cycles in atmospheric potential oxygen (APO). The estimated atmospheric seasonal cycles can be evaluated against observed atmospheric CO2 and APO data, which are measured at high precision at a wide range of monitoring sites and reflect the integrated impact of surface CO2 and O2 fluxes, respectively, across broad regions. The pulse-response function method is considerably faster than a full forward ATM simulation, allowing seasonal cycles from 13 different ATMS to be computed in minutes, rather than the days or weeks required for a single forward simulation. We evaluate the method against the results of full forward ATM simulations and examine the uncertainties associated with neglecting additional surface fluxes, e.g., from fossil fuel combustion, that may contribute to the observed seasonal cycles of CO2 and APO.

  20. Magnetic flux concentration and zonal flows in magnetorotational instability turbulence

    SciTech Connect

    Bai, Xue-Ning; Stone, James M.

    2014-11-20

    Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few disk scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.

  1. Magnetic Flux Concentration and Zonal Flows in Magnetorotational Instability Turbulence

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Stone, James M.

    2014-11-01

    Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few disk scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.

  2. Turbulent fluxes and transfer of trace gases from ship-based measurements during TexAQS 2006

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey A.; Bariteau, Ludovic; Fairall, Christopher W.; Hare, Jeffrey E.; Helmig, Detlev; Hueber, Jacques; Lang, E. Kathrin

    2011-07-01

    Air-sea/land turbulent fluxes of momentum, sensible heat, water vapor, carbon dioxide, and ozone are discussed on the basis of eddy covariance measurements made aboard the NOAA R/V Ronald H. Brown during the Texas Air Quality Study (TexAQS) in August-September 2006. The TexAQS 2006 field campaign focused on air pollution meteorology associated primarily with ozone and aerosol transport in the Houston/Galveston region and the nearby coastal zone. The ship-based complement of instrumentation was used for the boundary layer measurements over water (the Gulf of Mexico and various harbors/bay areas) and "over land" (specifically, 80 km inside the Houston Ship Channel). In this study we focus on direct comparisons of TexAQS 2006 flux observations with the Coupled Ocean-Atmosphere Response Experiment (COARE) bulk flux algorithm to investigate possible coastal and urban area influences. It is found that the average neutral drag coefficient can be about an order of magnitude larger over very rough urban areas than over the sea surface. However, a similar effect was not observed for the scalar transfer; that is, the neutral Stanton and Dalton numbers do not change significantly over different footprint surfaces. Our data suggest that the TexAQS 2006 region was generally a sink for surface ozone whether over water or over land. The turbulent flux of carbon dioxide was mostly negative (uptake by the surface) for measurements over waters of the Gulf of Mexico and some bays, but the flux becomes positive (release to the air) for inland regions. Both ozone and carbon dioxide turbulent fluxes above land were larger in magnitude compared to the over water measurements.

  3. Surface Turbulent Fluxes Over Pack Ice Inferred from TOVS Observations

    NASA Technical Reports Server (NTRS)

    Lindsay, R. W.; Francis, J. A.; Persson, P. O. G.; Rothrock, D. A.; Schweiger, A. J.

    1996-01-01

    A one-dimensional, atmospheric boundary layer model is coupled to a thermodynamic ice model to estimate the surface turbulent fluxes over thick sea ice. The principal forcing parameters in this time-dependent model are the air temperature, humidity, and wind speed at a specified level (either at 2 m or at 850 mb) and the downwelling surface radiative fluxes. The free parameters. are the air temperature, humidity, and wind speed profiles below the specified level, the surface skin temperature, the ice temperature profile, and the surface turbulent fluxes. The goal is to determine how well we can estimate the turbulent surface heat and momentum fluxes using forcing parameters from atmospheric temperatures and radiative fluxes retrieved from the TIROS-N Operational Vertical Sounder (TOVS) data. Meteorological observations from the Lead Experiment (LeadEx, April 1992) ice camp are used to validate turbulent fluxes computed with the surface observations and the results are used to compare with estimates based on radio-sonde observations or with estimates based on TOVS data. We find that the TOVS-based estimates of the stress are significantly more accurate than those found with a constant geostrophic drag coefficient, with a root-mean-square error about half as large. This improvement is due to stratification effects included in the boundary layer model. The errors in the sensible heat flux estimates, however, are large compared to the small mean values observed during the field experiment.

  4. Flux-driven simulations of turbulence collapse

    SciTech Connect

    Park, G. Y.; Kim, S. S.; Jhang, Hogun; Rhee, T.; Diamond, P. H.; Xu, X. Q.

    2015-03-15

    Using three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally once input power exceeds a threshold value. Profiles, turbulence-driven flows, and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E×B flow shear. A novel observation of the evolution is that the turbulence collapses and the ETB transition begins when R{sub T} > 1 at t = t{sub R} (R{sub T}: normalized Reynolds power), while the conventional transition criterion (ω{sub E×B}>γ{sub lin} where ω{sub E×B} denotes mean flow shear) is satisfied only after t = t{sub C} ( >t{sub R}), when the mean flow shear grows due to positive feedback.

  5. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  6. Fluctuations of energy flux in wave turbulence.

    PubMed

    Falcon, Eric; Aumaître, Sébastien; Falcón, Claudio; Laroche, Claude; Fauve, Stéphan

    2008-02-15

    We report that the power driving gravity and capillary wave turbulence in a statistically stationary regime displays fluctuations much stronger than its mean value. We show that its probability density function (PDF) has a most probable value close to zero and involves two asymmetric roughly exponential tails. We understand the qualitative features of the PDF using a simple Langevin-type model. PMID:18352479

  7. The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent; Bogdanoff, Alec S.

    2012-01-01

    Under the auspices of the World Climate Research Programme (WCRP) Global Energy and Water cycle EXperiment (GEWEX) Data and Assessment Panel (GDAP), the SeaFlux Project was created to investigate producing a high-resolution satellite-based dataset of surface turbulent fluxes over the global oceans. The most current release of the SeaFlux product is Version 1.0; this represents the initial release of turbulent surface heat fluxes, associated near-surface variables including a diurnally varying sea surface temperature.

  8. Experimental evidence for turbulent sediment flux constituting a large portion of the total sediment flux along migrating sand dunes

    NASA Astrophysics Data System (ADS)

    Naqshband, S.; Ribberink, J. S.; Hurther, D.; Barraud, P. A.; Hulscher, S. J. M. H.

    2014-12-01

    Accurate estimation of sediment transport is critical for many fluvial processes but remains challenging due to high-frequency dynamics. Using novel acoustic flow instrumentation, we quantified the contribution of turbulent bed and suspended sediment fluxes to the total sediment fluxes along an entire dune profile and over the full flow depth. We found that over the dune stoss side and in the bed load layer, the turbulent mean streamwise flux is negative and reaches up to 40% of the total mean streamwise flux. Over the lee side, where turbulent intensities are highest, the contribution of the turbulent mean streamwise flux to the total mean streamwise flux is larger and reaches up to 50%. The mean vertical turbulent flux along the entire dune bed and in the bed load layer reaches nearly 30% of the total mean vertical flux. Turbulent sediment flux may thus constitute a large component of the total flux.

  9. Dynamics of air-sea CO2 fluxes based on FerryBox measurements and satellite-based prediction of pCO2 in the Western English Channel

    NASA Astrophysics Data System (ADS)

    Marrec, Pierre; Thierry, Cariou; Eric, Mace; Pascal, Morin; Marc, Vernet; Yann, Bozec

    2014-05-01

    Since April 2012, we installed an autonomous FerryBox system on a Voluntary Observing Ship (VOS), which crosses the Western English Channel (WEC) between Roscoff and Plymouth on a daily basis. High-frequency data of sea surface temperature (SST), salinity (SSS), fluorescence, dissolved oxygen (DO) and partial pressure of CO2 (pCO2) were recorded for two years across the all-year mixed southern WEC (sWEC) and the seasonally stratified northern WEC (nWEC). These contrasting hydrographical provinces strongly influenced the spatio-temporal distributions of pCO2 and air-sea CO2 fluxes. During the productive period (from May to September), the nWEC acted as a sink for atmospheric CO2 of -5.6 mmolC m-2 d-1 and -4.6 mmolC m-2 d-1, in 2012 and 2013, respectively. During the same period, the sWEC showed significant inter-annual variability degassing CO2 to the atmosphere in 2012 (1.4 mmolC m-2 d-1) and absorbing atmospheric CO2 in 2013 (-1.6 mmolC m-2 d-1). In 2012, high-frequency data revealed that an intense and short (less than 10 days) summer phytoplankton bloom in the nWEC contributed to 31% of the total CO2 drawdown during the productive period, highlighting the necessity of pCO2 high-frequency measurements in coastal ecosystems. Based on this multi-annual dataset, we developed pCO2 algorithms using multiple linear regression (MLR) based on SST, SSS, chlorophyll-a (Chl-a) concentration, time, latitude and mixed layer depth to predict pCO2 in the two hydrographical provinces of the WEC. MLR were performed based on more than 200,000 underway observations spanning the range from 150 to 480 µatm. The root mean square errors (RMSE) of the MLR fit to the data were 17.2 µatm and 21.5 µatm for the s WEC and the nWEC with correlation coefficient (r²) of 0.71 and 0.79, respectively. We applied these algorithms to satellite SST and Chl-a products and to modeled SSS estimates in the entire WEC. Based on these high-frequency and satellite approaches, we will discuss the main

  10. A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Wind stress is the major forcing for driving the oceanic circulation, while Evaporation is a key component of hydrological cycle and surface heat budget. We have produced a 7.5-year (July 1987-December 1994) dataset of daily, individual monthly-mean and climatological (1988-94) monthly-mean surface turbulent fluxes over the global oceans from measurements of the Special Sensor Microwave/Imager (SSM/I) on board the US Defense Meteorological Satellite Program F8, F10, and F11 satellites. It has a spatial resolution of 2.0x2.5 latitude-longitude. Daily turbulent fluxes are derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) IS found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The surface wind speed and specific humidity (latent heat flux) derived from the F10 SSM/I are found to be -encrally smaller (larger) than those retrieved from the F11 SSM/I. The F11 SSM/I appears to have slightly better retrieval accuracy for surface wind speed and humidity as compared to the F10 SSM/I. This difference may be due to the orbital drift of the F10 satellite. The daily wind stresses and latent heat fluxes retrieved from F10 and F11 SSM/Is show useful accuracy as verified against the research quality in si -neasurerrients (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE Intensive observing period (November 1992-February 1993). The 1988-94 seasonal-mean turbulent fluxes and input variables derived from FS and F11 SSM/Is show reasonable

  11. Turbulent flux events in a nearly neutral atmospheric boundary layer.

    PubMed

    Narasimha, Roddam; Kumar, S Rudra; Prabhu, A; Kailas, S V

    2007-03-15

    We propose here a novel method of analysing turbulent momentum flux signals. The data for the analysis come from a nearly neutral atmospheric boundary layer and are taken at a height of 4m above ground corresponding to 1.1 x 10(5) wall units, within the log layer for the mean velocity. The method of analysis involves examining the instantaneous flux profiles that exceed a given threshold, for which an optimum value is found to be 1 s.d. of the flux signal. It is found feasible to identify normalized flux variation signatures separately for positive and negative 'flux events'-the sign being determined by that of the flux itself. Using these signatures, the flux signal is transformed to one of events characterized by the time of occurrence, duration and intensity. It is also found that both the average duration and the average time-interval between successive events are of order 1s, about four orders of magnitude higher than a wall unit in time. This episodic description of the turbulence flux in the time domain enables us to identify separately productive, counter-productive and idle periods (accounting, respectively, for 36, 15 and 49% of the time), taking as criterion the generation of the momentum flux. A 'burstiness' index of 0.72 is found for the data. Comparison with laboratory data indicates higher (/lower) ejection (/sweep) quadrant occupancy but lower (/higher) contributions to flux from the ejection (/sweep) quadrant at the high Reynolds numbers of the atmospheric boundary layer. Possible connections with the concept of active and passive motion in a turbulent boundary layer are briefly discussed. PMID:17244581

  12. Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: a modeling study

    NASA Astrophysics Data System (ADS)

    Arruda, R.; Calil, P. H. R.; Bianchi, A. A.; Doney, S. C.; Gruber, N.; Lima, I.; Turi, G.

    2015-10-01

    We use an eddy-resolving, regional ocean biogeochemical model to investigate the main variables and processes responsible for the climatological spatio-temporal variability of pCO2 and the air-sea CO2 fluxes in the southwestern Atlantic Ocean. Overall, the region acts as a sink of atmospheric CO2 south of 30° S, and is close to equilibrium with the atmospheric CO2 to the north. On the shelves, the ocean acts as a weak source of CO2, except for the mid/outer shelves of Patagonia, which act as sinks. In contrast, the inner shelves and the low latitude open ocean of the southwestern Atlantic represent source regions. Observed nearshore-to-offshore and meridional pCO2 gradients are well represented by our simulation. A sensitivity analysis shows the importance of the counteracting effects of temperature and dissolved inorganic carbon (DIC) in controlling the seasonal variability of pCO2. Biological production and solubility are the main processes regulating pCO2, with biological production being particularly important on the shelves. The role of mixing/stratification in modulating DIC, and therefore surface pCO2, is shown in a vertical profile at the location of the Ocean Observatories Initiative (OOI) site in the Argentine Basin (42° S, 42° W).

  13. URBAN SCALE VARIATIONS OF TURBULENCE PARAMETERS AND FLUXES

    EPA Science Inventory

    Sensible, (H), and latent, (LE), heat fluxes and turbulence statistics in St. Louis, Missouri and the surrounding region are presented. The urban-scale analyses were derived from a series of aircraft transects at 150 m above ground across the metropolitan area during the afternoo...

  14. Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence.

    PubMed

    Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Bürger, Kai; Burns, Randal; Meneveau, Charles; Szalay, Alexander

    2013-05-23

    The idea of 'frozen-in' magnetic field lines for ideal plasmas is useful to explain diverse astrophysical phenomena, for example the shedding of excess angular momentum from protostars by twisting of field lines frozen into the interstellar medium. Frozen-in field lines, however, preclude the rapid changes in magnetic topology observed at high conductivities, as in solar flares. Microphysical plasma processes are a proposed explanation of the observed high rates, but it is an open question whether such processes can rapidly reconnect astrophysical flux structures much greater in extent than several thousand ion gyroradii. An alternative explanation is that turbulent Richardson advection brings field lines implosively together from distances far apart to separations of the order of gyroradii. Here we report an analysis of a simulation of magnetohydrodynamic turbulence at high conductivity that exhibits Richardson dispersion. This effect of advection in rough velocity fields, which appear non-differentiable in space, leads to line motions that are completely indeterministic or 'spontaneously stochastic', as predicted in analytical studies. The turbulent breakdown of standard flux freezing at scales greater than the ion gyroradius can explain fast reconnection of very large-scale flux structures, both observed (solar flares and coronal mass ejections) and predicted (the inner heliosheath, accretion disks, γ-ray bursts and so on). For laminar plasma flows with smooth velocity fields or for low turbulence intensity, stochastic flux freezing reduces to the usual frozen-in condition. PMID:23698445

  15. Properties of magnetic helicity flux in turbulent dynamos

    SciTech Connect

    Vishniac, Ethan T.; Shapovalov, Dmitry E-mail: dmsh@jhu.edu

    2014-01-10

    We study the flux of small-scale magnetic helicity in simulations of driven statistically homogeneous magnetohydrodynamic turbulence in a periodic box with an imposed large-scale shear. The simulations show that in the regime of strong dynamo action the eddy-scale magnetic helicity flux has only two significant terms: advective motion driven by the large-scale velocity field and the Vishniac-Cho (VC) flux which moves helicity across the magnetic field lines. The contribution of all the other terms is negligible. The VC flux is highly correlated with the large-scale electromotive force and is responsible for large-scale dynamo action, while the advective term is not. The VC flux is driven by the anisotropy of the turbulence. We derive analytical expressions for it in terms of the small-scale velocity or magnetic field. These expressions are used to predict the existence and strength of dynamo action for different turbulent anisotropies and tested against the results of the simulations.

  16. Complexity and diffusion of magnetic flux surfaces in anisotropic turbulence

    SciTech Connect

    Servidio, S.; Matthaeus, W. H.; Wan, M.; Rappazzo, A. F.; Ruffolo, D.; Oughton, S.

    2014-04-10

    The complexity of magnetic flux surfaces is investigated analytically and numerically in static homogeneous magnetic turbulence. Magnetic surfaces are computed to large distances in magnetic fields derived from a reduced magnetohydrodynamic model. The question addressed is whether one can define magnetic surfaces over large distances when turbulence is present. Using a flux surface spectral analysis, we show that magnetic surfaces become complex at small scales, experiencing an exponential thinning that is quantified here. The computation of a flux surface is of either exponential or nondeterministic polynomial complexity, which has the conceptual implication that global identification of magnetic flux surfaces and flux exchange, e.g., in magnetic reconnection, can be intractable in three dimensions. The coarse-grained large-scale magnetic flux experiences diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established explicitly through multiple scale analysis. The Kubo number controls both large and small scale limits. These results have consequences for interpreting processes such as magnetic reconnection and field-line diffusion in astrophysical plasmas.

  17. Turbulent nitrate fluxes in the Lower St. Lawrence Estuary, Canada

    NASA Astrophysics Data System (ADS)

    Cyr, Frédéric; Bourgault, Daniel; Galbraith, Peter S.; Gosselin, Michel

    2015-03-01

    Turbulent vertical nitrate fluxes were calculated using new turbulent microstructure observations in the Lower St. Lawrence Estuary (LSLE), Canada. Two stations were compared: the head of the Laurentian Channel (HLC), where intense mixing occurs on the shallow sill that marks the upstream limit of the LSLE, and another station located about 100 km downstream (St. 23), more representative of the LSLE mean mixing conditions. Mean turbulent diffusivities and nitrate fluxes at the base of the surface layer for both stations were, respectively (with 95% confidence intervals): K¯HLC = 8.6>(3.2,19>) × 10-3 m2 s-1,K¯23 = 4.4>(2.3,7.6>) × 10-5 m2 s-1,F¯HLC = 95>(18,300>) mmol m-2 d-1, and F¯23 = 0.21>(0.12,0.33>) mmol m-2 d-1. Observations suggest that the interplay between large isopleth heaving near the sill and strong turbulence is the key mechanism to sustain such high turbulent nitrate fluxes at the HLC (two to three orders of magnitude higher than those at Station 23). Calculations also suggest that nitrate fluxes at the HLC alone can sustain primary production rates of 3.4>(0.6,11>) g C m-2 mo-1 over the whole LSLE, approximately enough to account for a large part of the phytoplankton bloom and for most of the postbloom production. Surfacing nitrates are also believed to be consumed within the LSLE, not leaving much to be exported to the rest of the Gulf of St. Lawrence. This article was corrected on 13 APR 2015. See the end of the full text for details.

  18. Doppler lidar measurement of profiles of turbulence and momentum flux

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Cupp, Richard E.; Healy, Kathleen R.

    1989-01-01

    A short-pulse CO2 Doppler lidar with 150-m range resolution measured vertical profiles of turbulence and momentum flux. Example measurements are reported of a daytime mixed layer with strong mechanical mixing caused by a wind speed of 15 m/sec, which exceeded the speed above the capping inversion. The lidar adapted an azimuth scanning technique previously demonstrated by radar. Scans alternating between two elevation angles allow determination of mean U-squared, V-squared, and W-squared. Expressions were derived to estimate the uncertainty in the turbulence parameters. A new processing method, partial Fourier decomposition, has less uncertainty than the filtering used earlier.

  19. Phytoplankton carbon fixation gene (RuBisCO) transcripts and air-sea CO2 flux in the Mississippi River plume

    SciTech Connect

    John, David E.; Wang, Zhaohui A.; Liu, Xuewu; Byrne, Robert H.; Corredor, Jorge E.; López, José M.; Cabrera, Alvaro; Bronk, Deborah A.; Tabita, F. Robert; Paul, John H.

    2007-08-30

    River plumes deliver large quantities of nutrients to oligotrophic oceans, often resulting in significant CO2 drawdown. To determine the relationship between expression of the major gene in carbon fixation (large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO) and CO2 dynamics, we evaluated rbcL mRNA abundance using novel quantitative PCR assays, phytoplankton cell analyses, photophysiological parameters, and pCO2 in and around the Mississippi River plume (MRP) in the Gulf of Mexico. Lower salinity (30–32) stations were dominated by rbcL mRNA concentrations from heterokonts, such as diatoms and pelagophytes, which were at least an order of magnitude greater than haptophytes, alpha-Synechococcus or high-light Prochlorococcus. However, rbcL transcript abundances were similar among these groups at oligotrophic stations (salinity 34–36). Diatom cell counts and heterokont rbcL RNA showed a strong negative correlation to seawater pCO2. While Prochlorococcus cells did not exhibit a large difference between low and high pCO2 water, Prochlorococcus rbcL RNA concentrations had a strong positive correlation to pCO2, suggesting a very low level of RuBisCO RNA transcription among Prochlorococcus in the plume waters, possibly due to their relatively poor carbon concentrating mechanisms (CCMs). These results provide molecular evidence that diatom/pelagophyte productivity is largely responsible for the large CO2 drawdown occurring in the MRP, based on the co-occurrence of elevated RuBisCO gene transcript concentrations from this group and reduced seawater pCO2 levels. This may partly be due to efficient CCMs that enable heterokont eukaryotes such as diatoms to continue fixing CO2 in the face of strong CO2 drawdown. Finally, our work represents the first attempt to relate in situ microbial gene expression to contemporaneous CO2 flux

  20. Air-sea transfer of gas phase controlled compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Bell, T. G.; Blomquist, B. W.; Fairall, C. W.; Brooks, I. M.; Nightingale, P. D.

    2016-05-01

    Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ∼30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the “zero bubble” waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

  1. Performance of different detrending methods in turbulent flux estimation

    NASA Astrophysics Data System (ADS)

    Donateo, Antonio; Cava, Daniela; Contini, Daniele

    2015-04-01

    The eddy covariance is the most direct, efficient and reliable method to measure the turbulent flux of a scalar (Baldocchi, 2003). Required conditions for high-quality eddy covariance measurements are amongst others stationarity of the measured data and a fully developed turbulence. The simplest method for obtaining the fluctuating components for covariance calculation according to Reynolds averaging rules under ideal stationary conditions is the so called mean removal method. However steady state conditions rarely exist in the atmosphere, because of the diurnal cycle, changes in meteorological conditions, or sensor drift. All these phenomena produce trends or low-frequency changes superimposed to the turbulent signal. Different methods for trend removal have been proposed in literature; however a general agreement on how separate low frequency perturbations from turbulence has not yet been reached. The most commonly applied methods are the linear detrending (Gash and Culf, 1996) and the high-pass filter, namely the moving average (Moncrieff et al., 2004). Moreover Vickers and Mahrt (2003) proposed a multi resolution decomposition method in order to select an appropriate time scale for mean removal as a function of atmospheric stability conditions. The present work investigates the performance of these different detrending methods in removing the low frequency contribution to the turbulent fluxes calculation, including also a spectral filter by a Fourier decomposition of the time series. The different methods have been applied to the calculation of the turbulent fluxes for different scalars (temperature, ultrafine particles number concentration, carbon dioxide and water vapour concentration). A comparison of the detrending methods will be performed also for different measurement site, namely a urban site, a suburban area, and a remote area in Antarctica. Moreover the performance of the moving average in detrending time series has been analyzed as a function of the

  2. Stochastic Flux-Freezing and Turbulent Magnetic Dynamo

    NASA Astrophysics Data System (ADS)

    Eyink, G. L.

    2010-12-01

    “Spontaneous stochasticity” of Lagrangian particle trajectories is a long-overlooked consequence of the explosive separation of particles undergoing turbulent Richardson diffusion. The effect implies a breakdown of Laplacian determinism for classical dynamics, with infinitely many (random) trajectories for the same initial particle position. We discuss the theoretical basis and empirical evidence for the phenomenon. Spontaneous stochasticity implies that magnetic field-lines cannot be ``frozen-in’’ to a turbulent MHD fluid (plasma or liquid metal) in the original sense of Alfvén, even at infinite conductivity if also the kinetic Reynolds number is large. We show that systems described by resistive nonlinear hydromagnetic equations (MHD, Hall MHD, etc.) satisfy a stochastic Alfvén Theorem and we use this result to argue that flux-conservation must remain stochastic at infinite Reynolds numbers. The predictions of standard flux-freezing are thus found to be wrong---by many orders of magnitude---in high-Reynolds-number MHD turbulence. Stochastic flux-freezing has fundamental consequences for many astrophysical problems, such as planetary and solar dynamos, star formation, solar flares, etc. As one example, we present numerical results on the kinematic, fluctuation dynamo in non-helical, incompressible turbulence at magnetic Prandtl number Pr=1, using a Lagrangian particle method with a hydrodynamic turbulence database at Re_λ=433. We find that Richardson diffusion and stochasticity of field-line motion play an essential role in magnetic energy growth. The Lagrangian mechanisms of small-scale dynamo are found to be very similar to those in the soluble Kazantsev model at Pr=0. We also discuss briefly the application of stochastic flux-freezing to the problem of fast magnetic reconnection. We use the phenomenological Goldreich-Sridhar 1995 theory to estimate the dispersion of particle-pairs in strong MHD turbulence with an imposed magnetic field. We then

  3. Wind tunnel measurements of pollutant turbulent fluxes in urban intersections

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Hayden, Paul; Robins, Alan G.

    2012-01-01

    Wind tunnel experiments have been carried out at the EnFlo laboratory to measure mean and turbulent tracer fluxes in geometries of real street canyon intersections. The work was part of the major DAPPLE project, focussing on the area surrounding the intersection between Marylebone Road and Gloucester Place in Central London, UK. Understanding flow and dispersion in urban streets is a very important issue for air quality management and planning, and turbulent mass exchange processes are important phenomena that are very often neglected in urban modelling studies. The adopted methodology involved the combined use of laser Doppler anemometry and tracer concentration measurements. This methodology was applied to quantify the mean and turbulent flow and dispersion fields within several street canyon intersections. Vertical profiles of turbulent tracer flux were also measured. The technique, despite a number of limitations, proved reliable and allowed tracer balance calculations to be undertaken in the selected street canyon intersections. The experience gained in this work will enable much more precise studies in the future as issues affecting the accuracy of the experimental technique have been identified and resolved.

  4. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-11-01

    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  5. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer

  6. Physics of Intrinsic Rotation in Flux-Driven ITG Turbulence

    SciTech Connect

    Ku, S; Dimond, P H; Dif-Pradalier, G; Kwon, J M; Sarazin, Y; Hahm, T S; Garbet, X; Chang, C S; Latu, G; Yoon, E S; Ghendrih, Ph; Yi, S; Strugarek, A; Solomon, W

    2012-02-23

    Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale-separation between turbulence and mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers, namely E x B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity

  7. Subfilter scalar-flux vector orientation in homogeneous isotropic turbulence.

    PubMed

    Verma, Siddhartha; Blanquart, G

    2014-06-01

    The geometric orientation of the subfilter-scale scalar-flux vector is examined in homogeneous isotropic turbulence. Vector orientation is determined using the eigenframe of the resolved strain-rate tensor. The Schmidt number is kept sufficiently large so as to leave the velocity field, and hence the strain-rate tensor, unaltered by filtering in the viscous-convective subrange. Strong preferential alignment is observed for the case of Gaussian and box filters, whereas the sharp-spectral filter leads to close to a random orientation. The orientation angle obtained with the Gaussian and box filters is largely independent of the filter width and the Schmidt number. It is shown that the alignment direction observed numerically using these two filters is predicted very well by the tensor-diffusivity model. Moreover, preferred alignment of the scalar gradient vector in the eigenframe is shown to mitigate any probable issues of negative diffusivity in the tensor-diffusivity model. Consequentially, the model might not suffer from solution instability when used for large eddy simulations of scalar transport in homogeneous isotropic turbulence. Further a priori tests indicate poor alignment of the Smagorinsky and stretched vortex model predictions with the exact subfilter flux. Finally, strong filter dependence of subfilter scalar-flux orientation suggests that explicit filtering may be preferable to implicit filtering in large eddy simulations. PMID:25019887

  8. Measuring and modelling the frictional velocity u*, turbulence and heat fluxes above the North Sea

    NASA Astrophysics Data System (ADS)

    Tambke, Jens; Bye, John A. T.; Schmidt, Michael; Wolff, Jörg-Olaf

    2014-05-01

    In this study, we analyse the frictional velocity u*, drag coefficient, vertical wind speed and turbulence profiles observed at different met-masts in the German North and Baltic Sea. We present an analysis of different models for the frictional velocity u* in convective, neutral and stable thermal stratification of the atmosphere. Atmospheric turbulent momentum and heat flux measurements performed with ultra-sonic anemometers are compared to profile-derived values and a bulk Richardson number formulation of the atmospheric thermal stability. Modelling: An improved approach to model the vertical wind speed profile is presented and compared against meso-scale model results (WRF, COSMO): Bye-Ekman-Coupling (BEC) describes the flux of momentum from the Ekman layer of the atmosphere through the Prandtl layer down to the air-sea interface by a modified wave boundary layer with enhanced Charnock dynamics (Bye et al. 2010). The BEC model is based on the coupled pair of similarity relations for "aerodynamically rough flow" in both fluids (air and sea). The derived drag law is of Charnock form, almost independent of the wave age and consistent with the transfer of momentum to the wave spectrum - which takes place in the smaller rather than the dominant wavelengths. Measurements: It was found that the frictional velocity u* is considerably smaller than predicted by conventional approaches using the Charnock relation: For wind speeds between 10 m/s and 15 m/s at 40 m height above the sea surface, u*(observed) is 14% smaller than u*(Charnock). Most important, we found unexpected, strong and obviously artificial distortions concerning the three wind speed components in the 10Hz data of the three ultra-sonic anemometers at the offshore met-mast FINO1 at 40 m, 60 m and 80 m height. The pattern of these distortions is independent from different post-processing procedures (planar-fit etc.). We anticipate that these artefacts imply severe problems for the eddy covariance technique

  9. Spatial Transport of Magnetic Flux Surfaces in Strongly Anisotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Servidio, S.; Wan, M.; Ruffolo, D. J.; Rappazzo, A. F.; Oughton, S.

    2013-12-01

    Magnetic flux surfaces afford familiar descriptions of spatial structure, dynamics, and connectivity of magnetic fields, with particular relevance in contexts such as solar coronal flux tubes, magnetic field connectivity in the interplanetary and interstellar medium, as well as in laboratory plasmas and dynamo problems [1-4]. Typical models assume that field-lines are orderly, and flux tubes remain identifiable over macroscopic distances; however, a previous study has shown that flux tubes shred in the presence of fluctuations, typically losing identity after several correlation scales [5]. Here, the structure of magnetic flux surfaces is numerically investigated in a reduced magnetohydrodynamic (RMHD) model of homogeneous turbulence. Short and long-wavelength behavior is studied statistically by propagating magnetic surfaces along the mean field. At small scales magnetic surfaces become complex, experiencing an exponential thinning. At large scales, instead, the magnetic flux undergoes a diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established by means of a multiple scale analysis. Both large and small scales limits are controlled by the Kubo number. These results have consequences for understanding and interpreting processes such as magnetic reconnection and field-line diffusion in plasmas [6]. [1] E. N. Parker, Cosmical Magnetic Fields (Oxford Univ. Press, New York, 1979). [2] J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968). [3] R. Bruno et al., Planet. Space Sci. 49, 1201 (2001). [4] M. N. Rosenbluth et al., Nuclear Fusion 6, 297 (1966). [5] W. H. Matthaeus et al., Phys. Rev. Lett. 75, 2136 (1995). [6] S. Servidio et al., submitted (2013).

  10. Computed and observed turbulent heat fluxes during an extreme Bora event in the Adriatic using atmosphere-ocean coupling

    NASA Astrophysics Data System (ADS)

    Ličer, Matjaž; Smerkol, Peter; Fettich, Anja; Ravdas, Michalis; Papapostolou, Alexandros; Mantziafou, Anneta; Strajnar, Benedikt; Cedilnik, Jure; Jeromel, Maja; Jerman, Jure; Petan, Sašo; Benetazzo, Alvise; Carniel, Sandro; Malačič, Vlado; Sofianos, Sarantis

    2016-04-01

    We have studied the performances of (a) a two-way coupled atmosphere-ocean modeling system and (b) one-way coupled ocean model (forced by the atmosphere model), as compared to the available in situ measurements during and after a strong Adriatic Bora wind event in February 2012, which led to extreme air-sea interactions. The simulations span the period between January and March 2012. The models used were ALADIN (4.4 km resolution) on the atmosphere side and Adriatic setup of POM (1°/30 × 1°/30 angular resolution) on the ocean side. The atmosphere-ocean coupling was implemented using the OASIS3-MCT model coupling toolkit. Two-way coupling ocean feedback to the atmosphere is limited to sea surface temperature. We have compared modeled atmosphere-ocean fluxes (computed using modified Louis scheme) and sea temperatures from both setups to platform and CTD measurements of fluxes (computed using COARE scheme) and temperatures from three observational platforms (Vida, Paloma, Acqua Alta) in the Northern Adriatic. We show that turbulent fluxes from both setups differ up to 20% during the Bora but not significantly before and after the event. The impact of the coupling on the ocean is significant while the impact on the atmosphere is less pronounced. When compared to observations, two way coupling ocean temperatures exhibit a four times lower RMSE than those from one-way coupled system. Two-way coupling improves sensible heat fluxes at all stations but does not improve latent heat loss.

  11. Eddy covariance measurements in screenhouses: turbulence characteristics and flux gradients

    NASA Astrophysics Data System (ADS)

    Dicken, U.; Cohen, S.; Tanny, J.

    2012-04-01

    Shading banana and other orchard crops with screens is popular in arid and semi-arid regions for decreasing water use and increasing fruit quality. However, crop water use within this unique environment is much less studied than for canopies in the open. Previous studies of our research group have established the use of the Eddy Covariance (EC) technique for reliable evapotranspiration and sensible heat flux measurements within screenhouses. These studies focused on operating conditions of the system. The present paper is a comprehensive study which examined the performance of the EC system in different types of screenhouses (shading and insect-proof), different crops (banana and pepper) at different development stages (small and large plants) and different climatic regions in Israel. The main goal was to establish guidelines for optimal application of the EC technique in screenhouses. The research consisted of 6 field campaigns: in 3 campaigns two EC systems were simultaneously deployed either vertically or horizontally, and in 3 other campaigns a single EC system was deployed at one measurement height. EC systems were deployed at different normalized system heights, Zs, which define the relative measurement heights within the air gap between the canopy top and the horizontal screened roof. System performance was examined using quality tests like energy balance closure, flux variance similarity, friction velocity, footprint modeling, energy spectrum, turbulence intensity and vertical and horizontal flux gradient analyses. Resulting energy balance closure slopes averaged 0.81±0.08 and 0.91±0.08 for the smaller and larger plants, respectively. Turbulent flows were found to be marginally developed within the air gap between the top of the plants and the horizontal screened roof. Turbulence intensity, flux variance similarity test, energy spectrum decay rate and friction velocity were essentially independent of the measurement height and were within the common range

  12. On Turbulent Fluxes During Strong Winter Bora Wind Events

    NASA Astrophysics Data System (ADS)

    Babić, Nevio; Večenaj, Željko; Kozmar, Hrvoje; Horvath, Kristian; De Wekker, Stephan F. J.; Grisogono, Branko

    2016-02-01

    Well known for its severity, the bora downslope windstorms have been extensively studied over the last several decades. This study focuses on the turbulence characteristics of bora at a topographically complex site near the eastern coast of the Adriatic Sea. For this purpose, a 3-month eddy-covariance dataset obtained at three levels (10, 22, 40 m) on a 60-m flux tower is used. After determining a suitable averaging time scale of 15 min using the fast Fourier transform and the ogive method, vertical fluxes of momentum and heat were calculated for 17 bora episodes. Up to a wind speed of 12 {m s}^{-1}, typical vertical profiles of momentum and heat were observed. However, for wind speeds >12 {m s}^{-1}, several interesting observations arose. First, the nighttime heat flux at the 10-m level was often found to be positive rather negative. Second, vertical profiles of the momentum flux were larger at the 22-m level than at 10- and 40-m levels, mostly during nearly neutral to weakly stable thermal stratification. Third, these momentum flux profiles showed a large dependence on wind direction, with virtually no vertical transport of momentum for the largest observed wind speeds. For the first time, bora coherent structures have been analyzed using the so-called variable-interval time averaging (VITA) method. The method detected coherent structures in all three wind-speed components, with structure topologies similar to those observed over forest canopies. The momentum flux increase at the 22-m level, relative to the 10- and 40-m levels, is further supported by the VITA findings.

  13. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of

  14. An assessment of corrections for eddy covariance measured turbulent fluxes over snow in mountain environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Snow-covered complex terrain is an extremely important runoff generating landscape in high altitude and latitude environments, yet is often considered non-viable for eddy covariance measurements of turbulent fluxes. Turbulent flux data are useful for evaluating the coupled snow cover mass and energ...

  15. Air-sea interactions during strong winter extratropical storms

    NASA Astrophysics Data System (ADS)

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-09-01

    A high-resolution, regional coupled atmosphere-ocean model is used to investigate strong air-sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air-sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air-sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere-ocean modeling framework.

  16. Meisnner holes and turbulent flux structures in high-T{sub c} superconductors

    SciTech Connect

    Kabanov, V.V.; Nikitenko, V.I.; Vlasko-Vlasov, V.K. Welp, U.; Crabtree, G.W.

    1997-02-01

    The magnetic flux structure in HTSC single crystal plates during remagnetization in unidirectional and rotating fields is imaged using advanced magneto-optical techniques. it is found that bending of the flux lines is crucial for remagnetization scenario even in the case of thin plates in parallel fields. Flux bending results in formation of flux free cylinders (Meissner holes) surrounded by closed vortex loops. Essential increase of the current along the holes stipulates instabilities and appearance of unusual turbulent current and flux patterns.

  17. Comparison of gradient and flux driven gyro-kinetic turbulent transport

    NASA Astrophysics Data System (ADS)

    Rath, F.; Peeters, A. G.; Buchholz, R.; Grosshauser, S. R.; Migliano, P.; Weikl, A.; Strintzi, D.

    2016-05-01

    Flux and gradient driven ion temperature gradient turbulence in tokamak geometry and for Cyclone base case parameters are compared in the local limit using the same underlying gyro-kinetic turbulence model. The gradient driven turbulence described using the flux tube model with periodic boundary conditions has a finite ion heat flux Qi≈10 n0T0ρ*2vth , where n0 (T0) is the background density (temperature), ρ*=ρ/R is the normalized Larmor radius, R is the major radius of the device, and vth is the ion thermal velocity at the nonlinear threshold of the temperature gradient length for turbulence generation. Consequently, the gradient driven local transport model is unable to accurately describe heat fluxes below Qi<10 n0T0ρ*2vt h , since no stationary fully developed turbulent state can be obtained. The turbulence in the flux driven case shows intermittent behaviour and avalanches for Qi<10 n0T0ρ*2vth . Isolated avalanches disappear for Qi>10 n0T0ρ*2vt h , and at higher heat fluxes, the statistics of the turbulence is the same for the flux and gradient driven case. The nonlinear upshift of the temperature gradient length threshold for turbulence generation (known as the Dimits shift) is larger in the case of flux driven turbulence. This higher nonlinear upshift is attributed to the generation of structures in the radial temperature profile, known as staircases [Dif-Pradalier, Phys. Rev. E 82, 025401 (2010)]. Avalanches are initiated at specific locations and have roughly the same radial extent of 50-70 ion Larmor radii. The staircases are obtained at low heating rates, and become unstable and break up at higher heating rates. At the heat fluxes for which staircase formation is observed, no stationary gradient driven simulations can be obtained.

  18. Breaking waves, turbulence and bubbles

    NASA Astrophysics Data System (ADS)

    Gemmrich, Johannes; Vagle, Svein; Thomson, Jim

    2014-05-01

    The air-sea fluxes of heat, momentum, and gases are to a large extent affected by wave-induced turbulence in the near-surface ocean layer, and are generally increased over the fluxes in a law-of-the-wall type boundary layer. However, air-bubbles generated during the wave breaking process may affect the density stratification and in turn reduce turbulence intensity in the near-surface layer. The turbulence field beneath surface waves is rather complex and provides great challenges for detailed observations. We obtained high resolution near-surface velocity profiles, bubble cloud measurements and video recordings of the breaking activity in a coastal strait. Conditions ranged from moderate to strong wind forcing with wind speed ranging from 5 m/s to 20 m/s. Estimates of the dissipation rates of turbulence kinetic energy are calculated from the in-situ velocity measurements. We find dissipation rates, fluctuating by more than two orders of magnitude, are closely linked to the air-fraction associated with micro-bubbles. Combining these turbulence estimates and the bubble cloud characteristics we infer differences in the strength of wave breaking and its effect on wave-induced mixing and air-sea exchange processes.

  19. Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems

    NASA Technical Reports Server (NTRS)

    Morris, Chris

    2013-01-01

    Five different central difference schemes, based on a conservative differencing form of the Kennedy and Gruber skew-symmetric scheme, were compared with six different upwind schemes based on primitive variable reconstruction and the Roe flux. These eleven schemes were tested on a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem and a turbulent channel flow problem. The central schemes were generally very accurate and stable, provided the grid stretching rate was kept below 10%. As near-DNS grid resolutions, the results were comparable to reference DNS calculations. At coarser grid resolutions, the need for an LES SGS model became apparent. There was a noticeable improvement moving from CD-2 to CD-4, and higher-order schemes appear to yield clear benefits on coarser grids. The UB-7 and CU-5 upwind schemes also performed very well at near-DNS grid resolutions. The UB-5 upwind scheme does not do as well, but does appear to be suitable for well-resolved DNS. The UF-2 and UB-3 upwind schemes, which have significant dissipation over a wide spectral range, appear to be poorly suited for DNS or LES.

  20. Crossing turbulent boundaries: interfacial flux in environmental flows.

    PubMed

    Grant, Stanley B; Marusic, Ivan

    2011-09-01

    Advances in the visualization and prediction of turbulence are shedding new light on mass transfer in the turbulent boundary layer. These discoveries have important implications for many topics in environmental science and engineering, from the transport of earth-warming CO2 across the sea-air interface, to nutrient processing and sediment erosion in rivers, lakes, and the ocean, to pollutant removal in water and wastewater treatment systems. In this article we outline current understanding of turbulent boundary layer flows, with particular focus on coherent turbulence and its impact on mass transport across the sediment-water interface in marine and freshwater systems. PMID:21793569

  1. Measurements and modelling of turbulent fluxes at two glaciers in British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Radic, V.; Fitzpatrick, N.; Tessema, M.; Menounos, B.; Shea, J. M.; Dery, S. J.

    2015-12-01

    The most physically-based method to simulate surface glacier melting is by surface energy balance models since they account for radiative and turbulent heat exchanges occurring at the snow or ice surface. Direct measurements of turbulent fluxes, however, are uncommon given the complexity of making reliable measurements of turbulent energy exchange on alpine glaciers. Most studies thus rely on the bulk aerodynamic method used to parametrize turbulent fluxes; an approach that may be inaccurate due to poorly specified empirical coefficients, such as the transfer coefficient and roughness lengths. Here we present direct measurements of turbulent energy fluxes for two alpine glaciers in British Columbia: Castle Glacier in the Interior Mountains for ablation seasons 2010 and 2012, and Nordic Glacier in Canadian Rockies for ablation season 2014. On both glaciers the turbulent heat fluxes may account for up to 35% of energy available for daily melt. Using eddy-covariance method we derive the roughness lengths for momentum, temperature and humidity, and evaluate the performance of bulk method with different parametrizations for transfer coefficient in simulating the turbulent fluxes. Finally, we estimate the transfer coefficient directly from our measurements, and investigate its dependence on meteorological variables measured at the glaciers.

  2. Flux tube train model for local turbulence simulation of toroidal plasmas

    SciTech Connect

    Watanabe, T.-H.; Sugama, H.; Ishizawa, A.; Nunami, M.

    2015-02-15

    A new simulation method for local turbulence in toroidal plasmas is developed by extending the conventional idea of the flux tube model. In the new approach, a train of flux tubes is employed, where flux tube simulation boxes are serially connected at each end along a field line so as to preserve a symmetry of the local gyrokinetic equations for image modes in an axisymmetric torus. Validity of the flux tube train model is confirmed against the toroidal ion temperature gradient turbulence for a case with a long parallel correlation of fluctuations, demonstrating numerical advantages over the conventional method in the time step size and the symmetry-preserving property.

  3. Three-dimensional Fast Flux Test Facility plenum model turbulent flow prediction and data comparison

    SciTech Connect

    Eyler, L.L.; Sawdye, R.W.

    1981-01-01

    Two- and three-dimensional numerical simulations of turbulent flow in a scaled Fast Flux Test Facility (FFTF) upper plenum model were performed using the TEMPEST hydrothermal code. A standard k-element of model was used to describe turbulence through an effective viscosity. Comparisons with previously reported mean velocity and turbulence field data measured in the plenum model and two-dimensional numerical simulations using the TEACH code were made. Predicted horizontal and vertical mean velocities and turbulent kinetic energy are shown to be in good agreement with available experimental data when inlet conditions of the dissipation of turbulent kinetic energy are appropriately prescribed. The three-dimensional quarter-symmetry simulation predicts the turbulent kinetic energy field significantly better than the two-dimensional centerplane simulations. These results lead to conclusions concerning deficiencies in the experimental data and the turbulence model.

  4. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  5. The role of bubbles during air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Bushinsky, Seth

    2016-06-01

    The potential for using the air-sea exchange rate of oxygen as a tracer for net community biological production in the ocean is greatly enhanced by recent accuracy improvements for in situ measurements of oxygen on unmanned platforms. A limiting factor for determining the exchange process is evaluating the air-sea flux contributed by bubble processes produced by breaking waves, particularly during winter months under high winds. Highly accurate measurements of noble gases (Ne, Ar & Kr) and nitrogen, N2, in seawater are tracers of the importance of bubble process in the surface mixed layer. We use measured distributions of these gases in the ventilated thermocline of the North Pacific and an annual time series of N2 in the surface ocean of the NE Subarctic Pacific to evaluate four different air-water exchange models chosen to represent the range of model interpretation of bubble processes. We find that models must have an explicit bubble mechanism to reproduce concentrations of insoluble atmospheric gases, but there are periods when they all depart from observations. The recent model of Liang et al. (2013) stems from a highly resolved model of bubble plumes and categorizes bubble mechanisms into those that are small enough to collapse and larger ones that exchange gases before they resurface, both of which are necessary to explain the data.

  6. The flux tube paradigm and its role in MHD turbulence in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Greco, A.; Servidio, S.; Wan, M.; Osman, K.; Ruffolo, D. J.

    2011-12-01

    Descriptions of magnetic field and plasma structures in terms of flux tubes, plasmoids and other bundles of magnetic field lines are familiar in the vocabulary of observational and theoretical space physics. "Spaghetti models" and flux ropes are well known examples. Flux tubes and families of field lines can also be defined in a medium that admits magnetic fluctuations, including strong MHD turbulence, but their behavior can become complicated. In 3D fluctuations the smooth flux tube description itself becomes in some sense unstable, as nearby field lines diverge and flux surfaces shred. This lends complexity to the structure of flux tubes, and can give rise to temporarily trapped field lines and charged test particle trajectories, with immediate implications for transport, e.g., of solar energetic particles. The properties of the turbulent magnetic field can also be strongly influenced by the dynamics of turbulence. Large scale self organizing behavior, or inverse cascade, can enhance very long wavelength structure, favoring Bohm scaling of diffusion coefficients. Meanwhile smaller scale flux tube structures are integral features of the inertial range of turbulence, giving rise to a cellularization of the plasma due to rapid dynamical relaxation processes. These drive the turbulent system locally towards low-acceleration states, including Alfvenic, Beltrami and force-free states. Cell boundaries are natural positions for formation of near discontinuous boundaries, where dynamical activity can be enhanced. A primary example is appearance of numerous discontinuities and active reconnection sites in turbulence, which appear to support a wide distribution of reconnection rates associated with coherent current structures. These discontinuities are also potential sites of enhanced heating, as expected in Kolmogorov's Refined Similarity Hypothesis. All of these features are related to self organization, cascade and intermittency of the turbulence. Examples of these

  7. Can CO2 Turbulent Flux Be Measured by Lidar? A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Gilbert, Fabien; Koch, Grady; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Flamant, Pierre H.; Singh, Upendra N.

    2011-01-01

    The vertical profiling ofCO2 turbulent fluxes in the atmospheric boundary layer (ABL) is investigated using a coherent differential absorption lidar (CDIAL) operated nearby a tall tower in Wisconsin during June 2007. A CDIAL can perform simultaneous range-resolved CO2 DIAL and velocity measurements. The lidar eddy covariance technique is presented. The aims of the study are (i) an assessment of performance and current limitation of available CDIAL for CO2 turbulent fluxes and (ii) the derivation of instrument specifications to build a future CDIAL to perform accurate range-resolved CO2 fluxes. Experimental lidar CO2 mixing ratio and vertical velocity profiles are successfully compared with in situ sensors measurements. Time and space integral scales of turbulence in the ABL are addressed that result in limitation for time averaging and range accumulation. A first attempt to infer CO2 fluxes using an eddy covariance technique with currently available 2-mm CDIAL dataset is reported.

  8. The turbulent heat flux in low Mach number flows with large density variations

    NASA Technical Reports Server (NTRS)

    Orourke, Peter J.; Collins, Lance R.

    1988-01-01

    A transport equation has been derived which is the difference between the volume- and mass-averaged velocities and is simply related to the turbulent heat flux phi sup h. Using this equation and an assumption analogous to the drift flux approximation of two-phase flow modeling, an algebraic closure relation for phi sup h that exibits fluxes due to directed transport proportional to -del anti p and due to gradient transport proportional to -del tau has been obtained.

  9. A representation for the turbulent mass flux contribution to Reynolds-stress and two-equation closures for compressible turbulence

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1993-01-01

    The turbulent mass flux, or equivalently the fluctuating Favre velocity mean, appears in the first and second moment equations of compressible kappa-epsilon and Reynolds stress closures. Mathematically it is the difference between the unweighted and density-weighted averages of the velocity field and is therefore a measure of the effects of compressibility through variations in density. It appears to be fundamental to an inhomogeneous compressible turbulence, in which it characterizes the effects of the mean density gradients, in the same way the anisotropy tensor characterizes the effects of the mean velocity gradients. An evolution equation for the turbulent mass flux is derived. A truncation of this equation produces an algebraic expression for the mass flux. The mass flux is found to be proportional to the mean density gradients with a tensor eddy-viscosity that depends on both the mean deformation and the Reynolds stresses. The model is tested in a wall bounded DNS at Mach 4.5 with notable results.

  10. Effect of Air-Sea coupling on the Frequency Distribution of Intense Tropical Cyclones over the Northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomomaki

    2016-04-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual SST variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling and hence TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  11. Effect of air-sea coupling on the frequency distribution of intense tropical cyclones over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomoaki

    2015-12-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual sea surface temperature (SST) variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence, AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling, and hence, TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  12. Weak turbulence and collapses in the Majda McLaughlin Tabak equation: Fluxes in wavenumber and in amplitude space

    NASA Astrophysics Data System (ADS)

    Rumpf, Benno; Biven, Laura

    2005-05-01

    The turbulent energy flow of the one-dimensional Majda-McLaughlin-Tabak equation (MMT) is studied numerically. The system exhibits weak turbulence for weak driving forces, while weak turbulence coexists with strongly nonlinear intermittent collapses when the system is strongly driven. These two types of dynamics can be distinguished by their energy and particle fluxes. The weakly turbulent process can be characterized by fluxes in wavenumber space, while additional fluxes in amplitude space emerge in the intermittent process. The particle flux is directed from low amplitudes towards high amplitudes, and the energy flows in the opposite direction.

  13. Flow driven inward particle flux and enstrophy production constraint on relaxation in Hasegawa-Wakatani turbulence

    NASA Astrophysics Data System (ADS)

    Ashourvan, Arash; Diamond, P. H.; Gürcan, Ö. D.

    2015-11-01

    The relation between the physics of turbulent transport of particles and momentum is investigated, using the Hasegawa-Wakatani model, with both a density gradient and a quasi-equilibrium shear (zonal) flow. For axisymmetric (k∥ = 0) fluctuations, pure KH instabilities, energized by the flow shear, relax the flow and drive an outward (down the density gradient) flux of particles (Γ = < ñṽx > > 0 , where Γ is the non-dimensional turbulent particle flux). However, for drift-KH instabilities of finite k∥ , flow enhanced pumping can locally drive an inward particle flux. Moreover, we use the positivity of the production of the fluctuation potential enstrophy to obtain a constraining relation between the momentum and particle transport. This constraint relation asserts that the turbulent vorticity flux Πω of a system which has a local inward particle flux (Γ < 0) must locally satisfy Πω < Γ < 0 . This can lead to the change in the sign of the Reynolds work and relaxation of the flow shear at the radial location of the occurrence of the inward flux. Ongoing work focuses on determining the dependencies of the turbulent viscosity. Supported by US DOE grant DE-FG02-04ER54738.

  14. Wind Tunnel Measurement of Turbulent and Advective Scalar Fluxes: A Case Study on Intersection Ventilation

    PubMed Central

    Kukačka, Libor; Nosek, Štĕpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2012-01-01

    The objective of this study is to determine processes of pollution ventilation in the X-shaped street intersection in an idealized symmetric urban area for the changing approach flow direction. A unique experimental setup for simultaneous wind tunnel measurement of the flow velocity and the tracer gas concentration in a high temporal resolution is assembled. Advective horizontal and vertical scalar fluxes are computed from averaged measured velocity and concentration data within the street intersection. Vertical advective and turbulent scalar fluxes are computed from synchronized velocity and concentration signals measured in the plane above the intersection. All the results are obtained for five approach flow directions. The influence of the approach flow on the advective and turbulent fluxes is determined. The contribution of the advective and turbulent flux to the ventilation is discussed. Wind direction with the best dispersive conditions in the area is found. The quadrant analysis is applied to the synchronized signals of velocity and concentration fluctuation to determine events with the dominant contribution to the momentum flux and turbulent scalar flux. PMID:22649290

  15. Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems

    NASA Technical Reports Server (NTRS)

    Morris, C. I.

    2013-01-01

    The last two decades have witnessed tremendous growth in computational power, the development of computational fluid dynamics (CFD) codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. Thus, engineering calculations of 10(exp 7) - 10(exp 8) finite-volume cells have become routine for some types of problems. Although the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES approaches are being applied to resolve the largest scales of turbulence in many engineering problems. However, it has also become evident that LES places different requirements on the numerical approaches for both the spatial and temporal discretization of the Navier Stokes equations than does RANS. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this paper, the performance of both central-difference and upwind-biased spatial discretizations is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem, and the turbulent channel fl ow problem.

  16. Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2013-01-01

    The last two decades have witnessed tremendous growth in computational power, the development of computational fluid dynamics (CFD) codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. Thus, engineering calculations of 10(exp 7) - 10(exp 8) finite-volume cells have become routine for some types of problems. Although the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES approaches are being applied to resolve the largest scales of turbulence in many engineering problems. However, it has also become evident that LES places different requirements on the numerical approaches for both the spatial and temporal discretization of the Navier Stokes equations than does RANS. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this paper, the performance of both central-difference and upwind-biased spatial discretizations is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem, and the turbulent channel ow problem.

  17. Effects of submesoscale turbulence on ocean tracers

    NASA Astrophysics Data System (ADS)

    Smith, Katherine M.; Hamlington, Peter E.; Fox-Kemper, Baylor

    2016-01-01

    Ocean tracers such as carbon dioxide, nutrients, plankton, and oil advect, diffuse, and react primarily in the oceanic mixed layer where air-sea gas exchange occurs and light is plentiful for photosynthesis. There can be substantial heterogeneity in the spatial distributions of these tracers due to turbulent stirring, particularly in the submesoscale range where partly geostrophic fronts and eddies and small-scale three-dimensional turbulence are simultaneously active. In this study, a large eddy simulation spanning horizontal scales from 20 km down to 5 m is used to examine the effects of multiscale turbulent mixing on nonreactive passive ocean tracers from interior and sea-surface sources. The simulation includes the effects of both wave-driven Langmuir turbulence and submesoscale eddies, and tracers with different initial and boundary conditions are examined in order to understand the respective impacts of small-scale and submesoscale motions on tracer transport. Tracer properties are characterized using spatial fields and statistics, multiscale fluxes, and spectra, and the results detail how tracer mixing depends on air-sea tracer flux rate, tracer release depth, and flow regime. Although vertical fluxes of buoyancy by submesoscale eddies compete with mixing by Langmuir turbulence, vertical fluxes of tracers are often dominated by Langmuir turbulence, particularly for tracers that are released near the mixed-layer base or that dissolve rapidly through the surface, even in regions with pronounced submesoscale activity. Early in the evolution of some tracers, negative eddy diffusivities occur co-located with regions of negative potential vorticity, suggesting that symmetric instabilities or other submesoscale phenomenon may act to oppose turbulent mixing.

  18. A non-linear algebraic model for the turbulent scalar fluxes

    SciTech Connect

    Younis, B.A.; Speziale, C.G.; Clark, T.T.

    1995-09-01

    The need for a new approach to modelling the scalar fluxes stems from the lack of realism in the performance of the simple gradient-transport models and the inadequacy of many of the assumptions underlying the more complicated scalar-flux transport closures. The problems with the simple gradient-transport closures are well known. In models of this type, the scalar fluxes are related to the mean scalar field via a scalar turbulent diffusivity. The purpose of this paper is to report on a novel approach to the modelling of the turbulent scalar fluxes (u{sub i}{theta}) which arise as a consequence of time averaging the transport equation for a mean scalar ({Theta}). The focus of this paper will be on the case where {Theta} is a `passive` scalar; the extension of this approach to cases involving buoyancy and compressibility will be briefly discussed. Models of this type fail badly in complex and strongly-buoyant flows.

  19. The SOLAS air-sea gas exchange experiment (SAGE) 2004

    NASA Astrophysics Data System (ADS)

    Harvey, Mike J.; Law, Cliff S.; Smith, Murray J.; Hall, Julie A.; Abraham, Edward R.; Stevens, Craig L.; Hadfield, Mark G.; Ho, David T.; Ward, Brian; Archer, Stephen D.; Cainey, Jill M.; Currie, Kim I.; Devries, Dawn; Ellwood, Michael J.; Hill, Peter; Jones, Graham B.; Katz, Dave; Kuparinen, Jorma; Macaskill, Burns; Main, William; Marriner, Andrew; McGregor, John; McNeil, Craig; Minnett, Peter J.; Nodder, Scott D.; Peloquin, Jill; Pickmere, Stuart; Pinkerton, Matthew H.; Safi, Karl A.; Thompson, Rona; Walkington, Matthew; Wright, Simon W.; Ziolkowski, Lori A.

    2011-03-01

    The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive subpolar zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment was conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX's), SAGE was designed as a Lagrangian study, quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO 2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF 6/ 3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at tenths of kilometer scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describe air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties and windspeed were quantified to further assist the development of gas exchange models for high-wind environments. There was a significant increase in the photosynthetic competence ( Fv/ Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX's, rates of net primary production and column-integrated chlorophyll a concentrations had

  20. Estimation of boundary heat flux using experimental temperature data in turbulent forced convection flow

    NASA Astrophysics Data System (ADS)

    Parwani, Ajit K.; Talukdar, Prabal; Subbarao, P. M. V.

    2014-09-01

    Heat flux at the boundary of a duct is estimated using the inverse technique based on conjugate gradient method (CGM) with an adjoint equation. A two-dimensional inverse forced convection hydrodynamically fully developed turbulent flow is considered. The simulations are performed with temperature data measured in the experimental test performed on a wind tunnel. The results show that the present numerical model with CGM is robust and accurate enough to estimate the strength and position of boundary heat flux.

  1. Estimation of boundary heat flux using experimental temperature data in turbulent forced convection flow

    NASA Astrophysics Data System (ADS)

    Parwani, Ajit K.; Talukdar, Prabal; Subbarao, P. M. V.

    2015-03-01

    Heat flux at the boundary of a duct is estimated using the inverse technique based on conjugate gradient method (CGM) with an adjoint equation. A two-dimensional inverse forced convection hydrodynamically fully developed turbulent flow is considered. The simulations are performed with temperature data measured in the experimental test performed on a wind tunnel. The results show that the present numerical model with CGM is robust and accurate enough to estimate the strength and position of boundary heat flux.

  2. Association of synoptic variability in surface turbulent fluxes with cyclone characteristics in the Northern hemisphere midlatitudes

    NASA Astrophysics Data System (ADS)

    Tilinina, Natalia; Gulev, Sergey

    2015-04-01

    Surface turbulent heat fluxes are primarily responsible for variability of surface ocean heat budget on synoptic and interannual scales. On synoptic time scale they are highly variable in time ranging from hundreds to thousands W/m2. This variability is primarily driven by variations of near surface atmospheric characteristics controlled in midlatitudes by atmospheric cyclones. We focus on understanding the mechanisms of synoptic variability of surface turbulent fluxes and particularly on the origins of extreme turbulent fluxes and their further impact on the atmospheric and oceanic dynamics. The main questions addressed in this study are (i) what are the large scale atmospheric conditions associated with extreme ocean surface fluxes and to what extent they are related to cyclones, (ii) what is the role of extreme surface fluxes in the variability of oceanic heat content, and (iii) which characteristics of atmospheric cyclones are most sensitive to the surface ocean flux signals? To answer these questions, we analyse statistical characteristics of surface turbulent heat fluxes and cyclone characteristics over the midlatitudinal North Atlantic and North Pacific. Further we investigate links of cyclones and surface fluxes with each other focusing on cyclone life cycle characteristics such as deepening rates, propagation velocities, life time and clustering. We derived characteristics of the extreme surface fluxes from the empirical probability distributions of surface fluxes from the NCEP-CFSR reanalysis for the period 1979-onwards. Cyclone tracking for the same period has been performed using state of the art numerical tracking algorithm applied to the reanalysis SLP at 6-hourly resolution. We argue that the presence of the high pressure system following to the rare part of propagating cyclone is a critical condition for the formation of extreme surface ocean fluxes which are associated with the cyclone-anticyclone interaction zone rather than with cyclone per se

  3. Characterization of Turbulent Latent and Sensible Heat Flux Exchange Between the Atmosphere and Ocean in MERRA

    NASA Technical Reports Server (NTRS)

    Robert, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.

    2012-01-01

    Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth's energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat

  4. Characterization of Turbulent Latent and Sensible Heat Flux Exchange Between the Atmosphere and Ocean in MERRA

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.

    2012-01-01

    Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat

  5. An assessment of corrections for eddy covariance measured turbulent fluxes over snow in mountain environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Snow is a major component of the annual water balance in many locations across the globe, including the mountainous regions of the interior western U.S. and Canada. Turbulent flux data are useful for evaluating the coupled snow cover mass and energy balance, but such data are rare over snow in compl...

  6. Temperature regimes and turbulent heat fluxes across a heterogeneous canopy in an Alaskan boreal forest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluate local differences in thermal regimes and turbulent heat fluxes across the heterogeneous canopy of a black spruce boreal forest on discontinuous permafrost in interior Alaska. The data was taken during an intensive observing period in the summer of 2013 from two micrometeorological tower...

  7. Comparision of estimation methods to determine turbulent fluxes over snow in a mountainous forested environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The turbulent exchange of sensible and latent heat and mass between the snowcover and the atmosphere can represent a significant component of the snowcover energy and mass balance in mountainous environments. These fluxes are computed in land surface and energy balance snowmelt models, though few m...

  8. Scaling of up–down asymmetric turbulent momentum flux with poloidal shaping mode number in tokamaks

    NASA Astrophysics Data System (ADS)

    Ball, Justin; Parra, Felix I.

    2016-05-01

    Breaking the up–down symmetry of tokamaks removes a constraint limiting intrinsic momentum transport, and hence toroidal rotation, to be small. Using gyrokinetic theory, we study the effect of different up–down asymmetric flux surface shapes on the turbulent transport of momentum. This is done by perturbatively expanding the gyrokinetic equation in large flux surface shaping mode number. It is found that the momentum flux generated by shaping that lacks mirror symmetry (which is necessarily up–down asymmetric) has a power law scaling with the shaping mode number. However, the momentum flux generated by mirror symmetric flux surface shaping (even if it is up–down asymmetric) decays exponentially with large shaping mode number. These scalings are consistent with nonlinear local gyrokinetic simulations and indicate that low mode number shaping effects (e.g. elongation, triangularity) are optimal for creating rotation. Additionally it suggests that breaking the mirror symmetry of flux surfaces may generate significantly more toroidal rotation.

  9. Turbulent Fluxes of Suspended Sediment from Coupled Acoustic Doppler Current Profilers

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Sassi, M.; Vermeulen, B.

    2014-12-01

    Turbulent diffusion is a cornerstone in geophysical fluid mechanics, controlling the exchange of momentum, heat and mass in surface flows occurring in the atmosphere, in rivers and in the ocean. In fluvial and coastal systems, modeling turbulent diffusion of momentum and suspended sediment requires knowledge about turbulent diffusivities, which is generally derived from parameterizations based on laboratory experiments. Field determinations of momentum and sediment diffusivities are cumbersome, requiring an instrumental array to simultaneously sample turbulence and mean flow quantities in time and in space. Recently, a new technique to analyze geophysical surface flow turbulence was introduced, appropriate for large scale systems, based on coupling of acoustic Doppler current profilers (ADCPs). Here, we extend this approach to obtain collocated profiles of both the Reynolds stress tensor and eddy covariance fluxes, to derive vertical profiles of turbulent momentum and sediment diffusivity in a tidal river. Shear and normal stresses are obtained by combining the variances in radial velocities measured by the ADCP beams. The covariances between radial velocities and calibrated acoustic backscatter allow to determine the three Cartesian components of the turbulent flux of suspended sediment. The main advantage of this new approach is that flow velocity and sediment concentration measurements are exactly collocated, and that it allows to profile over longer ranges, in comparison to existing techniques. Results show that vertical profiles of the inverse turbulent Prandtl-Schmidt number is coherent with corresponding profiles of the sediment diffusivity, rather than with profiles of the eddy viscosity. This implies modelling suspended sediment dynamics requires knowledge about the sediment diffusivity, as the Prandtl-Schmidt number cannot be estimated from the eddy viscosity alone.

  10. Turbulent Energy Spectra and Cospectra of Momentum and Heat Fluxes in the Stable Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Li, Dan; Katul, Gabriel G.; Bou-Zeid, Elie

    2015-10-01

    The turbulent energy spectra and cospectra of momentum and sensible heat fluxes are examined theoretically and experimentally with increasing flux Richardson number () in the stable atmospheric surface layer. A cospectral budget model, previously used to explain the bulk relation between the turbulent Prandtl number () and the gradient Richardson number () as well as the relation between and , is employed to interpret field measurements over a lake and a glacier. The shapes of the vertical velocity and temperature spectra, needed for closing the cospectral budget model, are first examined with increasing . In addition, the wavenumber-dependent relaxation time scales for momentum and heat fluxes are inferred from the cospectral budgets and investigated. Using experimental data and proposed extensions to the cospectral budget model, the existence of a `' power-law scaling in the temperature spectra but its absence from the vertical velocity spectra is shown to reduce the magnitude of the maximum flux Richardson number (), which is commonly inferred from the Rf- Ri relation when becomes very large (idealized with ). Moreover, dissimilarity in relaxation time scales between momentum and heat fluxes, also affected by the existence of the `' power-law scaling in the temperature spectra, leads to under near-neutral conditions. It is further shown that the production rate of turbulent kinetic energy decreases more rapidly than that of turbulent potential energy as , which explains the observed disappearance of the inertial subrange in the vertical velocity spectra at a smaller as compared to its counterpart in the temperature spectra. These results further demonstrate novel linkages between the scale-wise turbulent kinetic energy and potential energy distributions and macroscopic relations such as stability correction functions to the mean flow and the - Ri relation.

  11. Sensitivity of Air-sea Exchange In A Regional Scale Coupled Ice/ocean/atmosphere Model

    NASA Astrophysics Data System (ADS)

    Schrum, C.; Hübner, U.; Jacob, D.; Podzun, R.

    The sub-systems ice, ocean and atmosphere are coupled on the global as well as the regional scale. However, regional coupled modeling is only in the beginning, full cou- pled models which are able to describe the interaction on the regional scale and the feedback mechanism are rare at the moment. For the North Sea and the Baltic Sea such a coupled model has been developed and exemplary integrated over a full seasonal cy- cle. By comparison of different regionalization studies the impact of the regional at- mospheric modeling and coupling on the air sea fluxes have been investigated. It was shown that the regionalization as well as the coupling show strong influence on the air/sea fluxes and thus on the oceanic conditions. Further problems in regional mod- eling like the description of storm track variability and its influence on the regional ocean model were identified.

  12. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  13. Air-sea coupling in the Hawaiian Archipelago

    NASA Astrophysics Data System (ADS)

    Souza, J. M.; Powell, B.; Mattheus, D.

    2014-12-01

    A coupled numerical model is used to investigate the ocean-atmosphere interaction in the lee of the Hawaiian archipelago. The wind curl generated by the island blocking of the trade winds is known to give rise to ocean eddies; however, the impact of the sea surface temperature (SST) and velocity fronts associated with these eddies on the atmosphere is less understood. The main coupling mechanisms are: (i) changes in the near-surface stability and surface stress, (ii) vertical transfer of momentum from higher atmospheric levels to the ocean surface due to an increase of the turbulence in the boundary layer, (iii) secondary circulations associated with perturbations in the surface atmospheric pressure over the SST fronts, and (iv) the impact of the oceanic eddy currents on the net momentum transferred between the atmosphere and the ocean. To assess the relative contribution from each process, a coupled simulation between the Regional Ocean Modeling System (ROMS) and the Weather Research and Forecasting (WRF) models is conducted for the main Hawaiian Islands. The impact of the coupling, the perturbation of the mean wind pattern, and the different spatial scales involved in the air-sea exchanges of momentum and heat are explored.

  14. Diagnosing Air-Sea Interactions on Intraseasonal Timescales

    NASA Astrophysics Data System (ADS)

    DeMott, C. A.

    2014-12-01

    What is the role of ocean coupling in the Madden Julian Oscillation (MJO)? Consensus thinking holds that the essential physics of the MJO involve interactions between convection, atmospheric wave dynamics, and boundary layer and free troposphere moisture. However, many modeling studies demonstrate improved MJO simulation when an atmosphere-only general circulation model (AGCM) is coupled to an ocean model, so feedbacks from the ocean are probably not negligible. Assessing the importance and processes of these feedbacks is challenging for at least two reasons. First, observations of the MJO only sample the fully coupled ocean-atmosphere system; there is no "uncoupled" MJO in nature. Second, the practice of analyzing the MJO in uncoupled and coupled GCMs (CGCMs) involves using imperfect tools to study the problem. Although MJO simulation is improving in many models, shortcomings remain in both AGCMs and CGCMs, making it difficult to determine if changes brought about through coupling reflect critical air-sea interactions or are simply part of the collective idiosyncracies of a given model. For the atmosphere, ocean feedbacks from intraseasonal sea surface temperature (SST) variations are communicated through their effects on surface fluxes of heat and moisture. This presentation suggests a set of analysis tools for diagnosing the impact of an interactive ocean on surface latent and sensible heat fluxes, including their mean, variance, spectral characteristics, and phasing with respect to wind, SST, and MJO convection. The diagnostics are demonstrated with application to several CMIP5 models, and reveal a variety of responses to coupled ocean feedbacks.

  15. Unstable Air-Sea Interaction in the Extratropical North Atlantic

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1999-01-01

    The possibility of coupled modes in the extratropical North Atlantic has fascinated the climate community since 1960's. A significant aspect of such modes is an unstable air-sea interaction, also called positive feedback, where disturbances between the atmosphere and ocean grow unbound. If a delayed response exists before the negative feedback takes effect, an oscillatory behaviour will develop. Here we explore the relationship between heat flux (positive upward) and sea surface temperature (SST). Positive feedback is characterized by a cross-correlation between the two where correlation maintains a negative sign whether SST or heat flux leads. We use model results and observations to argue that in the North Atlantic there exist regions with positive feedback. The two main locations coincide with the well-known north-south SST dipole where anomalies of opposite sign occupy areas east of Florida and north-east of Newfoundland. We show that oceanic dynamics, wave propagation and advection, give rise to oceanic anomalies in these regions. Subsequently these anomalies are amplified by atmosphere- ocean interaction: thus a positive feedback.

  16. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  17. Effects of cold front passage on turbulent fluxes over a large inland water

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Liu, H.

    2011-12-01

    Turbulent fluxes of sensible and latent heat over a large inland water in southern USA were measured using the eddy covariance method through the year of 2008. In addition, net radiation, air temperatures and relative humidity, and water temperature in different depths were also measured. The specific objective of this study is to examine effects of a cold front passage on the surface energy fluxes. For the typical cold front event selected from April 11 to 14, air temperature decreased by 16°C, while surface temperature only dropped 6°C. Atmospheric vapor pressure decreased by 1.6 kPa, while that in the water-air interface dropped 0.7 kPa. The behavior difference in the water-air interface was caused by the passage of cold, dry air masses immediately behind the cold front. During the cold front event, sensible heat and latent heat flux increased by 171 W m-2 and 284 W m-2, respectively. Linear aggression analysis showed that the sensible heat flux was proportional to the product of wind speed and the temperature gradient of water-air interface, with a correlation coefficient of 0.95. Latent heat flux was proportional to the product of wind speed and vapor pressure difference between the water surface and overlaying atmosphere, with a correlation coefficient of 0.81. Also, the correlations between both fluxes and the wind speed were weak. This result indicated that the strong wind associated with the cold front event contributed to the turbulent mixing, which indirectly enhanced surface energy exchange between the water surface and the atmosphere. The relationship between the water heat storage energy and turbulent fluxes was also examined.

  18. Turbulent-Heat-Flux and Temperature-Variance Budgets in a Single-Rib Mounting Channel

    NASA Astrophysics Data System (ADS)

    Miura, Takahiro; Matsubara, Koji; Sakurai, Atsushi

    Heat transfer and fluid flow in a single-rib mounting channel were investigated by directly solving Navier-Stokes and energy equations. The flow and thermal fields were considered to be fully developed at the inlet of the channel, and the simulation was made for spatial advancement of turbulent heat transfer. The Reynolds number based on the friction velocity at the inlet and the channel half width was 150. The Prandtl number was 0.71. The budgets for turbulent heat fluxes and temperature variance at various sections were presented and were investigated, which would be useful for testing and developing turbulence models. Near a circular vortex in front of the rib, pressure diffusion terms made an important contribution. Remarkable production terms were generated near a reattachment point. Production and dissipation terms were not dominant in front of and above the rib, and a time scale ratio exceeded 2.0 in the region.

  19. Diffusion of Magnetic Field and Removal of Magnetic Flux from Clouds Via Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; Lazarian, A.; de Gouveia Dal Pino, E. M.; Cho, J.

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the

  20. Impact of ice cover in the Arctic on ocean-atmosphere turbulent heat fluxes

    NASA Astrophysics Data System (ADS)

    Selivanova, J. V.; Tilinina, N. D.; Gulev, S. K.; Dobrolubov, S. A.

    2016-01-01

    The impact of spatiotemporal variability of the ice-covered area in the Arctic on the value and interannual dynamics of turbulent heat fluxes on the ocean-atmosphere border is considered. An expected inverse dependence of the heat fluxes integrated over the Arctic area and the area of ice is not detected. The largest interannual oscillations of heat fluxes from the ocean to the atmosphere are timed to the varying position of the ice edge and, to a lesser extent, are connected with total area of ice. The role of the marginal ice zone in oceanic heat transfer is analyzed. In particular, it is shown that while moving along the marginal zone from the ice-free surface to the surface with an ice concentration of 0.8, latent and sensible heat fluxes are reduced by a factor of 2.5-3.

  1. A scheme for computing surface layer turbulent fluxes from mean flow surface observations

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Storch, J.

    1978-01-01

    A physical model and computational scheme are developed for generating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at some fixed height in the atmospheric surface layer, where conditions at this reference level are presumed known from observations or the evolving state of a numerical atmospheric circulation model. The method is based on coupling the Monin-Obukov surface layer similarity profiles which include buoyant stability effects on mean velocity, temperature and humidity to a force-restore formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant fluxes at the surface. Additional parameters needed to implement the scheme are the thermal heat capacity of the soil per unit surface area, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity to solar radiation.

  2. A reconciliation of empirical and mechanistic models of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Woolf, David K.; Callaghan, Adrian H.; Nightingale, Philip D.; Shutler, Jamie D.

    2016-01-01

    Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.

  3. Spectra and probability distributions of thermal flux in turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Pharasi, Hirdesh K.; Kumar, Deepesh; Kumar, Krishna; Bhattacharjee, Jayanta K.

    2016-05-01

    The spectra of turbulent heat flux H(k) in Rayleigh-Bénard convection with and without uniform rotation are presented. The spectrum H(k) scales with wave number k as ˜k-2. The scaling exponent is almost independent of the Taylor number Ta and Prandtl number Pr for higher values of the reduced Rayleigh number r (>103). The exponent, however, depends on Ta and Pr for smaller values of r (<103). The probability distribution functions of the local heat fluxes are non-Gaussian and have exponential tails.

  4. Energy balance and turbulent flux partitioning in a corn-soybean rotation in the Midwestern US

    NASA Astrophysics Data System (ADS)

    Hernandez-Ramirez, Guillermo; Hatfield, Jerry L.; Prueger, John H.; Sauer, Thomas J.

    2010-03-01

    Quantifying the energy balance above plant canopies is critical for better understanding of water balance and changes in regional weather patterns. This study examined temporal variations of energy balance terms for contrasting canopies [corn ( Zea mays L.) and soybean ( Glycine max L. Merr.)]. We monitored energy balance for 4 years using eddy-covariance systems, net radiometers, and soil heat flux plates in adjacent production fields near Ames, Iowa. On an annual basis, soybean exhibited 20% and 30% lower sensible heat flux ( H) and Bowen ratio than corn, respectively. As canopies developed, a gradual shift in turbulent fluxes occurred with decreasing H and increasing latent heat flux (LE), but with a more pronounced effect for corn. Conversely, during mid-growing season and as both canopies progressively senesced, H in general increased and LE decreased; however, soybean exhibited slightly greater LE and much lower H than corn. These temporal variations in magnitude and partitioning of turbulent fluxes translated into a pronounced energy imbalance for soybean (0.80) and an enhanced closure for corn (0.98) in August and September. These discrepancies could be directly associated with differences in momentum transport as shown by friction velocities of 0.34 and 0.28 m s-1 for corn and soybean, respectively. These results support influential roles of plant canopy on intensity and mode of surface energy exchange processes.

  5. Airflows and turbulent flux measurements in mountainous terrain: Part 2: Mesoscale effects

    USGS Publications Warehouse

    Turnipseed, A.A.; Anderson, D.E.; Burns, S.; Blanken, P.D.; Monson, Russell K.

    2004-01-01

    The location of the Niwot Ridge Ameriflux site within the rocky mountains subjects it to airflows which are common in mountainous terrain. In this study, we examine the effects of some of these mesoscale features on local turbulent flux measurements; most notably, the formation of valley/mountain flows and mountain lee-side waves. The valley/mountain flows created local non-stationarities in the wind flow caused by the passage of a lee-side convergence zone (LCZ) in which upslope and downslope flows met in the vicinity of the measurement tower. During June-August, 2001, possible lee-side convergences were flagged for ???26% of all half-hour daytime flux measurement periods. However, there was no apparent loss of flux during these periods. On some relatively stable, summer nights, turbulence (designated via ??w), and scalar fluctuations (temperature and CO2, for example) exhibited periodicities that appeared congruent with passage of low frequency gravity waves (?? ??? 20 min). Spectral peaks at 0.0008 Hz (20 min) in both vertical velocity and scalar spectra were observed and indicated that 25-50% of the total scalar covariances were accounted for by the low frequency waves. During some periods of strong westerly winds (predominantly in winter), large mountain gravity waves were observed to form. Typically, the flux tower resided within a region of downslope "shooting flow", which created high turbulence, but had no detrimental effect on local flux measurements based on valid turbulence statistics and nearly complete energy budget closure. Periodically, we found evidence for re-circulating, rotor winds in the simultaneous time series of wind data from the Ameriflux tower site and a second meteorological site situated 8 km upslope and to the West. Only 14% of the half-hour time periods that we examined for a 4 month period in the winter of 2000-2001 indicated the possible existence of rotor winds. On average, energy budget closure was ???20% less during periods with

  6. Evaluation of parameterization for turbulent fluxes of momentum and heat in stably stratified surface layers

    NASA Astrophysics Data System (ADS)

    Sodemann, H.; Foken, Th.

    2003-04-01

    General Circulation Models calculate the energy exchange between surface and atmosphere by means of parameterisations for turbulent fluxes of momentum and heat in the surface layer. However, currently implemented parameterisations after Louis (1979) create large discrepancies between predictions and observational data, especially in stably stratified surface layers. This work evaluates a new surface layer parameterisation proposed by Zilitinkevich et al. (2002), which was specifically developed to improve energy flux predictions in stable stratification. The evaluation comprises a detailed study of important surface layer characteristics, a sensitivity study of the parameterisation, and a direct comparison to observational data from Antarctica and predictions by the Louis (1979) parameterisation. The stability structure of the stable surface layer was found to be very complex, and strongly influenced fluxes in the surface layer. The sensitivity study revealed that the new parameterisation depends strongly on the ratio between roughness length and roughness temperature, which were both observed to be very variable parameters. The comparison between predictions and measurements showed good agreement for momentum fluxes, but large discrepancies for heat fluxes. A stability dependent evaluation of selected data showed better agreement for the new parameterisation of Zilitinkevich et al. (2002) than for the Louis (1979) scheme. Nevertheless, this comparison underlines the need for more detailed and physically sound concepts for parameterisations of heat fluxes in stably stratified surface layers. Zilitinkevich, S. S., V. Perov and J. C. King (2002). "Near-surface turbulent fluxes in stable stratification: Calculation techniques for use in General Circulation Models." Q. J. R. Meteorol. Soc. 128(583): 1571--1587. Louis, J. F. (1979). "A Parametric Model of Vertical Eddy Fluxes in the Atmosphere." Bound.-Layer Meteor. 17(2): 187--202.

  7. Turbulent transport regimes and the scrape-off layer heat flux width

    SciTech Connect

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-04-15

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments.

  8. A True Eddy Accumulation - Eddy Covariance hybrid for measurements of turbulent trace gas fluxes

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2016-04-01

    Eddy covariance (EC) is state-of-the-art in directly and continuously measuring turbulent fluxes of carbon dioxide and water vapor. However, low signal-to-noise ratios, high flow rates and missing or complex gas analyzers limit it's application to few scalars. True eddy accumulation, based on conditional sampling ideas by Desjardins in 1972, requires no fast response analyzers and is therefore potentially applicable to a wider range of scalars. Recently we showed possibly the first successful implementation of True Eddy Accumulation (TEA) measuring net ecosystem exchange of carbon dioxide of a grassland. However, most accumulation systems share the complexity of having to store discrete air samples in physical containers representing entire flux averaging intervals. The current study investigates merging principles of eddy accumulation and eddy covariance, which we here refer to as "true eddy accumulation in transient mode" (TEA-TM). This direct flux method TEA-TM combines true eddy accumulation with continuous sampling. The TEA-TM setup is simpler than discrete accumulation methods while avoiding the need for fast response gas analyzers and high flow rates required for EC. We implemented the proposed TEA-TM method and measured fluxes of carbon dioxide (CO2), methane (CH4) and water vapor (H2O) above a mixed beech forest at the Hainich Fluxnet and ICOS site, Germany, using a G2301 laser spectrometer (Picarro Inc., USA). We further simulated a TEA-TM sampling system using measured high frequency CO2 time series from an open-path gas analyzer. We operated TEA-TM side-by-side with open-, enclosed- and closed-path EC flux systems for CO2, H2O and CH4 (LI-7500, LI-7200, LI-6262, LI-7700, Licor, USA, and FGGA LGR, USA). First results show that TEA-TM CO2 fluxes were similar to EC fluxes. Remaining differences were similar to those between the three eddy covariance setups (open-, enclosed- and closed-path gas analyzers). Measured TEA-TM CO2 fluxes from our physical

  9. Turbulence kinetic energy budget and spatial heterogeneity of surface fluxes above and beneath an open pine canopy

    NASA Astrophysics Data System (ADS)

    Vickers, D.; Thomas, C. K.

    2013-12-01

    We examine the average contributions from shear generation, buoyancy production and vertical turbulent transport to the turbulence kinetic energy (TKE) tendency for two vertical layers of a tall open pine forest: a lower layer in the subcanopy space in contact with the understory and the surface, and an upper layer extending from the top half of the open subcanopy trunk space upwards to about twice the canopy height. The subcanopy TKE is strongly related to the TKE above the canopy, with approximately one-tenth the magnitude. In the upper layer, shear generation of turbulence dominates, while in the lower layer the vertical turbulent transfer of TKE is the largest of the three terms. The vertical turbulent transport in the lower layer is of similar magnitude but opposite sign to that in the upper layer. The observations suggest that a significant fraction of the subcanopy turbulence is driven by shear generation of turbulence above the canopy that is subsequently transported downward by turbulence into the subcanopy. In addition, we evaluate the spatial heterogeneity of the TKE, the three TKE tendency terms, the CO2 flux, moisture flux, heat flux and the friction velocity in the subcanopy. In terms of fluxes, the heterogeneity is by far the largest for the CO2 flux. Based on the observed weak heterogeneity of the turbulence and the strong heterogeneity of the CO2 flux, we conclude that significant variations in the CO2 source terms occur on scales smaller than our network, where the distance between measurement sites is 87 m. We also observe large systematic differences in the long-term average subcanopy moisture and especially CO2 flux depending on location within the network of measurement sites despite the lack of any clear differences in soils, exposure, vegetation, elevation or terrain slope.

  10. Air-Sea Interaction Measurements from R/P FLIP

    NASA Astrophysics Data System (ADS)

    Friehe, C. A.

    2002-12-01

    Soon after its inception, R/P FLIP was used to study the interaction of the atmosphere and ocean due to its unique stability and low flow distortion. A number of campaigns have been conducted to measure the surface fluxes of heat, water vapor and horizontal momentum of the wind with instrumentation as used over land, supported by the Office of Naval Research and the National Science Foundation. The size of FLIP allows for simultaneous ocean wave and mixed-layer measurements as well. Air-sea interaction was a prime component of BOMEX in 1968, where FLIP transited the Panama Canal. The methods used were similar to the over-land "Kansas" experiment of AFCRL in 1968. BOMEX was followed by many experiments in the north Pacific off San Diego, northern California, and Hawaii. Diverse results from FLIP include identification of the mechanism that causes erroneous fluctuating temperature measurements in the salt-aerosol-laden marine atmosphere, the role of humidity on optical refractive index fluctuations, and identification of Miles' critical layer in the air flow over waves.

  11. The turbulent diffusion of toroidal magnetic flux as inferred from properties of the sunspot butterfly diagram

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Schüssler, M.

    2016-06-01

    Context. In order to match observed properties of the solar cycle, flux-transport dynamo models require the toroidal magnetic flux to be stored in a region of low magnetic diffusivity, typically located at or below the bottom of the convection zone. Aims: We infer the turbulent magnetic diffusivity affecting the toroidal field on the basis of empirical data. Methods: We considered the time evolution of mean latitude and width of the activity belts of solar cycles 12-23 and their dependence on cycle strength. We interpreted the decline phase of the cycles as a diffusion process. Results: The activity level of a given cycle begins to decline when the centers of its equatorward propagating activity belts come within their (full) width (at half maximum) from the equator. This happens earlier for stronger cycles because their activity belts are wider. From that moment on, the activity and the belt width decrease in the same manner for all cycles, independent of their maximum activity level. In terms of diffusive cancellation of opposite-polarity toroidal flux across the equator, we infer the turbulent diffusivity experienced by the toroidal field, wherever it is located, to be in the range 150-450 km2 s-1. Strong diffusive latitudinal spreading of the toroidal flux underneath the activity belts can be inhibited by an inflow toward the toroidal field bands in the convection zone with a magnitude of several meters per second. Conclusions: The inferred value of the turbulent magnetic diffusivity affecting the toroidal field agrees, to order of magnitude, with estimates based on mixing-length models for the solar convection zone. This is at variance with the requirement of flux-transport dynamo models. The inflows required to keep the toroidal field bands together before they approach the equator are similar to the inflows toward the activity belts observed with local helioseismology.

  12. Seven-Year SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe

    2000-01-01

    A 7.5-year (July 1987-December 1994) dataset of daily surface specific humidity and turbulent fluxes (momentum, latent heat, and sensible heat) over global oceans has been retrieved from the Special Sensor Microwave/Imager (SSM/I) data and other data. It has a spatial resolution of 2.0 deg.x 2.5 deg. latitude-longitude. The retrieved surface specific humidity is generally accurate over global oceans as validated against the collocated radiosonde observations. The retrieved daily wind stresses and latent heat fluxes show useful accuracy as verified by those measured by the RV Moana Wave and IMET buoy in the western equatorial Pacific. The derived turbulent fluxes and input variables are also found to agree generally with the global distributions of annual-and seasonal-means of those based on 4-year (1990-93) comprehensive ocean-atmosphere data set (COADS) with adjustment in wind speeds and other climatological studies. The COADS has collected the most complete surface marine observations, mainly from merchant ships. However, ship measurements generally have poor accuracy, and variable spatial coverages. Significant differences between the retrieved and COADS-based are found in some areas of the tropical and southern extratropical oceans, reflecting the paucity of ship observations outside the northern extratropical oceans. Averaged over the global oceans, the retrieved wind stress is smaller but the latent heat flux is larger than those based on COADS. The former is suggested to be mainly due to overestimation of the adjusted ship-estimated wind speeds (depending on sea states), while the latter is suggested to be mainly due to overestimation of ship-measured dew point temperatures. The study suggests that the SSM/I-derived turbulent fluxes can be used for climate studies and coupled model validations.

  13. Averaging period effects on the turbulent flux and transport efficiency during haze pollution in Beijing, China

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Yang, Ting; Sun, Yele

    2015-08-01

    Based on observations at the heights of 140 and 280 m on the Beijing 325-m meteorological tower, this study presents an assessment of the averaging period effects on eddy-covariance measurements of the momentum/scalar flux and transport efficiency during wintertime haze pollution. The study period, namely from January 6 to February 28 2013, is divided into different episodes of particulate pollution, as featured by varied amounts of the turbulent exchange and conditions of the atmospheric stability. Overall, turbulent fluxes of the momentum and scalars (heat, water vapor, and CO2) increase with the averaging period, namely from 5, 15, and 30 up to 60 min, an outcome most evident during the `transient' episodes (each lasting for 2-3 days, i.e., preceded and followed by clean-air days with mean concentrations of PM1 less than 40 μg m-3). The conventional choice of 30 min is deemed to be appropriate for calculating the momentum flux and its transport efficiency. By comparison, scalar fluxes and their transport efficiencies appear more sensitive to the choice of an averaging period, particularly at the upper level (i.e., 280 m). It is presupposed that, for urban environments, calculating the momentum and scalar fluxes could invoke separate averaging periods, rather than relying on a single prescription (e.g., 30 min). Furthermore, certain characteristics of urban turbulence are found less sensitive to the choice of an averaging period, such as the relationship between the heat-to-momentum transport efficiency and the local stability parameter.

  14. Developments in Airborne Oceanography and Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Melville, W. K.

    2014-12-01

    , just as aircraft carriers "project force". Now we can measure winds, waves, temperatures, currents, radiative transfer, images and air-sea fluxes from aircraft over the ocean.I will review some of the history of airborne oceanography and present examples of how it can extend our knowledge and understanding of air-sea interaction.

  15. A Multilayer Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaud, Franco (Technical Monitor)

    2001-01-01

    A dataset including daily- and monthly-mean turbulent fluxes (momentum, latent heat, and sensible heat) and some relevant parameters over global oceans, derived from the Special Sensor Microwave/Imager (SSM/I) data, for the period July 1987-December 1994 and the 1988-94 annual and monthly-mean climatologies of the same variables is created. It has a spatial resolution of 2.0deg x 2.5deg latitude-longitude. The retrieved surface air humidity is found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The retrieved wind stress and latent heat flux show useful accuracy as verified against research quality measurements of ship and buoy in the western equatorial Pacific. The 1988-94 seasonal-mean wind stress and latent heat flux show reasonable patterns related to seasonal variations of the atmospheric general circulation. The patterns of 1990-93 annual-mean turbulent fluxes and input variables are generally in good agreement with one of the best global analyzed flux datasets that based on COADS (comprehensive ocean-atmosphere data set) with corrections on wind speeds and covered the same period. The retrieved wind speed is generally within +/-1 m/s of the COADS-based, but is stronger by approx. 1-2 m/s in the northern extratropical oceans. The discrepancy is suggested to be mainly due to higher COADS-modified wind speeds resulting from underestimation of anemometer heights. Compared to the COADS-based, the retrieved latent heat flux and sea-air humidity difference are generally larger with significant differences in the trade wind zones and the ocean south of 40degS (up to approx. 40-60 W/sq m and approx. 1-1.5 g/kg). The discrepancy is believed to be mainly caused by higher COADS-based surface air humidity arising from the overestimation of dew point temperatures and from the extrapolation of observed high humidity southward into data-void regions south of 40degS. The retrieved sensible heat flux is generally within +/-5

  16. Joint Air Sea Interaction (JASIN) experiment, Northwest coast of Scotland

    NASA Technical Reports Server (NTRS)

    Businger, J. A.

    1981-01-01

    The joint air sea interaction (JASIN) experiment took place off the Northwest coast of Scotland. Sea surface and boundary layer parameters were measured. The JASIN data was used as ground truth for various sensors on the SEASAT satellite.

  17. Formation of extreme surface turbulent heat fluxes from the ocean to the atmosphere in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Tilinina, N. D.; Gulev, S. K.; Gavrikov, A. V.

    2016-01-01

    The role of extreme surface turbulent fluxes in total oceanic heat loss in the North Atlantic is studied. The atmospheric circulation patterns enhancing ocean-atmosphere heat flux in regions with significant contributions of the extreme heat fluxes (up to 60% of the net heat loss) are analyzed. It is shown that extreme heat fluxes in the Gulf Stream and the Greenland and Labrador Seas occur in zones with maximal air pressure gradients, i.e., in cyclone-anticyclone interaction zones.

  18. Understanding the interaction of diurnal circulation patterns and local turbulent fluxes in an Alpine environment

    NASA Astrophysics Data System (ADS)

    Pardyjak, Eric; Simoni, Silvia; Calaf, Marc; Mage, Romain; Parlange, Marc

    2010-05-01

    The general spatial and temporal features associated with flows driven by the local heating and cooling of sloping terrain are well studied and the gross features of up-valley/down-valley and up-slope/down-slope wind systems are fairly well understood. However, the details associated with the impacts of spatial heterogeneity are not as well understood. In particular, the effect of spatially and temporally varying circulation patterns associated with mountainous terrain on local surface fluxes is not well understood. In this work, we describe some preliminary results from an intensive hydrological field campaign conducted during summer and fall 2009 in the Val Ferret region of the Swiss Alps near the Grand St. Bernard pass. Data from a suite of 12 micrometeorological surface stations (Sensorscope stations) and a comprehensive eddy flux station will be presented including measurements of the turbulent fluxes of water vapor, heat and momentum. Particular attention will be given to the correlation between wind, temperature and radiation patterns and to investigation of time periods when the winds are transitioning and it is difficult to theoretically describe turbulent fluxes.

  19. Establishing more truth in space-time integration of surface turbulent heat fluxes

    NASA Astrophysics Data System (ADS)

    Gulev, Sergey; Belyaev, Konstantin

    2016-04-01

    Space-time integration of surface turbulent heat fluxes is important for obtaining area-averaged budget estimates and for producing climatologies of surface fluxes. Uncertainty of the integration or averaging of fluxes in space and in time are especially high when the data are sparse as in the case of the use of information from Voluntary Observing Ships (VOS) which are characterized by inhomogeneous sampling density in contrast to NWP products and satellite data sets. In order to minimize sampling impact onto local and larger scale surface flux averages we suggest an approach based upon analysis of surface fluxes in the coordinates of steering parameters (vertical surface temperature and humidity gradients on one hand and wind speed on the other). These variables are distributed according to the Modified Fisher-Tippett (MFT) distribution (temperature and humidity gradients) and Weibull distribution (wind speed) which imply a 2-dimentional distribution for the fluxes. Since the fluxes in these coordinates are determined in a unique manner (within a chosen bulk transfer algorithm), they can be easily integrated in the space of 2-dimentional distribution in order to get the averaged values dependent on the parameters of the MFT and Weibull distributions. Conceptually, the approach is similar to that oceanographers apply for analysing volumetric T,S-diagrams of water mass properties. We developed an algorithm for applying this approach and also provided the analysis of integrated surface fluxes for different regions of the North Atlantic for which heat flux estimates can be obtained from oceanographic cross-sections. Analysis was performed for the last 5 decades. 2-dimensitonal diagrams also make it possible to analyse temporal variability of integrated surface fluxes in the dimension of steering parameters and to further compare estimates with changes in the ocean heat content.

  20. Transition to Turbulence in the Infrared - Revisited

    NASA Astrophysics Data System (ADS)

    Leighton, Richard; Smith, Geoffrey B.

    2015-11-01

    A serendipitous observation of the transition to turbulence of a wind driven free-surface at the University of Delaware Air-Sea Interaction Laboratory led the 1998 'Gallery of Fluid Motion: Transition to turbulence in the infrared'. This transition, via the formation of Langmuir cells is being examined numerically. Simulations are performed of a strongly shear driven air-water interface, modeled as a flat interface with a specified Stokes drift and a constant heat flux cooling the interface. The simulations are initialized with a weak random flow field and allowed to evolve under the influence of constant shear and heat flux. Like the original experiment, the flow is slow to setup, but transition occurs quickly. The scaling and energetics will be discussed.

  1. Flux- and gradient-driven global gyrokinetic simulation of tokamak turbulence

    SciTech Connect

    Goerler, Tobias; Jenko, Frank; Marcus, Patrick; Merz, Florian; Told, Daniel; Lapillonne, Xavier; Brunner, Stephan; Aghdam, Sohrab Khosh; McMillan, Ben F.; Sauter, Olivier; Villard, Laurent; Dannert, Tilman

    2011-05-15

    The Eulerian gyrokinetic turbulence code gene has recently been extended to a full torus code. Moreover, it now provides Krook-type sources for gradient-driven simulations where the profiles are maintained on average as well as localized heat sources for a flux-driven type of operation. Careful verification studies and benchmarks are performed successfully. This setup is applied to address three related transport issues concerning nonlocal effects. First, it is confirmed that in gradient-driven simulations, the local limit can be reproduced--provided that finite aspect ratio effects in the geometry are treated carefully. In this context, it also becomes clear that the profile widths (not the device width) may constitute a more appropriate measure for finite-size effects. Second, the nature and role of heat flux avalanches are discussed in the framework of both local and global, flux- and gradient-driven simulations. Third, simulations dedicated to discharges with electron internal barriers are addressed.

  2. Fluxes across double-diffusive interfaces: a one-dimensional-turbulence study

    NASA Astrophysics Data System (ADS)

    Gonzalez, E.; Kerstein, A.; Lignell, D.

    2010-12-01

    Double-diffusive convection in the diffusive regime is believed to occur, for example, in the Arctic and Southern Oceans, in geothermally-heated salty lakes, and in massive stars and giant planets. It is of interest in all these systems to know the parametrization of the fluxes of heat and salt across double-diffusive interfaces. The present work is a parametric study of these fluxes using one-dimensional-turbulence (ODT) simulations. Its main distinction is that it considers a parameter space larger than previous studies, which includes the effect of background shear. Specifically, this work considers the effect on the fluxes of the stability parameter, Rayleigh number, Prandtl number, Lewis number, and Richardson number. The ratio of the Rayleigh number and the stability parameter is found to be a dominant parameter. This parameter can be seen as a ratio of destabilizing and stabilizing effects. Trends predicted by the simulations are in good agreement with previous models and available measurements.

  3. An Eddy-Diffusivity/Mass-Flux Turbulence Parameterization: Application to Dust Convection on Mars

    NASA Astrophysics Data System (ADS)

    Witek, M. L.; Teixeira, J.; Richardson, M. I.; Mischna, M. A.

    2014-12-01

    The Eddy-diffusivity/Mass-flux (EDMF) parameterization has been extremely successful in simulating the evolution of terrestrial atmospheric boundary layers. It is particularly suited for representing strong and moderate convection, where turbulence organizes in coherent structures and transports heat, humidity and pollution throughout the extent of the boundary layer. The EDMF's ability to explicitly represent turbulent updrafts and associated fluxes is key to a proper depiction of the thermodynamic structure of the atmosphere. It is the most appropriate tool currently available to address the outstanding issues in the Mars atmosphere and dust modeling on a global and regional scale. Dust is one of the most important moderators of the Martian climate. Basic theoretical arguments and observations such as high-altitude dust maxima, dust layering, and transport in plumes during dust storm onset—none of which are currently captured in general circulation models (GCMs)—all demonstrate the vital importance of representing dust vertical mixing by plumes. Most GCMs, however, only consider local, Mellor-Yamada-type diffusion, which is insufficient to capture the evolving dust distribution and hence the Martian climate system correctly. Here, we developed an EDMF parameterization for the Martian convective boundary layer. We report on details of the parameterization and its performance as compared against large-eddy simulations. We investigate a downdraft contribution to turbulent fluxes and the importance of mass-flux transport of TKE. Furthermore, we investigate the role of plume heating—through absorption of solar radiation by uplifted dust particles—on the plume evolution (a mechanisms that could act as a surrogate of the latent heat release in terrestrial clouds). Our results shed light on the reasons behind the presence of elevated dust layers in the Martian atmosphere.

  4. A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence

    SciTech Connect

    Chumakov, Sergei

    2008-01-01

    We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.

  5. The Air-Sea Interface and Surface Stress under Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac

    2013-04-01

    Air-sea interaction dramatically changes from moderate to very high wind speed conditions (Donelan et al. 2004). Unresolved physics of the air-sea interface are one of the weakest components in tropical cyclone prediction models. Rapid disruption of the air-water interface under very high wind speed conditions was reported in laboratory experiments (Koga 1981) and numerical simulations (Soloviev et al. 2012), which resembled the Kelvin-Helmholtz instability at an interface with very large density difference. Kelly (1965) demonstrated that the KH instability at the air-sea interface can develop through parametric amplification of waves. Farrell and Ioannou (2008) showed that gustiness results in the parametric KH instability of the air-sea interface, while the gusts are due to interacting waves and turbulence. The stochastic forcing enters multiplicatively in this theory and produces an exponential wave growth, augmenting the growth from the Miles (1959) theory as the turbulence level increases. Here we complement this concept by adding the effect of the two-phase environment near the mean interface, which introduces additional viscosity in the system (turning it into a rheological system). The two-phase environment includes air-bubbles and re-entering spray (spume), which eliminates a portion of the wind-wave wavenumber spectrum that is responsible for a substantial part of the air sea drag coefficient. The previously developed KH-type interfacial parameterization (Soloviev and Lukas 2010) is unified with two versions of the wave growth model. The unified parameterization in both cases exhibits the increase of the drag coefficient with wind speed until approximately 30 m/s. Above this wind speed threshold, the drag coefficient either nearly levels off or even slightly drops (for the wave growth model that accounts for the shear) and then starts again increasing above approximately 65 m/s wind speed. Remarkably, the unified parameterization reveals a local minimum

  6. Turbulent flow and scalar flux through and over aligned and staggered wind farms

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Zhang, W.; Porté-Agel, F.

    2012-04-01

    Wind farm-atmosphere interaction is complicated by the effect of turbine array configuration on momentum, scalar and kinetic energy fluxes. Wind turbine arrays are often arranged in rectilinear grids and, depending on the wind direction, may be perfectly aligned or perfectly staggered. The two extreme configurations make up the end members of a spectrum of infinite possible layouts. A wind farm of finite length may be modeled as an added roughness or as a canopy in large-scale weather and climate models. However, it is not clear which analogy is physically more appropriate. Also, surface scalar flux, including heat, evaporation and trace gas (e.g. CO2) fluxes affected by wind farms, need to be properly parameterized in large-scale models. Experiments involving model wind farms in aligned and staggered configurations, consisting of 13 rows with equivalent turbine density, were conducted in a thermally-controlled boundary-layer wind tunnel. Measurements of the turbulent flow were made using a custom x-wire/cold wire within and over the wind farms. Particular focus was placed on studying the effect of wind farm layout on flow adjustment, momentum and scalar fluxes, and turbulent kinetic energy distribution. Results show that the turbulence statistics of the flow exhibit similar turbulent transport properties to those of canopy flows, but retain some characteristic surface layer properties in a limited region above the wind farms as well. The initial wake growth over columns of turbines in the aligned wind farm is faster. However, the overall wake adjusts within and grows more rapidly over the staggered farm. The effective roughness of the staggered farm was found to be significantly larger than that of the aligned farm. The flow equilibrates faster, and the overall momentum absorption is higher for the staggered compared to the aligned farm, which is consistent with canopy scaling. Lower surface heat flux was found for the wind farms compared to the boundary

  7. Comparison of three stationary tests for eddy covariance measurements of turbulent fluxes of different scalars

    NASA Astrophysics Data System (ADS)

    Donateo, Antonio; Cava, Daniela; Contini, Daniele

    2013-04-01

    In atmospheric turbulent flows, variables describing the motion undergo random and stochastic fluctuations. In turbulence studies the hypotheses of stationarity and ergodicity of time series is required in order to obtain estimates of ensemble averages from the temporal averages obtained from single runs. In atmosphere, however, equivalence between the two averages is just approximated because of non stationarity often inherent to atmospheric time series. Typically non-stationary conditions are driven by weather or internal boundary layer changing, for example for the presence of gravity waves or simply for the slow diurnal evolution of the boundary layer. The individuation of non-stationary cases is important for measurements of turbulent fluxes using the eddy covariance method generally applied to 30 minutes averages. Moreover it is necessary to have an analytical/parametric stationarity test, which can be used in real time determination of turbulent fluxes, for example in Fluxnet network. Nowadays different stationarity tests are proposed in literature and they are substantially used by scientific community (Foken & Wichura, 1996; Mahrt, 1998; Affre et al., 2000). In this work several time series have been analysed with the three different stationarity tests and a comparison of their performances has been developed. The stationarity tests have been applied to different scalars (temperature, ultrafine particles number concentration, carbon dioxide and water vapour concentration). All the time series come from measurements in different sites and are collected over different canopies: iced surface (in Antarctica), urban or suburban surface (Italy) and vegetal canopy over forests (both in Italy and USA). In total 6 different sites have been analysed and the performances of the stationarity tests do not seem to be site dependent. The correlation of their performances as a function of local micro-meteorological conditions have been analysed. All the three tests show

  8. Ocean Carbon Cycling and CO2 Air-Sea Exchange in Eastern Boundary Upwelling Systems

    NASA Astrophysics Data System (ADS)

    Plattner, G.; Gruber, N.; Lachkar, Z.; Frenzel, H.; Loher, D.

    2008-12-01

    Eastern boundary current (EBC) upwelling systems are regions of intense biogeochemical transformations and transports. Strong upwelling of nutrient- and carbon-rich waters tends to lead to CO2 outgassing nearshore and biologically-driven CO2 uptake offshore. Yet, the net air-sea CO2 balance of EBCs remains unknown. High near-shore productivity coupled with filaments and other meso- and submesoscale phenomena cause a substantial lateral export of organic carbon. We investigate these coastal processes in the California Current (CalCS) and the Canary Current Systems (CanCS), on the basis of the eddy-resolving, physical-biogeochemical model ROMS. Our results confirm the onshore-offshore trends in the air-sea fluxes, with substantial spatial and temporal differences due to topography, upwelling strength, and eddy activity. The CalCS is modeled to be, on average, a very small source of CO2 to the atmosphere, consistent with a recent data-based estimate by Chavez and Takahashi, while for the CanCS this is not clear yet. Regarding offshore transport, the CalCS appears to be stronger than the CanCS. Spatio-temporal variability of all carbon fluxes is substantial, particularly nearshore, posing a tremendous challenge for observing systems targeting e.g. air-sea CO2 fluxes in these dynamic regions. Further analyses of the processes that determine the mean carbon fluxes and their spatio-temporal variability will be presented. Characteristic differences and similarities between the two EBC systems will be discussed.

  9. Characterization of radial turbulent fluxes in the Santander linear plasma machine

    SciTech Connect

    Mier, J. A. Anabitarte, E.; Sentíes, J. M.; Sánchez, R.; Newman, D. E.; Castellanos, O. F.; Milligen, B. Ph. van

    2014-05-15

    It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.

  10. Reynolds shear stress and heat flux calculations in a fully developed turbulent duct flow

    NASA Technical Reports Server (NTRS)

    Antonia, R. A.; Kim, J.

    1991-01-01

    The use of a modified form of the Van Driest mixing length for a fully developed turbulent channel flow leads to mean velocity and Reynolds stress distributions that are in close agreement with data obtained either from experiments or direct numerical simulations. The calculations are then extended to a nonisothermal flow by assuming a constant turbulent Prandtl number, the value of which depends on the molecular Prandtl number. Calculated distributions of mean temperature and lateral heat flux are in reasonable agreement with the simulations. The extension of the calculations to higher Reynolds numbers provides some idea of the Reynolds number required for scaling on wall variables to apply in the inner region of the flow.

  11. Multifractal scaling of the kinetic energy flux in solar wind turbulence

    NASA Technical Reports Server (NTRS)

    Marsch, E.; Rosenbauer, H.; Tu, C.-Y.

    1995-01-01

    The geometrical and scaling properties of the energy flux of the turbulent kinetic energy in the solar wind have been studied. By present experimental technology in solar wind measurements, we cannot directly measure the real volumetric dissipation rate, epsilon(t), but are constrained to represent it by surrogating the energy flux near the dissipation range at the proton gyro scales. There is evidence for the multifractal nature of the so defined dissipation field epsilon(t), a result derived from the scaling exponents of its statistical q-th order moments. The related generalized dimension D(q) has been determined and reveals that the dissipation field has a multifractal structure. which is not compatible with a scale-invariant cascade. The associated multifractal spectrum f(alpha) has been estimated for the first time for MHD turbulence in the solar wind. Its features resemble those obtained for turbulent fluids and other nonlinear multifractal systems. The generalized dimension D(q) can, for turbulence in high-speed streams, be fitted well by the functional dependence of the p-model with a comparatively large parameter, p = 0.87. indicating a strongly intermittent multifractal energy cascade. The experimental value for D(p)/3, if used in the scaling exponent s(p) of the velocity structure function, gives an exponent that can describe some of the observations. The scaling exponent mu of the auto correlation function of epsilon(t) has also been directly evaluated. It has the value of 0.37. Finally. the mean dissipation rate was determined, which could be used in solar wind heating models.

  12. Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Number

    NASA Technical Reports Server (NTRS)

    Xiao, X.; Edwards, J. R.; Hassan, H. A.

    2004-01-01

    Present simulation of turbulent flows involving shock wave/boundary layer interaction invariably overestimates heat flux by almost a factor of two. One possible reason for such a performance is a result of the fact that the turbulence models employed make use of Morkovin's hypothesis. This hypothesis is valid for non-hypersonic Mach numbers and moderate rates of heat transfer. At hypersonic Mach numbers, high rates of heat transfer exist in regions where shock wave/boundary layer interactions are important. As a result, one should not expect traditional turbulence models to yield accurate results. The goal of this investigation is to explore the role of a variable Prandtl number formulation in predicting heat flux in flows dominated by strong shock wave/boundary layer interactions. The intended applications involve external flows in the absence of combustion such as those encountered in supersonic inlets. This can be achieved by adding equations for the temperature variance and its dissipation rate. Such equations can be derived from the exact Navier-Stokes equations. Traditionally, modeled equations are based on the low speed energy equation where the pressure gradient term and the term responsible for energy dissipation are ignored. It is clear that such assumptions are not valid for hypersonic flows. The approach used here is based on the procedure used in deriving the k-zeta model, in which the exact equations that governed k, the variance of velocity, and zeta, the variance of vorticity, were derived and modeled. For the variable turbulent Prandtl number, the exact equations that govern the temperature variance and its dissipation rate are derived and modeled term by term. The resulting set of equations are free of damping and wall functions and are coordinate-system independent. Moreover, modeled correlations are tensorially consistent and invariant under Galilean transformation. The final set of equations will be given in the paper.

  13. Turbulent, Extreme Multi-zone Model for Simulating Flux and Polarization Variability in Blazars

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.

    2014-01-01

    The author presents a model for variability of the flux and polarization of blazars in which turbulent plasma flowing at a relativistic speed down a jet crosses a standing conical shock. The shock compresses the plasma and accelerates electrons to energies up to γmax >~ 104 times their rest-mass energy, with the value of γmax determined by the direction of the magnetic field relative to the shock front. The turbulence is approximated in a computer code as many cells, each with a uniform magnetic field whose direction is selected randomly. The density of high-energy electrons in the plasma changes randomly with time in a manner consistent with the power spectral density of flux variations derived from observations of blazars. The variations in flux and polarization are therefore caused by continuous noise processes rather than by singular events such as explosive injection of energy at the base of the jet. Sample simulations illustrate the behavior of flux and linear polarization versus time that such a model produces. The variations in γ-ray flux generated by the code are often, but not always, correlated with those at lower frequencies, and many of the flares are sharply peaked. The mean degree of polarization of synchrotron radiation is higher and its timescale of variability shorter toward higher frequencies, while the polarization electric vector sometimes randomly executes apparent rotations. The slope of the spectral energy distribution exhibits sharper breaks than can arise solely from energy losses. All of these results correspond to properties observed in blazars.

  14. Explaining the surprisingly poor correlation between turbulent surface wind and aeolian sand flux

    NASA Astrophysics Data System (ADS)

    Martin, R. L.; Barchyn, T. E.; Hugenholtz, C.; Jerolmack, D. J.; Kok, J. F.

    2012-12-01

    Existing models of aeolian sand transport, derived theoretically and from wind-tunnel experiments, often disagree substantially with field observations. Despite advancements in anemometry and sediment flux detection technologies, even very high-resolution observations of aeolian sand transport show only weak correlation with concurrent surface wind speeds and model predictions. Unlike in experiments and numerical models, winds in natural environments exhibit turbulent fluctuations over a broad range of length scales extending from individual grains to the top of the atmospheric boundary layer and over a similarly large range of time scales. Here, we present simultaneous high-resolution (10 Hz) measurements of surface wind and saltation sand transport over a ~5 m tall barchan dune (median grain diameter = 0.35 mm) collected at White Sands Dune Field, New Mexico, USA. Studying aeolian transport in the field offered a natural experiment for understanding how the rate of aeolian saltation responds to turbulent changes in wind and frequent crossings of the threshold for particle motion. In agreement with past observations, our data indicate that: (1) saltation flux lags wind fluctuations by about 1 second, (2) the threshold for initiation of particle motion ("entrainment") exceeds the threshold for cessation ("distrainment") by about 20%, (3) concurrent instantaneous wind and sediment flux measurements are poorly correlated. Based on our data, we show how lagged transport and threshold hysteresis are related to inertia in the transport system arising from ballistic particle trajectories and non-instantaneous momentum transfers among grains and wind. We argue that this nonlinear and lagged response of saltation to turbulent wind fluctuations accounts for the poor correlation between wind and transport as well as the poor performance of existing saltation models.

  15. Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest

    USGS Publications Warehouse

    Katul, G.; Hsieh, C.-I.; Bowling, D.; Clark, K.; Shurpali, N.; Turnipseed, A.; Albertson, J.; Tu, K.; Hollinger, D.; Evans, B. M.; Offerle, B.; Anderson, D.; Ellsworth, D.; Vogel, C.; Oren, R.

    1999-01-01

    The spatial variability of turbulent flow statistics in the roughness sublayer (RSL) of a uniform even-aged 14 m (= h) tall loblolly pine forest was investigated experimentally. Using seven existing walkup towers at this stand, high frequency velocity, temperature, water vapour and carbon dioxide concentrations were measured at 15.5 m above the ground surface from October 6 to 10 in 1997. These seven towers were separated by at least 100 m from each other. The objective of this study was to examine whether single tower turbulence statistics measurements represent the flow properties of RSL turbulence above a uniform even-aged managed loblolly pine forest as a best-case scenario for natural forested ecosystems. From the intensive space-time series measurements, it was demonstrated that standard deviations of longitudinal and vertical velocities (??(u), ??(w)) and temperature (??(T)) are more planar homogeneous than their vertical flux of momentum (u(*)2) and sensible heat (H) counterparts. Also, the measured H is more horizontally homogeneous when compared to fluxes of other scalar entities such as CO2 and water vapour. While the spatial variability in fluxes was significant (> 15%), this unique data set confirmed that single tower measurements represent the 'canonical' structure of single-point RSL turbulence statistics, especially flux-variance relationships. Implications to extending the 'moving-equilibrium' hypothesis for RSL flows are discussed. The spatial variability in all RSL flow variables was not constant in time and varied strongly with spatially averaged friction velocity u(*), especially when u(*) was small. It is shown that flow properties derived from two-point temporal statistics such as correlation functions are more sensitive to local variability in leaf area density when compared to single point flow statistics. Specifically, that the local relationship between the reciprocal of the vertical velocity integral time scale (I(w)) and the arrival

  16. A flux-coordinate independent field-aligned approach to plasma turbulence simulations

    NASA Astrophysics Data System (ADS)

    Hariri, F.; Ottaviani, M.

    2013-11-01

    This work illustrates a new approach to field-aligned coordinates for plasma turbulence simulations which is not based on flux variables. The method employs standard Cartesian or polar coordinates to discretize the fields. Parallel derivatives are computed directly along a coordinate that follows the local field, and poloidal derivatives are computed in the original Cartesian frame. Several advantages of this approach are presented. The tests on a drift-wave model demonstrate that the method is well suited to exploit the flute property of small parallel gradients by minimizing the number of degrees of freedom needed to treat a given problem in an accurate and efficient manner.

  17. An analysis of turbulent sensible heat fluxes within a heterogeneous black spruce boreal forest in Alaska

    NASA Astrophysics Data System (ADS)

    Starkenburg, Derek

    Turbulent sensible heat fluxes within the heterogeneous canopy of a black spruce boreal forest in Interior Alaska are evaluated at three different scales in order to assess their spatial variability, and to determine the feasibility of upscaling locally measured flux values to the landscape scale for modeling applications and climate studies. The first evaluation is performed locally at a single micrometeorological tower in an area of the boreal forest with a mean canopy height of 4.7 m. The data were taken across winter, spring and summer of 2012 from two sonic anemometers, one below the canopy at 3 m above ground, and one above the canopy at 12 m above ground. A multiresolution analysis is used to isolate coherent structures from the turbulent temperature time series at both instruments. When mean global statistics of coherent structures are analyzed at the two levels independently, results show an average of 8 structures per period, a mean duration of 85 s, and a mean sensible heat flux contribution of 48%. A spectral version of the Stokes parameters is applied to the turbulent horizontal wind components to show that 31% of the coherent turbulent structures detected at 12 m, and 13% at 3 m, may be complicated by canopy waves due to the prevalence of stable flows at this high latitude location. The second evaluation quantifies differences in turbulent sensible heat fluxes horizontally between two micrometeorological towers 600 m apart, one in a denser canopy (DC) and the other in a sparser canopy (SC), but under approximately similar atmospheric boundary layer conditions. Results show that SC is ˜ 3 °C cooler and more stably stratified than DC during nighttime. This suggests that changes in the height and density of the canopy impact local temperature and stability regimes. Most importantly, the sensible heat flux at DC is greater during midday periods, with that difference exceeding 30% of the measured flux and over 30 W m-2 in magnitude more than 60% of the

  18. Comparison of heat flux estimations from two turbulent exchange models based on thermal UAV data.

    NASA Astrophysics Data System (ADS)

    Hoffmann, Helene; Nieto, Hector; Jensen, Rasmus; Friborg, Thomas

    2015-04-01

    Advantages of UAV (Unmanned Aerial Vehicle) data-collection, compared to more traditional data-collections are numerous and already well-discussed (Berni et al., 2009; Laliberte et al., 2011; Turner et al., 2012). However studies investigating the quality and applications of UAV-data are crucial if advantages are to be beneficial for scientific purposes. In this study, thermal data collected over an agricultural site in Denmark have been obtained using a fixed-wing UAV and investigated for the estimation of heat fluxes. Estimation of heat fluxes requires high precision data and careful data processing. Latent, sensible and soil heat fluxes are estimates through two models of the two source energy modelling scheme driven by remotely sensed observations of land surface temperature; the original TSEB (Norman et al., 1995) and the DTD (Norman et al., 2000) which builds on the TSEB. The DTD model accounts for errors arising when deriving radiometric temperatures and can to some extent compensate for the fact that thermal cameras rarely are accurate. The DTD model requires an additional set of remotely sensed data during morning hours of the day at which heat fluxes are to be determined. This makes the DTD model ideal to use when combined with UAV data, because acquisition of data is not limited by fixed time by-passing tracks like satellite images (Guzinski et al., 2013). Based on these data, heat fluxes are computed from the two models and compared with fluxes from an eddy covariance station situated within the same designated agricultural site. This over-all procedure potentially enables an assessment of both the collected thermal UAV-data and of the two turbulent exchange models. Results reveal that both TSEB and DTD models compute heat fluxes from thermal UAV data that is within a very reasonable range and also that estimates from the DTD model is in best agreement with the eddy covariance system.

  19. Comparison of liquid rocket engine base region heat flux computations using three turbulence models

    NASA Astrophysics Data System (ADS)

    Kumar, Ganesh N.; Griffith, Dwaine O., II; Prendergast, Maurice J.; Seaford, C. M.

    1993-07-01

    The flow in the base region of launch vehicles is characterized by flow separation, flow reversals, and reattachment. Computation of the convective heat flux in the base region and on the nozzle external surface of Space Shuttle Main Engine and Space Transportation Main Engine (STME) is an important part of defining base region thermal environments. Several turbulence models were incorporated in a CFD code and validated for flow and heat transfer computations in the separated and reattaching regions associated with subsonic and supersonic flows over backward facing steps. Heat flux computations in the base region of a single STME engine and a single S1C engine were performed using three different wall functions as well as a renormalization-group based k-epsilon model. With the very limited data available, the computed values are seen to be of the right order of magnitude. Based on the validation comparisons, it is concluded that all the turbulence models studied have predicted the reattachment location and the velocity profiles at various axial stations downstream of the step very well.

  20. Estimations of ABL fluxes and other turbulence parameters from Doppler lidar data

    NASA Technical Reports Server (NTRS)

    Gal-Chen, Tzvi; Xu, Mei; Eberhard, Wynn

    1989-01-01

    Techniques for extraction boundary layer parameters from measurements of a short-pulse CO2 Doppler lidar are described. The measurements are those collected during the First International Satellites Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). By continuously operating the lidar for about an hour, stable statistics of the radial velocities can be extracted. Assuming that the turbulence is horizontally homogeneous, the mean wind, its standard deviations, and the momentum fluxes were estimated. Spectral analysis of the radial velocities is also performed from which, by examining the amplitude of the power spectrum at the inertial range, the kinetic energy dissipation was deduced. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. Combining many measurements would normally reduce the error provided that, it is unbiased and uncorrelated. The nature of some of the algorithms however, is such that, biased and correlated errors may be generated even though the raw measurements are not. Data processing procedures were developed that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is shown to reduce the errors substantially. The principal features of the derived turbulence statistics for two case studied are presented.

  1. Dissimilarity in turbulent transport of scalar fluxes from urban areas following rain periods

    NASA Astrophysics Data System (ADS)

    Ramamurthy, P.; Smith, J. A.; Bou-Zeid, E.

    2012-12-01

    Urban modifications significantly alter the Bowen's Ratio and this fact has been confirmed by various urban experiments. Our study here focuses on how urbanization impacts partitioning of the surface energy budget and alters the turbulent transport of momentum, heat and water vapor. For this analysis, eddy covariance data from four different sites with varying degrees of urbanization will be utilized. Of the four sites, two (Princeton and UMBC) were located in a highly urbanized area, surrounded by medium height buildings and various built surfaces, while the other two sites (Cubhill and Broadmead) were located in a residential and a rural setting respectively. Our preliminary results confirm that the partitioning of incoming energy into various components of the surface energy budget is highly dependent on the climatic forcings, particularly, for wet and dry down periods. During wet periods, apart from increased evapotranspiration from the green cover, the built surfaces that dot the urban landscape, despite their reduced moisture retention capacity compared to green covers, contribute significantly toward latent heat fluxes. In fact, at the urban site, nearly one third of the evaporative fluxes were from built surfaces (rooftops, asphalts and concrete), following heavy precipitation events. Also, during these periods a pronounced dissimilarity exits between the turbulent transport of temperature and humidity. Our ongoing analysis focuses on understanding this impact of urbanization on scalar transport.

  2. Comparison of liquid rocket engine base region heat flux computations using three turbulence models

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Griffith, Dwaine O., II; Prendergast, Maurice J.; Seaford, C. M.

    1993-01-01

    The flow in the base region of launch vehicles is characterized by flow separation, flow reversals, and reattachment. Computation of the convective heat flux in the base region and on the nozzle external surface of Space Shuttle Main Engine and Space Transportation Main Engine (STME) is an important part of defining base region thermal environments. Several turbulence models were incorporated in a CFD code and validated for flow and heat transfer computations in the separated and reattaching regions associated with subsonic and supersonic flows over backward facing steps. Heat flux computations in the base region of a single STME engine and a single S1C engine were performed using three different wall functions as well as a renormalization-group based k-epsilon model. With the very limited data available, the computed values are seen to be of the right order of magnitude. Based on the validation comparisons, it is concluded that all the turbulence models studied have predicted the reattachment location and the velocity profiles at various axial stations downstream of the step very well.

  3. Flux Transport Solar Dynamos with Shallow Meridional Flow and Turbulent Pumping

    NASA Astrophysics Data System (ADS)

    Nandi, Dibyendu; Hazra, Soumitra

    2016-07-01

    The large-scale solar magnetic cycle is sustained by a dynamo mechanism in which the induction of the toroidal component of the magnetic field by differential rotation and the regeneration of the poloidal component are crucial processes. In the Sun, the Babcock-Leighton mechanism, i.e., the (near-surface) redistribution of the flux of tilted bipolar sunspot pairs is thought to be the main source of the solar poloidal field. The poloidal field so generated must be transported to the solar interior where the toroidal field is generated and stored - presumably near the base of the solar convection zone. Traditionally, flux transport dynamo models have relied on a deep meridional circulation to achieve this transport. However, recent observations claim that the meridional circulation could be much shallower that previously thought. We explore the question whether flux transport dynamos can function with a shallow meridional flow and present an alternative paradigm for flux transport dynamics in solar-stellar interiors sustained by turbulent pumping.

  4. Interactions of bluff-body obstacles with turbulent airflows affecting evaporative fluxes from porous surfaces

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Or, Dani

    2015-11-01

    Bluff-body obstacles interacting with turbulent airflows are common in many natural and engineering applications (from desert pavement and shrubs over natural surfaces to cylindrical elements in compact heat exchangers). Even with obstacles of simple geometry, their interactions within turbulent airflows result in a complex and unsteady flow field that affects surface drag partitioning and transport of scalars from adjacent evaporating surfaces. Observations of spatio-temporal thermal patterns on evaporating porous surfaces adjacent to bluff-body obstacles depict well-defined and persistent zonation of evaporation rates that were used to construct a simple mechanistic model for surface-turbulence interactions. Results from evaporative drying of sand surfaces with isolated cylindrical elements (bluff bodies) subjected to constant turbulent airflows were in good agreement with model predictions for localized exchange rates. Experimental and theoretical results show persistent enhancement of evaporative fluxes from bluff-rough surfaces relative to smooth flat surfaces under similar conditions. The enhancement is attributed to formation of vortices that induce a thinner boundary layer over part of the interacting surface footprint. For a practical range of air velocities (0.5-4.0 m/s), low-aspect ratio cylindrical bluff elements placed on evaporating sand surfaces enhanced evaporative mass losses (relative to a flat surface) by up to 300% for high density of elements and high wind velocity, similar to observations reported in the literature. Concepts from drag partitioning were used to generalize the model and upscale predictions to evaporation from surfaces with multiple obstacles for potential applications to natural bluff-rough surfaces.

  5. Time-dependent modeling of solar wind acceleration from turbulent heating in open flux tubes

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren Nicole; Cranmer, Steven R.

    2015-04-01

    The acceleration of the solar wind, particularly from open flux tubes, remains an open question in solar physics. Countless physical processes have been suggested to explain all or parts of the coupled problem of coronal heating and wind acceleration, but the current generation of observations have been so far unable to distinguish which mechanism(s) dominates. In this project, we consider heating by Alfvén waves in a three-dimensional, time-dependent reduced magnetohydrodynamics model. This model solves for the heating rate as a function of time due to the twisting and braiding of magnetic field lines within a flux tube, which is caused by Alfvén waves generated at the single footpoint of the flux tube. We investigate three specific structures commonly found in the corona: 1) an open flux tube in a coronal hole, 2) an open flux tube on the edge of an equatorial streamer, and 3) an open flux tube directly neighboring an active region. We present the time-dependent heating rate, power spectra of fluctuations, and the time-averaged properties of the solar wind arising from each magnetic structure. We compare the time-averaged properties from the present modeling with previous results from a one-dimensional, time-steady code (Cranmer et al. 2007) to better calibrate the physics in the lower-dimensional code and get a better understanding of the intricate role that bursty, transient heating from Alfvén-wave-driven turbulence plays in the acceleration of the solar wind from different magnetic structures.

  6. An Optimal Estimation Method to Obtain Surface Layer Turbulent Fluxes from Profile Measurements

    NASA Astrophysics Data System (ADS)

    Kang, D.

    2015-12-01

    In the absence of direct turbulence measurements, the turbulence characteristics of the atmospheric surface layer are often derived from measurements of the surface layer mean properties based on Monin-Obukhov Similarity Theory (MOST). This approach requires two levels of the ensemble mean wind, temperature, and water vapor, from which the fluxes of momentum, sensible heat, and water vapor can be obtained. When only one measurement level is available, the roughness heights and the assumed properties of the corresponding variables at the respective roughness heights are used. In practice, the temporal mean with large number of samples are used in place of the ensemble mean. However, in many situations the samples of data are taken from multiple levels. It is thus desirable to derive the boundary layer flux properties using all measurements. In this study, we used an optimal estimation approach to derive surface layer properties based on all available measurements. This approach assumes that the samples are taken from a population whose ensemble mean profile follows the MOST. An optimized estimate is obtained when the results yield a minimum cost function defined as a weighted summation of all error variance at each sample altitude. The weights are based one sample data variance and the altitude of the measurements. This method was applied to measurements in the marine atmospheric surface layer from a small boat using radiosonde on a tethered balloon where temperature and relative humidity profiles in the lowest 50 m were made repeatedly in about 30 minutes. We will present the resultant fluxes and the derived MOST mean profiles using different sets of measurements. The advantage of this method over the 'traditional' methods will be illustrated. Some limitations of this optimization method will also be discussed. Its application to quantify the effects of marine surface layer environment on radar and communication signal propagation will be shown as well.

  7. Surprisingly low frequency attenuation effects in long tubes when measuring turbulent fluxes at tall towers

    NASA Astrophysics Data System (ADS)

    Ibrom, Andreas; Brændholt, Andreas; Pilegaard, Kim

    2016-04-01

    The eddy covariance technique relies on the fast and accurate measurement of gas concentration fluctuations. While for some gasses robust and compact sensors are available, measurement of, e.g., non CO2 greenhouse gas fluxes is often performed with sensitive equipment that cannot be run on a tower without massively disturbing the wind field. To measure CO and N2O fluxes, we installed an eddy covariance system at a 125 m mast, where the gas analyser was kept in a laboratory close to the tower and the sampling was performed using a 150 m long tube with a gas intake at 96 m height. We investigated the frequency attenuation and the time lag of the N2O and CO concentration measurements with a concentration step experiment. The results showed surprisingly high cut-off frequencies (close to 2 Hz) and small low-pass filter induced time lags (< 0.3 s), which were similar for CO and N2O. The results indicate that the concentration signal was hardly biased during the ca 10 s travel through the tube. Due to the larger turbulence time scales at large measurement heights the low-pass correction was for the majority of the measurements < 5%. For water vapour the tube attenuation was massive, which had, however, a positive effect by reducing both the water vapour dilution correction and the cross sensitivity effects on the N2O and CO flux measurements. Here we present the set-up of the concentration step change experiment and its results and compare them with recently developed theories for the behaviour of gases in turbulent tube flows.

  8. Estimation of turbulent sensible heat and momentum fluxes over a heterogeneous urban area using a large aperture scintillometer

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hyun; Lee, Jun-Ho; Kim, Bo-Young

    2015-08-01

    The accurate determination of surface-layer turbulent fluxes over urban areas is critical to understanding urban boundary layer (UBL) evolution. In this study, a remote-sensing technique using a large aperture scintillometer (LAS) was investigated to estimate surface-layer turbulent fluxes over a highly heterogeneous urban area. The LAS system, with an optical path length of 2.1 km, was deployed in an urban area characterized by a complicated land-use mix (residential houses, water body, bare ground, etc.). The turbulent sensible heat ( Q H) and momentum fluxes (τ) were estimated from the scintillation measurements obtained from the LAS system during the cold season. Three-dimensional LAS footprint modeling was introduced to identify the source areas ("footprint") of the estimated turbulent fluxes. The analysis results showed that the LAS-derived turbulent fluxes for the highly heterogeneous urban area revealed reasonable temporal variation during daytime on clear days, in comparison to the land-surface process-resolving numerical modeling. A series of sensitivity tests indicated that the overall uncertainty in the LAS-derived daytime Q H was within 20%-30% in terms of the influence of input parameters and the nondimensional similarity function for the temperature structure function parameter, while the estimation errors in τ were less sensitive to the factors of influence, except aerodynamic roughness length. The 3D LAS footprint modeling characterized the source areas of the LAS-derived turbulent fluxes in the heterogeneous urban area, revealing that the representative spatial scales of the LAS system deployed with the 2.1 km optical path distance ranged from 0.2 to 2 km2 (a "micro- a scale"), depending on local meteorological conditions.

  9. From pores to eddies - linking diffusion-based evaporative fluxes from porous surfaces with a turbulent air boundary layer

    NASA Astrophysics Data System (ADS)

    Haghighi, E.; Or, D.

    2012-04-01

    Evaporation affects hydration and energy balance of terrestrial surfaces. Evaporation rates exhibit complex dynamics reflecting interactions between external conditions and internal transport properties of a the drying porous surface Motivated by recent progress in estimating evaporative fluxes from isolated pores across laminar air sublayer, we seek to expand the description and quantify evaporation across a turbulent boundary layer. We adopt concepts from surface renewal (SR) theory focusing on turbulent exchange with individual eddies and linking eddies surface footprint and their local boundary layer over patches of a drying surface. The model resolves diffusive exchange during limited residence time and integrates fluxes over the entire surface to quantify mean evaporative fluxes from drying surfaces into turbulent airflows accounting for subsurface internal transport processes and diffusive exchanges. Input parameters and model evaluation would be based on data from spatially and temporally resolved Infrared (IR) thermography of drying surfaces under prescribe turbulent regimes conducted in a wind-tunnel experiment. The study provides basic ingredients and building blocks essential for upscaling the results to estimation of evaporative fluxes at the field and landscape scales. Keywords: Evaporation; Turbulent Coupling; Surface Renewal; Infrared Imaging.

  10. The Development of Instrumentation and Methods for Measurement of Air-Sea Interaction and Coastal Processes from Manned and Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Reineman, Benjamin D.

    I present the development of instrumentation and methods for the measurement of coastal processes, ocean surface phenomena, and air-sea interaction in two parts. In the first, I discuss the development of a portable scanning lidar (light detection and ranging) system for manned aircraft and demonstrate its functionality for oceanographic and coastal measurements. Measurements of the Southern California coastline and nearshore surface wave fields from seventeen research flights between August 2007 and December 2008 are analyzed and discussed. The October 2007 landslide on Mt. Soledad in La Jolla, California was documented by two of the flights. The topography, lagoon, reef, and surrounding wave field of Lady Elliot Island in Australia's Great Barrier Reef were measured with the airborne scanning lidar system on eight research flights in April 2008. Applications of the system, including coastal topographic surveys, wave measurements, ship wake studies, and coral reef research, are presented and discussed. In the second part, I detail the development of instrumentation packages for small (18 -- 28 kg) unmanned aerial vehicles (UAVs) to measure momentum fluxes and latent, sensible, and radiative heat fluxes in the atmospheric boundary layer (ABL), and the surface topography. Fast-response turbulence, hygrometer, and temperature probes permit turbulent momentum and heat flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Careful design and testing of an accurate turbulence probe, as demonstrated in this thesis, are essential for the ability to measure momentum and scalar fluxes. The low altitude required for accurate flux measurements (typically assumed to be 30 m) is below the typical safety limit of manned research aircraft; however, it is now within the capability of small UAV platforms. Flight tests of two instrumented BAE Manta UAVs over land were conducted in January 2011 at Mc

  11. Validation studies of gyrokinetic ITG and TEM turbulence simulations in a JT-60U tokamak using multiple flux matching

    NASA Astrophysics Data System (ADS)

    Nakata, Motoki; Honda, Mitsuru; Yoshida, Maiko; Urano, Hajime; Nunami, Masanori; Maeyama, Shinya; Watanabe, Tomo-Hiko; Sugama, Hideo

    2016-08-01

    Quantitative validation studies of flux-tube gyrokinetic Vlasov simulations on ion and electron heat transport are carried out for the JT-60U tokamak experiment. The ion temperature gradient (ITG) and/or trapped electron modes (TEM) driven turbulent transport and zonal flow generations are investigated for an L-mode plasma in the local turbulence limit with a sufficiently small normalized ion thermal gyroradius and weak mean radial electric fields. Nonlinear turbulence simulations by the GKV code successfully reproduce radial profiles of the ion and electron energy fluxes in the core region. The numerical results show that the TEM-driven zonal flow generation in the outer region is more significant than that in the core region with ITG- and ITG–TEM-dominated turbulence, leading to moderate transport shortfall of the ion energy flux. Error levels in the prediction of the ion and electron temperature gradient profiles in the core region are estimated as less than +/- 30% , based on a multiple flux matching technique, where the simulated ion and electron energy fluxes are simultaneously matched to the experimental values.

  12. Turbulent CO2 Flux Measurements by Lidar: Length Scales, Results and Comparison with In-Situ Sensors

    NASA Technical Reports Server (NTRS)

    Gilbert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2009-01-01

    The vertical CO2 flux in the atmospheric boundary layer (ABL) is investigated with a Doppler differential absorption lidar (DIAL). The instrument was operated next to the WLEF instrumented tall tower in Park Falls, Wisconsin during three days and nights in June 2007. Profiles of turbulent CO2 mixing ratio and vertical velocity fluctuations are measured by in-situ sensors and Doppler DIAL. Time and space scales of turbulence are precisely defined in the ABL. The eddy-covariance method is applied to calculate turbulent CO2 flux both by lidar and in-situ sensors. We show preliminary mean lidar CO2 flux measurements in the ABL with a time and space resolution of 6 h and 1500 m respectively. The flux instrumental errors decrease linearly with the standard deviation of the CO2 data, as expected. Although turbulent fluctuations of CO2 are negligible with respect to the mean (0.1 %), we show that the eddy-covariance method can provide 2-h, 150-m range resolved CO2 flux estimates as long as the CO2 mixing ratio instrumental error is no greater than 10 ppm and the vertical velocity error is lower than the natural fluctuations over a time resolution of 10 s.

  13. Models for the probability densities of the turbulent plasma flux in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Bergsaker, A. S.; Fredriksen, Å; Pécseli, H. L.; Trulsen, J. K.

    2015-10-01

    Observations of turbulent transport in magnetized plasmas indicate that plasma losses can be due to coherent structures or bursts of plasma rather than a classical random walk or diffusion process. A model for synthetic data based on coherent plasma flux events is proposed, where all basic properties can be obtained analytically in terms of a few control parameters. One basic parameter in the present case is the density of burst events in a long time-record, together with parameters in a model of the individual pulse shapes and the statistical distribution of these parameters. The model and its extensions give the probability density of the plasma flux. An interesting property of the model is a prediction of a near-parabolic relation between skewness and kurtosis of the statistical flux distribution for a wide range of parameters. The model is generalized by allowing for an additive random noise component. When this noise dominates the signal we can find a transition to standard results for Gaussian random noise. Applications of the model are illustrated by data from the toroidal Blaamann plasma.

  14. Effects of precipitation on sonic anemometer measurements of turbulent fluxes in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Zhang, Rongwang; Huang, Jian; Wang, Xin; Zhang, Jun A.; Huang, Fei

    2016-06-01

    Effects caused by precipitation on the measurements of three-dimensional sonic anemometer are analyzed based on a field observational experiment conducted in Maoming, Guangdong Province, China. Obvious fluctuations induced by precipitation are observed for the outputs of sonic anemometer-derived temperature and wind velocity components. A technique of turbulence spectra and cospectra normalized in the framework of similarity theory is utilized to validate the measured variables and calculated fluxes. It is found that the sensitivity of sonic anemometer-derived temperature to precipitation is significant, compared with that of the wind velocity components. The spectra of wind velocity and cospectra of momentum flux resemble the standard universal shape with the slopes of the spectra and cospectra at the inertial subrange, following the -2/3 and -4/3 power law, respectively, even under the condition of heavy rain. Contaminated by precipitation, however, the spectra of temperature and cospectra of sensible heat flux do not exhibit a universal shape and have obvious frequency loss at the inertial subrange. From the physical structure and working principle of sonic anemometer, a possible explanation is proposed to describe this difference, which is found to be related to the variations of precipitation particles. Corrections for errors of sonic anemometer-derived temperature under precipitation is needed, which is still under exploration.

  15. Air-sea interaction with multiple sensors - Seasat legacy

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Tang, W.

    2003-01-01

    By flying a number of ocean observing sensors together, Seasat demonstrated potential of not only sensor synergism, but also science synergism, which has illuminated the path of spacebased air-sea interaction studies in more than two decades since its demise.

  16. Air-sea interactions and precipitation over the tropical oceans

    NASA Technical Reports Server (NTRS)

    Gautier, C.

    1992-01-01

    In this lecture, the author principally discusses air-sea exchanges that are relevant to climate and global problems. The processes of interest are those acting over time scales of months to decades, which in some instances are influenced by smaller-time-scale processes, down to the diurnal time scale. The repsective influence of these processes varies with regions, seasons and scales over which they occur and, because these processes are mostly nonlinear, scale interactions can be quite complex. Owing to the breadth of the topic addressed, the discussion is mostly focused on the tropical regions where air-sea interactions and precipitation processes eventually affect the entire globe. This allows a look in more detail at some air-sea processes, such as those associated with the El Nino southern oscillation (ENSO). This oscillation, which affects the climate of the entire globe, acts over periods of a year or longer and is caused, primarily, by sea surface temperature (SST) variations in the tropical Pacific. As a result, SST variability is often used as an indicator of coupled ocean-atmosphere low-frequency variability. Global or basin scale processes can uniquely be observed from space-born instruments with the coverage required. Space based techniques have been developed during the last decade which can now be used to illustrate the scientific issues presented and the presentation concludes with an overview of some Earth Observing System (EOS) capabilities for addressing air-sea interactions and hydrology issues.

  17. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  18. Impacts of Air-Sea Interaction on Tropical Cyclone Track and Intensity

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2004-01-01

    The influence of hurricane-ocean coupling on intensity and track of tropical cyclones (TCs) is investigated through idealized numerical experiments using a coupled hurricane-ocean model. The focus is placed on how air-sea interaction affects TC tracks and intensity. It is found that the symmetric sea surface temperature (SST) cooling is primarily responsible for the TC weakening in the coupled experiments because the induced asymmetric circulation associated with the asymmetric SST anomalies is weak and shallow. The track difference between the coupled and fixed SST experiments is generally small because of the competing processes. One is associated with the modified TC asymmetries. The asymmetric SST anomalies - weaken the surface fluxes in the rear and enhance the fluxes in the front. As a result, the enhanced diabatic heating is located on the southern side for a westward-moving TC, tending to shift the TC southward. The symmetric SST anomalies weakens the TC intensity and thus the dymmetrization process, leading to more prominent TC asymmetries. The other is associated with the weakening of the beta drift resulting from the weakening of the TC outer strength. In the coupled experiment, the weakening of the beta drift leads to a more northward shift. By adjusting the vortex outer strength of the initial vortices, the beta drift can vary while the effect of air-sea interaction changes little. Two types of track differences simulated in the previous numerical studies are obtained.

  19. Similarity scaling of turbulence in a small temperate lake: implications for gas flux

    NASA Astrophysics Data System (ADS)

    Tedford, E. W.; MacIntyre, S.; Vidal, J.; Miller, S. D.; Czikowsky, M.

    2012-12-01

    The rate of dissipation of turbulent kinetic energy (ɛ) can be used to estimate the gas transfer coefficient (k600) using the surface renewal model . To enable predictions of k600 from surface meteorology, we obtained 1400 temperature-gradient microstructure profiles in a 4 km2 lake during fall cooling concurrently with time series measurements of meteorology and CO2 fluxes using an eddy covariance system. Conditions were typical for the fall in the temperate zone. Winds typically varied from near calm to 5 m s-1 but reached 10 m s-1 during three storm events. Currents measured by acoustic Doppler current profiler averaged 2.5 cm s-1 and were as high as 10 cm s-1. Dissipation estimates were on the order of 10-8 to 10-7 m2 s-3 during periods of heating and cooling and reached 10-6 m2 s-3 during windy periods. During calm morning heating, dissipation was on the order of 10-9 m2s-3. We scaled our results using similarity scaling and obtained: ɛ = 0.6 u*3 / k z + 0.3 JB0 where u* is the water friction velocity computed from shear stress, k is von Karmon's constant, z is depth, and JB0 is buoyancy flux at the surface. Thus, ɛ at each depth is a function of the wind stress and buoyancy flux. The Monin-Obukhov length scale, LMO = -u*3/(0.4 JB0), is used to separate the upper-mixed layer into two regions: an upper region, dominated by wind shear; and a lower region, dominated by buoyancy flux.. When transitions between cooling and heating were gradual and winds were moderate, ɛ predicted with the similarity scaling matched the observed ɛ. In other words, during both heating and cooling and above a depth equal to |LMO|, turbulence was dominated by wind shear and dissipation followed law of the wall scaling although was slightly augmented by buoyancy flux during cooling. Below a depth equal to |LMO| during cooling, dissipation was uniform with depth. Below a depth equal to |LMO| during heating, dissipation was strongly suppressed. When winds and heat flux varied rapidly

  20. Atmospheric variability and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Middleton, J. W.; Reiter, E. R.

    1980-01-01

    The topics studied include: (1) processing of Northern Hemispheric precipitation data, in order to fill in the transition seasons to provide a continuous 40 year data base on the variability of continental precipitation; (2) comparison of seasonally averaged fields of sea surface temperature obtained from ship observations in the North Atlantic and North Pacific in 1970 with the corresponding fields inferred from satellite observations; (3) estimation of seasonal average of total precipitable water at those admittedly few oceanic stations where repeated vertical soundings were made in 1970 and comparison with corresponding values inferred from satellite measurements; (4) comparison of seasonally averaged evaporation fields determined from ground based observations in 1970 with the field of divergence of the seasonal total horizontal water vapor flux inferred from satellite total water measurements and NMC wind data for the lower troposphere; (5) examination of meaning of convection-inversion index.

  1. Near-bed turbulence and sediment flux measurements in tidal channels

    USGS Publications Warehouse

    Wright, S.A.; Whealdon-Haught, D.R.

    2012-01-01

    Understanding the hydrodynamics and sediment transport dynamics in tidal channels is important for studies of estuary geomorphology, sediment supply to tidal wetlands, aquatic ecology and fish habitat, and dredging and navigation. Hydrodynamic and sediment transport data are essential for calibration and testing of numerical models that may be used to address management questions related to these topics. Herein we report preliminary analyses of near-bed turbulence and sediment flux measurements in the Sacramento-San Joaquin Delta, a large network of tidal channels and wetlands located at the confluence of the Sacramento and San Joaquin Rivers, California, USA (Figure 1). Measurements were made in 6 channels spanning a wide range of size and tidal conditions, from small channels that are primarily fluvial to large channels that are tidally dominated. The results of these measurements are summarized herein and the hydrodynamic and sediment transport characteristics of the channels are compared across this range of size and conditions.

  2. Two regimes of flux scaling in axially homogeneous turbulent convection in vertical tube

    NASA Astrophysics Data System (ADS)

    Pawar, Shashikant S.; Arakeri, Jaywant H.

    2016-08-01

    From experiments of axially homogeneous turbulent convection in a vertical tube using heat (Prandtl number Pr≃6 ) and brine (Pr≃600 ) we show that at sufficiently high Rayleigh numbers (Rag), the Nusselt number Nug˜(RagPr)1/2, which corresponds to the so-called ultimate regime scaling. In heat experiments below certain Rag,however,there is transition to a new regime, Nug˜(RagPr)0.3. This transition also seems to exist in earlier reported data for Pr=1 and Pr≃600 , at different Rag. However, the transition occurs at a single Grashof number, Grgc≃1.6 ×105 , and unified flux scalings for Pr≥1 , Nug/Pr˜Grg0.3, and Nug/Pr˜Grg1/2 can be given for the two regimes.

  3. Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data

    NASA Astrophysics Data System (ADS)

    Eberhard, Wynn L.

    1992-11-01

    Techniques for extraction of boundary layer parameters from measurements of a short pulse (~0.4 μs) CO2 Doppler lidar (λ=10.6 μm) are described. The lidar is operated by the National Oceanic and Atmospheric Administration (NOAA) Wave Propagation Laboratory (WPL). The measurements are those collected during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). The recorded radial velocity measurements have a range resolution of 150 m. With a pulse repetition rate of 20 Hz it is possible to perform scannings in two perpendicular vertical planes (x-z and y-z) in approximately 72 s. By continuously operating the lidar for about an hour, one can extract stable statistics of the radial velocities. Assuming that the turbulence is horizontally homogeneous, we have estimated the mean wind, its standard deviations, and the momentum fluxes. We have estimated the first, second, and, third moments of the vertically velocity from the vertical pointing beam. Spectral analysis of the radial velocities is also performed, from which (by examining the amplitude of the power spectrum at the inertial range) we have deduced the kinetic energy dissipation. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. With the exception of the vertically pointing beam an individual radial velocity estimate is accurate only to +/-0.7 ms-1. Combining many measurements would normally reduce the error, provided that it is unbiased and uncorrelated. The nature of some of the algorithms, however, is such that biased and correlated errors may be generated even though the ``raw'' measurements are not. We have developed data processing procedures that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is

  4. Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data

    NASA Astrophysics Data System (ADS)

    Gal-Chen, Tzvi; Xu, Mei; Eberhard, Wynn L.

    1992-11-01

    Techniques for extraction of boundary layer parameters from measurements of a short pulse (≈0.4 μs) CO2 Doppler lidar (λ = 10.6 μm) are described. The lidar is operated by the National Oceanic and Atmospheric Administration (NOAA) Wave Propagation Laboratory (WPL). The measurements are those collected during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). The recorded radial velocity measurements have a range resolution of 150 m. With a pulse repetition rate of 20 Hz it is possible to perform scannings in two perpendicular vertical planes (x-z and y-z) in approximately 72 s. By continuously operating the lidar for about an hour, one can extract stable statistics of the radial velocities. Assuming that the turbulence is horizontally homogeneous, we have estimated the mean wind, its standard deviations, and the momentum fluxes. We have estimated the first, second, and, third moments of the vertical velocity from the vertically pointing beam. Spectral analysis of the radial velocities is also performed, from which (by examining the amplitude of the power spectrum at the inertial range) we have deduced the kinetic energy dissipation. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. With the exception of the vertically pointing beam an individual radial velocity estimate is accurate only to ±0.7 m s-1. Combining many measurements would normally reduce the error, provided that it is unbiased and uncorrelated. The nature of some of the algorithms, however, is such that biased and correlated errors may be generated even though the "raw" measurements are not. We have developed data processing procedures that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is

  5. Disc formation in turbulent cloud cores: is magnetic flux loss necessary to stop the magnetic braking catastrophe or not?

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; de Gouveia Dal Pino, E. M.; Lazarian, A.

    2013-03-01

    Recent numerical analysis of Keplerian disc formation in turbulent, magnetized cloud cores by Santos-Lima et al. demonstrated that reconnection diffusion is an efficient process to remove the magnetic flux excess during the buildup of a rotationally supported disc. This process is induced by fast reconnection of the magnetic fields in a turbulent flow. In a similar numerical study, Seifried et al. concluded that reconnection diffusion or any other non-ideal magnetohydrodynamic effects would not be necessary and turbulence shear alone would provide a natural way to build up a rotating disc without requiring magnetic flux loss. Their conclusion was based on the fact that the mean mass-to-flux ratio (μ) evaluated over a spherical region with a radius much larger than the disc is nearly constant in their models. In this paper, we compare the two sets of simulations and show that this averaging over large scales can mask significant real increases of μ in the inner regions where the disc is built up. We demonstrate that turbulence-induced reconnection diffusion of the magnetic field happens in the initial stages of the disc formation in the turbulent envelope material that is accreting. Our analysis is suggestive that reconnection diffusion is present in both sets of simulations and provides a simple solution for the `magnetic braking catastrophe' which is discussed in the literature in relation to the formation of protostellar accretion discs.

  6. Turbulence and heat flux observations in the Arctic north of Svalbard

    NASA Astrophysics Data System (ADS)

    Meyer, Amelie; Sundfjord, Arild; Fer, Ilker; Smedsrud, Lars Henrik

    2016-04-01

    Heat fluxes and mixing between the ocean and the sea ice in the Arctic is fundamental to understanding the new first year sea ice regime and consequences for regional and global ocean circulation. Here we present observations collected between January and June 2015 during the Norwegian Young sea Ice (N-ICE2015) campaign in the Arctic Ocean north of Svalbard. In January 2015, the Norwegian research vessel Lance was frozen into the ice at 83o.3N 21.5oE. Oceanographic, atmospheric, sea ice, snow and biological data were collected above, on, and below the ice using R/V Lance as the base for the ice camp that was drifting south towards the Fram Strait. Over the following six months, four different drifts took place in the same area, from the Nansen Basin, through the Marginal Ice Zone, to the open ocean. Throughout the drifts, the oceanography team collected turbulence measurements to estimate mixing, heat, salt, and momentum fluxes in the ice-ocean boundary layer and between the sub-surface warm Atlantic Water layer and the ice-ocean boundary layer close to freezing point. Water tracer data was collected to map water mass properties, and the distribution of the Atlantic Water inflow. Here we present 600 under-ice microstructure profiles spanning five months, from the deep Nansen Basin to the Yermak Plateau. During this period, several large atmospheric storms took place, forcing a fast drift of the ice camp. Tides were weak in the Nansen Basin and strong on the Yermak Plateau. We investigate vertical heat fluxes between the Atlantic Water layer and the surface mixed layer. Variations in mixing and heat fluxes are interpreted in terms of atmospheric forcing and regional topography.

  7. Turbulence simulations of the narrow heat flux feature in inner-wall limited tokamaks

    NASA Astrophysics Data System (ADS)

    Halpern, Federico

    2015-11-01

    A recent multi-machine experimental campaign initiated by the ITER Organization concluded that inner-wall limited (IWL) plasmas have a near scrape-off layer (SOL) heat-flux decay length of a few mm's, while the far SOL can have a width of several cm's. The ITER inner-wall design was revised last year in order to accommodate for the effects of this narrow feature. In the present talk, we address the physics behind the development of the narrow heat-flux feature in the near SOL of IWL discharges. Our investigations are aided by 3D flux-driven simulations of the SOL plasma dynamics carried out with GBS, a rigorously verified and validated turbulence code based on the drift-reduced Braginskii equations. Indeed, GBS simulations of IWL plasmas reveal the presence of steep gradients just outside the last closed flux surface. The analysis of the simulation results points out a clear distinction between the near SOL, where transport is diffusive, and the far SOL, where transport is convective and the fluctuation PDFs are skewed. In particular, we find that SOL plasma profile formation is strongly influenced by radially-sheared poloidal ExB flows. Non-local analysis of the linear mode structure reveals that the sheared flows modify the ``meso-scale'' correlation length, which in turn mitigates transport in the near SOL. A simplified transport equation using the new correlation length yields gyroBohm-like transport in the near SOL, leading to a two decay-length profile structure similar to what is observed in experiments. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053.

  8. Sensitivity of the air-sea CO2 exchange in the Baltic Sea and Danish inner waters to atmospheric short-term variability

    NASA Astrophysics Data System (ADS)

    Lansø, A. S.; Bendtsen, J.; Christensen, J. H.; Sørensen, L. L.; Chen, H.; Meijer, H. A. J.; Geels, C.

    2015-05-01

    Minimising the uncertainties in estimates of air-sea CO2 exchange is an important step toward increasing the confidence in assessments of the CO2 cycle. Using an atmospheric transport model makes it possible to investigate the direct impact of atmospheric parameters on the air-sea CO2 flux along with its sensitivity to, for example, short-term temporal variability in wind speed, atmospheric mixing height and atmospheric CO2 concentration. With this study, the importance of high spatiotemporal resolution of atmospheric parameters for the air-sea CO2 flux is assessed for six sub-basins within the Baltic Sea and Danish inner waters. A new climatology of surface water partial pressure of CO2 (pCO2w) has been developed for this coastal area based on available data from monitoring stations and on-board pCO2w measuring systems. Parameterisations depending on wind speed were applied for the transfer velocity to calculate the air-sea CO2 flux. Two model simulations were conducted - one including short-term variability in atmospheric CO2 (VAT), and one where it was not included (CAT). A seasonal cycle in the air-sea CO2 flux was found for both simulations for all sub-basins with uptake of CO2 in summer and release of CO2 to the atmosphere in winter. During the simulated period 2005-2010, the average annual net uptake of atmospheric CO2 for the Baltic Sea, Danish straits and Kattegat was 287 and 471 Gg C yr-1 for the VAT and CAT simulations, respectively. The obtained difference of 184 Gg C yr-1 was found to be significant, and thus ignoring short-term variability in atmospheric CO2 does have a sizeable effect on the air-sea CO2 exchange. The combination of the atmospheric model and the new pCO2w fields has also made it possible to make an estimate of the marine part of the Danish CO2 budget for the first time. A net annual uptake of 2613 Gg C yr-1 was found for the Danish waters. A large uncertainty is connected to the air-sea CO2 flux in particular caused by the transfer

  9. Sensitivity of the air-sea CO2 exchange in the Baltic Sea and Danish inner waters to atmospheric short term variability

    NASA Astrophysics Data System (ADS)

    Lansø, A. S.; Bendtsen, J.; Christensen, J. H.; Sørensen, L. L.; Chen, H.; Meijer, H. A. J.; Geels, C.

    2014-12-01

    Minimising the uncertainties in estimates of air-sea CO2 exchange is an important step toward increasing the confidence in assessments of the CO2 cycle. Using an atmospheric transport model makes it possible to investigate the direct impact of atmospheric parameters on the air-sea CO2 flux along with its sensitivity to e.g. short-term temporal variability in wind speed, atmospheric mixing height and the atmospheric CO2 concentration. With this study the importance of high spatiotemporal resolution of atmospheric parameters for the air-sea CO2 flux is assessed for six sub-basins within the Baltic Sea and Danish inner waters. A new climatology of surface water partial pressure of CO2 (pCO2) has been developed for this coastal area based on available data from monitoring stations and underway pCO2 measuring systems. Parameterisations depending on wind speed were applied for the transfer velocity to calculate the air-sea CO2 flux. Two model simulations were conducted - one including short term variability in atmospheric CO2 (VAT), and one where it was not included (CAT). A seasonal cycle in the air-sea CO2 flux was found for both simulations for all sub-basins with uptake of CO2 in summer and release of CO2 to the atmosphere in winter. During the simulated period 2005-2010 the average annual net uptake of atmospheric CO2 for the Baltic Sea, Danish Straits and Kattegat was 287 and 471 Gg C yr-1 for the VAT and CAT simulations, respectively. The obtained difference of 184 Gg C yr-1 was found to be significant, and thus ignoring short term variability in atmospheric CO2 does have a sizeable effect on the air-sea CO2 exchange. The combination of the atmospheric model and the new pCO2 fields has also made it possible to make an estimate of the marine part of the Danish CO2 budget for the first time. A net annual uptake of 2613 Gg C yr-1 was found for the Danish waters. A large uncertainty is connected to the air-sea CO2 flux in particular caused by the transfer velocity

  10. A Comparison of Explicit Algebraic Turbulence Models and the Energy-Flux Budget (EFB) Closure in Gabls

    NASA Astrophysics Data System (ADS)

    Lazeroms, W. M.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.; Svensson, G.

    2014-12-01

    Turbulent flows with buoyancy effects occur in many situations, both in industry and in the atmosphere. It is challenging to correctly model such flows, especially in the case of stably stratified turbulence, where vertical motions are damped by buoyancy forces. For this purpose, we have derived a so-called explicit algebraic model for the Reynolds stresses and turbulent heat flux that gives accurate predictions in flows with buoyancy effects. Although inspired by turbulence models from engineering, the main aim of our work is to improve the parametrization of turbulence in the atmospheric boundary layer (ABL). Explicit algebraic turbulence models are a class of parametrizations that, on the one hand, are more advanced than standard eddy-diffusivity relations. On the other hand, they are signficantly easier to handle numerically than models that require the solution of the full flux-budget equations. To derive the algebraic model, we apply the assumption that transport terms of dimensionless fluxes can be neglected. Careful considerations of the algebra lead to a consistent formulation of the Reynolds stresses and turbulent heat flux, which is more general and robust than previous models of a similar kind. The model is shown to give good results compared to direct numerical simulations of engineering test cases, such as turbulent channel flow. Recent work has been aimed at testing the model in an atmospheric context. The first of these tests makes use of the GABLS1 case, in which a stable atmospheric boundary layer develops through a constant surface cooling rate. The model is able to give good predictions of this case compared to LES (see attached figure). Interestingly, the results are very close to the outcome of the recently developed Energy-Flux-Budget (EFB) closure by Zilitinkevich et al. (2013). A detailed discussion of the similarities and differences between these models will be given, which can give insight in the more general gap between engineering and

  11. Surface-Layer Flux-Gradient Relationships over Inclined Terrain Derived from a Local Equilibrium, Turbulence Closure Model

    NASA Astrophysics Data System (ADS)

    Łobocki, Lech

    2014-03-01

    Derivation of surface-layer flux-gradient relationships from a local-equilibrium, turbulence-closure model for a forced flow over inclined terrain is presented. Results are shown as a generalization of Monin-Obukhov universal functions respesenting non-dimensional wind and temperature gradients.

  12. Evaluation of the swell effect on the air-sea gas transfer in the coastal zone

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.

    2016-04-01

    Air-sea gas transfer processes are one of the most important factors regarding global climate and long-term global climate changes. Despite its importance, there is still a huge uncertainty on how to better parametrize these processes in order to include them on the global climate models. This uncertainty exposes the need to increase our knowledge on gas transfer controlling mechanisms. In the coastal regions, breaking waves become a key factor to take into account when estimating gas fluxes, however, there is still a lack of information and the influence of the ocean surface waves on the air-sea interaction and gas flux behavior must be validated. In this study, as part of the "Sea Surface Roughness as Air-Sea Interaction Control" project, we evaluate the effect of the ocean surface waves on the gas exchange in the coastal zone. Direct estimates of the flux of CO2 (FCO2) and water vapor (FH2O) through eddy covariance, were carried out from May 2014 to April 2015 in a coastal station located at the Northwest of Todos Santos Bay, Baja California, México. For the same period, ocean surface waves are recorded using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) with a sampling rate of 2 Hz and located at 10 m depth about 350 m away from the tower. We found the study area to be a weak sink of CO2 under moderate wind and wave conditions with a mean flux of -1.32 μmol/m2s. The correlation between the wind speed and FCO2 was found to be weak, suggesting that other physical processes besides wind may be important factors for the gas exchange modulation at coastal waters. The results of the quantile regression analysis computed between FCO2 and (1) wind speed, (2) significant wave height, (3) wave steepness and (4) water temperature, show that the significant wave height is the most correlated parameter with FCO2; Nevertheless, the behavior of their relation varies along the probability distribution of FCO2, with the linear regression

  13. Magnetic Flux Concentrations in Stratified Turbulent Plasma Due to Negative Effective Magnetic Pressure Instability

    NASA Astrophysics Data System (ADS)

    Jabbari, S.; Brandenburg, A.

    2014-12-01

    Recent studies have suggested a new mechanism that can be used to explain the formation of magnetic spots or bipolar regions in highly stratified turbulent plasmas. According to this model, a large-scale magnetic field suppresses the turbulent pressure, which leads to a negative contribution of turbulence to the effective magnetic pressure. Direct numerical simulations (DNS) have confirmed that the negative contribution is large enough so that the effective magnetic pressure becomes negative and leads to a large-scale instability, which we refer to as negative effective magnetic pressure Instability (NEMPI). NEMPI was used to explain the formation of active regions and sunspots on the solar surface. One step toward improving this model was to combine dynamo in- stability with NEMPI. The dynamo is known to be responsible for the solar large-scale magnetic field and to play a role in solar activity. In this context, we studied stratified turbulent plasmas in spherical geometry, where the background field was generated by alpha squared dynamo. For NEMPI to be excited, the initial magnetic field should be in a proper range, so we used quenching function for alpha. Using the Pencil Code and mean field simulations (MFS), we showed that in the presence of dynamo-generated magnetic fields, we deal with a coupled system, where both instabilities, dynamo and NEMPI, work together and lead to the formation of magnetic structures (Jabbari et al. 2013). We also studied a similar system in plane geometry in the presence of rotation and confirmed that for slow rotation NEMPI works, but as the Coriolis number increases, the rotation suppresses NEMPI. By increasing the Coriolis number even further, the combination of fast rotation and high stratification excites a dynamo, which leads again to a coupled system of dynamo and NEMPI (Jabbari et al. 2014). Another important finding concerning NEMPI is the case where the instability is excited by a vertical magnetic field (Brandenburg et

  14. Estimations of ABL fluxes and other turbulence parameters from Doppler lidar data

    NASA Technical Reports Server (NTRS)

    Tzvi, Gal-Chen; Mei, XU; Eberhard, Wynn

    1990-01-01

    Techniques for extracting boundary layer parameters from measurements of a short pulse CO2 Doppler Lidar are described. The radial velocity measurements have a range resolution of 150 m. With a pulse repetition rate of 20 Hz, it is possible to perform scannings in two perpendicular vertical planes in approx. 72 s. By continuously operating the Lidar for about an hour, one can extract stable statistics of the radial velocities. Assuming that the turbulence is horizontally homogeneous, the mean wind, its standard deviations, and the momentum fluxes were estimated. From the vertically pointing beam, the first, second, and third moments of the vertical velocity were also estimated. Spectral analysis of the radial velocities is also performed from which, by examining the amplitude of the power spectrum at the inertial range, the kinetic energy dissipation was deduced. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation.

  15. Outer scale and Monin-Obukhov flux relationships of atmospheric turbulence under dry convective conditions

    NASA Astrophysics Data System (ADS)

    De Bruin, Henk; Hartogensis, Oscar

    2015-04-01

    In this study we will investigate the assumption that in the atmospheric surface layer the outer scale (L0) is proportional to the height above the surface, under dry convective conditions. For this purpose we analyzed raw sonic anemometers data collected at 3.5 m and at 9 m in a field campaign at the Santa Cruz Flats (32040.3190'N, 111032.641'W, 526 m of elevation) near Eloy, Arizona. For simplicity, we define the L0 as that separation distance at which the spatial correlation coefficient of air temperature at two points in the surface layer is 0.5. Then, according to the 2/3-Kolmogorov scaling law in the inertial sub-range, L0 is determined by the variance and the structure parameter of T . It is found that L0 does not scale with height. Possible reasons for this negative result will be discussed, by considering the methodology to determine structure parameters, Taylor's frozen turbulence hypothesis, effects of intermittency and Monin-Obukhov flux relationships for variance and structure parameter for T . The question is asked whether the concept of surface constant flux layer still holds under strong convective condition.

  16. Trends and variability of the atmosphere-ocean turbulent heat flux in the extratropical Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Herman, Agnieszka

    2015-10-01

    Ocean-atmosphere interactions are complex and extend over a wide range of temporal and spatial scales. Among the key components of these interactions is the ocean-atmosphere (latent and sensible) turbulent heat flux (THF). Here, based on daily optimally-interpolated data from the extratropical Southern Hemisphere (south of 30°S) from a period 1985-2013, we analyze short-term variability and trends in THF and variables influencing it. It is shown that, in spite of climate-change-related positive trends in surface wind speeds over large parts of the Southern Ocean, the range of the THF variability has been decreasing due to decreasing air-water temperature and humidity differences. Occurrence frequency of very large heat flux events decreased accordingly. Remarkably, spectral analysis of the THF data reveals, in certain regions, robust periodicity at frequencies 0.03-0.04 day-1, corresponding exactly to frequencies of the baroclinic annular mode (BAM). Finally, it is shown that the THF is correlated with the position of the major fronts in sections of the Antarctic Circumpolar Current where the fronts are not constrained by the bottom topography and can adjust their position to the atmospheric and oceanic forcing, suggesting differential response of various sections of the Southern Ocean to the changing atmospheric forcing.

  17. Trends and variability of the atmosphere–ocean turbulent heat flux in the extratropical Southern Hemisphere

    PubMed Central

    Herman, Agnieszka

    2015-01-01

    Ocean–atmosphere interactions are complex and extend over a wide range of temporal and spatial scales. Among the key components of these interactions is the ocean–atmosphere (latent and sensible) turbulent heat flux (THF). Here, based on daily optimally-interpolated data from the extratropical Southern Hemisphere (south of 30°S) from a period 1985–2013, we analyze short-term variability and trends in THF and variables influencing it. It is shown that, in spite of climate-change-related positive trends in surface wind speeds over large parts of the Southern Ocean, the range of the THF variability has been decreasing due to decreasing air–water temperature and humidity differences. Occurrence frequency of very large heat flux events decreased accordingly. Remarkably, spectral analysis of the THF data reveals, in certain regions, robust periodicity at frequencies 0.03–0.04 day−1, corresponding exactly to frequencies of the baroclinic annular mode (BAM). Finally, it is shown that the THF is correlated with the position of the major fronts in sections of the Antarctic Circumpolar Current where the fronts are not constrained by the bottom topography and can adjust their position to the atmospheric and oceanic forcing, suggesting differential response of various sections of the Southern Ocean to the changing atmospheric forcing. PMID:26449323

  18. Turbulent nitrate fluxes in the Amundsen Gulf during ice-covered conditions

    NASA Astrophysics Data System (ADS)

    Bourgault, D.; Hamel, C.; Cyr, F.; Tremblay, J.-É.; Galbraith, P. S.; Dumont, D.; Gratton, Y.

    2011-08-01

    Turbulence and nitrate measurements collected in the Amundsen Gulf during ice-covered conditions in fall 2007 are combined to provide mean vertical profiles of eddy diffusivity $\\overline{K and diffusive nitrate fluxes $\\overline{F. The mean diffusivity (with 95% confidence intervals) was maximum near the uppermost sampling depth (10 m) with $\\overline{Kmax = 3(2, 5) × 10-3 m2 s-1 and decreased exponentially to a depth of ˜50 m, below which it was roughly constant at the background value $\\overline{Kb = 3(2, 5) × 10-6 m2 s-1. The nitracline, centered around 62 m depth, was subject to an eddy diffusivity close to the background value $\\overline{Kb and the mean diffusive nitrate flux across the nitracline was $\\overline{Fnit = 0.5(0.3, 0.8) mmol m-2 d-1. These observations are compared with other regions and the role of vertical mixing on primary production in the Amundsen Gulf is discussed.

  19. Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2

    SciTech Connect

    Gu, Lianhong; Van Gorsel, Eva; Leuning, Ray; Delpierre, Nicolas; Black, Andy; Chen, Baozhang; Munger, J. William; Wofsy, Steve; Aubinet, M.

    2009-11-01

    Micrometeorological measurements of nighttime ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used at micrometeorological sites. A common approach to minimize bias is to use a threshold in friction velocity, u*, to exclude periods when advection is assumed to be important, but this is problematic in situations when in-canopy flows are decoupled from the flow above. Using data from 25 flux stations in a wide variety of forest ecosystems globally, we examine the generality of a novel approach to estimating nocturnal respiration developed by van Gorsel et al. (van Gorsel, E., Leuning, R., Cleugh, H.A., Keith, H., Suni, T., 2007. Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering technique. Tellus 59B, 397 403, Tellus, 59B, 307-403). The approach is based on the assumption that advection is small relative to the vertical turbulent flux (FC) and change in storage (FS) of CO2 in the few hours after sundown. The sum of FC and FS reach a maximum during this period which is used to derive a temperature response function for ecosystem respiration. Measured hourly soil temperatures are then used with this function to estimate respiration RRmax. The new approach yielded excellent agreement with (1) independent measurements using respiration chambers, (2) with estimates using ecosystem light-response curves of Fc + Fs extrapolated to zero light, RLRC, and (3) with a detailed process-based forest ecosystem model, Rcast. At most sites respiration rates estimated using the u*-filter, Rust, were smaller than RRmax and RLRC. Agreement of our approach with independent measurements indicates that RRmax provides an excellent estimate of nighttime

  20. Annual sea ice. An air-sea gas exchange moderator

    SciTech Connect

    Gosink, T.A.; Kelley, J.J.

    1982-01-01

    Arctic annual sea ice, particularly when it is relatively warm (> -15/sup 0/C) permits significant gas exchange between the sea and air throughout the entire year. Sea ice, particularly annual sea ice, differs from freshwater ice with respect to its permeability to gases. The presence of brine allows for significant air-sea-ice exchange of CO/sub 2/ throughout the winter, which may significantly affect the global carbon dioxide balance. Other trace gases are also noted to be enriched in sea ice, but less is known about their importance to air-sea-interactions at this time. Both physical and biological factors cause and modify evolution of gases from the surface of sea ice. Quantitative and qualitative descriptions of the nature and physical behavior of sea ice with respect to brine and gases are discussed.

  1. Impact of air-sea interaction on East Asian summer monsoon climate in WRF

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Jung; Hong, Song-You

    2010-10-01

    This study investigates the effects of air-sea interaction on the simulated East Asian summer monsoon (EASM) climate in a regional climate model. An ocean mixed layer model with a revised surface roughness length formulation that was originally designed for tropical cyclone simulation and a prognostic sea surface skin temperature scheme that considers the heat budget at the water surface are systematically evaluated on the monsoonal climate over East Asia for July 2006 in the regional Weather Research and Forecasting (WRF) model. Also, 9-year (2000-2008) June-August simulations are performed to evaluate the overall impacts of these three components on the simulated EASM climatology. The 1 month simulation for July 2006 reveals that the inclusion of the ocean mixed layer model cools the water surface due to enhanced mixing, in particular, when winds are strong. Such cooling is largely compensated by the inclusion of prognostic skin temperature since solar heating in daytime overwhelms the cooling in nighttime. The revised surface roughness length effectively reduces the surface heat flux by reducing the exchange coefficients, against the conventional Charnock formula. Consideration of the three components together results in the reduction of systemic biases of excessive precipitation and weakening of the North Pacific high in the summer climate from 2000 to 2008. It is concluded that the methodology designed in this study can be an efficient way to represent the air-sea interaction in regional atmospheric models for numerical weather prediction and climate simulation.

  2. Modeling the effect of lithium-induced pedestal profiles on scrape-off-layer turbulence and the heat flux width

    SciTech Connect

    Russell, D. A. D'Ippolito, D. A.; Myra, J. R.; Canik, J. M.; Gray, T. K.; Zweben, S. J.

    2015-09-15

    The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (SOL Turbulence) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured in the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting “free” dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infrared thermography and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.

  3. Modeling the effect of lithium-induced pedestal profiles on scrape-off-layer turbulence and the heat flux width

    NASA Astrophysics Data System (ADS)

    Russell, D. A.; D'Ippolito, D. A.; Myra, J. R.; Canik, J. M.; Gray, T. K.; Zweben, S. J.

    2015-09-01

    The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (SOL Turbulence) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured in the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting "free" dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infrared thermography and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.

  4. THE SOLAR ABUNDANCE PROBLEM: THE EFFECT OF THE TURBULENT KINETIC FLUX ON THE SOLAR ENVELOPE MODEL

    SciTech Connect

    Zhang, Q. S.

    2014-06-01

    Recent three-dimensional (3D) simulations have shown that the turbulent kinetic flux (TKF) is significant. We discuss the effects of TKF on the size of the convection zone and find that the TKF may help solve the solar abundance problem. The solar abundance problem is that, with new abundances, the solar convection zone depth, the sound speed in the radiative interior, the helium abundance, and the density in the convective envelope are not in agreement with helioseismic inversions. We have performed Monte Carlo simulations on solar convective envelope models with different profiles of TKF to test its effects. The solar abundance problem is revealed in the standard solar convective envelope model with AGSS09 composition, which shows significant differences (∼10)) in density from the helioseismic inversions, but the differences in the model with the old composition GN93 is small (∼0.5)). In the testing models with a different TKF imposed, it is found that the density profile is sensitive to the value of TKF at the base of the convective envelope and insensitive to the structure of TKF in the convection zone. The required value of turbulent kinetic luminosity at the base is about –13% to – 19% L {sub ☉}. Comparing with the 3D simulations, this value is plausible. This study is for the solar convective envelope only. Evolutionary solar models with TKF are required to investigat the effects of TKF on the solar interior structure below the convection zone and the whole solar abundance problem, but the profile of the TKF in the overshoot region is necessary.

  5. Solar Wind Acceleration: Modeling Effects of Turbulent Heating in Open Flux Tubes

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    We present two self-consistent coronal heating models that determine the properties of the solar wind generated and accelerated in magnetic field geometries that are open to the heliosphere. These models require only the radial magnetic field profile as input. The first code, ZEPHYR (Cranmer et al. 2007) is a 1D MHD code that includes the effects of turbulent heating created by counter-propagating Alfven waves rather than relying on empirical heating functions. We present the analysis of a large grid of modeled flux tubes (> 400) and the resulting solar wind properties. From the models and results, we recreate the observed anti-correlation between wind speed at 1 AU and the so-called expansion factor, a parameterization of the magnetic field profile. We also find that our models follow the same observationally-derived relation between temperature at 1 AU and wind speed at 1 AU. We continue our analysis with a newly-developed code written in Python called TEMPEST (The Efficient Modified-Parker-Equation-Solving Tool) that runs an order of magnitude faster than ZEPHYR due to a set of simplifying relations between the input magnetic field profile and the temperature and wave reflection coefficient profiles. We present these simplifying relations as a useful result in themselves as well as the anti-correlation between wind speed and expansion factor also found with TEMPEST. Due to the nature of the algorithm TEMPEST utilizes to find solar wind solutions, we can effectively separate the two primary ways in which Alfven waves contribute to solar wind acceleration: 1) heating the surrounding gas through a turbulent cascade and 2) providing a separate source of wave pressure. We intend to make TEMPEST easily available to the public and suggest that TEMPEST can be used as a valuable tool in the forecasting of space weather, either as a stand-alone code or within an existing modeling framework.

  6. Measurement of Turbulent Water Vapor Fluxes from Lightweight Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Thomas, R. M.; Ramanathan, V.; Nguyen, H.; Lehmann*, K.

    2010-12-01

    Scientists at the Center for Clouds, Chemistry and Climate (C4) at the Scripps Institution of Oceanography have successfully used Unmanned Aircraft Systems (UASs) for measurements of radiation fluxes, aerosol concentrations and cloud microphysical properties. Building on this success, a payload to measure water vapor fluxes using the eddy covariance (EC) technique has been recently developed and tested. To our knowledge this is the first UAS turbulent flux system to incorporate high-frequency water vapor measurements. The driving aim of the water vapor flux system’s development is to investigate ‘atmospheric rivers’ in the north-western Pacific Ocean, these can lead to sporadic yet extreme rainfall and flooding events upon landfall in California. Such a flux system may also be used to investigate other weather events (e.g. the formation of hurricanes) and offers a powerful aerosol-cloud-radiative forcing investigative tool when combined with the existing aerosol/radiation and cloud microphysics UAS payloads. The atmospheric vertical wind component (w) is derived by this system at up to 100Hz using data from a GPS/Inertial Measurement Unit (GPS/IMU) combined with a fast-response gust probe mounted on the UAV. Measurements of w are then combined with equally high frequency water vapor data (collected using a Campbell Scientific Krypton Hygrometer) to calculate latent heat fluxes (λE). Two test flights were conducted at the NASA Dryden test facility on 27th May 2010, located in the Mojave Desert. Horizontal flight legs were recorded at four altitudes between 1000-2500 masl within the convective boundary layer. Preliminary data analysis indicates averaged spectral data follow the theoretical -5/3 slope , and extrapolation of the flux profile to the surface resulted in λE of 1.6 W m-2; in good agreement with 1.0 W m-2 λE measured by NOAA from a surface tower using standard flux techniques. The system performance during the Dryden test, as well as subsequent

  7. Electron Fluxes Enhancement At Auroral Arc Edge Caused By Wave Turbulence Dc ­ Electric Field Synergy

    NASA Astrophysics Data System (ADS)

    Souza de Assis, Altair

    In earlier papers, Sato and Okuda[1980], Marklund[1982], Borovsky[1988], Fälthammar[1989], Fung and Hoffman[1991], Borovsky[1992], Marklund[1997], Mozer[1997], Calvert[1997], and Marklund[1998] have shown the importance of dc electric fields in the auroral acceleration process and reported that intense auroral electron fluxes are generated by quasistatic potential structures. Furthermore, Bryant[1998], Dendy[1995], Bryant[1994] and Bryant et al.[1992] showed that the auroral electron fluxes can also be formed by wave turbulence. These two theories have successfully explained a majority of ground and spacecraft measurements showing that the acceleration pattern is related to the structure of the observed background electric fields or wave turbulence. However, there are observations of auroral arcs where the electron flux is seen to be enhanced near the arc edge where wave turbulence occurs[Lynch et al. 1999; Ivchenko et el. 1999]. Though the reports on such events are few in the literature, their existence can not readly be explained by the current theories cited above and a further explanation is necessary. In this paper we present a theoretical discussion that supports the conjecture of wave-particle interactions assisted by a background electric field working so as to enhance the electron fluxes at the auroral arc edge.

  8. Teleconnections, Midlatitude Cyclones and Aegean Sea Turbulent Heat Flux Variability on Daily Through Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Romanou, Anastasia; Bauer, Michael; Tselioudis, George

    2013-01-01

    We analyze daily wintertime cyclone variability in the central and eastern Mediterranean during 1958-2001, and identify four distinct cyclone states, corresponding to the presence or absence of cyclones in each basin. Each cyclone state is associated with wind flows that induce characteristic patterns of cooling via turbulent (sensible and latent) heat fluxes in the eastern Mediterranean basin and Aegean Sea. The relative frequency of occurrence of each state determines the heat loss from the Aegean Sea during that winter, with largest heat losses occurring when there is a storm in the eastern but not central Mediterranean (eNOTc), and the smallest occurring when there is a storm in the central but not eastern Mediterranean (cNOTe). Time series of daily cyclone states for each winter allow us to infer Aegean Sea cooling for winters prior to 1985, the earliest year for which we have daily heat flux observations. We show that cyclone states conducive to Aegean Sea convection occurred in 1991/1992 and 1992/1993, the winters during which deep water formation was observed in the Aegean Sea, and also during the mid-1970s and the winters of 1963/1964 and 1968/1969. We find that the eNOTc cyclone state is anticorrelated with the North Atlantic Oscillation (NAO) prior to 1977/1978. After 1977/1978, the cNOTe state is anticorrelated with both the NAO and the North Caspian Pattern (NCP), showing that the area of influence of large scale atmospheric teleconnections on regional cyclone activity shifted from the eastern to the central Mediterranean during the late 1970s. A trend toward more frequent occurrence of the positive phase of the NAO produced less frequent cNOTe states since the late 1970s, increasing the number of days with strong cooling of the Aegean Sea surface waters.

  9. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  10. Air-Sea Exchange and Budget of Sulfur and Oxygen-Containing Volatile Organic Compounds in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Tanimoto, H.; Omori, Y.; Inomata, S.; Iwata, T.; Kameyama, S.

    2015-12-01

    By combining proton transfer reaction-mass spectrometry (PTR-MS) and gradient flux (GF) technique, in situ measurement of air-sea fluxes of multiple volatile organic compounds (VOCs) was developed and deployed. Starting in 2008, we made in situ observations of air-sea fluxes at 15 locations as well as underway observations of marine air/surface seawater bulk concentrations in the Pacific Ocean, during eight research cruises by R/V Hakuho-Maru. The fluxes of biogenic trace gases, DMS and isoprene, were always positive, with the magnitudes being in accordance with previously reported. In contrast, the fluxes of oxygenated VOCs including acetone and acetaldehyde varied from negative to positive, suggesting that the tropical and subtropical Pacific are a source, while the North Pacific is a sink. A basin-scale budget of VOCs were determined for 4 biogeochemical provinces in the Pacific Ocean, and the role of oceans for VOCs were discussed with respect to physical and biogeochemical processes.

  11. The NEMO-AROME WMED high-resolution air-sea coupled system: impact on dense water formation

    NASA Astrophysics Data System (ADS)

    Léger, Fabien; Lebeaupin Brossier, Cindy; Giordani, Hervé; Arsouze, Thomas; Beuvier, Jonathan; Bouin, Marie-Noëlle; Ducrocq, Véronique; Fourrié, Nadia

    2016-04-01

    The North-Western Mediterranean Sea is a key location where intense air-sea exchanges occur, especially during winter when the succession of strong northerly and north-westerly wind boosts the dense water formation. The second Special Observation Period (SOP2) of the HyMeX program, which took place between 1st February and 15th March 2013, was dedicated to the observation of the dense water formation and ocean deep convection processes. During this period, several platforms sampled the area, providing a unique dataset to better identify the coupled processes leading to dense water formation. This study investigates the impacts of the fine scale ocean-atmosphere coupled processes on dense water formation during winter 2012-2013. We developed the coupling between the NEMO-WMED36 ocean model (1/36° resolution) and the AROME-WMED numerical weather prediction model (2.5 km resolution) and ran the high-resolution air-sea coupled system over SOP2. The coupled simulation is compared to an ocean-only simulation forced by AROME-WMED operational forecasts and to air-sea observations collected during the HyMeX SOP2. The results show small differences in term of surface fluxes. Dense water formation is slightly changed in the coupled simulation, whereas fine-scale ocean processes are significantly modified.

  12. Air-sea interactions and oceanic processes in the development of different Atlantic Niño patterns

    NASA Astrophysics Data System (ADS)

    Martin-Rey, Marta; Polo, Irene; Rodríguez-Fonseca, Belén; Lazar, Alban

    2016-04-01

    Atlantic Niño is the leading mode of inter-annual variability of the tropical Atlantic basin at inter-annual time scales. A recent study has put forward that two different Atlantic Niño patterns co-exist in the tropical Atlantic basin during negative phases of the Atlantic Multidecadal Oscillation. The leading mode, Basin-Wide (BW) Atlantic Niño is characterized by an anomalous warming extended along the whole tropical basin. The second mode, the Dipolar (D) Atlantic Niño presents positive Sea Surface Temperature (SST) anomalies in the central-eastern equatorial band, surrounded by negative ones in the North and South tropical Atlantic. The BW Atlantic Niño is associated with a weakening of both Azores and Sta Helena High, which reduces the tropical trades during previous autumn-winter. On the other hand, the D-Atlantic Niño is related to a strengthening of the Azores and a weakening of Helena High given rise to a meridional Sea Level Pressure (SLP) gradient that originates an intensification of the subtropical trades and anomalous westerlies along the equatorial band. This different wind forcing suggests that different oceanic processes could act in the development of the BW and D Atlantic Niño patterns. For this reason, an inter-annual simulation with the ocean NEMO model has been performed and the heat budget analysis has been analysed for each Atlantic Niño mode. The results suggest that the two Atlantic Nino configurations have different timing. The heat budget analysis reveals that BW Atlantic Nino SST pattern is due to anomalous air-sea heat fluxes in the south tropical and western equatorial Atlantic during the autumn-winter, while vertical processes are responsible of the warming in the central and eastern part of the basin during late-winter and spring. For the D-Atlantic Nino, the subtropical cooling is attributed to turbulent heat fluxes, the equatorial SST signal is mainly forced by vertical entrainment. The role of the oceanic waves in the

  13. Numerical Experiments Using a Convective Flux Limiter on a Turbulent Single-Mode Rayleigh-Taylor Instability

    SciTech Connect

    Cloutman, L.D.

    2000-07-10

    Direct numerical simulation and large eddy simulations are powerful tools for studying turbulent flows. Unfortunately, they are computationally demanding in terms of run times, storage, and accuracy of the numerical method used. In particular, high order methods promise high accuracy on a given grid, but they often fail to deliver the expected accuracy due to dispersive truncation errors that appear as unphysical oscillations in the numerical solutions. This report describes a nonlinear flux limiter that has been applied to the second-order tensor viscosity method and markedly reduces the dispersive truncation errors. A Rayleigh-Taylor instability is simulated to show how well the flux limiter works.

  14. Modeling the effect of lithium-induced pedestal profiles on scrape-off-layer turbulence and the heat flux width

    DOE PAGESBeta

    Russell, David A.; D'Ippolito, Daniel A.; Myra, James R.; Canik, John M.; Gray, Travis K.; Zweben, Stewart J.

    2015-09-01

    The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (“SOL Turbulence”) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured inmore » the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting “free” dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infra-red thermography, and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.« less

  15. Modeling the effect of lithium-induced pedestal profiles on scrape-off-layer turbulence and the heat flux width

    SciTech Connect

    Russell, David A.; D'Ippolito, Daniel A.; Myra, James R.; Canik, John M.; Gray, Travis K.; Zweben, Stewart J.

    2015-09-01

    The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (“SOL Turbulence”) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured in the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting “free” dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infra-red thermography, and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.

  16. Turbulence

    NASA Astrophysics Data System (ADS)

    Frisch, Uriel

    1996-01-01

    Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.

  17. Spatial and temporal variability of turbulent vertical fluxes in Helsinki, Finland

    NASA Astrophysics Data System (ADS)

    Järvi, L.; Nordbo, A.; Haapanala, S.; Moilanen, J.; Vesala, T.

    2012-04-01

    The eddy-covariance technique has been widely used above vegetated surfaces to measure the turbulent exchange of momentum, heat and gases between the surface and the atmosphere. Above an urban surface, however, observations are scarce and complex measurement surroundings bring challenges to the measurements and the representativeness of the fluxes in a city scale. The fluxes of sensible (QH) and latent heat (QE), and CO2 (Fc) have been measured at three sites in Helsinki, Finland. At the SMEAR III station the measurements have been ongoing since December 2005 and the site is located next to a busy road about 4 km from downtown Helsinki. Two of the sites, Erottaja Fire Station (EFS) and Hotel Torni (HT), are located in downtown within a distance of 400 meters from each other. In EFS, the measurements have been carried out in June 2010 - January 2011, while in HT, the measurements have been ongoing since September 2010. The present dataset allows the studying of the inter-site variability of the exchange processes. Simultaneous measurements from all three sites cover four months in autumn/winter time. The high-latitude location allows a detailed examination of the effect of seasonal variation to the exchange processes. QH tends to be higher in city centre than in SMEAR III and a difference of 50 W m-2 is observed in winter. During the simultaneous measurements, stable atmospheric stratification is observed half of the time at SMEAR III whereas the occurrence in the city centre is less than 5%. This is a result of the urban heat island effect which is stronger in downtown than in the outside region. On the other hand, higher QE is measured in SMEAR III than in downtown particularly during spring and summer months when a difference of 100 W m-2 is observed. In downtown the low fraction of green areas limits the evaporation. Despite the short distance there are also differences between the two downtown sites. Both the median QH and QE are 7 W m-2 smaller in EFS than in

  18. Air-sea gas transfer for two gases of different solubility (CO2 and O2)

    NASA Astrophysics Data System (ADS)

    Rutgersson, A.; Andersson, A.; Sahlée, E.

    2016-05-01

    At the land-based marine measuring site Östergarnsholm in the Baltic Sea, the eddy covariance technique was used to measure air-sea fluxes of carbon dioxide and oxygen. High- frequency measurements of oxygen were taken with a Microx TX3 optode using the luminescence lifetime technique. The system gives reasonable oxygen fluxes after the limited frequency response of the sensor was corrected for. For fluxes of carbon dioxide the LICOR-7500 instrument was used. Using flux data to estimate transfer velocities indicates higher transfer velocity for oxygen compared to carbon dioxide for winds above 5 m/s. There are too few data for any extensive conclusions, but a least-square fit of the data gives a cubic wind speed dependence of oxygen corresponding to k 660 = 0.074U 3 10. The more effective transfer for oxygen compared to carbon dioxide above 5 m/s is most likely due to enhanced efficiency of oxygen exchange across the surface. Oxygen has lower solubility compared with carbon dioxide and might be more influenced by near surface processes such as microscale wave breaking or sea spray.

  19. Intercomparison of Latent Heat Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.; Chou, Ming-Dah

    2003-01-01

    Turbulent fluxes of momentum, moisture, and heat at the air-sea interface are essential for climate studies. Version 2 Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2) has been derived from the Special Sensor Microwave/Imager (SSM/I) radiance measurements. This dataset, covering the period July 1987-December 2000 over global oceans, has a spatial resolution of 1 deg x 1 deg lat-long and a temporal resolution of 1 day. Turbulent fluxes are derived from the SSM/I surface winds and surface air humidity, as well as the 2-m air and sea surface temperatures (SST) of the NCEP/NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory. The GSSTF2 bulk flux model, and retrieved daily wind stress, latent heat flux, wind speed, and surface air humidity validate well with ship observations of ten field experiments over the tropical and midlatitude oceans during 1991-99. The global distributions of 1988-2000 annual- and seasonal-mean turbulent fluxes show reasonable patterns related to the atmospheric general circulation and seasonal variations. Latent heat fluxes and related input parameters over global oceans during 1992-93 have been compared among GSSTF1 (version 1), GSSTF2, HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data), NCEP/NCAR reanalysis, and one based on COADS (Comprehensive Ocean-Atmosphere Data Set). Our analyses suggest that the GSSTF2 latent heat flux, surface air humidity, surface wind, and SST are quite realistic compared to the other four flux datasets examined. However, significant differences are found among these five flux datasets. The GSSTF2, available at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/hydrology/hd_gsstf2.O.html, is useful for climate studies.

  20. Measuring and modeling the flux of fecal bacteria across the sediment-water interface in a turbulent stream

    NASA Astrophysics Data System (ADS)

    Grant, Stanley B.; Litton-Mueller, Rachel M.; Ahn, Jong H.

    2011-05-01

    Sediments are a pervasive source of fecal indicator bacteria (FIB) in rivers, lakes, estuaries, and oceans and may constitute a long-term reservoir of human disease. Previous attempts to quantify the flux of FIB across the sediment-water interface (SWI) are limited to extreme flow events, for which the primary mechanism of bacterial release is disruption and/or erosion of the sediment substrate. Here we report measurements of FIB flux across the SWI in a turbulent stream that is not undergoing significant erosion. The stream is formed by the steady discharge of bacteria-free disinfected and highly treated wastewater effluent to an earthen channel harboring high concentrations of FIB in the sediment from in situ growth. The flux j″ of FIB across the SWI, estimated from mass balance on FIB measurements in the water column, scales linearly with the concentration of bacteria in sediment pore fluids Cpore over a 3 decade change in both variables: ? The magnitude of the observed mass transfer velocity (? m s-1) is significantly larger than values predicted for either the diffusion of bacteria across a concentration boundary layer (? m s-1) or sweep and eject fluid motions at the SWI (? m s-1) but is similar to the flux of water between the stream and its hyporheic zone estimated from dye injection experiments. These results support the hypothesis that hyporheic exchange controls the trafficking of bacteria, and perhaps other types of particulate organic matter, across the SWI in turbulent streams.

  1. Seasonal variability of turbulent fluxes over a vegetated subtropical coastal wetland measured by large aperture scintillometry and eddy covariance

    NASA Astrophysics Data System (ADS)

    Guyot, Adrien; Gray, Michael; Riesenkamp, Michiel; Lockington, David; McGowan, Hamish

    2016-04-01

    Subtropical coastal wetlands are particularly susceptible to the impacts of climate variability: their recharge rates strongly depend on rainfall, and the occurrence of prolonged droughts or wet periods have direct consequences for wetland health and bio-diversity. There is therefore a need to close the water budget of these ecosystems and this requires the quantification of rates of evaporation/evapotranspiration. However, few studies have documented land-atmosphere exchanges over wetlands for which water level varies considerably during a typical annual cycle. Here, we present a year of turbulent flux observations over a wetland on the subtropical coast of eastern Australia. Large Aperture Scintillometry and Eddy Covariance are used to derive sensible heat fluxes. Latent heat fluxes are also derived through an energy balance for both instruments' observations and also directly through Eddy Covariance. Careful sensitivity analysis of the instrumental footprints, seasonal variations of land surface parameters such as roughness length and displacement height are examined and subsequent uncertainties in the derived turbulent fluxes are discussed. Finally we show how these observations can also help better understand hydrological processes at the catchment scale.

  2. The Influence of Tropical Air-Sea Interaction on the Climate Impact of Aerosols: A Hierarchical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Hsieh, W. C.; Saravanan, R.; Chang, P.; Mahajan, S.

    2014-12-01

    In this study, we use a hierarchical modeling approach to investigate the influence of tropical air-sea feedbacks on climate impacts of aerosols in the Community Earth System Model (CESM). We construct four different models by coupling the atmospheric component of CESM, the Community Atmospheric Model (CAM), to four different ocean models: (i) the Data Ocean Model (DOM; prescribed SST), (i) Slab Ocean Model (SOM; thermodynamic coupling), (iii) Reduced Gravity Ocean Model (RGOM; dynamic coupling), and (iv) the Parallel Ocean Program (POP; full ocean model). These four models represent progressively increasing degree of coupling between the atmosphere and the ocean. The RGOM model, in particular, is tuned to produce a good simulation of ENSO and the associated tropical air-sea interaction, without being impacted by the climate drifts exhibited by fully-coupled GCMs. For each method of coupling, a pair of numerical experiments, including present day (year 2000) and preindustrial (year 1850) sulfate aerosol loading, were carried out. Our results indicate that the inclusion of air-sea interaction has large impacts on the spatial structure of the climate response induced by aerosols. In response to sulfate aerosol forcing, ITCZ shifts southwards as a result of the anomalous clockwise MMC change which transports moisture southwardly across the Equator. We present analyses of the regional response to sulfate aerosol forcing in the equatorial Pacific as well as the zonally-averaged response. The decomposition of the change in the net surface energy flux shows the most dominant terms are net shortwave radiative flux at the surface and latent heat flux. Further analyses show all ocean model simulations simulate a positive change of northward atmospheric energy transport across the Equator in response to the perturbed radiative sulfate forcing. This positive northward atmospheric energy transport change plays a role in compensating partially cooling caused by sulfate aerosols.

  3. Research in Observations of Oceanic Air/Sea Interaction

    NASA Technical Reports Server (NTRS)

    Long, David G.; Arnold, David V.

    1995-01-01

    The primary purpose of this research has been: (1) to develop an innovative research radar scatterometer system capable of directly measuring both the radar backscatter and the small-scale and large-scale ocean wave field simultaneously and (2) deploy this instrument to collect data to support studies of air/sea interaction. The instrument has been successfully completed and deployed. The system deployment lasted for six months during 1995. Results to date suggest that the data is remarkably useful in air/sea interaction studies. While the data analysis is continuing, two journal and fifteen conference papers have been published. Six papers are currently in review with two additional journal papers scheduled for publication. Three Master's theses on this research have been completed. A Ph.D. student is currently finalizing his dissertation which should be completed by the end of the calendar year. We have received additional 'mainstream' funding from the NASA oceans branch to continue data analysis and instrument operations. We are actively pursuing results from the data expect additional publications to follow. This final report briefly describes the instrument system we developed and results to-date from the deployment. Additional detail is contained in the attached papers selected from the bibliography.

  4. Flux Rope Formation and Self-Generated Turbulent Reconnection Driven by the Plasmoid Instability in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Huang, Y. M.

    2015-12-01

    It has been established that the Sweet-Parker current layer in high Lundquist number reconnection is unstable to the super-Alfvénic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime where the Sweet-Parker current layer changes into a chain of plasmoids connected by secondary current sheets, and the averaged reconnection rate becomes nearly independent of the Lundquist number. In this work, three-dimensional simulations with a guide field shows that the additional degree of freedom allows plasmoid instabilities to grow at oblique angles. We present a scenario in which large-scale oblique tearing modes overlap with each other, break flux surfaces, and stir up a spectrum of smaller-scale tearing modes, leading eventually to self-generated turbulent reconnection. The averaged reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfvén speed, which is similar to the two-dimensional result but is an order of magnitude lower than the fastest reconnection rate reported in recent studies of externally driven three-dimensional turbulent reconnection. Kinematic and magnetic energy fluctuations both form elongated eddies along the direction of local magnetic field, which is a signature of anisotropic magnetohydrodynamic turbulence. Both energy fluctuations satisfy power-law spectra in the inertial range. The anisotropy of turbulence eddies is found to be nearly scale-independent, in contrast with the prediction of the Goldreich-Sridhar (GS) theory for anisotropic turbulence in a homogeneous plasma permeated by a uniform magnetic field. The effect of varying the magnitude of the toroidal field on the critical balance condition underlying the GS theory is discussed.

  5. Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Xiao, X.; Edwards, J. R.; Hassan, H. A.; Gaffney, R. L., Jr.

    2007-01-01

    A new turbulence model suited for calculating the turbulent Prandtl number as part of the solution is presented. The model is based on a set of two equations: one governing the variance of the enthalpy and the other governing its dissipation rate. These equations were derived from the exact energy equation and thus take into consideration compressibility and dissipation terms. The model is used to study two cases involving shock wave/boundary layer interaction at Mach 9.22 and Mach 5.0. In general, heat transfer prediction showed great improvement over traditional turbulence models where the turbulent Prandtl number is assumed constant. It is concluded that using a model that calculates the turbulent Prandtl number as part of the solution is the key to bridging the gap between theory and experiment for flows dominated by shock wave/boundary layer interactions.

  6. Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Gaffney, R. L., Jr.; Xiao, X.; Edwards, J. R.; Hassan, H. A.

    2005-01-01

    A new turbulence model suited for calculating the turbulent Prandtl number as part of the solution is presented. The model is based on a set of two equations: one governing the variance of the enthalpy and the other governing its dissipation rate. These equations were derived from the exact energy equation and thus take into consideration compressibility and dissipation terms. The model is used to study two cases involving shock wave/boundary layer interaction at Mach 9.22 and Mach 5.0. In general, heat transfer prediction showed great improvement over traditional turbulence models where the turbulent Prandtl number is assumed constant. It is concluded that using a model that calculates the turbulent Prandtl number as part of the solution is the key to bridging the gap between theory and experiment for flows dominated by shock wave/boundary layer interactions.

  7. Temporal variations in air-sea CO2 exchange near large kelp beds near San Diego, California

    NASA Astrophysics Data System (ADS)

    Ikawa, Hiroki; Oechel, Walter C.

    2015-01-01

    study presents nearly continuous air-sea CO2 flux for 7 years using the eddy covariance method for nearshore water near San Diego, California, as well as identifying environmental processes that appear to control temporal variations in air-sea CO2 flux at different time scales using time series decomposition. Monthly variations in CO2 uptake are shown to be positively influenced by photosynthetically active photon flux density (PPFD) and negatively related to wind speeds. In contrast to the monthly scale, wind speeds often influenced CO2 uptake positively on an hourly scale. Interannual variations in CO2 flux were not correlated with any independent variables, but did reflect surface area of the adjacent kelp bed in the following year. Different environmental influences on CO2 flux at different temporal scales suggest the importance of long-term flux monitoring for accurately identifying important environmental processes for the coastal carbon cycle. Overall, the study area was a strong CO2 sink into the sea (CO2 flux of ca. -260 g C m-2 yr-1). If all coastal areas inhabited by macrophytes had a similar CO2 uptake rate, the net CO2 uptake from these areas alone would roughly equal the net CO2 sink estimated for the entire global coastal ocean to date. A similar-strength CO2 flux, ranging between -0.09 and -0.01 g C m-2 h-1, was also observed over another kelp bed from a pilot study of boat-based eddy covariance measurements.

  8. The dynamic evolution of active-region-scale magnetic flux tubes in the turbulent solar convective envelope

    NASA Astrophysics Data System (ADS)

    Weber, Maria Ann

    2014-12-01

    The Sun exhibits cyclic properties of its large-scale magnetic field on the order of sigma22 years, with a ˜11 year frequency of sunspot occurrence. These sunspots, or active regions, are the centers of magnetically driven phenomena such as flares and coronal mass ejections. Volatile solar magnetic events directed toward the Earth pose a threat to human activities and our increasingly technological society. As such, the origin and nature of solar magnetic flux emergence is a topic of global concern. Sunspots are observable manifestations of solar magnetic fields, thus providing a photospheric link to the deep-seated dynamo mechanism. However, the manner by which bundles of magnetic field, or flux tubes, traverse the convection zone to eventual emergence at the solar surface is not well understood. To provide a connection between dynamo-generated magnetic fields and sunspots, I have performed simulations of magnetic flux emergence through the bulk of a turbulent, solar convective envelope by employing a thin flux tube model subject to interaction with flows taken from a hydrodynamic convection simulation computed through the Anelastic Spherical Harmonic (ASH) code. The convective velocity field interacts with the flux tube through the drag force it experiences as it traverses through the convecting medium. Through performing these simulations, much insight has been gained about the influence of turbulent solar-like convection on the flux emergence process and resulting active region properties. I find that the dynamic evolution of flux tubes change from convection dominated to magnetic buoyancy dominated as the initial field strength of the flux tubes increases from 15 kG to 100 kG. Additionally, active-region-scale flux tubes of 40 kG and greater exhibit properties similar to those of active regions on the Sun, such as: tilt angles, rotation rates, and morphological asymmetries. The joint effect of the Coriolis force and helical motions present in convective

  9. Characterization and Parametrization of Reynolds Stress and Turbulent Heat Flux in the Stably-Stratified Lower Arctic Troposphere Using Aircraft Measurements

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir A.; Staebler, Ralf M.; Liu, Michael; Herber, Andreas

    2016-06-01

    Aircraft measurements are used to characterize properties of clear-air turbulence in the lower Arctic troposphere. For typical vertical resolutions in general circulation models, there is evidence for both downgradient and countergradient vertical turbulent transport of momentum and heat in the mostly statically stable conditions within both the boundary layer and the free troposphere. Countergradient transport is enhanced in the free troposphere compared to the boundary layer. Three parametrizations are suggested to formulate the turbulent heat flux and are evaluated using the observations. The parametrization that accounts for the anisotropic nature of turbulence and buoyancy flux predicts both observed downgradient and countergradient transport of heat more accurately than those that do not. The inverse turbulent Prandtl number is found to only weakly decrease with increasing gradient Richardson number in a statistically significant way, but with large scatter in the data. The suggested parametrizations can potentially improve the performance of regional and global atmospheric models.

  10. Tidal and atmospheric influences on near-surface turbulence in an estuary

    NASA Astrophysics Data System (ADS)

    Orton, Philip M.; Zappa, Christopher J.; McGillis, Wade R.

    2010-12-01

    Estuarine near-surface turbulence is important for transport, mixing, and air-water exchanges of many important constituents but has rarely been studied in detail. Here, we analyze a unique set of estuarine observations of in situ atmospheric and full water column measurements, estimated air-sea exchanges, and acoustic measurements of several terms in the turbulent kinetic energy (TKE) budget. Observations from a 5.1 m deep site in the Hudson River estuary include dissipation at 50 cm depth (ɛ50), as well as profiles of TKE, shear production of TKE (P), and net turbulent vertical TKE transport (TD). Regressions suggest that the principal controlling factor for ɛ50 was wind (through the surface shear velocity, U*) and that the surface heat flux and tidal currents played a secondary role. For ebb spring tides, the TKE budget at 50 cm depth was closed within noise levels. Ebbs had high ɛ50 due to local shear production, which nearly balanced ɛ50. Floods had TD approaching P in the upper water column but generally weak near-surface shear and turbulence. Examining buoyancy fluxes that impact near-surface stratification and can indirectly control turbulence, solar heat input and tidal straining caused similar buoyancy fluxes on a sunny, calm weather day, promoting ebb tide restratification. Wind-driven mixing was found to dominate during a fall season storm event, and strong overnight heat loss after the storm helped delay restratification afterward. These results demonstrate the utility of combining detailed air-sea interaction and physical oceanographic measurements in future estuary studies.

  11. Air-sea Exchange of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs) and Polybrominated Diphenyl Ethers (PBDEs) in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Lammel, G. P.; Heil, A.; Kukucka, P.; Meixner, F. X.; Mulder, M. D.; Prybilova, P.; Prokes, R.; Rusina, T. S.; Song, G. Z.; Vrana, B.

    2015-12-01

    The marine atmospheric environment is a receptor for persistent organic pollutants (POPs) which are advected from sources on land, primary, such as biomass burning by-products (PAHs, dioxins), and secondary, such as volatilization from contaminated soils (PCBs, pesticides). Primary sources do not exist in the marine environment, except for PAHs (ship engines) but following previous atmospheric deposition, the sea surface may turn to a secondary source by reversal of diffusive air-sea mass exchange. No monitoring is in place. We studied the vertical fluxes of a wide range of primary and secondary emitted POPs based on measurements in air and surface seawater at a remote coastal site in the eastern Mediterranean (2012). To this end, silicon rubbers were used as passive water samplers, vertical concentration gradients were determined in air and fluxes were quantified based on Eddy covariance. Diffusive air-sea exchange fluxes of hexachlorocyclohexanes (HCHs) and semivolatile PAHs were found close to phase equilibrium, except one PAH, retene, a wood burning tracer, was found seasonally net-volatilisational. Some PCBs, p,p'-DDE, penta- and hexachlorobenzene (PeCB, HCB) were mostly net-depositional, while PBDEs were net-volatilizational. Fluxes determined at a a remote coastal site ranged -33 - +2.4 µg m-2 d-1 for PAHs and -4.0 - +0.3 µg m-2 d-1for halogenated compounds (< 0 means net-deposition, > 0 means net-volatilization). It is concluded that nowadays in open seas more pollutants are undergoing reversal of the direction of air-sea exchange. Recgional fire activity records in combination with box model simulations suggest that deposition of retene during summer is followed by a reversal of air-sea exchange. The seawater surface as secondary source of pollution should be assessed based on flux measurements across seasons and over longer time periods.

  12. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone

    NASA Astrophysics Data System (ADS)

    Butterworth, Brian J.; Miller, Scott D.

    2016-07-01

    Direct carbon dioxide flux measurements using eddy covariance from an icebreaker in the high-latitude Southern Ocean and Antarctic marginal ice zone are reported. Fluxes were combined with the measured water-air carbon dioxide partial pressure difference (ΔpCO2) to compute the air-sea gas transfer velocity (k, normalized to Schmidt number 660). The open water data showed a quadratic relationship between k (cm h-1) and the neutral 10 m wind speed (U10n, m s-1), kopen = 0.245 U10n2 + 1.3, in close agreement with decades old tracer-based results and much lower than cubic relationships inferred from previous open ocean eddy covariance studies. In the marginal ice zone, the effective gas transfer velocity decreased in proportion to sea ice cover, in contrast with predictions of enhanced gas exchange in the presence of sea ice. The combined open water and marginal ice zone results affect the calculated magnitude and spatial distribution of Southern Ocean carbon flux.

  13. Prediction of Turbulent Heat Fluxes by Assimilation of Remotely Sensed Land Surface Temperature and Soil Moisture Data into an Ensemble-Based Data Assimilation Framework

    NASA Astrophysics Data System (ADS)

    Xu, T.; Bateni, S. M.; Liu, S.

    2015-12-01

    Accurate estimation of turbulent heat fluxes is important for water resources planning and management, irrigation scheduling, and weather forecast. Land surface models (LSMs) can be used to simulate turbulent heat fluxes over large-scale domains. However, the application of LSMs is hindered due to the high uncertainty in model parameters and state variables. In this study, a dual-pass ensemble-based data assimilation (DA) approach is developed to estimate turbulent heat fluxes. Initially, the common land model (CoLM) is used as the LSM (open-loop), and thereafter the ensemble Kalman filter is employed to optimize the CoLM parameters and variables. The first pass of the DA scheme optimizes vegetation parameters of CoLM (which are related to the leaf stomatal conductance) on a weekly-basis by assimilating the MODIS land surface temperature (LST) data. The second pass optimizes the soil moisture state of CoLM on a daily-basis by assimilating soil moisture observations from Cosmic-ray instrument. The ultimate goal is to improve turbulent heat fluxes estimates from CoLM by optimizing its vegetation parameters and soil moisture state via assimilation of LST and soil moisture data into the proposed DA system. The DA approach is tested over a wet and densely vegetated site, called Daman in northwest of China. Results indicate that the CoLM (open-loop) model typically underestimates latent heat flux and overestimates sensible heat flux. By assimilation of LST in the first pass, the turbulent heat fluxes are improved compared to those of the open-loop. These fluxes become even more accurate by assimilation of soil moisture in the second pass of the DA approach. These findings illustrate that the introduced DA approach can successfully extract information in LST and soil moisture data to optimize the CoLM parameters and states and improve the turbulent heat fluxes estimates.

  14. Decoupling of mass flux and turbulent wind fluctuations in drifting snow

    NASA Astrophysics Data System (ADS)

    Paterna, E.; Crivelli, P.; Lehning, M.

    2016-05-01

    The wind-driven redistribution of snow has a significant impact on the climate and mass balance of polar and mountainous regions. Locally, it shapes the snow surface, producing dunes and sastrugi. Sediment transport has been mainly represented as a function of the wind strength, and the two processes assumed to be stationary and in equilibrium. The wind flow in the atmospheric boundary layer is unsteady and turbulent, and drifting snow may never reach equilibrium. Our question is therefore: what role do turbulent eddies play in initiating and maintaining drifting snow? To investigate the interaction between drifting snow and turbulence experimentally, we conducted several wind tunnel measurements of drifting snow over naturally deposited snow covers. We observed a coupling between snow transport and turbulent flow only in a weak saltation regime. In stronger regimes it self-organizes developing its own length scales and efficiently decoupling from the wind forcing.

  15. A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations

    NASA Astrophysics Data System (ADS)

    Gorlé, C.; Iaccarino, G.

    2013-05-01

    Reynolds-averaged Navier-Stokes (RANS) simulations are a practical approach for solving complex multi-physics turbulent flows, but the underlying assumptions of the turbulence models introduce errors and uncertainties in the simulation outcome. The flow in scramjet combustors is an example of such a complex flow and the accurate characterization of safety and operability limits of these engines using RANS simulations requires an assessment of the model uncertainty. The objective of this paper is to present a framework for the epistemic uncertainty quantification of turbulence and mixing models in RANS simulations. The capabilities of the methodology will be demonstrated by performing simulations of the mixing of an underexpanded jet in a supersonic cross flow, which involves many flow features observed in scramjet engines. The fundamental sources of uncertainty in the RANS simulations are the models used for the Reynolds stresses in the momentum equations and the turbulent scalar fluxes in the scalar transport equations. The methodology consists in directly perturbing the modeled quantities in the equations, thereby establishing a method that is completely independent of the initial model form to overcome the limitations of traditional sensitivity studies. The perturbations are defined in terms of the decomposed Reynolds stress tensor, i.e., the tensor magnitude and the eigenvalues and eigenvectors of the normalized anisotropy tensor. The turbulent scalar fluxes are perturbed by using the perturbed Reynolds stresses in a generalized gradient diffusion model formulation and by changing the model constant. The perturbations were parameterized based on a comparison between the Reynolds stresses obtained from a baseline RANS simulation and those obtained from a large-eddy simulation database. Subsequently an optimization problem was solved, varying the parameters in the perturbation functions to maximize a quantity of interest that quantifies the downstream mixing. The

  16. In calm seas, precipitation drives air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-05-01

    In a series of experiments run in what resembles a heavily instrumented fish tank, Harrison et al. investigated the interwoven roles of wind and rain on air-sea gas exchange rates. Working with a 42-meterlong, 1-meter-wide, and 1.25-meter-tall experimental pool, the authors were able to control the wind speed, rainfall rate, water circulation speed, and other parameters, which they used to assess the effect of 24 different wind speed-rainfall rate combinations on the gas exchange rate of sulfur hexafuoride, a greenhouse gas. In trials that lasted up to 3 hours, the authors collected water samples from the tank at regular intervals, tracking the concentration of the dissolved gas.

  17. Experimental determination of turbulent fluxes over the heterogeneous LITFASS area: Selected results from the LITFASS-98 experiment

    NASA Astrophysics Data System (ADS)

    Beyrich, F.; Richter, S. H.; Weisensee, U.; Kohsiek, W.; Lohse, H.; de Bruin, H. A. R.; Foken, Th.; Göckede, M.; Berger, F.; Vogt, R.; Batchvarova, E.

    During the LITFASS-98 experiment, local flux measurements were performed over five different types of underlying surface (grass, barley, triticale, pine forest, water) in a heterogeneous landscape using eddy covariance and profile techniques over a three week time period in June, 1998. Estimates of the area-integrated sensible heat flux during daytime were obtained from continuous measurements with a large aperture scintillometer (LAS) along a 4.7km path. The calculation of a mean diurnal cycle of the fluxes during the experiment revealed significant differences between the main land use classes. A land-use weighted average of the sensible heat flux was found to be in good agreement with the LAS based estimate, which in turn was supported by other regionally integrated flux estimates from budget considerations and aircraft measurements for a few case studies. The profiles of turbulent quantities measured along a 99m-tower significantly deviate from ``idealised'' profiles measured over homogeneous terrain. Peculiarities in the profile structure could be attributed to the heterogeneity of the terrain, namely to the differences in the surface characteristics of the footprint areas for the different tower levels.

  18. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture using the particle batch smoother

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan; van de Giesen, Nick

    2016-04-01

    This study is focused on estimating surface sensible and latent heat fluxes from land surface temperature (LST) time series and soil moisture observations. Surface turbulent heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology and other climate-related fields, but in-situ measurements are costly and difficult. It has been demonstrated that the time series of LST contains information of energy partitioning and that surface turbulent heat fluxes can be determined from assimilation of LST. These studies are mainly based on two assumptions: (1) a monthly value of bulk heat transfer coefficient under neutral conditions (CHN) which scales the sum of the fluxes, and (2) an evaporation fraction (EF) which stays constant during the near-peak hours of the day. Previous studies have applied variational and ensemble approaches to this problem. Here the newly developed particle batch smoother (PBS) algorithm is adopted to test its capability in this application. The PBS can be seen as an extension of the standard particle filter (PF) in which the states and parameters within a fix window are updated in a batch using all observations in the window. The aim of this study is two-fold. First, the PBS is used to assimilate only LST time series into the force-restore model to estimate fluxes. Second, a simple soil water transfer scheme is introduced to evaluate the benefit of assimilating soil moisture observations simultaneously. The experiments are implemented using the First ISLSCP (International Satellite Land Surface Climatology Project) (FIFE) data. It is shown that the restored LST time series using PBS agrees very well with observations, and that assimilating LST significantly improved the flux estimation at both daily and half-hourly time scales. When soil moisture is introduced to further constrain EF, the accuracy of estimated EF is greatly improved. Furthermore, the RMSEs of retrieved fluxes are effectively reduced at both

  19. Eddy covariance flux of sulfur dioxide to the sea surface: Air-side resistance to deposition of a highly soluble gas

    NASA Astrophysics Data System (ADS)

    Porter, J.; De Bruyn, W. J.; Miller, S. D.; Saltzman, E. S.

    2014-12-01

    Deposition to the sea surface represents a major atmospheric removal mechanism for sulfur dioxide and many other highly soluble products of tropospheric photochemistry. Such gases include nitric acid, ammonia, organic acids, sulfur dioxide, and highly soluble organic compounds such as methanol and acetone. The deposition of highly soluble gases is controlled by turbulent and diffusive transport on the air side of the air/sea interface. In this study, air/sea fluxes of the soluble gas sulfur dioxide (SO2 ), sensible and latent heat, and momentum were measured using eddy covariance. This was a pilot study carried out in April 2014 on Scripps pier in La Jolla, California, that was designed to assess the potential for measuring SO2 fluxes over the ocean. SO2 was detected using chemical ion mass spectrometry in negative ion mode with a sensitivity of roughly 100 Hz/ppt. The ionization scheme involved addition of ozone to a dried air stream and subsequent conversion of SO2 to the SO5 - ion. The results demonstrate the feasibility of seagoing SO2 flux measurements. Such measurements can be used to constrain the depositional velocities of soluble gases and test models for air-side resistance to air/sea gas transfer.

  20. Interaction between neoclassical effects and ion temperature gradient turbulence in gradient- and flux-driven gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Oberparleiter, M.; Jenko, F.; Told, D.; Doerk, H.; Görler, T.

    2016-04-01

    Neoclassical and turbulent transport in tokamaks has been studied extensively over the past decades, but their possible interaction remains largely an open question. The two are only truly independent if the length scales governing each of them are sufficiently separate, i.e., if the ratio ρ* between ion gyroradius and the pressure gradient scale length is small. This is not the case in particularly interesting regions such as transport barriers. Global simulations of a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear global gyrokinetic code Gene are presented. In particular, comparisons are made between systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent transport is observed for ρ*≳1 /300 . Furthermore, the dependency of the flux on the collisionality changes. In simulations with fixed power input, we find that the presence of neoclassical effects decreases the frequency and amplitude of intermittent turbulent transport bursts (avalanches) and thus plays an important role for the self-organisation behaviour.

  1. The marine boundary layer - new findings from the Östergarnsholm air-sea interaction site

    NASA Astrophysics Data System (ADS)

    Smedman, A.; Högström, U.

    2003-04-01

    From studies at the air-sea interaction site Östergarnsholm, a coherent picture of how waves interact with the atmosphere is now beginning to emerge. It is clear that the surface of the ocean behaves similar to that of a solid surface with regard to the turbulence structure in the surface layer only for conditions of pure wind sea, i.e. during the phase when waves are in the process of being built up by increasing wind. At that stage of wave development, the dominant waves are short and move slowly relative to the wind. Then the drag coefficient CDN is a function only of the wave age, expressed as u*/c_p (where u* is friction velocity and c_p is the phase velocity of the dominant waves). The relation obtained by us is identical to the corresponding expression obtained from several recent ocean experiments, Drennan et al. (2000). As soon as the wave field develops behind the "pure wind sea" stage towards conditions where relatively long waves start to gain importance, inter-actions caused by these longer waves are felt in the atmosphere at our lowest turbulence measuring height, 10 m. For example it is demonstrated that the logarithmic wind law is not valid in near-neutral conditions except when pure wind sea conditions prevail and, further that for mixed seas and swell conditions, CDN is a function not only of the wave age parameter u*/c_p but also of a second wave parameter E_1/E_2, which is a measure of the proportion of energy of relatively long waves to short waves. The neutral Stanton Number, CHN, is found to follow predictions from surface-renewal theory quite well for unstable conditions up to a wind speed of about 10 ms-1. For higher wind speed CHN increases with increasing wind speed and the interpretation is made that spray is the cause of the increase.

  2. Potential drivers of sinking particle's size spectra and vertical flux of particulate organic carbon (POC): Turbulence, phytoplankton, and zooplankton

    NASA Astrophysics Data System (ADS)

    Wiedmann, Ingrid; Reigstad, Marit; Sundfjord, Arild; Basedow, Sünnje

    2014-10-01

    Phytoplankton spring blooms in temperate and high-latitude shelf seas are commonly associated with an enhanced particulate organic carbon (POC) export of aggregates from the euphotic zone. In contrast, a postbloom situation is usually linked to a predominant POC retention, where small cells (<10 μm) and strong grazing pressure prevail. This study aimed to examine impacts of turbulence, phytoplankton, bloom stage, and zooplankton abundance on the sinking particles' size spectra and POC flux to improve the understanding of the downward flux mechanisms in the upper 100 m. We deployed sediment traps, partly modified with gel jars, at four depths along a stratification and phytoplankton bloom gradient in the Barents Sea, an Arctic shelf sea. The highest POC export (60 m: 923 mg C m-2 d-1) was found in deep-mixed, postbloom Atlantic influenced waters, despite the high grazer abundance (12,000 individuals m-3). Particle size spectra indicated that this flux was dominated by particles of 0.05-1.00 mm equivalent spherical diameter (ESDimage) with a POC:volume ratio matching copepod fecal pellets. Large particles (0.5-2.8 mm ESDimage) dominated the flux at a stratified, late peak bloom station in Arctic Waters and a stratified, late bloom situation at the Polar Front, but with lower POC:volume ratio and POC flux (60 m: <823 mg C m-2 d-1). Accordingly, a high POC flux at the base of the euphotic zone is not necessarily driven by large phytoplankton aggregates, but can also occur during a postbloom situation in form of small fecal pellet fragments with high POC content.

  3. The influence of sea ice cover on air-sea gas exchange estimated with radon-222 profiles

    NASA Astrophysics Data System (ADS)

    Rutgers van der Loeff, Michiel M.; Cassar, Nicolas; Nicolaus, Marcel; Rabe, Benjamin; Stimac, Ingrid

    2014-05-01

    Air-sea gas exchange plays a key role in the cycling of greenhouse and other biogeochemically important gases. Although air-sea gas transfer is expected to change as a consequence of the rapid decline in summer Arctic sea ice cover, little is known about the effect of sea ice cover on gas exchange fluxes, especially in the marginal ice zone. During the Polarstern expedition ARK-XXVI/3 (TransArc, August/September 2011) to the central Arctic Ocean, we compared 222Rn/226Ra ratios in the upper 50 m of 14 ice-covered and 4 ice-free stations. At three of the ice-free stations, we find 222Rn-based gas transfer coefficients in good agreement with expectation based on published relationships between gas transfer and wind speed over open water when accounting for wind history from wind reanalysis data. We hypothesize that the low gas transfer rate at the fourth station results from reduced fetch due to the proximity of the ice edge, or lateral exchange across the front at the ice edge by restratification. No significant radon deficit could be observed at the ice-covered stations. At these stations, the average gas transfer velocity was less than 0.1 m/d (97.5% confidence), compared to 0.5-2.2 m/d expected for open water. Our results show that air-sea gas exchange in an ice-covered ocean is reduced by at least an order of magnitude compared to open water. In contrast to previous studies, we show that in partially ice-covered regions, gas exchange is lower than expected based on a linear scaling to percent ice cover.

  4. Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific Warming

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou

    1999-01-01

    The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The

  5. A comparison of measured and modeled turbulent fluxes over snow based on site characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensible and latent heat and mass flux represent a significant component of the snowcover energy and mass balance in mountain environments. Though these fluxes are computed in energy balance snow models, limited measurements exist for comparison or validation in complex, mountainous sites. Sensibl...

  6. A framework to utilize turbulent flux measurements for mesoscale models and remote sensing applications

    NASA Astrophysics Data System (ADS)

    Babel, W.; Huneke, S.; Foken, T.

    2011-05-01

    Meteorologically measured fluxes of energy and matter between the surface and the atmosphere originate from a source area of certain extent, located in the upwind sector of the device. The spatial representativeness of such measurements is strongly influenced by the heterogeneity of the landscape. The footprint concept is capable of linking observed data with spatial heterogeneity. This study aims at upscaling eddy covariance derived fluxes to a grid size of 1 km edge length, which is typical for mesoscale models or low resolution remote sensing data. Here an upscaling strategy is presented, utilizing footprint modelling and SVAT modelling as well as observations from a target land-use area. The general idea of this scheme is to model fluxes from adjacent land-use types and combine them with the measured flux data to yield a grid representative flux according to the land-use distribution within the grid cell. The performance of the upscaling routine is evaluated with real datasets, which are considered to be land-use specific fluxes in a grid cell. The measurements above rye and maize fields stem from the LITFASS experiment 2003 in Lindenberg, Germany and the respective modelled timeseries were derived by the SVAT model SEWAB. Contributions from each land-use type to the observations are estimated using a forward lagrangian stochastic model. A representation error is defined as the error in flux estimates made when accepting the measurements unchanged as grid representative flux and ignoring flux contributions from other land-use types within the respective grid cell. Results show that this representation error can be reduced up to 56 % when applying the spatial integration. This shows the potential for further application of this strategy, although the absolute differences between flux observations from rye and maize were so small, that the spatial integration would be rejected in a real situation. Corresponding thresholds for this decision have been estimated as

  7. A study of turbulent fluxes and their measurement errors for different wind regimes over the tropical Zongo glacier (16° S) during the dry season

    NASA Astrophysics Data System (ADS)

    Litt, M.; Sicart, J.-E.; Helgason, W.

    2015-01-01

    Over glaciers in the outer tropics, during the dry winter season, turbulent fluxes are an important sink of melt energy due to high sublimation rates, but measurements in stable surface layers, in remote and complex terrains remain challenging. Eddy-covariance (EC) and bulk-aerodynamic (BA) methods were used to estimate surface turbulent heat fluxes of sensible (H) and latent heat (LE) in the ablation zone of the tropical Zongo glacier, Bolivia (16° S, 5080 m a.s.l.), from 22 July to 1 September 2007. We studied the turbulent fluxes and their associated random and systematic measurement errors under the three most frequent wind regimes. For nightly, density-driven katabatic flows, and for strong downslope flows related to large-scale forcing, H generally heats the surface (i.e., is positive), while LE cools it down (i.e., is negative). On average, both fluxes exhibit similar magnitudes and cancel each other out. Most energy losses through turbulence occur for daytime upslope flows, when H is weak due to small temperature gradients and LE is strongly negative due to very dry air. Mean random errors of the BA method (6% on net H + LE fluxes) originated mainly from large uncertainties in roughness lengths. For EC fluxes, mean random errors were due mainly to poor statistical sampling of large-scale outer-layer eddies (12%). The BA method is highly sensitive to the method used to derive surface temperature from long-wave radiation measurements and underestimates fluxes due to vertical flux divergence at low heights and nonstationarity of turbulent flow. The EC method also probably underestimates the fluxes, but to a lesser extent, due to underestimation of vertical wind speed and to vertical flux divergence. For both methods, when H and LE compensate each other in downslope fluxes, biases tend to cancel each other out or remain small. When the net turbulent fluxes (H + LE) are the largest in upslope flows, nonstationarity effects and underestimations of the vertical

  8. A study of turbulent fluxes and their measurement errors for different wind regimes over the tropical Zongo Glacier (16° S) during the dry season

    NASA Astrophysics Data System (ADS)

    Litt, M.; Sicart, J.-E.; Helgason, W.

    2015-08-01

    Over glaciers in the outer tropics, during the dry winter season, turbulent fluxes are an important sink of melt energy due to high sublimation rates, but measurements in stable surface layers in remote and complex terrains remain challenging. Eddy-covariance (EC) and bulk-aerodynamic (BA) methods were used to estimate surface turbulent heat fluxes of sensible (H) and latent heat (LE) in the ablation zone of the tropical Zongo Glacier, Bolivia (16° S, 5080 m a.s.l.), from 22 July to 1 September 2007. We studied the turbulent fluxes and their associated random and systematic measurement errors under the three most frequent wind regimes. For nightly, density-driven katabatic flows, and for strong downslope flows related to large-scale forcing, H generally heats the surface (i.e. is positive), while LE cools it down (i.e. is negative). On average, both fluxes exhibit similar magnitudes and cancel each other out. Most energy losses through turbulence occur for daytime upslope flows, when H is weak due to small temperature gradients and LE is strongly negative due to very dry air. Mean random errors of the BA method (6 % on net H + LE fluxes) originated mainly from large uncertainties in roughness lengths. For EC fluxes, mean random errors were due mainly to poor statistical sampling of large-scale outer-layer eddies (12 %). The BA method is highly sensitive to the method used to derive surface temperature from longwave radiation measurements and underestimates fluxes due to vertical flux divergence at low heights and nonstationarity of turbulent flow. The EC method also probably underestimates the fluxes, albeit to a lesser extent, due to underestimation of vertical wind speed and to vertical flux divergence. For both methods, when H and LE compensate each other in downslope fluxes, biases tend to cancel each other out or remain small. When the net turbulent fluxes (H + LE) are the largest in upslope flows, nonstationarity effects and underestimations of the vertical

  9. Infrared propagation in the air-sea boundary layer

    NASA Astrophysics Data System (ADS)

    Larsen, R.; Preedy, K. A.; Drake, G.

    1990-03-01

    Over the oceans and other large bodies of water the structure of the lowest layers of the atmosphere is often strongly modified by evaporation of water vapor from the water surface. At radio wavelengths this layer will usually be strongly refracting or ducting, and the layer is commonly known as the evaporation duct. However, the refractive index of air at infrared wavelengths differs from that at radio wavelengths, and the effects of the marine boundary layer on the propagation of infrared radiation are examined. Meteorological models of the air-sea boundary layer are used to compute vertical profiles of temperature and water-vapor pressure. From these are derived profiles of atmospheric refractive index at radio wavelengths and at infrared wavelengths in the window regions of low absorption. For duct propagation to occur it is necessary that the refractivity of air decreases rapidly with increasing height above the surface. At radio wavelengths this usually occurs when there is a strong lapse of water vapor pressure with increasing height. By contrast, at infrared wavelengths the refractive index is almost independent of water vapor pressure, and it is found that an infrared duct is formed only when there is a temperature inversion.

  10. Improvement of the GEOS-5 AGCM upon Updating the Air-Sea Roughness Parameterization

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Molod, A.; Oman, L. D.; Song, I.-S.

    2011-01-01

    The impact of an air-sea roughness parameterization over the ocean that more closely matches recent observations of air-sea exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their air-sea roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.

  11. Scale-by-scale energy fluxes in anisotropic non-homogeneous turbulence behind a square cylinder

    NASA Astrophysics Data System (ADS)

    Alves Portela, Felipe; Papadakis, George; Vassilicos, John Christos

    2015-11-01

    The turbulent wake behind a square section cylinder is studied by means of high resolution direct numerical simulations using an in-house finite volume code. The Reynolds number based on the cylinder side is 3900. Single- and two-point statistics are collected in the lee of the cylinder for over 30 shedding periods, allowing for an extensive description of the development of the turbulence. The power spectrum in the frequency domain of velocity fluctuations displays a near -5/3 power law in the near wake, where the turbulence is neither isotropic nor homogeneous. In the same region of the flow, two-point statistics reveal a direct cascade of fluctuating kinetic energy down the scales as a result of the combined effect of linear and non-linear interactions. For scales aligned with the mean flow the non-linear interactions dominate the cascade. Conversely, for scales normal to the mean flow the cascade is dominated by the linear interactions while the non-linear term is mostly responsible for redistributing energy to different orientations. The authors acknowledge support form the EU through the FP7 Marie Curie MULTISOLVE project (grant agreement No. 317269).

  12. Technical Note: The effect of vertical turbulent mixing on gross O2 production assessments by the triple isotopic composition of dissolved O2

    NASA Astrophysics Data System (ADS)

    Wurgaft, E.; Shamir, O.; Angert, A.

    2013-12-01

    The 17O excess (17Δ) of dissolved O2 has been used, for over a decade, to estimate gross O2 production (G17OP) rates in the mixed layer (ML) in many regions of the ocean. This estimate relies on a steady-state balance of O2 fluxes, which include air-sea gas exchange, photosynthesis and respiration but notably, not turbulent mixing with O2 from the thermocline. In light of recent publications, which showed that neglecting the turbulent flux of O2 from the thermocline may lead to inaccurate G17OP estimations, we present a simple correction for the effect of this flux on ML G17OP. The correction is based on a turbulent-flux term between the thermocline and the ML, and use the difference between the ML 17Δ and that of a single data-point below the ML base. Using a numerical model and measured data we compared turbulence-corrected G17OP rates to those calculated without it, and tested the sensitivity of the GOP correction for turbulent flux of O2 from the thermocline to several parameters. The main source of uncertainty on the correction is the eddy-diffusivity coefficient, which induces an uncertainty of ∼50%. The corrected G17OP rates were 10-90% lower than the previously published uncorrected rates, which implies that a large fraction of the photosynthetic O2 in the ML is actually produced in the thermocline.

  13. The Impact of Trends in the Large Scale Atmospheric Circulation on Mediterranean Surface Turbulent Heat Fluxes

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Hameed, Sultan

    2015-01-01

    Interannual variations of latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Using reanalysis and satellite-based products, the variability and trends in the heat fluxes are compared with variations in three atmospheric teleconnection patterns: the North Atlantic Oscillation (NAO), the pressure and position of the Azores High (AH), and the East Atlantic-West Russia teleconnection pattern (EAWR). Comparison of correlations between the heat fluxes and teleconnections, along with analysis of composites of surface temperature, humidity, and wind fields for different teleconnection states, demonstrates that the AH explains the heat flux changes more successfully than NAO and EAWR. Trends in pressure and longitude of the Azores High show a strengthening and an eastward shift. Variations of the Azores High occur along an axis defined by lower pressure and westward location at one extreme and higher pressure and eastward location at the other extreme. The shift of the AH from predominance of the low/west state to the high/east state induces trends in Mediterranean Sea surface winds, temperature, and moisture. These, combined with sea surface warming trends, produce trends in wintertime sensible and latent heat fluxes.

  14. Turbulence beneath waves

    NASA Astrophysics Data System (ADS)

    Gemmrich, J.; Farmer, D.

    2003-04-01

    Breaking surface waves are believed to provide a major pathway for the energy input from the atmosphere to the ocean and are a source of enhanced turbulent kinetic energy levels in the near-surface layer. Increased turbulence levels relate to enhanced air-sea exchange processes. The ocean surface is a complex system with a wide range of relevant scales. We use direct measurement of the small-scale velocity field as a first step to evaluate near-surface turbulence. At wind speed up to 14 m/s, velocity profiles were obtained with pulse-to-pulse coherent acoustic Doppler profilers. Based on wavenumber spectra calculated with the empirical mode decomposition, dissipation of turbulent kinetic energy at ~1m beneath the free surface and 1 Hz sampling rate is estimated. In addition, bubble size distributions were obtained from acoustic resonator measurements and whitecap occurrence was monitored with video cameras. High turbulence levels with dissipation rates more than four orders larger than the background dissipation are linked to wave breaking. The decay and depth-dependence of the wave-induced turbulence are examined and implications for turbulence models are discussed. In individual breaking waves, the onset of enhanced dissipation occurs up to a quarter wave period prior to the air entrainment. Magnitude and occurrence of the pre-breaking turbulence are consistent with wave-turbulence interaction in a rotational wave field. The detailed structure of the turbulence and bubble field associated with breaking waves will be presented. Implications for air-sea exchange processes will be discussed.

  15. Overestimation of soil CO2 fluxes from closed chamber measurements at low atmospheric turbulence biases the diurnal pattern and the annual soil respiration budget

    NASA Astrophysics Data System (ADS)

    Braendholt, Andreas; Steenberg Larsen, Klaus; Ibrom, Andreas; Pilegaard, Kim

    2016-04-01

    Precise quantification of the diurnal and seasonal variation of soil respiration (Rs) is crucial to correctly estimate annual soil carbon fluxes as well as to correctly interpret the response of Rs to biotic and abiotic factors on different time scale. In this study we found a systematic effect of low atmospheric turbulence on continuous hourly Rs measurements with closed chambers throughout one year in a temperate Danish beech forest. Using friction velocity (u⋆) measured at the site above the canopy, we filtered out chamber flux data measured at low atmospheric turbulence. The non-filtered data showed a clear diurnal pattern of Rs across all seasons with highest fluxes during night time suggesting an implausible negative temperature sensitivity of Rs. When filtering out data at low turbulence, the annually averaged diurnal pattern changed, such that the highest Rs fluxes were seen during day time, i.e. following the course of soil temperatures. This effect on the diurnal pattern was due to low turbulence primarily occurring during night time. We calculated different annual Rs budgets by filtering out fluxes for different levels of u⋆. The highest annual Rs budget was found when including all data and it decreased with an increasing u⋆ filter threshold. Our results show that Rs was overestimated at low atmospheric turbulence throughout the year and that this overestimation considerably biased the diurnal pattern of Rs and led to an overestimation of the annual Rs budget. Thus we recommend that that any analysis of the diurnal pattern of Rs must consider overestimation of Rs at low atmospheric turbulence, to yield unbiased diurnal patterns. This is crucial when investigating temperature responses and potential links between CO2 production and Rs on a short time scale, but also for correct estimation of annual Rs budgets. Acknowledgements: This study was funded by the free Danish Ministry for Research, Innovation and higher Education, the free Danish Research

  16. The Impact of Trends in the Large Scale Atmospheric Circulation on Mediterranean Surface Turbulent Heat Fluxes

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Hameed, Sultan

    2015-01-01

    Interannual variations of latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Comparison of correlations between the heat fluxes and the intensity and location of the Azores High (AH), and the NAO and East Atlantic-West Russia (EAWR) teleconnections, along with analysis of composites of surface temperature, humidity and wind fields for different teleconnection states, demonstrates that variations of the AH are found to explain the heat flux changes more successfully than the NAO and the EAWR. Trends in sea level pressure and longitude of the Azores High during DJF show a strengthening, and an eastward shift. DJF Azores High pressure and longitude are shown to co-vary such that variability of the Azores High occurs along an axis defined by lower pressure and westward location at one extreme, and higher pressure and eastward location at the other extreme. The shift of the Azores High from predominance of the low/west state to the high/east state induces trends in Mediterranean Sea surface winds, temperature and moisture. These, combined with sea surface warming trends, produce trends in wintertime Mediterranean Sea sensible and latent heat fluxes.

  17. The potential role of sea spray droplets in facilitating air-sea gas transfer

    NASA Astrophysics Data System (ADS)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  18. Bidirectional air-sea exchange and accumulation of POPs (PAHs, PCBs, OCPs and PBDEs) in the nocturnal marine boundary layer

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Meixner, Franz X.; Vrana, Branislav; Efstathiou, Christos I.; Kohoutek, Jiři; Kukučka, Petr; Mulder, Marie D.; Přibylová, Petra; Prokeš, Roman; Rusina, Tatsiana P.; Song, Guo-Zheng; Tsapakis, Manolis

    2016-05-01

    As a consequence of long-range transported pollution, air-sea exchange can become a major source of persistent organic pollutants in remote marine environments. The vertical gradients in the air were quantified for 14 species, i.e. four parent polycyclic aromatic hydrocarbons (PAHs), three polychlorinated biphenyls (PCBs), three organochlorine pesticides (OCPs) and two polybrominated diphenylethers (PBDEs) in the gas-phase at a remote coastal site in the southern Aegean Sea in summer. Most vertical gradients were positive (Δc/Δz > 0), indicating downward (net depositional) flux. Significant upward (net volatilisational) fluxes were found for three PAHs, mostly during daytime, and for two OCPs, mostly during night-time, as well as for one PCB and one PBDE during part of the measurements. While phenanthrene was deposited, fluoranthene (FLT) and pyrene (PYR) seem to undergo flux oscillation, hereby not following a day-night cycle. Box modelling confirms that volatilisation from the sea surface has significantly contributed to the night-time maxima of OCPs. Fluxes were quantified based on eddy covariance. Deposition fluxes ranged from -28.5 to +1.8 µg m-2 day-1 for PAHs and -3.4 to +0.9 µg m-2 day-1 for halogenated compounds. Dry particle deposition of FLT and PYR did not contribute significantly to the vertical flux.

  19. Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake

    NASA Astrophysics Data System (ADS)

    MacIntyre, Sally; Jonsson, Anders; Jansson, Mats; Aberg, Jan; Turney, Damon E.; Miller, Scott D.

    2010-12-01

    Gas fluxes from lakes and other stratified water bodies, computed using conservative values of the gas transfer coefficient k600, have been shown to be a significant component of the carbon cycle. We present a mechanistic analysis of the dominant physical processes modifying k600 in a stratified lake and resulting new models of k600 whose use will enable improved computation of carbon fluxes. Using eddy covariance results, we demonstrate that i) higher values of k600 occur during low to moderate winds with surface cooling than with surface heating; ii) under overnight low wind conditions k600 depends on buoyancy flux β rather than wind speed; iii) the meteorological conditions at the time of measurement and the inertia within the lake determine k600; and iv) eddy covariance estimates of k600 compare well with predictions of k600 using a surface renewal model based on wind speed and β.

  20. An Analysis of Turbulent Heat Fluxes and the Energy Balance During the REFLEX Campaign

    NASA Astrophysics Data System (ADS)

    Tol, Christiaan van der; Timmermans, Wim; Corbari, Chiara; Carrara, Arnaud; Timmermans, Joris; Su, Zhongbo

    2015-12-01

    Three eddy covariance stations were installed at the Barrax experimental farm during the Land-Atmosphere Exchanges (REFLEX) airborne training and measurement campaign to provide ground truth data of energy balance fluxes and vertical temperature and wind profiles. The energy balance closure ratio (EBR) was 105% for a homogeneous camelina site, 86% at a sparse reforestation site, and 73% for a vineyard. We hypothesize that the lower closure in the last site was related to the limited fetch. Incorporating a vertical gradient of soil thermal properties decreased the RMSE of the energy balance at the camelina site by 16 W m-2. At the camelina site, eddy covariance estimates of sensible and latent heat fluxes could be reproduced well using mean vertical profiles of wind and temperature, provided that the Monin-Obukhov length is known. Measured surface temperature and sensible heat fluxes suggested high excess resistance for heat (kB-1 = 17).

  1. Turbulent transport of Small-scale magnetic flux elements on Solar Photosphere

    NASA Astrophysics Data System (ADS)

    Agrawal, Piyush; Rempel, Matthias; Bellot Rubio, Luis; Rast, Mark

    2016-05-01

    We study the transport of small-scale magnetic elements on the solar photosphere using both observations and simulations. Observational data was obtained from Hinode - Solar Optical Telescope (SOT/SP) instrument and simulations from MURaM code. The magnetic flux elements were tracked in both data sets and statistics were obtained. We compute the probability density of the Eulerian distances traveled by the flux elements along Lagrangian trajectories. For a two-dimensional random walk process this distribution should be Rayleigh. Preliminary results show that the measured probability distribution in both the observed and simulated data approximates a random walk, on time scale close to the lifetime of granules, but deviates from it for longer times. This implies that diffusion may not be an appropriate framework for transport in the solar photosphere. We explore the roles of flux cancelation and element trapping in producing this result. Work is ongoing.

  2. CFD simulation of pollutant dispersion around isolated buildings: on the role of convective and turbulent mass fluxes in the prediction accuracy.

    PubMed

    Gousseau, P; Blocken, B; van Heijst, G J F

    2011-10-30

    Computational Fluid Dynamics (CFD) is increasingly used to predict wind flow and pollutant dispersion around buildings. The two most frequently used approaches are solving the Reynolds-averaged Navier-Stokes (RANS) equations and Large-Eddy Simulation (LES). In the present study, we compare the convective and turbulent mass fluxes predicted by these two approaches for two configurations of isolated buildings with distinctive features. We use this analysis to clarify the role of these two components of mass transport on the prediction accuracy of RANS and LES in terms of mean concentration. It is shown that the proper simulation of the convective fluxes is essential to predict an accurate concentration field. In addition, appropriate parameterization of the turbulent fluxes is needed with RANS models, while only the subgrid-scale effects are modeled with LES. Therefore, when the source is located outside of recirculation regions (case 1), both RANS and LES can provide accurate results. When the influence of the building is higher (case 2), RANS models predict erroneous convective fluxes and are largely outperformed by LES in terms of prediction accuracy of mean concentration. These conclusions suggest that the choice of the appropriate turbulence model depends on the configuration of the dispersion problem under study. It is also shown that for both cases LES predicts a counter-gradient mechanism of the streamwise turbulent mass transport, which is not reproduced by the gradient-diffusion hypothesis that is generally used with RANS models. PMID:21880420

  3. Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind-driven sources from the sea

    NASA Astrophysics Data System (ADS)

    Nilsson, E. D.; Rannik, Ü.; Swietlicki, E.; Leck, C.; Aalto, P. P.; Zhou, J.; Norman, M.

    2001-12-01

    An eddy-covariance flux system was successfully applied over open sea, leads and ice floes during the Arctic Ocean Expedition in July-August 1996. Wind-driven upward aerosol number fluxes were observed over open sea and leads in the pack ice. These particles must originate from droplets ejected into the air at the bursting of small air bubbles at the water surface. The source flux F (in 106 m-2 s-1) had a strong dependency on wind speed, log>(F>)=0.20U¯-1.71 and 0.11U¯-1.93, over the open sea and leads, respectively (where U¯ is the local wind speed at about 10 m height). Over the open sea the wind-driven aerosol source flux consisted of a film drop mode centered at ˜100 nm diameter and a jet drop mode centered at ˜1 μm diameter. Over the leads in the pack ice, a jet drop mode at ˜2 μm diameter dominated. The jet drop mode consisted of sea-salt, but oxalate indicated an organic contribution, and bacterias and other biogenic particles were identified by single particle analysis. Particles with diameters less than -100 nm appear to have contributed to the flux, but their chemical composition is unknown. Whitecaps were probably the bubble source at open sea and on the leads at high wind speed, but a different bubble source is needed in the leads owing to their small fetch. Melting of ice in the leads is probably the best candidate. The flux over the open sea was of such a magnitude that it could give a significant contribution to the condensation nuclei (CCN) population. Although the flux from the leads were roughly an order of magnitude smaller and the leads cover only a small fraction of the pack ice, the local source may till be important for the CCN population in Arctic fogs. The primary marine aerosol source will increase both with increased wind speed and with decreased ice fraction and extent. The local CCN production may therefore increase and influence cloud or fog albedo and lifetime in response to greenhouse warming in the Arctic Ocean region.

  4. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    NASA Astrophysics Data System (ADS)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  5. Magnetic Flux Concentrations in Stratified Turbulent Plasma Due to Negative Effective Magnetic Pressure Instability

    NASA Astrophysics Data System (ADS)

    Jabbari, Sarah

    2015-08-01

    We study a system of a highly stratified turbulent plasma. In such a system, when the magnetic Reynolds number is large enough and there is a background field of suitable strength, a new effect will play role in con- centrating magnetic fields such that it leads to the formation of magnetic spots and bipolar regions. This effect is due to the fact that the turbu- lent pressure is suppressed by the large-scale magnetic field, which adds a negative term to the total mean-field (effective) pressure. This leads to an instability, which is known as the negative effective magnetic pressure instability (NEMPI). Direct numerical simulations (DNS) of isothermally forced turbulence have shown that NEMPI leads to the formation of spots in the presence of an imposed field. Our main aim now is to use NEMPI to explain the formation of active regions and sunspots. To achieve this goal, we need to move progressively to more realistic models. Here we extend our model by allowing the magnetic field to be generated by a dy- namo. A dynamo plays an important role in solar activity. Therefore, it is of interest to investigate NEMPI in the presence of dynamo-generated magnetic fields. Mean-field simulations (MFS) of such systems in spheri- cal geometry have shown how these two instabilities work in concert. In fact NEMPI will be activated as long as the strength of the magnetic field generated by the dynamo is in a proper range (for more detail see Jab- bari et al. 2013). In our new study, we use DNS to investigate a similar system. The turbulence is forced in the entire spherical shell, but the forc- ing is made helical in the lower 30% of the shell, similar to the model of Mitra et al. (2014). We perform simulations using the Pencil Code for different density contrasts and other input parameters. We applied ver- tical field boundary conditions in the r direction. The results show that, when the stratification is high enough, intense bipolar regions form and as time passes, they expand

  6. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.

    1991-01-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  7. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Hinckley, Daniel A.; Bidleman, Terry F.; Rice, Clifford P.

    1991-04-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for Organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average α-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average γ-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (α-HCH, average 79% saturation; γ-HCH, average 28% saturation). The flux for α-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of γ-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  8. Initiation of methane turbulent flux measurements over a grazed grassland in Belgium

    NASA Astrophysics Data System (ADS)

    Dumortier, Pierre; Aubinet, Marc; Chopin, Henri; Debacq, Alain; Jérome, Elisabeth; Beckers, Yves; Heinesch, Bernard

    2013-04-01

    Methane fluxes emitted by a grazed meadow were measured continuously during the 2012 grazing season at the Dorinne Terrestrial Observatory (50° 18' 44" N; 4° 58' 07" E; 248 m asl.) in Belgium. Measurements were made with the eddy covariance technique, using a fast CH4 analyzer (Picarro G2311-f). Carbon dioxide fluxes (LI-7000) and various micro-meteorological and soil variables, biomass growth and stocking rate evolution were also measured at the site. The site is an intensively pastured meadow of 4.2 ha managed according to the regional usual practices where up to 30 cows are grazing simultaneously. N2O emissions are currently measured through dynamic closed chambers (Beekkerk van Ruth et al., Geophysical Research Abstracts. Vol. 15, EGU2013-3211, 2013) and the carbon budget of the site has already been investigated (Jerome et al. Geophysical Research Abstracts, Vol. 15, EGU2013-6989, 2013). As no CH4 measurements were available, CH4 fluxes were estimated on the basis of dry matter intake by the cows and a conversion factor obtained from a literature review. We want to improve this estimation by measuring CH4 fluxes, identifying their main environmental drivers and understanding diurnal and annual exchange patterns. Methane emissions were found strongly related with cattle stocking rate with a slope of 7.34±0.78 mol CH4 day-1 LSU-1. Up to now, no methane absorption has been observed, the meadow behaving as a methane emitter, even in the absence of cows. In the absence of cows, no significant relation can be established up to now between methane emissions and environmental parameters. No clear diurnal evolution is observed, neither during grazing periods nor during cow free periods. During cow presence periods, fluxes are highly variable, probably due to cow movements in and out the measurement footprint and cow digestion rhythm. Further developments are ongoing in order to improve cattle geo-localization through individual home-made GPS devices and infra

  9. Technical note: The effect of vertical turbulent mixing on gross O2 production assessments by the triple isotopic composition of dissolved O2

    NASA Astrophysics Data System (ADS)

    Wurgaft, E.; Shamir, O.; Angert, A.

    2013-08-01

    The 17O-excess (17Δ) of dissolved O2 has been used, for over a decade, to estimate gross O2 production (G17OP) rates in the mixed layer (ML) in many regions of the ocean. This estimate relies on a steady-state balance of O2 fluxes, which include air-sea gas exchange, photosynthesis and respiration but notably, not turbulent mixing with O2 from the thermocline. In light of recent publications, which showed that neglecting the turbulent flux may lead to inaccurate G17OP estimations, we present a simple correction for the effect of turbulent flux of O2 from the thermocline on ML G17OP. The correction is based on a turbulent-flux term between the thermocline and the ML, and use the difference between the ML 17Δ and that of a single data-point below the ML base. Using a numerical model and measured data we compared turbulence-corrected G17OP rates to those calculated without it. The corrected G17OP rates were 10-90% lower than the uncorrected rates, which implies that a large fraction of the photosynthetic O2 in the ML is actually produced in the thermocline.

  10. Estimation of spatially distributed turbulent heat fluxes using thermal information captured from an UAS

    NASA Astrophysics Data System (ADS)

    Brenner, Claire; Thiem, Christina Elisabeth; Bernhardt, Matthias; Schulz, Karsten

    2016-04-01

    Evapotranspiration is a key component of the Earth's water and energy cycle. However, measuring evapotranspiration is difficult and distributed information with high spatial resolution is rare. Land surface temperature (LST) is often used as source of data for the estimation of evapotranspiration. Actual LST is mainly controlled by the amount of incoming radiation, surface albedo, water availability, ventilation of the surface and in case of vegetation stands also by the intensity of the transpiration process. Thus it contains valuable information on the actual state of the soil-vegetation-atmosphere system. Typically LST information is available from satellite imagery or from radiometers installed at experimental sites. Thus, measured LST is either representative for areas of hundreds of square meters (satellites), or for certain points (radiometers). Thermal imaging from unmanned aerial systems (UAS) can be used for addressing this scale gap and is a trade-off between flexibility and ease of use on the one hand and spatial coverage on the other hand. In this study we have measured surface temperatures at a grassland site in Luxemburg in July 2015 by means of a thermal infrared camera mounted on an octocopter drone. At the same time scintillometer measurements were made at the same field. The experimental set-up was completed by meteorological and radiation measurements. UAS flights were conducted on a sequence of days over a time period of 2 weeks and with up to ten flights a day in order to monitor diurnal variation of LST. The observed spatially distributed surface temperatures were then used to estimate sensible and latent heat fluxes using three algorithms. All of them make use of observed vertical temperature gradients between surface and atmosphere but do show a different complexity. Two of them are single-source models while one is a dual-source representation of the soil-vegetation system. Although the experimental site was fully covered by grass, LST

  11. Measuring important parameters for air-sea heat exchange

    NASA Astrophysics Data System (ADS)

    Garbe, Christoph; Schimpf, Uwe; Jaehne, Bernd

    2002-03-01

    The heat transfer between the ocean and the atmosphere is one of the most important parameters governing the global climate. Important parameters include the heat transfer velocity and the net heat flux as well as parameters of the underlying transport model. However, the net heat flux is hard to measure since processes take place in the thermal boundary layer, that is the topmost layer of the ocean less than 1 mm thick. Current techniques rely on three independent measurements of the constituent fluxes, the sensible heat flux, latent heat flux and radiative flux. They depend on indirect measurements of meteorological parameters and rely on a combination of data from different sensors using a number of heuristic assumptions. High relative errors and the need for long temporal averaging reduce the practicability of these techniques. In this paper a novel technique is presented that circumvents these drawbacks by directly measuring the net heat flux across the air-water interface with a single low-NETD infrared camera. A newly developed digital image processing technique allows to simultaneously estimating the surface velocity field and parameters of the temporal temperature change. In particular, this technique allows estimating the total derivative of the temperature with respect to time from a sequence of infrared images, together with error bounds on the estimates. This derivative can be used to compute the heat flux density and the heat transfer velocity, as well as the probability density function of the underlying surface renewal model. It is also possible to estimate the bulk-skin temperature difference given rise to by the net heat flux. Our technique has been successfully used in both laboratory measurements in the Heidelberg Aeolotron, as well as in field measurements in the equatorial pacific during the NOAA GasExII experiment this spring. The data show that heat flux measurements to an accuracy of better than 5% on a time scale of seconds are feasible.

  12. Turbulent heat flux measurement in a non-reacting round jet, using BAM:Eu2+ phosphor thermography and particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Lee, Hyunchang; Böhm, Benjamin; Sadiki, Amsini; Dreizler, Andreas

    2016-07-01

    Turbulent mixing is highly important in flows that involve heat and mass transfer. Information on turbulent heat flux is needed to validate the mixing models implemented in numerical simulations. The calculation of turbulent heat fluxes requires instantaneous information on temperature and velocity. Even using minimally intrusive laser optical methods, simultaneous measurement of temperature and velocity is still a challenge. In this study, thermographic phosphor particles are used for simultaneous thermometry and velocimetry: conventional particle image velocimetry is combined with temperature-dependent spectral shifts of BAM:Eu2+ phosphor particles upon UV excitation. The novelty of this approach is the analysis of systematic errors and verification using the well-known properties of a heated turbulent jet issuing into a low velocity, cold coflow. The analysis showed that systematic errors caused by laser fluence, multiple scattering, or preferential signal absorption can be reduced such that reliable measurement of scalar fluxes becomes feasible, which is a prerequisite for applying the method to more complex heat transfer problems.

  13. Heat-flux enhancement by vapour-bubble nucleation in Rayleigh-Bénard turbulence

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Narezo-Guzman, Daniela; Xie, Yanbo; Chen, Songyue; Fernandez-Rivas, David; Lohse, Detlef; Ahlers, Guenter

    2015-11-01

    We report on turbulent convective heat transport enhancement and local temperature modifications in the bulk due to vapour-bubble nucleation at the bottom plate of a Rayleigh-Bénard cylindrical sample (aspect ratio 1.0, diameter of 8.8 cm) filled with liquid. Etched microcavities acted as nucleation sites. Only the central area of the bottom plate (diameter of 2.5 cm) with an array of microcavities was heated. The Nusselt-number Nu was investigated as a function of the bottom plate superheat Th by varying the temperature of the bottom plate Tb and keeping a fixed difference between Tb and the top plate temperature Tt, Tb -Tt ~= 16 K. Nusselt-number of both 1- and 2-phase flow for the same Th value was obtained; 2-phase- Nu was increasingly enhanced relative to the 1-phase Nu for increasing Th. Varying the cavity density between 69 and 0.3 per mm2 had only a small effect on the global Nu enhancement; however Nu per active site decreased as the cavity density increased. Nu of an isolated nucleating site was found to be limited by the rate at which it could host a phase change. Work supported by an ERC-Advanced Grant and by NSF grant DMR11-58514.

  14. Turbulent Sensible Heat Flux in Łódź Obtained from Scintillometer Measuerments - Comparison of Free and Mix Algorithms

    NASA Astrophysics Data System (ADS)

    Zieliński, Mariusz; Fortuniak, Krzysztof; Pawlak, Włodzimierz

    2012-01-01

    The primary aim of this paper was to present the results of turbulent sensible heat flux (QH) measurements with Scintillometer Scintec BLS900 (LAS). The theoretical background of scintillation method has been presented as well as two different ways of sensible heat flux computation from LAS. The measurements presented here were conducted from April to December 2011. Diurnal and partially annual variability of QH has been analyzed, moreover the mean diurnal course of QH in considered months has been prepared. In order to choose the optimal method of QH computation from LAS the results obtained with three different Monin-Obuchov similarity theory functions as well as free convection assumption has been compared. In first case it has been proved that sensible heat flux differs significantly depending on chosen universal function. In turn in case of free convection assumptions it has been revealed that it is valid only for very unstable conditions. Therefore it does not apply to long-time heat flux measurement in case of Łódź. Nevertheless, this study has shown that scintillation method is valuable and reasonable source of path-averaged QH estimates in considered city. Głównym celem pracy była prezentacja wyników pomiarów turbulencyjnego strumienia ciepła jawnego (QH) w Łodzi za pomocą scyntylometru Scintec BLS900. Przedstawione zostały założenia teoretyczne metody scyntylacyjnej, jak również metody wyznaczania strumienia ciepła jawnego za pomocą scyntylometru. Pomiary obejmowały okres od kwietnia do grudnia 2011 roku. Przeanalizowano dobową oraz częściowo roczną zmienność QH, wyznaczając przy tym średnie dobowe jego przebiegi dla poszczególnych miesięcy. W celu wyznaczenia optymalnej metody estymacji QH z pomiarów scyntylometrycznych porównano wyniki uzyskane przy wykorzystaniu trzech różnych funkcji uniwersalnych teorii podobieństwa Monina- Obuchova, jak również przybliżenia dla swobodnej konwekcji. W pierwszym przypadku wykazano

  15. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    NASA Astrophysics Data System (ADS)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale

  16. Verification and calibration of Energy- and Flux-Budget (EFB) turbulence closure model through large eddy simulations and direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Kadantsev, Evgeny; Fortelius, Carl; Druzhinin, Oleg; Mortikov, Evgeny; Glazunov, Andrey; Zilitinkevich, Sergej

    2016-04-01

    We examine and validate the EFB turbulence closure model (Zilitinkevich et al., 2013), which is based on the budget equations for basic second moments, namely, two energies: turbulent kinetic energy EK and turbulent potential energy EP, and vertical turbulent fluxes of momentum and potential temperature, τi (i = 1, 2) and Fz. Instead of traditional postulation of down-gradient turbulent transport, the EFB closure determines the eddy viscosity and eddy conductivity from the steady-state version of the budget equations for τi and Fz. Furthermore, the EFB closure involves new prognostic equation for turbulent dissipation time scale tT, and extends the theory to non-steady turbulence regimes accounting for non-gradient and non-local turbulent transports (when the traditional concepts of eddy viscosity and eddy conductivity become generally inconsistent). Our special interest is in asymptotic behavior of the EFB closure in strongly stable stratification. For this purpose, we consider plane Couette flow, namely, the flow between two infinite parallel plates, one of which is moving relative to another. We use a set of Direct Numerical Simulation (DNS) experiments at the highest possible Reynolds numbers for different bulk Richardson numbers (Druzhinin et al., 2015). To demonstrate potential improvements in Numerical Weather Prediction models, we test the new closure model in various idealized cases, varying stratification from the neutral and conventionally neutral to stable (GABLS1) running a test RANS model and HARMONIE/AROME model in single-column mode. Results are compared with DNS and LES (Large Eddy Simulation) runs and different numerical weather prediction models.

  17. Occurrence and air/sea-exchange of novel organic pollutants in the marine environment

    NASA Astrophysics Data System (ADS)

    Ebinghaus, R.; Xie, Z.

    2006-12-01

    A number of studies have demonstrated that several classes of chemicals act as biologically relevant signalling substances. Among these chemicals, many, including PCBs, DDT and dioxins, are semi-volatile, persistent, and are capable of long-range atmospheric transport via atmospheric circulation. Some of these compounds, e.g. phthalates and alkylphenols (APs) are still manufactured and consumed worldwide even though there is clear evidence that they are toxic to aquatic organisms and can act as endocrine disruptors. Concentrations of NP, t-OP and NP1EO, DMP, DEP, DBP, BBP, and DEHP have been simultaneously determined in the surface sea water and atmosphere of the North Sea. Atmospheric concentrations of NP and t-OP ranged from 7 to 110 pg m - 3, which were one to three orders of magnitude below coastal atmospheric concentrations already reported. NP1EO was detected in both vapor and particle phases, which ranged from 4 to 50 pg m - 3. The concentrations of the phthalates in the atmosphere ranged from below the method detection limit to 3.4 ng m - 3. The concentrations of t-OP, NP, and NP1EO in dissolved phase were 13-300, 90-1400, and 17-1660 pg L - 1. DBP, BBP, and DEHP were determined in the water phase with concentrations ranging from below the method detection limit to 6.6 ng L - 1. This study indicates that atmospheric deposition of APs and phthalates into the North Sea is an important input pathway. The net fluxes indicate that the air sea exchange is significant and, consequently the open ocean and polar areas will be an extensive sink for APs and phthalates.

  18. One Year of Doppler Lidar Observations Characterizing Boundary Layer Wind, Turbulence, and Aerosol Structure During the Indianapolis Flux Experiment

    NASA Astrophysics Data System (ADS)

    Hardesty, R. M.; Brewer, A.; Shepson, P. B.; Cambaliza, M. O. L.; Salmon, O. E.; Heimburger, A. M. F.; Davis, K. J.; Lauvaux, T.; McGowan, L. E.; Miles, N. L.; Richardson, S.; Sarmiento, D. P.; Karion, A.; Sweeney, C.; Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Gurney, K. R.; Razlivanov, I. N.; Song, Y.; Turnbull, J. C.; Whetstone, J. R.; Possolo, A.; Prasad, K.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) is aimed at improving methods for estimation of greenhouse gas emissions at urban scales. INFLUX observational components include several-times-per-month aircraft measurements of gas concentrations and meteorological parameters, as well as a number of towers observing CO2, CH4, and CO and a single continuously operating Doppler lidar to estimate wind, turbulence and aerosol structure in the boundary layer. The observations are used to develop top-down emissions estimates from the aircraft measurements and as input to inversion models. The Doppler lidar provides information on boundary layer structure for both the aircraft and inversion studies. A commercial Doppler lidar characterized by low pulse energy and high pulse repetition rate has operated for well over a year at a site NE of downtown Indianapolis. The lidar produces profiles of horizontal wind speed, vertical velocity variance, and aerosol structure two to three times per hour. These data are then used to investigate boundary layer mixing and thickness and horizontal transport as inputs for the flux calculations. During its one year deployment the lidar generally operated reliably with few outages. Comparisons with aircraft spirals over the site and with the NOAA High Resolution research Doppler lidar deployed to Indianapolis for one month during May, 2014, were used to assess the performance of the INFLUX lidar. Measurements agreed quite well when aerosol loading was sufficient for lidar observations throughout the boundary layer. However, low aerosol loading during some periods limited the range of the lidar and precluded characterization of the full boundary layer. We present an overall assessment of the commercial Doppler lidar for providing the needed information on boundary layer structure for emission estimations, and show variability of the boundary layer observations over diurnal, seasonal, and annual cycles. Recommendations on system design changes to

  19. TURBULENT PUMPING OF MAGNETIC FLUX REDUCES SOLAR CYCLE MEMORY AND THUS IMPACTS PREDICTABILITY OF THE SUN'S ACTIVITY

    SciTech Connect

    Karak, Bidya Binay; Nandy, Dibyendu E-mail: dnandi@iiserkol.ac.in

    2012-12-10

    Prediction of the Sun's magnetic activity is important because of its effect on space environment and climate. However, recent efforts to predict the amplitude of the solar cycle have resulted in diverging forecasts with no consensus. Yeates et al. have shown that the dynamical memory of the solar dynamo mechanism governs predictability, and this memory is different for advection- and diffusion-dominated solar convection zones. By utilizing stochastically forced, kinematic dynamo simulations, we demonstrate that the inclusion of downward turbulent pumping of magnetic flux reduces the memory of both advection- and diffusion-dominated solar dynamos to only one cycle; stronger pumping degrades this memory further. Thus, our results reconcile the diverging dynamo-model-based forecasts for the amplitude of solar cycle 24. We conclude that reliable predictions for the maximum of solar activity can be made only at the preceding minimum-allowing about five years of advance planning for space weather. For more accurate predictions, sequential data assimilation would be necessary in forecasting models to account for the Sun's short memory.

  20. Case study modeling of turbulent and mesoscale fluxes over the BOREAS region

    USGS Publications Warehouse

    Vidale, P.L.; Pielke, R.A., Sr.; Steyaert, L.T.; Barr, A.

    1997-01-01

    Results from aircraft and surface observations provided evidence for the existence of mesoscale circulations over the Boreal Ecosystem-Atmosphere Study (BOREAS) domain. Using an integrated approach that included the use of analytical modeling, numerical modeling, and data analysis, we have found that there are substantial contributions to the total budgets of heat over the BOREAS domain generated by mesoscale circulations. This effect is largest when the synoptic flow is relatively weak, yet it is present under less favorable conditions, as shown by the case study presented here. While further analysis is warranted to document this effect, the existence of mesoscale flow is not surprising, since it is related to the presence of landscape patches, including lakes, which are of a size on the order of the local Rossby radius and which have spatial differences in maximum sensible heat flux of about 300 W m-2. We have also analyzed the vertical temperature profile simulated in our case study as well as high-resolution soundings and we have found vertical profiles of temperature change above the boundary layer height, which we attribute in part to mesoscale contributions. Our conclusion is that in regions with organized landscapes, such as BOREAS, even with relatively strong synoptic winds, dynamical scaling criteria should be used to assess whether mesoscale effects should be parameterized or explicitly resolved in numerical models of the atmosphere.

  1. Overview of the Frontal Air-Sea Interaction Experiment (FASINEX) - A study of air-sea interaction in a region of strong oceanic gradients

    NASA Technical Reports Server (NTRS)

    Weller, Robert A.

    1991-01-01

    From 1984 to 1986 the cooperative Frontal Air-Sea Interaction Experiment (FASINEX) was conducted in the subtropical convergence zone southwest of Bermuda. The overall objective of the experiment was to study air-sea interaction on 1- to 100-km horizontal scales in a region of the open ocean characterized by strong horizontal gradients in upper ocean and sea surface properties. Ocean fronts provided both large spatial gradients in sea surface temperature and strong jetlike flows in the upper ocean. The motivation for and detailed objectives of FASINEX are reviewed. Then the components of the field program are summarized. Finally, selected results are presented in order to provide an overview of the outcome of FASINEX.

  2. Self-Organized Criticality Properties of the Turbulence-Induced Particle Flux at the Plasma Edge of the HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Hao; Yu, Chang-Xuan; Wen, Yi-Zhi; Xu, Yu-Hong; Ling, Bi-Li; Gong, Xian-Zu; Liu, Bao-Hua; Wan, Bao-Nian

    2001-06-01

    The power spectrum and the probability distribution function (PDF) of the turbulence-induced particle flux Γ in the velocity shear layer of the HT-6M edge region have been measured and analysed. Three regions of frequency dependence (f 0, f-1, f-4) have been observed in the spectrum of the flux. The PDF of the flux displays a Γ-1 scaling over one decade in Γ. Using the rescaled-range statistical technique, we find that the degree of the self-similarity (Hurst exponent) of the particle flux in the measured region ranges from 0.64 to 0.83. All of these results may mean that the plasma transport is in a state characterized by self-organized criticality.

  3. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  4. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  5. Dynamic Evolution of Active Region Flux Tubes in the Turbulent Convective Envelope of a Young Sun: Solar-like Fast Rotators

    NASA Astrophysics Data System (ADS)

    Weber, Maria A.; Brown, B. P.; Fan, Y.

    2012-05-01

    Our Sun rotated much more rapidly when it was younger, as is suggested by observations of rapidly rotating solar-like stars and the influence of the solar wind, which removes angular momentum from the Sun. By studying how flux emergence may have occurred on the young Sun, we are likely to learn more about the nature of the solar dynamo early in the Sun's history, as well as other solar-like stars. To investigate this, we embed a toroidal flux tube near the base of the convection zone of a rotating spherical shell of turbulent convection performed for solar-like stars that rotate 3, 5, and 10 times the current solar rate. Our objective is to understand how the convective flows of these fast rotators can influence the emergent properties of flux tubes which would rise to create active regions, or starspots, of a variety of magnetic flux strengths, magnetic fields, and initial latitudes. Flux tube properties we will discuss include rise times, latitude of emergence, and tilt angles of the emerging flux tube limbs with respect to the east-west direction. Also of interest is identifying the regimes where dynamics of the flux tube are convection dominated or magnetic buoyancy dominated, as well as attempting to identify active longitudes.

  6. Influence of Turbulent Flows in the Nozzle on Melt Flow Within a Slab Mold and Stability of the Metal-Flux Interface

    NASA Astrophysics Data System (ADS)

    Calderon-Ramos, Ismael; Morales, R. D.

    2016-06-01

    The design of the ports of a casting nozzle has profound effects on the fluid flow patterns in slab molds. The influence of these outlets have also considerable effects on the turbulent flow and turbulence variables inside the nozzle itself. To understand the effects of nozzle design, three approaches were employed: a theoretical analysis based on the turbulent viscosity hypothesis, dimensional analysis (both analyses aided by computer fluid dynamics), and experiments using particle image velocimetry. The first approach yields a linear relation between calculated magnitudes of scalar fields of ɛ (dissipation rate of kinetic energy) and k 2 (square of the turbulent kinetic energy), which is derived from the wall and the logarithmic-wall laws in the boundary layers. The smaller the slope of this linear relation is, the better the performance of a given nozzle is for maintaining the stability of the melt-flux interface. The second approach yields also a linear relation between flow rate of liquid metal and the cubic root of the dissipation rate of kinetic energy. In this case, the larger the slope of the linear relation is, the better the performance of a given nozzle is for maintaining the stability of the melt-flux interface. Finally, PIV measurements in a mold water model, together with equations for estimation of critical melt velocities for slag entrainment, were used to quantify the effects of nozzle design on the dynamics of the metal-slag interface. The three approaches agree in the characterization of turbulent flows in continuous casting molds using different nozzles.

  7. An Integrated Multi-Scale Approach to the Study of Evapotranspiration on the Alaskan North Slope: Preliminary Characterization of Fluxes and Turbulence in the Imnavait Creek Basin

    NASA Astrophysics Data System (ADS)

    Wyatt, C.; Mumm, J.; Trochim, E.; Fochesatto, G. J.; Prakash, A.; Anderson, M. C.; Kane, D. L.

    2009-12-01

    Evapotranspiration (ET) plays a significant role in the hydrologic cycle of Arctic basins. Surface-atmosphere exchanges due to ET in the Imnaviat Creek Basin are estimated from water balance computations to be about 74% of summer precipitation or 50% of annual precipitation. Even though ET is a significant component of the hydrologic cycle in this region, the bulk estimates don't accurately account for spatial and temporal variability due to vegetation type, topography, etc. A preliminary experiment was carried out in the summer of 2009 to characterize the turbulent fluxes (i.e. buoyancy fluxes) at two levels of 1 and 3 m AGL and the heat fluxes in an integrated horizontal path covering about 80% of the basin. We present the preliminary analysis and characterization of the turbulent fluxes in the basin and we discuss the design of a multi-scale experimental and modeling approach to the study of ET that integrates point, spatial and volumetric in situ measurements, up to satellite scale observations. This ultimate focus of this exercise is to develop a consistent satellite-based ET retrieval approach.

  8. Satellite observations of air-sea interaction over the Kuroshio

    NASA Astrophysics Data System (ADS)

    Xie, S.; Nonaka, M.; Hafner, J.; Liu, W. T.

    2002-12-01

    Satellite microwave measurements are analyzed, revealing robust co-variability in sea surface temperature (SST) and wind speed over the Kuroshio and its Extension (KE). Ocean hydrodynamic instabilities cause the KE to meander and result into large SST variations. Increased (reduced) wind speeds are found to be associated with warm (cold) SST anomalies. This positive SST-wind correlation in KE is confirmed by in-situ buoy measurements and is consistent with a vertical shear adjustment mechanism. Namely, an increase in SST reduces the static stability of the near-surface atmosphere, intensifying the vertical turbulence mixing and bringing fast-moving air from aloft to the sea surface. South of Japan, the Kuroshio is known to vary between nearshore and offshore paths. Both paths seem semi-permanent and can persist months to years. As the Kuroshio shifts its path, coherent wind changes are detected. In particular, winds are high south of Tokyo when the Kuroshio takes the nearshore path while they are greatly reduced when this warm current leaves the coast in the offshore path. Further upstream in the East China Sea, on the warmer flank of the Kuroshio Front, there are a zone of high wind speed and a band of raining cloud due to the region's unstable atmospheric stratification near the surface. Surface wind convergence is roughly collocated with the Kuroshio Current. By increasing the baroclinicity and condensational heating, the Kuroshio Front aids the growth of the so-called Taiwan cyclone, an important winter weather phenomenon for Japan. The positive SST-wind correlation over the strong Kuroshio Current and its extension is opposite to the negative one often observed in regions of weak currents such as south of the Aleutian low that is considered to be indicative of atmosphere-to-ocean forcing.

  9. High-resolution simulations of heavy precipitation events: role of the Adriatic SST and air-sea interactions

    NASA Astrophysics Data System (ADS)

    Davolio, Silvio; Stocchi, Paolo

    2016-04-01

    Strong Bora and Sirocco winds over the Adriatic Sea favour intense air-sea interactions and are often associated with heavy rainfall that affects the mountainous areas surrounding the basin. A convection-permitting model (MOLOCH) has been implemented at high resolution (2 km) in order to analyse several precipitation events over northern Italy, occurred during different seasons of the year and presenting different rainfall characteristics (stratiform, convective, orographic), and to possibly identify the relevant physical mechanisms involved. With the aim of assessing the impact of the sea surface temperature (SST) and surface fluxes on the intensity and location of the rainfall, sensitivity experiments have been performed taking into account the possible variability of SST analysis for model initialization. The model has been validated and specific diagnostic tools have been developed and applied to evaluate the vertically integrated moisture fluxes feeding the precipitating system or to compute a water balance in the atmosphere over the sea. The results show that the Adriatic Sea plays a role in determining the boundary layer characteristics through exchange of heat and moisture thus modifying the low-level flow dynamics and its interaction with the orography. This in turn impacts on the rainfall. Although the results vary among the analysed events, the precise definition of the SST and its evolution can be relevant for accurate precipitation forecasting.

  10. Effect of large eddies on atmospheric surface layer turbulence and the underlying wave field

    NASA Astrophysics Data System (ADS)

    Savtchenko, Andrey

    1999-02-01

    To improve existing models for air-sea interaction, a better understanding of the energy transfer across the boundary layer and in particular of the coupling of large atmospheric eddies with the air-sea interface is needed. Recent investigations have already shown a possible coupling of large structures in atmospheric turbulence and surface ripples. This was done using synthetic aperture radar (SAR) imagery of ocean surface and almost simultaneous advanced very high resolution radiometer (AVHRR) imagery of cloud streets at a cold-air outbreak. The intent of our study is to further validate this hypothesis in a general case of coastal circulation. For this purpose we analyze a suite of collocated simultaneous records of airflow, radar return, and surface elevations from a coastal platform. We investigate the influence of large eddies (20-60 min) on the turbulent properties of the airflow in the first 2 m above the ocean surface. The analysis shows very prominent peaks in the magnitude of 12- to 16-min fluctuations which are further modulated in 20- to 40-min intervals. These scales and modulations are characteristic for all variables of interest here. The detected scales and their modulation suggest significant interaction of surface layer within the first 1-2 m with large eddies of scales of O(1) and O(10) km. The intermittent structure of turbulence responds by alternating contributions from bursts and sweeps; the frequency of occurrence of bursts and sweeps also reveals the influence of large structures. The instantaneous cross correlation between the shorter scales of momentum flux and radar return, corresponding to the individual burst events, can be 4 times as strong as the overall cross correlation.

  11. Transition from downward to upward air-sea momentum transfer in swell-dominated light wind condition

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Högström, Ulf; Rutgersson, Anna

    2016-04-01

    Atmospheric and surface wave data from two oceanic experiments carried out on FLIP and ASIS platforms are analysed in order to identify swell-related effects on the momentum exchange during low wind speed conditions. The RED experiment was carried out on board an R/P Floating Instrument Platform, FLIP, anchored north east of the Hawaiian island Oahu with sonic anemometers at four levels: 5.1 m, 6.9 m, 9.9 m and 13.8 m respectively. The meteorological conditions were characterized by north- easterly trade wind and with swell present during most of the time. During swell the momentum flux was directed downwards meaning a positive contribution to the stress. The FETCH experiment was carried out in the Gulf of Lion in the north-western Mediterranean Sea. On the ASIS (air-sea interaction spar) buoy a sonic anemometer was mounted at 7 m above the mean surface level. During strong swell conditions the momentum flux was directed upwards meaning a negative contribution to the stress in this case. The downward momentum flux is shown to be a function of the orbital circulation while the upward momentum flux is a function of wave height. The dividing wind speed is found to be 3.5 m/s Conclusion: Wind speed > 3.5 m/s creates waves (ripples) and thus roughness. Combination of orbital motion and asymmetric structure of ripples lead to flow perturbation and downward transport of negative momentum. With low wind speed (no ripples but viscosity) circulations will form above the crest and the trough with opposite direction which will cause a pressure drop in the vertical direction and an upward momentum transport from the water to the air.

  12. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    NASA Technical Reports Server (NTRS)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  13. Mueller matrix imaging of targets under an air-sea interface.

    PubMed

    Zhai, Peng-Wang; Kattawar, George W; Yang, Ping

    2009-01-10

    The Mueller matrix imaging method is a powerful tool for target detection. In this study, the effect of the air-sea interface on the detection of underwater objects is studied. A backward Monte Carlo code has been developed to study this effect. The main result is that the reflection of the diffuse sky light by the interface reduces the Mueller image contrast. If the air-sea interface is ruffled by wind, the distinction between different regions of the underwater target is smoothed out. The effect of the finite size of an active light source is also studied. The image contrast is found to be relatively insensitive to the size of the light source. The volume scattering function plays an important role on the underwater object detection. Generally, a smaller asymmetry parameter decreases the contrast of the polarimetry images. PMID:19137035

  14. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    NASA Astrophysics Data System (ADS)

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  15. Small Autonomous Air/Sea System Concepts for Coast Guard Missions

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2005-01-01

    A number of small autonomous air/sea system concepts are outlined in this paper that support and enhance U.S. Coast Guard missions. These concepts draw significantly upon technology investments made by NASA in the area of uninhabited aerial vehicles and robotic/intelligent systems. Such concepts should be considered notional elements of a greater as-yet-not-defined robotic system-of-systems designed to enable unparalleled maritime safety and security.

  16. Direct Measurement of Air-Sea Exchange of N2O5 and ClNO2 at a Polluted Coastal Site (Invited)

    NASA Astrophysics Data System (ADS)

    Bertram, T. H.; Kim, M.; Ryder, O. S.; Farmer, D.

    2013-12-01

    The reactive uptake of N2O5 at aqueous interfaces can serve as both an efficient NOx removal mechanism and regionally significant halogen activation process through the production of photo-labile ClNO2 molecules. Both the reaction rate and ClNO2 product yield are a complex function of the chemical composition and chloride molarity of the reactive surface. To date, analysis of the impact of N2O5 chemistry on oxidant loadings in the marine boundary layer has been limited to reactions occurring on aerosol particles, with little attention paid to reactions occurring at the air-sea interface. Here, we report the first direct measurements of the air-sea flux of N2O5 and ClNO2 made via eddy covariance in the polluted marine boundary layer in La Jolla, CA. We observe rapid N2O5 deposition to the ocean surface, while ClNO2 deposition rates were significantly lower and fastest during the first three hours following sunset. The results are interpreted using a time-dependent box-model, suggesting that under conditions characterized by shallow marine boundary layer heights (< 100 m) and representative aerosol reactive uptake coefficients (< 0.01), N2O5 deposition to the ocean surface can account for over 50% of the total N2O5 loss rate.

  17. Flux Observations of Carbon from an Airborne Laboratory (FOCAL): Using Advances in Spectroscopy, Turbulent Wind Measurements, and Small, Commercial Aircraft to Create Eddy Covariance Flux Maps from the Air.

    NASA Astrophysics Data System (ADS)

    Sayres, D. S.; Allen, N.; Healy, C. E.; Munster, J. B.; Rivero, M.; Tuozzolo, C.; Wilkerson, J.; Dobosy, R.; Dumas, E. J.; Heuer, M.; Kochendorfer, J.; Meyers, T. P.; Baker, B.; Langford, J.; Anderson, J. G.

    2014-12-01

    Over the past decade improvements in high-sensitivity, cavity-enhanced spectroscopic techniques have allowed for near-real time acquisition of atmospherically important gases at rates fast enough for use in eddy covariance. We report on the development of a suite of spectrometers capable of in situ measurements of the carbon-13 isotopologues of methane and carbon dioxide at high acquisition rates (10 Hz). Coupled with a mature airborne turbulence probe and a small, economical, commercial aircraft flying at 10 m above the surface FOCAL provides region scale surface fluxes of these important greenhouse gases. We describe the instrumentation, with emphasis on how new technology is changing the way these types of measurements can be made. FOCAL was first flown over the North Slope of Alaska in August, 2013. We will present a regional view of methane and carbon dioxide fluxes over parts of the North Slope as well as comparisons to traditional eddy covariance methods.

  18. Direct measurements of air-sea CO2 exchange over a coral reef

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. This heterogeneity in CO2 exchange with the atmosphere confirms need for spatially representative direct measurements of CO2 over coral reefs to accurately quantify their role in atmospheric carbon budgets.

  19. Air-sea interaction measurements in the west Mediterranean Sea during the Tyrrhenian Eddy Multi-Platform Observations Experiment

    SciTech Connect

    Schiano, M.E.; Santoleri, R.; Bignami, F.; Leonardi, R.M. ); Marullo, S. ); Boehm, E. )

    1993-02-15

    Measurements of radiative fluxes were carried out in the Tyrrhenian Sea in fall and winter as part of the Tyrrhenian Eddy Multi-Platform Observations Experiment (TEMPO). These measurements have supplied the first experimental radiation data set over this basin. Seasonal variation of the different components of the budget are investigated. Since data collection was carried out in an area in which a quasi-permanent eddy is present, the behavior of the radiation parameters across the frontal zone is analyzed. The most interesting result of the air-sea interaction in proximity of a marine front consists in the covariation of sea surface temperature and downwelling long-wave radiation. Contemporaneous satellite data show a clear correlation between sea surface structure and horizontal distribution of columnar atmospheric water content. Therefore this inhomogeneity clearly is one of the main factors responsible for the variation of the downwelling radiation across the front. A comparison between experimental data and results of some of the most widely used bulk formulae is carried out for both short- and long-wave radiation. The mean differnece between measured and empirical solar radiation values is less than 3%, while in the case of the net long-wave radiation budge, poor agreement is found. Indeed, a 30 W/m[sup 2] bias results from the comparison. This discrepancy is consistent with the imbalance between previous bulk calculations of total heat budget at the surface and corresponding hydrographical observations of heat exchange at Gibraltar. 30 refs., 6 figs., 9 tabs.

  20. THREE-DIMENSIONAL NONLINEAR EVOLUTION OF A MAGNETIC FLUX TUBE IN A SPHERICAL SHELL: INFLUENCE OF TURBULENT CONVECTION AND ASSOCIATED MEAN FLOWS

    SciTech Connect

    Jouve, Laurene; Brun, Allan Sacha E-mail: sacha.brun@cea.fr

    2009-08-20

    We present the first three-dimensional magnetohydrodynamics study in spherical geometry of the nonlinear dynamical evolution of magnetic flux tubes in a turbulent rotating convection zone (CZ). These numerical simulations use the anelastic spherical harmonic code. We seek to understand the mechanism of emergence of strong toroidal fields through a turbulent layer from the base of the solar CZ to the surface as active regions. To do so, we study numerically the rise of magnetic toroidal flux ropes from the base of a modeled CZ up to the top of our computational domain where bipolar patches are formed. We compare the dynamical behavior of flux tubes in a fully convective shell possessing self-consistently generated mean flows such as meridional circulation (MC) and differential rotation, with reference calculations done in a quiet isentropic zone. We find that two parameters influence the tubes during their rise through the CZ: the initial field strength and amount of twist, thus confirming previous findings in Cartesian geometry. Further, when the tube is sufficiently strong with respect to the equipartition field, it rises almost radially independently of the initial latitude (either low or high). By contrast, weaker field cases indicate that downflows and upflows control the rising velocity of particular regions of the rope and could in principle favor the emergence of flux through {omega}-loop structures. For these latter cases, we focus on the orientation of bipolar patches and find that sufficiently arched structures are able to create bipolar regions with a predominantly east-west orientation. Meridional flow seems to determine the trajectory of the magnetic rope when the field strength has been significantly reduced near the top of the domain. Appearance of local magnetic field also feeds back on the horizontal flows thus perturbing the MC via Maxwell stresses. Finally differential rotation makes it more difficult for tubes introduced at low latitudes to

  1. Biofilm-like properties of the sea surface and predicted effects on air-sea CO2 exchange

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier

    2016-05-01

    fluxes by up to 15%, and, therefore, play important local and regional roles in regulating air-sea interactions.

  2. Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights (Invited)

    NASA Astrophysics Data System (ADS)

    Tsuda, A.

    2010-12-01

    Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights Atsushi Tsuda Atmosphere and Ocean Research Institute, The University of Tokyo In the western Pacific (WESTPAC) region, dust originating from Asian and Australian arid regions to the North and South Pacific, biomass burning emissions from the Southeast Asia to sub-tropical Pacific, and other anthropogenic substances are transported regionally and globally to affect cloud and rainfall patterns, air quality, and radiative budgets downwind. Deposition of these compounds into the Asian marginal seas and onto the Pacific Ocean influence surface primary productivity and species composition. In the WESTPAC region, subarctic, subtropical oceans and marginal seas are located relatively narrow latitudinal range and these areas are influenced by the dust and anthropogenic inputs. Moreover, anthropogenic emission areas are located between the arid region and the oceans. The W-PASS (Western Pacific Air-Sea interaction Study) project has been funded for 5 years as a part of SOLAS-Japan activity in the summer of 2006. We aim to resolve air-sea interaction through field observation studies mainly using research vessels and island observatories over the western Pacific. We have carried out 5 cruises to the western North Pacific focusing on air-sea interactions. Also, an intensive marine atmospheric observation including direct atmospheric deposition measurement was accomplished by a dozen W-PASS research groups at the NIES Atmospheric and Aerosol Monitoring Station of Cape Hedo in the northernmost tip of the Okinawa main Island facing the East China Sea in the spring 2008. A few weak Kosa (dust) events, anthropogenic air outflows, typical local air and occupation of marine background air were identified during the campaign period. The W-PASS has four research groups mainly focusing on VOC emissions, air-sea gas exchange processes, biogeochemical responses to dust depositions and its modeling. We also

  3. Air-sea exchange of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China Sea, the Hainan Island, China.

    PubMed

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2016-06-01

    The air-sea exchange of gaseous mercury (mainly Hg(0)) in the tropical ocean is an important part of the global Hg biogeochemical cycle, but the related investigations are limited. In this study, we simultaneously measured Hg(0) concentrations in surface waters and overlaying air in the tropical coast (Luhuitou fringing reef) of the South China Sea (SCS), Hainan Island, China, for 13 days on January-February 2015. The purpose of this study was to explore the temporal variation of Hg(0) concentrations in air and surface waters, estimate the air-sea Hg(0) flux, and reveal their influencing factors in the tropical coastal environment. The mean concentrations (±SD) of Hg(0) in air and total Hg (THg) in waters were 2.34 ± 0.26 ng m(-3) and 1.40 ± 0.48 ng L(-1), respectively. Both Hg(0) concentrations in waters (53.7 ± 18.8 pg L(-1)) and Hg(0)/THg ratios (3.8 %) in this study were significantly higher than those of the open water of the SCS in winter. Hg(0) in waters usually exhibited a clear diurnal variation with increased concentrations in daytime and decreased concentrations in nighttime, especially in cloudless days with low wind speed. Linear regression analysis suggested that Hg(0) concentrations in waters were positively and significantly correlated to the photosynthetically active radiation (PAR) (R (2) = 0.42, p < 0.001). Surface waters were always supersaturated with Hg(0) compared to air (the degree of saturation, 2.46 to 13.87), indicating that the surface water was one of the atmospheric Hg(0) sources. The air-sea Hg(0) fluxes were estimated to be 1.73 ± 1.25 ng m(-2) h(-1) with a large range between 0.01 and 6.06 ng m(-2) h(-1). The high variation of Hg(0) fluxes was mainly attributed to the greatly temporal variation of wind speed. PMID:26931659

  4. Spatial and temporal variability of air-sea CO2 exchange of alongshore waters in summer near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Ikawa, Hiroki; Oechel, Walter C.

    2014-03-01

    Alongshore water off Barrow, Alaska is a useful area for studying the carbon cycle of the Arctic coastal sea, because the different coastal characteristics extant in the area likely represent much larger regions of the coastal water of the western Arctic Ocean. Especially noteworthy is the inflow shelf water transferred northward by the Arctic Coastal Current into the Chukchi Sea from the North Pacific and turbid water in the Elson Lagoon where a significant amount of coastal erosion has been reported along the extensive coastal line and where a part of the water from the lagoon drains into the Beaufort Sea adjacent to the Chukchi Sea. To investigate spatial and temporal variations of air-sea CO2 flux (CO2 flux) of the alongshore water, partial pressure of CO2 of surface seawater (pCO2sw) was measured in summer, 2007 and 2008, and CO2 flux was directly measured by eddy covariance at a fixed point for the Beaufort Sea in summer 2008. Measured pCO2sw in the Chukchi Sea side was the lowest in the beginning of the measurement season and increased later in the season both in 2007 and 2008. The average CO2 flux estimated based on pCO2sw in the Chukchi Sea side was -0.10 μmol m-2 s-1 (±0.1 s.d.) using the sign convention of positive fluxes into the atmosphere from the ocean. pCO2sw in the Beaufort Sea and the Elson Lagoon was relatively higher in early summer and decreased in the middle of the summer. The overall average CO2 flux was -0.07 μmol m-2 s-1 (±0.1 s.d.) for the Beaufort Sea side and -0.03 μmol m-2 s-1 (±0.07 s.d.) for the Elson Lagoon respectively, indicating a sink of CO2 despite high carbon inflows from the terrestrial margin into the Elson Lagoon. A strong sink of CO2 was often observed from the Beaufort Sea by eddy covariance in the middle of the summer. This sink activity in the middle summer in the Beaufort Sea and Elson Lagoon was likely due to biological carbon uptake as inferred by low apparent oxygen utilization and high chlorophyll

  5. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    NASA Astrophysics Data System (ADS)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  6. Measured and parameterized energy fluxes estimated for Atlantic transects of RV Polarstern

    NASA Astrophysics Data System (ADS)

    Bumke, Karl; Macke, Andreas; Kalisch, John; Kleta, Henry

    2013-04-01

    Even to date energy fluxes over the oceans are difficult to assess. As an example the relative paucity of evaporation observations and the uncertainties of currently employed empirical approaches lead to large uncertainties of evaporation products over the ocean (e.g. Large and Yeager, 2009). Within the frame of OCEANET (Macke et al., 2010) we performed such measurements on Atlantic transects between Bremerhaven (Germany) and Cape Town (South Africa) or Punta Arenas (Chile) onboard RV Polarstern during the recent years. The basic measurements of sensible and latent heat fluxes are inertial-dissipation (e.g. Dupuis et al., 1997) flux estimates and measurements of the bulk variables. Turbulence measurements included a sonic anemometer and an infrared hygrometer, both mounted on the crow's nest. Mean meteorological sensors were those of the ship's operational measurement system. The global radiation and the down terrestrial radiation were measured on the OCEANET container placed on the monkey island. At least about 1000 time series of 1 h length were analyzed to derive bulk transfer coefficients for the fluxes of sensible and latent heat. The bulk transfer coefficients were applied to the ship's meteorological data to derive the heat fluxes at the sea surface. The reflected solar radiation was estimated from measured global radiation. The up terrestrial radiation was derived from the skin temperature according to the Stefan-Boltzmann law. Parameterized heat fluxes were compared to the widely used COARE-parameterization (Fairall et al., 2003), the agreement is excellent. Measured and parameterized heat and radiation fluxes gave the total energy budget at the air sea interface. As expected the mean total flux is positive, but there are also areas, where it is negative, indicating an energy loss of the ocean. It could be shown that the variations in the energy budget are mainly due to insolation and evaporation. A comparison between the mean values of measured and

  7. The Relation Between Wind Speed and Air-Sea Temperature Difference in the Marine Atmospheric Boundary Layer off Northwest Europe

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2014-12-01

    Wind speed and atmospheric stability have an important role in determining the turbulence in the marine atmospheric boundary layer (MABL) as well as the surface wave field. The understanding of MABL dynamics in northwest Europe is complicated by fetch effects, the proximity of coastlines, shallow topography, and larger scale circulation patterns (e.g., cold air outbreaks). Numerical models have difficulty simulating the marine atmospheric boundary layer in coastal areas and partially enclosed seas, and this is partly due to spatial resolution problems at coastlines. In these offshore environments, the boundary layer processes are often best understood directly from time series measurements from fixed platforms or buoys, in spite of potential difficulties from platform flow distortion as well as the spatial sparseness of the data sets. This contribution presents the results of time series measurements from offshore platforms in the North Sea and Norwegian Sea in terms of a summary diagnostic - wind speed versus air-sea temperature difference (U-ΔT) - with important implications for understanding atmospheric boundary layer processes. The U-ΔT diagram was introduced in earlier surveys of data from coastal (Sletringen; O.J. Andersen and J. Løvseth, J. Wind Eng. Ind. Aerodyn., 57, 97-109, 1995) and offshore (Statfjord A; K.J. Eidsvik, Boundary-Layer Meteorol., 32, 103-132, 1985) sites in northwest Europe to summarize boundary layer conditions at a given location. Additional information from a series of measurement purpose-built offshore measurement and oil/gas production platforms from the southern North Sea to the Norwegian Sea illustrates how the wind characteristics vary spatially over large distances, highlighting the influence of cold air outbreaks, in particular. The results are important for the offshore wind industry because of the way that wind turbines accrue fatigue damage in different conditions of atmospheric stability and wind speed.

  8. The Coupled Boundary Layers and Air-Sea Transfer (CBLAST) Experiments at the Martha's Vineyard Coastal Observatory

    NASA Astrophysics Data System (ADS)

    Edson, J. B.

    2001-12-01

    The Woods Hole Oceanographic Institution (WHOI) completed the initial phase of the Martha's Vineyard Coastal Observatory (MVCO) in July of 2001. The MVCO is being using to monitor coastal atmospheric and oceanic processes. Specifically, the observatory is expected to: - Provide continuous long-term observations for climate studies. - Provide a reliable system and rugged sensors that allow opportunistic sampling of extreme events. - Provide a local climatology for intensive, short duration field campaigns. - Further facilitate regional studies of coastal processes by providing infrastructure that supports easy access to power and data. This talk provides an example of the last two objectives using the low wind component of the Office of Naval Research's (ONR) Coupled Boundary Layers and Air-Sea Transfer (CBLAST) program. CBLAST-LOW has been designed to investigate air-sea interaction and coupled atmospheric and oceanic boundary layer dynamics at low wind speeds where the dynamic processes are driven and/or strongly modulated by thermal forcing. This effort is being carried out by scientists at WHOI, NPS, NOAA, NRL, Rutgers, UW/APL, JH/APL, OSU, NCAR, and other institutions, and includes observational and modeling components. The MVCO is providing observations and infrastructure in support of several intensive operating periods in the summers of 2001, 2002, and possibly 2003. During these periods, the observational network around the observatory was and will be greatly expanded using traditional oceanographic moorings and bottom mounted instrumentation, innovative 2- and 3-D moored and drifting arrays, survey ships, AUVs, satellite remote sensing, and heavily instrumented aircraft. In addition, the MVCO cabled components will be extended out to the 20-m isobath where we plan to deploy a 35-m tower. The tower will be instrumented from 15-m above the ocean surface to the ocean bottom with instruments capable of directly measuring the momentum, heat, and radiative

  9. In-situ measurements of the effects of wave breaking on near-surface turbulence

    NASA Astrophysics Data System (ADS)

    Sutherland, P.; Melville, W. K.; Lenain, L.; Statom, N.

    2012-12-01

    Surface waves, and in particular breaking waves, are a critical component of air-sea interaction. They modulate energy and momentum transfer between the atmosphere and ocean, aid in gas transfer, and are a source of aerosols. Wave fields in the open ocean evolve according to the radiative transfer equation, which has three source terms, wind input, non-linear wave-wave interactions, and dissipation. Of these, dissipation is the least well understood, but is thought to be frequently dominated by wave breaking. We present R/P FLIP-based measurements of near-surface turbulent kinetic energy (TKE) dissipation taken during the ONR RaDyO program south of Hawaii in 2009 and the HiRes program off the coast of California in 2010. During these experiments, stereo video of sea surface temperature structure was captured by a pair of long-wave IR cameras. Using particle imaging velocimetry (PIV) on these data, we are able to reconstruct the surface vorticity field. We have developed a new technique to extract TKE dissipation from these vorticity fields which is un-contaminated by the orbital velocities of irrotational waves. An important statistic of breakers, Λ(c), the distribution of crest length per unit area of sea surface as a function of breaker speed c, is measured using both IR and visible imagery. The properly scaled 5th moment of Λ(c) gives a remotely-sensed estimate of dissipation by wave breaking (Kleiss and Melville, 2010), which can then be related to the in-situ TKE dissipation measurements. This comparison will help to better understand the role of breaking in wave dissipation and as a source of ocean surface turbulence, mixing and air-sea fluxes.

  10. Extreme air-sea interaction over the North Atlantic subpolar gyre during the winter of 2013-2014 and its sub-surface legacy

    NASA Astrophysics Data System (ADS)

    Grist, Jeremy P.; Josey, Simon A.; Jacobs, Zoe L.; Marsh, Robert; Sinha, Bablu; Van Sebille, Erik

    2016-06-01

    Exceptionally low North American temperatures and record-breaking precipitation over the British Isles during winter 2013-2014 were interconnected by anomalous ocean evaporation over the North Atlantic subpolar gyre region (SPG). This evaporation (or oceanic latent heat release) was accompanied by strong sensible heat loss to the atmosphere. The enhanced heat loss over the SPG was caused by a combination of surface westerly winds from the North American continent and northerly winds from the Nordic Seas region that were colder, drier and stronger than normal. A distinctive feature of the air-sea exchange was that the enhanced heat loss spanned the entire width of the SPG, with evaporation anomalies intensifying in the east while sensible heat flux anomalies were slightly stronger upstream in the west. The immediate impact of the strong air-sea fluxes on the ocean-atmosphere system included a reduction in ocean heat content of the SPG and a shift in basin-scale pathways of ocean heat and atmospheric freshwater transport. Atmospheric reanalysis data and the EN4 ocean data set indicate that a longer-term legacy of the winter has been the enhanced formation of a particularly dense mode of Subpolar Mode Water (SPMW)—one of the precursors of North Atlantic Deep Water and thus an important component of the Atlantic Meridional Overturning Circulation. Using particle trajectory analysis, the likely dispersal of newly-formed SPMW is evaluated, providing evidence for the re-emergence of anomalously cold SPMW in early winter 2014/2015.

  11. Weak ENSO asymmetry due to weak nonlinear air-sea interaction in CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Wang, Fan; Sun, De-Zheng

    2016-03-01

    State-of-the-art climate models have long-standing intrinsic biases that limit their simulation and projection capabilities. Significantly weak ENSO asymmetry and weakly nonlinear air-sea interaction over the tropical Pacific was found in CMIP5 (Coupled Model Intercomparison Project, Phase 5) climate models compared with observation. The results suggest that a weak nonlinear air-sea interaction may play a role in the weak ENSO asymmetry. Moreover, a weak nonlinearity in air-sea interaction in the models may be associated with the biases in the mean climate—the cold biases in the equatorial central Pacific. The excessive cold tongue bias pushes the deep convection far west to the western Pacific warm pool region and suppresses its development in the central equatorial Pacific. The deep convection has difficulties in further moving to the eastern equatorial Pacific, especially during extreme El Ni˜no events, which confines the westerly wind anomaly to the western Pacific. This weakens the eastern Pacific El Ni˜no events, especially the extreme El Ni˜no events, and thus leads to the weakened ENSO asymmetry in climate models. An accurate mean state structure (especially a realistic cold tongue and deep convection) is critical to reproducing ENSO events in climate models. Our evaluation also revealed that ENSO statistics in CMIP5 climate models are slightly improved compared with those of CMIP3. The weak ENSO asymmetry in CMIP5 is closer to the observation. It is more evident in CMIP5 that strong ENSO activities are usually accompanied by strong ENSO asymmetry, and the diversity of ENSO amplitude is reduced.

  12. Spatial and temporal variability of heat, water vapor, carbon dioxide, and momentum air-sea exchange in a coastal environment

    NASA Astrophysics Data System (ADS)

    Crawford, Timothy L.; McMillen, Robert T.; Meyers, Tilden P.; Hicks, Bruce B.

    1993-07-01

    Simultaneous eddy correlation measurements from a tower, a boat, and an aircraft platform are used to assess the spatial and temporal variability of heat, moisture, momentum, and CO2 turbulent fluxes in a coastal environment. Dissolved CO2 in the coastal waters and atmospheric CO2 concentrations were continuously measured throughout the experiment. Good agreement was found among the different sensing systems. Air-to-sea gas, momentum, and energy flux density measurements are shown to be achievable from both a boat and an aircraft. The observed 10 W/sq m sensible heat flux was time-invariant but did not vary spatially with surface temperature, which was strongly correlated with ocean depth. The 100 to 200 W/sq m evaporative moisture flux dominated energy exchange and varied both in time and space. No consistent diurnal variation was observed, but the spatial trend also followed surface temperature. CO2 exchange exhibited large spatial and temporal variance.

  13. Air-sea interaction and spatial variability of the surface evaporation duct in a coastal environment

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.

    Aircraft observations are presented of the horizontal variability in the depth of the surface evaporation duct and the relationship with the mesoscale structure of air-sea interaction processes. The 2-dimensional fields of near-surface wind, stress, wind-stress curl, air and sea-surface temperature are measured directly for flow around a headland. The sea surface temperature field indicates cold upwelling driven by the wind-stress curl. Boundary-layer stability responds rapidly to the spatial changes in surface temperature. These changes result in modification of the evaporation duct, which decreases significantly in depth over the cooler upwelling water.

  14. Intense air-sea exchange and heavy rainfall: impact of the northern Adriatic SST

    NASA Astrophysics Data System (ADS)

    Stocchi, P.; Davolio, S.

    2016-02-01

    Over the northern Adriatic basin, intense air-sea interactions are often associated with heavy precipitation over the mountainous areas surrounding the basin. In this study, a high-resolution mesoscale model is employed to simulate three severe weather events and to evaluate the effect of the sea surface temperature on the intensity and location of heavy rainfall. The sensitivity tests show that the impact of SST varies among the events and it mainly involves the modification of the PBL characteristics and thus the flow dynamics and its interaction with the orography.

  15. Validation experiments to determine radiation partitioning of heat flux to an object in a fully turbulent fire.

    SciTech Connect

    Ricks, Allen; Blanchat, Thomas K.; Jernigan, Dann A.

    2006-06-01

    It is necessary to improve understanding and develop validation data of the heat flux incident to an object located within the fire plume for the validation of SIERRA/ FUEGO/SYRINX fire and SIERRA/CALORE. One key aspect of the validation data sets is the determination of the relative contribution of the radiative and convective heat fluxes. To meet this objective, a cylindrical calorimeter with sufficient instrumentation to measure total and radiative heat flux had been designed and fabricated. This calorimeter will be tested both in the controlled radiative environment of the Penlight facility and in a fire environment in the FLAME/Radiant Heat (FRH) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparisons between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. A significant question of interest to modeling heat flux incident to an object in or near a fire is the contribution of the radiation and convection modes of heat transfer. The series of experiments documented in this test plan is designed to provide data on the radiation partitioning, defined as the fraction of the total heat flux that is due to radiation.

  16. Towards Improved Estimates of Ocean Heat Flux

    NASA Astrophysics Data System (ADS)

    Bentamy, Abderrahim; Hollman, Rainer; Kent, Elisabeth; Haines, Keith

    2014-05-01

    Recommendations and priorities for ocean heat flux research are for instance outlined in recent CLIVAR and WCRP reports, eg. Yu et al (2013). Among these is the need for improving the accuracy, the consistency, and the spatial and temporal resolution of air-sea fluxes over global as well as at region scales. To meet the main air-sea flux requirements, this study is aimed at obtaining and analyzing all the heat flux components (latent, sensible and radiative) at the ocean surface over global oceans using multiple satellite sensor observations in combination with in-situ measurements and numerical model analyses. The fluxes will be generated daily and monthly for the 20-year (1992-2011) period, between 80N and 80S and at 0.25deg resolution. Simultaneous estimates of all surface heat flux terms have not yet been calculated at such large scale and long time period. Such an effort requires a wide range of expertise and data sources that only recently are becoming available. Needed are methods for integrating many data sources to calculate energy fluxes (short-wave, long wave, sensible and latent heat) across the air-sea interface. We have access to all the relevant, recently available satellite data to perform such computations. Yu, L., K. Haines, M. Bourassa, M. Cronin, S. Gulev, S. Josey, S. Kato, A. Kumar, T. Lee, D. Roemmich: Towards achieving global closure of ocean heat and freshwater budgets: Recommendations for advancing research in air-sea fluxes through collaborative activities. INTERNATIONAL CLIVAR PROJECT OFFICE, 2013: International CLIVAR Publication Series No 189. http://www.clivar.org/sites/default/files/ICPO189_WHOI_fluxes_workshop.pdf

  17. Comparison of Turbulent Sensible Heat Flux Determined by Large-Aperture Scintillometer and Eddy Covariance over Urban and Suburban Areas

    NASA Astrophysics Data System (ADS)

    Zhang, He; Zhang, Hongsheng

    2015-01-01

    Field observations of the atmospheric boundary layer were made over urban and suburban areas in the Yangtze River Delta, China. Sensible heat fluxes were obtained by eddy-covariance (EC) systems and large-aperture scintillometers (LASs). The results indicated that (1) the sensible heat flux obtained by LAS was less noisy and slightly larger than that obtained by EC over both urban and suburban surfaces; (2) the values of were higher when the correlation coefficient of vertical wind speed and temperature () was smaller. Lower values of were due to low-frequency trends. The urban values of were smaller than suburban values at low values; (3) the sensible heat flux determined by LAS was improved by use of the Monin-Obukhov similarity theory of the temperature structure parameter over urban and suburban areas, and the improvement is more significant over urban surface areas.

  18. Characteristics of the motions, turbulence intensity, diffusivity, flux of momentum and sensible heat in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Kao, S. K.; Lordi, N. J.

    1977-01-01

    Analyses of the meteorological rocket data obtained from an experiment conducted at 3-hour intervals at 8 western meridional rocket stations are presented. Large variations in the meridional wind contribute substantially to overall turbulence in the tropical stratosphere. The solar semidiurnal component of wind oscillations in the tropics was observed to be much higher than predicted by theory, often exceeding the magnitude of the diurnal amplitude throughout the stratosphere. The observed value of the solar diurnal amplitude in the stratosphere was in line with theoretical prediction. The solar terdiurnal amplitudes for temperature, meridional and zonal winds were non-negligible and must be considered in any harmonic analysis. Phase angle variation with height was rapid for all harmonics; however, there was general agreement between predicted and observed phase angles. Because of large changes in the mean winds in the mesosphere with season, harmonic determinations are difficult. There appear to be large zonal wind changes even within the same season as mentioned previously. Turbulence diffusivity in the upper stratosphere is greater near the equator than in the mid-latitudes.

  19. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    PubMed Central

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  20. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    PubMed

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  1. The Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) Datasets and the Uncertainties/Impact due to the SSM/I Brightness Temperature

    NASA Astrophysics Data System (ADS)

    Shie, C.; Hilburn, K. A.

    2011-12-01

    Accurate ocean surface turbulent flux measurements are crucial to understanding the global water and energy cycle changes. Remote sensing is a valuable tool for global monitoring of these flux measurements. The GSSTF algorithm was thus developed and applied to remote sensing research and applications. The early version GSSTF2 (a global 1°x1° daily dataset of July 1987-December 2000) was widely used by the scientific community for global energy and water cycle research, and regional and short period data analysis since its official release in 2001. In a recently funded project by the NASA/Making Earth System data records for Use in Research Environments (MEaSUREs) Program, a new version GSSTF2b (a global 1°x1° daily dataset of July 1987-December 2008) using the improved and upgraded input datasets that included the updated Special Sensor Microwave Imagers (SSM/I) V6 product (e.g., brightness temperature [TB]) and the NCEP-DOE Reanalysis II product (e.g., sea surface/skin temperature) was therefore produced and distributed in October 2010. GSSTF2b was found to generally agree better with the sounding observations than GSSTF2 did in all three components of fluxes, i.e., latent heat flux (LHF), sensible heat flux (SHF), and wind stress (WST). In a recent intercomparison study led by one of the GSSTF2b/GSSTF2 users, GSSTF2b was also found performed well, especially in LHF and SHF, among the eleven accessed global oceanic surface turbulent fluxes datasets that include six reanalysis, four satellite-derived, and one combined. Certain foremost climate and weather scenarios such as the ENSO and the Monsoon activities can also be genuinely demonstrated by the GSSTF2b fluxes. However, we recently realized that the gradually increasing temporal trend shown in the globally averaged LHF of GSSTF2b, especially post 2000~2001, was somewhat related to a trend found in the SSM/I TB that was used to retrieve the bottom layer precipitable water (WB), then the specific humidity (Qa

  2. Numerical simulation of subsonic and transonic turbulent flows in turbine cascades including wall heat flux and roughness

    NASA Astrophysics Data System (ADS)

    Louda, P.; Kozel, K.; Sváček, P.; Příhoda, J.

    2012-11-01

    The work deals with numerical simulation of transonic flow in turbine cascade including heat transfer between fluid and blades. The blades are considered either solid, with heat conduction, or with a cavity held at constant temperature above the total temperature of the fluid. The surface of blades is hydraulically smooth or rough. The mathematical model is based on Favre averaged Navier-Stokes equations with SST turbulence model. The heat transfer inside blades is governed by Laplace equation for temperature. The solution for fluid part is obtained by implicit AUMPW+ finite volume method. The solution of Laplace equation is obtained by finite element method. The coupling between the two solvers is discussed including some problems. In the discussion of results, the effects of heat conduction in the blade, internal heating of the blade and surface roughness are observed.

  3. The Aeroclipper: A new instrument for quasi-Lagrangian measurements at the air-sea interface

    NASA Astrophysics Data System (ADS)

    Duvel, J. P.; Reverdin, G.; Pichon, T.; Vargas, A.

    The Aeroclipper is a new balloon developed by CNES. The Aeroclipper is a balloon equipped with a cable extended by a guide-rope in contact with the surface of the ocean. The balloon is vertically stabilised at a given height (currently 40 to 60m above the sea surface) and move on quasi-Lagrangian trajectories depending on the surface wind. LMD (Laboratoire de Méteorologie Dynamique), LodyC (Laboratoire d'océanographie physique et de Climatologie) and ENSTA (Ecole Nationale Supérieure de Techniques Avancées) developed an instrumentation adapted to this new measurement system. This instrumentation is distributed on one atmospheric gondola and one oceanic gondola. The aim is to measure surface physical parameters (Air and sea surface temperatures, sea surface salinity, wind, pressure and humidity) and to derive turbulent fluxes of moisture, heat and momentum. The Aeroclippers will give legs of the different parameters at a relatively high spatial resolution and thus information on the perturbation of these parameters at mesoscale. A first test of the full system will be performed from Banyuls (France) during spring 2004. The first scientific use of the Aeroclipper is planned in February 2005 in the Indian Ocean South of the Equator in link with the pilot phase of the Vasco (Variability of the Atmosphere at the intra-Seasonal time scale and Coupling with the Ocean) experiment.

  4. Air-sea interaction during an extreme cold air outbreak from the eastern coast of the United States

    NASA Technical Reports Server (NTRS)

    Grossman, Robert L.; Betts, Alan K.

    1990-01-01

    An aircraft investigation of boundary layer mean and turbulent structure is reported, and the Lagrangian budgets of temperature and moisture in the subcloud layer following a streamline during an extreme cold air outbreak are evaluated. The maximum sea-air temperature difference was 23 K. Two aircraft were used: the NCAR Electra, which measured turbulent fluxes and investigated subcloud layer conditions, and the NASA Electra, which measured the height of cloud tops using lidar. A stratocumulus overcast was found from about 60 km offshore to the Gulf Stream core with cloud top rising downstream. East of the Gulf Stream cumulus congestus and snow showers were observed. Cloud base decreased downstream and numerous steam plumes filled the subcloud layer. Temperature cross sections show most warming, and moistening of the subcloud layer occurred before the Gulf Stream core. Windspeeds increased downstream and maxima were observed near cloud top (inversion) and in the subcloud layer. Lagrangian budgets showed most warming, and moistening of the layer between 70 m and about 100 m below mean cloud base was due to turbulent flux divergence.

  5. Air--Sea CO2 Cycling in the Southeastern Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Else, Brent Gordon Thomas

    During the fourth International Polar Year, an interdisciplinary study was conducted to examine the couplings between sea ice, ocean, atmosphere, and ecosystem in the southeastern Beaufort Sea. This thesis examines components of the system that control the air-sea exchange of carbon dioxide. Using eddy covariance measurements, we found enhanced CO2 exchange associated with new ice formation in winter flaw leads. This exchange was typically directed towards the surface, although we also measured one instance of outgassing. Sea surface dissolved CO2 measurements (pCO 2sw) in Amundsen Gulf showed significant undersaturation with respect to the atmosphere at freeze-up, followed by a slow increase over the winter until spring phytoplankton blooms caused strong undersaturation at break-up. Over the summer, pCO2sw increased until becoming slightly supersaturated due to surface warming. Along the southern margins of Amundsen Gulf and on the Mackenzie Shelf we found pCO2sw supersaturations in the fall due to wind-driven coastal upwelling. In the spring, this upwelling occurred along the landfast ice edges of Amundsen Gulf. By combining observations of enhanced winter gas exchange with observations of pCO 2sw in Amundsen Gulf, we derived an annual budget of air-sea CO2 exchange for the region. This exercise showed that uptake through the winter season was as important as the open water season, making the overall annual uptake of CO2 about double what had previously been calculated. Prior to this work, the prevailing paradigm of airsea CO2 cycling in Arctic polynya regions posited that strong CO2 absorption occurs in the open water seasons, and that a potential outgassing during the winter is inhibited by the sea ice cover. As a new paradigm, we propose that the spatial and temporal variability of many processes---including phytoplankton blooms, sea surface temperature and salinity changes, upwelling, river input, continental shelf processes, and the potential for high rates

  6. Air-sea exchange over Black Sea estimated from high resolution regional climate simulations

    NASA Astrophysics Data System (ADS)

    Velea, Liliana; Bojariu, Roxana; Cica, Roxana

    2013-04-01

    Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective

  7. Land cover change in the zone of sporadic permafrost causes shift in landscape-scale turbulent energy fluxes

    NASA Astrophysics Data System (ADS)

    Helbig, M.; Wischnewski, K.; Kljun, N.; Chasmer, L.; Quinton, W. L.; Detto, M.; Sonnentag, O.

    2015-12-01

    Boreal forests in the sporadic permafrost zone have been shown to decline at the expense of wetlands following permafrost disappearance. These land cover changes cause shifts in ecosystem properties and affect biosphere-atmosphere interactions. The goal of our study is to examine the effects of permafrost disappearance on landscape-scale sensible (H) and latent heat fluxes (LE) and related potential feedbacks on regional air temperatures (Ta) We use a combination of nested eddy covariance flux towers, flux footprint and planetary boundary layer (PBL) dynamic modelling, and MOderate-resolution Imaging Spectroradiometer (MODIS) remote sensing products to resolve spatio-temporal dynamics in H and LE at the landscape scale at Scotty Creek, NWT (61º18' N; 121º18' W) and in radiometric land surface temperatures (LST) at the regional scale across the southern Taiga Plains in the sporadic permafrost zone of northwestern Canada. The heterogeneous landscape comprises boreal forests with permafrost and permafrost-free wetlands. Our results show that H above the heterogeneous landscape was about twice as high as above a nearby treeless, permafrost-free bog. In contrast, landscape-scale LE was only about 50 % of LE over the bog. These differences were primarily driven by higher heat transfer efficiency of the aerodynamically rougher forest and lower albedo of the forest compared to the bog (about 10 % lower during summer and about 40 % lower during late winter). Aerodynamic LST increased with the fraction of forest in the flux footprints. This effect was strongest (r2 = 0.55, slope = 0.06 K per % forest) at the end of winter when contrasts in albedo are largest. Bulk surface conductance increased with the fraction of wetlands in the footprints. On a regional scale, radiometric MODIS LST increased with tree cover during the snow cover period (0.06 K per % tree cover), but decreased during the summer (-0.04 K per % tree cover). Modelling results showed that a shift from the

  8. Permafrost thaw and fire history: implications of boreal tree cover changes on land surface properties and turbulent energy fluxes in the Taiga Plains, Canada

    NASA Astrophysics Data System (ADS)

    Sonnentag, Oliver; Helbig, Manuel; Payette, Fanny; Wischnewski, Karoline; Kljun, Natascha; Chasmer, Laura; Pappas, Christoforos; Detto, Matteo; Baltzer, Jennifer; Quinton, William; Marsh, Philip

    2016-04-01

    Given their large areal coverage, high carbon densities, and unique land surface properties and disturbance regimes (e.g., wildfires), the world's boreal forests are integral components of the global and regional climate systems. A large portion of boreal forests contain permafrost, i.e., perennially cryotic ground. In the Taiga Plains ecozone in northwestern Canada, the northernmost boreal forests grow on cold (<-1.5 °C) and thick (>100 m) continuous permafrost (>90 % in areal extent). More southerly boreal forests occur in areas with discontinuous (>50 - 90 % in areal extent), sporadic (>10 - 50 % in areal extent) and isolated permafrost (<10 % in areal extent). Using annual MODIS Percent Tree Cover (PTC) data from the MOD44B product in combination with spatial information on fire history, and permafrost and drainage characteristics, we show that in low-lying, poorly-drained areas along the southern fringe of permafrost, thawing induces widespread decreases in PTC and dominates over PTC increases due to post-fire regrowth. In contrast, PTC appears to be slightly increasing in the central and northern Taiga Plains with more stable discontinuous and continuous permafrost, respectively. While these increases are partly explained by post-fire regrowth, more favourable growing conditions may also contribute to increasing PTC. To better understand the implications of permafrost thaw on land surface properties (e.g., aerodynamic conductance for heat [ga] and surface conductance for water vapour [gs]), and the turbulent fluxes of latent (LE) and sensible heat (H) along the southern fringe of permafrost, we examined nested eddy covariance flux measurements made at two nearby locations at Scotty Creek (61°18' N; 121°18' W) starting May 2013. The low-lying, poorly-drained southern portion of this 152 km2-watershed contains rapidly thawing sporadic permafrost resulting in a highly dynamic mosaic dominated by decreasing forested permafrost peat plateaus, and increasing

  9. The EOSDIS Version 0 Distributed Active Archive Center for physical oceanography and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Collins, Donald J.; Nichols, David A.

    1991-01-01

    The Distributed Active Archive Center (DAAC) at the Jet Propulsion Laboratory will support scientists specializing in physical oceanography and air-sea interaction. As part of the NASA Earth Observing System Data and Information System Version 0 the DAAC will build on existing capabilities to provide services for data product generation, archiving, distribution and management of information about data. To meet scientist's immediate needs for data, existing data sets from missions such as Seasat, Geosat, the NOAA series of satellites and the Global Positioning Satellite system will be distributed to investigators upon request. In 1992, ocean topography, wave and surface roughness data from the Topex/Poseidon radar altimeter mission will be archived and distributed. New data products will be derived from Topex/Poseidon and other sensor systems based on recommendations of the science community. In 1995, ocean wind field measurements from the NASA Scatterometer will be supported by the DAAC.

  10. Unravelling air-sea interactions driven by photochemistry in the sea-surface microlayer

    NASA Astrophysics Data System (ADS)

    George, Christian; Alpert, Peter; Tinel, Liselotte; Rossignol, Stéphanie; Perrier, Sébastien; Bernard, Francois; Ciuraru, Raluca; Hayeck, Nathalie

    2016-04-01

    Interfaces are ubiquitous in the environment, and in addition many atmospheric key processes, such as gas deposition, aerosol and cloud formation are, at one stage or the other, strongly impacted by physical- and chemical processes occurring at interfaces. Unfortunately, these processes have only been suggested and discussed but never fully addressed because they were beyond reach. We suggest now that photochemistry or photosensitized reactions exist at interfaces, and we will present and discuss their possible atmospheric implications. Obviously, one of the largest interface is the sea-surface microlayer (SML), which is a region lying at the uppermost tens to hundreds of micrometres of the water surface, with physical, chemical and biological properties that differ from those of the underlying sub-surface water. Organic film formation at the sea surface is made possible in the presence of an excess of surface-active material. Hydrophobic surfactant films are typically believed to play the role of a physical barrier to air-sea exchanges, especially at low wind speed. We will show that dissolved organic matter (DOM) can trigger photochemistry at the air-sea interface, releasing unsaturated, functionalized volatile organic compounds (VOCs), including isoprene,... acting as precursors for the formation of organic aerosols, that were thought, up to now, to be solely of biological origin! In addition, we suggest that when arranged at an air/water interface, hydrophobic surfactant can have weak chemical interactions among them, which can trigger the absorption of sunlight and can consequently induce photochemistry at such interfaces. A major question arises from such observations, namely: can the existence of such weak intra- or intermolecular interactions and the subsequent photochemistry be generalized to many other atmospheric objects such as aerosols? This topic will be presented and discussed.

  11. Compact optical system for imaging underwater and through the air/sea interface

    NASA Astrophysics Data System (ADS)

    Alley, Derek; Mullen, Linda; Laux, Alan

    2012-06-01

    Typical line-of-sight (LOS)/monostatic optical imaging systems include a laser source and receiver that are co-located on the same platform. The performance of such systems is deteriorated in turbid ocean water due to the large amount of light that is scattered on the path to and from an object of interest. Imagery collected with the LOS/monostatic system through the air/sea interface is also distorted due to wave focusing/defocusing effects. The approach of this project is to investigate an alternate, non-line-of-sight (NLOS)/bistatic approach that offers some advantages over these traditional LOS/monostatic imaging techniques. In this NLOS system the laser and receiver are located on separate platforms with the laser located closer to the object of interest. As the laser sequentially scans the underwater object, a time-varying intensity signal corresponding to reflectivity changes in the object is detected by the distant receiver. A modulated laser illuminator is used to communicate information about the scan to the distant receiver so it can recreate the image with the collected scattered light. This NLOS/bistatic configuration also enables one to view an underwater target through the air-sea interface (transmitter below the surface and receiver above the surface) without the distortions experienced with the LOS/monostatic sensor. In this paper, we will review the results of recent laboratory water tank experiments where an underwater object was imaged with the receiver both below and above the sea surface.

  12. Multi-annual Turbulent Energy Fluxes in the Lena River Delta: Eddy Covariance and Remote Sensing in Siberian Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Runkle, B.; Wille, C.; Langer, M.; Boike, J.; Sachs, T.; Pfeiffer, E. M.; Kutzbach, L.

    2015-12-01

    Evapotranspiration (ET) is a key component of the energy and water balances in permafrost tundra, establishing hydrological conditions for the next year and controlling several aspects of the carbon cycle. Both the energy balance and hydrological conditions of the landscape surface are important drivers of how Arctic climate change will impact landscape processes, including the carbon feedback. The accurate measurement of evapotranspiration within an energy balance context therefore provides crucial information on ecosystem functioning and raises our predictive capacity for estimating the impact of climate change. In this study we report field measurements from 13 summers (2002-14) using the eddy covariance method in a lowland ice-wedge polygon landscape within Russia's Lena River Delta. These time-series are gap-filled and extrapolated with both statistical and process-based models to generate estimates of growing season ET. We find that interannual differences - including two August periods with high ET and two with low ET - are locally driven more by changes in air temperature and vapor pressure deficit (VPD) than in land surface characteristics or radiation. Except for periods of high VPD, aerodynamic resistance was greater than canopy surface resistance. We explore predictive relationships between various land surface indicators (e.g., NDVI, LAI, LST, Growing season length) derived from remote sensing products (MODIS) to quantify local mechanisms necessary for upscaling to the Delta region. Nighttime land surface temperature (MODIS) is found to be a strong predictor of evaporative flux at weekly to monthly time scales. Contrary to expectations resulting from climate change studies, we do not see evidence of a sustained interannual trend in ET or sensible heat flux. We conclude with implications for the local energy balance and responses to changes in sea ice extent and a warming climate.

  13. Second international conference on air-sea interaction and on meteorology and oceanography of the coastal zone

    SciTech Connect

    1994-12-31

    This conference was held September 22--27, 1994 in Lisbon, Portugal. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on air-sea interactions. Individual papers have been processed separately for inclusion in the appropriate data bases.

  14. Simulation of the Indian Summer Monsoon Using Comprehensive Atmosphere-land Interactions, in the Absence of Two-way Air-sea Interactions

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Shin, D. W.; Cocke, Steven; Kang, Sung-Dae; Kim, Hae-Dong

    2011-01-01

    Community Land Model version 2 (CLM2) as a comprehensive land surface model and a simple land surface model (SLM) were coupled to an atmospheric climate model to investigate the role of land surface processes in the development and the persistence of the South Asian summer monsoon. Two-way air-sea interactions were not considered in order to identify the reproducibility of the monsoon evolution by the comprehensive land model, which includes more realistic vertical soil moisture structures, vegetation and 2-way atmosphere-land interactions at hourly intervals. In the monsoon development phase (May and June). comprehensive land-surface treatment improves the representation of atmospheric circulations and the resulting convergence/divergence through the improvements in differential heating patterns and surface energy fluxes. Coupling with CLM2 also improves the timing and spatial distribution of rainfall maxima, reducing the seasonal rainfall overestimation by approx.60 % (1.8 mm/d for SLM, 0.7 mm/dI for CLM2). As for the interannual variation of the simulated rainfall, correlation coefficients of the Indian seasonal rainfall with observation increased from 0.21 (SLM) to 0.45 (CLM2). However, in the mature monsoon phase (July to September), coupling with the CLM2 does not exhibit a clear improvement. In contrast to the development phase, latent heat flux is underestimated and sensible heat flux and surface temperature over India are markedly overestimated. In addition, the moisture fluxes do not correlate well with lower-level atmospheric convergence, yielding correlation coefficients and root mean square errors worse than those produced by coupling with the SLM. A more realistic representation of the surface temperature and energy fluxes is needed to achieve an improved simulation for the mature monsoon period.

  15. Interannual variability of the air-sea heat exchange in the western Mediterranean in relation to the deep-water formation processes

    NASA Astrophysics Data System (ADS)

    Soto, J.; Criado Aldeanueva, F.; García Lafuente, J.; Sanchez Román, A.; Carracedo, L.

    2009-04-01

    A 60-year long time series of heat fluxes (long and short wave radiation, sensible and latent contributions) from NCEP reanalysis dataset and a 22-year long time series of Sea Surface Temperature (SST) from JPL AVHRR Oceans Pathfinder dataset have been combined to study the seasonal and interannual variability of air-sea heat exchanges over the Mediterranean Sea and correlate them with the characteristics of the Mediterranean outflow through the Strait of Gibraltar collected in the frame of the INGRES projects in the last years. Special attention has been devoted to the historically reported deep-water formation basin of the Western Mediterranean (Gulf of Lions) during the pre-conditioning (November and December) and winter seasons. Until around 1970, no clear trend is found in the net heat flux winter series since positive and negative anomalies are observed alternatively. From then onwards, negative anomalies are frequently observed until the 2003-2006 positive events. A net heat loss of about 150 W/m2 is observed in 2005, the highest value since 1956, especially due to evaporation losses towards the atmosphere. The anomalously cold air and sea surface temperature in the area help to increase this contribution that reflects in a higher fraction of Western Mediterranean Deep Water (WMDW) in the outflow through the Strait.

  16. Air-sea exchange of dimethylsulfide in the Southern Ocean: Measurements from SO GasEx compared to temperate and tropical regions

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B. W.; Fairall, C. W.; Archer, S. D.; Huebert, B. J.

    2011-04-01

    In the Southern Ocean Gas Exchange Experiment (SO GasEx), we measured an atmospheric dimethylsulfide (DMS) concentration of 118 ± 54 pptv (1σ), a DMS sea-to-air flux of 2.9 ± 2.1 μmol m-2 d-1 by eddy covariance, and a seawater DMS concentration of 1.6 ± 0.7 nM. Dividing flux by the concurrent air-sea concentration difference yields the transfer velocity of DMS (kDMS). The kDMS in the Southern Ocean was significantly lower than previous measurements in the equatorial east Pacific, Sargasso Sea, northeast Atlantic, and southeast Pacific. Normalizing kDMS for the temperature dependence in waterside diffusivity and solubility results in better agreement among various field studies and suggests that the low kDMS in the Southern Ocean is primarily due to colder temperatures. The higher solubility of DMS at a lower temperature results in greater airside control and less transfer of the gas by bubbles formed from breaking waves. The final normalized DMS transfer velocity is similar to k of less soluble gases such as carbon dioxide in low-to-moderate winds; in high winds, DMS transfer velocity is significantly lower because of the reduced bubble-mediated transfer.

  17. Assessment of surface turbulent fluxes using geostationary satellite surface skin temperatures and a mixed layer planetary boundary layer scheme

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Stewart, Tod R.

    1989-01-01

    A method is presented for evaluating the fluxes of sensible and latent heating at the land surface, using satellite-measured surface temperature changes in a composite surface layer-mixed layer representation of the planetary boundary layer. The basic prognostic model is tested by comparison with synoptic station information at sites where surface evaporation climatology is well known. The remote sensing version of the model, using satellite-measured surface temperature changes, is then used to quantify the sharp spatial gradient in surface heating/evaporation across the central United States. An error analysis indicates that perhaps five levels of evaporation are recognizable by these methods and that the chief cause of error is the interaction of errors in the measurement of surface temperature change with errors in the assigment of surface roughness character. Finally, two new potential methods for remote sensing of the land-surface energy balance are suggested which will relay on space-borne instrumentation planned for the 1990s.

  18. Air sea gas transfer velocity estimates from the Jason-1 and TOPEX altimeters: Prospects for a long-term global time series

    NASA Astrophysics Data System (ADS)

    Glover, David M.; Frew, Nelson M.; McCue, Scott J.

    2007-06-01

    Estimation of global and regional air-sea fluxes of climatically important gases is a key goal of current climate research programs. Gas transfer velocities needed to compute these fluxes can be estimated by combining altimeter-derived mean square slope with an empirical relation between transfer velocity and mean square slope derived from field measurements of gas fluxes and small-scale wave spectra [Frew, N.M., Bock, E.J., Schimpf, U., Hara, T., Hauβecker, H., Edson, J.B., McGillis, W.R., Nelson, R.K., McKenna, S.P., Uz, B.M., Jähne, B., 2004. Air-sea gas transfer: Its dependence on wind stress, small-scale roughness and surface films, J. Geophys. Res., 109, C08S17, doi: 10.1029/2003JC002131.]. We previously reported initial results from a dual-frequency (Ku- and C-band) altimeter algorithm [Glover, D.M., Frew, N.M., McCue, S.J., Bock, E.J., 2002. A Multi-year Time Series of Global Gas Transfer Velocity from the TOPEX Dual Frequency, Normalized Radar Backscatter Algorithm, In: Gas Transfer at Water Surfaces, editors: Donelan, M., Drennan, W., Saltzman, E., and Wanninkhof, R., Geophysical Monograph 127, American Geophysical Union, Washington, DC, 325-331.] for estimating the air-sea gas transfer velocity ( k) from the mean square slope of short wind waves (40-100 rad/m) and derived a 6-year time series of global transfer velocities based on TOPEX observations. Since the launch of the follow-on altimeter Jason-1 in December 2001 and commencement of the TOPEX/Jason-1 Tandem Mission, we have extended this time series to 12 years, with improvements to the model parameters used in our algorithm and using the latest corrected data releases. The prospect of deriving multi-year and interdecadal time series of gas transfer velocity from TOPEX, Jason-1 and follow-on altimeter missions depends on precise intercalibration of the normalized backscatter. During the Tandem Mission collinear phase, both satellites followed identical orbits with a mere 73-s time separation. The

  19. Air-sea Energy Transfer at Mesoscale in a Coupled High-resolution Model: Impact of Resolution and Current Feedback

    NASA Astrophysics Data System (ADS)

    Jullien, S.; Colas, F.; Masson, S. G.; Oerder, V.; Echevin, V.; Samson, G.; Crétat, J.; Berthet, S.; Hourdin, C.

    2015-12-01

    Winds are usually considered to force the ocean but recent studies suggested that oceanic mesoscale activity, characterized by eddies, filaments and fronts, could also affect the wind field. These structures feature abrupt changes in sea surface temperature (SST), surface pressure and surface currents that could impact the atmosphere by enhancing/reducing air-sea fluxes, accelerating/decelerating winds, modifying the wind-pressure balance… At this time, the detailed processes associated to such coupling, its intensity and significance remain a matter of research. Here, a state-of-the-art WRF-OASIS-NEMO coupled model is set up over a wide tropical channel (45°S-45°N) at various resolutions: 3/4°, 1/4° and 1/12° in both the ocean and the atmosphere. Several experiments are conducted in forced, partially or fully coupled modes, to highlight the effect of resolution and the role of SST vs. current feedback to energy injection into the ocean and the atmosphere. In strong mesoscale activity regions, a negative wind power input from the atmosphere to the ocean is seen at scales ranging from 100km to more than 1000km. Nonexistent at 3/4°, this negative forcing, acting against oceanic mesoscale activity, is almost twice more important at 1/12° than at 1/4°. In addition, partially coupled simulations, i.e. without current feedback, show that the impact of thermal coupling on this process is very limited. Energy injection to the marine atmospheric boundary layer also features imprints from oceanic mesoscale. Energy injection by scales shorter than 300km represents up to 20% of the total. Finally we show that increasing oceanic resolution, and therefore mesoscale activity, is necessary to resolve the full wind stress spectrum and has an upscaling effect by enhancing atmospheric mesoscale, which is larger scale than in the ocean. Using 1/4°oceanic resolution instead of 1/12° leads to a 50% loss of energy in the atmospheric mesoscale.

  20. The air-sea interface and surface stress under tropical cyclones.

    PubMed

    Soloviev, Alexander V; Lukas, Roger; Donelan, Mark A; Haus, Brian K; Ginis, Isaac

    2014-01-01

    Tropical cyclone track prediction is steadily improving, while storm intensity prediction has seen little progress in the last quarter century. Important physics are not yet well understood and implemented in tropical cyclone forecast models. Missing and unresolved physics, especially at the air-sea interface, are among the factors limiting storm predictions. In a laboratory experiment and coordinated numerical simulation, conducted in this work, the microstructure of the air-water interface under hurricane force wind resembled Kelvin-Helmholtz shear instability between fluids with a large density difference. Supported by these observations, we bring forth the concept that the resulting two-phase environment suppresses short gravity-capillary waves and alters the aerodynamic properties of the sea surface. The unified wave-form and two-phase parameterization model shows the well-known increase of the drag coefficient (Cd) with wind speed, up to ~30 ms(-1). Around 60 ms(-1), the new parameterization predicts a local peak of Ck/Cd, under constant enthalpy exchange coefficient Ck. This peak may explain rapid intensification of some storms to major tropical cyclones and the previously reported local peak of lifetime maximum intensity (bimodal distribution) in the best-track records. The bimodal distribution of maximum lifetime intensity, however, can also be explained by environmental parameters of tropical cyclones alone. PMID:24930493

  1. Mississippi State University Center for Air Sea Technology FY95 Research Program

    NASA Technical Reports Server (NTRS)

    Yeske, Lanny; Corbin, James H.

    1995-01-01

    The Mississippi State University (MSU) Center for Air Sea Technology (CAST) evolved from the Institute for Naval Oceanography's (INO) Experimental Center for Mesoscale Ocean Prediction (ECMOP) which was started in 1989. MSU CAST subsequently began operation on 1 October 1992 under an Office of Naval Research (ONR) two-year grant which ended on 30 September 1994. In FY95 MSU CAST was successful in obtaining five additional research grants from ONR, as well as several other research contracts from the Naval Oceanographic Office via NASA, the Naval Research Laboratory, the Army Corps of Engineers, and private industry. In the past, MSU CAST technical research and development has produced tools, systems, techniques, and procedures that improve efficiency and overcome deficiency for both the operational and research communities residing with the Department of Defense, private industry, and university ocean modeling community. We continued this effort with the following thrust areas: to develop advanced methodologies and tools for model evaluation, validation and visualization, both oceanographic and atmospheric; to develop a system-level capability for conducting temporally and ; spatially scaled ocean simulations driven by or are responsive to ocean models, and take into consideration coupling to atmospheric models; to continue the existing oceanographic/atmospheric data management task with emphasis on distributed databases in a network environment, with database optimization and standardization, including use of Mosaic and World Wide Web (WWW) access; and to implement a high performance parallel computing technology for CAST ocean models

  2. A Unified Air-Sea Visualization System: Survey on Gridding Structures

    NASA Technical Reports Server (NTRS)

    Anand, Harsh; Moorhead, Robert

    1995-01-01

    The goal is to develop a Unified Air-Sea Visualization System (UASVS) to enable the rapid fusion of observational, archival, and model data for verification and analysis. To design and develop UASVS, modelers were polled to determine the gridding structures and visualization systems used, and their needs with respect to visual analysis. A basic UASVS requirement is to allow a modeler to explore multiple data sets within a single environment, or to interpolate multiple datasets onto one unified grid. From this survey, the UASVS should be able to visualize 3D scalar/vector fields; render isosurfaces; visualize arbitrary slices of the 3D data; visualize data defined on spectral element grids with the minimum number of interpolation stages; render contours; produce 3D vector plots and streamlines; provide unified visualization of satellite images, observations and model output overlays; display the visualization on a projection of the users choice; implement functions so the user can derive diagnostic values; animate the data to see the time-evolution; animate ocean and atmosphere at different rates; store the record of cursor movement, smooth the path, and animate a window around the moving path; repeatedly start and stop the visual time-stepping; generate VHS tape animations; work on a variety of workstations; and allow visualization across clusters of workstations and scalable high performance computer systems.

  3. Distinctive precursory air-sea signals between regular and super El Niños

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Li, Tim; Behera, Swadhin K.; Doi, Takeshi

    2016-08-01

    Statistically different precursory air-sea signals between a super and a regular El Niño group are investigated, using observed SST and rainfall data, and oceanic and atmospheric reanalysis data. The El Niño events during 1958-2008 are first separated into two groups: a super El Niño group (S-group) and a regular El Niño group (R-group). Composite analysis shows that a significantly larger SST anomaly (SSTA) tendency appears in S-group than in R-group during the onset phase [April-May(0)], when the positive SSTA is very small. A mixed-layer heat budget analysis indicates that the tendency difference arises primarily from the difference in zonal advective feedback and the associated zonal current anomaly ( u'). This is attributed to the difference in the thermocline depth anomaly ( D') over the off-equatorial western Pacific prior to the onset phase, as revealed by three ocean assimilation products. Such a difference in D' is caused by the difference in the wind stress curl anomaly in situ, which is mainly regulated by the anomalous SST and precipitation over the Maritime Continent and equatorial Pacific.

  4. Decline of hexachlorocyclohexane in the Arctic atmosphere and reversal of air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Jantunen, L. M.; Falconer, R. L.; Barrie, L. A.; Fellin, P.

    1995-02-01

    Hexachlorocyclohexanes (HCHs) are the most abundant organochlorine pesticides in the arctic atmosphere and ocean surface water. A compilation of measurements made between 1979-93 from stations in the Canadian and Norwegian Arctic and from cruises in the Bering and Chukchi seas indicates that atmospheric concentrations of α-HCH have declined significantly (p < 0.01), with a time for 50% decrease of about 4 y in summer-fall and 6 y in winter-spring. The 1992-93 levels of about 100 pg m-3 are 2-4 fold lower than values in the mid-1980s. The trend in γ-HCH is less pronounced, but a decrease is also suggested from measurements in the Canadian Arctic and the Bering-Chukchi seas. HCHs in ocean surface water have remained relatively constant since the early 1980s. The decline in atmospheric α-HCH has reversed the net direction of air-sea gas exchange to the point where some northern waters are now sources of the pesticide to the atmosphere instead of sinks.

  5. Tuning a physically-based model of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.

    Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.

  6. The air-sea interface and surface stress under tropical cyclones

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander V.; Lukas, Roger; Donelan, Mark A.; Haus, Brian K.; Ginis, Isaac

    2014-06-01

    Tropical cyclone track prediction is steadily improving, while storm intensity prediction has seen little progress in the last quarter century. Important physics are not yet well understood and implemented in tropical cyclone forecast models. Missing and unresolved physics, especially at the air-sea interface, are among the factors limiting storm predictions. In a laboratory experiment and coordinated numerical simulation, conducted in this work, the microstructure of the air-water interface under hurricane force wind resembled Kelvin-Helmholtz shear instability between fluids with a large density difference. Supported by these observations, we bring forth the concept that the resulting two-phase environment suppresses short gravity-capillary waves and alters the aerodynamic properties of the sea surface. The unified wave-form and two-phase parameterization model shows the well-known increase of the drag coefficient (Cd) with wind speed, up to ~30 ms-1. Around 60 ms-1, the new parameterization predicts a local peak of Ck/Cd, under constant enthalpy exchange coefficient Ck. This peak may explain rapid intensification of some storms to major tropical cyclones and the previously reported local peak of lifetime maximum intensity (bimodal distribution) in the best-track records. The bimodal distribution of maximum lifetime intensity, however, can also be explained by environmental parameters of tropical cyclones alone.

  7. Distribution and air-sea exchange of organochlorine pesticides in the North Pacific and the Arctic

    NASA Astrophysics Data System (ADS)

    Cai, Minghong; Ma, Yuxin; Xie, Zhiyong; Zhong, Guangcai; MöLler, Axel; Yang, Haizhen; Sturm, Renate; He, Jianfeng; Ebinghaus, Ralf; Meng, Xiang-Zhou

    2012-03-01

    Surface seawater and boundary layer air samples were collected on the icebreaker Xuelong (Snow Dragon) during the Fourth Chinese Arctic Research Expedition (CHINARE2010) cruise in the North Pacific and Arctic Oceans during 2010. Samples were analyzed for organochlorine pesticides (OCPs), including three isomers of hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), and two isomers of heptachlor epoxide. The gaseous total HCH (ΣHCHs) concentrations were approximately four times lower (average 12.0 pg m-3) than those measured during CHINARE2008 (average 51.4 pg m-3), but were comparable to those measured during CHINARE2003 (average 13.4 pg m-3) in the same study area. These changes are consistent with the evident retreat of sea ice coverage from 2003 to 2008 and increase of sea ice coverage from 2008 to 2009 and 2010. Gaseous β-HCH concentrations in the atmosphere were typically below the method detection limit, consistent with the expectation that ocean currents provide the main transport pathway for β-HCH into the Arctic. The concentrations of all dissolved HCH isomers in seawater increase with increasing latitude, and levels of dissolved HCB also increase (from 5.7 to 7.1 pg L-1) at high latitudes (above 73°N). These results illustrate the role of cold condensation processes in the transport of OCPs. The observed air-sea gas exchange gradients in the Arctic Ocean mainly favored net deposition of OCPs, with the exception of those for β-HCH, which favored volatilization.

  8. The air-sea interface and surface stress under tropical cyclones

    PubMed Central

    Soloviev, Alexander V.; Lukas, Roger; Donelan, Mark A.; Haus, Brian K.; Ginis, Isaac

    2014-01-01

    Tropical cyclone track prediction is steadily improving, while storm intensity prediction has seen little progress in the last quarter century. Important physics are not yet well understood and implemented in tropical cyclone forecast models. Missing and unresolved physics, especially at the air-sea interface, are among the factors limiting storm predictions. In a laboratory experiment and coordinated numerical simulation, conducted in this work, the microstructure of the air-water interface under hurricane force wind resembled Kelvin-Helmholtz shear instability between fluids with a large density difference. Supported by these observations, we bring forth the concept that the resulting two-phase environment suppresses short gravity-capillary waves and alters the aerodynamic properties of the sea surface. The unified wave-form and two-phase parameterization model shows the well-known increase of the drag coefficient (Cd) with wind speed, up to ~30 ms−1. Around 60 ms−1, the new parameterization predicts a local peak of Ck/Cd, under constant enthalpy exchange coefficient Ck. This peak may explain rapid intensification of some storms to major tropical cyclones and the previously reported local peak of lifetime maximum intensity (bimodal distribution) in the best-track records. The bimodal distribution of maximum lifetime intensity, however, can also be explained by environmental parameters of tropical cyclones alone. PMID:24930493

  9. Impacts of air-sea interactions on regional air quality predictions using WRF/Chem v3.6.1 coupled with ROMS v3.7: southeastern US example

    NASA Astrophysics Data System (ADS)

    He, J.; He, R.; Zhang, Y.

    2015-11-01

    Air-sea interactions have significant impacts on coastal convection and surface fluxes exchange, which are important for the spatial and vertical distributions of air pollutants that affect public health, particularly in densely populated coastal areas. To understand the impacts of air-sea interactions on coastal air quality predictions, sensitivity simulations with different cumulus parameterization schemes and atmosphere-ocean coupling are conducted in this work over southeastern US in July 2010 using the Weather Research and Forecasting Model with Chemistry (WRF/Chem). The results show that different cumulus parameterization schemes can result in an 85 m difference in the domain averaged planetary boundary layer height (PBLH), and 4.8 mm difference in the domain averaged daily precipitation. Comparing to WRF/Chem without air-sea interactions, WRF/Chem with a 1-D ocean mixed layer model (WRF/Chem-OML) and WRF/Chem coupled with a 3-D Regional Ocean Modeling System (WRF/Chem-ROMS) predict the domain averaged changes in the sea surface temperature of 0.1 and 1.0 °C, respectively. The simulated differences in the surface concentrations of ozone (O3) and PM2.5 between WRF/Chem-ROMS and WRF/Chem can be as large as 17.3 ppb and 7.9 μg m-3, respectively. The largest changes simulated from WRF/Chem-ROMS in surface concentrations of O3 and particulate matter with diameter less than and equal to 2.5 μm (PM2.5) occur not only along coast and remote ocean, but also over some inland areas. Extensive validations against observations, show that WRF/Chem-ROMS improves the predictions of most cloud and radiative variables, and surface concentrations of some chemical species such as sulfur dioxide, nitric acid, maximum 1 h and 8 h O3, sulfate, ammonium, nitrate, and particulate matter with diameter less than and equal to 10 μm (PM10). This illustrates the benefits and needs of using coupled atmospheric-ocean model with advanced model representations of air-sea interactions for

  10. Improving Soil Moisture and Temperature Profile and Surface Turbulent Fluxes Estimations in Irrigated Field by Assimilating Multi-source Data into Land Surface Model

    NASA Astrophysics Data System (ADS)

    Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Wang, Weizhen

    2016-04-01

    The optimal estimation of hydrothermal conditions in irrigation field is restricted by the deficiency of accurate irrigation information (when and how much to irrigate). However, the accurate estimation of soil moisture and temperature profile and surface turbulent fluxes are crucial to agriculture and water management in irrigated field. In the framework of land surface model, soil temperature is a function of soil moisture - subsurface moisture influences the heat conductivity at the interface of layers and the heat storage in different layers. In addition, soil temperature determines the phase of soil water content with the transformation between frozen and unfrozen. Furthermore, surface temperature affects the partitioning of incoming radiant energy into ground (sensible and latent heat flux), as a consequence changes the delivery of soil moisture and temperature. Given the internal positive interaction lying in these variables, we attempt to retrieve the accurate estimation of soil moisture and temperature profile via assimilating the observations from the surface under unknown irrigation. To resolve the input uncertainty of imprecise irrigation quantity, original EnKS is implemented with inflation and localization (referred to as ESIL) aiming at solving the underestimation of the background error matrix and the extension of observation information from the top soil to the bottom. EnKS applied in this study includes the states in different time points which tightly connect with adjacent ones. However, this kind of relationship gradually vanishes along with the increase of time interval. Thus, the localization is also employed to readjust temporal scale impact between states and filter out redundant or invalid correlation. Considering the parameter uncertainty which easily causes the systematic deviation of model states, two parallel filters are designed to recursively estimate both states and parameters. The study area consists of irrigated farmland and is

  11. Model studies of the flux of CO{sub 2} over the air-sea interface in the Baltic Sea

    SciTech Connect

    Ohlson, M.

    1994-12-31

    In the discussion about the green house effect generated by the burning of fossil fuels, carbon dioxide (CO{sub 2}) has a key role. A major part of the surplus CO{sub 2} has been suggested, by the scientific community, to be withdrawn from the atmosphere and to be taken up by the growth in continental shelf areas with high primary production, and in terrestrial forests. The exact quantity and reaction ways and mechanisms of those processes are not known today. The Baltic Sea is, for several reasons, a well chosen area to study this phenomenon. It is a shallow continental Mediterranean sea, in this area almost the first measurements of the carbonate system were carried out in the end of the last century. This has resulted in long time series of measurements of the carbonate system available for use in, e.g. modelling work, a working numerical carbonate model.

  12. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    SciTech Connect

    Wood, Robert; Bretherton, Chris; McFarquhar, Greg; Protat, Alain; Quinn, Patricia; Siems, Steven; Jakob, Christian; Alexander, Simon; Weller, Bob

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.

  13. Observations of the scale-dependent turbulence and evaluation of the flux-gradient relationship for sensible heat for a closed Douglas-Fir canopy in very weak wind conditions

    DOE PAGESBeta

    Vickers, D.; Thomas, C.

    2014-05-13

    Observations of the scale-dependent turbulent fluxes and variances above, within and beneath a tall closed Douglas-Fir canopy in very weak winds are examined. The daytime subcanopy vertical velocity spectra exhibit a double-peak structure with peaks at time scales of 0.8 s and 51.2 s. A double-peak structure is also observed in the daytime subcanopy heat flux cospectra. The daytime momentum flux cospectra inside the canopy and in the subcanopy are characterized by a relatively large cross-wind component, likely due to the extremely light and variable winds, such that the definition of a mean wind direction, and subsequent partitioning of themore » momentum flux into along- and cross-wind components, has little physical meaning. Positive values of both momentum flux components in the subcanopy contribute to upward transfer of momentum, consistent with the observed mean wind speed profile. In the canopy at night at the smallest resolved scales, we find relatively large momentum fluxes (compared to at larger scales), and increasing vertical velocity variance with decreasing time scale, consistent with very small eddies likely generated by wake shedding from the canopy elements that transport momentum but not heat. We find unusually large values of the velocity aspect ratio within the canopy, consistent with enhanced suppression of the horizontal wind components compared to the vertical by the canopy. The flux-gradient approach for sensible heat flux is found to be valid for the subcanopy and above-canopy layers when considered separately; however, single source approaches that ignore the canopy fail because they make the heat flux appear to be counter-gradient when in fact it is aligned with the local temperature gradient in both the subcanopy and above-canopy layers. Modeled sensible heat fluxes above dark warm closed canopies are likely underestimated using typical values of the Stanton number.« less

  14. MP3 - A Meteorology and Physical Properties Package to explore Air:Sea interaction on Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2012-04-01

    The exchange of mass, heat and momentum at the air:sea interface are profound influences on our environment. Titan presents us with an opportunity to study these processes in a novel physical context. The MP3 instrument, under development for the proposed Discovery mission TiME (Titan Mare Explorer) is an integrated suite of small, simple sensors that combines the a traditional meteorology package with liquid physical properties and depth-sounding. In TiME's 6-Titan-day (96-day) nominal mission, MP3 will have an extended measurement opportunity in one of the most evocative environments in the solar system. The mission and instrument benefit from APL's expertise and experience in marine as well as space systems. The topside meteorology sensors (METH, WIND, PRES, TEMP) will yield the first long-duration in-situ data to constrain Global Circulation Models. The sea sensors (TEMP, TURB, DIEL, SOSO) allow high cadence bulk composition measurements to detect heterogeneities as the TiME capsule drifts across Ligeia, while a depth sounder (SONR) will measure the bottom profile. The combination of these sensors (and vehicle dynamics, ACCL) will characterize air:sea exchange. In addition to surface data, a measurement subset (ACCL, PRES, METH, TEMP) is made during descent to characterize the structure of the polar troposphere and marine boundary layer. A single electronics box inside the vehicle performs supervising and data handling functions and is connected to the sensors on the exterior via a wire and fiber optic harness. ACCL: MEMS accelerometers and angular rate sensors measure the vehicle motion during descent and on the surface, to recover wave amplitude and period and to correct wind measurements for vehicle motion. TEMP: Precision sensors are installed at several locations above and below the 'waterline' to measure air and sea temperatures. Installation of topside sensors at several locations ensures that at least one is on the upwind side of the vehicle. PRES: The

  15. Using Sea Level to Probe Linkages Between Heat Transport Convergence, Heat Storage Rate, and Air-Sea Heat Exchange in the Subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Thompson, L.; Kelly, K. A.; Booth, J. F.

    2014-12-01

    Annual mean surface heat fluxes from the ocean to the atmosphere in midlatitudes are maximum in the Gulf Stream and that surface flux is driven by geostrophic heat transport convergence. Evidence is mounting that on interannual times scales, the surface flux of heat in the Gulf Stream region is controlled by the amount of heat that is stored in the region and that the heat storage rate is in turn controlled by geostrophic heat transport convergence. In addition, variations in meridional heat transport have been linked to the meridional overturning circulation just to the south of the Gulf Stream at the RAPID/MOCHA array at 26.5N, suggesting that changes in the meridional overturning circulation might be linked to surface heat exchange in the Gulf Stream. The twenty-year record of satellite sea level (SSH) along with high quality surface heat fluxes allow a detailed evaluation of the interaction between stored oceanic heat in this region and surface heat fluxes on interannual times scales. Using gridded sea level from AVISO as a proxy for upper ocean heat content along with surface turbulent heat flux from OAFlux, we evaluate the lagged correlations between interannual surface turbulent heat fluxes and SSH variability. Previous work has shown that where advection is small lagged correlations between SST (sea surface temperature) and surface turbulent heat flux are generally antisymmetric about zero lag with negative correlations when SST leads and positive correlations when SST lags. This indicates that surface heat fluxes force SST anomalies that at later times are damped by surface fluxes. In contrast, the lagged correlation between SSH anomalies and the turbulent flux of heat in the Gulf Stream region show a distinctly asymmetric relationship about zero-lag. The correlations are negative when SSH leads but are not significant when SSH lags indicating the dominant role in heat transport convergence in driving heat content changes, and that the heat content

  16. Air-sea boundary layer dynamics in the presence of mesoscale surface currents

    NASA Astrophysics Data System (ADS)

    Rooth, Claes; Xie, Lian

    1992-09-01

    In the presence of surface currents, a shear stress at the air-sea interface is induced by the surface currents. In the case of a unidirectional current, a quadratic stress law leads to a stress curl proportional to and opposing the surface current vorticity even with a uniform wind. This causes a spindown effect on the surface vorticity field at a rate proportional to the wind speed. In the steady state, or in slowly varying processes which can be treated as parametrically developing quasi-steady states, the surface-layer potential vorticity modulation causes upwelling and downwelling patterns associated with the surface-current vorticity. These effects are analyzed for an idealized jet current, and for a physical situation characteristic of a Gulf Stream boundary ring along the Florida Keys, where the induced transport patterns may be important for onshore transport of fish and spiny lobster larvae, as well as for onshore transport to the Florida Keys of general flotsam transported past them by the Gulf Stream. The spindown time scale (t*) for a 1.5-layer system is H/( ρ'cdVa) for a surface jet on the deformation radius scale (where H is the thickness of the surface layer, Va the surface wind speed, ρ' the air to water density ratio and cd the surface drag coefficient) and increases for large horizontal scales in proportion to the current width squared. For a typical wind speed of 5 m/s and a density normalized drag coefficient ρ'cd= 2 × 10-6, t* is on the order of 1 month for a 30-m surface layer. In the more general case of a stratified interior water column, the vorticity spindown directly affects only the potential vorticity of the surface layer and generally leads to subsurface velocity and vorticity maxima for mesoscale eddies and jets.

  17. Trends and Variations of Ocean Surface Latent Heat Flux: Results from GSSTF2c Data Set

    NASA Technical Reports Server (NTRS)

    Gao, Si; Chiu, Long S.; Shie, Chung-Lin

    2013-01-01

    Trends and variations of Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) version 2c (GSSTF2c) latent heat flux (LHF) are examined. This version of LHF takes account of the correction in Earth incidence angle. The trend of global mean LHF for GSSTF2c is much reduced relative to GSSTF version 2b Set 1 and Set 2 for the same period 1988-2008. Temporal increase of GSSTF2c LHF in the two decades is 11.0%, in which 3.1%, 5.8%, and 2.1% are attributed to the increase in wind, the increase in sea surface saturated air humidity, and the decrease in near-surface air humidity, respectively. The first empirical orthogonal function of LHF is a conventional El Nino Southern Oscillation (ENSO) mode. However, the trends in LHF are independent of conventional ENSO phenomena. After removing ENSO signal, the pattern of LHF trends is primarily determined by the pattern of air-sea humidity difference trends.

  18. A diagram of wind speed versus air-sea temperature difference to understand the dynamics of the marine atmospheric boundary layer off northwest Europe

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2015-04-01

    Wind speed and atmospheric stability have an important role in determining the turbulence in the marine atmospheric boundary layer (MABL) as well as the surface wave field. The understanding of MABL dynamics in northwest Europe is complicated by fetch effects, the proximity of coastlines, shallow topography, and larger scale circulation patterns (e.g., cold air outbreaks). Numerical models have difficulty simulating the marine atmospheric boundary layer in coastal areas and partially enclosed seas, and this is partly due to spatial resolution problems at land-sea coastline discontinuities. In these offshore environments, the boundary layer processes are often best understood directly from time series measurements from measurement platforms or buoys, in spite of potential difficulties from platform flow distortion as well as the spatial sparseness of the data sets. This contribution presents updated results of measurements from offshore platforms in the North Sea and Norwegian Sea in terms of a summary diagnostic - wind speed versus air-sea temperature difference (U-ΔT) - with important implications for understanding atmospheric boundary layer processes. The U-ΔT diagram was introduced in earlier surveys of data from coastal and offshore sites in northwest Europe to summarize boundary layer conditions at a given location. Additional information from a series of measurement purpose-built offshore measurement and oil/gas production platforms from the North Sea illustrates how the wind characteristics vary spatially over large distances. The results are important for the offshore wind industry because of the way that wind turbines accrue fatigue damage in different conditions of atmospheric stability and wind speed.

  19. Observations of net heat flux into the surface mixed layer of the Western Equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Bradley, E. F.; Godfrey, J. S.; Coppin, P. A.; Butt, J. A.

    1993-12-01

    For a 10-day period during September 1990 the R/V Franklin worked around a drifting buoy drogued at 20-m depth in the Bismarck Sea near 4°S, 149°E. Continuous measurements were made of the air-sea fluxes of radiation and sensible and latent heat, and a conductivity/temperature/depth cast to 400 m was made about every 6 hours. The aim was to close the heat budget of a sample volume of the surface mixed layer to within 10 W m-2, in preparation for our participation in the 1992-1993 Tropical Ocean and Global Atmosphere-Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE). Temperature and salinity between the surface and 30-m depth were quite uniform, but below 30 m, variability was observed which suggested the possible intrusion of horizontal and vertical advection of heat. Heat content was analyzed for depths of 40 m and 20 m; bulk Richardson numbers generally greater than 0.8 and 0.4, respectively, in the two cases indicated that diapycnal mixing through the bottom of the 40-m volume could be neglected at 40 m and possibly at 20 m (Peters et al., 1988; Godfrey and Lindstrom, 1989). An eddy diffusivity for salt at 20 m was obtained to account for the steady decrease of observed freshwater content in the top 20 m over that expected from the surface flux. Using this diffusivity, the turbulent heat flux through 20 m was of order 6 W m-2, supporting the view that vertical mixing of heat was small even at this depth. Then, neglecting advection and vertical mixing, the heat budget closure to 40-m depth was satisfied to about 25 W m-2 on average over the period, but both integrated heat and freshwater time series were "noisy" because of variability below 30 m. Limited to 20-m depth, the average difference between incident energy and heat content was reduced to about 12 W m-2, with close agreement over the diurnal cycle. The model for air-sea exchange of sensible and latent heat by Liu et al. (1979) is verified at low wind speeds, although it may overestimate slightly

  20. Remarks on turbulent constitutive relations

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Lumley, John L.

    1993-01-01

    The paper demonstrates that the concept of turbulent constitutive relations can be used to construct general models for various turbulent correlations. Some of the Generalized Cayley-Hamilton formulas for relating tensor products of higher extension to tensor products of lower extension are introduced. The combination of dimensional analysis and invariant theory can lead to 'turbulent constitutive relations' (or general turbulence models) for, in principle, any turbulent correlations. As examples, the constitutive relations for Reynolds stresses and scalar fluxes are derived. The results are consistent with ones from Renormalization Group (RNG) theory and two-scale Direct-Interaction Approximation (DIA) method, but with a more general form.

  1. A SOLAS challenge: How can we test test feedback loops involving air-sea exchange?

    NASA Astrophysics Data System (ADS)

    Huebert, B. J.

    2004-12-01

    It is now well accepted that the Earth System links biological and physical processes in the water, on land, and in the air, creating countless feedback loops and dependencies that are at best difficult to quantify. One example of interest to SOLAS scientists is the suspension and long-range transport of dust from Asia, which may or may not interact with acidic air pollutants, that may increase the biological availability of iron, thereby increasing primary productivity in parts of the Pacific. This could increase DMS emissions and modify the radiative impact of Pacific clouds, affecting the climate and the hydrological system that limits the amount of dust lofted each year. Air-sea exchange is central to many such feedbacks: Variations in productivity in upwelling waters off Peru probably change DMS emissions and modify the stratocumulus clouds that blanket that region, thereby feeding back to productivity. The disparate time and space scales of the controlling processes make it difficult to observationally constrain such systems without the use of multi-year time-series and intensive multiplatform process studies. Unfortunately, much of the infrastructure for funding Earth science is poorly suited for supporting multidisciplinary research. For example, NSF's program managers are organized into disciplines and sub-disciplines, and rely on disciplinary reviewer communities that are protective of their slices of the funding pie. It is easy to find authors of strong, innovative, cross-disciplinary (yet unsuccessful) proposals who say they'll never try it again, because there is so little institutional support for interfacial research. Facility issues also complicate multidisciplinary projects, since there are usually several allocating groups that don't want to commit their ships, airplanes, or towers until the other groups have done so. The result is that there are very few examples of major interdisciplinary projects, even though IGBP core programs have articulated

  2. Subtropical surface layer salinity budget and the role of mesoscale turbulence

    NASA Astrophysics Data System (ADS)

    Busecke, Julius; Gordon, Arnold L.; Li, Zhijin; Bingham, Frederick M.; Font, Jordi

    2014-07-01

    The subtropical North Atlantic exhibits the saltiest surface waters of the open ocean. Eventually that water subducted from the surface and exported toward the Equator, as a subsurface salinity maximum (S-max) forming the lower limb of the subtropical cell. Climatologically, the winter subtropical surface water, coinciding with the deepest mixed layer of ˜100 m, is saltier and colder than the S-max. Towed CTD measurements in March/April 2013 (a component of the field program SPURS) within the North Atlantic subtropical surface salinity maximum reveal several relatively fresh, warm anomalies, which deviate strongly from climatological conditions. These features introduce a large amount of freshwater into the subtropical region, exceeding the amount introduced by local rain events. Observed scales and evolution of the features strongly suggest a connection to mesoscale dynamics. This is supported by high-resolution regional model output, which produces an abundance of features that are similar in scale and structure to those observed. It is hypothesized that turbulent transport in the surface ocean is a crucial process for setting mixed layer characteristics, which spread into S-max stratum. High variability in the EKE implies a high potential for interannual variability in the resulting S-max water properties by ocean dynamics in addition to the variability caused by air sea fluxes. This has likely consequences to the meridional transport of heat and freshwater of the subtropical cell in the North Atlantic and to the larger-scale ocean and climate system.

  3. Stirring turbulence with turbulence

    NASA Astrophysics Data System (ADS)

    Cekli, Hakki Ergun; Joosten, René; van de Water, Willem

    2015-12-01

    We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the largest eddies of the wind-tunnel turbulence. A large mismatch of these times creates a highly intermittent random flow with interesting but quite anomalous statistics.

  4. A method to determine true air temperature fluctuations in clouds with liquid water fraction and estimate water droplet effect on the calculations of the spectral structure of turbulent heat fluxes in cumulus clouds based on aircraft data

    NASA Astrophysics Data System (ADS)

    Strunin, Alexander M.; Zhivoglotov, Dmitriy N.

    2014-03-01

    Liquid water droplets could distort aircraft temperature measurements in clouds, leading to errors in calculated heat fluxes and incorrect flux distribution pattern. The estimation of cloud droplet effect on the readings of the high-frequency aircraft thermometer employed at the Central Aerological Observatory (CAO) was based on an experimental study of the sensor in a wind tunnel, using an air flow containing liquid water droplets. Simultaneously, calculations of the distribution of speed and temperature in a flow through the sensitive element of the sensor were fulfilled. This permitted estimating the coefficient of water content effect on temperature readings. Another way of estimating cloud droplet effect was based on the analysis of data obtained during aircraft observations of cumulus clouds in a tropical zone (Cuba Island). As a result, a method of correcting air temperature and recovering true air temperature fluctuations inside clouds was developed. This method has provided consistent patterns of heat flux distribution in a cumulus area. Analysis of the results of aircraft observations of cumulus clouds with temperature correction fulfilled has permitted investigation of the spectral structure of the fields of air temperature and heat fluxes to be performed in cumulus zones based on wavelet transformation. It is shown that mesoscale eddies (over 500 m in length) were the main factor of heat exchange between a cloud and the ambient space. The role of turbulence only consisted in mixing inside the cloud.

  5. Eddy covariance measurements of the net turbulent methane flux in the city centre - results of 2-year campaign in Łódź, Poland

    NASA Astrophysics Data System (ADS)

    Pawlak, Włodzimierz; Fortuniak, Krzysztof

    2016-07-01

    To investigate temporal variability of methane (CH4) fluxes in an urban environment, air-surface exchange fluxes of CH4 were continuously measured using eddy covariance techniques at a city-centre site in Łódź, Poland, from July 2013 to August 2015. In the immediate vicinity of the measurement site, potential methane sources include vehicle traffic, dense sewerage infrastructure and natural gas networks. Sensible and latent heat fluxes have also been measured since 2000 and carbon dioxide fluxes since 2007 at this site. Upward CH4 fluxes dominated during the measurement period, indicating that the city centre is a net source of CH4 to the troposphere. The highest monthly fluxes were observed in winter (2.0 to 2.7 g m-2 month-1) and the lowest in summer (0.8 to 1.0 g m-2 month-1). Fluxes on working days were around 6 % higher than on weekends. The cumulative flux indicates that the city centre emitted a net quantity of nearly 18 g m-2 of CH4 in 2014. Stable values of the FCO2/ FCH4 ratio in months (minimum 2.41 × 10-3, maximum 5.3 × 10-3) and the lack of a clear annual course suggest comparable magnitude of both fluxes.

  6. Bora event variability and the role of air-sea feedback

    USGS Publications Warehouse

    Pullen, J.; Doyle, J.D.; Haack, T.; Dorman, C.; Signell, R.P.; Lee, C.M.

    2007-01-01

    A two-way interacting high resolution numerical simulation of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean/ Atmosphere Mesoscale Prediction System (COAMPS??) was conducted to improve forecast momentum and heat flux fields, and to evaluate surface flux field differences for two consecutive bora events during February 2003. (COAMPS?? is a registered trademark of the Naval Research Laboratory.) The strength, mean positions and extensions of the bora jets, and the atmospheric conditions driving them varied considerably between the two events. Bora 1 had 62% stronger heat flux and 51% larger momentum flux than bora 2. The latter displayed much greater diurnal variability characterized by inertial oscillations and the early morning strengthening of a west Adriatic barrier jet, beneath which a stronger west Adriatic ocean current developed. Elsewhere, surface ocean current differences between the two events were directly related to differences in wind stress curl generated by the position and strength of the individual bora jets. The mean heat flux bias was reduced by 72%, and heat flux RMSE reduced by 30% on average at four instrumented over-water sites in the two-way coupled simulation relative to the uncoupled control. Largest reductions in wind stress were found in the bora jets, while the biggest reductions in heat flux were found along the north and west coasts of the Adriatic. In bora 2, SST gradients impacted the wind stress curl along the north and west coasts, and in bora 1 wind stress curl was sensitive to the Istrian front position and strength. The two-way coupled simulation produced diminished surface current speeds of ???12% over the northern Adriatic during both bora compared with a one-way coupled simulation. Copyright 2007 by the American Geophysical Union.

  7. Decadal Air-Sea Interaction in the North Atlantic Based on Observations and Modeling Results

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1998-01-01

    The decadal, 12-14 year, cycle observed in the North Atlantic SST and tide gauge data was examined using the NCEP/NCAR reanalyses, COADS data and an ocean model simulation. Besides this decadal mode, a shorter, subdecadal period of about 8 years exists in tide gauge data north of 40N, in the subpolar SST and in the winter North Atlantic Oscillation (NAO) index and in subpolar winter heat flux values. The decadal cycle is a well separated mode in a singular spectrum analysis (SSA) for a time series of SST EOF mode 1 with a center over the Gulf Stream extension. Tide gauge and SST data are consistent in that both show a significant subdecadal periodicity exclusively in the subpolar gyre, but in subtropics the 12-14 year period is the prominent, but nonstationary, decadal signal. The main finding of this study is that this 12-14 year cycle can be constructed based on the leading mode of the surface heat flux. This connection to the surface heat flux implicates the participation of the thermohaline circulation in the decadal cycle. During the cycle starting from the positive index phase of NAO, SST and oceanic heat content anomalies are created in subtropics due to local heat flux and intensification of the thermohaline circulation. The anomalies advect to the subpolar gyre where they are amplified by local heat flux and are part of the negative feedback of thermohaline circulation on itself. Consequently the oceanic thermohaline circulation slows down and the opposite cycle starts. The oscillatory nature would not be possible without the active atmospheric participation in the cycle, because it provides the unstable interaction through heat flux, without it, the oceanic mode would be damped. This analysis suggests that the two principal modes of heat flux variability, corresponding to patterns similar to North Atlantic Oscillation (NAO) and Western Atlantic (WA), are part of the same decadal cycle and an indirect measure of the north-south movement of the storm tracks.

  8. The organic sea surface microlayer in the upwelling region off Peru and implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2015-07-01

    The sea surface microlayer (SML) is at the very surface of the ocean, linking the hydrosphere with the atmosphere, and central to a range of global biogeochemical and climate-related processes. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Among these organic compounds, primarily of plankton origin, are dissolved exopolymers, specifically polysaccharides and proteins, and gel particles, such as Transparent Exopolymer Particles (TEP) and Coomassie Stainable Particles (CSP). These organic substances often accumulate in the surface ocean when plankton productivity is high. Here, we report results obtained in December 2012 during the SOPRAN Meteor 91 cruise to the highly productive, coastal upwelling regime off Peru. Samples were collected from the SML and from ~ 20 cm below, and were analyzed for polysaccharidic and proteinaceous compounds, gel particles, total and dissolved organic carbon, bacterial and phytoplankton abundance. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  9. Downward lee wave radiation from tropical instability waves in the central equatorial Pacific Ocean: A possible energy pathway to turbulent mixing

    NASA Astrophysics Data System (ADS)

    Tanaka, Yuki; Hibiya, Toshiyuki; Sasaki, Hideharu

    2015-11-01

    Turbulent mixing in the equatorial Pacific Ocean is an important process that controls diapycnal heat transport and hence affects the air-sea interactions and global climate. It is recently shown that, in the eastern equatorial Pacific, strong mixing is induced in the thermocline by enhanced vertical shear associated with tropical instability waves (TIWs), which propagate westward along the equator at a speed of ˜0.5 m s-1 with a wavelength of ˜1000 km. In this study, using a high-resolution ocean general circulation model, we show that the TIWs can play an important role in inducing turbulent mixing in the thermocline also in the central equatorial Pacific, although the thermocline is too deep to be directly affected by the vertical shear of the TIWs. The front of the TIW is clearly manifested as a narrow strip of strong convergence of horizontal surface flow, from which area downward and westward propagating internal waves are intermittently emanated. These internal waves can be interpreted as lee waves generated by the surface-flow convergence zone, which acts like an inverted obstacle moving along the stratified ocean surface by inducing downward flow. The associated downward energy flux below the surface mixed layer increases as the TIW structure becomes deeper toward the central equatorial Pacific, so that the energy pathway to turbulent mixing in the thermocline can be created. The downward energy flux integrated over the entire equatorial Pacific and averaged during January 2011 amounts to ˜8.1 GW, occupying a significant fraction of the energy input to the TIWs.

  10. Guidelines for the air-sea interaction special study: An element of the NASA climate research program, JPL/SIO workshop report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A program in the area of air sea interactions is introduced. A space capability is discussed for global observations of climate parameters which will contribute to the understanding of the processes which influence climate and its predictability. The following recommendations are some of the suggestions made for air sea interaction studies: (1) a major effort needs to be devoted to the preparation of space based climatic data sets; (2) NASA should create a group or center for climatic data analysis due to the substantial long term effort that is needed in research and development; (3) funding for the analyses of existing data sets should be augmented and continued beyond the termination of present programs; (4) NASA should fund studies in universities, research institutions and governments' centers; and (5) the planning for an air sea interaction mission should be an early task.

  11. Impact of phytoplankton-generated surfactants on air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Frew, Nelson M.; Goldman, Joel C.; Dennett, Mark R.; Johnson, A. Sherwood

    1990-03-01

    The effect of surface-active organic matter generated by seven common species of marine phytoplankton on gas exchange rates under turbulent conditions at the air-water interface was determined. Reductions in oxygen evasion rates ranging from 5 to 50% were observed relative to clean seawater controls. Relative oxygen exchange coefficients (expressed as R = Kw [sample]/Kw [control]) were shown to be sensitive to small changes in total dissolved carbohydrate at concentrations <1 mg C (carbon) L-1 and to asymptotically decrease to a lower limit (R = 55-70%) at concentrations between 2 and 6 mg C L-1. A corresponding relationship was observed in which R decreased with increasing relative surfactant amounts derived from surface pressure-area measurements. However, gas exchange reductions were significant for plankton exudate samples displaying surface pressures ≲1 mN m-1. It thus seems that condensed monolayer films are not a prerequisite for reduced gas exchange and that relatively soluble surfactants derived from phytoplankton can strongly affect the dissipation of near-surface turbulence and lead to changes in the Schmidt number dependency of Kw. Based on detailed analyses of carbohydrate-containing surface-active exudates isolated by solid phase extraction from one of the species, Phaeodactylum tricornutum, it appears that small glucans and heteropolysaccharides associated with proteins and possibly lipids were responsible for the observed reductions in R.

  12. Suppression of turbulent resistivity in turbulent Couette flow

    NASA Astrophysics Data System (ADS)

    Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe

    2015-07-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  13. Suppression of turbulent resistivity in turbulent Couette flow

    SciTech Connect

    Si, Jiahe Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  14. N2O and CH4 distribution and fluxes in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Rees, Andy; Brown, Ian; Shutler, Jamie; Ashton, Ian

    2016-04-01

    The world's oceans are a natural source of both N2O and CH4 contributing up to 30% and 10% of the global atmospheric emissions respectively. That said, marine sources are not well constrained owing to a paucity of observations. For both gases there are regional hotspots of production, often associated with upwelling areas and coastal environments, though the distribution of source and sink areas are often spatially and temporarily variable. Here we present data from the greater North Atlantic Ocean to examine factors affecting regional variability in the distribution of both gases and then provide an assessment of seasonal variability for the North East continental shelf region. The flux of gases between the ocean and atmosphere is described by the concentration gradient between the two phases and the gas transfer velocity, the determination of which is directly influenced by wind speed. The measurement of wind speed on ships at sea coincident with analyses of dissolved gases is prone to errors associated with the moving platform and turbulence associated with air masses at the sea surface. To address this problem we provide comparative estimates of the air-sea exchange of both gases determined by ship-based and remotely sensed measurements of wind speed and surface temperature.

  15. Contrast of local air-sea relationships between 10-20-day and 30-60-day intraseasonal oscillations during May-September over the South China Sea and western North Pacific

    NASA Astrophysics Data System (ADS)

    Ye, Kunhui; Wu, Renguang

    2015-12-01

    Present study compares local air-sea relationship of 10-20-day and 30-60-day intraseasonal oscillations (ISOs) over the South China Sea (SCS) and western North Pacific (WNP) during May through September for the period 1998-2010. It is shown that sea surface temperature (SST) has a larger intraseasonal variance in the North Indian Ocean, the SCS, and subtropical WNP on the 30-60-day time scale, but in tropical WNP on the 10-20-day time scale. The local correlation of SST with rain, surface shortwave radiation (SWR) and latent heat flux (LHF) displays a southwest-northeast tilted structure on the 10-20-day time scale, but a broad west-east pattern with a larger correlation on the 30-60-day time scale. The time of SST leading rain is larger in off-equatorial regions than in near-equatorial regions for both types of ISOs, whereas the time of rain leading SST is larger in near-equatorial regions than in off-equatorial regions. A similar feature is seen for SWR, but an opposite feature for LHF. The atmospheric ISOs induce intraseasonal SST variations through cloud-radiation and wind-evaporation changes. The intraseasonal SST variations feedback on the atmosphere through modulation of atmospheric stability over off-equatorial regions on both timescales. The SST impacts on the atmosphere appear larger on the 30-60-day time scale than on the 10-20-day time scale. The distinct spatial patterns of local air-sea relationship on the two types of ISOs are associated with different spatial structures in both atmospheric ISO-associated SWR and LHF anomalies and SST-induced atmospheric stability anomalies.

  16. Turbulence spreading in gyro-kinetic theory

    NASA Astrophysics Data System (ADS)

    Migliano, P.; Buchholz, R.; Grosshauser, S. R.; Hornsby, W. A.; Peeters, A. G.; Stauffert, O.

    2016-01-01

    In this letter a new operative definition for the turbulence intensity in connection with magnetized plasmas is given. In contrast to previous definitions the new definition satisfies a Fisher-Kolmogorov-Petrovskii-Piskunov type equation. Furthermore, explicit expressions for the turbulence intensity and the turbulence intensity flux, that allow for the first time direct numerical evaluation, are derived. A carefully designed numerical experiment for the case of a tokamak is performed to study the impact of turbulence spreading. The effective turbulence diffusion coefficient is measured to be smaller than the heat conduction coefficient and the turbulence spreading length is found to be of the order of the turbulence correlation length. The results show that turbulence spreading can play a role in the non-local flux gradient relation, or in the scaling of transport coefficients with the normalized Larmor radius, only over lengths scale of the order of the turbulence correlation length. A new turbulence convection mechanism, due to the drift connected with the magnetic field inhomogeneities, is described. The convective flux integrates to zero under the flux surface average unless there is an up-down asymmetry in the tubulence intensity. The latter asymmetry can be generated through a radial inhomogeneity or plasma rotation. It is shown that the turbulence convection can lead to a spreading of the order of the correlation length.

  17. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    PubMed

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  18. Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

    PubMed Central

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  19. Microwave and Electro-optical Transmission Experiments in the air-sea Boundary Layer

    NASA Astrophysics Data System (ADS)

    Anderson, K. D.

    2002-12-01

    Microwave and electro-optical signal propagation over a wind-roughened sea is strongly dependent on signal interaction with the sea surface, the mean profiles of pressure (P), humidity (Q), temperature (T), wind (U) and their turbulent fluctuations (p, q, t, u). Yet, within the marine surface layer, these mechanisms are not sufficiently understood nor has satisfactory data been taken to validate propagation models, especially under conditions of high seas, high winds, and large surface gradients of Q and T. To address this deficiency, the Rough Evaporation Duct (RED) experiment was designed to provide first data for validation of meteorological, microwave, and electro-optical models in the marine surface layer for rough surface conditions including the effects of surface waves. The RED experiment was conducted offshore of the Hawaiian Island of Oahu in late summer, mid-August to mid-September, of 2001. R/P FLIP, moored about 10 km off of the NE coast of Oahu, hosted the primary meteorological sensor suites and served as a terminus for the propagation links. There were eleven scientists and engineers aboard R/P FLIP who installed instruments measuring mean and turbulent meteorological quantities, sea wave heights, directions, and kinematics, upward and downward radiance, near surface bubble generation, atmospheric particle size distributions, laser probing of the atmosphere, and sources for both microwave and electro-optic signals. In addition to R/P FLIP, two land sites were instrumented with microwave and electro-optic receivers and meteorological sensors, two buoys were deployed, a small boat was instrumented, and two aircraft flew various tracks to sense both sea and atmospheric conditions. In all, more than 25 people from four countries, six universities, and four government agencies were directly involved with the RED experiment. While the overall outcome of the RED experiment is positive, we had a number of major and minor problems with the outfitting

  20. The study of droplet-laden turbulent air-flow over waved water surface by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, Oleg A.; Troitskaya, Yuliya I.; Zilitinkevich, Sergej S.

    2016-04-01

    The detailed knowledge of the interaction of wind with surface water waves is necessary for correct parameterization of turbulent exchange at the air-sea interface in prognostic models. At sufficiently strong winds, sea-spray-generated droplets interfere with the wind-waves interaction. The results of field experiments and laboratory measurements (Andreas et al., JGR 2010) show that mass fraction of air-borne spume water droplets increases with the wind speed and their impact on the carrier air-flow may become significant. Phenomenological models of droplet-laden marine atmospheric boundary layer (Kudryavtsev & Makin, Bound.-Layer Met. 2011) predict that droplets significantly increase the wind velocity and suppress the turbulent air stress. The results of direct numerical simulation (DNS) of a turbulent particle-laden Couette flow over a flat surface show that inertial particles may significantly reduce the carrier flow vertical momentum flux (Richter & Sullivan, GRL 2013). The results also show that in the range of droplet sizes typically found near the air-sea interface, particle inertial effects are significant and dominate any particle-induced stratification effects. However, so far there has been no attempt to perform DNS of a droplet-laden air-flow over waved water surface. In this report, we present results of DNS of droplet-laden, turbulent Couette air-flow over waved water surface. The carrier, turbulent Couette-flow configuration in DNS is similar to that used in previous numerical studies (Sullivan et al., JFM 2000, Shen et al., JFM 2010, Druzhinin et al., JGR 2012). Discrete droplets are considered as non-deformable solid spheres and tracked in a Lagrangian framework, and their impact on the carrier flow is modeled with the use of a point-force approximation. The droplets parameters in DNS are matched to the typical known spume-droplets parameters in laboratory and field experiments. The DNS results show that both gravitational settling of droplets and

  1. A comparison of airborne eddy correlation and bulk aerodynamic methods for ocean-air turbulent fluxes during cold-air outbreaks

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien

    1993-01-01

    The viscous interfacial-sublayer model of Liu et al. (1979) is used to derive four bulk schemes (LKB, FG, D, and DB), with the flux-profile relationships of Lie et al., Francey and Garratt (1981), Dyer (1974), and Dyer and Bradley (1982). These schemes, with stability-dependent transfer coefficients, are tested against the eddy-correlation fluxes measured at the 50-m flight level above the western Atlantic Ocean during cold-air outbreaks. The bulk fluxes of momentum (tau), sensible heat (H), and latent heat (E) are found to increase with various von Karman constants. The dependence of transfer coefficients on wind speeds and roughness lengths is discussed. The transfer coefficients for tau and E agree excellently between LKB and FG. The ratio of the coefficent for H of LKB to that of FG, increasing with decreasing stability, is very sensitive to stability at low winds, but approaches the neutral value of 1.25 at high winds.

  2. Air-sea exchange of gaseous mercury in the East China Sea.

    PubMed

    Wang, Chunjie; Ci, Zhijia; Wang, Zhangwei; Zhang, Xiaoshan

    2016-05-01

    Two oceanographic cruises were carried out in the East China Sea (ECS) during the summer and fall of 2013. The main objectives of this study are to identify the spatial-temporal distributions of gaseous elemental mercury (GEM) in air and dissolved gaseous mercury (DGM) in surface seawater, and then to estimate the Hg(0) flux. The GEM concentration was lower in summer (1.61 ± 0.32 ng m(-3)) than in fall (2.20 ± 0.58 ng m(-3)). The back-trajectory analysis revealed that the air masses with high GEM levels during fall largely originated from the land, while the air masses with low GEM levels during summer primarily originated from ocean. The spatial distribution patterns of total Hg (THg), fluorescence, and turbidity were consistent with the pattern of DGM with high levels in the nearshore area and low levels in the open sea. Additionally, the levels of percentage of DGM to THg (%DGM) were higher in the open sea than in the nearshore area, which was consistent with the previous studies. The THg concentration in fall was higher (1.47 ± 0.51 ng l(-1)) than those of other open oceans. The DGM concentration (60.1 ± 17.6 pg l(-1)) and Hg(0) flux (4.6 ± 3.6 ng m(-2) h(-1)) in summer were higher than those in fall (DGM: 49.6 ± 12.5 pg l(-1) and Hg(0) flux: 3.6 ± 2.8 ng m(-2) h(-1)). The emission flux of Hg(0) from the ECS was estimated to be 27.6 tons yr(-1), accounting for ∼0.98% of the global Hg oceanic evasion though the ECS only accounts for ∼0.21% of global ocean area, indicating that the ECS plays an important role in the oceanic Hg cycle. PMID:26975003

  3. The exchange of SVOCs across the air-sea interface in Singapore's coastal environment

    NASA Astrophysics Data System (ADS)

    He, J.; Balasubramanian, R.

    2010-02-01

    Coastal areas are vulnerable to the accumulation of semivolatile organic compounds, such as PAHs, OCPs and PCBs from atmospheric inputs. Dry particulate and wet depositions, and air-water diffusive exchange in the Singapore's south coastal area, where most of chemical and oil refinery industries are situated in, were estimated. Based on a yearly dataset, the mean annual dry particulate deposition fluxes of ∑16-PAHs, ∑7 OCPs and ∑21 PCBs were 1328.8±961.1 μg m-2 y-1, 5421.4±3426.7 ng m-2 y-1 and 811.8±578.3 ng m-2 y-1, and the wet deposition of ∑16-PAHs and ∑7 OCPs were 6667.1±1745.2 and 115.4±98.3 μg m-2 y-1, respectively. Seasonal variation of atmospheric depositions was influenced by meteorological conditions. Air-water gas exchange fluxes were shown to be negative values for PAHs, HCHs and DDXs, indicating Singapore's south coast as a sink for the above-mentioned SVOCs. The relative contribution of each depositional process to the total atmospheric input was assessed by annual fluxes. The profile of dry particulate deposition, wet deposition and gas exchange fluxes seemed to be correlated with individual pollutant's properties such as molecular weight and Henry's law constant, etc. For the water column partitioning, the organic carbon-normalized partition coefficients between particulate and dissolved phases (KOC) for both PAHs and OCPs were obtained. The relationships between KOC of PAHs and OCPs and their respective octanol-water partition coefficient (KOW) were examined. In addition, both adsorption onto combustion-derived soot carbon and absorption into natural organic matter for PAHs in marine water column were investigated. Enrichment factors in the sea-surface microlayer (SML) of the particulate phase were 1.2-7.1 and 3.0-4.9 for PAHs and OCPs, and those of dissolved phase were 1.1-4.9 and 1.6-4.2 for PAHs and OCPs, respectively. These enrichment factors are relatively higher than those reported for nearby coastal areas, which

  4. The exchange of SVOCs across the air-sea interface in Singapore's coastal environment

    NASA Astrophysics Data System (ADS)

    He, J.; Balasubramanian, R.

    2009-06-01

    Coastal areas are vulnerable to the accumulation of semi-volatile organic compounds such as PAHs, OCPs and PCBs from atmospheric inputs. Dry particulate and wet depositions, and air-water diffusive exchange in the Singapore's south coastal area, where most of chemical and oil refinery industries are situated in, were estimated. Based on a yearly dataset, the mean annual dry particulate deposition fluxes of ∑16PAHs, ∑7OCPs and ∑21PCBs were 1328.8±961.1 μg m-2 y-1, 5421.4±3426.7 ng m-2 y-1 and 811.8±578.3 ng m-2 y-1, and the wet deposition of ∑16PAHs and ∑7OCPs were 6667.1±1745.2 and 115.4±98.3 μg m-2 y-1, respectively. Seasonal variation of atmospheric depositions was influenced by meteorological conditions. Air-water gas exchange fluxes had negative values for PAHs, HCHs and DDXs, indicating Singapore's south coast as a sink for the above-mentioned SVOCs. The relative contribution of each depositional process to the total atmospheric input was assessed by annual fluxes. The profile of dry particulate deposition, wet deposition and gas exchange fluxes seemed to be correlated with individual pollutant's properties such as molecular weight and Henry's law constant, etc. For the water column partitioning, the organic carbon-normalized partition coefficients between particulate and dissolved phases (KOC) for both PAHs and OCPs were obtained. The relationships between KOC of PAHs and OCPs and their respective octanol-water partition coefficient (KOW) were examined. In addition, both adsorption onto combustion-derived soot carbon and absorption into natural organic matter for PAHs in marine water column were investigated. Enrichment factors in the sea-surface microlayer (SML) of the particulate phase were 1.2~7.1 and 3.0~4.9 for PAHs and OCPs, and those of dissolved phase were 1.1~4.9 and 1.6~4.2 for PAHs and OCPs, respectively. These enrichment factors are relatively higher than those reported for nearby coastal areas, which are most likely due

  5. Measuring air-sea gas exchange velocities in a large scale annular wind-wave tank