Science.gov

Sample records for air-water interface studied

  1. Studies of Athabasca asphaltene Langmuir films at air-water interface.

    PubMed

    Zhang, Li Yan; Lawrence, Steven; Xu, Zhenghe; Masliyah, Jacob H

    2003-08-01

    Asphaltenes are present in heavy oils and bitumen. They are a mixture of hydrocarbons having complex structures of polyaromatic rings and short side chains. In general, the high-molecular-weight asphaltene is the most aromatic fraction with the highest number of side chains and the low-molecular-weight asphaltene contains the lowest number of side chains, while the number of side chains of the whole asphaltene fraction lies in between. In this study, asphaltenes were extracted and/or fractionated from Athabasca oil sand bitumen. Subfractions of high and low molecular weight and the whole asphaltenes were characterized using a Langmuir trough and complementary techniques such as VPO, FTIR, AFM, and contact angle measurements. At an air-water interface, amphiphilic asphaltene molecules can form a monolayer. Various fractions (high, low, and whole) of the asphaltene molecules behave similarly at the air-water interface, characterized by close resemblance of their surface pressure-area, hysteresis, and relaxation isotherms. The high-molecular-weight asphaltene is the most expanded fraction, while the low-molecular-weight asphaltene fraction is the most condensed, with the whole asphaltene lying in between. At the air-water interface a monolayer of the low-molecular-weight asphaltene relaxes at a faster rate than one of the high-molecular-weight asphaltene.

  2. Studies on behaviors of dipalmitoylposphatidylcholine and bilirubin in mixed monolayer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Shen, Yuhua; Tang, Yufeng; Xie, Anjian; Zhu, Jinmiao; Li, Shikuo; Zhang, Yong

    2006-06-01

    Mixed monolayers of dipalmitoylposphatidylcholine (DPPC) and bilirubin (BR) were prepared on different subphases. The properties of DPPC/BR monolayer, such as collapse pressure ( πcoll), limiting area per molecule ( Alim), surface compressibility modulus, free energy (Δ Gmix) and excess free energy (Δ Gex), were investigated based on the analysis of the surface pressure-area isotherms on pure water. The results showed that DPPC and BR were miscible and formed non-ideal mixed monolayers at the air/water interface. With the molar fraction of BR ( XBR) increasing, the LE-LC coexistence region of DPPC monolayer was eliminated gradually. The DPPC/BR complex (M D-B) of 1:2 stoichiometry formed as a result of the strong hydrogen bonds between the polar groups of DPPC and BR. The studies of effects of pH values and calcium ions in subphase on the DPPC/BR monolayers showed that the mixed monolayer became expanded on alkali aqueous solution and on 1 mmol/L CaCl 2 aqueous solution. The orientation of DPPC and BR at air/water interface was also discussed.

  3. Physicochemical Study of Viral Nanoparticles at the Air/Water Interface.

    PubMed

    Torres-Salgado, Jose F; Comas-Garcia, Mauricio; Villagrana-Escareño, Maria V; Durán-Meza, Ana L; Ruiz-García, Jaime; Cadena-Nava, Ruben D

    2016-07-07

    The assembly of most single-stranded RNA (ssRNA) viruses into icosahedral nucleocapsids is a spontaneous process driven by protein-protein and RNA-protein interactions. The precise nature of these interactions results in the assembly of extremely monodisperse and structurally indistinguishable nucleocapsids. In this work, by using a ssRNA plant virus (cowpea chlorotic mottle virus [CCMV]) as a charged nanoparticle we show that the diffusion of these nanoparticles from the bulk solution to the air/water interface is an irreversible adsorption process. By using the Langmuir technique, we measured the diffusion and adsorption of viral nucleocapsids at the air/water interface at different pH conditions. The pH changes, and therefore in the net surface charge of the virions, have a great influence in the diffusion rate from the bulk solution to the air/water interface. Moreover, assembly of mesoscopic and microscopic viral aggregates at this interface depends on the net surface charge of the virions and the surface pressure. By using Brewster's angle microscopy we characterized these structures at the interface. Most common structures observed were clusters of virions and soap-frothlike micron-size structures. Furthermore, the CCMV films were compressed to form monolayers and multilayers from moderate to high surface pressures, respectively. After transferring the films from the air/water interface onto mica by using the Langmuir-Blodgett technique, their morphology was characterized by atomic force microscopy. These viral monolayers showed closed-packing nano- and microscopic arrangements.

  4. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2010-11-01

    In this contribution, we present experimental information about the effect of xanthan gum (XG) on the adsorption behaviour of two milk whey protein samples (MWP), beta-lactoglobulin (beta-LG) and whey protein concentrate (WPC), at the air-water interface. The MWP concentration studied corresponded to the protein bulk concentration which is able to saturate the air-water interface (1.0 wt%). Temperature, pH and ionic strength of aqueous systems were kept constant at 20 degrees C, pH 7 and 0.05 M, respectively, while the XG bulk concentration varied in the range 0.00-0.25 wt%. Biopolymer interactions in solution were analyzed by extrinsic fluorescence spectroscopy using 1-anilino-8-naphtalene sulphonic acid (ANS) as a protein fluorescence probe. Interfacial biopolymer interactions were evaluated by dynamic tensiometry and surface dilatational rheology. Adsorption behaviour was discussed from a rheokinetic point of view in terms of molecular diffusion, penetration and conformational rearrangement of adsorbed protein residues at the air-water interface. Differences in the interaction magnitude, both in solution and at the interface vicinity, and in the adsorption rheokinetic parameters were observed in MWP/XG mixed systems depending on the protein type (beta-LG or WPC) and biopolymer relative concentration. beta-LG adsorption in XG presence could be promoted by mechanisms based on biopolymer segregative interactions and thermodynamic incompatibility in the interface vicinity, resulting in better surface and viscoelastic properties. The same mechanism could be responsible of WPC interfacial adsorption in the presence of XG. The interfacial functionality of WPC was improved by the synergistic interactions with XG, although WPC chemical complexity might complicate the elucidation of molecular events that govern adsorption dynamics of WPC/XG mixed systems at the air-water interface.

  5. Foam fractionation as a tool to study the air-water interface structure-function relationship of wheat gluten hydrolysates.

    PubMed

    Wouters, Arno G B; Rombouts, Ine; Schoebrechts, Nele; Fierens, Ellen; Brijs, Kristof; Blecker, Christophe; Delcour, Jan A

    2017-03-01

    Enzymatic hydrolysis of wheat gluten protein improves its solubility and produces hydrolysates with foaming properties which may find applications in food products. First, we here investigated whether foam-liquid fractionation can concentrate wheat gluten peptides with foaming properties. Foam and liquid fractions had high and very low foam stability (FS), respectively. In addition, foam fractions were able to decrease surface tension more pronouncedly than un-fractionated samples and liquid fractions, suggesting they are able to arrange themselves more efficiently at an interface. As a second objective, foam fractionation served as a tool to study the structural properties of the peptides, causing these differences in air-water interfacial behavior. Zeta potential and surface hydrophobicity measurements did not fully explain these differences but suggested that hydrophobic interactions at the air-water interface are more important than electrostatic interactions. RP-HPLC showed a large overlap between foam and liquid fractions. However, a small fraction of very hydrophobic peptides with relatively high average molecular mass was clearly enriched in the foam fraction. These peptides were also more concentrated in un-fractionated DH 2 hydrolysates, which had high FS, than in DH 6 hydrolysates, which had low FS. These peptides most likely play a key role in stabilizing the air-water interface.

  6. Study of relaxation process of dipalmitoyl phosphatidylcholine monolayers at air-water interface: effect of electrostatic energy.

    PubMed

    Ou-Yang, Wei; Weis, Martin; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-04-21

    The instability of organic monolayer composed of polar molecules at the air-water interface has been a spotlight in interface science for many decades. However, the effect of electrostatic energy contribution to the free energy in the system is still not understood. Herein, we investigate the mechanical and electrical properties by studying the isobaric relaxation process of a dipalmitoyl phosphatidylcholine monolayer on water subphase with various concentrations of divalent ions to reveal the effect of electrostatic energy on thermodynamics and kinetics of the collapse mechanism. Our results demonstrate that electrical energy among the dipolar molecules plays an important role in the stability of monolayer and enhances the formation of micelles into subphase under high pressure. In addition, to confirm the electrostatic energy contribution, the well-known thermal effect on the stability of the film is compared. Hence, the general description of the monolayer free energy with contribution of electrostatic energy is suggested to describe the phase transition.

  7. Methylglyoxal at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Wren, S. N.; Gordon, B. P.; McWilliams, L.; Valley, N. A.; Richmond, G.

    2014-12-01

    Recently, it has been suggested that aqueous-phase processing of atmospheric α-dicarbonyl compounds such as methylglyoxal (MG) could constitute an important source of secondary organic aerosol (SOA). The uptake of MG to aqueous particles is higher than expected due to the fact that its carbonyl moieties can hydrate to form diols, as well as the fact that MG can undergo aldol condensation reactions to form larger oligomers in solution. MG is known to be surface active but an improved description of its surface behaviour is crucial to understanding MG-SOA formation, in addition to understanding its gas-to-particle partitioning and cloud forming potential. Here, we employ a combined experimental and theoretical approach involving vibrational sum frequency generation spectroscopy (VSFS), surface tensiometry, molecular dynamics simulations, and density functional theory calculations to study MG's surface adsorption, in both the presence and absence of salts. We are particularly interested in determining MG's hydration state at the surface. Our experimental results indicate that MG slowly adsorbs to the air-water interface and strongly perturbs the water structure there. This perturbation is enhanced in the presence of NaCl. Together our experimental and theoretical results suggest that singly-hydrated MG is the dominant form of MG at the surface.

  8. Driving force behind adsorption-induced protein unfolding: a time-resolved X-ray reflectivity study on lysozyme adsorbed at an air/water interface.

    PubMed

    Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Takagaki, Masafumi; Yamada, Hironari

    2009-01-06

    Time-resolved X-ray reflectivity measurements for lysozyme (LSZ) adsorbed at an air/water interface were performed to study the mechanism of adsorption-induced protein unfolding. The time dependence of the density profile at the air/water interface revealed that the molecular conformation changed significantly during adsorption. Taking into account previous work using Fourier transform infrared (FTIR) spectroscopy, we propose that the LSZ molecules initially adsorbed on the air/water interface have a flat unfolded structure, forming antiparallel beta-sheets as a result of hydrophobic interactions with the gas phase. In contrast, as adsorption continues, a second layer forms in which the molecules have a very loose structure having random coils as a result of hydrophilic interactions with the hydrophilic groups that protrude from the first layer.

  9. Vibrational Spectra and Adsorption of Trisiloxane Superspreading Surfactant at Air/Water Interface Studied with Sum Frequency Generation Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Wu, Dan; Wen, Jia; Liu, Shi-lin; Wang, Hong-fei

    2008-08-01

    The C-H stretch vibrational spectra of the trisiloxane superspreading surfactant Silwet L-77 ((CH3)3Si-O-Si(CH3)(C3H6)(OCH2CH2)7-8OCH3)-O-Si(CH3)3) at the air/water interface are measured with the surface Sum Frequency Generation Vibrational Spectroscopy (SFG-VS). The spectra are dominated with the features from the -Si-CH3 groups around 2905 cm-1 (symmetric stretch or SS mode) and 2957 cm-1 (mostly the asymmetric stretch or AS mode), and with the weak but apparent contribution from the -O-CH2- groups around 2880 cm-1 (symmetric stretch or SS mode). Comparison of the polarization dependent SFG spectra below and above the critical aggregate or micelle concentration (CAC) indicates that the molecular orientation of the C-H related molecular groups remained unchanged at different surface densities of the Silwet L-77 surfactant. The SFG-VS adsorption isotherm suggested that there was no sign of Silwet L-77 bilayer structure formation at the air/water interface. The Gibbs adsorption free energy of the Silwet surfactant to the air/water interface is -42.2±0.8kcal/mol, indicating the unusually strong adsorption ability of the Silwet L-77 superspreading surfactant.

  10. Organization of T-shaped facial amphiphiles at the air/water interface studied by infrared reflection absorption spectroscopy.

    PubMed

    Schwieger, Christian; Chen, Bin; Tschierske, Carsten; Kressler, Jörg; Blume, Alfred

    2012-10-11

    We studied the behavior of monolayers at the air/water interface of T-shaped facial amphiphiles which show liquid-crystalline mesophases in the bulk. The compounds are composed of a rigid p-terphenyl core (TP) with two terminal hydrophobic ether linked alkyl chains of equal length and one facial hydrophilic tri(ethylene oxide) chain with a carboxylic acid end group. Due to their amphiphilic nature they form stable Langmuir films at the air/water interface. Depending on the alkyl chain length they show markedly different compression isotherms. We used infrared reflection absorption spectroscopy (IRRAS) to study the changes in molecular organization of the TP films upon compression. We could retrieve information on layer thickness, alkyl chain crystallization, and the orientation of the TP cores within the films. Films of TPs with long (16 carbon atoms: TP 16/3) and short (10 carbon atoms: TP 10/3) alkyl chains were compared. Compression of TP 16/3 leads to crystallization of the terminal alkyl chains, whereas the alkyl chains of TP 10/3 stay fluid over the complete compression range. TP 10/3 shows an extended plateau in the compression isotherm which is due to a layering transition. The mechanism of this layering transition is discussed. Special attention was paid to the question of whether a so-called roll-over collapse occurs during compression. From the beginning to the end of the plateau, the layer thickness is increased from 15 to 38 Å and the orientation of the TP cores changes from parallel to the water surface to isotropic. We conclude that the plateau in the compression isotherm reflects the transition of a TP monolayer to a TP multilayer. The monolayer consists of a sublayer of well-organized TP cores underneath a sublayer of fluid alkyl chains whereas the multilayer consists of a well oriented bottom layer and a disordered top layer. Our findings do not support the model of a roll-over collapse. This study demonstrates how the IRRA band intensity of OH

  11. Structure and orientation changes of omega- and gamma-gliadins at the air-water interface: a PM-IRRAS spectroscopy and Brewster angle microscopy study.

    PubMed

    Banc, Amélie; Desbat, Bernard; Renard, Denis; Popineau, Yves; Mangavel, Cécile; Navailles, Laurence

    2007-12-18

    Microscopic and molecular structures of omega- and gamma-gliadin monolayers at the air-water interface were studied under compression by three complementary techniques: compression isotherms, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). For high molecular areas, gliadin films are homogeneous, and a flat orientation of secondary structures relative to the interface is observed. With increasing compression, the nature and orientation of secondary structures changed to minimize the interfacial area. The gamma-gliadin film is the most stable at the air-water interface; its interfacial volume is constant with increasing compression, contrary to omega-gliadin films whose molecules are forced out of the interface. gamma-Gliadin stability at a high level of compression is interpreted by a stacking model.

  12. Self-assembly and lipid interactions of diacylglycerol lactone derivatives studied at the air/water interface.

    PubMed

    Philosof-Mazor, Liron; Volinsky, Roman; Comin, Maria J; Lewin, Nancy E; Kedei, Noemi; Blumberg, Peter M; Marquez, Victor E; Jelinek, Raz

    2008-10-07

    Synthetic diacylglycerol lactones (DAG-lactones) have been shown to be effective modulators of critical cellular signaling pathways. The biological activity of these amphiphilic molecules depends in part upon their lipid interactions within the cellular plasma membrane. This study explores the thermodynamic and structural features of DAG-lactone derivatives and their lipid interactions at the air/water interface. Surface-pressure/area isotherms and Brewster angle microscopy revealed the significance of specific side-groups attached to the terminus of a very rigid 4-(2-phenylethynyl)benzoyl chain of the DAG-lactones, which affected both the self-assembly of the molecules and their interactions with phospholipids. The experimental data highlight the formation of different phases within mixed DAG-lactone/phospholipid monolayers and underscore the relationship between the two components in binary mixtures of different mole ratios. Importantly, the results suggest that DAG-lactones are predominantly incorporated within fluid phospholipid phases rather than in the condensed phases that form, for example, by cholesterol. Moreover, the size and charge of the phospholipid headgroups do not seem to affect DAG-lactone interactions with lipids.

  13. Liquid Surface X-ray Studies of Gold Nanoparticle-Phospholipid Films at the Air/Water Interface.

    PubMed

    You, Siheng Sean; Heffern, Charles T R; Dai, Yeling; Meron, Mati; Henderson, J Michael; Bu, Wei; Xie, Wenyi; Lee, Ka Yee C; Lin, Binhua

    2016-09-01

    Amphiphilic phospholipids and nanoparticles functionalized with hydrophobic capping ligands have been extensively investigated for their capacity to self-assemble into Langmuir monolayers at the air/water interface. However, understanding of composite films consisting of both nanoparticles and phospholipids, and by extension, the complex interactions arising between nanomaterials and biological membranes, remains limited. In this work, dodecanethiol-capped gold nanoparticles (Au-NPs) with an average core diameter of 6 nm were incorporated into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers with surface densities ranging from 0.1 to 20% area coverage at a surface pressure of 30 mN/m. High resolution liquid surface X-ray scattering studies revealed a phase separation of the DPPC and Au-NP components of the composite film, as confirmed with atomic force microscopy after the film was transferred to a substrate. At low Au-NP content, the structural organization of the phase-separated film is best described as a DPPC film containing isolated islands of Au-NPs. However, increasing the Au-NP content beyond 5% area coverage transforms the structural organization of the composite film to a long-range interconnected network of Au-NP strands surrounding small seas of DPPC, where the density of the Au-NP network increases with increasing Au-NP content. The observed phase separation and structural organization of the phospholipid and nanoparticle components in these Langmuir monolayers are useful for understanding interactions of nanoparticles with biological membranes.

  14. Interpreting Vibrational Sum-frequency Spectra of Sulfur Dioxide at the Air/Water Interface: A Comprehensive Molecular Dynamics Study

    SciTech Connect

    Baer, Marcel; Mundy, Christopher J.; Chang, Tsun-Mei; Tao, Fu-Ming; Dang, Liem X.

    2010-06-01

    We investigated the solvation and spectroscopic properties of SO2 at the air/water interface using molecular simulation techniques. Molecular interactions from both Kohn-Sham (KS) density functional theory (DFT) and classical polarizable models were utilized to understand the properties of SO2:(H2O)x complexes in the vicinity of the air/water interface. The KS-DFT was included to allow comparisons with sum-frequency generation spectroscopy through the identification of surface SO2:(H2O)x complexes. Using our simulation results, we were able to develop a much more detailed picture for the surface structure of SO2 that is consistent with the spectroscopic data obtained Richmond and coworkers (J. Am. Chem. Soc. 127, 16806 (2005)). We also found many similarities and differences between to the two interaction potentials, including a noticeable weakness of the classical potential model in reproducing the asymmetric hydrogen bonding of water with SO2 due to its inability to account for SO2 resonance structures. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  15. Combined surface pressure-interfacial shear rheology studies of the interaction of proteins with spread phospholipid monolayers at the air-water interface.

    PubMed

    Roberts, Simon A; Kellaway, Ian W; Taylor, Kevin M G; Warburton, Brian; Peters, Kevin

    2005-08-26

    The adsorption of two model proteins, catalase and lysozyme, to phospholipid monolayers spread at the air-water interface has been studied using a combined surface pressure-interfacial shear rheology technique. Monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG) and DPPC:DPPG (7:3) were spread on a phosphate buffer air-water interface at pH 7.4. Protein solutions were introduced to the subphase and the resultant changes in surface pressure and interfacial storage and loss moduli were recorded with time. The results show that catalase readily adsorbs to all the phospholipid monolayers investigated, inducing a transition from liquid-like to gel-like rheological behaviour in the process. The changes in surface rheology as a result of the adsorption of catalase increase in the order DPPC

  16. In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface.

    PubMed Central

    Cornut, I; Desbat, B; Turlet, J M; Dufourcq, J

    1996-01-01

    Free amphipathic peptides and peptides bound to dimyristoylphosphatidylcholine (DMPC) were studied directly at the air/water interface using polarization modulation infrared reflection absorption spectroscopy (PMIRRAS). Such differential reflectivity measurements proved to be a sensitive and efficient technique to investigate in situ the respective conformations and orientations of lipid and peptide molecules in pure and mixed films. Data obtained for melittin, a natural hemolytic peptide, are compared to those of L15K7, an ideally amphipathic synthetic peptide constituted by only apolar Leu and polar Lys residues. For pure peptidic films, the intensity, shape, and position of the amide I and II bands indicate that the L15K7 peptide adopts a totally alpha-helical structure, whereas the structure of melittin is mainly alpha-helical and presents some unordered domains. The L15K7 alpha-helix axis is oriented essentially parallel to the air-water interface plane; it differs for melittin. When injected into the subphase, L15K7 and melittin insert into preformed expanded DMPC monolayers and can be detected by PMIRRAS, even at low peptide content (> 50 DMPC molecules per peptide). In such conditions, peptides have the same secondary structure and orientation as in pure peptidic films. PMID:8770206

  17. Interaction of Charged Colloidal Particles at the Air-Water Interface.

    PubMed

    Girotto, Matheus; Dos Santos, Alexandre P; Levin, Yan

    2016-07-07

    We study, using Monte Carlo simulations, the interaction between charged colloidal particles confined to the air-water interface. The dependence of force on ionic strength and counterion valence is explored. For 1:1 electrolyte, we find that the electrostatic interaction at the interface is very close to the one observed in the bulk. On the other hand, for salts with multivalent counterions, an interface produces an enhanced attraction between like charged colloids. Finally, we explore the effect of induced surface charge at the air-water interface on the interaction between colloidal particles.

  18. Regio-selective Lipase catalyzed Hydrolysis of Oxanorbornane-based Sugar-like Amphiphiles at Air - Water Interface: a Polarized FT-IRRAS Study.

    PubMed

    Sarangi, Nirod Kumar; Ganesan, M; Muraleedharan, K M; Patnaik, Archita

    2017-02-21

    Interfacial hydrolysis of oxanorbornane-based amphiphile (Triol C16) by Candida rugosa lipase was investigated using real-time polarized Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS). The kinetics of hydrolysis was studied by analyzing the ester carbonyl ν(C=O) stretching vibration band across the two dimensional (2D) array of molecules at the confined interface. In particular, we demonstrate Triol C16 to form Michaelis-Menten type complex, like that of lipid-substrate analogues, where the Triol C16 head group remained accessible to the catalytic triad of the lipase. The enzyme-induced selective cleavage of the ester bond was spectroscopically monitored by the disappearance of the intense ν (C=O) resonance at 1736cm(-1). Consequently, the in-situ spectroscopic measurements evidenced selective ester hydrolysis of Triol C16 yielding Tetrol C(2)OH and Palmitic acid, which remained predominantly in the undissociated form at the interface. The conformation sensitive amide I (majorly ν (C=O)) and the interfacial water reorganization suggested 2D ordering of the enzyme molecules following which interfacial reactions were employed towards probing the enzyme kinetics at the air/water interface. The investigation demonstrated further the potential of IRRAS spectroscopy for real-time monitoring the hydrolytic product formation and selectivity at biomimetic interfaces.

  19. Aggregation behaviors of PEO-PPO-ph-PPO-PEO and PPO-PEO-ph-PEO-PPO at an air/water interface: experimental study and molecular dynamics simulation.

    PubMed

    Gong, Houjian; Xu, Guiying; Liu, Teng; Xu, Long; Zhai, Xueru; Zhang, Jian; Lv, Xin

    2012-09-25

    The block polyethers PEO-PPO-ph-PPO-PEO (BPE) and PPO-PEO-ph-PEO-PPO (BEP) are synthesized by anionic polymerization using bisphenol A as initiator. Compared with Pluronic P123, the aggregation behaviors of BPE and BEP at an air/water interface are investigated by the surface tension and dilational viscoelasticity. The molecular construction can influence the efficiency and effectiveness of block polyethers in decreasing surface tension. BPE has the most efficient ability to decrease surface tension of water among the three block polyethers. The maximum surface excess concentration (Γ(max)) of BPE is larger than that of BEP or P123. Moreover, the dilational modulus of BPE is almost the same as that of P123, but much larger than that of BEP. The molecular dynamics simulation provides the conformational variations of block polyethers at the air/water interface.

  20. Detachment of colloids from a solid surface by a moving air-water interface.

    PubMed

    Sharma, Prabhakar; Flury, Markus; Zhou, Jun

    2008-10-01

    Colloid attachment to liquid-gas interfaces is an important process used in industrial applications to separate suspended colloids from the fluid phase. Moving gas bubbles can also be used to remove colloidal dust from surfaces. Similarly, moving liquid-gas interfaces lead to colloid mobilization in the natural subsurface environment, such as in soils and sediments. The objective of this study was to quantify the effect of moving air-water interfaces on the detachment of colloids deposited on an air-dried glass surface, as a function of colloidal properties and interface velocity. We selected four types of polystyrene colloids (positive and negative surface charge, hydrophilic and hydrophobic). The colloids were deposited on clean microscope glass slides using a flow-through deposition chamber. Air-water interfaces were passed over the colloid-deposited glass slides, and we varied the number of passages and the interface velocity. The amounts of colloids deposited on the glass slides were visualized using confocal laser scanning microscopy and quantified by image analysis. Our results showed that colloids attached under unfavorable conditions were removed in significantly greater amounts than those attached under favorable conditions. Hydrophobic colloids were detached more than hydrophilic colloids. The effect of the air-water interface on colloid removal was most pronounced for the first two passages of the air-water interface. Subsequent passages of air-water interfaces over the colloid-deposited glass slides did not cause significant additional colloid removal. Increasing interface velocity led to decreased colloid removal. The force balances, calculated from theory, supported the experimental findings, and highlight the dominance of detachment forces (surface tension forces) over the attachment forces (DLVO forces).

  1. Reacting chemistry at the air-water interface

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Morgan, Thomas; Huwel, Lutz; Graham, William

    2016-09-01

    Plasma interaction with gas-liquid interfaces is becoming increasingly important in biological applications, chemical analysis and medicine. It introduces electrons, new ionic species and reactive species and contributes to chemical and electrical self-organization at the interface. To provide insight into the associated physics and chemistry at work in the evolution of the plasma in the air-water interface (AWI), a time-dependent one-dimensional modelling has been developed. The numerical simulation is used to solve the kinetic equations and help identify the important reaction mechanisms and describe the phenomena associated with hundreds of reacting pathways in gas-phase and liquid-phase AWI chemistry. This work was partly supported by JSPS KAKENHI Grant Number 16K04998.

  2. Polydopamine Films from the Forgotten Air/Water Interface.

    PubMed

    Ponzio, Florian; Payamyar, Payam; Schneider, Anne; Winterhalter, Mathias; Bour, Jérôme; Addiego, Frédéric; Krafft, Marie-Pierre; Hemmerle, Joseph; Ball, Vincent

    2014-10-02

    The formation of polydopamine under mild oxidation conditions from dopamine solutions with mechanical agitation leads to the formation of films that can functionalize all kinds of materials. In the absence of stirring of the solution, we report the formation of polydopamine films at the air/water interface (PDA A/W) and suggest that it arises from an homogeneous nucleation process. These films grow two times faster than in solution and can be deposited on hydrophilic or hydrophobic substrates by the Langmuir-Schaeffer technique. Thanks to this new method, porous and hydrophobic materials like polytetrafluoroethylene (PTFE) membranes can be completely covered with a 35 nm thick PDA A/W film after only 3h of reaction. Finally the oxidation of a monomer followed by a polymerization in water is not exclusive to polydopamine since we also transferred polyaniline functional films from the air/water interface to solid substrates. These findings suggest that self-assembly from a solution containing hydrophilic monomers undergoing a chemical transformation (here oxidation and oligomerization) could be a general method to produce films at the liquid/air interface.

  3. An alternative view of phospholipid phase behavior at the air-water interface. Microscope and film balance studies.

    PubMed Central

    von Tscharner, V; McConnell, H M

    1981-01-01

    Pure-lipid films at the water interface have surface-pressures vs. area isotherms that are often interpreted as involving first-order phase transitions from a condensed region to a liquid-expanded region. Two phases are presumed to coexist in the intermediate part of the isotherm. We constructed a film balance that could be placed on the stage of an epifluorescence microscope. A dipalmitoyl phosphatidylcholine film containing a low concentration of a fluorescent lipid probe showed an inhomogeneous fluorescence distribution in the so-called liquid-expanded region of the isotherm. Only the intermediate and condensed regions could be prepared so as to be optically homogeneous below 25 degrees C. We investigated membrane flow and lateral lipid diffusion in the membrane on the trough. The isotherms and isochores were measured. The results require, at least, a modified description of the monolayer structure in various regions of the isotherms. The solid-condensed region corresponds to a gel phase of the lipids where there is no flow in the membrane, lateral diffusion is low, the compressibility is low, and the membrane is optically homogeneous. The "liquid-condensed/liquid-expanded" region appears to be a homogeneous membrane where lateral diffusion and membrane flow are both rapid. This is a region of high compressibility. The "liquid-expanded" region is not homogeneous as seen under the microscope, and the flow of the surface layer can be very fast. PMID:6895478

  4. Stabilization of phospholipid multilayers at the air-water interface by compression beyond the collapse: a BAM, PM-IRRAS, and molecular dynamics study.

    PubMed

    Saccani, J; Castano, S; Beaurain, F; Laguerre, M; Desbat, B

    2004-10-12

    Compression beyond the collapse of phospholipid monolayers on a modified Langmuir trough has revealed the formation of stable multilayers at the air-water interface. Those systems are relevant new models for studying the properties of biological membranes and for understanding the nature of interactions between membranes and peptides or proteins. The collapse of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-di[cis-9-octadecenoyl]-sn-glycero-3-[phospho-l-serine] (DOPS), 1,2-di[cis-9-octadecenoyl]-sn-glycero-3-phosphocholine (DOPC), and 1,2-di[cis-9-octadecenoyl]-sn-glycero-3-[phospho-1-rac-glycerol] (DOPG) monolayers has been investigated by isotherm measurements, Brewster angle microscopy (BAM), and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). In the cases of DMPC and DOPS, the collapse of the monolayers revealed the formation of bilayer and trilayer structures, respectively. The DMPC bilayer stability has been analyzed also by a molecular dynamics study. The collapse of the DOPC and DOPG systems shows a different behavior, and the Brewster angle microscopy reveals the formation of luminous bundles, which can be interpreted as diving multilayers in the subphase.

  5. Effects of flow on insulin fibril formation at an air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2009-11-01

    The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.

  6. Binding structure and kinetics of surfactin monolayer formed at the air/water interface to counterions: A molecular dynamics simulation study.

    PubMed

    Gang, Hongze; Liu, Jinfeng; Mu, Bozhong

    2015-10-01

    The binding structure and kinetics of ionized surfactin monolayer formed at the air/water interface to five counterions, Li+, Na+, K+, Ca2+, and Ba2+ (molar ratios of surfactin to monovalent and divalent counterions are 1:2 and 1:1 respectively), have been studied using molecular dynamics simulation. The results show that surfactin exhibits higher binding affinity to divalent counterions, Ca2+, and Ba2+, and smaller monovalent counterion, Li+, than Na+ and K+. Both carboxyl groups in surfactin are accessible for counterions, but the carboxyl group in Glu1 is easier to access by counterions than Asp5. Salt bridges are widely built between carboxyl groups by counterions, and the probability of the formation of intermolecular salt bridge is markedly larger than that of intramolecular salt bridge. Divalent counterions perform well in forming salt bridges between carboxyl groups. The salt bridges mediated by Ca2+ are so rigid that the lifetimes are about 0.13 ns, and the break rates of these salt bridges are 1-2 orders of magnitude smaller than those mediated by K+ which is about 5 ps in duration. The positions of the hydration layer of carboxyl groups are independent of counterions, but the bound counterions induce the dehydration of carboxyl groups and disturb the hydrogen bonds built between carboxyl group and hydration water.

  7. Powder wettability at a static air-water interface.

    PubMed

    Dupas, Julien; Forny, Laurent; Ramaioli, Marco

    2015-06-15

    The reconstitution of a beverage from a dehydrated powder involves several physical mechanisms that determine the practical difficulty to obtain a homogeneous drink in a convenient way and within an acceptable time for the preparation of a beverage. When pouring powder onto static water, the first hurdle to overcome is the air-water interface. We propose a model to predict the percentage of powder crossing the interface in 45 s, namely the duration relevant for this application. We highlight theoretically the determinant role of the contact angle and of the particle size distribution. We validate experimentally the model for single spheres and use it to predict the wettability performance of commercial food powders for different contact angles and particles sizes. A good agreement is obtained when comparing the predictions and the wettability of the tested powders.

  8. Understanding the structure of hydrophobic surfactants at the air/water interface from molecular level.

    PubMed

    Zhang, Li; Liu, Zhipei; Ren, Tao; Wu, Pan; Shen, Jia-Wei; Zhang, Wei; Wang, Xinping

    2014-11-25

    Understanding the behavior of fluorocarbon surfactants at the air/water interface is crucial for many applications, such as lubricants, paints, cosmetics, and fire-fighting foams. In this study, molecular dynamics (MD) simulations were employed to investigate the microscopic properties of non-ionic fluorocarbon surfactants at the air/water interface. Several properties, including the distribution of head groups, the distribution probability of the tilt angle between hydrophobic tails with respect to the xy plane, and the order parameter of surfactants, were computed to probe the structure of hydrophobic surfactants at the air/water interface. The effects of the monomer structure on interfacial phenomena of non-ionic surfactants were investigated as well. It is observed that the structure of fluorocarbon surfactants at the air/water interface is more ordered than that of hydrocarbons, which is dominated by the van der Waals interaction between surfactants and water molecules. However, replacing one or two CF2 with one or two CH2 group does not significantly influence the interfacial structure, suggesting that hydrocarbons may be promising alternatives to perfluorinated surfactants.

  9. [Virus adsorption from batch experiments as influenced by air-water interface].

    PubMed

    Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji

    2007-12-01

    The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface.

  10. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  11. Cationic Gemini surfactant at the air/water interface.

    PubMed

    Qibin, Chen; Xiaodong, Liang; Shaolei, Wang; Shouhong, Xu; Honglai, Liu; Ying, Hu

    2007-10-15

    The surface properties and structures of a cationic Gemini surfactant with a rigid spacer, p-xylyl-bis(dimethyloctadecylammonium bromide) ([C(18)H(37)(CH(3))(2)N(+)CH(2)C(6)H(4)CH(2)N(+)(CH(3))(2)C(18)H(37)],2Br(-), abbreviated as 18-Ar-18,2Br(-1)), at the air/water interface were investigated. It is found that the surface pressure-molecular area isotherms observed at different temperatures do not exhibit a plateau region but display an unusual "kink" before collapse. The range of the corresponding minimum compressibility and maximum compressibility modulus indicates that the monolayer is in the liquid-expanded state. The monolayers were transferred onto mica and quartz plates by the Langmuir-Blodgett (LB) technique. The structures of monolayers at various surface pressures were studied by atomic force microscopy (AFM) and UV-vis spectroscopy, respectively. AFM measurements show that at lower surface pressures, unlike the structures of complex or hybrid films formed by Gemini amphiphiles with DNA, dye, or inorganic materials or the Langmuir film formed by the nonionic Gemini surfactant, in this case network-like labyrinthine interconnected ridges are formed. The formation of the structures can be interpreted in terms of the spinodal decomposition mechanism. With the increase of the surface pressure up to 35 mN/m, surface micelles dispersed in the network-like ridges gradually appear which might be caused by both the spinodal decomposition and dewetting. The UV-vis adsorption shows that over the whole range of surface pressures, the molecules form a J-aggregate in LB films, which implies that the spacers construct a pi-pi aromatic stacking. This pi-pi interaction between spacers and the van der Waals interaction between hydrophobic chains lead to the formation of both networks and micelles. The labyrinthine interconnected ridges are formed first because of the rapid evaporation of solvent during the spreading processes; with increasing surface pressure, some of the

  12. Behavior of pH-sensitive core shell particles at the air-water interface.

    PubMed

    Mathew, Mark D'Souza; Manga, Mohamed S; Hunter, Timothy N; Cayre, Olivier J; Biggs, Simon

    2012-03-20

    In this article, the adsorption of latex core-responsive polymer-shell nanoparticles at the air-water interface is investigated using a Langmuir trough. Phase transition isotherms are used to explore their responsive behavior at the interface as a function of changes in the pH of the subphase. By adjusting the pH of the water prior to particle deposition, we probe the effect of the stabilizing polymer wetting by the water subphase on the stability of these particles at the air-water interface. In addition, by initially compressing a stable film of adsorbed particles and then subsequently changing the pH of the subphase we study desorption of these particles into the water phase.

  13. Effect of surfactants on bubble collisions with an air-water interface

    NASA Astrophysics Data System (ADS)

    Wang, Shiyan; Guo, Tianqi; Dabiri, Sadegh; Vlachos, Pavlos P.; Ardekani, Arezoo M.

    2016-11-01

    Collisions of bubbles on an air-water interface are frequently observed in natural environments and industrial applications. We study the coefficient of restitution of a bubble colliding on an air-water interface in the presence of surfactants through a combination of experimental and numerical approaches. In a high concentration surfactant solution, bubbles experience perfectly inelastic collisions, and bubbles are arrested by the interface after the collision. As the surfactant concentration decreases, collisions are altered to partially inelastic, and eventually, elastic collisions occur in the pure water. In a high concentration surfactant solution, the reduced bouncing is attributed to the Marangoni stress. We identify the Langmuir number, the ratio between absorption and desorption rates, as the fundamental parameter to quantify the Marangoni effect on collision processes in surfactant solutions. The effect of Marangoni stress on the bubble's coefficient of restitution is non-monotonic, where the coefficient of restitution first decreases with Langmuir number, and then increases.

  14. Anomalous Transmission of Infrasound Through Air-Water and Air-Ground Interfaces

    NASA Astrophysics Data System (ADS)

    Godin, O. A.

    2009-05-01

    Speed of compressional waves in air is smaller than in water and in the ground, while mass density of air is much smaller than mass densities of water and the ground. This results in a very strong acoustic impedance contrast at air-water and air-ground interfaces. Sound transmission through a boundary with a strong impedance contrast is normally very weak. This paper reports theoretical studies of the power output of localized sound sources and acoustic power fluxes through plane gas-liquid and gas-solid interfaces in a layered medium. It is found that the transparency of the interfaces increases dramatically at low frequencies. For low-frequency sound, a phenomenon of anomalous transparency can occur where most of the acoustic power generated by a source in water is radiated into the atmosphere. Contrary to the conventional wisdom based on ray-theoretical predictions and observations at higher frequencies, infrasonic energy from localized waterborne sources can be effectively transmitted into air. The main physical mechanism responsible for the anomalous transparency of air-water interface is found to be an acoustic power transfer by inhomogeneous (evanescent) waves in the plane-wave decomposition of the acoustic field in water. The effects of ocean and atmosphere stratification and of guided sound propagation in water or in air on the anomalous transparency of the air-water interface are considered. In the case of air-ground interface, the increase of the acoustic power flux into atmosphere, when a compact source approaches the interface from below, proves to be even larger than for an underwater source. The physics behind the increase of the power flux into the atmosphere, when the source depth decreases, is shown to be rather different for the air-ground and air-water interfaces. Depending on attenuation of compressional and shear waves in the ground, a leaky interface wave supported by the air-ground interface can be responsible for the bulk of acoustic power

  15. Fugacity gradients of hydrophobic organics across the air-water interface measured with a novel passive sampler.

    PubMed

    Wu, Chen-Chou; Yao, Yao; Bao, Lian-Jun; Wu, Feng-Chang; Wong, Charles S; Tao, Shu; Zeng, Eddy Y

    2016-11-01

    Mass transfer of hydrophobic organic contaminants (HOCs) across the air-water interface is an important geochemical process controlling the fate and transport of HOCs at the regional and global scales. However, few studies have characterized concentration or fugacity profiles of HOCs near both sides of the air-water interface, which is the driving force for the inter-compartmental mass transfer of HOCs. Herein, we introduce a novel passive sampling device which is capable of measuring concentration (and therefore fugacity) gradients of HOCs across the air-water interface. Laboratory studies indicated that the escaping fugacity values of polycyclic aromatic hydrocarbons (PAHs) from water to air were negatively correlated to their volatilization half-lives. Results for field deployment were consistent between the passive sampler and an active method, i.e., a combination of grab sampling and liquid-liquid extraction. In general, the fugacity profiles of detected PAHs were indicative of an accumulation mechanism in the surface microlayer of the study regions (Haizhu Lake and Hailing Bay of Guangdong Province, China), while p,p'-DDD tended to volatilize from water to the atmosphere in Hailing Bay. Furthermore, the fugacity profiles of the target analytes increased towards the air-water interface, reflecting the complexity of environmental behavior of the target analytes near the air-water interface. Overall, the passive sampling device provides a novel means to better characterize the air-water diffusive transfer of HOCs, facilitating the understanding of the global cycling of HOCs.

  16. Rheology and microrheology of materials at the air-water interface

    NASA Astrophysics Data System (ADS)

    Walder, Robert Benjamin

    2008-10-01

    The study of materials at the air-water interface is an important area of research in soft condensed matter physics. Films at the air-water interface have been a system of interest to physics, chemistry and biology for the last 20 years. The unique properties of these surface films provide ideal models for 2-d films, surface chemistry and provide a platform for creating 2 dimensional analogue materials to cellular membranes. Measurements of the surface rheology of cross-linked F-actin networks associated with a lipid monolayer at the air-water interface of a Langmuir monolayer have been performed. The rheological measurements are made using a Couette cell. These data demonstrate that the network has a finite elastic modulus that grows as a function of the cross-linking concentration. We also note that under steady-state flow the system behaves as a power law fluid in which the effective viscosity decreases with imposed shear. A Langmuir monolayer trough that is equipped for simultaneous microrheology and standard rheology measurements has been constructed. The central elements are the trough itself with a full range of optical tools accessing the air-water interface from below the trough and a portable knife-edge torsion pendulum that can access the interface from above. The ability to simultaneously measure the mechanical response of Langmuir monolayers on very different length scales is an important step for our understanding of the mechanical response of two-dimensional viscoelastic networks. The optical tweezer microrheometer is used to study the micromechanical properties of Langmuir monolayers. Microrheology measurements are made a variety of surface pressures that correspond to different ordered phases of the monolayer. The complex shear modulus shows an order of magnitude increase for the liquid condensed phase of DPPC compared to the liquid expanded phase.

  17. The Importance of Moving Air-Water Interfaces for Colloid Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Flury, M.

    2015-12-01

    In the vadose zone, or in unsaturated porous media in general, transport of colloids is usually less pronounced than in groundwater. An important retention mechanism for colloids in unsaturated porous media is attachment to air-water interfaces. However, air-water interfaces can also lead to colloid mobilization and enhanced transport if air-water interfaces are moving, such as during infiltration, imbibition, and drainage. Colloid attachment to air-water interfaces is caused by surface tension forces, and these forces usually exceed other interactions forces; therefore, surface tension forces play a dominant role for colloid transport in unsaturated porous media. In this presentation, experimental and theoretical evidence of surface tension forces acting on colloids will be presented, and the role of moving air-water interfaces will be discussed.

  18. Air-water interface equilibrium partitioning coefficients of aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Cheng, Wen-Hsi; Chu, Fu-Sui; Liou, Jia-Jiunn

    The single equilibration technique was used to determine the equilibrium partitioning coefficients ( pc) of an air-water interface for target aromatic volatile organic compounds (VOCs), including benzene, toluene and ethylbenzene. The tested liquid concentrations ( CL) of VOC ranged from 0.5 to 20 mg/l, and the temperatures ( Tw) of the solutions were 300, 305, 310 and 315 K, respectively. The pc values were calculated using the gaseous concentrations ( Cg*) of aromatic hydrocarbons in equilibrium with the aqueous phase and the formula pc=( Cg*/ CL). The heats of VOC of liquid and gaseous phase transfer (Δ Htr) in pure water, and the highly linear regression relationship (with squared correlation coefficients, R2, from 0.900 to 0.999) between ( ln C g*) and (1/ Tw) are also evaluated. Experimental results indicated that the pc values of the target VOC components increase with Tw but, in contrast, are not significantly affected by CL in pure water. However, pc of more soluble compounds, like iso-propanol and methyl ethyl ketone, have been evaluated to be significant with CL in the earlier investigation. Finally, the co-solute effect on pc is also evaluated in this work, as determining pc of the aromatic hydrocarbons by using aqueous ethanol (in a volume ration of 1-15%) as solutes.

  19. Interaction between graphene oxide and Pluronic F127 at the air-water interface.

    PubMed

    Li, Shanghao; Guo, Jingru; Patel, Ravi A; Dadlani, Anup L; Leblanc, Roger M

    2013-05-14

    Triblock copolymer Pluronic F127 (PF127) has previously been demonstrated to disperse graphene oxide (GO) in electrolyte solution and block the hydrophobic interaction between GO and l-tryptophan and l-tyrosine. However, the nature of this interaction between PF127 and GO remains to be characterized and elucidated. In the present study, we aimed to characterize and understand the interaction between GO and PF127 using a 2-dimensional Langmuir monolayer methodology at the air-water interface by surface pressure-area isotherm measurement, stability, adsorption, and atomic force microscopy (AFM) imaging. Based on the observation of surface pressure-area isotherms, adsorption, and stability of PF127 and PF127/GO mixture at the air-water interface, GO is suggested to change the conformation of PF127 at the air-water interface and also drag PF127 from the interface to the bulk subphase. Atomic force microscopy (AFM) image supports this assumption, as GO and PF127 can be observed by spreading the subphase solution outside the compressing barriers, as shown in the TOC graphic.

  20. Thermodynamics of iodide adsorption at the instantaneous air-water interface

    NASA Astrophysics Data System (ADS)

    Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.

    2013-03-01

    We performed molecular dynamics simulations using both polarizable and non-polarizable force fields to study the adsorption of iodide to the air-water interface. A novel aspect of our analysis is that the progress of ion adsorption is measured as the distance from the instantaneous interface, which is defined by a coarse-graining scheme proposed recently by Willard and Chandler ["Instantaneous liquid interfaces," J. Phys. Chem. B 114, 1954-1958 (2010), 10.1021/jp909219k]. Referring structural and thermodynamic quantities to the instantaneous interface unmasks molecular-scale details that are obscured by thermal fluctuations when the same quantities are referred to an average measure of the position of the interface, such as the Gibbs dividing surface. Our results suggest that an ion adsorbed at the interface resides primarily in the topmost water layer, and the interfacial location of the ion is favored by enthalpy and opposed by entropy.

  1. Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometry.

    PubMed

    Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre

    2011-12-29

    We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates.

  2. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.

    PubMed

    Zhu, Chongqin; Kumar, Manoj; Zhong, Jie; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-09-07

    Understanding Criegee chemistry has become one of central topics in atmospheric research recently. The reaction of Criegee intermediates with gas-phase water clusters has been widely viewed as a key Criegee reaction in the troposphere. However, the effect of aerosols or clouds on Criegee chemistry has received little attention. In this work, we have investigated the reaction between the smallest Criegee intermediate, CH2OO, and water clusters in the gas phase, as well as at the air/water surface using ab initio quantum chemical calculations and adaptive buffered force quantum mechanics/molecular mechanics (QM/MM) dynamics simulations. Our simulation results show that the typical time scale for the reaction of CH2OO with water at the air/water interface is on the order of a few picoseconds, 2-3 orders of magnitude shorter than that in the gas phase. Importantly, the adbf-QM/MM dynamics simulations suggest several reaction pathways for the CH2OO + water reaction at the air/water interface, including the loop-structure-mediated mechanism and the stepwise mechanism. Contrary to the conventional gas-phase CH2OO reaction, the loop-structure is not a prerequisite for the stepwise mechanism. For the latter, a water molecule and the CH2OO at the air/water interface, upon their interaction, can result in the formation of (H3O)(+) and (OH)CH2(OO)(-). Thereafter, a hydrogen bond can be formed between (H3O)(+) and the terminal oxygen atom of (OH)CH2(OO)(-), leading to direct proton transfer and the formation of α-hydroxy methylperoxide, HOCH2OOH. The mechanistic insights obtained from this simulation study should motivate future experimental studies of the effect of water clouds on Criegee chemistry.

  3. Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface

    PubMed Central

    Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R.; Tang, Jay X.

    2013-01-01

    Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments. PMID:23823220

  4. Molecular adsorption steers bacterial swimming at the air/water interface.

    PubMed

    Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R; Tang, Jay X

    2013-07-02

    Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments.

  5. Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.

    PubMed

    Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N

    2011-08-04

    The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.

  6. Capillary forces between sediment particles and an air-water interface.

    PubMed

    Chatterjee, Nirmalya; Lapin, Sergey; Flury, Markus

    2012-04-17

    In the vadose zone, air-water interfaces play an important role in particle fate and transport, as particles can attach to the air-water interfaces by action of capillary forces. This attachment can either retard or enhance the movement of particles, depending on whether the air-water interfaces are stationary or mobile. Here we use three standard PTFE particles (sphere, circular cylinder, and tent) and seven natural mineral particles (basalt, granite, hematite, magnetite, mica, milky quartz, and clear quartz) to quantify the capillary forces between an air-water interface and the different particles. Capillary forces were determined experimentally using tensiometry, and theoretically assuming volume-equivalent spherical, ellipsoidal, and circular cylinder shapes. We experimentally distinguished between the maximum capillary force and the snap-off force when the air-water interface detaches from the particle. Theoretical and experimental values of capillary forces were of similar order of magnitude. The sphere gave the smallest theoretical capillary force, and the circular cylinder had the largest force due to pinning of the air-water interface. Pinning was less pronounced for natural particles when compared to the circular cylinder. Ellipsoids gave the best agreement with measured forces, suggesting that this shape can provide a reasonable estimation of capillary forces for many natural particles.

  7. Effect of particle shape on capillary forces acting on particles at the air-water interface.

    PubMed

    Chatterjee, Nirmalya; Flury, Markus

    2013-06-25

    The capillary forces exerted by moving air-water interfaces can dislodge particles from stationary surfaces. The magnitude of the capillary forces depends on particle shape, orientation, and surface properties, such as contact angle and roughness. The objective was to quantify, both experimentally and theoretically, capillary force variations as an air-water interface moves over the particles. We measured capillary forces as a function of position, i.e., force-position curves, on particles of different shape by using force tensiometry. The particles (5 mm nominal size) were made of polyacrylate and were fabricated using a 3D printer. Experimental measurements were compared with theoretical calculations. We found that force-position curves could be classified into in three categories according to particle shapes: (1) curves for particles with round cross sections, such as spheroidal particles, (2) curves for particles with fixed cross sections, such cylindrical or cubical particles, and (3) curves for particles with tapering cross sections, such as prismatic or tetrahedral particles. Spheroidal particles showed a continuously varying capillary force. Cylindrical or cubical particles showed pronounced pinning of the air-water interface line at edges. The pinning led to an increased capillary force, which was relaxed when the interface snapped off from the edges. Particles with tapering cross section did not show pinning and showed reduced capillary forces as the air-water interface line perimeter and displacement cross section continuously decrease when the air-water interface moved over the particles.

  8. Does colloid shape affect detachment of colloids by a moving air-water interface?

    PubMed

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L; Davis, Howard P

    2013-05-14

    Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An air bubble was introduced into the channel and passed through, thereby generating a receding followed by an advancing air-water interface. The detachment of colloids by the air-water interfaces was visualized with a confocal microscope, quantified by image analysis, and analyzed statistically to determine significant differences. For all colloid shapes, the advancing air-water interface caused pronounced colloid detachment (>63%), whereas the receding interface was ineffective in colloid detachment (<1.5%). Among the different colloid shapes, the barrels were most readily removed (94%) by the advancing interface, followed by the spheres and oblong disks (80%) and the rods (63%). Colloid detachment was significantly affected by colloid shape. The presence of an edge, as it occurs in a barrel-shaped colloid, promoted colloid detachment because the air-water interface is being pinned at the edge of the colloid. This suggests that the magnitude of colloid mobilization and transport in porous media is underestimated for edged particles and overestimated for rodlike particles when a sphere is used as a model colloid.

  9. The cis-bis(decanoate)tin phthalocyanine/DPPC film at the air/water interface.

    PubMed

    Ramos, Salvador; Garza, Cristina; Beltran, Hiram I; Campos-Terán, José; Arenas-Alatorre, Jesús; Castillo, Rolando

    2012-03-01

    Films made of cis-bis-decanoate-tin(IV) phthalocyanine (PcSn10) and racemic dipalmitoylphosphatidylcholine (DPPC) are studied with compression isotherms and Brewster angle microscopy (BAM) at the air/water interface. Films enriched in PcSn10 present phase separation elliptical-shaped domains. These domains present optical anisotropy and molecular order. They are enriched in PcSn10, and the film outside these domains is enriched in DPPC, as shown in by high-angle annular dark-field transmission electron microscopy on Langmuir-Blodgett (LB) transferred films. Film collapse area and atomic force microscopy images of LB transferred films on mica indicate that the films are actually multilayers. A computational survey was performed to determine how the PcSn10 molecules prefer to self-assemble, in films basically made of PcSn10. The relative energetic stability for several dimeric assemblies was obtained, and a crystal model of the film was developed through packing and repeating the PcSn10 molecules, along the crystallographic directions of the unit cell. Our results contribute to understanding the strong interaction between PcSn10 and DPPC at the air/water interface, where even small quantities of DPPC (~1-2%) can modify the film in an important way.

  10. Amphiphilic derivatives of dextran: adsorption at air/water and oil/water interfaces.

    PubMed

    Rotureau, E; Leonard, M; Dellacherie, E; Durand, A

    2004-11-01

    Ionic amphiphilic dextran derivatives were synthesized by the attachment of sodium sulfopropyl and phenoxy groups on the native polysaccharide. A family of dextran derivatives was thus obtained with varying hydrophobic content and charge density in the polymer chains. The surface-active properties of polymers were studied at the air-water and dodecane-water interfaces using dynamic surface/interfacial tension measurements. The adsorption was shown to begin in a diffusion-limited regime at low polymer concentrations, that is to say, with the diffusion of macromolecules in the bulk solution. In contrast, at long times the interfacial adsorption is limited by interfacial phenomena: adsorption kinetics or transfer into the adsorbed layer. A semiempirical equation developed by Filippov was shown to correctly fit the experimental curves over the whole time range. The presence of ionic groups in the chains strongly lowers the adsorption kinetics. This effect can be interpreted by electrostatic interactions between the free molecules and the already adsorbed ones. The adsorption kinetics at air-water and oil-water interfaces are compared.

  11. Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry.

    PubMed

    Svitova, T F; Wetherbee, M J; Radke, C J

    2003-05-01

    Dynamic interfacial tensiometry, gauged by axisymmetric drop shape analysis of static drops or bubbles, provides useful information on surfactant adsorption kinetics. However, the traditional pendant-drop methodology is not readily amenable to the study of desorption kinetics. Thus, the question of sorption reversibility is difficult to assess by this technique. We extend classical pendant/sessile drop dynamic tensiometry by immersing a sessile bubble in a continuously mixed optical cell. Ideal-mixed conditions are established by stirring and by constant flow through the cell. Aqueous surface-active-agent solutions are either supplied to the cell (loading) or removed from the cell by flushing with water (washout), thereby allowing study of both adsorption and desorption kinetics. Well-mixed conditions and elimination of any mass transfer resistance permit direct identification of sorption kinetic barriers to and from the external aqueous phase with time constants longer than the optical-cell residence time. The monodisperse nonionic surfactant ethoxy dodecyl alcohol (C(12)E(5)), along with cationic cetyltrimethyl ammonium bromide (CTAB) in the presence of added salt, adsorbs and desorbs instantaneously at the air/water interface. In these cases, the experimentally observed dynamic-tension curves follow the local-equilibrium model precisely for both loading and washout. Accordingly, these surfactants below their critical micelle concentrations (CMC) exhibit no detectable sorption-activation barriers on time scales of order a min. However, the sorption dynamics of dilute CTAB in the absence of electrolyte is markedly different from that in the presence of KBr. Here CTAB desorption occurs at local equilibrium, but the adsorption rate is kinetically limited, most likely due to an electrostatic barrier arising as the charged surfactant accumulates at the interface. The commercial, polydisperse nonionic surfactant ethoxy nonylphenol (NP9) loads in good agreement with

  12. Surface behavior of malonic acid adsorption at the air/water interface.

    PubMed

    Blower, Patrick G; Shamay, Eric; Kringle, Loni; Ota, Stephanie T; Richmond, Geraldine L

    2013-03-28

    The presence of organic materials adsorbed to the surfaces of aerosol particles has been demonstrated to be a determining factor in relevant atmospheric processes. Malonic acid is a small, water-soluble organic acid that is common in aerosols and is surface-active. A comprehensive investigation of the adsorption of malonic acid to the air/water interface was accomplished using vibrational sum frequency spectroscopy (VSFS) and surface tension measurements as functions of concentration and pH. Malonic acid was found to be weakly solvated at the air/water interface, and its orientation as a function of concentration was explored through different VSFS polarization schemes. pH-dependent experiments revealed that the surface-active species is the fully protonated species. Computational analyses were used to obtain depth-specific geometries of malonic acid at the air/water interface that confirm and enrich the experimental results.

  13. Femtosecond-laser-induced shockwaves in water generated at an air-water interface.

    PubMed

    Strycker, B D; Springer, M M; Traverso, A J; Kolomenskii, A A; Kattawar, G W; Sokolov, A V

    2013-10-07

    We report generation of femtosecond-laser-induced shockwaves at an air-water interface by millijoule femtosecond laser pulses. We document and discuss the main processes accompanying this phenomenon, including light emission, development of the ablation plume in the air, formation of an ablation cavity, and, subsequently, a bubble developing in water. We also discuss the possibility of remotely controlling the characteristics of laser-induced sound waves in water through linear acoustic superposition of sound waves that results from millijoule femtosecond laser-pulse interaction with an air-water interface, thus opening up the possibility of remote acoustic applications in oceanic and riverine environments.

  14. Dynamic mechanical properties of a polyelectrolyte adsorbed insoluble lipid monolayer at the air-water interface.

    PubMed

    Park, Chang Young; Kim, Mahn Won

    2015-04-23

    Polymers have been used to stabilize interfaces or to tune the mechanical properties of interfaces in various contexts, such as in oil emulsions or biological membranes. Although the structural properties of these systems are relatively well-studied, instrumental limitations continue to make it difficult to understand how the addition of polymer affects the dynamic mechanical properties of thin and soft films. We have solved this challenge by developing a new instrument, an optical-tweezer-based interface shear microrheometer (ISMR). With this technique, we observed that the interface shear modulus, G*, of a dioctadecyldimethylammonium chloride (DODAC) monolayer at the air-water interface significantly increased with adsorption of polystyrenesulfonate (PSS). In addition, the viscous film (DODAC monolayer) became a viscoelastic film with PSS adsorption. At a low salt concentration, 10 mM of NaCl in the subphase, the viscoelasticity of the DODAC/PSS composite was predominantly determined by a particular property of PSS, that is, it behaves as a Gaussian chain in a θ-solvent. At a high salt concentration, 316 mM of NaCl, the thin film behaved as a polymer melt excluding water molecules.

  15. Flow through an Array of Superhydrophopic Pillars: The Role of the Air-Water Interface Shape on Drag Reduction

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyun; Rothstein, Jonathan

    2016-11-01

    In this study, measurements of the pressure drop and the velocity fields associated with the flow of water through a regular array of superhydrophobic pillars were systematically performed to investigate the role of the air-water interface shape on drag reduction. A microfluidic channel was created with circular and superhydrophobic apple-core-shaped pillars bridging across the entire channel. The apple-core-shaped pillars were designed to trap an air pocket along the side of the pillars. The shape of the interface was systematically modified from concave to convex by changing the static pressure within the microchannel. For superhydrophobic pillars having a circular cross section, D /D0 = 1.0, a drag reduction of 7% and a slip velocity of 20% the average channel velocity along the air-water interface were measured. At large static pressures, the interface was driven into the pillars resulting in a decrease in the effective size of the pillars, an increase in the effective spacing between pillars and a pressure drop reduction of as much as 18% when the interface was compressed to D /D0 = 0.8. At low static pressures, the pressure drop increased significantly even as the slip velocity increased as the expanding air-water interface constricted flow through the array of pillars. This research was supported by the National Science Foundation under Grant CBET-1334962.

  16. Structure of phospholipid monolayers containing poly(ethylene glycol) lipids at the air-water interface

    SciTech Connect

    Majewski, J.; Smith, G.S.; Kuhl, T.L.; Israelachvili, J.N.; Gerstenberg, M.C.

    1997-04-17

    The density distribution of a lipid monolayer at the air-water interface mixed with varying amounts of lipid with poly(ethylene glycol)polymer headgroups (polymer-lipid or PEG-lipid) was measured using neutron reflectometry. The structure of the monolayer at the interface was greatly perturbed by the presence of the bulky polymer-lipid headgroups resulting in a large increase in the thickness of the headgroup region normal to the interface and a systematic roughening of the interface with increasing polymer-lipid content. These results show how bulky hydrophilic moieties cause significant deformations and out-of-place protrusions of phospholipid monolayers and presumably bilayers, vesicles and biological membranes. In terms of polymer physics, very short polymer chains tethered to the air-water interface follow scaling behavior with a mushroom to brush transition with increasing polymer grafting density. 34 refs., 9 figs., 1 tab.

  17. Equation of state and adsorption dynamics of soft microgel particles at an air-water interface.

    PubMed

    Deshmukh, Omkar S; Maestro, Armando; Duits, Michel H G; van den Ende, Dirk; Stuart, Martien Cohen; Mugele, Frieder

    2014-09-28

    Understanding the adsorption dynamics of soft microgel particles is a key step in designing such particles for potential applications as stimuli-responsive Pickering stabilizers for foams or emulsions. In this study we experimentally determine an equation of state (EOS) for poly (N-isopropylacrylamide) (PNIPAM) microgel particles adsorbed onto an air-water interface using a Langmuir film balance. We detect a finite surface pressure at very low surface concentration of particles, for which standard theories based on hard disk models predict negligible pressures, implying that the particles must deform strongly upon adsorption to the interface. Furthermore, we study the evolution of the surface pressure due to the adsorption of PNIPAM particles as a function of time using pendant drop tensiometry. The equation of state determined in the equilibrium measurements allows us to extract the adsorbed amount as a function of time. We find a mixed-kinetic adsorption that is initially controlled by the diffusion of particles towards the interface. At later stages, a slow exponential relaxation indicates the presence of a coverage-dependent adsorption barrier related to crowding of particles at the interface.

  18. Shear characteristics, miscibility, and topography of sodium caseinate-monoglyceride mixed films at the air-water interface.

    PubMed

    Rodríguez Patino, Juan M; Carrera Sánchez, Cecilio

    2004-01-01

    In this contribution, we are concerned with the study of structure, topography, and surface rheological characteristics (under shear conditions) of mixed sodium caseinate and monoglycerides (monopalmitin and monoolein) at the air/water interface. Combined surface chemistry (surface film balance and surface shear rheometry) and microscopy (Brewster angle microscopy, BAM) techniques have been applied in this study to mixtures of insoluble lipids and sodium caseinate spread at the air-water interface. At a macroscopic level, sodium caseinate and monoglycerides form an heterogeneous and practically immiscible monolayer at the air-water interface. The images from BAM show segregated protein and monoglyceride domains that have different topography. At surface pressures higher than that for the sodium caseinate collapse, this protein is displaced from the interface by monoglycerides. These results and those derived from interfacial shear rheology (at a macroscopic level) appear to support the idea that immiscibility and heterogeneity of these emulsifiers at the interface have important repercussions on the shear characteristics of the mixed films, with the alternating flow of segregated monoglyceride domains (of low surface shear viscosity, etas) and protein domains (of high etas) across the canal.

  19. Monolayer and Brewster angle microscopy study of human serum albumin-dipalmitoyl phosphatidyl choline mixtures at the air-water interface.

    PubMed

    Toimil, Paula; Prieto, Gerardo; Miñones, José; Trillo, José M; Sarmiento, Félix

    2012-04-01

    The aim of this study is to deepen the understanding of the behavior of human serum albumin (HSA) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) mixed monolayers. For this purpose, different amounts of DPPC were spread at 25°C on the water surface containing a monolayer of HSA. Surface film balance and Brewster angle microscopy techniques have been used to analyze the structural and energetic characteristics (structure, topography, thickness, miscibility and interactions) of these mixtures. HSA/DPPC mixed monolayers exhibit two phase transitions evidenced by two discontinuities in the corresponding π-A isotherms and by two minimum values in the compressional modulus (C(s)(-1))-surface pressure (π) curves. The plot of the molecular areas occupied by the mixed monolayers as function of the mass fraction of DPPC shows the absence of deviations from linearity, a typical behavior for ideal or inmiscible system. This result was confirmed from the values calculated for the free energy of excess (ΔG(exc)), which are practically zero whatever the composition of the mixtures and the surface pressures at which ΔG(exc) values were calculated. In addition, relative thickness values of HSA/DPPC mixed monolayers showed the existence of an exclusion surface pressure (π(exc)), below which the monolayer is composed of a mixture of both components, while above π(exc) the HSA molecules are squeezed out the interface, but not totally. In fact, although in this region DPPC domains predominate at the interface, the existence of protein molecules in a packing "loops" configuration can be observed in BAM images. Moreover, relative thickness measurements confirm this hypothesis.

  20. It's Alive!: Students Observe Air-Water Interface Samples Rich with Organisms

    ERIC Educational Resources Information Center

    Avant, Thomas

    2002-01-01

    This article describes an experiment, designed by Cindy Henk, manager of the Socolofsky Microscopy Center at Louisiana State University (LSU), that involved collecting and viewing microorganisms in the air-water interface. The experiment was participated by Leesville High School microbiology students. The students found that the air-water…

  1. Hydrodynamics of a self-propelled camphor boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Akella, Sathish; Singh, Dhiraj; Singh, Ravi; Bandi, Mahesh

    2015-11-01

    A camphor tablet, when placed at the air-water interface undergoes sublimation and camphor vapour spreads radially outwards across the surface due to Marangoni forces. This steady camphor influx from tablet onto the air-water interface is balanced by the camphor outflux due to evaporation. When spontaneous fluctuations in evaporation break the axial symmetry of Marangoni force acting radially outwards, the camphor tablet is propelled like a boat along the water surface. We report experiments on the hydrodynamics of a self-propelled camphor boat at air-water interfaces. We observe three different modes of motion, namely continuous, harmonic and periodic, due to the volatile nature of camphor. We explain these modes in terms of ratio of two time-scales: the time-scale over which viscous forces are dominant over the Marangoni forces (τη) and the time-scale over which Marangoni forces are dominant over the viscous forces (τσ). The continuous, harmonic and periodic motions are observed when τη /τσ ~ 1 , τη /τσ >= 1 and τη /τσ >> 1 respectively. Experimentally, the ratio of the time scales is varied by changing the interfacial tension of the air-water interface using Sodium Dodecyl Sulfate. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  2. Denaturation resistance of beta-lactoglobulin in monomolecular films at the air-water interface.

    PubMed

    Lin, Jhih-Min; White, John W

    2009-10-29

    Using X-ray reflectometry we report strong differences in the denaturation response of beta-lactoglobulin adsorbed as a monomolecular film at the air-water interface from that observed in mixed denaturant/beta-lactoglobulin bulk solutions. Using the "flow trough" technique an isolated monomolecular film of the protein showed little change in structure when subjected to a 4.0 M guanidinium hydrochloride substrate. Unlike the bulk solution where a new protein layer structure appears, small changes in the protein packing and the roughness of the film are the only evidence of change. These parameters have been studied as a function of denaturant concentration and film quality. The strength of the response depends on the degree of perfection of the originally formed film; quickly formed films are more easily denatured. As the response is so subtle, possible interfering effects such as denaturant release of protein adsorbed on the trough have been quantified.

  3. Conformational changes of a calix[8]arene derivative at the air-water interface.

    PubMed

    de Miguel, Gustavo; Pedrosa, José M; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2005-03-10

    The particular behavior of a p-tert-butyl calix[8]arene derivative (C8A) has been studied at the air-water interface using surface pressure-area isotherms, surface potential-area isotherms, film relaxation measurements, Brewster angle microscopy (BAM), and infrared spectroscopy for Langmuir-Blodgett films. Thus, it is observed that the properties of the film, for example, isotherms, domain formation, and FTIR spectra, recorded during the first compression cycle differ appreciably from those during the second compression and following cycles. The results obtained are interpreted on the basis of the conformational changes of the C8A molecules by surface pressure, allowing us to inquire into the inter- and intramolecular interactions (hydrogen bonds) of those molecules. Thus, the compression induces changes in the kind of hydrogen bonds from intra- and intermolecular with other C8A molecules to hydrogen bonds with water molecules.

  4. Charge dependent condensation of macro-ions at air-water interfaces

    NASA Astrophysics Data System (ADS)

    Bera, Mrinal; Antonio, Mark

    2015-03-01

    Ordering of ions at and near air-water interfaces is a century old problem for researchers and has implications on a host of physical, chemical and biological processes. The dynamic nature of water surface and the surface fluctuations created by thermally excited capillary waves have always limited measurement of near surface ionic-distributions. We demonstrate that this limitation can be overcome by using macro-ions of sizes larger than the capillary wave roughness ~3Å. Our attempts to measure distributions of inorganic macro-ions in the form of Keggin heteropolyanions (HPAs) of sizes ~10Å have unraveled novel charge-dependent condensation of macro-ions beneath air-water interfaces. Our results demonstrate that HPAs with -3 charges condense readily beneath air-water interfaces. This is in contrast to the absence of surface preference for HPAs with -4 charges. The similarity of HPA-HPA separations near air-water interfaces and in bulk crystal structures suggests the presence of the planar Zundel ions (H5O2+), which interact with HPAs and the water surface to facilitate the charge dependent condensation beneath the air-water interfaces.This work and the use of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility at Argonne National Laboratory, is based upon work supported by the U.S. DOE, Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences, under contract No DE-AC02-06CH11357.

  5. Amyloid fibril formation at a uniformly sheared air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Hirsa, Amir

    2013-11-01

    Amyloid fibril formation is a process by which protein molecules in solution form nuclei and aggregate into fibrils. Amyloid fibrils have long been associated with several common diseases such as Parkinson's disease and Alzheimer's. More recently, fibril protein deposition has been implicated in uncommon disorders leading to the failure of various organs including the kidneys, heart, and liver. Fibrillization can also play a detrimental role in biotherapeutic production. Results from previous studies show that a hydrophobic interface, such air/water, can accelerate fibrillization. Studies also show that agitation accelerates fibrillization. When attempting to elucidate fundamental mechanisms of fibrillization and distinguish the effects of interfaces and flow, it can be helpful to experiment with uniformly sheared interfaces. A new Taylor-Couette device is introduced for in situ, real-time high resolution microscopy. With a sub-millimeter annular gap, surface tension acts as the channel floor, permitting a stable meniscus to be placed arbitrarily close to a microscope to study amyloid fibril formation over long periods.

  6. Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface.

    PubMed

    Engin, Ozge; Sayar, Mehmet

    2012-02-23

    Peptide oligomers play an essential role as model compounds for identifying key motifs in protein structure formation and protein aggregation. Here, we present our results, based on extensive molecular dynamics simulations, on adsorption, folding, and packing within a surface monolayer of an amphiphilic peptide at the air/water interface. Experimental results suggest that these molecules spontaneously form ordered monolayers at the interface, adopting a β-hairpin-like structure within the surface layer. Our results reveal that the β-hairpin structure can be observed both in bulk and at the air/water interface. However, the presence of an interface leads to ideal partitioning of the hydrophobic and hydrophilic residues, and therefore reduces the conformational space for the molecule and increases the stability of the hairpin structure. We obtained the adsorption free energy of a single β-hairpin at the air/water interface, and analyzed the enthalpic and entropic contributions. The adsorption process is favored by two main factors: (1) Free-energy reduction due to desolvation of the hydrophobic side chains of the peptide and release of the water molecules which form a cage around these hydrophobic groups in bulk water. (2) Reduction of the total air/water contact area at the interface upon adsorption of the peptide amphiphile. By performing mutations on the original molecule, we demonstrated the relative role of key design features of the peptide. Finally, by analyzing the potential of mean force among two peptides at the interface, we investigated possible packing mechanisms for these molecules within the surface monolayer.

  7. Simulated Solvation of Organic Ions II: Study of Linear Alkylated Carboxylate Ions in Water Nanodrops and in Liquid Water. Propensity for Air/Water Interface and Convergence to Bulk Solvation Properties.

    PubMed

    Houriez, Céline; Meot-Ner Mautner, Michael; Masella, Michel

    2015-09-10

    We investigated the solvation of carboxylate ions from formate to hexanoate, in droplets of 50 to 1000 water molecules and neat water, by computations using standard molecular dynamics and sophisticated polarizable models. The carboxylate ions from methanoate to hexanoate show strong propensity for the air/water interface in small droplets. Only the ions larger than propanoate retain propensity for the interface in larger droplets, where their enthalpic stabilization by ion/water dispersion is reduced there by 3 kcal mol(-1) per CH2 group. This is compensated by entropy effects over +3.3 cal mol(-1) K(-1) per CH2 group. On the surface, the anionic headgroups are strongly oriented toward the aqueous core, while the hydrophobic alkyl chains are repelled into air and lose their structure-making effects. These results reproduce the structure-making effects of alkyl groups in solution, and suggest that the hydrocarbon chains of ionic headgroups and alkyl substituents solvate independently. Extrapolation to bulk solution using standard extrapolation schemes yields absolute carboxylate solvation energies. The results for formate and acetate yield a proton solvation enthalpy of about 270 kcal mol(-1), close to the experiment-based value. The largest carboxylate ions yield a value smaller by about 10 kcal mol(-1), which requires studies in much larger droplets.

  8. Interaction of a cationic gemini surfactant with DNA and with sodium poly(styrene sulphonate) at the air/water interface: a neutron reflectometry study.

    PubMed

    Vongsetskul, T; Taylor, D J F; Zhang, J; Li, P X; Thomas, R K; Penfold, J

    2009-04-07

    The interactions between a dicationic gemini surfactant with a six-hydrocarbon spacer (1,2-bis(dodecyldimethyl-ammonio)hexane dibromide, C12C6C12Br2) and anionic polyelectrolyte DNA or sodium (polystyrene sulfonate) (NaPSS) at the air/solution interface have been studied and compared using neutron reflectometry together with surface tension. In the presence of the dichained cationic gemini surfactant, DNA and NaPSS display very different adsorption behaviors. The DNA/gemini mixtures show adsorption behavior very similar to that of DNA/C12TAB mixtures, with enhanced surfactant adsorption at low concentrations and thick structured layers at higher concentrations. However, for the NaPSS/gemini mixtures the amount of gemini at the surface is reduced relative to that in the absence of NaPSS at concentrations below the cmc. These differences in adsorption behavior are attributed to differences in the molecular structure and flexibility of the two polyanions. NaPSS is relatively hydrophobic and flexible enough to form bulk-phase polymer-micelle complexes with the gemini surfactant at low surfactant concentrations, whereas the adsorption of surface complexes is much less favorable because the dications on the gemini would require adjacent bulky pendant charges on the NaPSS to be oriented toward the surface. This would force the NaPSS to bend significantly whereas it is more favorable for the NaPSS to adopt an extended conformation at the surface. Thus, surfactant is actually removed from the surface to form bulk-phase complexes. In contrast with NaPSS, DNA has a far more rigid structure, and the charges on the backbone are at fixed intervals, factors that make the formation of surface DNA-monomer complexes much more favorable than bulk-phase DNA-micelle complexes. Finally, a short-chain sample of NaPSS consisting of only five to six segments adsorbs very strongly at the surface with the gemini to form more extensive layered structures than have previously been observed

  9. Single Molecule Lateral Mobility and Membrane Organization in DMPC/Cholesterol Mixtures at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Shaikh, Saame; Stillwell, William; Naumann, Christoph

    2002-03-01

    To better understand the lipid heterogeneity of biological membranes, we have studied the lateral mobility and membrane organization of DMPC and cholesterol (Chol) mixtures at the air-water interface using single molecule fluorescence imaging and epifluorescence microscopy. The single molecule imaging technique was used to track the lateral diffusion of single molecules of TRITC-DPPE or cholesteryl Bodipy. In the absence of Chol, mean square displacement histograms obtained from single molecule tracking of TRITC-DPPE show unobstructed diffusion. Including Chol at low levels of Chol (<10 moldiffusion at intermediate levels ( 30 molof Chol (>40 molmacroscopic phase separations. Data obtained from tracking experiments of cholesteryl-Bodipy also show complementary changes in diffusion. Our results indicate that our techniques provide insight into the micro and macro organization of lipid domains at the air-water interface.

  10. Effect of Particulate Contaminants on the Development of Biofilms at Air/Water Interfaces.

    PubMed

    Zhang, Zhenhuan; Christopher, Gordon

    2016-03-22

    The development of biofilms at air/water or oil/water interfaces has important ramifications on several applications, but it has received less attention than biofilm formation on solid surfaces. A key difference between the growth of biofilms on solid surfaces versus liquid interfaces is the range of complicated boundary conditions the liquid interface can create that may affect bacteria, as they adsorb onto and grow on the interface. This situation is exacerbated by the existence of complex interfaces in which interfacially adsorbed components can even more greatly affect interfacial boundary conditions. In this work, we present evidence as to how particle-laden interfaces impact biofilm growth at an air/water interface. We find that particles can enhance the rate of growth and final strength of biofilms at liquid interfaces by providing sites of increased adhesive strength for bacteria. The increased adhesion stems from creating localized areas of hydrophobicity that protrude in the water phase and provide sites where bacteria preferentially adhere. This mechanism is found to be primarily controlled by particle composition, with particle size providing a secondary effect. This increased adhesion through interfacial conditions creates biofilms with properties similar to those observed when adhesion is increased through biological means. Because of the generally understood ubiquity of increased bacteria attachment to hydrophobic surfaces, this result has general applicability to pellicle formation for many pellicle-forming bacteria.

  11. Diffusive exchange of PAHs across the air-water interface of the Kaohsiung Harbor lagoon, Taiwan.

    PubMed

    Fang, Meng-Der; Lee, Chon-Lin; Jiang, Jheng-Jie; Ko, Fung-Chi; Baker, Joel E

    2012-11-15

    Instantaneous air-water polycyclic aromatic hydrocarbons (PAHs) exchange fluxes were calculated in 22 pairs of ambient air and water samples from Kaohsiung Harbor lagoon, from December 2003 to January 2005. The highest net volatilization (3135 ng m(-2) day(-1)) and absorptive (-1150 ng m(-2) day(-1)) fluxes in the present study were obtained for the three-ring PAH phenanthrene on 7 April and 27 January 2004, respectively. All PAH diffusive fluxes for three-ring PAHs except phenanthrene were mainly volatilization exchange across the air-water interface. Phenanthrene and the four-ring PAHs were absorbed primarily from the atmosphere and deposited to the surface water, although some minor volatilization fluxes were also observed. Differences in flux magnitude and direction between the dry and wet seasons were also evident for PAHs. Strong absorptive/weaker volatilization PAH fluxes occurred in the dry season, but the opposite was found in the wet season. The mean daily PAH diffusive fluxes were an in flux of -635 ng m(-2) day(-1) in the dry season and an efflux of 686 ng m(-2) day(-1) in the wet season. The integrated absorbed and emitted fluxes of PAHs for harbor lagoon surface waters in the dry and wet seasons were 3.1 kg and 3.4 kg, respectively. Different from water bodies located in temperate zone, phenanthrene diffusive fluxes in Kaohsiung Harbor lagoon was favored in volatilization from surface waters during the wet season (April to September) because of scavenging by precipitation and dilution by prevailing southwesterly winds. In addition, this study used both of salinity and temperature to improve estimation of Henry's law constants (H) of PAHs in a tropical coastal area and show that correction for salinity produced 13-15% of differences in H values.

  12. Evolution of Nanoflowers and Nanospheres of Zinc Bisporphyrinate Tweezers at the Air/water Interface.

    PubMed

    Xie, Fan; Zhuo, Congcong; Hu, Chuanjiang; Liu, Ming Hua

    2017-03-22

    While the sophisticated Langmuir and Langmuir-Blodgett technique facilitates the fabrication of uniform ultrathin monolayer and films, it is also revealed as a powerful tool for the bottom-up constructions of the nanostructures through the air/water interface. In this paper, unique nanoflowers or nanospheres were constructed based on the synthesized m-phthalic diamide-linked Zinc bis-porphyrinate tweezers using the Langmuir and Langmuir-Blodgett (LB) technique. It was found that both the two tweezer type Zinc bisporphyrinates could form stable two-dimensional spreading films at the air/water interface, which could be subsequently transferred onto solid substrates by the vertical lifting method. The atomic force microscope (AFM) revealed that at the initial spreading stage the compound formed flat disk-like domains and then hierarchically evolved into nanoflowers or nanospheres upon compressing the floating film. Such nanostructures have not been reported before and cannot be fabricated using the other self-assembly methods.

  13. Neutron and X-Ray Reflectivity Studies of the Adsorption of Aerosol-OT at the Air-Water Interface: The Structure of the Calcium Salt

    PubMed

    Li; Lee; Thomas; Penfold

    1997-03-15

    We have used neutron and X-ray reflection to determine the structure of a layer of calcium bis-(2-ethyl 1-hexyl) sulphosuccinate (Aerosol-OT or AOT) adsorbed at the air/solution interface. The widths of the distributions of the chains and head groups of the molecule, and their positions in relation to the underlying water, have been measured at four concentrations varying from the solubility limit (CMC) at 4 x 10(-4) M to 1 x 10(-6) M. Over this concentration range the coverage changes from 68 ± 3 to 142 ± 8 Å2 per AOT unit. The structure of the layer both is quite different from that of NaAOT and varies quite differently with surface concentration. The Ca(AOT)2 layer is slightly (1 Å) further out from the water, but the chain region is thinner for the calcium surfactant. This is reflected most in the greatly reduced chain to head separation, which drops from about 6 Å in NaAOT to about 4 Å in Ca(AOT)2.

  14. Foam and cluster structure formation by latex particles at the air/water interface

    NASA Astrophysics Data System (ADS)

    Ruiz-Garcia, Jaime; Gámez-Corrales, Rogelio; Ivlev, Boris I.

    1997-02-01

    We report the formation of two-dimensional foam and cluster structures by spherical polystyrene particles trapped at the air/water interface. The colloidal foam is a transient structure that evolves to the formation of clusters, but clusters can also be formed after deposition of the sample. We also observed the formation of small aggregates, whose formation along with the cluster stabilization can be explained in terms of a balance between electrostatic repulsive and van der Waals attractive interactions.

  15. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface.

    PubMed

    Wang, Zhenhui; Liu, Yanming; Tao, Peng; Shen, Qingchen; Yi, Nan; Zhang, Fangyu; Liu, Quanlong; Song, Chengyi; Zhang, Di; Shang, Wen; Deng, Tao

    2014-08-27

    Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer.

  16. Comparison of positional surfactant isomers for displacement of rubisco protein from the air-water interface.

    PubMed

    He, Lizhong; Onaizi, Sagheer A; Dimitrijev-Dwyer, Mirjana; Malcolm, Andrew S; Shen, Hsin-Hui; Dong, Chuchuan; Holt, Stephen A; Thomas, Robert K; Middelberg, Anton P J

    2011-08-15

    Protein-surfactant interaction, which is a function of the protein and surfactant characteristics, is a common phenomenon in a wide range of industrial applications. In this work, we used rubisco, the most abundant protein in nature, as a model protein and sodium dodecylbenzenesulfonate (SDOBS), one of the most widely used commercial surfactants, with two positional isomers (SDOBS-2 and SDOBS-6), as a model surfactant. We first examined the surface tension and the mechanical properties of interfacial mixed rubisco-SDOBS films adsorbed at the air-water interface. The concentration of rubisco in solution was fixed at 0.1 mg mL(-1) while the SDOBS concentration varied from 0 to 150 μM. Both the surface tension and the mechanical strength of the interfacial film decreased with increasing SDOBS concentration. Overall, the surface tension of a rubisco-SDOBS-6 mixture is lower than that of rubisco-SDOBS-2, while the mechanical strength of both systems is similar. Neutron reflection data suggest that rubisco protein is likely denatured at the interface. The populations of rubisco and SDOBS of the mixed systems at the interface were determined by combining non-deuterated and deuterated SDOBS to provide contrast variation. At a low surfactant concentration, SDOBS-6 has a stronger ability to displace rubisco from the air-water interface than SDOBS-2. However, when surfactant concentration reaches 50 μM, SDOBS-2 has a higher population than SDOBS-6, with more rubisco displaced from the interface. The results presented in this work suggest that the extent of protein displacement from the air-water interface, and hence the nature of the protein-surfactant interactions at the interface, are strongly affected by the position of surfactant isomerisation, which might allow the design of formulations for efficient removal of protein stains.

  17. Anisotropic orientational motion of molecular adsorbates at the air-water interface

    SciTech Connect

    Zimdars, D.; Dadap, J.I.; Eisenthal, K.B.; Heinz, T.F.

    1999-04-29

    The ultrafast orientational motions of coumarin 314 (C314) adsorbed at the air/water interface were investigated by time-resolved surface second harmonic generation (TRSHG). The theory and method of using TRSHG to detect both out-of-plane and in-plane orientational motions are discussed. The interfacial solute motions were found to be anisotropic, with differing out-of-plane and in-plane reorientation time constants. This report presents the first direct observation of in-plane orientational motion of a molecule (C314) at the air/water interface using TRSHG. The in-plane reorientation time constant is 600 {+-} 40 ps. The out-of-plane reorientation time constant is 350 {+-} 20 ps. The out-of-plane orientational motion of C314 is similar to the previous results on rhodamine 6G at the air/water interface which indicated increased interfacial friction compared with bulk aqueous solution. The surface reorientation times are 2--3 times slower than the bulk isotropic orientational diffusion time.

  18. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  19. Morphological variation of stimuli-responsive polypeptide at air-water interface

    NASA Astrophysics Data System (ADS)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho

    2016-12-01

    The morphological variation of stimuli-responsive polypeptide molecules at the air-water interface as a function of temperature and compression was described. The surface pressure-area (π-A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir-Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air-water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π-A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air-water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  20. Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer.

    PubMed

    Keller, R; Kwak, M; de Vries, J W; Sawaryn, C; Wang, J; Anaya, M; Müllen, K; Butt, H-J; Herrmann, A; Berger, R

    2013-11-01

    The self-assembly of amphiphilic hybrid materials containing an oligonucleotide sequence at the air/water interface was investigated by means of pressure-molecular area (Π-A) isotherms. In addition, films were transferred onto solid substrates and imaged using scanning force microscopy. We used oligonucleotide molecules with lipid tails, which consisted of a single stranded oligonucleotide 11 mer containing two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases (dU11) at the 5'-end of the oligonucleotide sequence. The air/water interface was used as confinement for the self-assembling process of dU11. Scanning force microscopy of films transferred via Langmuir-Blodgett technique revealed mono-, bi- (Π ≥ 2 mN/m) and multilayer formation (Π ≥ 30 mN/m). The first layer was 1.6 ± 0.1 nm thick. It was oriented with the hydrophilic oligonucleotide moiety facing the hydrophilic substrate while the hydrophobic alkyl chains faced air. In the second layer the oligonucleotide moiety was found to face the air. The second layer was found to cover up to 95% of the sample area. Our measurements indicated that the rearrangement of the molecules into bi- and multiple bilayers happened already at the air/water interface. Similar results were obtained with a second type of oligonucleotide amphiphile, an oligonucleotide block copolymer, which was composed of an oligonucleotide 11 mer covalently attached at the terminus to polypropyleneoxide (PPO).

  1. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow.

    PubMed

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  2. Hydrodynamics of a fixed camphor boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Singh, Dhiraj; Akella, Sathish; Singh, Ravi; Mandre, Shreyas; Bandi, Mahesh

    2015-11-01

    A camphor tablet, when introduced at the air-water interface undergoes sublimation and the camphor vapour spreads radially outwards across the surface. This radial spreading of camphor is due to Marangoni forces setup by the camphor concentration gradient. We report experiments on the hydrodynamics of this process for a camphor tablet held fixed at the air-water interface. During the initial transient, the time-dependent spread radius R (t) of camphor scales algebraically with time t (R (t) ~t 1 / 2) in agreement with empirical scalings reported for spreading of volatile oils on water surface. But unlike surfactants, the camphor stops spreading when the influx of camphor from the tablet onto the air-water interface is balanced by the outflux of camphor due to evaporation, and a steady-state condition is reached. The spreading camphor however, shears the underlying fluid and sets up bulk convective flow. We explain the coupled steady-state dynamics between the interfacial camphor spreading and bulk convective flow with a boundary layer approximation, supported by experimental evidence. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  3. Interactions between single-chained ether phospholipids and sphingomyelin in mixed monolayers at the air/water interface-Grazing incidence X-ray diffraction and Brewster angle microscopy studies.

    PubMed

    Flasiński, Michał; Hąc-Wydro, Katarzyna; Wydro, Paweł; Broniatowski, Marcin; Dynarowicz-Łątka, Patrycja

    2013-11-01

    Single-chained ether phospholipids comprise a class of both natural (PAF, lyso-PAF) and synthetic (edelfosine, ED) compounds possessing confirmed extensive biological activities. Among them ED is known to exhibit antineoplastic properties, while PAF and its lyso-precursor are lipids implicated e.g. in the functioning of organism immune system. In our study the interactions of ED, PAF and lyso-PAF with sphingomyelin (SM) being one of the main lipid found in a high concentration in membrane microdomains, like lipid rafts, were investigated in mixed monolayers at the air/water interface. The traditional Langmuir methodology was complemented with modern physicochemical techniques: Grazing incidence X-ray diffraction and Brewster angle microscopy. The investigated compounds, i.e.: platelet activating factor (PAF), (lyso-PAF) and edelfosine were selected because of their highly different physiological properties despite very similar chemical structure and evidenced membrane activity. The obtained results demonstrate that all the investigated three single-chained phospholipids cause strong modification of the model membrane properties in a concentration dependent manner. It has been proved that there are significant differences regarding the influence of the single-chained lipids on model SM membrane--in the region of low concentration, edelfosine was found to be the most effective among all the investigated compounds. The collected data shed new light onto the membrane behavior of the investigated herein biochemically active compounds, which can be of help in understanding their different biological activity and designing of new, more biocompatible drugs.

  4. Interfacial characterization of Pluronic PE9400 at biocompatible (air-water and limonene-water) interfaces.

    PubMed

    Pérez-Mosqueda, Luis M; Maldonado-Valderrama, Julia; Ramírez, Pablo; Cabrerizo-Vílchez, Miguel A; Muñoz, José

    2013-11-01

    In this work, we provide an accurate characterization of non-ionic triblock copolymer Pluronic PE9400 at the air-water and limonene-water interfaces, comprising a systematic analysis of surface tension isotherms, dynamic curves, dilatational rheology and desorption profiles. The surface pressure isotherms display two different slopes of the Π-c plot suggesting the existence of two adsorption regimes for PE9400 at both interfaces. Application of a theoretical model, which assumes the coexistence of different adsorbed states characterized by their molar areas, allows quantification of the conformational changes occurring at the adsorbed layer, indentifying differences between the conformations adopted at the air-water and the limonene-water interface. The presence of two maxima in the dilatational modulus vs. interfacial pressure importantly corroborates this conformational change from a 2D flat conformation to 3D brush one. Moreover, the dilatational response provides mechanical diferences between the interfacial layers formed at the two interfaces analyzed. Dynamic surface pressure data were transformed into a dimensionless form and fitted to another model which considers the influence of the reorganization process on the adsorption dynamics. Finally, the desorption profiles reveal that Pluronic PE9400 is irreversibly adsorbed at both interfaces regardless of the interfacial conformation and nature of the interface. The systematic characterization presented in this work provides important new findings on the interfacial properties of pluronics which can be applied in the rational development of new products, such as biocompatible limonene-based emulsions and/or microemulsions.

  5. Amphiphilic siloxane phosphonate macromolecule monolayers at the air/water interface: effects of structure and temperature.

    PubMed

    Cabasso, Israel; Stesikova, Elvira

    2008-11-20

    A comprehensive study is reported of Langmuir-Blodgett (LB) films (spread at the air/water interface using the Langmuir balance technique) composed of surface active, nonionic, and OH-free amphiphilic siloxane phosphonate ester macromolecules. Analysis is made on three molecular structures in the form of linear polymer poly(diethylphosphono-benzyl-alphabeta-ethyl methylsiloxane) (PPEMS), cyclic oligomer methylphosphonobenzyl-alphabeta-ethyl cyclosiloxane (MPECS), and copolymer poly(PEMS-co-DMS). The surface pressure-surface area (pi -A) isotherms of homopolymer at 3-40 degrees C show a clear temperature-induced phase transition (plateaus at pit approximately 17-19 mN/m) below 10 degrees C. The magnitude of the transition substantially increases upon lowering the temperature (partial differential DeltaAt/ partial differential T approximately -0.1 nm2 unit(-1) deg(-1) and partial differential pi t / partial differential T approximately -0.25 mN m(-1) deg(-1)). The positive entropy and enthalpy gain infers that strong coupling with the subphase and excess hydration attributed to hydrogen bonding between the P=O bond and the subphase prevails at low temperatures. The cyclic oligomer MPECS forms a condensed monolayer at the air/water interface that does not display a similar transition in the experimental temperature range. The temperature sensitivity of MPECS film is observed only in the collapsed region. The nature of the interaction with the subphase is similar for MPECS and PPEMS, indicating that the size and thermal mobility are the controlling factors in these processes. The elasticity plot reveals two distinct states (above and below transition). This observation is supported by BAM images that show irregular spiral structures below 10 degrees C. The transition occurring in the copolymer at 20 degrees C is due to relaxation of the PDMS component. The two maxima shown in the elasticity plot indicate additive fractions of PPEMS and PDMS. The surface areas of these

  6. Shear turbulence, Langmuir circulation and scalar transfer at an air-water interface

    NASA Astrophysics Data System (ADS)

    Hafsi, Amine; Tejada-Martinez, Andres; Veron, Fabrice

    2016-11-01

    DNS of an initially quiescent coupled air-water interface driven by an air-flow with free stream speed of 5 m/s generates gravity-capillary waves and small-scale (centimeter-scale) Langmuir circulation (LC) beneath the interface. In addition to LC, the waterside turbulence is characterized by shear turbulence with structures similar to classical "wall streaks" in wall-bounded flow. These streaks, denoted here as "shear streaks", consist of downwind-elongated vortices alternating in sign in the crosswind direction. The presence of interfacial waves causes interaction between these vortices giving rise to bigger vortices, namely LC. LES with momentum equation augmented with the Craik-Leibovich (C-L) vortex force is used to understand the roles of the shear streaks (i.e. the shear turbulence) and the LC in determining scalar flux from the airside to the waterside and vertical scalar transport beneath. The C-L force consists of the cross product between the Stokes drift velocity (induced by the interface waves) and the flow vorticity. It is observed that Stokes drift shear intensifies the shear streaks (with respect to flow without wave effects) leading to enhanced scalar flux at the air-water interface. LC leads to increased vertical scalar transport at depths below the interface.

  7. Fluorescence light microscopy of pulmonary surfactant at the air-water interface of an air bubble of adjustable size.

    PubMed

    Knebel, D; Sieber, M; Reichelt, R; Galla, H-J; Amrein, M

    2002-07-01

    The structural dynamics of pulmonary surfactant was studied by epifluorescence light microscopy at the air-water interface of a bubble as a model close to nature for an alveolus. Small unilamellar vesicles of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, a small amount of a fluorescent dipalmitoylphosphatidylcholine-analog, and surfactant-associated protein C were injected into the buffer solution. They aggregated to large clusters in the presence of Ca(2+) and adsorbed from these units to the interface. This gave rise to an interfacial film that eventually became fully condensed with dark, polygonal domains in a fluorescent matrix. When now the bubble size was increased or decreased, respectively, the film expanded or contracted. Upon expansion of the bubble, the dark areas became larger to the debit of the bright matrix and reversed upon contraction. We were able to observe single domains during the whole process. The film remained condensed, even when the interface was increased to twice its original size. From comparison with scanning force microscopy directly at the air-water interface, the fluorescent areas proved to be lipid bilayers associated with the (dark) monolayer. In the lung, such multilayer phase acts as a reservoir that guarantees a full molecular coverage of the alveolar interface during the breathing cycle and provides mechanical stability to the film.

  8. Dipole Moment of a Charged Particle Trapped at the Air-Water Interface.

    PubMed

    Bossa, Guilherme Volpe; Bohinc, Klemen; Brown, Matthew A; May, Sylvio

    2016-07-07

    The interaction between two charged particles (such as nanoparticles or colloids) trapped at the air-water interface becomes dipolar at large separations. The corresponding dipole moment can be modeled by considering a single point charge located exactly at the interface, but this model fails to correctly predict the dipole moment's dependence on the salt concentration in the aqueous medium. We extend the single point charge model to two point charges that are separated by a fixed distance and are located at the air-water interface, with one charge being immersed in air and the other in the solvent. The two point charges represent the surface charges at the air-exposed and water-exposed regions of an interface-trapped particle. The two point charges also account for the spatial extension of the particle. On the basis of the Debye-Hückel model, we derive mathematical expressions for the interaction between two pairs of charges and discuss the salt concentration dependence of the dipolar moment at large separations. Our results reveal a residual dipole moment in the limit of large salt content that originates from the charge attached to the air-exposed region of the particle. We discuss nonlinear screening effects and compare the predicted dipolar moments with recent experimental results.

  9. Monolayer film behavior of lipopolysaccharide from Pseudomonas aeruginosa at the air-water interface.

    PubMed

    Abraham, Thomas; Schooling, Sarah R; Beveridge, Terry J; Katsaras, John

    2008-10-01

    Lipopolysaccharide (LPS) is an essential biomacromolecule making up approximately 50% of the outer membrane of gram-negative bacteria. LPS chemistry facilitates cellular barrier and permeability functions and mediates interactions between the cell and its environment. To better understand the local interactions within LPS membranes, the monolayer film behavior of LPS extracted from Pseudomonas aeruginosa, an opportunistic pathogen of medical importance, was investigated by Langmuir film balance. LPS formed stable monolayers at the air-water interface and the measured lateral stresses and modulus (rigidity) of the LPS film in the compressed monolayer region were found to be appreciable. Scaling theories for two-dimensional (2D) polymer chain conformations were used to describe the pi-A profile, in particular, the high lateral stress region suggested that the polysaccharide segments reside at the 2D air-water interface. Although the addition of monovalent and divalent salts caused LPS molecules to adopt a compact conformation at the air-water interface, they did not appear to have any influence on the modulus (rigidity) of the LPS monolayer film under biologically relevant stressed conditions. With increasing divalent salt (CaCl2) content in the subphase, however, there is a progressive reduction of the LPS monolayer's collapse pressure, signifying that, at high concentrations, divalent salts weaken the ability of the membrane to withstand elevated stress. Finally, based on the measured viscoelastic response of the LPS films, we hypothesize that this property of LPS-rich outer membranes of bacteria permits the deformation of the membrane and may consequently protect bacteria from catastrophic structural failure when under mechanical-stress.

  10. An investigation of channel flow with a smooth air-water interface

    NASA Astrophysics Data System (ADS)

    Madad, Reza; Elsnab, John; Chin, Cheng; Klewicki, Joseph; Marusic, Ivan

    2015-06-01

    Experiments and numerical simulation are used to investigate fully developed laminar and turbulent channel flow with an air-water interface as the lower boundary condition. Laser Doppler velocimetry measurements of streamwise and wall-normal velocity components are made over a range of Reynolds number based upon channel height and bulk velocity from 1100 to 4300, which encompasses the laminar, transitional and low Reynolds numbers turbulent regimes. The results show that the airflow statistics near the stationary wall are not significantly altered by the air-water moving interface and reflect those found in channel flows. The mean statistics on the water interface side largely exhibit results similar to simulated Poiseuille-Couette flow (PCF) with a solid moving wall. For second-order statistics, however, the simulation and experimental results show some discrepancies near the moving water surface, suggesting that a full two-phase simulation is required. A momentum and energy transport tubes analysis is investigated for laminar and turbulent PCFs. This analysis builds upon the classical notion of a streamtube and indicates that part of the energy from the pressure gradient is transported towards the stationary wall and is dissipated as heat inside the energy tubes, while the remainder is transmitted to the moving wall. For the experiments, the airflow energy is transmitted towards the water to overcome the drag force and drive the water forward; therefore, the amount of energy transferred to the water is higher than the energy transferred to a solid moving wall.

  11. Formation of H-type liquid crystal dimer at air-water interface

    SciTech Connect

    Karthik, C. Gupta, Adbhut Joshi, Aditya Manjuladevi, V. Gupta, Raj Kumar; Varia, Mahesh C.; Kumar, Sandeep

    2014-04-24

    We have formed the Langmuir monolayer of H-shaped Azo linked liquid crystal dimer molecule at the air-water interface. Isocycles of the molecule showed hysteresis suggesting the ir-reversible nature of the monolayer formed. The thin film deposited on the silicon wafer was characterized using Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The images showed uniform domains of the dimer molecule. We propose that these molecules tend to take book shelf configuration in the liquid phase.

  12. Rediscovering the Schulze-Hardy Rule in Competitive Adsorption to an Air-Water Interface

    PubMed Central

    Stenger, Patrick C.; Isbell, Stephen G.; Hillaire, Debra St.; Zasadzinski, Joseph A.

    2009-01-01

    The ratio of divalent to monovalent ion concentration necessary to displace the surface-active protein, albumin, by lung surfactant monolayers and multilayers at an air-water interface scales as 2−6, the same concentration dependence as the critical flocculation concentration (CFC) for colloids with a high surface potential. Confirming this analogy between competitive adsorption and colloid stability, polymer-induced depletion attraction and electrostatic potentials are additive in their effects; the range of the depletion attraction, twice the polymer radius of gyration, must be greater than the Debye length to have an effect on adsorption. PMID:19705897

  13. Towards Organized Hybrid Nanomaterials at the Air/Water Interface Based on Liquid-Crystal/ZnO Nanocrystals.

    PubMed

    Paczesny, Jan; Wolska-Pietkiewicz, Małgorzata; Binkiewicz, Ilona; Wróbel, Zbigniew; Wadowska, Monika; Matuła, Kinga; Dzięcielewski, Igor; Pociecha, Damian; Smalc-Koziorowska, Julita; Lewiński, Janusz; Hołyst, Robert

    2015-11-16

    The ability to self-assemble nanosized ligand-stabilized metal oxide or semiconductor materials offers an intriguing route to engineer nanomaterials with new tailored properties from the disparate components. We describe a novel one-pot two-step organometallic approach to prepare ZnO nanocrystals (NCs) coated with deprotonated 4-(dodecyloxy)benzoic acid (i.e., an X-type liquid-crystalline ligand) as a model LC system (termed ZnO-LC1 NCs). Langmuir and Langmuir-Blodgett films of the resulting hybrids are investigated. The observed behavior of the ZnO NCs at the air/water interface is rationalized by invoking a ZnO-interdigitation process mediated by the anchored liquid-crystalline shell. The ordered superstructures form according to mechanism based on a ZnO-interdigitation process mediated by liquid crystals (termed ZIP-LC). The external and directed force applied upon compression at the air/water interface and the packing of the ligands that stabilize the ZnO cores drives the formation of nanorods of ordered internal structure. To study the process in detail, we follow a nontraditional protocol of thin-film investigation. We collect the films from the air/water interface in powder form (ZnO-LC1 LB), resuspend the powder in organic solvents and utilize otherwise unavailable experimental techniques. The structural and physical properties of the resulting superlattices were studied by using electron microscopy, atomic force microscopy, X-ray studies, dynamic light scattering, thermogravimetric analysis, UV/Vis absorption, and photoluminescence spectroscopy.

  14. Separating Octadecyltrimethoxysilane Hydrolysis and Condensation at the Air/Water Interface through Addition of Methyl Stearate

    PubMed Central

    Britt, David W.; Hlady, Vladimir

    2012-01-01

    The hydrolysis and condensation of octadecyltrimethoxysilane (OTMS) at the air/water interface were monitored through molecular area changes at a constant surface pressure of 10 mN/m. The onset of condensation was delayed through the addition of methyl stearate (SME) acting as an inert filler molecule. In the absence of SME, complete gelation of OTMS required 30 h, during which time OTMS condensation occurred concomitantly with hydrolysis. In the presence of SME, the OTMS monolayer gelation rate increased in proportion to the amount of SME present. A 1:6 OTMS:SME molar ratio resulted in monolayer gelation within 30 min, suggesting completion of monomer hydrolysis prior to condensation. These findings indicate that lability of OTMS to hydrolysis at the air/water interface is governed by steric and conformational constraints at the silicon atom site, with monomeric OTMS being much more reactive than oligomeric OTMS. Fluorescence microscope images demonstrated that the OTMS condensed domain size also decreased with increasing SME concentrations, further implicating SME’s role as an inert filler. PMID:25132807

  15. Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface

    PubMed Central

    Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.

    2009-01-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599

  16. Evaporative assembly of MEH-PPV rings using mixed solvents at the air/water interface.

    PubMed

    Chao, Kung-Po; Biswal, Sibani L

    2014-04-22

    Controlling the morphology of conjugated polymers has recently attracted considerable attention because of their applications in photovoltaic (PV) devices and organic light-emitting diodes (OLEDs). Here, we describe the self-assembly of a common conjugated polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), into ringlike structures via solvent evaporation on an air/water interface. The films are monitored using Brewster angle microscopy (BAM) and transferred onto a solid substrate by either the Langmuir-Blodgett (LB) or the Langmuir-Schaefer (LS) method and further characterized by atomic force microscopy (AFM). The morphology of the MEH-PPV thin film at the air/water interface can be controlled by the spreading solvent. By mixing solvents of varying spreading coefficients and evaporation rates, such as chloroform and chlorobenzene, MEH-PPV can be assembled into micrometer-sized ring structures. The optical properties of these MEH-PPV ring structures are also characterized. Lastly, MEH-PPV can be used as a soft template to organize microscale structures of nanoparticles.

  17. Structure of hydroxylated galactocerebrosides from myelin at the air-water interface.

    PubMed Central

    Graf, Karlheinz; Baltes, Hubert; Ahrens, Heiko; Helm, Christiane A; Husted, Cynthia A

    2002-01-01

    Hydroxy-galactocerebrosides (mixed chain length, constituent of myelin membranes) from bovine brain are investigated as monolayers at the air-water interface with isotherms, fluorescence microscopy, x-ray reflectivity and grazing incidence diffraction. With grazing incidence diffraction a monoclinic tilted chain lattice is found in the condensed phase. According to x-ray reflectivity, the longest chains protrude above the chain lattice and roughen the lipid/air interface. On compressing the chain lattice, the correlation length increases by approximately 65%; obviously, the sugar headgroups are flexible enough to allow for lattice deformation. With fluorescence experiments, small coexisting fluid and ordered domains are observed, and there is lipid dissolution into the subphase as well. The dissolved hydroxy-galactocerebroside molecules reenter on monolayer expansion. The electron density profiles derived from x-ray reflectometry (coherent superposition) show that the chain-ordering transition causes the molecules to grow into the subphase. PMID:11806931

  18. Crystalline self-assembly into monolayers of folded oligomers at the air-water interface

    PubMed

    Lederer; Godt; Howes; Kjaer; Als-Nielsen; Lahav; Wegner; Leiserowitz; Weissbuch

    2000-06-16

    Insertion of the 1,3-bis(ethynylene)benzene unit as a rigid spacer into a linear alkyl chain, thus separating the two resulting stems by 9 A. induces chain folding at the air-water interface. These folded molecules self-assemble into crystalline monolayers at this interface, with the plane of the folding unit almost perpendicular to the water surface, as determined by synchrotron grazing-incidence X-ray diffraction. Three distinct molecular shapes, of the types U, inverted U, and M, were obtained in the two-dimensional crystalline state, depending upon the number of spacer units, and the number and position of the hydrophilic groups in the molecule. The molecules form ribbons with a higher crystal coherence in the direction of stacking between the molecular ribbons, and a lower coherence along the ribbon direction. A similar molecule, but with a spacer unit that imposes a 5 A separation between alkyl chains, yields the conventional herringbone arrangement.

  19. Surface enhanced Raman scattering of a lipid Langmuir monolayer at the air-water interface.

    PubMed

    Mangeney, C; Dupres, V; Roche, Y; Felidj, N; Levi, G; Aubard, J; Bernard, S

    Surface enhanced Raman spectra were recorded from a phospholipid monolayer directly at the air-water interface. We used an organized monolayer of negatively charged tetramyristoyl cardiolipins as a template for the electrochemical generation of silver deposits. This two-dimensional electrodeposition of silver under potentiostatic control was the substrate for enhancement of Raman spectra. We report the optimized conditions for the Raman enhancement, the microscopic observations of the deposits, and their characterization by atomic force microscopy. Laser excitation at 514.5 nm leads to intense and reproducible surface enhanced Raman scattering spectra recorded in situ from one monolayer of cardiolipin, using 0.5 mol % of 10N nonyl acridine orange or 5 mol % of acridine in the film, and demonstrates the possibility of estimating the pH at the metal/phospholipidic film interface.

  20. Atmospheric photochemistry at a fatty acid-coated air-water interface

    NASA Astrophysics Data System (ADS)

    Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian

    2016-08-01

    Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.

  1. Mechanical Stability of Polystyrene and Janus Particle Monolayers at the Air/Water Interface.

    PubMed

    Lenis, Jessica; Razavi, Sepideh; Cao, Kathleen D; Lin, Binhua; Lee, Ka Yee C; Tu, Raymond S; Kretzschmar, Ilona

    2015-12-16

    The compressional instability of particle-laden air/water interfaces is investigated with plain and surface-anisotropic (Janus) particles. We hypothesize that the amphiphilic nature of Janus particles leads to both anisotropic particle-particle and particle-interface interactions that can yield particle films with unique collapse mechanisms. Analysis of Langmuir isotherms and microstructural characterization of the homogeneous polystyrene particle films during compression reveal an interfacial buckling instability followed by folding, which is in good agreement with predictions from classical elasticity theory. In contrast, Janus particle films exhibit a different behavior during compression, where the collapse mode occurs through the subduction of the Janus particle film. Our results suggest that particle-laden films comprised of surface-anisotropic particles can be engineered to evolve new material properties.

  2. Mechanistic Insights on the Photosensitized Chemistry of a Fatty Acid at the Air/Water Interface

    PubMed Central

    2016-01-01

    Interfaces are ubiquitous in the environment and many atmospheric key processes, such as gas deposition, aerosol, and cloud formation are, at one stage or another, strongly impacted by physical and chemical processes occurring at interfaces. Here, the photoinduced chemistry of an air/water interface coated with nonanoic acid—a fatty acid surfactant we use as a proxy for chemically complex natural aqueous surface microlayers—was investigated as a source of volatile and semivolatile reactive organic species. The carboxylic acid coating significantly increased the propensity of photosensitizers, chosen to mimic those observed in real environmental waters, to partition to the interface and enhance reactivity there. Photochemical formation of functionalized and unsaturated compounds was systematically observed upon irradiation of these coated surfaces. The role of a coated interface appears to be critical in providing a concentrated medium allowing radical–radical reactions to occur in parallel with molecular oxygen additions. Mechanistic insights are provided from extensive analysis of products observed in both gas and aqueous phases by online switchable reagent ion-time of flight-mass spectrometry and by off-line ultraperformance liquid chromatography coupled to a Q Exactive high resolution mass spectrometer through heated electrospray ionization, respectively. PMID:27611489

  3. Attachment of composite porous supra-particles to air-water and oil-water interfaces: theory and experiment.

    PubMed

    Paunov, Vesselin N; Al-Shehri, Hamza; Horozov, Tommy S

    2016-09-29

    experimental data for the attachment of porous supra particles to the air-water interface from both air and water also agree with the theoretical model. This study gives important insights about how porous particles and particle aggregates attach to the oil-water interface in Pickering emulsions and the air-water surface in particle-stabilised aqueous foams relevant in ore flotation and a range of cosmetic, pharmaceutical, food, home and personal care formulations.

  4. Effects on the self-assembly of n-alkane/gold nanoparticle mixtures spread at the air-water interface.

    PubMed

    Gagnon, Brandon P; Meli, M-Vicki

    2014-01-14

    Nanoparticle films formed at the air-water interface readily form rigid films, where the nanoparticles irreversibly associate into floating "islands", often riddled with voids and defects, upon solvent evaporation. Improving the nanoparticle mobility in these films is key to achieving control over the nanoparticle packing parameters, which is attractive for a variety of applications. In this study, a variety of n-alkanes were mixed with tetradecanethiol-capped 2 nm gold nanoparticles and studied as Langmuir films at 18 and 32 °C. Pressure-area isotherms at 18 °C reveal a mixed liquid-expanded phase of nanoparticles and alkane at the air-water interface, but only for n-alkanes that are equal to or exceed the nanoparticle capping ligand in carbon chain length. Transmission electron microscopy images of the corresponding films suggest that the nanoparticles are mixed with a continuous hydrocarbon phase at 0 mN/m and that the hydrocarbon is squeezed out of the nanoparticle film during compression.

  5. Collapsed bipolar glycolipids at the air/water interface: effect of the stereochemistry on the stretched/bent conformations.

    PubMed

    Jacquemet, Alicia; Terme, Nolwenn; Benvegnu, Thierry; Vié, Véronique; Lemiègre, Loïc

    2013-12-15

    This article describes a comparative study of several bipolar lipids derived from tetraether structures. The sole structural difference between the main two glycolipids is a unique stereochemical variation on a cyclopentyl ring placed in the middle of the lipids. We discuss the comparative results obtained at the air/water interface on the basis of tensiometry and ellipsometry. Langmuir-Blodgett depositions during lipid film compressions and decompressions were also analyzed by AFM. The lactosylated tetraether (bipolar) lipid structures involved the formation of highly stable multilayers, which are still present at 10 mN m(-1) during decompression. This study suggests also that the stereochemistry of a central cyclopentyl ring dramatically drives the conformation of the corresponding bipolar lipids. Both isomers (trans and cis) adopt a U-shaped (bent) conformation at the air/water interface but the trans cyclopentyl ring induces a much more frustration within this type of conformation. Consequently, this bipolar lipid (trans-tetraether) undergoes a flip of one polar head-group (lactosyl) leading to a stretched conformation during collapse.

  6. Catechol oxidation by ozone and hydroxyl radicals at the air-water interface.

    PubMed

    Pillar, Elizabeth A; Camm, Robert C; Guzman, Marcelo I

    2014-12-16

    Anthropogenic emissions of aromatic hydrocarbons promptly react with hydroxyl radicals undergoing oxidation to form phenols and polyphenols (e.g., catechol) typically identified in the complex mixture of humic-like substances (HULIS). Because further processing of polyphenols in secondary organic aerosols (SOA) can continue mediated by a mechanism of ozonolysis at interfaces, a better understanding about how these reactions proceed at the air-water interface is needed. This work shows how catechol, a molecular probe of the oxygenated aromatic hydrocarbons present in SOA, can contribute interfacial reactive species that enhance the production of HULIS under atmospheric conditions. Reactive semiquinone radicals are quickly produced upon the encounter of 40 ppbv-6.0 ppmv O3(g) with microdroplets containing [catechol] = 1-150 μM. While the previous pathway results in the instantaneous formation of mono- and polyhydroxylated aromatic rings (PHA) and chromophoric mono- and polyhydroxylated quinones (PHQ), a different channel produces oxo- and dicarboxylic acids of low molecular weight (LMW). The cleavage of catechol occurs at the 1,2 carbon-carbon bond at the air-water interface through the formation of (1) an ozonide intermediate, (2) a hydroperoxide, and (3) cis,cis-muconic acid. However, variable [catechol] and [O3(g)] can affect the ratio of the primary products (cis,cis-muconic acid and trihydroxybenzenes) and higher order products observed (PHA, PHQ, and LMW oxo- and dicarboxylic acids). Secondary processing is confirmed by mass spectrometry, showing the production of crotonic, maleinaldehydic, maleic, glyoxylic, and oxalic acids. The proposed pathway can contribute precursors to aqueous SOA (AqSOA) formation, converting aromatic hydrocarbons into polyfunctional species widely found in tropospheric aerosols with light-absorbing brown carbon.

  7. pH effects on the molecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology.

    PubMed

    Engelhardt, Kathrin; Lexis, Meike; Gochev, Georgi; Konnerth, Christoph; Miller, Reinhard; Willenbacher, Norbert; Peukert, Wolfgang; Braunschweig, Björn

    2013-09-17

    Macroscopic properties of aqueous β-lactoglobulin (BLG) foams and the molecular properties of BLG modified air-water interfaces as their major structural element were investigated with a unique combination of foam rheology measurements and interfacial sensitive methods such as sum-frequency generation and interfacial dilatational rheology. The molecular structure and protein-protein interactions at the air-water interface can be changed substantially with the solution pH and result in major changes in interfacial dilational and foam rheology. At a pH near the interfacial isoelectric point BLG molecules carry zero net charge and disordered multilayers with the highest interfacial dilatational elasticity are formed at the air-water interface. Increasing or decreasing the pH with respect to the isoelectric point leads to the formation of a BLG monolayer with repulsive electrostatic interactions among the adsorbed molecules which decrease the interfacial dilational elasticity. The latter molecular information does explain the behavior of BLG foams in our rheological studies, where in fact the highest apparent yield stresses and storage moduli are established with foams from electrolyte solutions with a pH close to the isoelectric point of BLG. At this pH the gas bubbles of the foam are stabilized by BLG multilayers with attractive intermolecular interactions at the ubiquitous air-water interfaces, while BLG layers with repulsive interactions decrease the apparent yield stress and storage moduli as stabilization of gas bubbles with a monolayer of BLG is less effective.

  8. Measuring interactions between polydimethylsiloxane and serum proteins at the air-water interface.

    PubMed

    Liao, Zhengzheng; Hsieh, Wan-Ting; Baumgart, Tobias; Dmochowski, Ivan J

    2013-07-30

    The interaction between synthetic polymers and proteins at interfaces is relevant to basic science as well as a wide range of applications in biotechnology and medicine. One particularly common and important interface is the air-water interface (AWI). Due to the special energetics and dynamics of molecules at the AWI, the interplay between synthetic polymer and protein can be very different from that in bulk solution. In this paper, we applied the Langmuir-Blodgett technique and fluorescence microscopy to investigate how the compression state of polydimethylsiloxane (PDMS) film at the AWI affects the subsequent adsorption of serum protein [e.g., human serum albumin (HSA) or immunoglobulin G (IgG)] and the interaction between PDMS and protein. Of particular note is our observation of circular PDMS domains with micrometer diameters that form at the AWI in the highly compressed state of the surface film: proteins were shown to adsorb preferentially to the surface of these circular PDMS domains, accompanied by a greater than 4-fold increase in protein found in the interfacial film. The PDMS-only film and the PDMS-IgG composite film were transferred to cover glass, and platinum-carbon replicas of the transferred films were further characterized by scanning electron microscopy and atomic force microscopy. We conclude that the structure of the PDMS film greatly affects the amount and distribution of protein at the interface.

  9. Ionic Nature of a Gemini Surfactant at the Air/Water Interface.

    PubMed

    Phan, Chi M; Nguyen, Cuong V; Nakahara, Hiromichi; Shibata, Osamu; Nguyen, Thanh V

    2016-12-06

    The ionic state of an adsorbed gemini surfactant at the air/water interface was investigated using a combination of surface potential and surface tension data. The combined model was developed and successfully described the experimental data. The results verified the existence of three ionic states of the gemini surfactant in the interfacial zone. Furthermore, the model can quantify the adsorbed concentrations of these species. At low concentrations, the fully dissociated state dominates the adsorption. At high concentrations, the fully associated state dominates, accounting for up to 80% of the total adsorption. In the middle range, the adsorption is dominated by the partially associated state, which has a maximum percentage of 80% at a critical micelle concentration of 0.5. The variation in the ionic state is a unique characteristic of gemini surfactants, which can be the underlying mechanism for their advantages over conventional surfactants.

  10. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    PubMed Central

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; Gibaud, A.; Lin, B.; Meron, M.

    2015-01-01

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initial monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate. PMID:25687953

  11. Novel Behavior in Self-Assembled Superparamagnetic Nanoparticle Monolayers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Stanley, Jacob; Boucheron, Leandra; Dai, Yeling; Lin, Binhua; Meron, Mati; Shpyrko, Oleg

    2013-03-01

    Iron oxide nanoparticles, coated with an oleic acid ligand, have been found to form self-assembled monolayers when deposited at the air-water interface. Even for low particle densities these particles aggregate into hexagonally close-packed islands which merge into a uniform layer at higher densities. Using Grazing Incidence Small Angle X-Ray Scattering (GISAXS) we were able to measure the first through fifth order diffraction peaks. By analyzing the positions and shapes of these peaks we investigated the in-plane structure of these monolayers and characterized how the structure changes as a function of compression in a Langmuir-Blodgett trough. Since iron oxide nanoparticles are known to be super-paramagnetic, we sought to investigate the role magnetic effects may have on the interparticle interactions and ordering within the film. We performed Grazing Incidence Diffraction (GID) measurements on the film while varying an external magnetic field. We will discuss the results of our findings.

  12. Robust Gold Nanoparticle Sheets by Ligand Cross-Linking at the Air-Water Interface.

    PubMed

    Kosif, Irem; Kratz, Katrina; You, Siheng Sean; Bera, Mrinal K; Kim, Kyungil; Leahy, Brian; Emrick, Todd; Lee, Ka Yee C; Lin, Binhua

    2017-02-28

    We report the results of cross-linking of two-dimensional gold nanoparticle (Au-NP) assemblies at the air-water interface in situ. We introduce an aqueous soluble ruthenium benzylidene catalyst into the water subphase to generate a robust, elastic two-dimensional network of nanoparticles containing cyclic olefins in their ligand framework. The most striking feature of the cross-linked Au-NP assemblies is that the extended connectivity of the nanoparticles enables the film to preserve much of its integrity under compression and expansion, features that are absent in its non-cross-linked counterparts. The cross-linking process appears to "stitch" the nanoparticle crystalline domains together, allowing the cross-linked monolayers to behave like a piece of fabric under lateral compression.

  13. Two-dimensional crystallization of phthalocyanine pigments at the air/water interface

    SciTech Connect

    Gregory, B.W.; Vaknin, D.; Gray, J.D.; Cotton, T.M.; Struve, W.S. |; Ocko, B.M.

    1999-01-21

    Two-dimensional crystallization of highly planar phthalocyanine (Pc) pigments underneath the headgroups of a lipid Langmuir monolayer was observed and characterized by synchrotron X-ray diffraction at grazing angles of incidence (GID). The crystallization was achieved through spontaneous adsorption of positively charged, water-soluble Pc`s to a spread dihexadecyl phosphate (DHDP) monolayer at the air/water interface. Analysis of the GID and rod profiles show that the lipid, pigment, and counterions form a complex in which the pigment plane is tilted with respect to the liquid surface; this is consistent with previous independent X-ray reflectivity investigations. In addition, the two-dimensional crystalline order of DHDP monolayers on pure H{sub 2}O has been determined and an analysis of its structure both before and after complexation is presented.

  14. Turbulent heat and mass transfers across a thermally stratified air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  15. Partitioning of semi-volatile organic compounds to the air/water interface

    NASA Astrophysics Data System (ADS)

    Pankow, James F.

    Partition coefficients ( Kia, m 3m -2) for sorption of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes at the air/water interface were estimated by extrapolating quartz/gas sorption data to relative humidity (RH) values of 100%. For each compound class, the log Kia values were found to be well correlated with log pLo where pLo (Torr) is the vapor pressure of the pure subcooled liquid. For the PAHs, correlation equation is log Kia = -1.20 log pLo - 5.82 ( R2 = 0.98). For the n-alkanes, the correlation equation is log Kia = -0.93 log pLo - 4.42 ( R2 = 0.95).

  16. Protonation, Hydrolysis, and Condensation of Mono- and Trifunctional Silanes at the Air/Water Interface

    PubMed Central

    Britt, David W.; Hlady, Vladimir

    2012-01-01

    The protonation, hydrolysis, and condensation kinetics of octadecyldimethylmethoxysilane (OMMS) and octadecyltrimethoxysilane (OTMS) at the air/water interface were investigated using a monolayer trough. OTMS chemical condensation within physically condensed phases was observed in transferred monolayers using fluorescence microscopy. Molecular area increases and decreases attributed to protonation and hydrolysis, respectively, of silane methoxy groups were measured by a surface balance. These area changes at constant surface pressure suggested a stepwise protonation and hydrolysis of the three OTMS methoxy groups. In contrast, only a single protonation and hydrolysis event was observed for monofunctional OMMS. The influences of monolayer spreading time, silane packing density, and subphase pH on the reaction kinetics are presented. PMID:25147424

  17. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    USGS Publications Warehouse

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  18. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    DOE PAGES

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; ...

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initialmore » monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.« less

  19. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    SciTech Connect

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; Gibaud, A.; Lin, B.; Meron, M.

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initial monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.

  20. Molecular interactions of organic molecules at the air/water interface investigated by sum frequency generation vibrational spectroscopy.

    PubMed

    Wang, Wenting; Ye, Shuji

    2017-02-08

    The molecular structure and dynamics of organic molecules at the aqueous interface have attracted a number of investigations owing to their importance and specific nature. However, there are relatively few studies on the direct characterization of the molecular interactions at the air/water interface because they are extremely difficult to measure in experiments. In this study, we use dibutyl ester molecules (R1CO2R2O2CR1) as a model of organic molecules, and investigate their molecular structure and interactions using sum frequency generation vibrational spectroscopy. We demonstrate that the molecular interactions can be estimated by measuring the intensity ratio of the symmetric stretching (ν1) and Fermi resonant bands (2ν2) of methyl groups. Here, dibutyl ester molecules are widely used as plasticizers in polymers to improve the properties of the plastics and polymers. It is found that the orientation angles of the tailed methyl groups at the air/water interface decrease from 34° to 19° when the chain length of R2 increases from 0 to 8. The total intermolecular interactions of the dibutyl ester molecules decrease as the chain length of R2 increases because the van der Waals interactions between the hydrocarbon chains increase, while the hydrogen bond interactions between the carbonyl group and water molecules decrease. Our study demonstrates the stability of ester-based plasticizers in polymers can be well predicted from the intensity ratio of the ν1 and 2ν2 bands of methyl group. Such an intensity ratio can be thus used as an effective vibrational optical ruler for characterizing molecular interactions between plasticizers and polymers.

  1. Mechanism of vibrational energy dissipation of free OH groups at the air-water interface.

    PubMed

    Hsieh, Cho-Shuen; Campen, R Kramer; Okuno, Masanari; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa

    2013-11-19

    Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air-water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air-H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces.

  2. Phase transitions in films of lung surfactant at the air-water interface.

    PubMed Central

    Nag, K; Perez-Gil, J; Ruano, M L; Worthman, L A; Stewart, J; Casals, C; Keough, K M

    1998-01-01

    45 mN/m. It also induced formation of large amounts of novel, nearly circular domains containing probe above pi of 50 mN/m, these domains being different in appearance than any seen at lower pressures with calcium or higher pressures in the absence of calcium. Surfactant protein-A (SP-A) adsorbed from the subphase onto solvent-spread LSE films, and aggregated condensed domains in presence of calcium. This study indicates that spread or adsorbed lung surfactant films can undergo expanded to condensed, and possibly other, phase transitions at the air-water interface as lateral packing density increases. These phase transitions are affected by divalent cations and SP-A in the subphase, and possibly by loss of material from the surface upon cyclic compression and expansion. PMID:9635752

  3. Surface shear rheology of WPI-monoglyceride mixed films spread at the air-water interface.

    PubMed

    Carrera Sánchez, Cecilio; Rodríguez Patino, Juan M

    2004-07-01

    Surface shear viscosity of food emulsifiers may contribute appreciably to the long-term stability of food dispersions (emulsions and foams). In this work we have analyzed the structural, topographical, and shear characteristics of a whey protein isolate (WPI) and monoglyceride (monopalmitin and monoolein) mixed films spread on the air-water interface at pH 7 and at 20 degrees C. The surface shear viscosity (etas) depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity varies greatly with the surface pressure. In general, the greater the surface pressure, the greater are the values of etas. The values of etas for the mixed WPI-monoolein monolayer were more than one order of magnitude lower than those for a WPI-monopalmitin mixed film, especially at the higher surface pressures. At higher surface pressures, collapsed WPI residues may be displaced from the interface by monoglyceride molecules with important repercussions on the shear characteristics of the mixed films. A shear-induced change in the topography and a segregation between domains of the film forming components were also observed. The displacement of the WPI by the monoglycerides is facilitates under shear conditions, especially for WPI-monoolein mixed films.

  4. Vibrational sum-frequency generation spectroscopy of ionic liquid 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate at the air-water interface

    NASA Astrophysics Data System (ADS)

    Saha, Ankur; SenGupta, Sumana; Kumar, Awadhesh; Choudhury, Sipra; Naik, Prakash D.

    2016-08-01

    The structure and orientation of room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [PF3(C2F5)3], commonly known as [bmim][fap], have been investigated at the air-[bmim][fap] and air-water interfaces, employing vibrational sum-frequency generation (VSFG) spectroscopy. The VSFG spectra in the CH stretch region suggest presence of the [bmim] cation at the interfaces. Studies reveal that the butyl chain protrudes out into air, and the imidazolium ring lies almost planar to the interface. The CH stretch intensities get enhanced at the air-water interface, mainly because of polar orientation of imidazolium cation induced by interfacial water molecules. The OH stretch intensities are also enhanced at the air-water interface due to polar orientation of interfacial water molecules induced by [bmim][fap]. The Brewster angle microscopy suggests self aggregation of [bmim][fap] in the presence of water, and the aggregation becomes extensive showing dense surface domains with time. However, the surface pressure is almost unaffected due to aggregation.

  5. Effect of hydration of sugar groups on adsorption of Quillaja bark saponin at air/water and Si/water interfaces.

    PubMed

    Wojciechowski, Kamil; Orczyk, Marta; Marcinkowski, Kuba; Kobiela, Tomasz; Trapp, Marcus; Gutberlet, Thomas; Geue, Thomas

    2014-05-01

    Adsorption of a natural glycoside surfactant Quillaja bark saponin ("QBS", Sigma Aldrich 84510) was studied at the air/water and Si/water interfaces using a combination of surface pressure (SP), surface dilatational rheology, neutron reflectivity (NR), Infra-Red Attenuated Total Reflection Spectroscopy (IR ATR) and Quartz Crystal Microbalance (QCM). The adsorbed layers formed at the air/water interface are predominantly elastic, with the dilatational surface storage modulus reaching the maximum value of E'=184 mN/m. The NR results point to a strong hydration of the adsorbed layers (about 65% hydration, corresponding to about 60 molecules of water per one QBS molecule), most likely related to the presence of multiple sugar groups constituting the glycone part of the QBS molecules. With a layer thickness of 19 Å, the adsorbed amount obtained from NR seems largely underestimated in comparison to the value obtained from the surface tension isotherm. While this high extent of hydration does not prevent formation of dense and highly elastic layers at the air-water surface, QBS adsorption at the Si/water interface is much weaker. The adsorption isotherm of QBS on Si obtained from the QCM study reflects much lower affinity of highly hydrated and negatively charged saponin molecules to the Si/water interface. We postulate that at the air/water interface, QBS adsorbs through the triterpene aglycone moiety. In contrast, weak hydrogen bonding between the glycone part and the surface silanol groups of Si is responsible for QBS adsorption on more polar Si/water interface.

  6. Surface properties and morphology of mixed POSS-DPPC monolayers at the air/water interface.

    PubMed

    Rojewska, Monika; Skrzypiec, Marta; Prochaska, Krystyna

    2017-02-01

    From the point of view of the possible medical applications of POSS (polyhedral oligomeric silsesquioxanes), it is crucial to analyse interactions occurring between POSS and model biological membrane at molecular level. Knowledge of the interaction between POSS and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) allows prediction of the impact of POSS contained in biomaterials or cosmetics on a living organism. In the study presented, the surface properties and morphology of Langmuir monolayers formed by mixtures of POSS and the phospholipid (DPPC) at the air/water surface are examined. We selected two POSS derivatives, with completely different chemical structure of substituents attached to the corner of the silicon open cage, which allowed the analysis of the impact of the character of organic moieties (strongly hydrophobic or clearly hydrophilic) on the order of POSS molecules and their tendency to form self-aggregates at the air/water surface. POSS derivatives significantly changed the profile of the π-A isotherms obtained for DPPC but in different ways. On the basis of the regular solution theory, the miscibility and stability of the two components in the monolayer were analysed in terms of compression modulus (Cs(-1)), excess Gibbs free energy (ΔGexc), activity coefficients (γ) and interaction parameter (ξ). The results obtained indicate the existence of two different interaction mechanisms between DPPC and POSS which depend on the chemical character of moieties present in POSS molecules.

  7. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.

    PubMed

    Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko

    2016-05-14

    In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures.

  8. Impact of artificial monolayer application on stored water quality at the air-water interface.

    PubMed

    Pittaway, P; Martínez-Alvarez, V; Hancock, N; Gallego-Elvira, B

    2015-01-01

    Evaporation mitigation has the potential to significantly improve water use efficiency, with repeat applications of artificial monolayer formulations the most cost-effective strategy for large water storages. Field investigations of the impact of artificial monolayers on water quality have been limited by wind and wave turbulence, and beaching. Two suspended covers differing in permeability to wind and light were used to attenuate wind turbulence, to favour the maintenance of a condensed monolayer at the air/water interface of a 10 m diameter tank. An octadecanol formulation was applied twice-weekly to one of two covered tanks, while a third clean water tank remained uncovered for the 14-week duration of the trial. Microlayer and subsurface water samples were extracted once a week to distinguish impacts associated with the installation of covers, from the impact of prolonged monolayer application. The monolayer was selectively toxic to some phytoplankton, but the toxicity of hydrocarbons leaching from a replacement liner had a greater impact. Monolayer application did not increase water temperature, humified dissolved organic matter, or the biochemical oxygen demand, and did not reduce dissolved oxygen. The impact of an octadecanol monolayer on water quality and the microlayer may not be as detrimental as previously considered.

  9. Visualization of oxygen transfer across the air-water interface using a fluorescence oxygen visualization method.

    PubMed

    Lee, Minhee

    2002-04-01

    Oxygen concentration fields in a water body were visualized by the fluorescence oxygen visualization (FOV) method. Pyrenebutyric acid (PBA) was used as a fluorescent indicator of oxygen, and an intensive charge coupled-device (ICCD) camera as an image detector. Sequential images (over 2000 images) of the oxygen concentration field around the surface water of the tank (1 x 1 x 0.75 m3) were produced during the 3 h experiment. From image processing, the accurate pathway of oxygen-rich, cold water at the water surface was also visualized. The amount of oxygen transferred through the air-water interface during the experiment was measured and the oxygen transfer coefficient (K(L)) was determined as 0.22 m/d, which was much higher than that is expected in molecular diffusion. Results suggest that vertical penetration of cold water was the main pathway of oxygen in the water body in the tank. The average velocity of cold water penetrating downward in water body was also measured from consecutive images and the value was 0.3-0.6 mm/s. The FOV method used in this research should have wide application in experimental fluid mechanics and can also provide a phenomenological description of oxygen transfer under physically realizable natural conditions in lakes and reservoirs.

  10. Surface activity coefficients of spread monolayers of behenic acid salts at air-water interface.

    PubMed

    Chattoraj, D K; Halder, E; Das, K P; Mitra, A

    2006-11-16

    The pressure-area isotherms of ionized monolayers of behenic acid at air-water interface at pH 12.0 have been obtained from the Langmuir film balance experiments under various physico-chemical conditions. The value of the measured surface pressure at a given area per molecule is equal to the sum of the ideal pressure, cohesive pressure and electrical pressure. The electrical pressure term is regarded as the sum of the pressure originating from the Gouy-Chapman double layer including discrete ion effect, ion binding and monolayer hydration effect. At a given area, the deviation of the measured surface pressure from its ideal value has been calculated in terms of the apparent surface compressibility coefficients, surface fugacity coefficients for gaseous monolayer and surface activity coefficients of solute forming two-dimensional solutions in the monolayer phase respectively. Values of all these coefficients have been calculated for different compositions of the monolayer using non-ideal gas model and Raoult's and Henry's laws modified for two-dimensional non-ideal solutions respectively. Values of these coefficients may be higher or lower than unity depending upon ionic strengths and nature of inorganic salts present in the sub-phase. Using these values of surface activity coefficients, the standard free energies of formation, of spread monolayers of salts of behenic acid have been calculated at different standard states of reference.

  11. Interaction of the cationic peptide bactenecin with mixed phospholipid monolayers at the air-water interface.

    PubMed

    López-Oyama, Ana B; Taboada, Pablo; Burboa, María G; Rodríguez, Ezequiel; Mosquera, Víctor; Valdez, Miguel A

    2011-07-01

    The initial mechanism by which antimicrobial peptides target microbes occurs via electrostatic interactions; however, the mechanism is not well understood. We investigate the interaction of the antimicrobial peptide bactenecin with a 50:50 w:w% 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) phospholipid mixture at the air-water interface with different NaCl concentrations (0.01, 0.05, 0.1, 0.5 M) in the subphase. A larger shift of DPPC:DMPG isotherms was obtained for 0.1 M salt concentration at lower and higher pressures, demonstrating the influence of the negative charge of DMPG molecules and the screening of the electrostatic interaction by the salt concentration. Raman spectroscopy of monolayers demonstrated the presence of cysteine-cysteine bridges in bactenecin loops. The peptide adsorption in DPPC:DMPG monolayers observed by AFM images suggests a self-assembled aggregation process, starting with filament-like networks. Domains similar to carpets were formed and pore structures were obtained after a critical peptide concentration, according to the carpet model.

  12. Proton transport by bacteriorhodopsin in planar membranes assembled from air-water interface films

    PubMed Central

    Korenbrot, J. I.; Hwang, S. B.

    1980-01-01

    Bacteriorhodopsin, in known amounts and controlled orientation, is incorporated into planar membrane films. These films are formed by the sequential transfer of two air-water interface films onto a thin, hydrophilic, electrically conductive support cast from nitrocellulose. The films are easily accessible to electrical measurements and to control of the ionic milieu on either side of the membrane. The area of the assembled membrane films can be varied between 2.3 x 10(-2) cm2 and 0.7 cm2. Illumination of these films produces photocurrents, photovoltages, and changes in the pH of the surrounding medium. The peak amplitude of the photocurrent increases linearly with light intensity for dim lights, and it approaches a saturating value for brighter lights. In the linear range, the stoichiometry of transport is 0.65 +/- 0.06 protons/absorbed photon. The rate of transport is linearly proportional to light at all intensities tested. The amplitude and kinetics of the photovoltage measured are accurately predicted by the photocurrent generated and the passive electrical features of the film. Parallel measurements of pH and photocurrent reveal that the light-induced changes in pH are fully accounted for by the rate and amount of charge transport across the membrane. Preceding the transport of protons, a transient photovoltage is detected that exhibits no detectable latency, reaches peak in about 80 microseconds, and probably arises from light-induced intramolecular charge displacements. PMID:10822498

  13. Dipolar interactions between domains in lipid monolayers at the air-water interface.

    PubMed

    Rufeil-Fiori, Elena; Wilke, Natalia; Banchio, Adolfo J

    2016-05-25

    A great variety of biologically relevant monolayers present phase coexistence characterized by domains formed by lipids in an ordered phase state dispersed in a continuous, disordered phase. From the difference in surface densities between these phases, inter-domain dipolar interactions arise. These interactions are relevant for the determination of the spacial distribution of domains as well as their dynamics. In this work, we propose a novel way of estimating the dipolar repulsion using a passive method that involves the analysis of images of the monolayer with phase coexistence. This method is based on the comparison of the pair correlation function obtained from experiments with that obtained from Brownian dynamics simulations of a model system. As an example, we determined the difference in dipolar density of a binary monolayer of DSPC/DMPC at the air-water interface from the analysis of the radial distribution of domains, and the results are compared with those obtained by surface potential determinations. A systematic analysis for the experimentally relevant parameter range is given, which may be used as a working curve for obtaining the dipolar repulsion in different systems.

  14. Foaming and adsorption behavior of bovine and camel proteins mixed layers at the air/water interface.

    PubMed

    Lajnaf, Roua; Picart-Palmade, Laetitia; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A

    2017-03-01

    The aim of this work was to examine foaming and interfacial behavior of three milk protein mixtures, bovine α-lactalbumin-β-casein (M1), camel α-lactalbumin-β-casein (M2) and β-lactoglobulin-β-casein (M3), alone and in binary mixtures, at the air/water interface in order to better understand the foaming properties of bovine and camel milks. Different mixture ratios (100:0; 75:25; 50:50; 25:75; 0:100) were used during foaming tests and interfacial protein interactions were studied with a pendant drop tensiometer. Experimental results evidenced that the greatest foam was obtained with a higher β-casein amount in all camel and bovine mixtures. Good correlation was observed with the adsorption and the interfacial rheological properties of camel and bovine protein mixtures. The proteins adsorbed layers are mainly affected by the presence of β-casein molecules, which are probably the most abundant protein at interface and the most efficient in reducing the interfacial properties. In contrast of, the globular proteins, α-lactalbumin and β-lactoglobulin that are involved in the protein layer composition, but could not compact well at the interface to ensure foams creation and stabilization because of their rigid molecular structure.

  15. Conformation and Aggregation of LKα14 Peptide in Bulk Water and at the Air/Water Interface.

    PubMed

    Dalgicdir, Cahit; Sayar, Mehmet

    2015-12-10

    Historically, the protein folding problem has mainly been associated with understanding the relationship between amino acid sequence and structure. However, it is known that both the conformation of individual molecules and their aggregation strongly depend on the environmental conditions. Here, we study the aggregation behavior of the model peptide LKα14 (with amino acid sequence LKKLLKLLKKLLKL) in bulk water and at the air/water interface. We start by a quantitative analysis of the conformational space of a single LKα14 in bulk water. Next, in order to analyze the aggregation tendency of LKα14, by using the umbrella sampling technique we calculate the potential of mean force for pulling a single peptide from an n-molecule aggregate. In agreement with the experimental results, our calculations yield the optimal aggregate size as four. This equilibrium state is achieved by two opposing forces: Coulomb repulsion between the lysine side chains and the reduction of solvent accessible hydrophobic surface area upon aggregation. At the vacuum/water interface, however, even dimers of LKα14 become marginally stable, and any larger aggregate falls apart instantaneously. Our results indicate that even though the interface is highly influential in stabilizing the α-helix conformation for a single molecule, it significantly reduces the attraction between two LKα14 peptides, along with their aggregation tendency.

  16. Two-dimensional crystallization of proteins on lipid monolayers at the air water interface and transfer to an electron microscopy grid

    NASA Astrophysics Data System (ADS)

    Brisson, Alain; Bergsma-Schutter, Wilma; Oling, Frank; Lambert, Olivier; Reviakine, Ilya

    1999-01-01

    The two-dimensional (2-D) crystallization of proteins on lipid monolayers at the air-water interface is a well established method for crystallizing soluble proteins. The transfer of 2-D crystals from the air-water interface to an electron microscopy (EM) grid constitutes a critical and ill-controlled step in the whole procedure, which is likely to be responsible for the high variability of results obtained with this method. In this paper, we address the following questions: (1) does the material observed on EM grids constitute a true representation of the material present at the air-water interface? (2) is there an optimal method of transfer to obtain well-ordered protein 2-D crystals? To answer these questions, we combine data obtained on three different protein systems, annexin V, streptavidin and cholera toxin, using two types of EM grids, coated with either holey carbon films or continuous carbon films. These combined observations help us draw a coherent picture of the state of the interfacial films at the air-water surface and provide new insight into the perturbing influence of the transfer step. The main conclusions are: (1) both annexin V and streptavidin form crystalline monolayers at the air-water interface, which are well preserved when transfer is performed by means of holey carbon films; (2) a major reorganization of the material present at the water surface accompanies transfer with continuous carbon films; the basal monolayer is extensively damaged, transforming into domains and vesicular structures, which do not pre-exist at the water surface; with the three protein systems studied here, these domains are often crystalline; (3) the most striking structural reorganization induced by transfer with continuous carbon films is observed with annexin V, for which the native p6 crystalline assembly is transformed into another crystal form more ordered, with p3 symmetry. It is most probable that these conclusions also apply to other protein 2-D crystals

  17. Advances in simulating radiance signatures for dynamic air/water interfaces

    NASA Astrophysics Data System (ADS)

    Goodenough, Adam A.; Brown, Scott D.; Gerace, Aaron

    2015-05-01

    The air-water interface poses a number of problems for both collecting and simulating imagery. At the surface, the magnitude of observed radiance can change by multiple orders of magnitude at high spatiotemporal frequency due to glinting effects. In the volume, similarly high frequency focusing of photons by a dynamic wave surface significantly changes the reflected radiance of in-water objects and the scattered return of the volume itself. These phenomena are often manifest as saturated pixels and artifacts in collected imagery (often enhanced by time delays between neighboring pixels or interpolation between adjacent filters) and as noise and greater required computation times in simulated imagery. This paper describes recent advances made to the Digital Image and Remote Sensing Image Generation (DIRSIG) model to address the simulation issues to better facilitate an understanding of a multi/hyper-spectral collection. Glint effects are simulated using a dynamic height field that can be driven by wave frequency models and generates a sea state at arbitrary time scales. The volume scattering problem is handled by coupling the geometry representing the surface (facetization by the height field) with the single scattering contribution at any point in the water. The problem is constrained somewhat by assuming that contributions come from a Snell's window above the scattering point and by assuming a direct source (sun). Diffuse single scattered and multiple scattered energy contributions are handled by Monte Carlo techniques employed previously. The model is compared to existing radiative transfer codes where possible, with the objective of providing a robust movel of time-dependent absolute radiance at many wavelengths.

  18. Toward a unified picture of the water self-ions at the air-water interface: a density functional theory perspective.

    PubMed

    Baer, Marcel D; Kuo, I-Feng W; Tobias, Douglas J; Mundy, Christopher J

    2014-07-17

    The propensities of the water self-ions, H3O(+) and OH(-), for the air-water interface have implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O(+) and/or OH(-) prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs interfacial behavior of H3O(+) and OH(-) that employs forces derived from density functional theory with a generalized gradient approximation exchange-correlation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF) for H3O(+) as a function of the position of the ion in the vicinity of an air-water interface. The PMF suggests that H3O(+) has equal propensity for the interface and the bulk. We compare the PMF for H3O(+) to our previously computed PMF for OH(-) adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs in the bulk are connected with interfacial propensity. We find that the solvation shell of H3O(+) is only slightly dependent on its position in the water slab, while OH(-) partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions.

  19. Chiral discrimination of a gemini-type surfactant with rigid spacer at the air-water interface.

    PubMed

    Shankar, B Vijai; Patnaik, Archita

    2007-10-04

    Spontaneous separation of chiral phases was observed in the monolayers of a racemate of gemini-type twin-tailed, twin-chiral amphiphiles, (2R,3R)-(+)-bis(decyloxy)succinic acid and (2S,3S)-(-)-bis(decyloxy)succinic acid. The pressure-area isotherms of the interfacial monolayers formed at the liquid-air interface, and the 2D lattice structures studied through surface probe measurements revealed that the racemate exhibits a homochiral discrimination of the enantiomers in two dimensions. An enantiomeric excess (e,e) of 20% was sufficient to break the chiral symmetry at the air-water interface for a homochiral interaction. Langmuir monolayers on ZnCl2 and CaCl2 subphases manifested chiral discrimination with Zn2+ evidencing homochiral interaction with a chelate-type complex, whereas Ca2+ resulted in a heterochiral interaction forming an ionic-type complex. For the chiral asymmetric units, oblique and rectangular unit cells of the racemic monolayer had exclusive requirements of homo- and heterochiral recognitions for Zn2+ and Ca2+ ions, respectively. Monolayers transferred from the condensed phase at 25 mN/m onto hydrophilic Si(100) and quartz substrates revealed the formation of bilayers through transfer-induced monolayer buckling. The emergence of homochiral discrimination was explained using the effective-pair-potential (EPP) approach.

  20. A microscopic model of gemini surfactants: Self-assemblies in water and at air-water interface

    NASA Astrophysics Data System (ADS)

    Maiti, Prabal K.; Chowdhury, Debashish

    1998-09-01

    We report the results of large scale Monte Carlo simulations of novel microscopic models of gemini surfactants to elucidate (i) their spontaneous aggregation in bulk water and (ii) their spatial organization in a system where water is separated from the air above it by a sharp well-defined interface. We study the variation of the critical micellar concentration (CMC) with the variation of the (a) length of the spacer, (b) length of the hydrophobic tail, and (c) the bending rigidity of the hydrocarbon chains forming the spacer and the tail; some of the trends of variation are counterintuitive but are in excellent agreement with the available experimental results. Our simulations elucidate the effects of the geometrical shape, size, and density of the surfactant molecules, the ionic nature of the heads, and the hydrophobicity/hydrophilicity of the spacer not only on the shapes of the micellar aggregates and the magnitude of the CMC, but also on their conformations close to the air-water interface.

  1. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface.

    PubMed

    Vila Verde, Ana; Bolhuis, Peter G; Campen, R Kramer

    2012-08-09

    We use classical atomistic molecular dynamics simulations of two water models (SPC/E and TIP4P/2005) to investigate the orientation and reorientation dynamics of two subpopulations of OH groups belonging to water molecules at the air/water interface at 300 K: those OH groups that donate a hydrogen bond (called "bonded") and those that do not (called "free"). Free interfacial OH groups reorient in two distinct regimes: a fast regime from 0 to 1 ps and a slow regime thereafter. Qualitatively similar behavior was reported by others for free OH groups near extended hydrophobic surfaces. In contrast, the net reorientation of bonded OH groups occurs at a rate similar to that of bulk water. This similarity in reorientation rate results from compensation of two effects: decreasing frequency of hydrogen-bond breaking/formation (i.e., hydrogen-bond exchange) and faster rotation of intact hydrogen bonds. Both changes result from the decrease in density at the air/water interface relative to the bulk. Interestingly, because of the presence of capillary waves, the slowdown of hydrogen-bond exchange is significantly smaller than that reported for water near extended hydrophobic surfaces, but it is almost identical to that reported for water near small hydrophobic solutes. In this sense water at the air/water interface has characteristics of water of hydration of both small and extended hydrophobic solutes.

  2. Dynamic properties of cationic diacyl-glycerol-arginine-based surfactant/phospholipid mixtures at the air/water interface.

    PubMed

    Lozano, Neus; Pinazo, Aurora; Pérez, Lourdes; Pons, Ramon

    2010-02-16

    In this Article, we study the binary surface interactions of 1,2-dimyristoyl-rac-glycero-3-O-(N(alpha)-acetyl-L-arginine) hydrochloride (1414RAc) with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) on 0.1 M sodium chloride solutions. 1414RAc is a novel monocationic surfactant that has potential applications as an antimicrobial agent, is biodegradable, and shows a toxicity activity smaller than that of other commercial cationic surfactants. DPPC phospholipid was used as a model membrane component. The dynamic surface tension of 1414RAc/DPPC aqueous dispersions injected into the saline subphase was followed by tensiometry. The layer formation for the mixtures is always accelerated with respect to DPPC, and surprisingly, the surface tension reduction is faster and reaches lower surface tension values at surfactant concentration below its critical micellar concentration (cmc). Interfacial dilational rheology properties of mixed films spread on the air/water interface were determined by the dynamic oscillation method using a Langmuir trough. The effect of surfactant mole fraction on the rheological parameters of 1414RAc/DPPC mixed monolayers was studied at a relative amplitude of area deformation of 5% and a frequency of 50 mHz. The monolayer viscoelasticity shows a nonideal mixing behavior with predominance of the surfactant properties. This nonideal behavior has been attributed to the prevalence of electrostatic interactions.

  3. Interactions between the ganglioside GM1 and hexadecylphosphocholine (miltefosine) in monolayers at the air/water interface.

    PubMed

    Gómez-Serranillos, Isabel Rey; Miñones, José; Dynarowicz-Łatka, Patrycja; Iribarnegaray, Eduardo; Casas, Matilde

    2005-03-10

    The ganglioside, GM1, was studied as Langmuir monolayers at the air/water interface with surface pressure-area measurements in addition to Brewster angle microscopy. A characteristic plateau transition, observed on aqueous subphases of pH 2 and 6, 20 degrees C, at the surface pressure of ca. 20 mN/m, was attributed to the reorientation of GM1 polar group upon film compression. This transition was found to disappear at alkaline subphases (pH 10) due to the hydration of fully ionized polar group, hindering its reorientation. The interactions between GM1 and hexadecylphosphocholine (miltefosine) were investigated in mixed monolayers and analyzed with the mean molecular areas, excess areas of mixing and the excess free energy of mixing versus film composition plots. The monolayers stability, quantified by the collapse pressure values, as well as the strength of interaction was found to diminish in the following order: pH 6>pH 2>pH 10. The strongest interaction occurs for mixed films of miltefosine molar fraction, XM=0.7-0.8, especially at low pressure region, and are explained as being due to the surface complex formation of 3:1 or 4:1 (miltefosine:ganglioside) stoichiometry (XM=0.75 or 0.8, respectively).

  4. Effect of surfactants on surface activity and rheological properties of type I collagen at air/water interface.

    PubMed

    Kezwoń, Aleksandra; Góral, Ilona; Frączyk, Tomasz; Wojciechowski, Kamil

    2016-12-01

    We describe the effect of three synthetic surfactants (anionic - sodium dodecyl sulfate (SDS), cationic - cetyltrimethylammonium bromide (CTAB) and nonionic - Triton X-100 (TX-100)) on surface properties of the type I calf skin collagen at the air/water interface in acidic solutions (pH 1.8). The protein concentration was fixed at 5×10(-6)molL(-1) and the surfactant concentration was varied in the range 5×10(-6)molL(-1)-1×10(-4)molL(-1), producing the protein/surfactant mixtures with molar ratios of 1:1, 1:2, 1:5, 1:10 and 1:20. An Axisymmetric Drop Shape Analysis (ADSA) method was used to determine the dynamic surface tension and surface dilatational moduli of the mixed adsorption layers. Two spectroscopic techniques: UV-vis spectroscopy and fluorimetry allowed us to determine the effect of the surfactants on the protein structure. The thermodynamic characteristic of the mixtures was studied using isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). Modification of the collagen structure by SDS at low surfactant/protein ratios has a positive effect on the mixture's surface activity with only minor deterioration of the rheological properties of the adsorbed layers. The collagen/CTAB mixtures do not show that pronounced improvement in surface activity, while rheological properties are significantly deteriorated. The mixtures with non-ionic TX-100 do not show any synergistic effects in surface activity.

  5. Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas

    NASA Astrophysics Data System (ADS)

    Chen, Yingjun; Lin, Tian; Tang, Jianhui; Xie, Zhiyong; Tian, Chongguo; Li, Jun; Zhang, Gan

    2016-09-01

    In this study, air and surface seawater samples collected from the Bohai (BS) and Yellow Seas (YS) in May 2012 were determined exchange of PAHs, especially of low-molecular-weight (LMW) PAHs (three- and four-ring PAHs) at the air-water interface. Net volatilization fluxes of LMW PAHs were 266-1454 ng/m2/d and decreased with distance from the coast, indicating that these PAHs transported from coastal runoff were potential contributors to the atmosphere in the BS and YS. Moreover, LMW PAHs were enriched in the dissolved phase compared with those in the particulate phase in the water column, possibly suggesting that the volatilized LMW PAHs were directly derived from wastewater discharge or petroleum pollution rather than released from contaminated sediments. The air-sea exchange fluxes of the three-ring PAHs were 2- to 20-fold higher than their atmospheric deposition fluxes in the BS and YS. The input to and output from the water reached equilibrium for four-ring PAHs. Differently, five- and six-ring PAHs were introduced into the marine environment primarily through dry and wet deposition, indicating that the water column was still a sink of these PAHs from the surrounding atmosphere.

  6. Surface properties and conformation of Nephila clavipes spider recombinant silk proteins at the air-water interface.

    PubMed

    Renault, Anne; Rioux-Dubé, Jean-François; Lefèvre, Thierry; Pezennec, Stéphane; Beaufils, Sylvie; Vié, Véronique; Tremblay, Mélanie; Pézolet, Michel

    2009-07-21

    The dragline fiber of spiders is composed of two proteins, the major ampullate spidroins I and II (MaSpI and MaSpII). To better understand the assembly mechanism and the properties of these proteins, the adsorption behavior of the recombinant proteins of the spider Nephila clavipes produced by Nexia Biotechnologies Inc. has been studied at the air-water interface using ellipsometry, surface pressure, rheological, and infrared measurements. The results show that the adsorption is more rapid and more molecules are present at the interface for MaSpII than for MaSpI. MaSpII has thus a higher affinity for the interface than MaSpI, which is consistent with its higher aggregation propensity in water. The films formed at the interface consist of networks containing a high content of intermolecular beta-sheets as revealed by the in situ polarization modulation infrared absorption reflection spectra. The infrared results further demonstrate that, for MaSpI, the beta-sheets are formed as soon as the proteins adsorb to the interface while for MaSpII the beta-sheet formation occurs more slowly. The amount of beta-sheets is lower for MaSpII than for MaSpI, most likely due to the presence of proline residues in its sequence. Both proteins form elastic films, but they are heterogeneous for MaSpI and homogeneous for MaSpII most probably as a result of a more ordered and slower aggregation process for MaSpII. This difference in their mechanism of assembly and interfacial behaviors does not seem to arise from their overall hydrophobicity or from a specific pattern of hydrophobicity, but rather from the longer polyalanine motifs, lower glycine content, and higher proline content of MaSpII. The propensity of both spidroins to form beta-sheets, especially the polyalanine blocks, suggests the participation of both proteins in the silk's beta-sheet crystallites.

  7. Modulation of the adsorption properties at air-water interfaces of complexes of egg white ovalbumin with pectin by the dielectric constant.

    PubMed

    Kudryashova, Elena V; de Jongh, Harmen H J

    2008-02-15

    The possibility of modulating the mesoscopic properties of food colloidal systems by the dielectric constant is studied by determining the impact of small amounts of ethanol (10%) on the adsorption of egg white ovalbumin onto the air-water interface in the absence and presence of pectin. The adsorption kinetics was monitored using tensiometry. The addition of ethanol resulted in considerably slower adsorption of the protein onto the interface, and this effect was enhanced when the protein was in complex with the pectin. Time-resolved fluorescence measurements demonstrated that in the case of noncomplexed ovalbumin the addition of ethanol resulted in a more condensed protein surface layer where ovalbumin adopted a preferred orientation at the interface. In contrast, the effect of ethanol on the ovalbumin-pectin complex suggested a pronounced multipoint electrostatic interaction between protein and polyelectrolyte and the formation of a more rigid spatial arrangement within the complex, thereby leading to suppressed protein-protein interactions. From this work it is concluded that by the enhanced binding affinity between ovalbumin and pectin a strong effect on the adsorption properties of the protein can be accomplished. This work does therefore illustrate how solvent quality can be exploited effectively to enhance or suppress protein functional behavior in complex applications containing air-water interfaces.

  8. Reorientation of the ‘free OH’ group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy

    SciTech Connect

    Feng, Ran-Ran; Guo, Yuan; Wang, Hongfei

    2014-09-17

    Many experimental and theoretical studies have established the specific anion, as well as cation effects on the hydrogen-bond structures at the air/water interface of electrolyte solutions. However, the ion effects on the top-most layer of the air/water interface, which is signified by the non-hydrogen-bonded so-called ‘free O-H’ group, has not been discussed or studied. In this report, we present the measurement of changes of the orientational angle of the ‘free O-H’ group at the air/water interface of the sodium fluoride (NaF) solutions at different concentrations using the interface selective sum-frequency generation vibrational spectroscopy (SFG-VS) in the ssp and ppp polarizations. The polarization dependent SFG-VS results show that the average tilt angle of the ‘free O-H’ changes from about 35.3 degrees ± 0.5 degrees to 43.4 degrees ± 2.1degrees as the NaF concentration increase from 0 to 0.94M (nearly saturated). Such tilt angle change is around the axis of the other O-H group of the same water molecule at the top-most layer at the air/water interface that is hydrogen-bonded to the water molecules below the top-most layer. These results provide quantitative molecular details of the ion effects of the NaF salt on the structure of the water molecules at the top-most layer of the air/water interfacial, even though both the Na+ cation and the F- anion are believed to be among the most excluded ions from the air/water interface.

  9. Mechanical properties of protein adsorption layers at the air/water and oil/water interface: a comparison in light of the thermodynamical stability of proteins.

    PubMed

    Mitropoulos, Varvara; Mütze, Annekathrin; Fischer, Peter

    2014-04-01

    Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates.

  10. The Effect of monoglycerides on structural and topographical characteristics of adsorbed beta-casein films at the air-water interface.

    PubMed

    Fernández, Marta Cejudo; Sánchez, Cecilio Carrera; Rodríguez Niño, M Rosario; Rodríguez Patino, Juan M

    2006-02-01

    The effect of monoglycerides (monopalmitin and monoolein) on the structural and topographical characteristics of beta-casein adsorbed film at the air-water interface has been analyzed by means of surface pressure (pi)-area (A) isotherms and Brewster angle microscopy (BAM). At surface pressures lower than that for the beta-casein collapse (pi(c)(beta-casein)), attractive interactions between beta-casein and monoglycerides were observed. At higher surface pressures, the collapsed beta-casein is partially displaced from the interface by monoglycerides. However, beta-casein displacement by monoglycerides is not quantitative at the monoglyceride concentrations studied in this work. From the results derived from these experiments, we have concluded that interactions, miscibility, and displacement of proteins by monoglycerides in adsorbed mixed monolayers at the air-water interface depend on the particular protein-monoglyceride system, the interactions between film-forming components being higher for adsorbed than for spread films. The adsorbed films are more segregated than spread films, and both collapsed protein domains and monoglyceride domains in adsorbed films are smaller than for spread films.

  11. Mixed layers of β-lactoglobulin and SDS at air-water interfaces with tunable intermolecular interactions.

    PubMed

    Engelhardt, Kathrin; Weichsel, Ulrike; Kraft, Elena; Segets, Doris; Peukert, Wolfgang; Braunschweig, Björn

    2014-04-17

    Mixtures of β-lactoglobulin (BLG) and sodium dodecyl sulfate (SDS) were studied at pH 3.8 and 6.7 under equilibrium conditions. At these pH conditions, BLG carries either a positive or a negative net charge, respectively, which enables tunable electrostatic interactions between anionic SDS surfactants and BLG proteins. For pH 3.8, vibrational sum-frequency generation (SFG) and ellipsometry indicate strong BLG-SDS complex formation at air-water interfaces that is caused by attractive electrostatic interactions. The latter complexes are already formed in the bulk solution which was confirmed by a thermodynamic study of BLG-SDS mixtures using isothermal titration calorimetry (ITC). For acidic conditions we determine from our ITC data an exothermal binding enthalpy of -40 kJ mol(-1). Increasing SDS/BLG molar ratios above 10 leads to a surface excess of SDS and thus to a charge reversal from a positive net charge with BLG as the dominating surface adsorbed species to a negatively charged layer with SDS as the dominating surface species. The latter is evidenced by a pronounced minimum in SFG intensities that is also accompanied by a phase change of O-H stretching bands due to a reorientation of H2O within the local electric field. This phase change which occurs at SDS/BLG molar ratio between 1 and 10 causes a polarity change in SFG intensities from BLG aromatic C-H stretching vibrations. Conclusions from SFG spectra are corroborated by ellipsometry which shows a dramatic increase in layer thicknesses at molar ratios where a charge reversal occurs. The formation of interfacial multilayers comprising SDS-BLG complexes is, thus, caused by cancellation of electrostatic interactions which leads to agglomeration at the interface. In contrast to pH 3.8, behavior of BLG-SDS mixtures at pH 6.7 is different due to repulsive electrostatic interactions between SDS and BLG which lead to a significantly reduced binding enthalpy of -17 kJ mol(-1). Finally, it has to be mentioned that

  12. Surface Partitioning and Stability of Mixed Films of Fluorinated Alcohols and Acids at the Air- Water Interface

    NASA Astrophysics Data System (ADS)

    Rontu, N. A.; Vaida, V.

    2007-05-01

    The production of fluorinated compounds over the past 50 years has had numerous industrial applications. For example, perfluorinated carboxylic acids are used in the synthesis of polymers and fire retardants, perfluoroalkyl sulfonates act as surface protectors, and fluorotelomer alcohols are incorporated into products such as paints, coatings, polymers, and adhesives. Fluorotelomer alcohols (FTOHs) are linear polyfluorinated alcohols with the formula CF3(CF2)nCH2CH2OH (n=1,3,5,...). They have been suggested as possible precursors for perfluorinated carboxylic acids and detected in the troposphere over several North American sites. Perfluorocarboxylic acids have even been detected in the arctic food chain, human blood, tissues of animals and environmental waters. We report the surface activity of fluorotelomer alcohols and perfluorinated carboxylic acids at the air-water interface by using a Langmuir trough. Isotherms of the pure compounds along with mixed films with other organic carboxylic acids were collected. The main objective of these experiments was to understand their heterogeneous chemistry by characterizing the pure and mixed films, which serves as a representative model for organic films on atmospheric surfaces such as those found on oceans and aqueous aerosols. Film properties and behavior, notably stabilization, evaporation from the subphase, and miscibility in the single-component mixtures as well as in the mixed films will be discussed. An important consequence of FTOHs and perfluorocarboxylic acids being found to partition to the air-water interface is the possibility of their transport and widespread distribution and deposition using atmospheric aerosols.

  13. Electrochemical Surface Potential due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface

    SciTech Connect

    Baer, Marcel D.; Stern, Abraham C.; Levin, Yan; Tobias, Douglas J.; Mundy, Christopher J.

    2012-06-07

    Herein, we present research that suggests that the underlying physics that drive simple empirical models of anions (e.g. point charge, no polarization) to the air-water interface, with water described by SPC/E, or related partial charge models is different than when both ions and water are modeled with quantum mechanical based interactions. Specifically, we will show that the driving force of ions to the air-water interface for point charge models results from both cavitation and the negative electrochemical surface potential. We will demonstrate that we can fully characterize the role of the free energy due to the electrochemical surface potential computed from simple empirical models and its role in ionic adsorption within the context of dielectric continuum theory (DCT). Our research suggests that a significant part of the electrochemical surface potential in empirical models appears to be an artifact of the failure of point charge models in the vicinity of a broken symmetry. This work was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle.

  14. Mixing behavior of a poly(ethylene glycol)-grafted phospholipid in monolayers at the air/water interface.

    PubMed

    Tsoukanova, Valeria; Salesse, Christian

    2008-11-18

    Mixed phospholipid monolayers hosting a poly(ethylene glycol) (PEG)-grafted distearoylphosphatidylethanolamine with a PEG molecular weight of 5000 (DSPE-PEG5000) spread at the air/water interface were used as model systems to study the effect of PEG-phospholipids on the lateral structure of PEG-grafted membrane-mimetic surfaces. DSPE-PEG5000 has been found to mix readily with distearoylphosphoethanolamine-succinyl (DSPE-succynil), a phospholipid whose structure resembles closely that of the phospholipid part of the DSPE-PEG5000 molecule. However, properties of mixed monolayers such as morphology and stability varied significantly with DSPE-PEG5000 content. In particular, our surface pressure, epifluorescence microscopy (EFM), and Brewster angle microscopy (BAM) studies have shown that mixtures containing 1-9 mol % of DSPE-PEG5000 form stable condensed monolayers with no sign of microscopic phase separation at surface pressures above approximately 25 mN/m. Yet, at 1 mol % of DSPE-PEG5000 in mixed monolayers, the two components have been found to behave nearly immiscibly at surface pressures below approximately 25 mN/m. For monolayers containing 18-75 mol % of DSPE-PEG5000, a high-pressure transition has been observed in the low-compressibility region of their isotherms, which has been identified on the basis of continuous BAM imaging of monolayer morphology, as reminiscent of the collapse nucleation in a pure DSPE-PEG5000 monolayer. Thus, the comparative analysis of our surface pressure, EFM, and BAM data has revealed that there exists a rather narrow range of mixture compositions with DSPE-PEG5000 content between 3 and 9 mol %, where somewhat homogeneous distribution of DSPE-PEG5000 molecules and high pressure stability can be achieved. This finding can be useful to "navigating" through possible mixture compositions while developing guidelines to the rational design of membrane-mimetic surfaces with highly controlled bio-nonfouling properties.

  15. Viscoelastic Drag Forces and Crossover from No-Slip to Slip Boundary Conditions for Flow near Air-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Maali, A.; Boisgard, R.; Chraibi, H.; Zhang, Z.; Kellay, H.; Würger, A.

    2017-02-01

    The "free" water surface is generally prone to contamination with surface impurities, be they surfactants, particles, or other surface active agents. The presence of such impurities can modify flow near such interfaces in a drastic manner. Here we show that vibrating a small sphere mounted on an atomic force microscope cantilever near a gas bubble immersed in water is an excellent probe of surface contamination. Both viscous and elastic forces are exerted by an air-water interface on the vibrating sphere even when very low doses of contaminants are present. The viscous drag forces show a crossover from no-slip to slip boundary conditions while the elastic forces show a nontrivial variation as the vibration frequency changes. We provide a simple model to rationalize these results and propose a simple way of evaluating the concentration of such surface impurities.

  16. Kinetics of adsorption of whey proteins and hydroxypropyl-methyl-cellulose mixtures at the air-water interface.

    PubMed

    Pérez, Oscar E; Carrera Sánchez, Cecilio; Pilosof, Ana M R; Rodríguez Patino, Juan M

    2009-08-15

    The aim of this research is to quantify the competitive adsorption of a whey protein concentrate (WPC) and hydroxypropyl-methyl-cellulose (HPMC so called E4M, E50LV and F4M) at the air-water interface by means of dynamic surface tensiometry and Brewster angle microscopy (BAM). These biopolymers are often used together in many food applications. The concentration of both protein and HPMC, and the WPC/HPMC ratio in the aqueous bulk phase were variables, while pH (7), the ionic strength (0.05 M) and temperature (20 degrees C) were kept constant. The differences observed between mixed systems were in accordance with the relative bulk concentration of these biopolymers (C(HPMC) and C(WPC)) and the molecular structure of HPMC. At short adsorption times, the results show that under conditions where both WPC and HPMC could saturate the air-water interface on their own or when C(HPMC) > or = C(WPC), the polysaccharide dominates the surface. At concentrations where none of the biopolymers was able to saturate the interface, a synergistic behavior was observed for HPMC with lower surface activity (E50LV and F4M), while a competitive adsorption was observed for E4M (the HPMC with the highest surface activity). At long-term adsorption the rate of penetration controls the adsorption of mixed components. The results reflect complex competitive/synergistic phenomena under conditions of thermodynamic compatibility or in the presence of a "depletion mechanism". Finally, the order in which the different components reach the interface will influence the surface composition and the film properties.

  17. Thermodynamics of the clusterization process of trans-isomers of unsaturated fatty acids at the air/water interface.

    PubMed

    Vysotsky, Yu B; Belyaeva, E A; Fomina, E S; Vollhardt, D; Fainerman, V B; Miller, R

    2012-02-23

    In the frameworks of the quantum-chemical semiempirical PM3 method, the thermodynamic parameters of trans-isomers of unsaturated carboxylic acids at the air/water interface were studied. Systems with 18-26 carbon atoms in the alkyl chain and different positions of the double bond are considered. Using quantum-chemical semiempirical PM3 method enthalpy, Gibbs' energy of monomers' formation from the elementary compounds and absolute entropy of trans-unsaturated carboxylic acids are calculated. It has been shown that thermodynamic parameters mentioned above for isomers with the same number of carbon atoms in the hydrocarbon chain but different position of double bond are practically the same within the margin of error. For dimers, trimers, and tetramers of the four trans-unsaturated carboxylic acids, the thermodynamic parameters of clusterization were calculated. It is shown that the position of double bond does not significantly affect the values of thermodynamic parameters of formation and clusterization of carboxylic acids with equal alkyl chain lengths. The only exception is the case that the double bond is in the ω-position (extremely distanced from the carboxylic group). In this case, the number of intermolecular interactions between alkyl chains is changed. Spontaneous clusterization of trans- in the standard conditions is possible for molecules that possess more than 16-17 carbon atoms in the alkyl chain. These threshold values exceed the corresponding values that were calculated previously using the quantum-chemical PM3 method for saturated carboxylic acids (12-13 carbon atoms in the alkyl chain) and are a little bit smaller than the corresponding parameters for cis-unsaturated carboxylic acids (18-19 carbon atoms). These values agree with experimental parameters. Also, the calculated structural parameters of trans-unsaturated carboxylic acids' monolayer for the unit cell with a = 6.98 Å, b = 8.30 Å, and for the molecular tilt angle with 64.95° agree with

  18. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds.

  19. Protein resistance of (ethylene oxide)n monolayers at the air/water interface: effects of packing density and chain length.

    PubMed

    Liu, Guangming; Chen, Yijian; Zhang, Guangzhao; Yang, Shihe

    2007-12-14

    Protein adsorption on poly(ethylene oxide) (PEO) and oligo(ethylene oxide) (OEO) monolayers is studied at different packing densities using the Langmuir technique. In the case of a PEO monolayer, a protein adsorption minimum is revealed at sigma(-1) = 10 nm(2) for both lysozyme and fibrinogen. Manifested are two packing density regimes of steric repulsion and compressive attraction between PEO and a protein on top of the overall attraction of the protein to the air/water interface. The observed protein adsorption minimum coincides with the maximum of the surface segment density at sigma(-1) = 10 nm(2). However, OEO monolayer presents a different scenario, namely that the amount of protein adsorbed decreases monotonically with increasing packing density, indicating that the OEO chains merely act as a steric barrier to protein adsorption onto the air/water interface. Besides, in the adsorption of fibrinogen, three distinct kinetic regimes controlled by diffusion, penetration and rearrangement are recognized, whereas only the latter two were made out in the adsorption of lysozyme.

  20. A semi-analytical calculation of the electrostatic pair interaction between nonuniformly charged colloidal spheres at an air-water interface.

    PubMed

    Lian, Zengju

    2016-07-07

    We study the electrostatic pair interaction between two nonuniformly like-charged colloidal spheres trapped in an air-water interface. Under the linear Poisson-Boltzmann approximation, a general form of the electrostatic potential for the system is shown in terms of multipole expansions. After combining the translation-rotation transform of the coordinates with the numerical multipoint collection, we give a semi-analytical result of the electrostatic pair interaction between the colloids. The pair interaction changes quantitatively or even qualitatively with different distributions of the surface charges on the particles. Because of the anisotropic distribution of the surface charge and the asymmetric dielectric medium, the dipole moment of the ion cloud associating with the particle orients diagonally to the air-water interface with an angle α. When the angle is large, the colloids interact repulsively, while they attract each other when the angle is small. The attractive colloids may be "Janus-like" charged and be arranged with some specific configurations. Whatever the repulsions or the attractions, they all decay asymptotically ∝1/d(3) (d is the center-center distance of the particles) which is consistent with our general acknowledge. The calculation results also provide an insight of the effect of the ion concentration, particle size, and the total charge of the particle on the pair interaction between the particles.

  1. Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface.

    PubMed

    Dai, Zhengfei; Li, Yue; Duan, Guotao; Jia, Lichao; Cai, Weiping

    2012-08-28

    Flexible structural design and accurate controlled fabrication with structural tunability according to need for binary or multicomponent colloidal crystals have been expected. However, it is still a challenge. In this work, the phase diagram of monolayer binary colloidal crystals (bCCs) is established on the assumption that both large and small polystyrene (PS) colloidal spheres can stay at the air/water interface, and the range diagram for the size ratio and number ratio of small to large colloidal spheres is presented. From this phase diagram, combining the range diagram, we can design and relatively accurately control fabrication of the bCCs with specific structures (or patterns) according to need, including single or mixed patterns with the given relative content. Further, a simple and facile approach is presented to fabricate large-area (more than 10 cm(2)) monolayer bCCs without any surfactants, using differently sized PS spheres, based on ethanol-assisted self-assembly at the air/water interface. bCCs with different patterns and stoichiometries are thus designed from the established phase diagram and then successfully fabricated based on the volume ratios (V(S/L)) of the small to large PS suspensions using the presented colloidal self-assembling method. Interestingly, these monolayer bCCs can be transferred to any desired substrates using water as the medium. This study allows us to design desired patterns of monolayer bCCs and to more accurately control their structures with the used V(S/L).

  2. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media.

    PubMed

    Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina

    2017-02-01

    Experimental and modeling studies were performed to investigate bacteria deposition behavior in unsaturated porous media. The coupled effect of different forces, acting on bacteria at solid-air-water interfaces and their relative importance on bacteria deposition mechanisms was explored by calculating Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions such as hydrophobic, capillary and hydrodynamic forces. Negatively charged non-motile bacteria and quartz sands were used in packed column experiments. The breakthrough curves and retention profiles of bacteria were simulated using the modified Mobile-IMmobile (MIM) model, to identify physico-chemical attachment or physical straining mechanisms involved in bacteria retention. These results indicated that both mechanisms might occur in both sand. However, the attachment was found to be a reversible process, because attachment coefficients were similar to those of detachment. DLVO calculations supported these results: the primary minimum did not exist, suggesting no permanent retention of bacteria to solid-water and air-water interfaces. Calculated hydrodynamic and resisting torques predicted that bacteria detachment in the secondary minimum might occur. The capillary potential energy was greater than DLVO, hydrophobic and hydrodynamic potential energies, suggesting that film straining by capillary forces might largely govern bacteria deposition under unsaturated conditions.

  3. Three-Legged 2,2'-Bipyridine Monomer at the Air/Water Interface: Monolayer Structure and Reactions with Ni(II) Ions from the Subphase.

    PubMed

    Dai, Wenyang; Lee, Lay-Theng; Schütz, Andri; Zelenay, Benjamin; Zheng, Zhikun; Borgschulte, Andreas; Döbeli, Max; Abuillan, Wasim; Konovalov, Oleg V; Tanaka, Motomu; Schlüter, A Dieter

    2017-02-21

    The behavior of compound 2 [1,3,5-tri(2,2'-bipyridin-5-yl)benzene] with three bipyridine units arranged in a star geometry is investigated in the presence and absence of Ni(ClO4)2. Its properties at the air-water interface as well as after transfer onto a solid substrate are studied by several techniques including Brewster angle microscopy, X-ray reflectivity, neutron reflectivity, X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and atomic force microscopy combined with optical microscopy. It is found that compound 2 within the monolayers formed stays almost vertical at the interface and that at high Ni(2+)/2 (Ni(2+)/2 = 4000, 20'000) ratios two of the three bipyridine units of 2 are complexed, resulting in supramolecular sheets that are likely composed of arrays of linear metal-organic complexation polymers.

  4. The existence of longitudinal vortices in the flow of air above an air/water interface

    NASA Astrophysics Data System (ADS)

    Kou, J.; Saylor, J. R.

    2009-11-01

    Many researchers have observed the formation of longitudinal vortices in boundary layers developing over heated solid surfaces. In the present work, such vortices were observed in an air boundary layer developing over a heated water surface. The existence of these vortices was documented via infrared imaging of the water surface, which showed a consistent pattern of hot and cold streaks, coinciding with the vortex position. These vortices were also visualized through smoke injected into the air-side flow. The onset position Xc and lateral vortex spacing λ were investigated for a range of wind speeds (0.1 - 1 m/s) and air/water temperature differences (26 - 42 ^oC). Plots of Xc/λ versus the Reynolds number exhibit power-law behavior similar to that of prior work on boundary layers over heated solid surfaces. However, plots of Xc/λ versus the Grashof number show significant differences from the power-law behavior observed for heated solid plates. A theory explaining the similarity and difference between the present results and those for heated solid plates is discussed which is based on differences in the thermal boundary conditions.

  5. Introducing high-quality planar defects into colloidal crystals via self-assembly at the air/water interface

    NASA Astrophysics Data System (ADS)

    Zhong, Kuo; Demeyer, Pieter-Jan; Zhou, Xingping; Kruglova, Olga; Verellen, Niels; Moshchalkov, Victor V.; Song, Kai; Clays, Koen

    2015-02-01

    We demonstrate a facile method for fabrication of colloidal crystals containing a planar defect by using PS@SiO2 core-shell spheres as building blocks. A monolayer of solid spheres was embedded in core-shell colloidal crystals serving as the defect layer, which formed by means of self-assembly at the air/water interface. Compared with previous methods, this fabrication method results in pronounced passbands in the band gaps of the colloidal photonic crystal. The FWHM of the obtained passband is only ~16nm, which is narrower than the previously reported results. The influence of the defect layer thickness on the optical properties of these sandwiched structures was also investigated. No high-cost processes or specific equipment is needed in our approach. Inverse opals with planar defects can be obtained via calcination of the PS cores, without the need of infiltration. The experimental results are in good agreement with simulations performed using the FDTD method.

  6. Long-range attraction between colloidal spheres at the air-water interface: the consequence of an irregular meniscus

    PubMed

    Stamou; Duschl; Johannsmann

    2000-10-01

    Recent observations of charged colloidal particles trapped at the air-water interface revealed long-range interparticle attractive forces, not accounted for by the standard theories of colloidal interactions. We propose a mechanism for attraction which is based on nonuniform wetting causing an irregular shape of the particle meniscus. The excess water surface area created by these distortions can be minimized when two adjacent particles assume an optimum relative orientation and distance. Typically, for spheres with diameter of 1 &mgr;m at an interparticle distance of 2 &mgr;m, deviations from the ideal contact line by as little as 50 nm result in an interaction energy of the order of 10(4)kT. Roughness-induced capillarity explains the experimental findings, including the cluster dissolution caused by addition of detergent to the subphase and the formation of linear aggregates. This kind of interaction should also be of importance in particle-stabilized foams and emulsions.

  7. Interfacial behavior of simple inorganic salts at the air-water interface investigated with a polarizable model with electrostatic damping.

    PubMed

    Cummings, Oneka T; Wick, Collin D

    2013-08-14

    New molecular models that incorporated polarizable interactions with electrostatic damping were developed to better understand the interfacial properties of aqueous electrolyte systems. The models were parameterized to give free energies of aqueous solvation and the change in activity with respect to concentration in agreement with experiment. Specifically, we investigated NaCl, NaBr, and NaI systems, finding anion propensity for the air-water interface was reduced in comparison with previously developed polarizable models. This coincided with a more negative surface excess than that given by previously developed polarizable models. Furthermore, we investigated the interfacial properties of SrCl2 aqueous systems, finding that strontium had a moderate enhancement in interfacial density in comparison with bulk, while still having a fairly large negative surface excess, in agreement with experimental results.

  8. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  9. Anomalously large electro-optic Pockels effect at the air-water interface with an electric field applied parallel to the interface

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuto; Osawa, Kengo; Yukita, Shunpei; Kobayashi, Takayoshi; Tokunaga, Eiji

    2016-05-01

    The optical Pockels effect was observed at the air-water interface by electromodulation spectroscopy. When an AC electric field of frequency f was applied parallel to a water surface between Pt electrodes, the field induced a change in the transmitted light intensity synchronized at 1f proportional to the field strength. The 1f signals dominated over 2f signals by one order of magnitude and the signal disappeared when the electrodes were completely immersed under the water surface, strongly suggesting that the observed phenomena were due to the Pockels effect at the air-water interface. The Pockels coefficient was estimated to be | r | = 1.4 × 105 pm/V, which is much larger than that at the solid-water interface. However, this is unusual because the parallel electric field does not induce the break in inversion symmetry required for the appearance of the Pockels effect. The electrowetting effect was experimentally ruled out as a mechanism for the Pockels effect, and this made the existence of a field perpendicular to the surface, although extremely weak, the most likely explanation.

  10. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    PubMed

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after

  11. Ions at the air-water interface: an end to a hundred-year-old mystery?

    PubMed

    Levin, Yan; dos Santos, Alexandre P; Diehl, Alexandre

    2009-12-18

    Availability of highly reactive halogen ions at the surface of aerosols has tremendous implications for the atmospheric chemistry. Yet neither simulations, experiments, nor existing theories are able to provide a fully consistent description of the electrolyte-air interface. In this Letter a new theory is proposed which allows us to explicitly calculate the ionic density profiles, the surface tension, and the electrostatic potential difference across the solution-air interface. Predictions of the theory are compared to experiments and are found to be in excellent agreement. The theory also sheds new light on one of the oldest puzzles of physical chemistry--the Hofmeister effect.

  12. Intraday evaporation and heat fluxes variation at air-water interface of extremely shallow lakes in Chilean Andean Plateau

    NASA Astrophysics Data System (ADS)

    Vergara, Jaime; de la Fuente, Alberto

    2016-04-01

    Salars are landscapes formed by evapo-concentration of salts that usually have extremely shallow terminal lagoons (de la Fuente & Niño, 2010). They are located in the altiplanic region of the Andes Mountains of Chile, Argentina, Bolivia and Peru, and they sustain highly vulnerable and isolated ecosystems in the Andean Desert. These ecosystems are sustained by benthic primary production, which is directly linked to mass, heat and momentum transfer between the water column and the atmosphere (de la Fuente, 2014). Despite the importance of these transport processes across the air-water interface, there are few studies describing their intraday variation and how they are influenced by the stability of the atmospheric boundary layer in the altiplano. The main objective of this work is to analyze the intraday vertical transport variation of water vapor, temperature and momentum between the atmosphere and a shallow water body on Salar del Huasco located in northern Chile (20°19'40"S, 68°51'25"W). To achieve this goal, we measured atmospheric and water variables in a campaign realized on late October 2015, using high frequency meteorological instruments (a sonic anemometer with an incorporated infrared gas analyzer, and a standard meteorological station) and water sensors. From these data, we characterize the intraday variation of water vapor, temperature and momentum fluxes, we quantify the influence of the atmospheric boundary layer stability on them, and we estimate transfer coefficients associated to latent heat, sensible heat, hydrodynamic drag and vertical transport of water vapor. As first results, we found that latent and sensible heat fluxes are highly influenced by wind speed rather buoyancy, and we can identify four intraday intervals with different thermo-hydrodynamic features: (1) cooling under stable condition with wind speed near 0 from midnight until sunrise; (2) free convection with nearly no wind speed under unstable condition from sunrise until midday

  13. Resistance of β-casein at the air-water interface to enzymatic cleavage.

    PubMed

    Lin, Jhih-Min; Ang, Joo Chuan; White, J W

    2010-12-21

    X-ray reflectivity from an air-buffer interfacial β-casein monomolecular film placed on a solution of chymosin (renin) showed unexpectedly slow proteolytic cleavage. To understand this, the separate structures of β-casein and chymosin, the presentation of each molecule to the other at the air/liquid interface, and that of their mixtures is reported. At the air/solution interface, the hydrophobicity of the protein molecules causes orientation and some deformation of the conformation. When β-casein was presented to a chymosin monomolecular interfacial film, the chymosin was largely displaced from the surface, which was accounted for by the different surfactancy of the two molecules at 25 °C. There was no observable proteolysis. In the reverse experiment, a significant enzymatic degradation and the signature of hydrophobic fragments was observed but only at and above an enzyme concentration of 0.015 mg/mL in the substrate. For comparison, the air/solution interface of premixed β-casein with chymosin in phosphate buffer showed that the film was composed of β-casein proteolytic fragments and chymosin.

  14. Impact of biogenic amine molecular weight and structure on surfactant adsorption at the air-water interface.

    PubMed

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun

    2016-02-01

    The oligoamines, such as ethylenediamine to pentaethylenetetramine, and the aliphatic biogenic amines, such as putrescine, spermidine and spermine, strongly interact with anionic surfactants, such as sodium dodecylsulfate, SDS. It has been shown that this results in pronounced surfactant adsorption at the air-water interface and the transition from monolayer to multilayer adsorption which depends upon solution pH and oligoamine structure. In the neutron reflectivity, NR, and surface tension, ST, results presented here the role of the oligoamine structure on the adsorption of SDS is investigated more fully using a range of different biogenic amines. The effect of the extent of the intra-molecular spacing between amine groups on the adsorption has been extended by comparing results for cadavarine with putrescine and ethylenediamine. The impact of more complex biogenic amine structures on the adsorption has been investigated with the aromatic phenethylamine, and the heterocyclic amines histamine and melamine. The results provide an important insight into how surfactant adsorption at interfaces can be manipulated by the addition of biogenic amines, and into the role of solution pH and oligoamine structure in modifying the interaction between the surfactant and oligoamine. The results impact greatly upon potential applications and in understanding some of the important biological functions of biogenic amines.

  15. Two-phase lattice Boltzmann modelling of streaming potentials : influence of the air-water interface on the electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Fiorentino, Eve-Agnès; Toussaint, Renaud; Jouniaux, Laurence

    2016-11-01

    The streaming potential phenomenon is an electrokinetic effect that occurs in porous media. It is characterized by an electrokinetic (EK) coefficient. The aim of this paper is to simulate the EK coefficient in unsaturated conditions using the Lattice Boltzmann method in a 2-D capillary channel. The multiphase flow is simulated with the model of Shan & Chen (1993). The Poisson-Boltzmann equation is solved by implementing the model of Chai & Shi (2008). The streaming potential response shows a non-monotonous behaviour due to the combination of the increase of charge density and decrease of flow velocity with decreasing water saturation. Using a ζ potential of -20 mV at the air-water interface, an enhancement of a factor 5 to 30 of the EK coefficient, compared to the saturated state, can be observed due to the positive charge excess at this interface which is magnified by the fluid velocity away from the rock surface. This enhancement is correlated to the fractioning of the bubbles, and to the dynamic state of these bubbles, moving or entrapped in the crevices of the channel.

  16. Flow-induced molecular segregation in beta-casein-monoglyceride mixed films spread at the air-water interface.

    PubMed

    Sánchez, Cecilio Carrera; Rodríguez Patino, Juan M

    2004-07-20

    In this work, we have used different and complementary interfacial techniques (surface film balance, Brewster angle microscopy, and interfacial shear rheology) to analyze the static (structure, topography, reflectivity, miscibility, and interactions) and flow characteristics (surface shear characteristics) of beta-casein and monoglyceride (monopalmitin and monoolein) mixed films spread on the air-water interface. The structural, topographical, and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity (etas) varies greatly with the surface pressure. In general, the greater the surface pressure, the greater the values of etas. At higher surface pressures, collapsed beta-casein residues may be displaced from the interface by monoglyceride molecules with important repercussions on the shear characteristics of the mixed films. A shear-induced change in the topography of monoglyceride and beta-casein domains, on one hand, and a segregation between domains of the film-forming components, on the other hand, were also observed. The displacement of the beta-casein by the monoglycerides is facilitated under shear conditions, especially for beta-casein-monoolein mixed films.

  17. Dynamic performance of duolayers at the air/water interface. 2. Mechanistic insights from all-atom simulations.

    PubMed

    Christofferson, Andrew J; Yiapanis, George; Leung, Andy H M; Prime, Emma L; Tran, Diana N H; Qiao, Greg G; Solomon, David H; Yarovsky, Irene

    2014-09-18

    The novel duolayer system, comprising a monolayer of ethylene glycol monooctadecyl ether (C18E1) and the water-soluble polymer poly(vinylpyrrolidone) (PVP), has been shown to resist forces such as wind stress to a greater degree than the C18E1 monolayer alone. This paper reports all-atom molecular dynamics simulations comparing the monolayer (C18E1 alone) and duolayer systems under an applied force parallel to the air/water interface. The simulations show that, due to the presence of PVP at the interface, the duolayer film exhibits an increase in chain tilt, ordering, and density, as well as a lower lateral velocity compared to the monolayer. These results provide a molecular rationale for the improved performance of the duolayer system under wind conditions, as well as an atomic-level explanation for the observed efficacy of the duolayer system as an evaporation suppressant, which may serve as a useful guide for future development for thin films where resistance to external perturbation is desirable.

  18. Two-phase Lattice Boltzmann modelling of streaming potentials: influence of the air-water interface on the electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Fiorentino, Eve-Agnès; Toussaint, Renaud; Jouniaux, Laurence

    2017-02-01

    The streaming potential phenomenon is an electrokinetic effect that occurs in porous media. It is characterized by an electrokinetic (EK) coefficient. The aim of this paper is to simulate the EK coefficient in unsaturated conditions using the Lattice Boltzmann method in a 2-D capillary channel. The multiphase flow is simulated with the model of Shan & Chen. The Poisson-Boltzmann equation is solved by implementing the model of Chai & Shi. The streaming potential response shows a non-monotonous behaviour due to the combination of the increase of charge density and decrease of flow velocity with decreasing water saturation. Using a ζ potential of -20 mV at the air-water interface, an enhancement of a factor 5-30 of the EK coefficient, compared to the saturated state, can be observed due to the positive charge excess at this interface which is magnified by the fluid velocity away from the rock surface. This enhancement is correlated to the fractioning of the bubbles, and to the dynamic state of these bubbles, moving or entrapped in the crevices of the channel.

  19. Galaxy-like organization of floaters at the air-water interface of Faraday waves

    NASA Astrophysics Data System (ADS)

    Alarcón, Héctor; Périnet, Nicolas; Gutiérrez, Pablo; Gordillo, Leonardo; Mujica, Nicolás

    2016-11-01

    The fluid properties mismatch across an air-liquid interface allows to trap particles at it. These particles are called floaters and appear in nature at different scales: plankton, organic residues, and garbage, all relevant for the oceanic ecosystem. In static systems they tend to attract or repel each other, depending on their wetting properties and buoyancy. When they are subjected to a flow, such as surface waves, they may drift and form structures at the interface. In a recent work using PIV on Faraday waves, we have measured a streaming flow that emerges inside the bulk, leading to a slow circulation of fluid particles across the liquid. The flow is mainly generated by the viscous shearing at the walls of the container. Our new experiments show that this flow has a remarkable effect on the drift of small hydrophilic particles (floaters), which leads to a rare arrangement of the floaters that resemble rotating galaxies. The forcing amplitude determines the galaxy shape, controlling the number and the length of its arms as well as its rotation velocity. Thanks to FONDECYT POSTDOCTORADO N°3160341, N°3140522, N°3140550.

  20. X-ray reflectivity and grazing incidence diffraction studies of interaction between human adhesion/growth-regulatory galectin-1 and DPPE-GM1 lipid monolayer at an air/water interface.

    PubMed

    Majewski, J; André, S; Jones, E; Chi, E; Gabius, H-J

    2015-07-01

    The specific interaction of ganglioside GM1 with the homodimeric (prototype) endogenous lectin galectin-1 triggers growth regulation in tumor and activated effector T cells. This proven biorelevance directed interest to studying association of the lectin to a model surface, i.e. a 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine/ganglioside GM1 (80 : 20 mol%) monolayer, at a bioeffective concentration. Surface expansion by the lectin insertion was detected at a surface pressure of 20 mN/m. On combining the methods of grazing incidence X-ray diffraction and X-ray reflectivity, a transient decrease in lipid-ordered phase of the monolayer was observed. The measured electron density distribution indicated that galectin-1 is oriented with its long axis in the surface plane, ideal for cis-crosslinking. The data reveal a conspicuous difference to the way the pentameric lectin part of the cholera toxin, another GM1-specific lectin, is bound to the monolayer. They also encourage further efforts to monitor effects of structurally different members of the galectin family such as the functionally antagonistic chimera-type galectin-3.

  1. Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface.

    PubMed

    Hua, Wei; Verreault, Dominique; Allen, Heather C

    2015-11-04

    Sulfuric acid (H2SO4), bisulfate (HSO4(-)), and sulfate (SO4(2-)) are among the most abundant species in tropospheric and stratospheric aerosols due to high levels of atmospheric SO2 emitted from biomass burning and volcanic eruptions. The air/aqueous interfaces of sulfuric acid and bisulfate solutions play key roles in heterogeneous reactions, acid rain, radiative balance, and polar stratospheric cloud nucleation. Molecular-level knowledge about the interfacial distribution of these inorganic species and their perturbation of water organization facilitates a better understanding of the reactivity and growth of atmospheric aerosols and of the aerosol surface charge, thus shedding light on topics of air pollution, climate change, and thundercloud electrification. Here, the air/aqueous interface of NaHSO4, NH4HSO4, and Mg(HSO4)2 salt solutions as well as H2SO4 and HCl acid solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne-detected (HD) VSFG spectroscopy. VSFG spectra of all acid solutions show higher SFG response in the OH-bonded region relative to neat water, with 1.1 M H2SO4 being more enhanced than 1.1 M HCl. In addition, VSFG spectra of bisulfate salt solutions highly resemble that of the dilute H2SO4 solution (0.26 M) at a comparable pH. HD-VSFG (Im χ((2))) spectra of acid and bisulfate salt solutions further reveal that hydrogen-bonded water molecules are oriented preferentially toward the bulk liquid phase. General agreement between Im χ((2)) spectra of 1.1 M H2SO4 and 1.1 M HCl acid solutions indicate that HSO4(-) ions have a similar surface preference as that of chloride (Cl(-)) ions. By comparing the direction and magnitude of the electric fields arising from the interfacial ion distributions and the concentration of each species, the most reasonable relative surface preference that can be deduced from a simplified model follows the order H3O(+) > HSO4(-) > Na(+), NH4(+), Mg(2+) > SO4(2-). Interestingly

  2. Structure of Polystyrene Sulfonate/Surfactant Mixtures at Air-Water Interfaces and their Role as Building Blocks for Macroscopic Foam.

    PubMed

    Schulze-Zachau, Felix; Braunschweig, Björn

    2017-03-20

    Air/water interfaces were modified by oppositely charged poly(sodium 4-styrenesulfonate) (NaPSS) and hexadecyltrimethylammonium bromide (CTAB) polyelectrolyte/surfactant mixtures and were studied on a molecular level with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry. In order to deduce structure property relations, our results on the interfacial molecular structure and lateral interactions of PSS(-)/CTA(+) complexes were compared to the stability and structure of macroscopic foam as well as to bulk properties. For that, the CTAB concentration was fixed to 0.1 mM, while the NaPSS concentration was varied. At NaPSS monomer concentrations <0.1 mM, PSS(-)/CTA(+) complexes start to replace free CTA(+) surfactants at the interface and thus reduce the interfacial electric field in the process. This causes the O-H bands from interfacial H2O molecules in our SFG spectra to decrease substantially, which reach a local minimum in intensity close to equimolar concentrations. Once electrostatic repulsion is fully screened at the interface, hydrophobic PSS(-)/CTA(+) complexes dominate and tend to aggregate at the interface and in the bulk solution. As a consequence, adsorbate layers with the highest film thickness, surface pressure and dilatational elasticity are formed. These surface layers provide much higher stabilities and foamabilities of polyhedral macroscopic foams. Mixtures around this concentration show precipitation after a few days, while their surfaces to air are in a local equilibrium state. Concentrations >0.1 mM result in a significant decrease in surface pressure and a complete loss in foamability. However, SFG and surface dilatational rheology provide strong evidence for the existence of PSS(-)/CTA(+) complexes at the interface. At polyelectrolyte concentrations >10 mM, air-water interfaces are dominated by an excess of free PSS(-) polyelectrolytes and small amounts of PSS(-)/CTA(+) complexes which

  3. Tailoring a compact and stable Langmuir bi-dimensional PbX-based layered perovskite film at the air-water interface and on solid support.

    PubMed

    Ariza-Carmona, Luisa; García-Espejo, Gonzalo; Martín-Romero, María T; Camacho, Luis

    2017-03-14

    The present work studies the stability of Langmuir organic-inorganic superlattice materials thin films consisting of layered perovskite-based films with controlled 2D framework as well as to design experimental conditions for increasing the efficiency of the organic-inorganic perovskite motif by mechanical stimulus. Therefore, a whole covering of the air/water interface by a compact and stable lead-based layered perovskite structure is pursued. A 2D layered perovskite-type hybrid structure of the form [(CH3(CH2)19NH3)2(PbX4)], X=Cl, and Br, in which, two-dimensional sheets stabilized by a inner bilayer of organic monoammonium cation matrix, is mechanically tailored by successive compression-expansion cycles. The formation of 2D molecular patterns has been characterized by ΔR, BAM, XRD and XPS.

  4. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging.

    PubMed

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan; Bjørnholm, Thomas

    2011-12-01

    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring the surface pressure and surface area decrease versus time. In the second approach we applied AFM imaging of the supported BSA monolayers adsorbed on mica solid supports and extracted information for the enzyme action by analyzing the obtained images of the surface topography in the course of enzyme action. In both cases we obtained an estimate for the turnover number (TON) of the enzyme reaction.

  5. Stabilization of alkylated azacrown ether by fatty acid at the air-water interface.

    PubMed

    Zarbakhsh, Ali; Campana, Mario; Webster, John R P; Wojciechowski, Kamil

    2010-12-07

    The adsorbed amount of partially deuterated dihexadecyl-diaza-18-crown-6 ether (d-ACE16) in the presence of different chain length fatty acids as a function of surface pressure was determined by neutron reflectometry technique. The highest adsorbed amount of the azacrown ether was observed for the mixture of ACE16 with hexadecanoic (palmitic) acid, pointing to the importance of chain length matching between the two species for optimum stabilization of the mixed monolayer. The contrast variation technique was used to estimate the contribution to the total adsorbed amount from stearic acid and ACE16. It was found that the mixed Langmuir monolayer is stable against dissolution up to a surface pressure of 20 mN m(-1). Above this pressure, however, the spread and adsorbed amounts start to deviate, indicative of partial dissolution into the aqueous subphase. The consequences of this behavior for the transport of metal ions through the interfaces of permeation liquid membranes (PLMs) are discussed.

  6. Non-linear surface dilatational rheology as a tool for understanding microstructures of air/water interfaces stabilized by oligofructose fatty acid esters.

    PubMed

    van Kempen, Silvia E H J; Schols, Henk A; van der Linden, Erik; Sagis, Leonard M C

    2013-10-28

    In this paper, the rheological response of air/water interfaces, stabilized by various oligofructose fatty acid esters, to oscillatory dilatational deformations was studied and compared to the response of interfaces stabilized by sucrose esters. We have followed a traditional approach to surface rheology, where the development of the modulus as a function of time is studied as well as the frequency dependence of the modulus. We also adopted a different approach where we investigate in detail the amplitude dependence of the modulus. Finally, we studied the temperature dependence. We show that for an accurate characterization of the dilatational rheology of fluid–fluid interfaces with a complex microstructure, a protocol should be used that not only involves variations of surface pressure, frequency, and temperature, but also establishes amplitude dependence. We show that Lissajous plots of surface pressure versus deformation can be useful tools to help interpret surface dilatational behavior in terms of interfacial microstructure. The rheological response of interfaces stabilized by oligofructose esters differed significantly from the response of those stabilized by sucrose esters. Sucrose esters behaved like typical low molecular weight surfactants, and gave interfaces with relatively low moduli, a frequency scaling of the dilatational modulus with an exponent close to 0.5, and displayed no asymmetries in Lissajous plots. In contrast, the oligofructose esters gave, depending on the fatty acid tail, relatively high moduli, almost independent of frequency. Significant asymmetries were observed in the Lissajous plots, with strain hardening during compression and strain softening during extension. Our results suggest that the unusual rheological properties of interfaces stabilized by oligofructose esters may be the result of the formation of a two-dimensional soft glass phase by the oligofructose part of the ester.

  7. Coalescence of protein-stabilized bubbles undergoing expansion at a simultaneously expanding planar air-water interface.

    PubMed

    Murray, Brent S; Dickinson, Eric; Lau, Cathy Ka; Nelson, Phillip V; Schmidt, Estelle

    2005-05-10

    A novel design of apparatus is described that allows observation of the coalescence stability of bubbles at a planar interface when the planar interface and the bubble surface both expand. Bubbles are introduced beneath the planar air-water interface contained within a square barrier made of perfluorocarbon rubber. The bubbles are then expanded by reducing the air pressure above the interface, while at the same time the rubber barrier is mechanically expanded, maintaining its square shape, to give the same rate and extent of expansion of the planar interface. The area can typically be increased by a factor of three over time scales as short as 0.2 s. This arrangement has been designed to mimic the behavior of aerated products when they exit from a pressurized aeration unit or product dispenser. Compared to results obtained via a previous technique, where it was only possible to expand the bubbles but not the planar interface, the bubbles are less stable. The apparatus has been used to compare the stabilizing effects of ovalbumin, beta-lactoglobulin, whey protein isolate, and sodium caseinate, in a model aqueous food system thickened with 40% invert sugar. Stability improved with increasing concentration of all the proteins and with a decrease in expansion rate, but considerable instability remained even at protein concentrations as high as 4 to 6 wt % and also at very low expansion rates, though the systems were stable in the absence of expansion. However, the stability was greatly improved by the replacement of the above proteins by the hydrocolloids gelatine or polypropylene glycol alginate. Detailed analysis revealed that the coalescence of individual bubbles in clusters of bubbles were not strongly correlated in distance or time, but larger bubbles and bubbles toward the outside of a cluster were found to be, on average, less stable than smaller bubbles and bubbles located more toward the interior of a cluster. The different degrees of stability are discussed

  8. Towards a unified picture of the water self-ions at the air-water interface: a density functional theory perspective

    SciTech Connect

    Baer, Marcel D.; Kuo, I-F W.; Tobias, Douglas J.; Mundy, Christopher J.

    2014-07-17

    The propensities of the water self ions, H3O+ and OH- , for the air-water interface has implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O+ and/or OH- prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs. interfacial behavior of H3O+ and OH- that employs forces derived from density functional theory with a generalized gradient approximation exchangecorrelation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF) for H3O+ as a function of the position of the ion in a 215-molecule water slab. The PMF is flat, suggesting that H3O+ has equal propensity for the air-water interface and the bulk. We compare the PMF for H3O+ to our previously computed PMF for OH- adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs. the bulk are connected with interfacial propensity. We find that the solvation shell of H3O+ is only slightly dependent on its position in the water slab, while OH- partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions. DJT was supported by National Science Foundation grant CHE-0909227. CJM was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. The potential of mean force required resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC05-00OR22725. The remaining simulations

  9. Photoinduced electron transfer in a monolayer at the air-water interface

    SciTech Connect

    Matsumoto, Mutsuyoshi; Ahuja, R.C.; Moebius, D.

    1992-07-09

    Photoinduced electron transfer from the amphiphilic oxacyanine (donor) to the amphiphilic viologen (acceptor) embedded on a DMPC matrix is investigated in the monolayer. Steady-state fluorescence intensity-area isotherms were measured simultaneously with surface pressure-area isotherms. In the absence of the acceptor, the fluorescence intensity normalized to surface density increased with an increase in surface pressure, which was suggested to be due to an increase in the lifetime of the excited state of the donor. Dimer formation of the donor is not found in the present case even at the donor density of 0.22 nm{sup {minus}2}, contrary to the LB film case where it is found at donor densities as low as 0.01 nm{sup {minus}2} with cadmium arachidate/methyl arachidate = 1/1 as a matrix. This shows the important role of the matrix in this type of work. In the presence of the acceptor, the relative fluorescence intensity decreases strongly with increasing surface pressure and molar fraction of the acceptor. This is due to the electron transfer from the excited state of the donor to the ground state of the acceptor. The relative fluorescence intensity depends on the densities of the donor and the acceptor and also on the lifetime of the excited state of the donor. The critical distance for the electron transfer is 0.9 nm at 2 mN m{sup {minus}1} and 1.5 nm at 40 mN m{sup {minus}1}. The close match between the observed and simulated values shows that the energy delocalization via incoherent exciton hopping is not significant in the present monolayer case as opposed to the LB film systems where the donor and acceptor are localized at the same interface. The discrepancy may be due to the larger values of the donor-to-acceptor ratio in the LB film case. 24 refs., 6 figs.

  10. Effect of perfluoroalkyl chain length on monolayer behavior of partially fluorinated oleic acid molecules at the air-water interface.

    PubMed

    Baba, Teruhiko; Takai, Katsuki; Takagi, Toshiyuki; Kanamori, Toshiyuki

    2013-01-01

    A series of oleic acid (OA) analogs containing terminal perfluoroalkyl groups (CF3, C2F5, n-C3F7, n-C4F9 or n-C8F17) was synthesized to clarify how the fluorinated chain length affects the stability and molecular packing of liquid-expanded OA monolayers at the air-water interface. Although the substitution of terminal CF3 group for CH3 in OA had no effect on monolayer stability, further fluorination led to a gradual increase in monolayer stability at 25 °C. Surface pressure-area isotherm revealed that partially fluorinated OA analogs form more expanded monolayers than OA at low surface pressures, and that the monolayer behavior of OA analogs with the even-carbon numbered fluorinated chain is almost the same as that of OA upon monolayer compression, whereas the behavior of OA analogs with the odd-carbon numbered fluorinated chain significantly differs from that of OA. These results indicate: (i) the terminal short part (at least C2 residue) in OA predominantly determines the liquid-expanded monolayer stability; (ii) the molecular packing state of OA may be perturbed by the substitution of a short odd-carbon numbered fluorinated chain; (iii) hence, OA analogs with even-carbon numbered chain are considered to be preferable as hydrophobic building blocks for the synthesis of fluorinated phospholipids.

  11. Self-similar assemblies of globular whey proteins at the air-water interface: effect of the structure.

    PubMed

    Mahmoudi, Najet; Gaillard, Cédric; Boué, François; Axelos, Monique A V; Riaublanc, Alain

    2010-05-01

    We investigated the structure of heat-induced assemblies of whey globular proteins using small angle neutron scattering (SANS), static and dynamic light scattering (SLS and DLS), and cryogenic transmission electron microscopy (Cryo-TEM). Whey protein molecules self-assemble in fractal aggregates with a structure density depending on the electrostatic interactions. We determined the static and dynamic properties of interfacial layer formed by the protein assemblies, upon adsorption and spreading at the air-water interface using surface film balance and interfacial dilatational rheology. Upon spreading, all whey protein systems show a power-law scaling behavior of the surface pressure versus concentration in the semi-dilute surface concentration regime, with an exponent ranging from 5.5 to 9 depending on the electrostatic interactions and the aggregation state. The dilatational modulus derived from surface pressure isotherms shows a main peak at 6-8 mN/m, generally considered to be the onset of a conformational change in the monolayer, and a second peak or a shoulder at 15 mN/m. Long-time adsorption kinetics give similar results for both the native whey proteins and the corresponding self-similar assemblies, with a systematic effect of the ionic strength.

  12. Effects of chain unsaturation on the equation of state for lipid monolayers at the air-water interface.

    PubMed Central

    Feng, S S; MacDonald, R C

    1995-01-01

    An equation of state for lipid monolayers at the air-water interface is presented, which takes into account the effects of the conformation and the number and position of double bonds of the hydrocarbon chains. The total Hamiltonian of the monolayer is assumed to consist of three terms. Two of them are calculated exactly within the limitations of the formulation. These are the two-dimensional entropy of mixing of the lipid and water molecules at the surface and the conformational entropy of the chains using a model available from the literature. These two terms give rise to positive surface pressure. The third term, which includes all energies that are not amenable to calculation, was obtained as the difference between the sum of the two calculated terms and experimental data and is found to represent an approximately area-independent tension. The effects of chain unsaturation on the equation of state were modeled in the present theory in two ways; the chain bend caused by cis double bonds increases the minimal molecular area, and the double bond linkage on a chain decreases the degrees of freedom of the chain. Calculations revealed that the former is highly significant whereas the latter is negligible. The deduced equation of state reproduces experimental data with appropriate values for three parameters, which represent the collapse area, the overlap of adjacent chains, and the combined effects of the intra- and intermolecular interactions other than the surface mixing entropy and the chain conformational energy. PMID:8527660

  13. Porphyrin assemblies through the air/water interface: effect of hydrogen bond, thermal annealing, and amplification of supramolecular chirality.

    PubMed

    Rong, Yunlong; Chen, Penglei; Wang, Dongjun; Liu, Minghua

    2012-04-17

    Molecular assemblies of two achiral porphyrins with different substituents, 5-(4-methoxycarbonylphenyl)-10,15,20-triphenyl-21H,23H-porphine (TPPCOOMe) and 5-(4-carboxyphenyl)-10,15,20-triphenyl-21H,23H-porphine (TPPCOOH), have been fabricated by the Langmuir-Blodgett (LB) technique. It is disclosed that although only slight differences exist in the molecular skeleton of these two compounds, their interfacial assemblies display distinct chiroptical properties. It is found that weak circular dichroism (CD) signals are observed from the TPPCOOH assemblies, while in the case of the TPPCOOMe assemblies, only negligible CD signals could be detected. Interestingly, after the assemblies are subjected to a thermal annealing treatment, TPPCOOH assemblies show a distinct amplification of CD signals, while those of TPPCOOMe do not. An explanation in terms of the effect of substituents on the spreading properties of the compounds and the effect of intermolecular hydrogen bonds on the cooperative stacking of the building blocks is proposed to explain these new findings. The investigation suggests that in the present porphyrin systems, besides a nice spreading property, the cooperative interaction of various noncovalent interactions, including hydrogen bonding, π-π stacking, and hydrophobic interactions, is essentially required for the occurrence of symmetry breaking at the air/water interface.

  14. A first attempt to enhance the 2-D single-crystal growth of a protein at an air/water interface from hydrodynamics

    NASA Astrophysics Data System (ADS)

    Drazek, L.; Legrand, J.-F.; Davoust, L.

    2005-02-01

    An alternative technique to grow a 2-D crystal of protein at a functionalized air/water interface is proposed. The first part of this paper briefly reviews 2-D crystal growth at a fluid interface and deals with our first experiments on streptavidin whose 2-D (poly)crystallization ability is well known. In the experiments, the involved air/water interface is functionalized with a mixed lipidic monolayer made of DOPC and biotinylated lipids. The second part of the paper relates to an alternative strategy we propose in order to enhance the 2-D single-crystal growth of a protein at a liquid interface. The idea is to get benefit from an axisymmetric swirling flow driven in a water sub-phase confined within an annular channel. The swirl is expected to control the distribution of the proteins at the air/water interface and to promote the growth of a 2-D single crystal from the smallest to the largest radii (radial segregation). An analytical modelling based on a low Reynolds number asymptotic development demonstrates how two control parameters, the mean channel curvature and the Reynolds number of the shear flow, can be helpful in tuning the magnitude of the swirl and therefore the crystal growth.

  15. Phases, line tension and pattern formation in molecularly thin films at the air-water interface

    NASA Astrophysics Data System (ADS)

    Mandal, Pritam

    A Langmuir film, which is a molecularly thin insoluble film on a liquid substrate, is one practical realization of a quasi-two dimensional matter. The major advantages of this system for the study of phase separation and phase co-existence are (a) it allows accurate control of the components and molecular area of the film and (b) it can be studied by various methods that require very flat films. Phase separation in molecularly thin films plays an important role in a range of systems from biomembranes to biosensors. For example, phase-separated lipid nano-domains in biomembranes are thought to play crucial roles in membrane function. I use Brewster Angel Microscopy (BAM) coupled with Fluorescence Microscopy (FM) and static Light Scattering Microscopy (LSM) to image phases and patterns within Langmuir films. The three microscopic techniques --- BAM, FM and LSM --- are complimentary to each other, providing distinct sets of information. They allow direct comparison with literature results in lipid systems. I have quantitatively validated the use of detailed hydrodynamic simulations to determine line tension in monolayers. Line tension decreases as temperature rises. This decrease gives us information on the entropy associated with the line, and thus about line structure. I carefully consider the thermodynamics of line energy and entropy to make this connection. In the longer run, LSM will be exploited to give us further information about line structure. I have also extended the technique by testing it on domains within the curved surface of a bilayer vesicle. I also note that in the same way that the presence of surface-active agents, known as surfactants, affects surface energy, the addiction of line active agents alters the inter-phase line energy. Thus my results set to stage to systematically study the influence of line active agents ---'linactants' --- on the inter-phase line energy. Hierarchal self-assembled chiral patterns were observed as a function of

  16. Extracellular enzyme activity at the air-water interface of an estuarine lake

    NASA Astrophysics Data System (ADS)

    Mudryk, Z. J.; Skórczewski, P.

    2004-01-01

    Variations in hydrolytic activity of eight extracellular enzymes in surface and subsurface waters in estuarine Lake Gardno were measured. The ranking of potential activity rates of the assayed enzymes was the same in both surface and subsurface water, i.e. esterase > lipase > aminopeptidase > phosphatase > β-glucosidase > α-glucosidase > chitinase > β-lactosidase. The vertical activity profiles show that esterase, aminopeptidase, α-glucosidase, β-glucosidase and β-lactosidase reached the highest values in surface layer, whereas lipase, phosphatase and chitinase showed maximum activity in subsurface water. Significant differences in enzyme activity between different parts of the studied lake were demonstrated, with higher values in the seawater zone, and lower values in the freshwater zone.

  17. Equation of state for a coarse-grained DPPC monolayer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Adhangale, Parag S.; Gaver, Donald P., III

    Pulmonary surfactant, a complex mixture of phospholipids and proteins, secreted by the type II epithelial cells in the lungs, is crucial to reducing the effort required for breathing. A lack of adequate amounts of pulmonary surfactant in underdeveloped lungs of premature infants results in infant respiratory distress syndrome (RDS). Surfactant replacement therapy (SRT) is the approved method of mitigating the effects of RDS. The development of new SRT regimens requires a fundamental understanding of the links between surfactant biochemistry and functionality. We use a coarse-grained (CG) model to predict the surface pressure-surface concentration relationship (equation of state) for pure DPPC, which is a major component of endogenous and synthetic pulmonary surfactant mixtures. We show that the model can be efficiently used to predict the equation of state in excellent agreement with experimental results. We also study the structure of the monolayer as a function of the surface tension of the system. We show that a decrease in the applied surface tension results in an increase in order in the head group region and a decrease in order in the tail region of DPPC. This technique may be useful in the prediction of equations of state for surfactant replacements.

  18. Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Shi, Ruixin; Hao, Changchun; Chen, Huan; Zhang, Lei; Li, Junhua; Xu, Guoqing; Sun, Runguang

    2016-09-01

    The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics. The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine (DPPE) by analyzing the data of surface pressure-area (π-A) isotherms and surface pressure-time (π-T) curves. Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 mN/m. However, the changes of DPPE are larger than DPPC, indicating stronger interaction of lysozyme with DPPE than DPPC. The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 mN/m. Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers, which leads to self-aggregation and self-assembly, forming irregular multimers and conical multimeric. Through analysis, we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603026), and the National University Science and Technology Innovation Project of China (Grant No. 201610718013).

  19. Adsorption of submicrometer-sized cationic sterically stabilized polystyrene latex at the air-water interface: contact angle determination by ellipsometry.

    PubMed

    Hunter, Timothy N; Jameson, Graeme J; Wanless, Erica J; Dupin, Damien; Armes, Steven P

    2009-04-09

    Near-monodisperse, sterically stabilized cationic polystyrene latexes of either 122 or 310 nm diameter were prepared by aqueous emulsion polymerization using cheap, readily available reagents. At low pH, these latexes stabilized foams prepared by either hand-shaking or by using a foam column. SEM studies confirmed that the dried foam mainly comprised well-defined bilayers, which suggests that each air bubble is stabilized with a latex monolayer. Adsorption of the same latexes at the planar air-water interface was studied using the Langmuir-Blodgett trough technique. Surface pressure isotherms confirmed particle desorption from the interface on repeated compression of the latex monolayers. For the 122 nm latex at pH 2, ellipsometric analysis enabled a contact angle of approximately 43 degrees to be calculated from a simple two-layer model, which suggests that these particles have only moderate wettability. Similar results were obtained for the 310 nm latex, but the data were much less reliable in this case due to additional background particle scattering.

  20. Particle monolayer formation with arrayed structure by PMMA-grafted polystyrene Latex at the air-water interface.

    PubMed

    Mouri, Emiko; Terada, Motokazu; Koga, Ryosuke; Karakawa, Hiroyuki; Yoshinaga, Kohji

    2010-09-01

    The structure of the particle monolayer formed by the polymer-grafted latex particle at the air-water interface was estimated mainly by pi--A isotherm measurement and SEM observation to examine the effect of core particle characteristics and to generalize the key factors in determining the polymer-grafted particle monolayer structure. Methyl methacrylate (MMA) was polymerized from the polystyrene latex (PSL) surface by atom transfer radical polymerization to give a PMMA-grafted PSL (PSL-PMMA) with a relatively high graft density of about 0.2 nm-2. We obtained PSL-PMMA with PMMA of different molecular weights but almost the same graft density. The onset area of increasing surface pressure in pi-A isotherm was in agreement with the value of effective radius of PSL-PMMA with quite extended PMMA chains. The particle monolayer structure deposited on the substrate was strongly dependent on the molecular weight of the grafted PMMA. The aggregation size was reduced with increasing molecular weight and a lattice-like structure was observed for PSL-PMMA monolayer with a high molecular weight PMMA. The interparticle distance was decreased and structure becomes ordered with increasing surface pressure. The monolayer structure obtained here was consistent with that of the PMMA-grafted silica particle system. We also synthesized polystyrene (PS)-grafted PMMA latex (PML-PS) and compared the two systems. We confirmed that the lattice-like structure depended on the nature of the grafted PMMA chain, not the core particle characteristics.

  1. The interaction of eugenol with cell membrane models at the air-water interface is modulated by the lipid monolayer composition.

    PubMed

    Gonçalves, Giulia E G; de Souza, Fernanda S; Lago, João Henrique G; Caseli, Luciano

    2015-12-01

    Eugenol, a natural phenylpropanoid derivative with possible action in biological surfaces as microbicide, anesthetic and antioxidant, was incorporated in lipid monolayers of selected lipids at the air-water interface, representing cell membrane models. Interaction of eugenol with the lipids dipalmitoylphosphatidylcholine (DPPC), dioctadecyldimethylammonium bromide (DODAB), and dipalmitoylphosphatidylserine (DPPS) could be inferred by means of surface pressure-area isotherms and Polarization-Modulation Reflection-Absorption Spectroscopy. The interaction showed different effects on the different lipids. A higher monolayer expansion was observed for DPPS and DODAB, while more significant effects on the polar groups of the lipids were observed for DPPS and DPPC. These results pointed to the fact that the interaction of eugenol with lipid monolayers at the air-water interface is modulated by the lipid composition, which may be important to comprehend at the molecular level the interaction of this drug with biological surfaces.

  2. Langmuir structure of poly (2-vinylpyridine-b-hexyl isocyanate) rod-coil diblock copolymers at the air/water Interface

    NASA Astrophysics Data System (ADS)

    Ahmad, Farhan

    2005-03-01

    We conducted a systematic interfacial study for the complete range (5%-90% of rod mole percentage) of an amphiphilic rod-coil system, poly (hexyl isocyanate)-b-(2-vinylpyridine) at the air/water and air/solid interface. We applied Langmuir balance technique, scanning probe microscopy (SPM), transmission electron microscopy (TEM) and X-ray reflectivity for the complete characterization of the monolayer at the interfaces. The phase isotherms showed the well amphiphilic balance for the diblock copolymers, and the formation of stable monolayers. With the increasing rod content, the consistent increase in the monolayer packing density was observed by the phase isotherms and supported by X-ray reflectivity. SPM and TEM characterization showed their interesting surface morphology according to the varying rod mole percentage in the rod-coil system. Rod mole percentage 5%-15% showed micellar morphology. Rod mole percentage 23%-32% showed distinct and dispersed rods, whereas rod mole percentage 70%-90% showed well packed structure similar to lamella phase. We found the tendency of the diblock system to adopt a packed monomolecular structure has increased by the increasing rod content. This lead us to conclude that it is the hexyl-isocyanate (rod part) that governs mostly the interfacial behavior of rod-coil block copolymers.

  3. Supramolecular assembly at interfaces: formation of an extended two-dimensional coordinate covalent square grid network at the air-water interface.

    PubMed

    Culp, Jeffrey T; Park, Ju-Hyun; Stratakis, Diktys; Meisel, Mark W; Talham, Daniel R

    2002-08-28

    Reaction of a Langmuir monolayer of an amphiphilic pentacyanoferrate(3+) complex with Ni(2+) ions from the subphase results in the formation of a two-dimensional iron-nickel cyanide-bridged network at the air-water interface. The network can be transferred to various supports to form monolayer or multilayer lamellar films by the Langmuir-Blodgett (LB) technique. The same network does not form from homogeneous reaction conditions. Therefore, the results demonstrate the potential utility of an interface as a structure director in the assembly of low dimensional coordinate covalent network solids. Characterization of the LB film extended networks by X-ray photoelectron spectroscopy (XPS), FT-IR spectroscopy, SQUID magnetometry, X-ray absorption fine structure (XAFS), and grazing incidence synchrotron X-ray diffraction (GIXD) revealed a face-centered square grid structure with an average domain size of 3600 A(2). Magnetic measurements indicated that the network undergoes a transition to a ferromagnetic state below a T(c) of 8 K.

  4. Effect of the degree of dissociation of molecules in a monolayer at an air/water interface on the force between the monolayer and a like-charged particle in the subphase.

    PubMed

    McNamee, Cathy E; Kappl, Michael; Butt, Hans-Juergen; Nguyen, Hang; Sato, Shinichiro; Graf, Karlheinz; Healy, Thomas W

    2012-11-26

    We used the monolayer particle interaction apparatus to measure the force between a monolayer of stearic acid or octadecanol at the air/water interface and a colloidal silica sphere. The silica sphere approached the monolayer from the aqueous subphase. The aim was to analyze how the magnitude of the charge of a deformable interface affects the interaction between that interface and a like-charged hard particle. The charge density of the stearic acid monolayer was controlled by adjusting the pH (5.8-9) and the surface pressure. The octadecanol monolayer acted as a reference; the alcohol headgroup did not dissociate between pH 5.8-9.0. Stable monolayers of dissociated stearic acid molecules were formed at the air/water interface by dissolving stearic acid into the subphase to give a saturated concentration at each pH value studied. The approach force curve showed that the electrostatic repulsion increased with an increasing degree of dissociation and therefore the charge of the monolayer. The strength of the repulsion corresponded to that measured between two like-charged hard surfaces, but the apparent range of the repulsion was larger for a deformable interface. Retracting force curves displayed a significant adhesion, whose magnitude and range depended on the surface pressure and subphase pH.

  5. Second harmonic studies of liquid interfaces

    SciTech Connect

    Ong, S.

    1992-12-31

    This thesis reports on experimental studies of kinetics and equilibria at liquid interfaces using the technique of Second Harmonic Generation (SHG). In the first part, SHG was used to study the kinetics of adsorption of p-nitrophenol at the air/water interface of a flowing liquid jet. Measurements of the SH signal strength and the polarization of the SH light at various distances (times) along the jet axis yield information about the development of the density and orientation of p-nitrophenol at the air/water interface. The kinetics of adsorption was interpreted in terms of the Langmuir theory and was found to be consistent with this model. The free energy of adsorption obtained from the jet experiments was found to be the same as that obtained from static (equilibrium) experiments. The orientation of p-nitrophenol at the jet air/solution interface was the same as for the static (equilibrium) interface,which indicates that orientational equilibrium was rapidly achieved. It was also found that adsorption of nitrophenol to the air/water interface is not diffusion controlled, but rather is kinetically controlled by a barrier. SHG was then used to probe the silica/water interface.

  6. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    PubMed

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning.

  7. Preparation of high-quality colloidal mask for nanosphere lithography by a combination of air/water interface self-assembly and solvent vapor annealing.

    PubMed

    Yu, Jie; Geng, Chong; Zheng, Lu; Ma, Zhaohui; Tan, Tianya; Wang, Xiaoqing; Yan, Qingfeng; Shen, Dezhong

    2012-08-28

    Nanosphere lithography (NSL) has been regarded as an inexpensive, inherently parallel, high-throughput, materials-general approach to the fabrication of nanoparticle arrays. However, the order of the resulting nanoparticle array is essentially dependent on the quality of the colloidal monolayer mask. Furthermore, the lateral feature size of the nanoparticles created using NSL is coupled with the diameter of the colloidal spheres, which makes it inconvenient for studying the size-dependent properties of nanoparticles. In this work, we demonstrate a facile approach to the fabrication of a large-area, transferrable, high-quality latex colloidal mask for nanosphere lithography. The approach is based on a combination of the air/water interface self-assembly method and the solvent-vapor-annealing technique. It enables the fabrication of colloidal masks with a higher crystalline integrity compared to those produced by other strategies. By manipulating the diameter of the colloidal spheres and precisely tuning the solvent-vapor-annealing process, flexible control of the size, shape, and spacing of the interstice in a colloidal mask can be realized, which may facilitate the broad use of NSL in studying the size-, shape-, and period-dependent optical, magnetic, electronic, and catalytic properties of nanomaterials.

  8. Experimentally probing the libration of interfacial water: the rotational potential of water is stiffer at the air/water interface than in bulk liquid.

    PubMed

    Tong, Yujin; Kampfrath, Tobias; Campen, R Kramer

    2016-07-21

    Most properties of liquid water are determined by its hydrogen-bond network. Because forming an aqueous interface requires termination of this network, one might expect the molecular level properties of interfacial water to markedly differ from water in bulk. Intriguingly, much prior experimental and theoretical work has found that, from the perspective of their time-averaged structure and picosecond structural dynamics, hydrogen-bonded OH groups at an air/water interface behave the same as hydrogen-bonded OH groups in bulk liquid water. Here we report the first experimental observation of interfacial water's libration (i.e. frustrated rotation) using the laser-based technique vibrational sum frequency spectroscopy. We find this mode has a frequency of 834 cm(-1), ≈165 cm(-1) higher than in bulk liquid water at the same temperature and similar to bulk ice. Because libration frequency is proportional to the stiffness of water's rotational potential, this increase suggests that one effect of terminating bulk water's hydrogen bonding network at the air/water interface is retarding rotation of water around intact hydrogen bonds. Because in bulk liquid water the libration plays a key role in stabilizing reaction intermediates and dissipating excess vibrational energy, we expect the ability to probe this mode in interfacial water to open new perspectives on the kinetics of heterogeneous reactions at aqueous interfaces.

  9. Molecular architecture in cyanine dye aggregates at the air-water interface. Effect of monolayer composition and organization on fluorescent behavior

    SciTech Connect

    Vaidyanathan, S.; Patterson, L.K.; Moebius, D.; Gruniger, H.R.

    1985-01-31

    The fluorescence behavior of an amphiphatic oxacyanine dye and its thiacyanine analogue has been investigated in spread monolayers at the air-water interface. J-aggregate formation as a function of area/(dye molecule) was monitored by spectral changes in pure dye monolayers and in 1:1 mixtures of dye with various fatty acid coaggregates. Simultaneously, the thermodynamic behavior of these systems was characterized by the associated surface pressure-area isotherms. In all cases, J-aggregate formation may be related to a phase transition in the isotherm. The intensity of aggregate fluorescence is found to be inversely related to the work, ..delta..W, of compression of the monolayer through the transition. Inclusion of the fatty acid coaggregate was shown to facilitate J-aggregate formation in the order stearic > elaidic > oleic. Both fluorescence and thermodynamic data indicate more extensive aggregate formation in the thiacyanine systems. Aside from the paramount role played by the chromophore-chromophore interactions in determining J-aggregate phenomena, this study suggests important contributions from dispersion forces involving the long hydrocarbon moieties. 13 refs., 10 figs.

  10. Effect of temperature on the interfacial behavior of a polystyrene-b-poly(methyl methacrylate) diblock copolymer at the air/water interface.

    PubMed

    Seo, Yongsok; Cho, Chung Yeon; Hwangbo, Minyoung; Choi, Hyoung Jin; Hong, Soon Man

    2008-03-18

    Monolayers of a polystyrene-poly(methyl methacrylate) (PS-PMMA) diblock copolymer at the air-water interface were studied by measuring the surface pressure-area isotherms at several temperatures. Langmuir film balance experiments and atomic force microscopy showed that the diblock copolymer molecules formed surface micelles. In the plot of the surface pressure versus surface area per repeating unit, the monolayer changed from the gas phase to the liquid expanded phase at lower surface pressure for systems at low temperature compared to those at high temperature. In addition, a plateau, corresponding to the transition from the liquid expanded to liquid condensed phase, appeared in that plot at lower surface pressure for systems with a higher subphase (water) temperature. Hysteresis was observed in the compression-expansion cycle process. Increasing the subphase temperature alleviated this hyteresis gap, especially at low surface pressures. The minimum in the plot of the surface pressure versus surface area per repeating unit in the expansion process (which arises from the transition) and the transition plateau appeared more vividly at higher water temperature. These dynamic experimental results show that PS-PMMA diblock copolymers, in which both blocks are insoluble in water, do not form complicated entanglements in two-dimensional space. Although higher water temperature provided more entropy to the chains, and thus more conformational freedom, it did not change the surface morphology of the condensed film because both blocks of PS-PMMA are insoluble in water.

  11. Formation and Collapse of Single-Monomer-Thick Monolayers of Poly(n-Butyl Acrylate) at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Won, You-Yeon; Witte, Kevin; Sun, Wei; Kewalramani, Sumit; Fukuto, Masafumi; Kuzmenko, Ivan

    2010-03-01

    The behavior of poly(n-butyl acrylate) (PnBA) spread at the air-water interface has been studied for a full range of surface coverages. Beginning in the concentrated regime, and through the full coverage regime, x-ray reflectivity measurements show the formation of a continuous water-free one-monomer-thick film of the polymer. At surface concentrations above the transition point to the full coverage regime, Brewster angle microscopy shows that the excess polymer material does not distribute uniformly in the polymer film layer but instead leads to formation of micrometer-scale isolated globular domains. Further, the number of such domains increases as the surface polymer concentration is increased, whereas the size of the domains is unaffected by the concentration variation. X-ray grazing incidence diffraction indicates that these domains are regions of bulk-like polymer. We speculate that the globular domains are formed as a result of the interplay between the tendency of PnBA to adsorb to the water surface and the entropic resistance to this adsorption. A simple theoretical model based on this picture is shown to capture the main features of the experimental data.

  12. Synthesis at the air-water interface of a two-dimensional semi-interpenetrating network based on poly(dimethylsiloxane) and cellulose acetate butyrate.

    PubMed

    El Haitami, Alae; Backus, Ellen H G; Cantin, Sophie

    2014-10-14

    The UV-induced cross-linking of methacryloxypropyl-terminated poly(dimethylsiloxane) oligomers was studied at the air-water interface either in pure PDMS Langmuir monolayers or in mixed films containing cellulose acetate butyrate. Surface pressure-area isotherms, area measurement at constant surface pressure, Brewster angle microscopy observations, and infrared-visible sum frequency generation (SFG) spectroscopy were combined to follow the evolution of the monolayers upon in situ UV photoirradiation. For both systems, the mean area per repeat unit decreases with irradiation time reflecting the monolayer contraction. In addition, SFG measurements evidence the conversion of the methacrylate groups into unconjugated poly(methacrylate) ones. These results demonstrate PDMS cross-linking, leading to the formation of either a single PDMS network or a PDMS network entrapped in a CAB matrix. The network formation is accompanied by morphology changes as shown by atomic force microscopy on the transferred monolayer. Indeed, filamentous structures appear on both pure and mixed preirradiated monolayers.

  13. Interfacial assembly of cinnamoyl-terminated bolaamphiphiles through the air/water interface: headgroup-dependent assembly, supramolecular nanotube and photochemical sewing.

    PubMed

    Liu, Xufei; Wang, Tianyu; Liu, Minghua

    2011-10-06

    A series of cinnamoyl-terminated bolaamphiphiles were synthesized and their assemblies at the air/water interface were investigated. It was found that the assembly behaviour depended on the substituted groups on the cinnamoyl unit. The bolaamphiphile with 4-hydroxycinnamoyl head groups (HCDA) was found to assemble into a supramolecular nanotube, while the others formed only layer-structured films. Moreover, the nanotube formed from HCDA showed supramolecular chirality due to the symmetry breaking. Both the layered films and the nanotubes showed photochemical dimerization upon UV irradiation, which were studied from the UV-Vis, FT-IR spectral and MALDI-TOF MS analysis. Interestingly, such dimerization behavior of the cinnamoyl group could be used to stabilize the nanotube of HCDAvia photochemical sewing. During such a process both the supramolecular chirality and the tubular shapes were kept. Remarkably, such a photochemical sewed chiral nanotube could further induce the chirality of an achiral porphyrin derivative assembled on it, and produced the induced chirality without using any chiral molecules.

  14. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed Central

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-01-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the

  15. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-10-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the

  16. Self-assembly at Air/Water Interfaces and Carbohydrate Binding Properties of the Small Secreted Protein EPL1 from the fungus Trichoderma atroviride*

    PubMed Central

    Frischmann, Alexa; Neudl, Susanna; Gaderer, Romana; Bonazza, Klaus; Zach, Simone; Gruber, Sabine; Spadiut, Oliver; Friedbacher, Gernot; Grothe, Hinrich; Seidl-Seiboth, Verena

    2013-01-01

    The protein EPL1 from the fungus Trichoderma atroviride belongs to the cerato-platanin protein family. These proteins occur only in filamentous fungi and are associated with the induction of defense responses in plants and allergic reactions in humans. However, fungi with other lifestyles also express cerato-platanin proteins, and the primary function of this protein family has not yet been elucidated. In this study, we investigated the biochemical properties of the cerato-platanin protein EPL1 from T. atroviride. Our results showed that EPL1 readily self-assembles at air/water interfaces and forms protein layers that can be redissolved in water. These properties are reminiscent of hydrophobins, which are amphiphilic fungal proteins that accumulate at interfaces. Atomic force microscopy imaging showed that EPL1 assembles into irregular meshwork-like substructures. Furthermore, surface activity measurements with EPL1 revealed that, in contrast to hydrophobins, EPL1 increases the polarity of aqueous solutions and surfaces. In addition, EPL1 was found to bind to various forms of polymeric chitin. The T. atroviride genome contains three epl genes. epl1 was predominantly expressed during hyphal growth, whereas epl2 was mainly expressed during spore formation, suggesting that the respective proteins are involved in different biological processes. For epl3, no gene expression was detected under most growth conditions. Single and double gene knock-out strains of epl1 and epl2 did not reveal a detectable phenotype, showing that these proteins are not essential for fungal growth and development despite their abundant expression. PMID:23250741

  17. The quantum-chemical approach to calculations of thermodynamic and structural parameters of formation of fatty acid monolayers with hexagonal packing at the air/water interface.

    PubMed

    Vysotsky, Yu B; Belyaeva, E A; Fomina, E S; Vollhardt, D; Fainerman, V B; Miller, R

    2014-02-21

    The structural parameters of fatty acid (with formula CnH2n+1COOH, n = 7-16) monolayers at the air/water interface were modeled within quantum-chemical semiempirical program complex Mopac 2012 (PM3 method). On the basis of quantum-chemical calculations it was shown that molecules in the highly ordered monolayer can be oriented at the angle ∼16° (tilted monolayer), or at the angle ∼0° to the normal to the air/water interface (untilted monolayer). The structural parameters of both tilted and untilted monolayers correspond well to the experimental data. The parameters of the unit cell of the modelled tilted monolayer are: a = 8.0-8.2 Å and b = 4.2-4.5 Å (with the corresponding experimental data 8.4-8.7 Å and 4.9-5.0 Å). For the modelled untilted monolayer these parameters are: a = 7.7-8.0 Å; b = 4.6 Å (with the corresponding experimental data 8.4 Å and 4.8-4.9 Å). Enthalpy, entropy and Gibbs' energy of clusterization were calculated for both structures. The correlation dependencies of the calculated parameters on the number of pair intermolecular CHHC interactions in the clusters and the pair interactions between functional groups were obtained. It was shown that the spontaneous clusterization of the fatty carboxylic acids at the air/water interface under standard conditions is energetically preferable for molecules which have 13 or more carbon atoms in the alkyl chain and this result also agrees with the corresponding experimental parameters.

  18. Air/water two-phase flow test tunnel for airfoil studies

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.

    1990-02-01

    A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.

  19. Air/water two-phase flow test tunnel for airfoil studies

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.

    1994-01-01

    A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.

  20. Gas exchange in wetlands with emergent vegetation: The effects of wind and thermal convection at the air-water interface

    NASA Astrophysics Data System (ADS)

    Poindexter, Cristina M.; Variano, Evan A.

    2013-07-01

    Methane, carbon dioxide, and oxygen are exchanged between wetlands and the atmosphere through multiple pathways. One of these pathways, the hydrodynamic transport of dissolved gas through the surface water, is often underestimated in importance. We constructed a model wetland in the laboratory with artificial emergent plants to investigate the mechanisms and magnitude of this transport. We measured gas transfer velocities, which characterize the near-surface stirring driving air-water gas transfer, while varying two stirring processes important to gas exchange in other aquatic environments: wind and thermal convection. To isolate the effects of thermal convection, we identified a semiempirical model for the gas transfer velocity as a function of surface heat loss. The laboratory results indicate that thermal convection will be the dominant mechanism of air-water gas exchange in marshes with emergent vegetation. Thermal convection yielded peak gas transfer velocities of 1 cm h-1. Because of the sheltering of the water surface by emergent vegetation, gas transfer velocities for wind-driven stirring alone are likely to exceed this value only in extreme cases.

  1. Morphological changes in adsorbed protein films at the air-water interface subjected to large area variations, as observed by brewster angle microscopy.

    PubMed

    Xu, Rong; Dickinson, Eric; Murray, Brent S

    2007-04-24

    Adsorbed films of proteins at the air-water interface have been imaged using Brewster angle microscopy (BAM). The proteins beta-lactoglobulin (beta-L) and ovalbumin (OA) were studied at a range of protein concentrations and surface ages at 25.0 degrees C and two pH values (7 and 5) in a Langmuir trough. The adsorbed films were periodically subjected to compression and expansion cycles such that the film area was typically varied between 125% and 50% of the original film area. With beta-L on its own, no structural changes were observable at pH 7. When a low-area fraction (less than 0.01%) of 20 mum polystyrene latex particles was spread at the interface before adsorption of beta-L, the particles became randomly distributed throughout the interface, but after protein adsorption and compression/expansion, the particles highlighted notable structural features not visible in their absence. Such features included the appearance of long (several hundred micrometers or more) folds and cracks in the films, generally oriented at right angles to the direction of compression, and also aggregates of protein and/or particles. Such structuring was more visible the longer the film was aged or at higher initial protein concentrations for shorter adsorption times. At pH 5, close to the isoelectric pH of beta-L, such features were just noticeable in the absence of particles but were much more pronounced than at pH 7 in the presence of particles. Similar experiments with OA revealed even more pronounced structural features, both in the absence and presence of particles, particularly at pH 5 (close to the isoelectric pH of OA also), producing striking stripelike and meshlike domains. Changes in the dilatational elasticity of the films could be correlated with the variations in the structural integrity of the films as observed via BAM. The results indicate that interfacial area changes of this type, typical of those that occur in food colloid processing, will lead to highly

  2. Experimental study of the decrease in the temperature of an air/water-cooled turbine blade

    NASA Astrophysics Data System (ADS)

    Ryzhov, A. A.; Sereda, A. V.; Shaiakberov, V. F.; Iskakov, K. M.; Shatalov, Iu. S.

    Results of the full-scale testing of an air/water-cooled deflector-type turbine blade are reported. Data on the decrease in the temperature of the cooling air and of the blade are presented and compared with the calculated values. An analysis of the results indicates that the use of air/water cooling makes it possible to significantly reduce the temperature of the cooling air and of the blade with practically no increase in the engine weight and dimensions.

  3. Probing water and biomolecules at the air-water interface with a broad bandwidth vibrational sum frequency generation spectrometer from 3800 to 900 cm(-1).

    PubMed

    Ma, Gang; Liu, Jian; Fu, Li; Yan, Elsa C Y

    2009-05-01

    We have built a broad bandwidth vibrational sum frequency generation (VSFG) spectrometer that can provide high-quality spectra over the range of 3800 to 900 cm(-1). The spectrometer contains a commercial Ti:sapphire based 6 W regenerative amplifier as the master light source, a home-built pulse shaper to produce a narrow bandwidth 800 nm beam, a commercial optical parametric amplifier to generate a broad bandwidth femtosecond infrared (IR) pulse, and a detection system with a monochromator and a charge-coupled device (CCD). We applied this spectrometer to obtain VSFG spectra of a lipid monolayer at the air-water interface in the O-H stretching region (3800-3000 cm(-1)), the C-H stretching region (3100-2700 cm(-1)), the C-D stretching region (2300-2000 cm(-1)), the C=O stretching region (1800-1700 cm(-1)), and the PO(2)(-) symmetric stretching region (1200-1000 cm(-1)). We also obtained the VSFG spectrum of neat water in the O-H stretching region (3800-3000 cm(-1)) and the VSFG spectrum of a protein, alpha-synuclein, in the amide I region (1700-1600 cm(-1)) at the air-water interface. The spectrometer can provide a VSFG spectrum in the O-H stretching region (3800-3000 cm(-1)) without scanning the IR frequency. This feature will be useful in probing water dynamics at interfaces because the free OH and H-bonded OH can be investigated simultaneously. We have also provided instrumental details and discussed further improvements that should be beneficial to other researchers interested in setting up VSFG instrumentation.

  4. Fabrication of biofunctional nanomaterials via Escherichia coli OmpF protein air/water interface insertion/integration with copolymeric amphiphiles.

    PubMed

    Ho, Dean; Chang, Stacy; Montemagno, Carlo D

    2006-06-01

    Fabrication of next-generation biologically active materials will involve the integration of proteins with synthetic membrane materials toward a wide spectrum of applications in nanoscale medicine, including high-throughput drug testing, energy conversion for powering medical devices, and bio-cloaking films for mimicry of cellular membrane surfaces toward the enhancement of implant biocompatibility. We have used ABA triblock copolymer membranes (PMOXA-PDMS-PMOXA) of varied thicknesses as platform materials for Langmuir film-based functionalization with the OmpF pore protein from Escherichia coli by fabricating monolayers of copolymer amphiphile-protein complexes on the air/water interface. Here we demonstrate that the ability for protein insertion at the air/water interface during device fabrication is dependent upon the initial surface coverage with the copolymer as well as copolymer thickness. Methacrylate-terminated block copolymer structures that were 4 nm (4METH) and 8 nm (8METH) in length were used as the protein reconstitution matrix, whereas a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid (~4 nm thickness) was used as a comparison to demonstrate the effects of copolymer length on protein integration capabilities. Wilhemy surface pressure measurements (mN/m) revealed a greater protein insertion in the 4METH and POPC structures compared with the 8METH structure, indicating that shorter copolymer chains possess enhanced biomimicry of natural lipid-based membranes. In addition, comparisons between the isothermal characteristics of the 4METH, 8METH, and POPC membranes reveal that phase transitions of the 4METH resemble a blend of the 8METH and POPC materials, indicating that the 4METH chain may possess hybrid properties of both copolymers and lipids. Furthermore, we have shown that following the deposition of the amphiphilic materials on the air/water interface, the OmpF can be deposited directly on top of the amphiphiles (surface addition), thus

  5. Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface.

    NASA Astrophysics Data System (ADS)

    Tinel, Liselotte; Rossignol, Stéphanie; Ciuraru, Raluca; George, Christian

    2015-04-01

    Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface. Liselotte Tinel, Stéphanie Rossignol, Raluca Ciuraru and Christian George Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France Recently the surface microlayer (SML) has received growing attention for its role in the deposition and emission of trace gases. This SML is presumably a highly efficient environment for photochemical reactions thanks to its physical and chemical properties, showing enrichment in chromophores [1]. Still, little is known about the possible photochemical processes that could influence the emission and deposition of volatile organic compounds (VOCs) in the SML. A recent study underlines the particularity of the presence of an organic microlayer, showing enhanced formation of peptide bonds at the air-water interface, although this reaction is thermodynamically disfavoured in bulk water [2]. Also, emissions of small gas phase carbonyl compounds formed photochemically by dissolved organic matter have been measured above natural water and glyoxal, for example, measured above the open ocean is thought to be photochemically produced [3, 4]. This study presents the results of a set of laboratory studies set up in order to better understand the role of the SML in the photochemical production of VOCs. Recently, our group has shown the formation of VOCs by light driven reactions in a small quartz reactor (14mL) containing aqueous solutions of humic acids (HA) in the presence of an organic (artificial or natural) microlayer [5]. The main VOCs produced were oxidized species, such as aldehydes, ketones and alcohols, as classically can be expected by the oxidation of the organics present at the interface initiated by triplet excited chromophores present in the HA. But also alkenes, dienes, including isoprene and

  6. Probing Effect of Salinity and pH on Surface Interactions between Air Bubbles and Hydrophobic Solids: Implications on Colloidal Assembly at Air/Water Interface.

    PubMed

    Cui, Xin; Shi, Chen; Zhang, Shuo; Xie, Lei; Liu, Jing; Jiang, Dazhi; Zeng, Hongbo

    2017-04-05

    In this work, bubble probe atomic force microscope (AFM) was employed to quantify the interactions between two air bubbles and between an air bubble and an octadecyltrichlorosilane (OTS)-hydrophobized mica under various aqueous conditions. The key parameters (e.g. surface potentials, decay length of hydrophobic attraction) were obtained by analyzing the measured forces through a theoretical model based on Reynolds lubrication theory and augmented Young-Laplace equation by including effect of disjoining pressure. The bubble-OTS hydrophobic attraction with a decay length of 1.0 nm was found to be independent of solution pH and salinity. These parameters were further used to predict the attachment of OTS-hydrophobized particles onto air/water interface, demonstrating that particle attachment driven by hydrophobic attraction could be facilitated by suppressing electrical double-layer repulsion at low pH or high salinity condition. This facile methodology can be readily extended to quantify interactions of many other colloidal particles with gas/water and oil/water interfaces, with implications on colloidal assembly at different interfaces in many engineering applications.

  7. Organization of lipids in the artificial outer membrane of bull spermatozoa reconstructed at the air-water interface.

    PubMed

    Le Guillou, J; Ropers, M-H; Gaillard, C; David-Briand, E; Desherces, S; Schmitt, E; Bencharif, D; Amirat-Briand, L; Tainturier, D; Anton, M

    2013-08-01

    Cryopreservation is widely used to preserve the quality of bull spermatozoa over time. Sequestration of seminal plasma proteins by low density lipoproteins and formation of a protective film around the spermatozoa membrane by low density lipoproteins were the main mechanisms proposed. However, the organization of lipids in the outer leaflet of the spermatozoa membrane has been never considered as a possible parameter. This study evaluated whether a change in the organization of the outer leaflet of the spermotozoa membrane could occur during cooling down. The organization of the main components of the spermatozoa membrane's outer layer at the liquid-gas interface was analysed. Cryopreservative media (at 8° and 34°C) were used to study the miscibility of the spermatozoa membrane lipids using epifluorescence imaging and by tensiometry on Langmuir films. The results show that the four lipids: sphingomyelin, cholesterol, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PC) and plasmalogen 1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphocholine (P-PC) were not fully miscible and their organization was controlled by temperature. Cholesterol and sphingomyelin form condensed domains surrounded by a mixture of PC and P-PC at 34°C while these condensed domains are surrounded by separated domains of pure PC and pure P-PC at 8°C. The organization of the outer membrane lipids, in particular the separation of PC and P-PC lipids during cooling down, must be considered to fully understand preservation of membrane integrity during cryopreservation.

  8. Quantum chemical approach in the description of the amphiphile clusterization at the air/liquid and liquid/liquid interfaces with phase nature accounting. I. Aliphatic normal alcohols at the air/water interface.

    PubMed

    Vysotsky, Yuri B; Belyaeva, Elena A; Kartashynska, Elena S; Fainerman, Valentine B; Smirnova, Natalia A

    2015-02-19

    A new model based on the quantum chemical approach is proposed to describe structural and thermodynamic parameters of clusterization for substituted alkanes at the air/liquid and liquid/liquid interfaces. The new model by the authors, unlike the previous one, proposes an explicit account of the liquid phase (phases) influence on the parameters of monomers, clusters and monolayers of substituted alkanes at the regarded interface. The calculations were carried out in the frameworks of the quantum chemical semiempirical PM3 method (Mopac 2012), using the COSMO procedure. The new model was tested in the calculations of the clusterization parameters of fatty alcohols under the standard conditions at the air/water interface. The enthalpy, Gibbs' energy and absolute entropy of formation for alcohol monomers alongside with clusterization parameters for the cluster series including the monolayer at air/water interface were calculated. In our calculations the sinkage of monomers, molecules in clusters and monolayers was varied from 1 up to 5 methylene groups. Thermodynamic parameters calculated using the proposed model for the alcohol monolayers are in a good agreement with the corresponding experimental data. However, the proposed model cannot define the most energetically preferable immersion of the monolayer molecules in the water phase.

  9. Langmuir films of dipalmitoyl phosphatidylethanolamine grafted poly(ethylene glycol). In-situ evidence of surface aggregation at the air-water interface.

    PubMed

    Clop, Eduardo M; Corvalán, Natalia A; Perillo, María A

    2016-12-01

    The molecular packing-dependent interfacial organization of polyethylene glycol grafted dipalmitoylphosphatidylethanolamine (PE-PEGs) Langmuir films was studied. The PEG chains covered a wide molecular mass range (350, 1000 and 5000Da). In surface pressure-area (π-A), isotherms PE-PEG(1000) and PE-PEG(5000) showed transitions (midpoints at πm,t1∼11mN/m, "t1"), which appeared as a long non-horizontal line region. Thus, t1 cannot be considered a first-order phase transition but may reflect a transition within the polymer, comprising its desorption from the air-water interface and compaction upon compression. This is supported by the increase in the νs(C-O-C) PM-IRRAS signal intensity and the increasing surface potentials at maximal compression, which reflect thicker polymeric layers. Furthermore, changes in hydrocarbon chain (HC) packing and tilt with respect to the surface led to reorientation in the PO2(-) group upon compression, indicated by the inversion of the νasym(PO2(-)) PM-IRRAS signal around t1. The absence of a t1 in PE-PEG(350) supports the requisite of a critical polymer chain length for this transition to occur. In-situ epifluorescence microscopy revealed 2D-domain-like structures in PE-PEG(1000) and PE-PEG(5000) around t1, possibly associated with gelation/dehydration of the polymeric layer and appearing at decreasing π as the polymeric tail became longer. Another transition, t2, appearing in PE-PEG(350) and PE-PEG(1000) at πm,t2=29.4 and 34.8mN/m, respectively, was associated with HC condensation and was impaired in PE-PEG(5000) due to steric hindrance imposed by the large size of its polymer moiety. Two critical lengths of polymer chains were found, one of which allowed the onset of polymeric-tail gelation and the other limited HC compaction.

  10. Modification of bovine beta-lactoglobulin by glycation in a powdered state or in aqueous solution: adsorption at the air-water interface.

    PubMed

    Gauthier, F; Bouhallab, S; Renault, A

    2001-07-01

    The adsorption at the air-water interface of native and various glycated forms of beta-Lactoglobulin B (beta-LG), prepared under two different experimental conditions, was investigated by ellipsometry, surface tension and shear elastic constant measurements. The measurements were performed in 0.1 M phosphate buffer, 0.1 M NaCl, pH 6.8. It was found that the interfacial properties of beta-LG were more affected when the glycation was performed in solution than in the dry-way system. Dry-way glycated beta-LG, despite a higher glycation extent, affected slightly its interfacial behaviour. Solution glycated beta-LG exhibited a higher adsorption and more rigid interface as expressed by shear elastic constant measurement at saturation (16.5 mN/m against 8.7 and 11.5 mN/m for native and control treated beta-LG, respectively). These results were attributed to the specific molecular species induced during glycation in solution, which includes monomers and unfolded covalent homodimers of beta-LG molecules with a high tendency to self-association via non-covalent interactions.

  11. Temperature-dependent interfacial properties of hydrophobically end-modified poly(2-isopropyl-2-oxazoline)s assemblies at the air/water interface and on solid substrates.

    PubMed

    Obeid, Rodolphe; Park, Jin-Young; Advincula, Rigoberto C; Winnik, Françoise M

    2009-12-15

    We describe herein the properties at the air/water (A/W) interface of hydrophobically end-modified (HM) poly(2-isopropyl-2-oxazoline)s (PiPrOx) bearing an n-octadecyl chain on both termini (telechelic HM-PiPrOx) or on one chain end (semitelechelic HM-PiPrOx) for different subphase temperatures and spreading solvents using the Langmuir film balance technique. The polymer interfacial properties revealed by the pi-A isotherms depend markedly on the architecture and molecular weight of the polymer. On cold water subphases (14 degrees C), diffusion of PiPrOx chains onto water takes place for all polymers in the intermediate compressibility region (5mNm(-1)). At higher subphase temperatures (36 and 48 degrees C), the HM-PiPrOx film exhibited remarkable stability with time. Brewster angle microscopy (BAM) imaging of the A/W interface showed that the polymer assembly was not uniform and that large domains formed, either isolated grains or pearl necklaces, depending on the polymer structure, the concentration of the spreading solution and the subphase temperature. The Langmuir films were transferred onto hydrophilic substrates (silica) by the Langmuir-Blodgett (LB) technique and onto hydrophobic substrates (gold) by Langmuir-Schaefer (LS) film deposition, resulting in the formation of adsorbed particles ranging in size from 200 to 500nm, depending on the polymer architecture and the substrate temperature. The particles presented "Janus"-like hydrophilic/hydrophobic characteristics.

  12. Conformational analyses of bacillomycin D, a natural antimicrobial lipopeptide, alone or in interaction with lipid monolayers at the air-water interface.

    PubMed

    Nasir, Mehmet Nail; Besson, Françoise

    2012-12-01

    Bacillomycin D is a natural antimicrobial lipopeptide belonging to the iturin family. It is produced by Bacillus subtilis strains. Bacillomycin D is characterized by its strong antifungal and hemolytic properties, due to its interaction with the plasma membrane of sensitive cells. Until now, only few limited analyses were conducted to understand the biological activities of bacillomycin D at the molecular level. Our purpose was to analyze the conformation of bacillomycin D using IR spectroscopy and to model its interactions with cytoplasmic membranes using Langmuir interfacial monolayers. Our findings indicate that bacillomycin D contains turns and allow to model its three-dimensional structure. Bacillomycin D formed a monolayer film at the air-water interface and kept its turn conformation, as shown by polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). To identify the membrane lipid target of bacillomycin D, its interactions with pure lipid monolayers were analyzed and an original behavior of the lipopeptide toward cholesterol-containing monolayers was shown. This original behavior was lost when bacillomycin D was interacting with pure cholesteryl acetate monolayers, suggesting the involvement of the alcohol group of cholesterol in the lipopeptide-cholesterol interaction.

  13. Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface.

    PubMed

    Liu, Yiming; Chen, Jingwei; Guo, Dawei; Cao, Moyuan; Jiang, Lei

    2015-06-24

    Efficient solar evaporation plays an indispensable role in nature as well as the industry process. However, the traditional evaporation process depends on the total temperature increase of bulk water. Recently, localized heating at the air-water interface has been demonstrated as a potential strategy for the improvement of solar evaporation. Here, we show that the carbon-black-based superhydrophobic gauze was able to float on the surface of water and selectively heat the surface water under irradiation, resulting in an enhanced evaporation rate. The fabrication process of the superhydrophobic black gauze was low-cost, scalable, and easy-to-prepare. Control experiments were conducted under different light intensities, and the results proved that the floating black gauze achieved an evaporation rate 2-3 times higher than that of the traditional process. A higher temperature of the surface water was observed in the floating gauze group, revealing a main reason for the evaporation enhancement. Furthermore, the self-cleaning ability of the superhydrophobic black gauze enabled a convenient recycling and reusing process toward practical application. The present material may open a new avenue for application of the superhydrophobic substrate and meet extensive requirements in the fields related to solar evaporation.

  14. Effects of Divalent Cations on Phase Behavior and Structure of a Zwitterionic Phospholipid (DMPC) Mono layer at the Air-Water Interface

    SciTech Connect

    Kewalramani, S.; Hlaing, H.; Ocko, B.M.; Kuzmenko, I.; Fukuto, M.

    2010-01-21

    Effects of divalent cations (Ca{sup 2+}, Mg{sup 2+}, Ni{sup 2+}, and Zn{sup 2+}) on a zwitterionic phospholipid monolayer at the air-water interface are investigated by surface pressure-area isotherms and in situ X-ray scattering. Divalent cations lower the surface pressure for the fluid (LE) to condensed (L{sub 2}) phase transition in a strongly ion-specific manner. Surprisingly, the two-dimensional lattice dimensions and the tilt of the lipids alkyl tails in the L{sub 2} phase show a nearly ion-nonspecific dependence on the excess surface pressure above the transition pressure. An empirical 'universal' relationship was found between the tail tilt and the excess pressure, with the tails in the L{sub 2} phase always displaying a tilt of 29{sup o} at the transition. A practical implication of these results is that, regardless of the divalent cation present, the microscopic details of the lipid tail packing in the L{sub 2} phase can be deduced at any surface pressure once the transition pressure is obtained from isotherms.

  15. Phase behaviour and morphology of binary mixtures of DPPC with stearonitrile, stearic acid, and octadecanol at the air-water interface.

    PubMed

    Romão, Rute I S; Gonçalves da Silva, Amélia M

    2004-08-01

    The behaviour of dipalmitoylphosphatidylcholine (DPPC), mixed with stearonitrile (SN), was investigated at the air-water interface by surface pressure-area (pi-A) measurements and by direct visualisation of monolayers by Brewster angle microscopy (BAM). The pi-A-X diagram of system DPPC/SN was compared with the corresponding diagrams of systems DPPC/stearic acid (SA) and DPPC/octadecanol (OD) at 20 degrees C. Monolayers of the three systems reach the closest packing of alkyl chains in the 0.4-0.6 range of XDPPC. Thermodynamic analysis indicates miscibility in the three binary systems with negative deviations from the ideal behaviour. Morphological features of system DPPC/SN change significantly with XDPPC and temperature in the range 10-30 degrees C. At 10 and 20 degrees C mixed monolayers form condensed states from low pi all over the composition range. At 30 degrees C, the liquid-expanded (LE)--liquid-condensed (LC) phase transition occurs at increasing pi with XDPPC. The shape and size of condensed domains change with XDPPC and pi. Contrarily to the behaviour of pure components, mixed monolayers of DPPC/SN exhibit orientational order in the 0.2-0.6 mol fraction range of DPPC. BAM observation confirmed the partial miscibility indicated by GE data in a limited range of compositions at 30 degrees C.

  16. Method for collecting air-water interface microbes suitable for subsequent microscopy and molecular analysis in both research and teaching laboratories.

    PubMed

    Henk, Margaret C

    2004-04-01

    A method has been developed for collecting air-water interface (AWI) microbes and biofilms that enables analysis of the same sample with various combinations of bright-field and fluorescence light microscopy optics, scanning and transmission electron microscopy (TEM), and atomic force microscopy. The identical sample is then subjected to molecular analysis. The sampling tool consists of a microscope slide supporting appropriate substrates, TEM grids, for example, that are removable for the desired protocols. The slide with its substrates is then coated with a collodion polymer membrane to which in situ AWI organisms adhere upon contact. This sampling device effectively separates the captured AWI bacterial community from the bulk water community immediately subtending. Preliminary data indicate that the AWI community differs significantly from the water column community from the same sample site when both are evaluated with microscopy and with 16S ribosomal DNA sequence-based culture-independent comparisons. This microbe collection method can be used at many levels in research and teaching.

  17. Adsorption of Egg-PC to an Air/Water and Triolein/Water Bubble Interface: Use of the 2-Dimensional Phase Rule to Estimate the Surface Composition of a Phospholipid/Triolein/Water Surface as a Function of Surface Pressure

    PubMed Central

    Mitsche, Matthew A.; Wang, Libo; Small, Donald M.

    2010-01-01

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces including all membranes, the alveoli of the lung, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg-phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low salt buffer. The surface tension (γ) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts ~12 and 15 mN/m of pressure (Π) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette and the surface was compressed to study the Π/area relationship. To determine the surface concentration (Γ), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques, thus Γ on the bubble can be determined by overlaying the two isotherms. TO and EPC are both surface active so in a mixed TO/EPC monolayer both molecules will be exposed to water. Since TO is less surface active than EPC, as Π increases the TO is progressively ejected. To understand the Π/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Γ can be estimated. This allows determination of Γ of EPC on a TO bubble as a function of Π. PMID:20151713

  18. Interactions between polymers and lipid monolayers at the air/water interface: surface behavior of poly(methyl methacrylate)-cholesterol mixed films.

    PubMed

    Miñones Conde, M; Conde, O; Trillo, J M; Miñones, J

    2010-08-26

    The behavior of mixed monolayers of cholesterol and poly(methyl methacrylate) (PMMA) with molecular weights of M(w) = 120,000 g/mol and M(w) = 15,000 g/mol was investigated at the air/water interface using Langmuir and Brewster angle microscopy techniques. From the data of surface pressure (pi)-area (A) isotherms, compressional modulus-surface pressure (C(s)(-1)-pi) curves, and film thickness, complemented with Brewster angle microscopy images, the interaction between the components was analyzed. Regardless of the surface pressure (pi = 10, 20, or 30 mN/m) at which the mean molecular/monomer areas (Am) were calculated, the Am-mole fraction plots (corresponding to X(PMMA) = 0.1, 0.3, 0.5, 0.7, and 0.9) show that all the experimental points obtained are placed on the theoretical straight line calculated according to the additivity rule. This fact, together with the existence of two collapses in the mixed monolayers and with the fact that the surface pressure of the liquid-expanded LE-L'E phase transition of PMMA does not change with the monolayer composition, demonstrates the immiscibility of the film components at the interface. The application of the Crisp phase rule to the phase diagram of PMMA-cholesterol mixed monolayers helps to explain the existence of a biphasic system, regardless of their composition and surface pressure. Besides, Brewster angle microscopy (BAM) images showed the existence of heterogeneous cholesterol domains with high reflectivity immersed in a homogeneous polymer separate phase with low reflectivity.

  19. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using

  20. The Turbulent Boundary Layer Near the Air-Water Interface on a Surface-Piercing Flat Plate

    NASA Astrophysics Data System (ADS)

    Washuta, Nathan; Masnadi, Naeem; Duncan, James H.

    2015-11-01

    Turbulent fluctuations in the vicinity of the water free surface along a flat, vertically oriented surface-piercing plate are studied experimentally using a laboratory-scale experiment. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section between rollers. The belt is launched from rest with a 3- g acceleration in order to quickly reach steady state velocity. This creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along a flat-sided ship moving at the same velocity, with a length equivalent to the length of belt that has passed the measurement region since the belt motion began. Cinematic Stereo PIV measurements are performed in planes parallel to the free surface by imaging the flow from underneath the tank in order to study the modification of the boundary layer flow field due to the effects of the water free surface. The support of the Office of Naval Research under grant N000141110029 is gratefully acknowledged.

  1. Study of interfacial area transport and sensitivity analysis for air-water bubbly flow

    SciTech Connect

    Kim, S.; Sun, X.; Ishii, M.; Beus, S.G.

    2000-09-01

    The interfacial area transport equation applicable to the bubbly flow is presented. The model is evaluated against the data acquired by the state-of-the-art miniaturized double-sensor conductivity probe in an adiabatic air-water co-current vertical test loop under atmospheric pressure condition. In general, a good agreement, within the measurement error of plus/minus 10%, is observed for a wide range in the bubbly flow regime. The sensitivity analysis on the individual particle interaction mechanisms demonstrates the active interactions between the bubbles and highlights the mechanisms playing the dominant role in interfacial area transport. The analysis employing the drift flux model is also performed for the data acquired. Under the given flow conditions, the distribution parameter of 1.076 yields the best fit to the data.

  2. Expulsion of bovine serum albumin from the air/water interface by a sparingly soluble lecithin lipid.

    PubMed

    Phang, Tze-Lee; Franses, Elias I

    2004-07-15

    Dynamic surface tensiometry, ellipsometry, and infrared reflection-absorption spectroscopy (IRRAS) were used to study the dynamic adsorption and surface tensions of dilauroylphosphatidylcholine (DLPC) in the presence of bovine serum albumin (BSA). Results show that the equilibrium adsorbed layers consist mostly of DLPC, which can produce dynamic surface tensions (1 mN/m) as low as the more successful lung surfactant replacement formulations. When the aqueous surface expands and contracts sinusoidally, BSA can coadsorb and lead to slightly higher dynamic surface tensions than when DLPC is alone. Similar results were obtained with BSA and sodium myristate [McClellan and Franses, Colloids Surf. B 30 (2003) 1]. Expulsion of the BSA in the layer by DLPC can take from 5 to 15 min, depending on relative concentrations and history of solute addition. This is shown by tensiometry measurements on mixtures, and also by injecting aqueous DLPC underneath adsorbed BSA layers and probing the surface layer with ellipsometry and IRRAS. Albumin layers from buffer solutions aged up to 30 h can be expelled by DLPC. In pure water, there is an initial enhancement in protein adsorption after the DLPC is injected. This can be explained by the hypothesis that DLPC molecules bind with BSA molecules to form a hydrophobic lipoprotein complex, which is more hydrophobic than the protein itself. Since DLPC produces lower surface energy than BSA and--being slightly soluble--adsorbs to the surface by a molecular mechanism, it fulfills the thermodynamic and dynamic requirements for expelling the BSA from the surface. The results have implications for minimizing lung surfactant inhibition by serum proteins, as it occurs in the cases of adult or acute respiratory distress syndrome.

  3. Sea spray production by bag breakup mode of fragmentation of the air-water interface at strong and hurricane wind

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil; Zilitinkevich, Sergej

    2016-04-01

    Sea sprays is a typical element of the marine atmospheric boundary layer (MABL) of large importance for marine meteorology, atmospheric chemistry and climate studies. They are considered as a crucial factor in the development of hurricanes and severe extratropical storms, since they can significantly enhance exchange of mass, heat and momentum between the ocean and the atmosphere. This exchange is directly provided by spume droplets with the sizes from 10 microns to a few millimeters mechanically torn off the crests of a breaking waves and fall down to the ocean due to gravity. The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Experimental core of our work comprise laboratory experiments employing high-speed video-filming, which have made it possible to disclose how water surface looks like at extremely strong winds and how exactly droplets are torn off wave crests. We classified events responsible for spume droplet, including bursting of submerged bubbles, generation and breakup of "projections" or liquid filaments (Koa, 1981) and "bag breakup", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film, "bags". The process is similar to "bag-breakup" mode of fragmentation of liquid droplets and jets in gaseous flows. Basing on statistical analysis of results of these experiments we show that the main mechanism of spray-generation is attributed to "bag-breakup mechanism On the base of general principles

  4. Renewal of the air-water interface as a critical system parameter of protein stability: aggregation of the human growth hormone and its prevention by surface-active compounds.

    PubMed

    Wiesbauer, Johanna; Prassl, Ruth; Nidetzky, Bernd

    2013-12-10

    Soluble proteins are often highly unstable under mixing conditions that involve dynamic contacting between the main liquid phase and a gas phase. The recombinant human growth hormone (rhGH) was recently shown to undergo aggregation into micrometer-sized solid particles composed of non-native (mis- or unfolded) protein, once its solutions were stirred or shaken to generate a continuously renewed air-water interface. To gain deepened understanding and improved quantification of the air-water interface effect on rhGH stability, we analyzed the protein's aggregation rate (r(agg)) at controlled specific air-water surface areas (a(G/L)) established by stirring or bubble aeration. We show that in spite of comparable time-averaged values for a(G/L) (≈ 100 m(2)/m(3)), aeration gave a 40-fold higher r(agg) than stirring. The enhanced r(agg) under aeration was ascribed to faster macroscopic regeneration of free a(G/L) during aeration as compared to stirring. We also show that r(agg) was independent of the rhGH concentration in the range 0.67 - 6.7 mg/mL, and that it increased linearly dependent on the available a(G/L). The nonionic surfactant Pluronic F-68, added in 1.6-fold molar excess over rhGH present, resulted in complete suppression of r(agg). Foam formation was not a factor influencing r(agg). Using analysis by circular dichroism spectroscopy and small-angle X-ray scattering, we show that in the presence of Pluronic F-68 under both stirring and aeration, the soluble protein retained its original fold, featuring native-like relative composition of secondary structural elements. We further provide evidence that the efficacy of Pluronic F-68 resulted from direct, probably hydrophobic protein-surfactant interactions that prevented rhGH from becoming attached to the air-water interface. Surface-induced aggregation of rhGH is suggested to involve desorption of non-native protein from the air-water interface as the key limiting step. Proteins or protein aggregates released

  5. The effect of diesters and lauric acid on rheological properties of air/water interfaces stabilized by oligofructose lauric acid monoesters.

    PubMed

    van Kempen, Silvia E H J; Schols, Henk A; van der Linden, Erik; Sagis, Leonard M C

    2013-08-14

    In this study, the rheological properties of interfaces stabilized by oligofructose fatty acid esters were elucidated. First, the properties of interfaces stabilized by monoesters (ME), diesters (DE), lauric acid (LA), oligofructose (OF), and mixtures of ME with DE, LA, or OF were studied. Second, the properties of interfaces stabilized by the crude product (CP) containing ME, DE, LA, and OF were studied. The dependency of the dilatational modulus on frequency and deformation amplitude indicated the possible formation of a soft glass phase for ME, and a viscous interface for DE. When ME and DE were mixed at a ratio of 0.8/0.2, the experimental results suggest that the interfacial structure consists of islands of a glass phase formed by ME, dispersed in a 2D viscous phase of DE. CP stabilized interfaces, where the ratio ME/DE was higher, lead to a different rheological response. The ratio ME/DE plays an important role in the surface properties of the CP. This may have significant consequences for applications in macroscopic systems such as foams.

  6. Gas transfer velocities for quantifying methane, oxygen and other gas fluxes through the air-water interface of wetlands with emergent vegetation

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2012-12-01

    Empirical models for the gas transfer velocity, k, in the ocean, lakes and rivers are fairly well established, but there are few data to predict k for wetlands. We have conducted experiments in a simulated emergent marsh in the laboratory to explore the relationship between k, wind shear and thermal convection. Now we identify the implications of these results for gas transfer in actual wetlands by (1) quantifying the range of wind conditions in emergent vegetation canopies and the range of thermal convection intensities in wetland water columns, and (2) describing the non-linear interaction of these two stirring forces over their relevant ranges in wetlands. We measured mean wind speeds and wind speed variance within the shearless region of a Schoenoplectus-Typha marsh canopy in the Sacramento-San Joaquin Delta (Northern California, USA). The mean wind speed within this region, , is significantly smaller than wind above the canopy. Based on our laboratory experiments, for calm or even average wind conditions in this emergent marsh k600 is only on the order 0.1 cm hr-1 (for neutrally or stably stratified water columns). We parameterize unstable thermal stratification and the resulting thermal convection using the heat flux through the air-water interface, q. We analyzed a water temperature record for the Schoenoplectus-Typha marsh to obtain a long-term heat flux record. We used these heat flux data along with short-term heat flux data from other wetlands in the literature to identify the range of the gas transfer velocity associated with thermal convection in wetlands. The typical range of heat fluxes through water columns shaded by closed emergent canopies (-200 W m-2 to +200 W m-2) yields k600 values of 0.5 - 2.5 cm hr-1 according to the model we developed in the laboratory. Thus for calm or average wind conditions, the gas transfer velocity associated with thermal convection is significantly larger than the gas transfer velocity associated with wind

  7. Molecular arrangement of symmetric and non-symmetric triblock copolymers of poly(ethylene oxide) and poly(isobutylene) at the air/water interface.

    PubMed

    Fuchs, Christian; Hussain, Hazrat; Schwieger, Christian; Schulz, Matthias; Binder, Wolfgang H; Kressler, Jörg

    2015-01-01

    The behavior of a series of amphiphilic triblock copolymers of poly(ethylene oxide) (PEO) and poly(isobutylene) (PIB); including both symmetric (same degree of polymerization (DP) of the terminal PEO blocks) PEOm-b-PIBn-b-PEOm and non-symmetric (different DP of the terminal PEO blocks) PEOm-b-PIBn-b-PEOz, is investigated at the air/water interface by measuring surface pressure vs mean molecular area isotherms (π vs mmA), Langmuir-Blodgett (LB) technique, and infrared reflection-absorption spectroscopy (IRRAS). The block copolymer (PEO32-b-PIB160-b-PEO32) with longer PEO segments forms a stable monolayer and the isotherm reveals a pseudo-plateau starting at π∼5.7 mN/m, also observed in the IRRAS, which is assigned to the pancake-to-brush transition related to the PEO dissolution into the subphase and subsequent PEO brush dehydration. Another plateau is observed at π∼40 mN/m, which is attributed to the film collapse due to multilayer formation. The pancake-to-brush transition could not be observed for samples with smaller PEO chains. The isotherms for block copolymers, with short PEO chains, both symmetric (PEO3-b-PIBn-b-PEO3) and non-symmetric (PEO12-b-PIBn-b-PEO3), reveal another transition at π∼20-25 mN/m. This is interpreted to be due to the conformational transition from a folded state where the middle PIB block is anchored to the water surface at both ends by the terminal hydrophilic segments to an unfolded state with PIB anchored to the water surface at one end. It is assumed that this transition involves the removal of PEO3 chains from the water surface in case of non-symmetric PEO12-b-PIB85-b-PEO3 and in case of symmetric, probably one PEO3 of each PEO3-b-PIB85-b-PEO3 chain. Because of the weaker interaction of the short PEO3 chains with the water surface as compared with the relatively longer PEO12 chains, the film of PEO3-b-PIB85-b-PEO3 collapses at much lower surface pressure after the transition as compared with the PEO12-b-PIB85-b-PEO3. The

  8. Recruitment of Class I Hydrophobins to the Air:Water Interface Initiates a Multi-step Process of Functional Amyloid Formation*

    PubMed Central

    Morris, Vanessa K.; Ren, Qin; Macindoe, Ingrid; Kwan, Ann H.; Byrne, Nolene; Sunde, Margaret

    2011-01-01

    Class I fungal hydrophobins form amphipathic monolayers composed of amyloid rodlets. This is a remarkable case of functional amyloid formation in that a hydrophobic:hydrophilic interface is required to trigger the self-assembly of the proteins. The mechanism of rodlet formation and the role of the interface in this process have not been well understood. Here, we have studied the effect of a range of additives, including ionic liquids, alcohols, and detergents, on rodlet formation by two class I hydrophobins, EAS and DewA. Although the conformation of the hydrophobins in these different solutions is not altered, we observe that the rate of rodlet formation is slowed as the surface tension of the solution is decreased, regardless of the nature of the additive. These results suggest that interface properties are of critical importance for the recruitment, alignment, and structural rearrangement of the amphipathic hydrophobin monomers. This work gives insight into the forces that drive macromolecular assembly of this unique family of proteins and allows us to propose a three-stage model for the interface-driven formation of rodlets. PMID:21454575

  9. Numerical and experimental study of dissociation in an air-water single-bubble sonoluminescence system.

    PubMed

    Puente, Gabriela F; Urteaga, Raúl; Bonetto, Fabián J

    2005-10-01

    We performed a comprehensive numerical and experimental analysis of dissociation effects in an air bubble in water acoustically levitated in a spherical resonator. Our numerical approach is based on suitable models for the different effects considered. We compared model predictions with experimental results obtained in our laboratory in the whole phase parameter space, for acoustic pressures from the bubble dissolution limit up to bubble extinction. The effects were taken into account simultaneously to consider the transition from nonsonoluminescence to sonoluminescence bubbles. The model includes (1) inside the bubble, transient and spatially nonuniform heat transfer using a collocation points method, dissociation of O2 and N2, and mass diffusion of vapor in the noncondensable gases; (2) at the bubble interface, nonequilibrium evaporation and condensation of water and a temperature jump due to the accommodation coefficient; (3) in the liquid, transient and spatially nonuniform heat transfer using a collocation points method, and mass diffusion of the gas in the liquid. The model is completed with a Rayleigh-Plesset equation with liquid compressible terms and vapor mass transfer. We computed the boundary for the shape instability based on the temporal evolution of the computed radius. The model is valid for an arbitrary number of dissociable gases dissolved in the liquid. We also obtained absolute measurements for R(t) using two photodetectors and Mie scattering calculations. The robust technique used allows the estimation of experimental results of absolute R0 and P(a). The technique is based on identifying the bubble dissolution limit coincident with the parametric instability in (P(a),R0) parameter space. We take advantage of the fact that this point can be determined experimentally with high precision and replicability. We computed the equilibrium concentration of the different gaseous species and water vapor during collapse as a function of P(a) and R0. The

  10. Numerical and experimental study of dissociation in an air-water single-bubble sonoluminescence system

    NASA Astrophysics Data System (ADS)

    Puente, Gabriela F.; Urteaga, Raúl; Bonetto, Fabián J.

    2005-10-01

    We performed a comprehensive numerical and experimental analysis of dissociation effects in an air bubble in water acoustically levitated in a spherical resonator. Our numerical approach is based on suitable models for the different effects considered. We compared model predictions with experimental results obtained in our laboratory in the whole phase parameter space, for acoustic pressures from the bubble dissolution limit up to bubble extinction. The effects were taken into account simultaneously to consider the transition from nonsonoluminescence to sonoluminescence bubbles. The model includes (1) inside the bubble, transient and spatially nonuniform heat transfer using a collocation points method, dissociation of O2 and N2 , and mass diffusion of vapor in the noncondensable gases; (2) at the bubble interface, nonequilibrium evaporation and condensation of water and a temperature jump due to the accommodation coefficient; (3) in the liquid, transient and spatially nonuniform heat transfer using a collocation points method, and mass diffusion of the gas in the liquid. The model is completed with a Rayleigh-Plesset equation with liquid compressible terms and vapor mass transfer. We computed the boundary for the shape instability based on the temporal evolution of the computed radius. The model is valid for an arbitrary number of dissociable gases dissolved in the liquid. We also obtained absolute measurements for R(t) using two photodetectors and Mie scattering calculations. The robust technique used allows the estimation of experimental results of absolute R0 and Pa . The technique is based on identifying the bubble dissolution limit coincident with the parametric instability in (Pa,R0) parameter space. We take advantage of the fact that this point can be determined experimentally with high precision and replicability. We computed the equilibrium concentration of the different gaseous species and water vapor during collapse as a function of Pa and R0 . The model

  11. Effect of binding of an oligomeric cationic fluorosurfactant on the dilational rheological properties of gelatin adsorbed at the air-water interface.

    PubMed

    Rao, Ashwin; Kim, Yongsin; Kausch, Charles M; Thomas, Richard R

    2006-09-12

    The effect of binding of an oligomeric cationic fluorooxetane surfactant on the interfacial properties of adsorbed gelatin-fluorooxetane complexes has been studied using dynamic surface tension and dilational rheological measurements. Adsorption kinetics of gelatin-fluorooxetane complexes are reminiscent of a mixed (barrier/diffusion limited) process, while the dilational rheological properties of the interface exhibit a strong dependence on surfactant concentration. At low surfactant concentrations, dilational surface moduli as well as phase angles are relatively insensitive to the presence of the fluorooxetane. However, at the critical aggregation concentration of the polymer-surfactant system, there is a sharp increase in the complex modulus. Further increase in the fluorooxetane concentration does not significantly affect the complex modulus. The phase angle, however, does increase with increasing fluorooxetane concentration due to the transport of bound fluorooxetane from the subsurface to the solution-air interface. These results indicate that, at fluorooxetane concentrations exceeding the critical aggregation concentration, the polymer-surfactant complexes adsorb to form cross-linked multilayers at the solution-air interface.

  12. SUPRAMOLECULAR SYSTEMS BEHAVIOR AT THE AIR-WATER INTERFACE. MOLECULAR DYNAMIC SIMULATION STUDY

    SciTech Connect

    Sandoval, C.; Saavedra, M.; Gargallo, L.; Radic, D.

    2008-08-28

    Atomistic molecular dynamics simulation (MDS) was development to investigate the structural and dynamic properties of a monolayer of supramolecular systems. The simulations were performed at room temperature, on inclusion complexes (ICs) of {alpha}-cyclodextrin (CD) with poly(ethylene-oxide)(PEO), poly({epsilon}-caprolactone)(PEC) and poly(tetrahydrofuran)(PTHF). The simulations were carried out for a surface area of 30A ring . The trajectories of the MDS show that the system more stable was IC-PEC, being the less stable IC-PEO. The disordered monolayer for the systems was proved by the orientation correlation function and the radial distribution function between the polar groups of ICs and the water molecules. We found that the system IC-PEC was more stable that the systems IC-PTHF and IC-PEO.

  13. A Study of the Turbulent Layer in the Water at an Air-Water Interface.

    DTIC Science & Technology

    1985-01-01

    Shonting (1964, 1967, 1968, 1970), Simpson - .(1969), Yefimov and Khristoforov (1969, 1971), Tatra (1971), Thornton and Krapohl (1974), and Cavaleri et al...34Wind-induced drift currents," J. Fluid Mech., 68, 49-70, 1975. Yefimo,, V.V. and G.N. Khristoforov , "Some features of the velocity field in the layer...of wind-driven swell," Bull. (Izv.) A-cad. Sci. USSR, Atmospheric and Oceanic Physics, 5_, 597-602, 1969. Yefimov, V.V. and G.N. Khristoforov

  14. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  15. Observation of the interference between the intramolecular IR-visible and visible-IR processes in the doubly resonant sum frequency generation vibrational spectroscopy of Rhodamine 6G adsorbed at the air/water interface.

    PubMed

    Wu, Dan; Deng, Gang-Hua; Guo, Yuan; Wang, Hong-fei

    2009-05-28

    Using the picosecond visible light at 532.1 nm and infrared light at 2800-3100 cm(-1), we observed the interference between the intramolecular IR-visible and visible-IR processes in the doubly resonant sum frequency generation vibrational spectroscopy of Rhodamine 6G adsorbed at the air/water interface. The interference phenomenon exists for both the C-H stretching vibrations in the 2800-3100 cm(-1) region and the skeleton vibrations in the 1450-1700 cm(-1) region. The relative strength of the visible-IR process at different wavelengths is the result of the electronic structure of the molecule. This is the first direct observation of the visible-IR sum frequency generation process in the electronically excited state of a model molecular system.

  16. Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air-water interface and of the sea surface microlayer

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Gonzalez, L.; Leithead, A.; Finewax, Z.; Thalman, R.; Vlasenko, A.; Vagle, S.; Miller, L. A.; Li, S.-M.; Bureekul, S.; Furutani, H.; Uematsu, M.; Volkamer, R.; Abbatt, J.

    2014-02-01

    Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acids (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air-seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) University of Colorado light-emitting diode cavity-enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas-phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive dicarbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and < 1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples.

  17. Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air-water interface and of the sea surface microlayer

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Gonzalez, L.; Leithead, A.; Finewax, Z.; Thalman, R.; Vlasenko, A.; Vagle, S.; Miller, L.; Li, S.-M.; Bureekul, S.; Furutani, H.; Uematsu, M.; Volkamer, R.; Abbatt, J.

    2013-07-01

    Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acid (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air-seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) and light-emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive di-carbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and <1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples. The potential impact of such chemistry on the atmosphere of the marine boundary layer is discussed.

  18. Superposition-additive approach in the description of thermodynamic parameters of formation and clusterization of substituted alkanes at the air/water interface.

    PubMed

    Vysotsky, Yu B; Belyaeva, E A; Fomina, E S; Vasylyev, A O; Vollhardt, D; Fainerman, V B; Aksenenko, E V; Miller, R

    2012-12-01

    The superposition-additive approach developed previously was shown to be applicable for the calculations of the thermodynamic parameters of formation and atomization of conjugate systems, their dipole polarizability, molecular diamagnetic susceptibility, π-electronic ring currents, etc. In the present work, the applicability of this approach for the calculation of the thermodynamic parameters of formation and clusterization at the water/air interface of alkanes, fatty alcohols, thioalcohols, amines, nitriles, fatty acids (C(n)H(2n+1)X, X is the functional group) and cis-unsaturated carboxylic acids (C(n)H(2n-1)COOH) is studied. Using the proposed approach the thermodynamic quantities determined agree well with the available data, either calculated using the semiempirical (PM3) quantum chemical method, or obtained in experiments. In particular, for enthalpy and Gibbs' energy of the formation of substituted alkane monomers from the elementary substances, and their absolute entropy, the standard deviations of the values calculated according to the superposition-additive scheme with the mutual superimposition domain C(n-2)H(2n-4) (n is the number of carbon atoms in the alkyl chain) from the results of PM3 calculations for alkanes, alcohols, thioalcohols, amines, fatty acids, nitriles and cis-unsaturated carboxylic acids are respectively: 0.05, 0.004, 2.87, 0.02, 0.01, 0.77, and 0.01 kJ/mol for enthalpy; 2.32, 5.26, 4.49, 0.53, 1.22, 1.02, 5.30 J/(molK) for absolute entropy; 0.69, 1.56, 3.82, 0.15, 0.37, 0.69, 1.58 kJ/mol for Gibbs' energy, whereas the deviations from the experimental data are: 0.52, 5.75, 1.40, 1.00, 4.86 kJ/mol; 0.52, 0.63, 1.40, 6.11, 2.21 J/(molK); 2.52, 5.76, 1.58, 1.78, 4.86 kJ/mol, respectively (for nitriles and cis-unsaturated carboxylic acids experimental data are not available). The proposed approach provides also quite accurate estimates of enthalpy, entropy and Gibbs' energy of boiling and melting, critical temperatures and standard heat

  19. Intermolecular forces in lipid monolayers. Two-dimensional virial coefficients for pentadecanoic acid from micromanometry on spread monolayers at the air/water interface.

    PubMed

    Pallas, Norman R; Pethica, Brian A

    2009-07-07

    The lateral intermolecular forces between surfactant or lipid molecules in monolayers at interfaces are fundamental to understanding the phenomena of surface activity and the interactions of lipids in two-dimensional structures such as smectic phases and biomembranes. The classical approach to these forces is via the two-dimensional virial coefficients, which requires precise micromanometry on monolayer isotherms in the dilute gaseous region. Low pressure isotherms out to high surface areas in the two-dimensional gas range have been measured at 15, 25 and 30 degrees C for insoluble monolayers of n-pentadecanoic acid spread at the interface between water-vapour saturated air and a dilute aqueous solution of HCl. The data allow estimates of virial coefficients up to the third term. The second virial coefficients are compared with those predicted from a statistical mechanical model for monolayers of n-alkylcarboxylic acids treated as side-by-side parallel chains extended at the surface with the carboxyl head groups shielded in the water phase. The two sets coincide at approximately 26 degrees C, but the experimental estimates show a much larger dependence on temperature than the model predicts. Chain conformation effects, head group interactions and surface field polarization are discussed as possible temperature-dependent contributions to the lateral potentials of mean force.

  20. Nonlinear optical studies of aqueous interfaces, polymers, and nanowires

    NASA Astrophysics Data System (ADS)

    Onorato, Robert Michael

    Understanding the structure and composition of aqueous interfaces is one of the most important current problems in modern science. Aqueous interfaces are ubiquitous in Nature, ranging from aerosols to cellular structures. Aerosol chemistry is presently the most significant unknown factor in predicting climate change, and an understanding of the chemistry that occurs at aerosol interfaces would significantly improve climate models. Similarly, the nature of aqueous biological interfaces has a profound effect on the structure and function of proteins and other biological structures. Despite the importance of these problems, aqueous interfaces remain incompletely understood due to the challenges of experimentally probing them. Recent experimental and theoretical results have firmly established the existence of enhanced concentrations of selected ions at the air/water interface. In this dissertation, I use an interface-specific technique, UV second harmonic generation (SHG), to further investigate the adsorption of ions to the air/water interface and to extend the study of ion adsorption towards more biologically relevant systems, alcohol/water interfaces. In Chapter 2, I describe resonant UV-SHG studies of the strongly chaotropic thiocyanate ion adsorbed to the interface formed by water and a monolayer of dodecanol, wherein the Gibbs free energy of adsorption was determined to be -6.7 +/- 1.1 and -6.3 +/- 1.8 kJ/mol for sodium and potassium thiocyanate, respectively, coincident with the value determined for thiocyanate at the air/water interface. Interestingly, at concentrations near and above 4 M, the resonant SHG signal increases discontinuously, indicating a structural change in the interfacial region. Recent experimental and theoretical work has demonstrated that the adsorption of bromide is particularly important for chemical reactions on atmospheric aerosols, including the depletion of ozone. In Chapter 3, UV-SHG resonant with the bromide charge

  1. The interaction of mefloquine hydrochloride with cell membrane models at the air-water interface is modulated by the monolayer lipid composition.

    PubMed

    Goto, Thiago Eichi; Caseli, Luciano

    2014-10-01

    The antiparasitic properties of antiparasitic drugs are believed to be associated with their interactions with the protozoan membrane, encouraging research on the identification of membrane sites capable of drug binding. In this study, we investigated the interaction of mefloquine hydrochloride, known to be effective against malaria, with cell membrane models represented by Langmuir monolayers of selected lipids. It is shown that even small amounts of the drug affect the surface pressure-area isotherms as well as surface vibrational spectra of some lipid monolayers, which points to a significant interaction. The effects on the latter depend on the electrical charge of the monolayer-forming molecules, with the drug activity being particularly distinctive for negatively charged lipids. Therefore, the lipid composition of the monolayer modulates the interaction with the lipophilic drug, which may have important implications in understanding how the drug acts on specific sites of the protozoan membrane.

  2. CdSe magic-sized quantum dots incorporated in biomembrane models at the air-water interface composed of components of tumorigenic and non-tumorigenic cells.

    PubMed

    Goto, Thiago E; Lopes, Carla C; Nader, Helena B; Silva, Anielle C A; Dantas, Noelio O; Siqueira, José R; Caseli, Luciano

    2016-07-01

    Cadmium selenide (CdSe) magic-sized quantum dots (MSQDs) are semiconductor nanocrystals with stable luminescence that are feasible for biomedical applications, especially for in vivo and in vitro imaging of tumor cells. In this work, we investigated the specific interaction of CdSe MSQDs with tumorigenic and non-tumorigenic cells using Langmuir monolayers and Langmuir-Blodgett (LB) films of lipids as membrane models for diagnosis of cancerous cells. Surface pressure-area isotherms and polarization modulation reflection-absorption spectroscopy (PM-IRRAS) showed an intrinsic interaction between the quantum dots, inserted in the aqueous subphase, and Langmuir monolayers constituted either of selected lipids or of tumorigenic and non-tumorigenic cell extracts. The films were transferred to solid supports to obtain microscopic images, providing information on their morphology. Similarity between films with different compositions representing cell membranes, with or without the quantum dots, was evaluated by atomic force microscopy (AFM) and confocal microscopy. This study demonstrates that the affinity of quantum dots for models representing cancer cells permits the use of these systems as devices for cancer diagnosis.

  3. Effect of ionization on the behavior of n-eicosanephosphonic acid monolayers at the air/water interface. Experimental determinations and molecular dynamics simulations.

    PubMed

    Schulz, Erica P; Piñeiro, Ángel; Miñones, José; Miñones Trillo, José; Frechero, Marisa A; Pieroni, Olga; Schulz, Pablo C

    2015-03-03

    Monolayers of n-eicosanephosphonic acid, EPA, were studied using a Langmuir balance and a Brewster angle microscope at different subphase pH values to change the charge of the polar headgroups (Zav) from 0 to -2. Molecular dynamics simulations (MDS) results for |Zav| = 0, 1, and 2 were compared with the experimental ones. EPA monolayers behave as mixtures of mutually miscible species (C20H41-PO3H2, C20H41-PO3H(-), and C20H41-PO3(2-), depending on the subphase pH). The order and compactness of the monolayers decrease when increasing |Zav|, while go from strongly interconnected by phosphonic-phosphonic hydrogen bonds (|Zav| = 0-0.03) through an equilibrium between the total cohesive energy and the electrostatic repulsion between the charged polar groups (0.03 < |Zav| < 1.6) to an entirely ionic monolayer (|Zav| ≈ 2). MDS reveal for |Zav| = 0 that the chains form spiralled nearly rounded structures induced by the hydrogen-bonded network. When |Zav| ≈ 1 fingering domains were identified. When Z ≈ 2, the headgroups are more disordered and distanced, not only in the xy plane but also in the z direction, forming a rough layer and responding to compression with a large plateau in the isotherm. The monolayers collapse behavior is consistent with the structures and domains founds in the different ionization states and their consequent in-plane rigidity: there is a transition from a solid-like response at low pH subphases to a fluid-like response at high pH subphases. The film area in the close-packed state increases relatively slow when the polar headgroups are able to form hydrogen bonds but increases to near twice that this value when |Zav| ≈ 2. Other nanoscopic properties of monolayers were also determined by MDS. The computational results confirm the experimental findings and offer a nanoscopic perspective on the structure and interactions in the phosphonate monolayers.

  4. Effects of Temperature, Oxygen Level, Ionic Strength, and pH on the Reaction of Benzene with Hydroxyl Radicals at the Air-Water Interface in Comparison to the Bulk Aqueous Phase.

    PubMed

    Heath, Aubrey A; Valsaraj, Kalliat T

    2015-08-06

    Atmospheric aerosols (e.g., fog droplets) are complex, multiphase mediums. Depending on location, time of day, and/or air mass source, there can be considerable variability within these droplets, relating to temperature, pH, and ionic strength. Due to the droplets' inherently small size, the reactions that occur within these droplets are determined by bulk aqueous phase and air-water interfacial conditions. In this study, the reaction of benzene and hydroxyl radicals is examined kinetically in a thin-film flow-tube reactor. By varying the aqueous volume (e.g., film thickness) along the length of the reactor, both bulk and interfacial reaction rates are measured from a single system. Temperature, pH, and ionic strength are varied to model conditions typical of fog events. Oxygen-poor conditions are measured to study oxygen's overall effect on the reaction pathway. Initial rate activation energies and the bulk aqueous phase and interfacial contributions to the overall rate constant are also obtained.

  5. Adsorption of Bovine Serum Albumin (BSA) at the Oil/Water Interface: A Neutron Reflection Study.

    PubMed

    Campana, M; Hosking, S L; Petkov, J T; Tucker, I M; Webster, J R P; Zarbakhsh, A; Lu, J R

    2015-05-26

    The structure of the adsorbed protein layer at the oil/water interface is essential to the understanding of the role of proteins in emulsion stabilization, and it is important to glean the mechanistic events of protein adsorption at such buried interfaces. This article reports on a novel experimental methodology for probing protein adsorption at the buried oil/water interface. Neutron reflectivity was used with a carefully selected set of isotopic contrasts to study the adsorption of bovine serum albumin (BSA) at the hexadecane/water interface, and the results were compared to those for the air/water interface. The adsorption isotherm was determined at the isoelectric point, and the results showed that a higher degree of adsorption could be achieved at the more hydrophobic interface. The adsorbed BSA molecules formed a monolayer on the aqueous side of the interface. The molecules in this layer were partially denatured by the presence of oil, and once released from the spatial constraint by the globular framework they were free to establish more favorable interactions with the hydrophobic medium. Thus, a loose layer extending toward the oil phase was clearly observed, resulting in an overall broader interface. By analogy to the air/water interface, as the concentration of BSA increased to 1.0 mg mL(-1) a secondary layer extending toward the aqueous phase was observed, possibly resulting from the steric repulsion upon the saturation of the primary monolayer. Results clearly indicate a more compact arrangement of molecules at the oil/water interface: this must be caused by the loss of the globular structure as a consequence of the denaturing action of the hexadecane.

  6. 3-Dimensional numerical study of cooling performance of a heat sink with air-water flow through mini-channel

    NASA Astrophysics Data System (ADS)

    Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan

    2016-07-01

    The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.

  7. Model study of protein unfolding by interfaces

    NASA Astrophysics Data System (ADS)

    Chakarova, S. D.; Carlsson, A. E.

    2004-02-01

    We study interface-induced protein unfolding on hydrophobic and polar interfaces by means of a two-dimensional lattice model and an exhaustive enumeration ground-state structure search, for a set of model proteins of length 20 residues. We compare the effects of the two types of interfaces, and search for criteria that influence the retention of a protein’s native-state structure upon adsorption. We find that the unfolding proceeds by a large, sudden loss of native contacts. The unfolding at polar interfaces exhibits similar behavior to that at hydrophobic interfaces but with a much weaker interface coupling strength. Further, we find that the resistance of proteins to unfolding in our model is positively correlated with the magnitude of the folding energy in the native-state structure, the thermal stability (or energy gap) for that structure, and the interface energy for native-state adsorption. We find these factors to be of roughly equal importance.

  8. Cleaning verification by air/water impingement

    NASA Technical Reports Server (NTRS)

    Jones, Lisa L.; Littlefield, Maria D.; Melton, Gregory S.; Caimi, Raoul E. B.; Thaxton, Eric A.

    1995-01-01

    This paper will discuss how the Kennedy Space Center intends to perform precision cleaning verification by Air/Water Impingement in lieu of chlorofluorocarbon-113 gravimetric nonvolatile residue analysis (NVR). Test results will be given that demonstrate the effectiveness of the Air/Water system. A brief discussion of the Total Carbon method via the use of a high temperature combustion analyzer will also be given. The necessary equipment for impingement will be shown along with other possible applications of this technology.

  9. Propagation of density disturbances in air-water flow

    NASA Technical Reports Server (NTRS)

    Nassos, G. P.

    1969-01-01

    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  10. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows

    SciTech Connect

    Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I.; Neves, F. Jr.; Franca, F.A.

    2009-10-15

    Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)

  11. High temperature ceramic interface study

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.

    1984-01-01

    Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.

  12. The configuration of water on rough natural surfaces: Implications for understanding air-water interfacial area, film thickness, and imaging resolution

    NASA Astrophysics Data System (ADS)

    Kibbey, Tohren C. G.

    2013-08-01

    Previous studies of air-water interfacial areas in unsaturated porous media have often distinguished between interfacial area corresponding to water held by capillary forces between grains and area corresponding to water associated with solid surfaces. The focus of this work was on developing a better understanding of the nature of interfacial area associated with solid surfaces following drainage of porous media. Stereoscopic scanning electron microscopy was used to determine surface elevation maps for eight different surfaces of varying roughness. An algorithm was developed to calculate the true configuration of an air-water interface in contact with the solid surface as a function of capillary pressure. The algorithm was used to calculate surface-associated water configurations for capillary pressures ranging from 10 to 100 cm water. The results of the work show that, following drainage, the configuration of surface-associated water is dominated by bridging of macroscopic surface roughness features over the range of capillary pressures studied, and nearly all of the surface-associated water is capillary held. As such, the thicknesses of surface-associated water were found to be orders-of-magnitude greater than might be expected at the same capillary pressures based on calculations of adsorbed film thickness. The fact that capillary forces in air-water interfaces dominate surface-associated water configuration means that interface shapes are largely unaffected by microscopic surface roughness, and interfaces are considerably smoother than the underlying solid. As such, calculations suggest that microscopic surface roughness likely has minimal impact on the accuracy of surface-associated air-water interfacial areas determined by limited-resolution imaging methods such as computed microtomography.

  13. OH-radical specific addition to the antioxidant glutathione S-atom at the air-water interface - Relevance to the redox balance of the lung epithelial lining fluid and the causality of adverse health effects induced by air pollution

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.; Enami, S.; Hoffmann, M. R.

    2015-12-01

    Inhalation of oxidant pollutants upsets the redox balance (RB) of the lung epithelial lining fluid (ELF) by triggering the formation of reactive OH-radicals therein. RB is deemed to be controlled by the equilibrium between the most abundant ELF protective antioxidant glutathione (GSH) and its putative disulfide GSSG oxidation product. The actual species produced from the oxidation of GSH initiated by ·OH in ELF interfacial layers exposed to air, i.e., under realistic ELF conditions, however, were never identified. Here we report the online electrospray mass spectrometric detection of sulfenate (GSO-), sulfinate (GSO2-) and sulfonate (GSO3-) on the surface of aqueous GSH solutions collided with ·OH(g). We show that these products arise from ·OH specific additions to S-atoms, rather than via H-abstraction from GS-H. The remarkable specificity of ·OH in interfacial water vis-a-vis its lack of selectivity in bulk water implicates an unprecedented steering process during ·OH-GSH encounters at water interfaces. A non-specific systemic immune response to inhaled oxidants should be expected if they were initially converted into a common ·OH intermediate on the ELF (e.g., via fast Fenton chemistry) and oxidative stress signaled by the [GSH]/[GSOH] ratio.

  14. Injury to deep benthos. Subtidal study number 2b (air/water study number 2). Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect

    Feder, H.M.

    1995-06-01

    This study was designed to assess the possible injury by petroleum, derived from the Exxon Valdez oil spill to benthic infaunal resources within Prince William Sound in water deeper than 20 m. Analyses of benthic biological data collected from 14 bays in Prince William Sound in 1990 at 40, 100 and > 100 m, by univariate and multivariate techniques, demonstrated no obvious disturbance effects on the benthic biota 16 months after the oil spill. In all multivariate analyses, the major environmental variables related to the composition of benthic assemblages were sediment parameters such as percent silt, clay, mud, percent water and amount of nitrogen and carbon in sediment. Although limited amounts of petroleum hydrocarbons and presence of hydrocarbon degrading bacteria were detected at some sites at 40 and 100 m in 1989 and 1990, minor or no impact was sustained by benthic fauna of the deep benthos within the Sound.

  15. Solar thermochemical process interface study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design and analyses of a subsystem of a hydrogen production process are described. The process is based on solar driven thermochemical reactions. The subject subsystem receives sulfuric acid of 60% concentration at 100 C, 1 atm pressure. The acid is further concentrated, vaporized, and decomposed (at a rate of 122 g moles/sec H2SO4) into SO2, O2, and water. The produce stream is cooled to 100 C. Three subsystem options, each being driven by direct solar energy, were designed and analyzed. The results are compared with a prior study case in which solar energy was provided indirectly through a helium loop.

  16. Solar thermochemical process interface study

    NASA Astrophysics Data System (ADS)

    1984-02-01

    The design and analyses of a subsystem of a hydrogen production process are described. The process is based on solar driven thermochemical reactions. The subject subsystem receives sulfuric acid of 60% concentration at 100 C, 1 atm pressure. The acid is further concentrated, vaporized, and decomposed (at a rate of 122 g moles/sec H2SO4) into SO2, O2, and water. The produce stream is cooled to 100 C. Three subsystem options, each being driven by direct solar energy, were designed and analyzed. The results are compared with a prior study case in which solar energy was provided indirectly through a helium loop.

  17. Tape/head interface study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Existing high energy tapes, high track density heads, and transport guidance techniques were evaluated and characterized to enable these technologies to be employed in future spacecraft recorders with high confidence. The results of these study efforts demonstrated tracking accuracy tape and head density that will support spacecraft recorders with data rates of a minimum of 150 Mbps and storage capacities ranging from 10 to the 10th to 10 to the 11th bits. Seven high energy tapes of either .25 in width, 1.00 in width, or both, were tested. All tapes were tested at the same speed (30 ips) and the same packing density (33 KBI). The performance of all 1 in tapes was considered superior.

  18. The Effect of Polarizability for the Understanding the Molecular Structure of Aqueous Interfaces

    SciTech Connect

    Wick, Collin D.; Kuo, I-F W.; Mundy, Christopher J.; Dang, Liem X.

    2007-11-01

    A review is presented on recent progress of the application of molecular dynamics simulation methods with the inclusion of polarizability for the understanding of aqueous interfaces. Comparisons among a variety of models, including Car-Parinello simulations, for the modeling of neat air-water interfaces are given. These results are used to describe the effect of polarizability on modeling the microscopic structure of the neat air-water interface, including comparisons with recent spectroscopic studies. Also, the understanding of the contribution of polarization to the electrostatic potential across the air-water interface is elucidated. Finally, the importance of polarizability for understanding anion transfer across an organic-water interface is shown. This work was performed at Pacific Northwest National Laboratory (PNNL) under the auspices of the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy. PNNL is operated by Battelle.

  19. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2015-12-29

    Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects.

  20. Gas Gun Studies of Interface Wear Effects

    NASA Astrophysics Data System (ADS)

    Jackson, Tyler; Kennedy, Greg; Thadhani, Naresh

    2011-06-01

    The characteristics of interface wear were studied by performing gas gun experiments at velocities up to 1 km/s. The approach involved developing coefficients of constitutive strength models for Al 6061 and OFHC-Cu, then using those to design die geometry for interface wear gas gun experiments. Taylor rod-on-anvil impact experiments were performed to obtain coefficients of the Johnson-Cook constitutive strength model by correlating experimentally obtained deformed states of impacted samples with those predicted using ANSYS AUTODYN hydrocode. Simulations were used with validated strength models to design geometry involving acceleration of Al rods through a copper concentric cylindrical angular extrusion die. Experiments were conducted using 7.62 mm and 80 mm diameter gas guns. Differences in the microstructure of the interface layer and microhardness values illustrate that stress-strain conditions produced during acceleration of Al through the hollow concentric copper die, at velocities less than 800 m/s, result in formation of a layer via solid state alloying due to severe plastic deformation, while higher velocities produce an interface layer consisting of melted and re-solidified aluminum.

  1. Air-water interfacial areas in unsaturated soils: Evaluation of interfacial domains

    NASA Astrophysics Data System (ADS)

    Costanza-Robinson, Molly S.; Brusseau, Mark L.

    2002-10-01

    A gas-phase miscible-displacement method, using decane as an interfacial tracer, was used to measure air-water interfacial areas for a sand with water contents ranging from ˜2% to 20%. The expected trend of decreasing interfacial areas with increasing water contents was observed. The maximum estimated interfacial area of 19,500 cm-1 appears reasonable given it is smaller than the measured surface area of the porous medium (60,888 cm-1). Comparison of the experimental data presented herein with literature data provided further insight into the characterization of the air-water interface in unsaturated porous media. Specifically, comparison of interfacial areas measured using gas-phase versus aqueous-phase methods indicates that the gas-phase method generally yields larger interfacial areas than the aqueous-phase methods, even when accounting for differences in water content and physical properties of the porous media. The observations are consistent with proposed differences in interfacial accessibility of the aqueous- and gas-phase tracers. Evaluation of the data in light of functional interfacial domains, described herein, yields the hypothesis that aqueous interfacial tracers measure primarily air-water interfaces formed by "capillary water," while gas-phase tracers measure air-water interfaces formed by both capillary and surface-adsorbed (film) water. The gas- and aqueous-phase methods may each provide interfacial area information that is more relevant to specific problems of interest. For example, gas-phase interfacial area measurements may be most relevant to contaminant transport in unsaturated systems, where retention at the air-water interface may be significant. Conversely, the aqueous-phase methods may yield information with direct bearing on multiphase flow processes that are dominated by capillary-phase behavior.

  2. Two-Fluid Interface Instability Being Studied

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles E.

    2003-01-01

    The interface between two fluids of different density can experience instability when gravity acts normal to the surface. The relatively well known Rayleigh-Taylor (RT) instability results when the gravity is constant with a heavy fluid over a light fluid. An impulsive acceleration applied to the fluids results in the Richtmyer-Meshkov (RM) instability. The RM instability occurs regardless of the relative orientation of the heavy and light fluids. In many systems, the passing of a shock wave through the interface provides the impulsive acceleration. Both the RT and RM instabilities result in mixing at the interface. These instabilities arise in a diverse array of circumstances, including supernovas, oceans, supersonic combustion, and inertial confinement fusion (ICF). The area with the greatest current interest in RT and RM instabilities is ICF, which is an attempt to produce fusion energy for nuclear reactors from BB-sized pellets of deuterium and tritium. In the ICF experiments conducted so far, RM and RT instabilities have prevented the generation of net-positive energy. The $4 billion National Ignition Facility at Lawrence Livermore National Laboratory is being constructed to study these instabilities and to attempt to achieve net-positive yield in an ICF experiment.

  3. Molecular Design of Branched and Binary Molecules at Ordered Interfaces

    SciTech Connect

    Genson, Kirsten Larson

    2005-01-01

    This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformation which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.

  4. Crew interface definition study, phase 1

    NASA Technical Reports Server (NTRS)

    Callihan, J. C.; Kraemer, J. W.; Alles, J. A.

    1971-01-01

    The timeline analysis of the Shuttle orbiter missions which was conducted in the Phase I Crew Interface Definition Study and the requirements for the man-in-the-loop simulation study are presented. Mission definitions and objectives are presented as they relate to various Shuttle Orbiter missions. The requirements for crew participation and the information required by the crew are discussed, and finally the rationale behind the display concept and calling procedures is given. The simulation objectives, the simulation mechanization, including a detailed presentation of the display and control concept, the simulator test plan and the results are discussed.

  5. Synchrotron X-ray scattering studies of nanostructure-formation at interfaces

    NASA Astrophysics Data System (ADS)

    Sanyal, Milan K.

    2013-02-01

    We shall discuss results of a series of synchrotron x-ray scattering studies to understand the ordering of nanostructured materials formed at interfaces. In particular we shall discuss formation of germanium quantum-dots at the MBE grown silicon-germanium super-lattice structure and reversible crystallization of monolayer of Polyhedral Oligomeric SilSesquioxane (POSS) on water surface. The consistent analysis of the x-ray reflectivity and diffraction data collected in the Indian Beamline at Photon Factory Synchrotron, KEK, Japan have allowed determination of electron density and strain profile as a function of depth. The electron density profile obtained from the reflectivity and elemental profile obtained from SIMS measurements were effectively used to calculate diffraction data that provided strain and compositional profiles. The behaviour of amphiphilic Silsesquioxane POSS molecules under in-plane pressure in a Langmuir trough was studied at the ChemMatCARS, Sector 15, Advanced Photon Source, USA. We observe clear evidence of reversible crystallization of the POSS monolayers at the air-water interface - at higher pressure sharp diffraction spots are observed and as the pressure is withdrawn typical monolayer scattering comes back. Results of AFM studies of the lifted films in these two extreme phases were found to be consistent with the x-ray data.

  6. Grazing incidence X-ray diffraction studies of condensed double-chain phospholipid monolayers formed at the soft air/water interface.

    PubMed

    Stefaniu, Cristina; Brezesinski, Gerald

    2014-05-01

    The use of highly brilliant synchrotron light sources in the middle of the 1980s for X-ray diffraction has revolutionized the research of condensed monolayers. Since then, monolayers gained popularity as convenient quasi two-dimensional model systems widely used in biophysics and material science. This review focuses on structures observed in one-component phospholipid monolayers used as simplified two-dimensional models of biological membranes. In a monolayer system the phase transitions can be easily triggered at constant temperature by increasing the packing density of the lipids by compression. Simultaneously the monolayer structure changes are followed in situ by grazing incidence X-ray diffraction. Competing interactions between the different parts of the molecule are responsible for the different monolayer structures. These forces can be modified by chemical variations of the hydrophobic chain region, of the hydrophilic head group region or of the interfacial region between chains and head groups. Modifications of monolayer structures triggered by changes of the chemical structure of double-chain phospholipids are highlighted in this paper.

  7. Numerical Modeling of Flow Dynamics in The Aluminum Smelting Process: Comparison Between Air-Water and CO2-Cryolite Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Zhibin; Feng, Yuqing; Schwarz, M. Philip; Witt, Peter J.; Wang, Zhaowen; Cooksey, Mark

    2016-12-01

    Air-water models have been widely applied as substitutes for CO2-cryolite systems in the study of the complex bubble dynamics and bubble-driven flow that occurs in the molten electrolyte phase in the aluminum electrolytic process, but the detailed difference between the two systems has not been studied. This paper makes a numerical comparison between the bubble dynamics for the two systems. Simulations of both single bubble and continuous bubbling were conducted using a three-dimensional computational fluid dynamics (3D CFD) modeling approach with a volume of fluid (VOF) method to capture the phase interfaces. In the single bubble simulations, it was found that bubbles sliding under an anode in a CO2-cryolite system have a smaller bubble thickness and a higher sliding velocity than those in the air-water system for bubbles of the same volume. Dimensionless analysis and numerical simulation show that contact angle is the dominant factor producing these differences; the effects of kinematic viscosity, surface tension, and density are very small. In the continuous bubbling simulations, the continuous stream of air bubbles detaches from the anode sidewall after a period of climbing, just as it does in the single bubble simulation, but bubbles have less tendency to migrate away from the wall. Quasi-stable state flow characteristics, i.e., time-averaged bath flow pattern, turbulence kinetic energy, turbulence dissipation rate, and gas volume fraction, show a remarkable agreement between the two systems in terms of distribution and magnitude. From the current numerical comparisons, it is believed that the air-water model is a close substitutive model for studying bubble-driven bath flow in aluminum smelting processes. However, because of the difference in bubble morphologies between the two systems, and also the reactive generation and growth of bubbles in the real system, there will likely be some differences in bubble coverage of the anode in the anode-cathode gap.

  8. Numerical Modeling of Flow Dynamics in The Aluminum Smelting Process: Comparison Between Air-Water and CO2-Cryolite Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Zhibin; Feng, Yuqing; Schwarz, M. Philip; Witt, Peter J.; Wang, Zhaowen; Cooksey, Mark

    2017-04-01

    Air-water models have been widely applied as substitutes for CO2-cryolite systems in the study of the complex bubble dynamics and bubble-driven flow that occurs in the molten electrolyte phase in the aluminum electrolytic process, but the detailed difference between the two systems has not been studied. This paper makes a numerical comparison between the bubble dynamics for the two systems. Simulations of both single bubble and continuous bubbling were conducted using a three-dimensional computational fluid dynamics (3D CFD) modeling approach with a volume of fluid (VOF) method to capture the phase interfaces. In the single bubble simulations, it was found that bubbles sliding under an anode in a CO2-cryolite system have a smaller bubble thickness and a higher sliding velocity than those in the air-water system for bubbles of the same volume. Dimensionless analysis and numerical simulation show that contact angle is the dominant factor producing these differences; the effects of kinematic viscosity, surface tension, and density are very small. In the continuous bubbling simulations, the continuous stream of air bubbles detaches from the anode sidewall after a period of climbing, just as it does in the single bubble simulation, but bubbles have less tendency to migrate away from the wall. Quasi-stable state flow characteristics, i.e., time-averaged bath flow pattern, turbulence kinetic energy, turbulence dissipation rate, and gas volume fraction, show a remarkable agreement between the two systems in terms of distribution and magnitude. From the current numerical comparisons, it is believed that the air-water model is a close substitutive model for studying bubble-driven bath flow in aluminum smelting processes. However, because of the difference in bubble morphologies between the two systems, and also the reactive generation and growth of bubbles in the real system, there will likely be some differences in bubble coverage of the anode in the anode-cathode gap.

  9. Femtosecond Studies of Electrons at Interfaces

    NASA Astrophysics Data System (ADS)

    Harris, Charles

    2000-03-01

    Binding energies and ultrafast relaxation dynamics of image electrons reflect the nature of the electronic interaction with both the substrate and the adsorbed layer[1,2]. We demonstrate that a positive(attractive) affinity materials, such as Xe overlayers, lead to quantum well states at the interface. Negative(repulsive) affinity materials, such a n-alkane overlayers, present a tunneling barrier that dominates the energies and lifetimes of the image electrons. With the time- and angle-resolved two-photon photoemission technique(TPPE), it is possible to directly observe the dynamics of interfacial electrons with specific energy and parallel momentum. Oscillation in the lifetime of image state electrons as a function of Xe layer thickness is attributed to a quantum size effect and the formation of quantum wells at the Xe/Ag(111) interface[3]. Binding energy measurements as a function of Xe layer thickness in combination with parallel dispersion measurements allow the mapping of the three dimensional electronic structure of bulk Xe. At the n-alkane/Ag(111) interface, image electrons become spatially localized and self-trap into a small polaron state within a few hundred femtosecond[4]. The energy dependence of the self-trapping rate has been modeled with a theory analogous to electron transfer theory. Finally, the immediate extension of this research to study other electron dynamic processes, such as two dimensional electron solvation at interfaces, will be discussed. [1] Fauster, T.; Steinmann, W. Two-Photon Photoemission Spectroscopy of Image States. In Photonic Probes of Surfaces; Halevi, P., Ed.; Elsevier: Amsterdam, 1995; pp. 346-411. [2] Harris, C.B.; Ge, N.-H.; Lingle, Jr., R.L.; McNeill, J.D.; Wong, C.M. Annu. Rev. Phys. Chem. 1997, 48, 711. [3] McNeill, J.D.; Lingle, R.L.,Jr.; Ge, N.-H.; Wong, C.M.; Jordan, R.E.; Harris, C.B. Phys. Rev. Lett. 1997, 79, 4645. [4] Ge, N.-H.; Wong, C.M.; Lingle, R.L., Jr.; McNeill, J.D.; Gaffney, K.J.; Harris, C.B. Science 1998

  10. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  11. On the stability of an accelerated coupled air-water flow.

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Ierley, Glenn; Melville, W. Kendall

    2000-11-01

    We present the results of a study of the stability of the interface of an accelerated coupled air-water flow. We develop a general solution of the two-layer, laminar parallel flow driven by a pressure gradient in the air. The velocity profiles in both fluids are given by analytical functions for pressure gradients that can be represented as power series in time. The stability of the coupled flow is then examined by solving the two layer Orr-Sommerfeld equations allowing for linear displacements of the interface. In the simple case of the linearly accelerating flow, we find that the flow is always stable for an air velocity below 0.6 m s-1. Instabilities first appear in the form of surface waves with a phase speed of approximately 30 cm s-1 and a wavenumber of O(1) cm-1. In cases when the flow in the air is turbulent, and represented by a continuously differentiable analytical approximation of the log-linear mean velocity profile, we find that the flow is rapidly unstable to surface waves. Comparisons are made with the previous computations of Kawai (1979) and Wheless and Csanady (1993), and with the measurements of Veron and Melville (2000).

  12. AD Hoc Study on Human Robot Interface Issues

    DTIC Science & Technology

    2002-09-01

    ARMY SCIENCE BOARD AD HOC STUDY ON HUMAN ROBOT INTERFACE ISSUES FINAL REPORT SEPTEMBER 2002 Distribution: Approved for...conclusions contained in this report are those of the 2002 Ad Hoc Study Panel on “Human- Robot Interface Issues” and do not necessarily reflect the official...DATES COVERED Army Science Board – 2002 Ad Hoc Study 4. TITLE AND SUBTITLE AD HOC STUDY ON HUMAN ROBOT INTERFACE ISSUES 6. AUTHOR(S) Study

  13. Hypervelocity Impact on Interfaces: A Molecular-Dynamics Simulations Study

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Owens, Eli T.; Leonard, Robert H.; Cockburn, Bronwyn C.

    2008-03-01

    Silicon/silicon nitride interfaces are found in micro electronics and solar cells. In either application the mechanical integrity of the interface is of great importance. Molecular-dynamics simulations are performed to study the failure of interface materials under the influence of hypervelocity impact. Silicon nitride plates impacting on silicon/silicon nitride interface targets of different thicknesses result in structural phase transformation and delamination at the interface. Detailed analyses of atomic velocities, bond lengths, and bond angles are used to qualitatively examine the respective failure mechanisms.

  14. Ab Initio Studies of Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Garrity, Kevin F.

    2011-12-01

    Over the past 50 years, our ability to design and fabricate materials and devices with ever-smaller components has improved to the point that many technologies are crucially dependent on surfaces and interfaces. As this process continues, the atomic details of these surfaces and interfaces will take on increasing importance, both in understanding the behavior of existing structures as well as proposing and testing new materials and devices. First principles techniques are especially well-suited for exploring these systems, as they have the predictive capability required to understand the new phenomena which emerge at atomic length scales. In this work, we use first principles density functional theory to explore the properties of a variety of interesting surfaces and interfaces. First, we consider the thermodynamics and kinetics of Sr and La deposition on semiconductor surfaces, which is the first step in epitaxial oxide growth on semiconductors. Using this knowledge, we propose a method for growing LaAlO3 on epitaxially on Si. In addition, we explore the surface chemistry of a ferroelectric (PbTiO3) as a function a polarization in order to understand its applications to advanced catalysis. Finally, we investigate the coupling of phonons through an epitaxial interface between SrTiO3 and La 1-xSrxMnO 3, where an interfacial coupling of atomic motion is used to dynamically modulate the conductivity of a La1-xSr xMnO3 thin film.

  15. Dynamics explorer: Interface definition study, volume 1

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Work done in response to the work statement wherein a specific deliverable was not identified but where design and analysis tasks were identified is reported. The summary and baseline change list is included along with design notes for the spacecraft system, thermal subsystem, power subsystem, communications subsystem, plasma wave instrument interface definition, and the structure.

  16. Interface-induced disassembly of a self-assembled two-component nanoparticle system.

    PubMed

    Gao, Yan; Duc, Le T; Ali, Affira; Liang, Beverly; Liang, Jenn-Tai; Dhar, Prajnaparamita

    2013-03-19

    We present a study of static and dynamic interfacial properties of self-assembled polyelectrolyte complex nanoparticles (size 110-120 nm) containing entrapped surfactant molecules at a fluid/fluid interface. Surface tension vs time measurements of an aqueous solution of these polyelectrolyte complex nanoparticles (PCNs) show a concentration-dependent biphasic adsorption to the air/water interface while interfacial microrheology data show a concentration-dependent initial increase in the surface viscosity (up to 10(-7) N·m/s), followed by a sharp decrease (10(-9) N·m/s). Direct visualization of the air/water interface shows disappearance of particles from the interface over time. On the basis of these observations, we propose that the PCNs at fluid/fluid interfaces exist in two states: initial accumulation of PCNs at the air/water interface as nanoparticles, followed by interface induced disassembly of the accumulated PCNs into their components. The lack of change in particle size, charge, and viscosity of the bulk aqueous solution of PCNs with time indicates that this disintegration of the self-assembled PCNs is an interfacial phenomenon. Changes in energy encountered by the PCNs at the interface lead to instability of the self-assembled system and dissociation into its components. Such systems can be used for applications requiring directed delivery and triggered release of entrapped surfactants or macromolecules at fluid/fluid interfaces.

  17. Bifurcations of a creeping air-water flow in a conical container

    NASA Astrophysics Data System (ADS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2016-10-01

    This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air-water flow, driven by a rotating top disk in a vertical conical container. As water height Hw and cone half-angle β vary, numerous flow metamorphoses occur. They are investigated for β =30°, 45°, and 60°. For small Hw, the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as Hw exceeds a threshold depending on β . For all β , the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.

  18. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Hoff, R.M.

    2000-03-15

    The influence of eutrophication on the biogeochemical cycles of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) is largely unknown. In this paper, the application of a dynamic air-water-phytoplankton exchange model to Lake Ontario is used as a framework to study the influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of POPs. The results of these simulations demonstrate that air-water exchange controls phytoplankton concentrations in remote aquatic environments with little influence from land-based sources of pollutants and supports levels in even historically contaminated systems. Furthermore, eutrophication or high biomass leads to a disequilibrium between the gas and dissolved phase, enhanced air-water exchange, and vertical sinking fluxes of PCBs. Increasing biomass also depletes the water concentrations leading to lower than equilibrium PCB concentrations in phytoplankton. Implications to future trends in PCB pollution in Lake Ontario are also discussed.

  19. Oil lenses on the air-water surface and the validity of Neumann's rule.

    PubMed

    Nikolov, Alex; Wasan, Darsh

    2016-05-10

    Many studies have focused on the mechanisms of oil spreading over the air-water surface, oil lens formation, and lens dynamics: Franklin et al.(1774), Rayleigh (1890), Neumann and Wangerin (1894), Hardy (1912), Lyons (1930), Langmuir (1933), Miller (1941), Zisman (1941), Pujado and Scriven (1972), Seeto et al. (1983), and Takamura et al. (2012). Despite all of these studies, the phenomenon of the oil lens's air-water surface equilibrium is still under discussion. Here, we highlight an accurate method to study the oil lens's three-phase-contact angle by reflected light interferometry, using both common (CRLI) and differential reflected light interferometry (DRLI) to verify Neumann's rule (the vectorial sum of the three tensions is zero). For non-spreading oils, the validity of Neumann's rule is confirmed for small lenses when the role of the oil film tension around the lens's meniscus is taken into consideration. Neumann's rule was also validated when the monolayer surface pressure isotherm was taken into consideration for oil spreading on the air-water surface. The periodic monolayer surface pressure oscillation of the oil phase monolayer created by the air-evaporating biphilic oil was monitored with time. The monolayer's surface pressure periodic oscillation was attributed to the instability of the aqueous film covering the oil drop phase. The knowledge gained from this study will benefit the fundamental understanding of the oil lens's air-water surface equilibrium and oil spill mechanisms, thereby promoting better methods for the prevention and clean-up of oil spills.

  20. Preliminary study of ceramic-metal interface in thermal boundaries

    NASA Astrophysics Data System (ADS)

    Tremouilles, G.; Derep, J. Luc

    1987-10-01

    The interface of yttrium doped zircon ceramic on NiCrAlY alloy is studied. The different phases in the zircon are examined with electron microscopy. The presence of alumina in the interface is demonstrated. The possibility of damaging the NiCrAlY substrate when using a plasma gun is discussed.

  1. On the coefficients of small eddy and surface divergence models for the air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Liao, Qian; Fillingham, Joseph H.; Bootsma, Harvey A.

    2015-03-01

    Recent studies suggested that under low to moderate wind conditions without bubble entraining wave breaking, the air-water gas transfer velocity k+ can be mechanistically parameterized by the near-surface turbulence, following the small eddy model (SEM). Field measurements have supported this model in a variety of environmental forcing systems. Alternatively, surface divergence model (SDM) has also been shown to predict the gas transfer velocity across the air-water interface in laboratory settings. However, the empirically determined model coefficients (α in SEM and c1 in SDM) scattered over a wide range. Here we present the first field measurement of the near-surface turbulence with a novel floating PIV system on Lake Michigan, which allows us to evaluate the SEM and SDM in situ in the natural environment. k+ was derived from the CO2 flux that was measured simultaneously with a floating gas chamber. Measured results indicate that α and c1 are not universal constants. Regression analysis showed that α˜log>(ɛ>) while the near-surface turbulence dissipation rate ɛ is approximately greater than 10-6 m2 s-3 according to data measured for this study as well as from other published results measured in similar environments or in laboratory settings. It also showed that α scales linearly with the turbulent Reynolds number. Similarly, coefficient c1 in the SDM was found to linearly scale with the Reynolds number. These findings suggest that larger eddies are also important parameters, and the dissipation rate in the SEM or the surface divergence β' in the SDM alone may not be adequate to determine k+ completely.

  2. Hydrodynamical entrapment of ciliates at the air-liquid interface

    NASA Astrophysics Data System (ADS)

    Ferracci, Jonathan; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2012-11-01

    We found the new phenomenon of the entrapment of ciliates at the air-water interface, though they are not trapped by a solid interface. We first characterize the behaviours of cells at the interface by comparing it to those away from interfaces. The results showed that the cell's swimming velocity is considerably reduced at the air-water interface. In order to experimentally verify the possible physiological causes of the entrapment, we observed their behaviours in absence of positive chemotaxis for oxygen and the negative geotaxis. The results illustrated that the entrapment phenomenon was not dependent on these physiological conditions. The experiments using surfactant revealed that the entrapment phenomenon was strongly affected by the velocity-stress conditions at the interface. This fact was confirmed numerically by a boundary element method, i.e. the stress-free condition at the air-liquid interface is one of the main mechanisms of the entrapment phenomenon found in the experiments. Since the entrapment phenomenon found in this study affects the cell-cell interactions and the mass transport at the interface, the knowledge obtained in this study is useful for better understanding the complex behaviours of swimming microorganisms in nature. PhD student in the Physiological Flow Studies Laboratory.

  3. Study of GaAs-oxide interface by transient capacitance spectroscopy - Discrete energy interface states

    NASA Technical Reports Server (NTRS)

    Kamieniecki, E.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1980-01-01

    Interface states and bulk GaAs energy levels were simultaneously investigated in GaAs MOS structures prepared by anodic oxidation. These two types of energy levels were successfully distinguished by carrying out a comparative analysis of deep level transient capacitance spectra of the MOS structures and MS structures prepared on the same samples of epitaxially grown GaAs. The identification and study of the interface states and bulk levels was also performed by investigating the transient capacitance spectra as a function of the filling pulse magnitude. It was found that in the GaAs-anodic oxide interface there are states present with a discrete energy rather than with a continuous energy distribution. The value of the capture cross section of the interface states was found to be 10 to the 14th to 10 to the 15th/sq cm, which is more accurate than the extremely large values of 10 to the -8th to 10 to the -9th/sq cm reported on the basis of conductance measurements.

  4. Nonlinear Acoustics at the Air-Water Free Surface

    NASA Astrophysics Data System (ADS)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  5. WITHDRAWN: Axisymmetric Adaptive Drop/Interface Impacting Study

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoming; Lowengrub, John; Cristini, Vittorio

    2005-11-01

    The impact of a drop upon an interface is studied using an axisymmetric adaptive level-set/finite element method. Under certain conditions, the drop will rebound off the interface before breaking through. The drop fluid and the fluid below the interface are identical. We characterize the behavior in terms of the relevant nondimensional parameters: the Reynolds number, the Weber number, and the viscosity and density ratios of the fluid components. One of the primary difficulties in performing numerical simulations of such flows is the accurate resolution of the lubrication forces that arise in the near contact region between the drop and interface. To overcome this difficulty, we use a spatially and temporally adaptive mesh together with a new, stable and accurate projection method for the Navier-Stokes equations and a mass-conserving level-set algorithm for capturing the motion of the drop and interface (J. Comp. Phys., v. 208, 2005). We validate our algorithm by successfully matching the recent experimental results on drop/interface impact by Mohamed-Kassim and Longmire (Phys. Fluids, v. 15, 2003).

  6. Studies of Silicon Refractory Metal Interfaces: Photoemission Study of Interface Formation and Compound Nucleation.

    DTIC Science & Technology

    1983-09-08

    Electronic Properties of the Si-Cr Interface," Phys. Rev. B 25, 4981-4993 (1982). - Y. Chahal, A. Franciosi, 3.1. Weaver, .1.E. Rove, and J.M. Posts...846 (1983). - A. Franciosi, D.C. OoNeill, and 3.31. Weaver, "Modulation of the Morphology and Electronic Properties of the Si(Ill)-Au Interface,* J...Vac. Sdi. Technol. 19 657-660 (1981)A9 - A. Franciosi, 0.3. Peteruan, J.H. Weaver, and V.L. Moruzzi, "Structural Morphology and Electronic Properties

  7. Shuttle/typical payload interface study

    NASA Technical Reports Server (NTRS)

    Mansfield, J. M.

    1972-01-01

    Concept synthesis and preliminary design studies are summarized of support systems to implement the launch/refurbishment/retrieval with shuttle of a family of low cost earth observation satellites in low earth orbit. Shuttle constraints and issues are described.

  8. Air-water exchange of PAHs and OPAHs at a superfund mega-site.

    PubMed

    Tidwell, Lane G; Blair Paulik, L; Anderson, Kim A

    2017-03-31

    Chemical fate is a concern at environmentally contaminated sites, but characterizing that fate can be difficult. Identifying and quantifying the movement of chemicals at the air-water interface are important steps in characterizing chemical fate. Superfund sites are often suspected sources of air pollution due to legacy sediment and water contamination. A quantitative assessment of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAH (OPAHs) diffusive flux in a river system that contains a Superfund Mega-site, and passes through residential, urban and agricultural land, has not been reported before. Here, passive sampling devices (PSDs) were used to measure 60 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAH (OPAHs) in air and water. From these concentrations the magnitude and direction of contaminant flux between these two compartments was calculated. The magnitude of PAH flux was greater at sites near or within the Superfund Mega-site than outside of the Superfund Mega-site. The largest net individual PAH deposition at a single site was naphthalene at a rate of -14,200 (±5780) (ng/m(2))/day. The estimated one-year total flux of phenanthrene was -7.9×10(5) (ng/m(2))/year. Human health risk associated with inhalation of vapor phase PAHs and dermal exposure to PAHs in water were assessed by calculating benzo[a]pyrene equivalent concentrations. Excess lifetime cancer risk estimates show potential increased risk associated with exposure to PAHs at sites within and in close proximity to the Superfund Mega-site. Specifically, estimated excess lifetime cancer risk associated with dermal exposure and inhalation of PAHs was above 1 in 1 million within the Superfund Mega-site. The predominant depositional flux profile observed in this study suggests that the river water in this Superfund site is largely a sink for airborne PAHs, rather than a source.

  9. External exposure to radionuclides in air, water, and soil

    SciTech Connect

    Eckerman, K.F.; Ryman, J.C.

    1996-05-01

    Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. The dose coefficients are intended for use by Federal Agencies in calculating the dose equivalent to organs and tissues of the body.

  10. a Study of Some Metal-Semiconductor Interfaces.

    NASA Astrophysics Data System (ADS)

    Maani, Colette

    Available from UMI in association with The British Library. The aim of this study was to investigate a number of specific metal-semiconductor interfaces with the goal of understanding the mechanism responsible for Schottky barrier formation at these interfaces. Metal contacts of group III, gallium, and group V, antimony were evaporated onto the clean cleaved indium phosphide(110) surface. Techniques of low energy electron defraction, Auger electron spectroscopy, ultra violet and X-ray photoelectric spectroscopy, current-voltage and capacitance -voltage measurements were used to probe the structural, chemical and electronic nature of the metal-semiconductor interfaces formed. In addition metal contacts of Al, Ag, Au and Sn were evaporated onto the clean cleaved gallium phosphide(110) surface. Techniques of current-voltage, capacitance-voltage and photoresponse measurements were used in order to determine barrier height. The study of Ga and Sb on InP(110) was used to investigate the importance of chemical reactivity, growth mode, defect formation and interdiffusion at the interface. The investigation of a range of metals on GaP(110) was an attempt to understand metal-semiconductor Schottky barrier formation in terms of this wide band gap material. Both studies were used to test the relevance of various proposed models of Schottky barrier formation at metal-semiconductor interfaces. (Abstract shortened by UMI.).

  11. Interfaces in polymer nanocomposites - An NMR study

    NASA Astrophysics Data System (ADS)

    Böhme, Ute; Scheler, Ulrich

    2016-03-01

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. 1H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T2 is most suited. In this presentation we report on two applications of T2 measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  12. Sum-Frequency Generation Spectroscopy for Studying Organic Layers at Water-Air Interfaces: Microlayer Monitoring and Surface Reactivity

    NASA Astrophysics Data System (ADS)

    Laß, Kristian; Kleber, Joscha; Bange, Hermann; Friedrichs, Gernot

    2015-04-01

    The sea surface microlayer, according to commonly accepted terminology, comprises the topmost millimetre of the oceanic water column. It is often enriched with organic matter and is directly influenced by sunlight exposure and gas exchange with the atmosphere, hence making it a place for active biochemistry and photochemistry as well as for heterogeneous reactions. In addition, surface active material either is formed or accumulates directly at the air-water interface and gives rise to very thin layers, sometimes down to monomolecular thickness. This "sea surface nanolayer" determines the viscoelastic properties of the seawater surface and thus may impact the turbulent air-sea gas exchange rates. To this effect, this small scale layer presumably plays an important role for large scale changes of atmospheric trace gas concentrations (e.g., by modulating the ocean carbon sink characteristics) with possible implications for coupled climate models. To date, detailed knowledge about the composition, structure, and reactivity of the sea surface nanolayer is still scarce. Due to its small vertical dimension and the small amount of material, this surfactant layer is very difficult to separate and analyse. A way out is the application of second-order nonlinear optical methods, which make a direct surface-specific and background-free detection of this interfacial layer possible. In recent years, we have introduced the use of vibrational sum frequency generation (VSFG) spectroscopy to gain insight into natural and artificial organic monolayers at the air-water interface. In this contribution, the application of VSFG spectroscopy for the analysis of the sea surface nanolayer will be illustrated. Resulting spectra are interpreted in terms of layer composition and surfactant classes, in particular with respect to carbohydrate-containing molecules such as glycolipids. The partitioning of the detected surfactants into soluble and non-soluble ("wet" and "dry") surfactants will be

  13. Ab-initio study of metal-zirconia interfaces

    NASA Astrophysics Data System (ADS)

    Kulkova, S.; Bakulin, A.; Hocker, S.; Schmauder, S.

    2012-08-01

    A comparative theoretical study of metal-zirconia interfaces with BCC and FCC metals was performed using pseudopotential approach with LDA and GGA approximation for exchange-correlation functional. It was shown that the high adhesion can be achieved at the O-terminated Me/ZrO2(001) interface with BCC metals that is related to large charge transfer from metal film to substrate and increase of an ionic contribution in the chemical bonding. The structural and electronic factors which are responsible for decrease of adhesion at differently oriented metal-zirconia interfaces are discussed. The influence of CaO, MgO and Y2O3 doping on the work of separation (Wsep) at Me(001)/c-ZrO2(001) is analyzed.

  14. Studies of Silicon-Refractory Metal Interfaces: Photoemission Study of Interface Formation and Compound Nucleation.

    DTIC Science & Technology

    1984-10-29

    Rev. B 28, 7000-7008 (1983). - J.H. Weaver, A. Franciosi, and V.L. Moruzzi, "Bonding in Metal Disilicides CaSi 2 through NiSi2 : Experiment and Theory...information about the elec- impurities and Dow Coming Si (resistivity of 1000 tronic and structural properties of interfaces as they 11 cm). The starting...bulk properties , in- growth. Analysis of the resulting C’Si2 ingot showed cluding stoichiometry, disorder, segregation, and chemical 48.02 wt

  15. Air-water gas exchange of organochlorine compounds in Lake Baikal, Russia

    SciTech Connect

    McConnell, L.L.; Kucklick, J.R.; Bidleman, T.F.; Ivanov, G.P.; Chernyak, S.M.

    1996-10-01

    Air and surface water samples were collected at Lake Baikal, Russia, during June 1991 to determine concentrations of organochlorine pesticides and polychlorinated biphenyl (PCB) congeners. These data were combined with Henry`s law constants to estimate the gas flux rate across the air-water interface of each compound class. Air samples were collected at Lake Baikal and from nearby Irkutsk. Water samples were collected from three mid-lake stations and at the mouth of two major tributaries. Average air concentrations of chlorinated bornanes (14 pg m{sup -3}), chlordanes (4.9 pg m{sup -3}), and hexachlorobenzene (HCB) (194 pg m{sup -3}) were similar to global backgound of Arctic levels. However, air concentrations of hexachlorocyclohexanes (HCHs), DDTs, and PCBs were closer to those observed in the Great Lakes region. Significantly higher levels of these three compound classes in air over Irkutsk suggests that regional atmospheric transport and deposition may be an important source of these persistent compounds to Lake Baikal. Air-water gas exchange calculations resulted in net depositional flux values for {alpha}-HCH, {gamma}-HCH, DDTs, and chlorinated bornanes at 112, 23, 3.6, and 2.4 ng m{sup -2} d{sup -1}, respectively. The total net flux of 22 PCB congeners, chlordanes, and HCB was from water to air (volatilization) at 47, 1.8, and 32 ng m{sup -2} d{sup -1}, respectively. 50 refs., 7 figs., 5 tabs.

  16. Research on measurement-device-independent quantum key distribution based on an air-water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-yuan; Zhou, Xue-jun; Xu, Hua-bin; Cheng, Kang

    2016-11-01

    A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel's asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

  17. Numerical investigation of a turbulent hydraulic jump: Interface statistics and air entrainment

    NASA Astrophysics Data System (ADS)

    Mortazavi, Milad; Kim, Dokyun; Mani, Ali; Moin, Parviz

    2011-11-01

    The objective of this study is to develop an understanding of formation of bubbles due to turbulence/interface interactions and nonlinear surface wave phenomena. As a model problem a statistically stationary turbulent hydraulic jump has been considered. Turbulent hydraulic jump with an inflow Froude number of 2 and Reynolds number of 88000-based on inflow height-has been numerically simulated. Based on typical air- water systems, a density ratio of 831 has been selected for our calculations. A refined level-set method is employed to track the detailed dynamics of the interface evolution. Comparison of flow statistics with experimental results of Murzyn et al. (Int. J. Multiphase Flow, 2005) will be presented. The probability density function of principal curvatures of the air- water interface and curvature distribution patterns in the chaotic regions are investigated. The importance of liquid impact events in bubble generation will be discussed. Supported by the Office of Naval Research, with Dr. Pat Purtell, program manager.

  18. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  19. GMT azimuth bogie wheel-rail interface wear study

    NASA Astrophysics Data System (ADS)

    Teran, Jose; Lindh, Cory; Morgan, Chris; Manuel, Eric; Bigelow, Bruce C.; Burgett, William S.

    2016-07-01

    Performance of the GMT azimuth drive system is vital for the operation of the telescope and, as such, all components subject to wear at the drive interface merit a high level of scrutiny for achieving a proper balance between capital costs, maintenance costs, and the risk for downtime during planned and unplanned maintenance or replacement procedures. Of particular importance is the interface between the azimuth wheels and rail, as usage frequency is high, the full weight of the enclosure must be transferred through small patches of contact, and replacement of the rail would pose a greater logistical challenge than the replacement of smaller components such as bearings and gearmotors. This study investigates tradeoffs between various wheel-rail and roller-track interfaces, including performance, complexity, and anticipated wear considerations. First, a survey of railway and overhead crane industry literature is performed and general detailing recommendations are made to minimize wear and the risk of rolling contact fatigue. Second, Adams/VI-Rail is used to simulate lifetime wear of four specific configurations under consideration for the GMT azimuth wheel-rail interface; all studied configurations are shown to be viable, and their relative merits are discussed.

  20. Airborne Precision Spacing for Dependent Parallel Operations Interface Study

    NASA Technical Reports Server (NTRS)

    Volk, Paul M.; Takallu, M. A.; Hoffler, Keith D.; Weiser, Jarold; Turner, Dexter

    2012-01-01

    This paper describes a usability study of proposed cockpit interfaces to support Airborne Precision Spacing (APS) operations for aircraft performing dependent parallel approaches (DPA). NASA has proposed an airborne system called Pair Dependent Speed (PDS) which uses their Airborne Spacing for Terminal Arrival Routes (ASTAR) algorithm to manage spacing intervals. Interface elements were designed to facilitate the input of APS-DPA spacing parameters to ASTAR, and to convey PDS system information to the crew deemed necessary and/or helpful to conduct the operation, including: target speed, guidance mode, target aircraft depiction, and spacing trend indication. In the study, subject pilots observed recorded simulations using the proposed interface elements in which the ownship managed assigned spacing intervals from two other arriving aircraft. Simulations were recorded using the Aircraft Simulation for Traffic Operations Research (ASTOR) platform, a medium-fidelity simulator based on a modern Boeing commercial glass cockpit. Various combinations of the interface elements were presented to subject pilots, and feedback was collected via structured questionnaires. The results of subject pilot evaluations show that the proposed design elements were acceptable, and that preferable combinations exist within this set of elements. The results also point to potential improvements to be considered for implementation in future experiments.

  1. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  2. Si nanocrystals and nanocrystal interfaces studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Kujala, J.; Slotte, J.; Tuomisto, F.; Hiller, D.; Zacharias, M.

    2016-10-01

    Si nanocrystals embedded in a SiO 2 matrix were studied with positron annihilation and photoluminescence spectroscopies. Analysis of the S- and W-parameters for the sample annealed at 800 °C reveals a positron trap at the interface between the amorphous nanodots and the surrounding matrix. Another trap state is observed in the 1150 °C heat treated samples where nanodots are in a crystalline form. Positrons are most likely trapped to defects related to dangling bonds at the surface of the nanocrystals. Passivation of the samples results on one hand in the decrease of the S-parameter implying a decrease in the open volume of the interface state and, on the other hand, in the strengthening of the positron annihilation signal from the interface. The intensity of the photoluminescence signal increases with the formation of the nanocrystals. Passivation of samples strengthens the photoluminescence signal, further indicating a successful deactivation of luminescence quenching at the nanocrystal surface. Strengthening of the positron annihilation signal and an increase in the photoluminescence intensity in passivated silicon nanocrystals suggests that the positron trap at the interface does not contribute to a significant extent to the exciton recombination in the nanocrystals.

  3. Insights from the study of high-temperature interface superconductivity.

    PubMed

    Pereiro, J; Bollinger, A T; Logvenov, G; Gozar, A; Panagopoulos, C; Bozović, I

    2012-10-28

    A brief overview is given of the studies of high-temperature interface superconductivity based on atomic-layer-by-layer molecular beam epitaxy (ALL-MBE). A number of difficult materials science and physics questions have been tackled, frequently at the expense of some technical tour de force, and sometimes even by introducing new techniques. ALL-MBE is especially suitable to address questions related to surface and interface physics. Using this technique, it has been demonstrated that high-temperature superconductivity can occur in a single copper oxide layer-the thinnest superconductor known. It has been shown that interface superconductivity in cuprates is a genuine electronic effect-it arises from charge transfer (electron depletion and accumulation) across the interface driven by the difference in chemical potentials rather than from cation diffusion and mixing. We have also understood the nature of the superconductor-insulator phase transition as a function of doping. However, a few important questions, such as the mechanism of interfacial enhancement of the critical temperature, are still outstanding.

  4. Quantitative model studies for interfaces in organic electronic devices

    NASA Astrophysics Data System (ADS)

    Gottfried, J. Michael

    2016-11-01

    In organic light-emitting diodes and similar devices, organic semiconductors are typically contacted by metal electrodes. Because the resulting metal/organic interfaces have a large impact on the performance of these devices, their quantitative understanding is indispensable for the further rational development of organic electronics. A study by Kröger et al (2016 New J. Phys. 18 113022) of an important single-crystal based model interface provides detailed insight into its geometric and electronic structure and delivers valuable benchmark data for computational studies. In view of the differences between typical surface-science model systems and real devices, a ‘materials gap’ is identified that needs to be addressed by future research to make the knowledge obtained from fundamental studies even more beneficial for real-world applications.

  5. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean Air-Water Pollution Control Acts. 1274... AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.926 Clean Air-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative agreement or...

  6. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  7. Computational study of ion distributions at the air/liquid methanol interface

    SciTech Connect

    Sun, Xiuquan; Wick, Collin D.; Dang, Liem X.

    2011-06-16

    Molecular dynamic simulations with polarizable potentials were performed to systematically investigate the distribution of NaCl, NaBr, NaI, and SrCl2 at the air/liquid methanol interface. The density profiles indicated that there is no substantial enhancement of anions at the interface for the NaX systems in contrast to what was observed at the air/aqueous interface. The surfactant-like shape of the larger more polarizable halide anions is compensated by the surfactant nature of methanol itself. As a result, methanol hydroxy groups strongly interacted with one side of polarizable anions, in which their induced dipole points, and methanol methyl groups were more likely to be found near the positive pole of anion induced dipoles. Furthermore, salts were found to disrupt the surface structure of methanol, reducing the observed enhancement of methyl groups at the outer edge of the air/liquid methanol interface. With the additional of salts to methanol, the computed surface potentials increased, which is in contrast to what is observed in corresponding aqueous systems, where the surface potential decreases with the addition of salts. Both of these trends have been indirectly observed with experiments. This was found to be due to the propensity of anions for the air/water interface that is not present at the air/liquid methanol interface. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  8. Atomistic study on the FCC/BCC interface structure with {112}KS orientation

    SciTech Connect

    Kang, Keonwook; Beyerlein, Irene; Han, Weizhong; Wang, Jian; Mara, Nathan

    2011-09-23

    In this study, atomistic simulation is used to explore the atomic interface structure, the intrinsic defect network, and mechanism of twin formation from the {112}KS Cu-Nb interface. The interface structure of different material systems AI-Fe and AI-Nb are also compared with Cu-Nb interface.

  9. Study of a liquid bridge subjected to interface shear stresses

    NASA Astrophysics Data System (ADS)

    Gaponenko, Yu.; Glockner, S.; Mialdun, A.; Shevtsova, V.

    2011-08-01

    We report on numerical and experimental study of two-phase flows in a tall annulus. The geometry corresponds to a cylindrical liquid column co-axially placed into an outer cylinder with solid walls. The internal column consists of solid supports at the bottom and top, while the central part is a liquid zone filled with viscous liquid and kept in its position by surface tension. Gas enters into the annular duct and entrains initially quiescent liquid. The liquid bridge interface is deformed by gravity and by a co-axial gas flow which is co- and counter directed with respect to gravity. A new experimental set-up including an optical system for precise measurements of the interface displacement has been designed and developed. In the experiments silicone oil 5cSt was used as a test liquid and air as gas. On numerical side the dynamical response of an isothermal liquid bridge to a coaxial gas flow is examined by simulations of the Navier-Stokes equations. The attention is focused on the following points: time-dependent formation of the equilibrium shape of a liquid bridge in gravity conditions and its deformation by a gas flow, simulation of a flow pattern in a liquid/gas system with deformed free surface. The comparison of the numerical and experimental results for the interface deformation exhibits a satisfactory agreement.

  10. The initial generation of waves in an accelerated coupled air-water flow.

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Ierley, Glenn; Melville, Ken

    2001-11-01

    The initial generation of surface waves over the ocean has a long been a problem of great interest. With the globally averaged wind speed in the range 6-7 m/s, and 40 % of the time below 6 m/s, much of the air-sea interface is in a low wind speed regime, and therefore the initial generation of waves under these conditions is of special interest. There is also a transition in the surface heat flux and surface cool skin at these low wind speeds when gravity capillary waves are first generated. We present the results of laboratory and field experiments, and numerical studies, on the stability of a wind-driven water surface to the initial generation of surface waves. Using modern quantitative flow visualization techniques, we show that the classical wave generation problem, where the wind is linearly accelerated over a still water surface, leads to the generation of a two-dimensional wave field. At this stage, the flow in the water phase has been observed to be sub-critical. These results are compared with numerical solutions of the stability of the coupled air-water problem obtained by solving both the linear and non-linear Orr-Sommerfeld coupled equations. The effects of non-linearity will be discussed. In addition, we show that the wave generation problem is accompanied by the turbulent transition of the water surface boundary layer through the formation and dislocation of Langmuir circulations. Field data suggest that this transition, rather than microscale breaking waves, first disrupt the cool skin. We show that this turbulent transition also marks the change from a two- to three-dimensional surface wave field as the coherent sub-surface velocities modulate the waves. This rapid evolution from 2D to 3D surface wave patterns in the early stages of the wave generation implies that 2D models for wind-wave generation might only apply in the very early stages of wave growth. This will be discussed in light of linear and non-linear wave generation models.

  11. C-V and DLTS studies of radiation induced Si-SiO2 interface defects

    NASA Astrophysics Data System (ADS)

    Capan, I.; Janicki, V.; Jacimovic, R.; Pivac, B.

    2012-07-01

    Interface traps at the Si-SiO2 interface have been and will be an important performance limit in many (future) semiconductor devices. In this paper, we present a study of fast neutron radiation induced changes in the density of Si-SiO2 interface-related defects. Interface related defects (Pb centers) are detected before and upon the irradiation. The density of interface-related defects is increasing with the fast neutron fluence.

  12. First principles modeling of the metal-electrolyte interface: A novel approach to the study of the electrochemical interface

    SciTech Connect

    Fernandez-Serra, Maria Victoria

    2016-09-12

    The research objective of this proposal is the computational modeling of the metal-electrolyte interface purely from first principles. The accurate calculation of the electrostatic potential at electrically biased metal-electrolyte interfaces is a current challenge for periodic “ab-initio” simulations. It is also an essential requisite for predicting the correspondence between the macroscopic voltage and the microscopic interfacial charge distribution in electrochemical fuel cells. This interfacial charge distribution is the result of the chemical bonding between solute and metal atoms, and therefore cannot be accurately calculated with the use of semi-empirical classical force fields. The project aims to study in detail the structure and dynamics of aqueous electrolytes at metallic interfaces taking into account the effect of the electrode potential. Another side of the project is to produce an accurate method to simulate the water/metal interface. While both experimental and theoretical surface scientists have made a lot of progress on the understanding and characterization of both atomistic structures and reactions at the solid/vacuum interface, the theoretical description of electrochemical interfaces is still lacking behind. A reason for this is that a complete and accurate first principles description of both the liquid and the metal interfaces is still computationally too expensive and complex, since their characteristics are governed by the explicit atomic and electronic structure built at the interface as a response to environmental conditions. This project will characterize in detail how different theoretical levels of modeling describer the metal/water interface. In particular the role of van der Waals interactions will be carefully analyzed and prescriptions to perform accurate simulations will be produced.

  13. Hydroxyl radical reactivity at the air-ice interface

    NASA Astrophysics Data System (ADS)

    Kahan, T. F.; Zhao, R.; Donaldson, D. J.

    2010-01-01

    Hydroxyl radicals are important oxidants in the atmosphere and in natural waters. They are also expected to be important in snow and ice, but their reactivity has not been widely studied in frozen aqueous solution. We have developed a spectroscopic probe to monitor the formation and reactions of hydroxyl radicals in situ. Hydroxyl radicals are produced in aqueous solution via the photolysis of nitrite, nitrate, and hydrogen peroxide, and react rapidly with benzene to form phenol. Similar phenol formation rates were observed in aqueous solution and bulk ice. However, no reaction was observed at air-ice interfaces, or when bulk ice samples were crushed prior to photolysis to increase their surface area. We also monitored the heterogeneous reaction between benzene present at air-water and air-ice interfaces with gas-phase OH produced from HONO photolysis. Rapid phenol formation was observed on water surfaces, but no reaction was observed at the surface of ice. Under the same conditions, we observed rapid loss of the polycyclic aromatic hydrocarbon (PAH) anthracene at air-water interfaces, but no loss was observed at air-ice interfaces. Our results suggest that the reactivity of hydroxyl radicals toward aromatic organics is similar in bulk ice samples and in aqueous solution, but is significantly suppressed in the quasi-liquid layer (QLL) that exists at air-ice interfaces.

  14. Hydroxyl radical reactivity at the air-ice interface

    NASA Astrophysics Data System (ADS)

    Kahan, T. F.; Zhao, R.; Donaldson, D. J.

    2009-10-01

    Hydroxyl radicals are important oxidants in the atmosphere and in natural waters. They are also expected to be important in snow and ice, but their reactivity has not been widely studied in frozen aqueous solution. We have developed a spectroscopic probe to monitor the formation and reactions of hydroxyl radicals in situ. Hydroxyl radicals are produced in aqueous solution via the photolysis of nitrite, nitrate, and hydrogen peroxide, and react rapidly with benzene to form phenol. Similar phenol formation rates were observed in aqueous solution and bulk ice. However, no reaction was observed at the air-ice interface, or when bulk ice samples were crushed prior to photolysis to increase their surface area. We also monitored the heterogeneous reaction between benzene present at air-water and air-ice interfaces with gas-phase OH produced from HONO photolysis. Rapid phenol formation was observed on water surfaces, but no reaction was observed at the surface of ice. Under the same conditions, we observed rapid loss of the polycyclic aromatic hydrocarbon (PAH) anthracene at the air-water interface, but no loss was observed at the air-ice interface. Our results suggest that the reactivity of hydroxyl radicals toward aromatic organics is similar in bulk ice samples and in aqueous solution, but is significantly suppressed in the quasi-liquid layer (QLL) that exists at the air-ice interface.

  15. Space station automation and robotics study. Operator-systems interface

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  16. Electrochemical impedance study of the hematite/water interface.

    PubMed

    Shimizu, Kenichi; Lasia, Andrzej; Boily, Jean-François

    2012-05-22

    Reactions taking place on hematite (α-Fe(2)O(3)) surfaces in contact with aqueous solutions are of paramount importance to environmental and technological processes. The electrochemical properties of the hematite/water interface are central to these processes and can be probed by open circuit potentials and cyclic voltammetric measurements of semiconducting electrodes. In this study, electrochemical impedance spectroscopy (EIS) was used to extract resistive and capacitive attributes of this interface on millimeter-sized single-body hematite electrodes. This was carried out by developing equivalent circuit models for impedance data collected on a semiconducting hematite specimen equilibrated in solutions of 0.1 M NaCl and NH(4)Cl at various pH values. These efforts produced distinct sets of capacitance values for the diffuse and compact layers of the interface. Diffuse layer capacitances shift in the pH 3-11 range from 2.32 to 2.50 μF·cm(-2) in NaCl and from 1.43 to 1.99 μF·cm(-2) in NH(4)Cl. Furthermore, these values reach a minimum capacitance at pH 9, near a probable point of zero charge for an undefined hematite surface exposing a variety of (hydr)oxo functional groups. Compact layer capacitances pertain to the transfer of ions (charge carriers) from the diffuse layer to surface hydroxyls and are independent of pH in NaCl, with values of 32.57 ± 0.49 μF·cm(-2)·s(-φ). However, they decrease with pH in NH(4)Cl from 33.77 at pH 3.5 to 21.02 μF·cm(-2)·s(-φ) at pH 10.6 because of the interactions of ammonium species with surface (hydr)oxo groups. Values of φ (0.71-0.73 in NaCl and 0.56-0.67 in NH(4)Cl) denote the nonideal behavior of this capacitor, which is treated here as a constant phase element. Because electrode-based techniques are generally not applicable to the commonly insulating metal (oxyhydr)oxides found in the environment, this study presents opportunities for exploring mineral/water interface chemistry by EIS studies of single

  17. Translational viscous drags of an ellipsoid straddling an interface between two fluids

    NASA Astrophysics Data System (ADS)

    Boniello, Giuseppe; Stocco, Antonio; Gross, Michel; In, Martin; Blanc, Christophe; Nobili, Maurizio

    2016-07-01

    We study the dynamics of individual polystyrene ellipsoids of different aspect ratios trapped at the air-water interface. Using particle tracking and in situ vertical scanning interferometry techniques we are able to measure translational drags and the protrusion in air of the ellipsoids. We report that translational drags on the ellipsoid are unexpectedly enhanced: despite the fact that a noticeable part of the ellipsoid is in air, drags are found larger than the bulk one in water.

  18. Ultrafast studies of electron dynamics at metal-dielectric interfaces

    SciTech Connect

    Ge, Nien-Hui

    1998-10-01

    Femtosecond time- and angle-resolved two-photon photoemission spectroscopy has been used to study fundamental aspects of excited electron dynamics at metal-dielectric interfaces, including layer-by-layer evolution of electronic structure and two-dimensional electron localization. On bare Ag(111), the lifetimes of image states are dominated by their position with respect to the projected bulk band structure. The n = 2 state has a shorter lifetime than the n = 1 state due to degeneracy with the bulk conduction band. As the parallel momentum of the n = 1 image electron increases, the lifetime decreases. With decreasing temperatures, the n = 1 image electrons, with zero or nonzero parallel momentum, all become longer lived. Adsorption of one to three layers of n-heptane results in an approximately exponential increase in lifetime as a function of layer thickness. This results from the formation of a tunneling barrier through which the interfacial electrons must decay, consistent with the repulsive bulk electron affinity of n-alkanes. The lifetimes of the higher quantum states indicate that the presence of the monolayer significantly reduces coupling of the image states to the bulk band structure. These results are compared with predictions of a dielectric continuum model. The study of electron lateral motion shows that optical excitation creates interfacial electrons in quasifree states for motion parallel to the n-heptane/Ag(111) interface. These initially delocalized electrons decay into a localized state within a few hundred femtoseconds. The localized electrons then decay back to the metal by tunneling through the adlayer potential barrier. The localization time depends strongly on the electron's initial parallel momentum and exhibits a non-Arrhenius temperature dependence. The experimental findings are consistent with a 2-D self-trapping process in which electrons become localized by interacting with the topmost plane of the alkane layer. The energy dependence of

  19. Adsorption of the natural protein surfactant Rsn-2 onto liquid interfaces.

    PubMed

    Brandani, Giovanni B; Vance, Steven J; Schor, Marieke; Cooper, Alan; Kennedy, Malcolm W; Smith, Brian O; MacPhee, Cait E; Cheung, David L

    2017-03-22

    To stabilize foams, droplets and films at liquid interfaces a range of protein biosurfactants have evolved in nature. Compared to synthetic surfactants, these combine surface activity with biocompatibility and low solution aggregation. One recently studied example is Rsn-2, a component of the foam nest of the frog Engystomops pustulosus, which has been predicted to undergo a clamshell-like opening transition at the air-water interface. Using atomistic molecular dynamics simulations and surface tension measurements we study the adsorption of Rsn-2 onto air-water and cyclohexane-water interfaces. The protein adsorbs readily at both interfaces, with adsorption mediated by the hydrophobic N-terminus. At the cyclohexane-water interface the clamshell opens, due to the favourable interaction between hydrophobic residues and cyclohexane molecules and the penetration of cyclohexane molecules into the protein core. Simulations of deletion mutants showed that removal of the N-terminus inhibits interfacial adsorption, which is consistent with the surface tension measurements. Deletion of the hydrophilic C-terminus also affects adsorption, suggesting that this plays a role in orienting the protein at the interface. The characterisation of the interfacial behaviour gives insight into the factors that control the interfacial adsorption of proteins, which may inform new applications of this and similar proteins in areas including drug delivery and food technology and may also be used in the design of synthetic molecules showing similar changes in conformation at interfaces.

  20. Supported Lipid Bilayer Technology for the Study of Cellular Interfaces

    PubMed Central

    Crites, Travis J.; Maddox, Michael; Padhan, Kartika; Muller, James; Eigsti, Calvin; Varma, Rajat

    2015-01-01

    Glass-supported lipid bilayers presenting freely diffusing proteins have served as a powerful tool for studying cell-cell interfaces, in particular, T cell–antigen presenting cell (APC) interactions, using optical microscopy. Here we expand upon existing protocols and describe the preparation of liposomes by an extrusion method, and describe how this system can be used to study immune synapse formation by Jurkat cells. We also present a method for forming such lipid bilayers on silica beads for the study of signaling responses by population methods, such as western blotting, flow cytometry, and gene-expression analysis. Finally, we describe how to design and prepare transmembrane-anchored protein-laden liposomes, following expression in suspension CHO (CHOs) cells, a mammalian expression system alternative to insect and bacterial cell lines, which do not produce mammalian glycosylation patterns. Such transmembrane-anchored proteins may have many novel applications in cell biology and immunology. PMID:26331983

  1. Cathode interface studies of polymer light emitting devices

    NASA Astrophysics Data System (ADS)

    Swiontek, Stephen; Tzolov, Marian

    2010-03-01

    Efficient injection of charge carriers is a key factor for successful operation of any electronic device and especially of devices with non-crystalline or wide band gap active material. Our study concentrates on the cathode interface of light emitting devices with a conjugated polymer as light emitter. We apply two principally different methods for the cathode deposition, physical and chemical, in order to fundamentally understand if in addition to the commonly accepted notion for the matching of the work functions also material modification takes place. The completed devices are studies by steady-state electrical measurements, impedance spectroscopy, current and emission lifetime measurements, and electroluminescence spectroscopy. The morphology of the cathodes is studied by Scanning Electron Microscopy and the formation of additional phases by Energy Dispersive X-ray Spectroscopy. The results help to define ways for more cost efficient fabrication of light emitting devices with applications in displays, electronic newspapers, room illumination, etc.

  2. Study of large flexible tunnel for shuttle/payload interface

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A theoretical and preliminary design study of a large flexible tunnel for use at the shuttle/payload interface is discussed. The theoretical study consisted of evaluating various design concepts and determining their adaptability to the tunnel requirements. The theoretical study culminated in the selection of one concept. The selected concept was documented with preliminary drawings of a full-scale ground test model. Supporting preliminary structural, thermal, micrometeoroid, material, and weight analyses were conducted. The specified tunnel requirements could be broadly grouped into two categories; environmental and performance. The environmental requirements were those ambient conditions and loads associated with ground, launch, space and reentry of the shuttle vehicle. Materials are presently available which will meet all these environmental requirements and can be designed into the structure to withstand the specified loads.

  3. Steady-state and time-resolved study of two-dimensional Foerster energy transfer between 4-heptadecyl-7-hydroxycoumarin and RhB-DPPE in phospholipid air-water monolayers

    SciTech Connect

    Urquhart, R.; Grieser, F.; Thistlethwaite, P.

    1992-09-17

    This study utilizes the Foerster energy transfer technique to examine the state of aggregation of the phospholipid N-[[(lissamine rhodamine B)sulfonyl]dipalmitoyl]-L-{alpha}-phosphatidylethanolamine triethylammonium salt in dipalmitoyl-L-{alpha}-phosphatidylcholine matrices in various phases using time-resolved and steady-state fluorescence spectroscopy.

  4. Micrometeorological Measurement of Fetch- and Atmospheric Stability-Dependent Air- Water Exchange of Legacy Semivolatile Organic Contaminants in Lake Superior

    NASA Astrophysics Data System (ADS)

    Perlinger, J. A.; Tobias, D. E.; Rowe, M. D.

    2008-12-01

    Coastal waters including the Laurentian Great Lakes are particularly susceptible to local, regional, and long- range transport and deposition of semivolatile organic contaminants (SOCs) as gases and/or associated with particles. Recently-marketed SOCs can be expected to undergo net deposition in surface waters, whereas legacy SOCs such as polychlorinated biphenyls (PCBs) are likely to be at equilibrium with respect to air-water exchange, or, if atmospheric concentrations decrease through, e.g., policy implementation, to undergo net gas emission. SOC air-water exchange flux is usually estimated using the two-film model. This model describes molecular diffusion through the air and water films adjacent to the air-water interface. Air-water exchange flux is estimated as the product of SOC fugacity, typically based on on-shore gaseous concentration measurements, and a transfer coefficient, the latter which is estimated from SOC properties and environmental conditions. The transfer coefficient formulation commonly applied neglects resistance to exchange in the internal boundary layer under atmospherically stable conditions, and the use of on-shore gaseous concentration neglects fetch-dependent equilibration, both of which will tend to cause overestimation of flux magnitude. Thus, for legacy chemicals or in any highly contaminated surface water, the rate at which the water is cleansed through gas emission tends to be over-predicted using this approach. Micrometeorological measurement of air-water exchange rates of legacy SOCs was carried out on ships during four transect experiments during off-shore flow in Lake Superior using novel multicapillary collection devices and thermal extraction technology to measure parts-per-quadrillion SOC levels. Employing sensible heat in the modified Bowen ratio, fluxes at three over-water stations along the transects were measured, along with up-wind, onshore gaseous concentration and aqueous concentration. The atmosphere was unstable for

  5. Space station resistojet system requirements and interface definition study

    NASA Technical Reports Server (NTRS)

    Finden, L. E.

    1987-01-01

    A conceptual design study of the resistojet orbital replacement unit (ORU) was conducted. The ORU consists of four 500-W multipropellant resistojets, fluid components downstream of the waste fluid storage subsystem, a power controller, structure, and micrometeorite shielding. The fluid components include latch valves, a water vaporizer, two pressure regulators or flow control valves, filters, check valves, fluid tubing, and interface couplings. Separate fluid components are provided for oxidizing fluids, reducing fluids and water. Different flow and power control methods were studied. The most promising methods consist of a constant pressure/on-off power control and a constant power/variable pressure control. The closed-loop power control incorporates a feedback signal which is proportional to resistojet heater temperature.

  6. Adhesion at WC/diamond interfaces - A theoretical study

    SciTech Connect

    Padmanabhan, Haricharan; Rao, M. S. Ramachandra; Nanda, B. R. K.

    2015-06-24

    We investigate the adhesion at the interface of face-centered tungsten-carbide (001) and diamond (001) from density-functional calculations. Four high-symmetry model interfaces, representing different lattice orientations for either side of the interface, are constructed to incorporate different degrees of strain arising due to lattice mismatch. The adhesion, estimated from the ideal work of separation, is found to be in the range of 4 - 7 J m{sup −2} and is comparable to that of metal-carbide interfaces. Maximum adhesion occurs when WC and diamond slabs have the same orientation, even though such a growth induces large epitaxial strain at the interface. From electronic structure calculations, we attribute the adhesion to covalent interaction between carbon p-orbitals as well as partial ionic interaction between the tungsten d- and carbon p-orbitals across the interface.

  7. ISSUES IN SIMULATING ELEMENTAL MERCURY AIR/WATER EXCHANGE AND AQUEOUS MONOMETHYLMERCURY SPECIATION

    EPA Science Inventory

    This presentation focuses on two areas relevant to assessing the global fate and bioavailability of mercury: elemental mercury air/water exchange and aqueous environmental monomethylmercury speciation.

  8. Space Shuttle flight crew/computer interface simulation studies.

    NASA Technical Reports Server (NTRS)

    Callihan, J. C.; Rybarczyk, D. T.

    1972-01-01

    An approach to achieving an optimized set of crew/computer interface requirements on the Space Shuttle program is described. It consists of defining the mission phases and crew timelines, developing a functional description of the crew/computer interface displays and controls software, conducting real-time simulations using pilot evaluation of the interface displays and controls, and developing a set of crew/computer functional requirements specifications. The simulator is a two-man crew station which includes three CRTs with keyboards for simulating the crew/computer interface. The programs simulate the mission phases and the flight hardware, including the flight computer and CRT displays.

  9. Determining Spatial Distribution And Air-Water Exchange Of Polycyclic Aromatic Hydrocarbons In Stormwater Runoff Catchment Basins

    NASA Astrophysics Data System (ADS)

    Kasaraneni, V. K.; Schifman, L. A.; Craver, V.; Boving, T. B.

    2014-12-01

    Stormwater runoff is a conduit for several pollutants such as polycyclic aromatic hydrocarbons (PAHs) in to surface and ground water bodies. The control of runoff and pollutants is typically addressed by best management practices (BMPs), such as retention/detention ponds or catchment basins in general. The effectiveness of catchment basins in reducing the volume of runoff and removal of some contaminants has been established. However, very little is known about the fate of the contaminants settled within these structures. In coastal regions and places with shallow groundwater tables accumulation of high concentrations of PAHs in the bottom sediments poses a potential threat for groundwater contamination. The concentrations of PAHs accumulated in the sediments of these catchment basins will primarily depend on the sources of runoff origin and the surrounding land use. Due to the physico-chemical characteristics of PAHs, their transport not only can occur in the liquid and solid phase, but it is also possible that gaseous emissions can be produced from BMP systems. For the purpose of this study, five stormwater catchment basins along the I-95 corridor in Rhode Island were selected based on the stormwater runoff origin and covering (industrial, urban, highway, and commercial) land uses. To study the stratification of PAHs sediment cores one foot were collected and analyzed for 31PAHs (16 EPA parent PAH and 15 methylated PAHs). In order to determine whether the catchment basins are a source of atmospheric pollution polyethylene passive samplers were deployed to determine the freely dissolved PAHs in the water column and gas phase PAHs at the air-water interface. This presentation will describe how PAH fluxes move between three environmental compartments (sediments, water column, atmosphere) within the five stormwater catchment basins. Further, it will be investigated whether these BMP structures can act as contaminant sources rather than sinks and whether BMP

  10. Air-water two-phase flow in a 3-mm horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Ing Youn; Chang, Yu-Juei; Wang, Chi-Chung

    2000-01-01

    Two-phase flow pattern and friction characteristics for air-water flow in a 3.17 mm smooth tube are reported in this study. The range of air-water mass flux is between 50 to 700 kg/m2.s and gas quality is between 0.0001 to 0.9. The pressure drop data are analyzed using the concept of the two-phase frictional multipliers and the Martinelli parameter. Experimental data show that the two-phase friction multipliers are strongly related to the flow pattern. Taitel & Dukler flow regime map fails to predict the stratified flow pattern data. Their transition lines between annular-wavy and annular-intermittent give fair agreement with data. A modified correlation from Klimenko and Fyodoros criterion is able to distinguish the annular and stratified data. For two-phase flow in small tubes, the effect of surface tension force should be significantly present as compared to gravitational force. The tested empirical frictional correlations couldn't predict the pressure drop in small tubes for various working fluids. It is suggested to correlate a reliable frictional multiplier for small horizontal tubes from a large database of various working fluids, and to develop the flow pattern dependent models for the prediction of two-phase pressure drop in small tubes. .

  11. An air-water interfacial area based variable tortuosity model for unsaturated sands

    SciTech Connect

    Khaleel, Raziuddin; Saripalli, Prasad

    2006-05-01

    Based on Kozeny-Carman equation for saturated media permeability, a new model is developed for the prediction of unsaturated hydraulic conductivity, K as a function of moisture content, ?. The K(???) estimates are obtained using laboratory measurements of moisture retention and saturated hydraulic conductivity, and a saturation-dependent tortuosity based on the immiscible fluid (air-water) interfacial area. Tortuosity (?a) for unsaturated media is defined as aaw/aaw,o (ratio of the specific air-water interfacial area of a real and the corresponding idealized porous medium). A correspondence between the real and idealized media is established by using the laboratory-measured soil moisture retention curve to calculate the interfacial area. The general trend in prediction of ?a as a function water saturation is in agreement with similar recent predictions based on diffusion theory. Unsaturated hydraulic conductivities measured for a number of coarse-textured, repacked Hanford sediments agree well with predictions based on the modified Kozeny-Carman relation. Because of the use of saturated hydraulic conductivity, a slight bias is apparent in measured and predicted K at low ?. While the modified Kozeny-Carman relation was found to be reasonably accurate in predicting K(??) for the repacked, sandy soils considered in this study, a further testing of the new model for undisturbed sediments and other soil textures would be useful.

  12. Statistical characterization of the optical interaction at a supercavitating interface

    NASA Astrophysics Data System (ADS)

    Walters, Gage; Kane, Tim; Jefferies, Rhett; Antonelli, Lynn

    2016-05-01

    The optical characteristics of an air/water interface have been widely studied for natural interface formations. However, the creation and management of artificial cavities creates a complicated interaction of gas and liquid that makes optical sensing and communication through the interface challenging. A ventilated cavity can reduce friction in underwater vehicles, but the resulting bubble drastically impedes optical and acoustic communication propagation. The complicated interaction at the air/water boundary yields surface waves and turbulence that make modeling and compensating of the optical properties difficult. Our experimental approach uses a narrow laser beam to probe the surface of the interface and measure the beam deflection and lensing effects. Using a vehicle model with a cavitator in a water tunnel, a laser beam is propagated outward from the model through the boundary and projected onto a target grid. The beam projection is captured using a high-speed camera, allowing us to measure and analyze beam shape and deflection. This approach has enabled us to quantify the temporal and spatial periodic variations in the beam propagation through the cavity boundary and fluid.

  13. A Case Study on the Design of Learning Interfaces

    ERIC Educational Resources Information Center

    Perry, Gabriela Trindade; Schnaid, Fernando

    2012-01-01

    The design of educational software interfaces is a complex task, given its high domain dependency and multidisciplinary nature. It requires that teachers' knowledge and pedagogical beliefs be incorporated into the interface, posing a challenge to both teachers and designers, as they have to act as partners from the earliest phases of the process,…

  14. Reynolds and froude number effect on the flow past an interface-piercing circular cylinder

    NASA Astrophysics Data System (ADS)

    Koo, Bonguk; Yang, Jianming; Yeon, Seong Mo; Stern, Frederick

    2014-09-01

    The two-phase turbulent flow past an interface-piercing circular cylinder is studied using a high-fidelity orthogonal curvilinear grid solver with a Lagrangian dynamic subgrid-scale model for large-eddy simulation and a coupled level set and volume of fluid method for air-water interface tracking. The simulations cover the sub-critical and critical and post critical regimes of the Reynolds and sub and super-critical Froude numbers in order to investigate the effect of both dimensionless parameters on the flow. Significant changes in flow features near the air-water interface were observed as the Reynolds number was increased from the sub-critical to the critical regime. The interface makes the separation point near the interface much delayed for all Reynolds numbers. The separation region at intermediate depths is remarkably reduced for the critical Reynolds number regime. The deep flow resembles the single-phase turbulent flow past a circular cylinder, but includes the effect of the free-surface and the limited span length for sub-critical Reynolds numbers. At different Froude numbers, the air-water interface exhibits significantly changed structures, including breaking bow waves with splashes and bubbles at high Froude numbers. Instantaneous and mean flow features such as interface structures, vortex shedding, Reynolds stresses, and vorticity transport are also analyzed. The results are compared with reference experimental data available in the literature. The deep flow is also compared with the single-phase turbulent flow past a circular cylinder in the similar ranges of Reynolds numbers. Discussion is provided concerning the limitations of the current simulations and available experimental data along with future research

  15. Air-water analogy and the study of hydraulic models

    NASA Technical Reports Server (NTRS)

    Supino, Giulio

    1953-01-01

    The author first sets forth some observations about the theory of models. Then he established certain general criteria for the construction of dynamically similar models in water and in air, through reference to the perfect fluid equations and to the ones pertaining to viscous flow. It is, in addition, pointed out that there are more cases in which the analogy is possible than is commonly supposed.

  16. Studies of interfaces and vapors with Optical Second Harmonic Generation

    SciTech Connect

    Mullin, Christopher Shane

    1993-12-01

    Optical Second Harmonic Generation (SHG) has been applied to the study of soap-like molecules adsorbed to the water-air interface. By calibrating the signal from a soluble monolayer with that of an insoluble homolog, absolute measurements of the surface density could be obtained and related to the bulk concentration and surface tension. We could then demonstrate that the soluble surfactant forms a single monolayer at the interface. Furthermore, it deviates significantly from the ideal case in that its activity coefficients are far from 1, yet those coefficients remain constant over a broad range of surface pressures. We present evidence of a first-order phase transition taking place during the adsorption of this soluble monolayer. We consider the effects of the non-ideal behavior and the phase transition on the microscopic model of adsorption, and formulate an alternative to the Langmuir picture of adsorption which is just as simple, yet it can more easily allow for non-ideal behavior. The second half of this thesis considers the problem of SHG in bulk metal vapors. The symmetry of the vapor forbids SHG, yet it has been observed. We consider several models whereby the symmetry of the vapor is broken by the presence of the laser and compare their predictions to new observations we have made using a few-picosecond laser pulse. The two-lobed output beam profile shows that it is the vapor-plus-beam combination whose symmetry is important. The dependence on vapor pressure demonstrates the coherent nature of the radiation, while the dependence on buffer gas pressure hints at a change of the symmetry in time. The time-dependence is measured directly with a preliminary pump-probe measurement. The magnitude and intensity dependence of the signal are also measured. All but one of the models are eliminated by this comparison.

  17. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  18. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  19. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  20. 14 CFR § 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean Air-Water Pollution Control Acts. Â...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  1. Air-water gas exchange of toxaphene in Lake Superior.

    PubMed

    Jantunen, Liisa M; Bidleman, Terry F

    2003-06-01

    Parallel air and water samples were collected in Lake Superior during August 1996 and May 1997, to determine the levels and air-water exchange direction of toxaphene. Concentration of toxaphene in water did not vary across Lake Superior or between seasons (averaging 918 +/- 218 pg/L) but atmospheric levels were lower in May (12 +/- 4.6 pg/m3) than in August (28 +/- 10 pg/m3). Two recalcitrant congeners, Parlar 26 and 50, also were determined. These congeners were enriched in the air samples, compared to a standard of technical toxaphene, but not in the water. Water-air fugacity ratios varied from 1.4 to 2.6 in August and 1.3 to 4.7 in May, implying volatilization of toxaphene from the lake. Estimated net fluxes ranged from 5.4 to 13 and 1.8 to 6.4 nm/m2d, respectively. The temperature dependence of toxaphene partial pressure (P) in air was log P/Pa = -3.291/T(a) + 1.67, where T(a) is air temperature. By using this relationship, the atmospheric levels of toxaphene, fugacity ratios, and net fluxes were estimated for the entire year. Fugacity ratios were highest in the winter and lowest in the summer; thus toxaphene was predicted to undergo net volatilization from the lake during all months. A net removal of approximately 220 kg/year by gas exchange was estimated.

  2. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  3. The Effect of Rain on Air-Water Gas Exchange

    NASA Technical Reports Server (NTRS)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  4. Brain-computer interfacing under distraction: an evaluation study

    NASA Astrophysics Data System (ADS)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech

    2016-10-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.

  5. Space station resistojet system requirements and interface definition study

    NASA Technical Reports Server (NTRS)

    Heckert, Bruce J.

    1987-01-01

    Preliminary resistojet design requirements were established based on initial technical requirements imposed by the results of NASA and Rocketdyne studies. The requirements are directed toward long life, simplicity, flexibility, and commonality with other space station components. The resistojet assembly is comprised of eight resistojets, fluid components downstream of the waste fluid storage system, a power controller, structure, and shielding. It consists of two identical subassemblies, one of which is redundant. Each subassembly consists of four 500-W resistojets, series redundant latch values, a power controller, a water vaporizer, two pressure regulators, filters, check valves, disconnects, fluid tubing, and electrical cables. All components are packaged at the end of the stinger aft of the JEM and Columbus modules. Different flow and power control methods were studied. A constant inlet pressure and a two-power setting controller were tentatively selected based on simplicity and reasonably high specific impulse for the range of waste gas compositions that are anticipated. The constant pressure is supplied by pressure regulators. The two set point power control includes individual power supplies to each resistojet heater and water vaporizer. An embedded data processor, a multiplexer-demultiplexer, and a network interface unit that are standard space station components are included in the power controller. The total dry weight of the resistojet assembly is approximately 172 lb. The total cost for design, development, test, evaluation, qualification, and flight hardware is estimated to be $16 million.

  6. Experimental study of an isochorically heated heterogeneous interface. A progress report

    SciTech Connect

    Fernandez, Juan Carlos

    2015-08-20

    Outline of the presentation: Studying possible mix / interface motion between heterogeneous low/high Z interfaces driven by 2-fluid or kinetic plasma effects (Heated to few eV, Sharp (sub µm) interface); Isochoric heating to initialize interface done with Al quasimonoenergetic ion beams on Trident; Have measured isochoric heating in individual materials intended for compound targets; Fielded experiments on Trident to measure interface motion (Gold-diamond, tin-aluminium); Measured heated-sample temperature with streaked optical pyrometry (SOP) (UT Austin led (research contract), SOP tests → heating uniformity Vs thickness on Al foils. Results are being analyzed.

  7. System Engineering Concept Demonstration, Interface Standards Studies. Volume 4

    DTIC Science & Technology

    1992-12-01

    standard operations, such as copy, delete , move, and store, and policies of the Common Programming Interface (CPI). As a central focus of the AD/Cycle...l to the tool. A number of system tools, such as mail, dir, copy, delete , conform to the SLCSE interface. A tool writer has the option of developing...elements can be accessed and deleted . Structure modifications are performed through structure editing. These operations are independent of the type of

  8. Analytical Transmission Electron Microscopy Studies on Copper-Alumina Interfaces.

    DTIC Science & Technology

    1999-06-01

    examine the data carefully in order to assess the interdependence, if any, between each aspect in relation to the interface microstructure. Finally, there...Eo = accelerating voltage (kV) Z = atomic number A = atomic weight t = thickness (cm) p = density (g cmŗ). b is related to d;, the initial beam...th ng, Proc. 4 Japan International SAMPE Trumble, K. P., Themodynamic Analysis of Aluminate formation at Fe/AhO^ and C14/AI2O3 Interfaces, Acta

  9. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface

    SciTech Connect

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2016-02-01

    Air–water interfacial monolayers of poly((d,l-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA–PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure–area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air–water monolayers formed by a PLGA–PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((d,l-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL–PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA–PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA–PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the “n-cluster” effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the “n-cluster” effects.

  10. High-energy photoemission studies of oxide interfaces

    NASA Astrophysics Data System (ADS)

    Claessen, Ralph

    2015-03-01

    The interfaces of complex oxide heterostructures can host novel quantum phases not existing in the bulk of the constituents, with the high-mobility 2D electron system (2DES) in LaAlO3/SrTiO3 (LAO/STO) representing a prominent example. Despite extensive research the origin of the 2DES and its unusual properties - including the supposed coexistence of superconductivity and ferromagnetism - are still a matter of intense debate. Photoelectron spectroscopy, recently extended into the soft (SX-ARPES) and hard (HAXPES) X-ray regime, is a powerful method to provide detailed insight into the electronic structure of these heterostructures and, in particular, of the buried interface. This includes the identification of the orbital character of the 2DES as well as the determination of vital band structure information, such as band alignment, band bending, and even k-resolved band dispersions and Fermi surface topology. Moreover, resonant photoemission at the Ti L-edge reveals the existence of two different species of Ti 3d states, localized and itinerant, which can be distinguished and identified by their different resonance behavior. The role of oxygen vacancies is studied by controlled in-situ oxidation, which allows us to vary the composition from fully stoichiometric to strongly O-deficient. By comparison to free STO surfaces we can thus demonstrate that the metallicity of the heteointerfaces is intrinsic, i . e . it persists even in the absence of O defects. I will discuss our photoemission results on LAO/STO heterostructures in both (100) and (111) orientation as well as on the related system γ-Al2O3/STO(100), which also hosts a 2DES with an even higher mobility. Work in collaboration with J. Mannhart (MPI-FKF, Stuttgart), N. Pryds (TU Denmark), G. Rijnders (U Twente), S. Suga (U Osaka), M. Giorgoi (BESSY, HZB), W. Drube (DESY Photon Science), V.N. Strocov (Swiss Light Source), J. Denlinger (Advanced Light Source, LBNL), and T.-L. Lee (Diamond Light Source). Support by

  11. Studies of the magnetic structure at the ferromagnet - antiferromagnet interface

    SciTech Connect

    Scholl, A.; Nolting, F.; Stohr, J.; Luning, J.; Seo, J.W.; Locquet, J.-P.; Anders, S.; Ohldag, H.; Padmore, H.A.

    2001-01-02

    Antiferromagnetic layers are a scientifically challenging component in magneto-electronic devices such as magnetic sensors in hard disk heads, or magnetic RAM elements. In this paper we show that photo-electron emission microscopy (PEEM) is capable of determining the magnetic structure at the interface of ferromagnets and antiferromagnets with high spatial resolution (down to 20 nm). Dichroism effects at the L edges of the magnetic 3d transition metals, using circularly or linearly polarized soft x-rays from a synchrotron source, give rise to a magnetic image contrast. Images, acquired with the PEEM2 experiment at the Advanced Light Source, show magnetic contrast for antiferromagnetic LaFeO{sub 3}, microscopically resolving the magnetic domain structure in an antiferromagnetically ordered thin film for the first time. Magnetic coupling between LaFeO{sub 3} and an adjacent Co layer results in a complete correlation of their magnetic domain structures. From field dependent measurements a unidirectional anisotropy resulting in a local exchange bias of up to 30 Oe in single domains could be deduced. The elemental specificity and the quantitative magnetic sensitivity render PEEM a perfect tool to study magnetic coupling effects in multi-layered thin film samples.

  12. Experimental Studies of Nanobubbles at Solid-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xuehua

    2013-11-01

    When a hydrophobic substrate is in contact with water, gas bubbles thinner than 100 nm can form at the interface and stay for long time under ambient conditions. These nanobubbles have significant influence on a range of interfacial processes. For example, they give rise to hydrodynamic slip on the boundary, initiate the rupture of thin liquid films, facilitate the long-ranged interactions between hydrophobic surfaces, and enhance the attachment of a macroscopic bubble to the substrate. Experimentally, it is nontrivial to characterize such small fragile bubbles and unravel their fundamental physical properties. Based on our established procedure for the nanobubble formation, we have systematically studied the formation, stability and response of nanobubbles to external fields (e.g. sonication, pressure drop and temperature rise). By following the bubble morphology by atomic force microscopy, we show that the loss or gain of the nanobubble volume is achieved mainly by the change in the bubble height. The pinning on the three-phase boundary has significant implication on the properties of nanobubbles under various conditions. This talk will cover the effects of the substrate structures on the nanobubble formation, and the response of nanobubbles to the gas dissolution, the temperature increase, the extended gentle ultrasound or the substantial pressure drop in the environment. We acknowledge the support from Australian Research Council (FFT120100473).

  13. Air-Water Gas Transfer in Coastal Waters

    DTIC Science & Technology

    2016-06-07

    water currents and turbulence, air and water temperatures , visible and infrared (IR) radiative fluxes, the visco-elastic properties of surface films, and...turbulence at the ocean interface. Measuring the spatiotemporal temperature distribution on top of the aqueous mass boundary layer, heat patterns can be...interface is obtained through quantitative analysis of infrared image sequences of the water surface temperature . Our main focus during the last year

  14. Interfacial structures of confined air-water two-phase bubbly flow

    SciTech Connect

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  15. Conversion of Iodide to Hypoiodous Acid and Molecular Iodine at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Pillar, E. A.; Guzman, M. I.

    2013-12-01

    Sea spray aerosols continuously transfer a significant amount of halides to the marine boundary layer, where they play a major role in the depletion of tropospheric ozone. The reactivity of iodide is of special interest in sea spray aerosols, where this species is enriched relative to chloride and bromide in surface seawater. This work presents laboratory experiments that provide mechanistic information to understand the reactivity of halides in atmospheric aerosols. Pneumatically assisted electrospray is used to aerosolize solutions of sodium iodide (0.01-100 μM), which are rapidly (~3 μs) oxidized by ozone at 25 °C. Reaction products include HIO, IO2-, IO3-, I2, HI2O-, and I3-, all identified by mass spectrometry. The distribution of products varies along two different reaction pathways, one favoring the production of I2 and HIO for typical tropospheric ozone levels (~50 ppbv), and another one directed to the production of IO3- at higher oxidizer concentrations. The formation of products increases exponentially with rising concentrations of initial sodium iodide, [NaI]0. The process is determined to be pH independent for the pH range 6-8 representative of surface waters. The substitution of aqueous solutions by organic solvents, such as methanol or acetonitrile, causes a decrease in the surface tension and lifetime of the droplets, leading to larger I2 production. The presence of surface active organic compounds, which alter the structure of the interfacial region, promote the pathway of I2 formation over IO3-. In conclusion, this presentation will show how the oxidation of iodide in aqueous microdroplets can release reactive gas-phase species, such as I2 and HIO, capable to affect tropospheric ozone globally. Normalized intensity of products observed during the ozonolysis of iodide solutions at 130 ppbv ozone. Cone voltage = 70 V, needle voltage = 2.5 kV.

  16. Photochemical Reactions at the Air-Water Interface in the Troposphere (Invited)

    NASA Astrophysics Data System (ADS)

    Hoffmann, M. R.; Kameel, F. R.; Colussi, A. J.

    2013-12-01

    Increasing awareness that isoprene, ISO, is only partially processed in the gas-phase has turned attention to its reactive uptake by fog, cloud and aerosol droplets. As a hydrophobic gas, ISO would preferentially partition to the surface rather than the bulk of aqueous media. Such media also contain dissolved O2 and water-soluble unsaturated organics, and support OH generation rates (from the solar photolysis of H2O2 dissolved therein) that are several orders of magnitude faster than in the gas-phase. Hence, ISO should be converted to heavier products rather than into the C4-C5 volatile compounds produced in the gas-phase. Here we substantiate such scenario by reporting that the λ > 305 nm photolysis of H2O2 in aqueous dilute ISO solutions yields C10H15OH species as primary products, whose formation both requires and is inhibited by O2. A minimum of seven C10H15OH isomers are resolved by reverse-phase high-performance liquid chromatography and detected as MH+ (m/z = 153) and MH+-18 (m/z = 135) signals by electrospray ionization mass spectrometry. Our findings are consistent with the addition of OH to ISO, followed by HO-ISO reactions with ISO (in competition with O2) leading to second generation HO(ISO)2 radicals that terminate as C10H15OH via β-H abstraction by O2. We show that a significant fraction of gas-phase olefins should be converted into less volatile species via this process on airborne wet particles.

  17. OXYGEN TRANSFER ACROSS THE AIR-WATER INTERFACE DUE TO NATURAL CONVECTION IN LAKES. (R825428)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Gas exchange across the air - water interface determined with man-made and natural tracers

    SciTech Connect

    Wanninkhof, R.H.

    1986-01-01

    Gas exchange coefficients were determined on Rockland Lake, NY; Crowley Lake, CA; and Mono Lake, CA which have surface areas of 1 km/sup 2/, 20 km/sup 2/, and 190 km/sup 2/, respectively, by injecting a small amount of man made tracer gas, sulfur hexafluoride (SF/sub 6/) into the lake and measuring the rate of concentration decrease in the water column with time. The dependency of gas exchange on wind speed is similar for the three lakes indicating that wind fetch is not a critical parameter for the gas exchange coefficient for lakes with sizes greater than 1 km/sup 2/. Little gas exchange occurs for wind speeds less than 2.5 m/s and gas exchange increases linearly with wind speed from 2.5 to 6 m/s. The relationship of gas exchange and wind speed for the lakes agrees well with a compilation of earlier single wind speed - exchange coefficient measurements on lakes and oceans but they are lower than most results obtained in wind tunnels.

  19. Interaction of polyhedral oligomeric silsesquioxane containing epoxycyclohexyl groups with cholesterol at the air/water interface.

    PubMed

    Dopierała, Katarzyna; Maciejewski, Hieronim; Prochaska, Krystyna

    2016-04-01

    Binary mixtures of cholesterol and fully-condensed octakis[{2-(3,4-epoxycyclohexyl) etyl}dimethyl-silyloxy]octasilsesquioxane (OE-POSS) were characterized using Langmuir trough for obtaining surface pressure-area isotherms. The most characteristic feature of the mixed films is the presence of two collapse points on the isotherms. The first one is attributed to the collapse of less stable OE-POSS and it occurs at similar surface pressures for all compositions, while the second one corresponds to cholesterol collapse. Brewster angle microscopy observations confirmed the collapse behavior of the mixed film. Strong condensing effect was observed for the mean molecular areas dependence on cholesterol content in the film. Moreover, formation of microdomains of each component in the matrix of the other one was confirmed by BAM images. For the reasons of molecular structures and interactions a true mixed and homogenous film did not form in the systems considered. Phase separation was observed for all the compositions experimented. The lack of the interactions of OE-POSS with biomembrane components represented by cholesterol is beneficial for applications of OE-POSS in biomedical devices.

  20. Air-water exchange and dry deposition of polybrominated diphenyl ethers at a coastal site in Izmir Bay, Turkey.

    PubMed

    Cetin, Banu; Odabasi, Mustafa

    2007-02-01

    The air-water exchange of polybrominated diphenyl ethers (PBDEs), an emerging class of persistent organic pollutants (POPs), was investigated using paired air-water samples (n = 15) collected in July and December, 2005 from Guzelyali Port in Izmir Bay, Turkey. Total dissolved-phase water concentrations of PBDEs (sigma7PBDEs) were 212 +/- 65 and 87 +/- 57 pg L(-1) (average +/- SD) in summer and winter, respectively. BDE-209 was the most abundant congener in all samples, followed by BDE-99 and -47. Average ambient gas-phase sigma7PBDE concentrations were between 189 +/- 61 (summer) and 76 +/- 65 pg m(-3) (winter). Net air-water exchange fluxes ranged from -0.9 +/- 1.0 (BDE-28) (volatilization) to 11.1 +/- 5.4 (BDE-209) ng m(-2) day(-1) (deposition). The BDE-28 fluxes were mainly volatilization while the other congeners were deposited. Gas- and dissolved-phase concentrations were significantly correlated (P = 0.33-0.55, p < 0.05, except for BDE-209, r = 0.05, p > 0.05) indicating thatthe atmosphere controls the surface water PBDE levels in this coastal environment. Estimated particulate dry deposition fluxes ranged between 2.7 +/- 1.9 (BDE-154) and 116 +/- 84 ng m(-2) day(-1) (BDE-209) indicating that dry deposition is also a significant input to surface waters in the study area.

  1. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  2. Multilayering of Surfactant Systems at the Air-Dilute Aqueous Solution Interface.

    PubMed

    Thomas, Robert K; Penfold, Jeffrey

    2015-07-14

    In the last 15 years there have been a number of observations of surfactants adsorbed at the air-water interface with structures more complicated than the expected single monolayer. These observations, mostly made by neutron or X-ray reflectivity, show structures varying from the usual monolayer to monolayer plus one or two additional bilayers to multilayer adsorption at the surface. These observations have been assembled in this article with a view to finding some common features between the very different systems and to relating them to aspects of the bulk solution phase behavior. It is argued that multilayering is primarily associated with wetting or prewetting of the air-water interface by phases in the bulk system, whose structures depend on an overall attractive force between the constituent units. Two such phases, whose formation is assumed to be partially driven by strong specific ion binding, are a concentrated lamellar phase that forms at low concentrations and a swollen lamellar phase that is not space-filling. Multilayering phenomena at the air-water interface then offer a delicate and easy means of studying the finer details of the incompletely understood attraction that leads to these two phases, as well as an interesting new means of self-assembling surface structures. In addition, multilayering is often associated with unusual wetting characteristics. Examples of systems discussed, and in some cases their bulk phase behavior, include surfactants with multivalent metal counterions, surfactants with oligomers and polymers, surfactant with hydrophobin, dichain surfactants, lung surfactant, and the unusual system of ethanolamine and stearic acid. Two situations where the air-water surface is deliberately held out of equilibrium are also assessed for features in common with the steady-state/equilibrium observations.

  3. Air-water CO2 exchange in five hypereutrophic lakes in Bangalore, India

    NASA Astrophysics Data System (ADS)

    Singh, G.; Ghosh, P.; Bala, G.; Bastviken, D.

    2014-12-01

    Inland water bodies play a significant role in terrestrial carbon cycling, rather than being just conduits for the transport of terrestrial carbon to the oceans. Recent syntheses estimate that freshwaters emit substantial amounts of CO2 (1.4 Pg C yr-1) (Tranvik et al. 2009) and CH4 (0.65 Pg C yr-1) (Bastviken et al. 2011), which are similar in magnitude to the global terrestrial carbon sink (2.5 ± 1.7 Pg C yr-1) (IPCC 2013). However, eutrophic waters, which constitute the majority of the global freshwater supply (ILEC/UNEP 1994, Liu et al. 2012, Carpenter et al. 1998), are vastly underrepresented in these estimates. These waters, due to high primary productivity leading to CO2 undersaturation, can act as sinks rather than sources of CO2, thus reversing the role of lakes in the carbon cycle (Balmer and Downing 2011, Pacheco et al. 2013). We are investigating the air-water CO2 exchange of five hypereutrophic lakes in urban Bangalore using a novel Non-Dispersive Infrared (NDIR)-based CO2 sensor installed in flux chambers that can be used to measure CO2 exchange in lakes in situ. This work is a part of a larger study called Bangalore Carbon Mapping Study that aims to track the spatial flows of carbon in an urban area of a developing country. Preliminary observations reveal that these lakes absorb CO2 during the photosynthetic hours, at an average rate of 3.4 mg C m-2 h-1. The ongoing study will characterize the complete diurnal cycle of CO2 exchange, its variation over different seasons, and its relationships with various limnological and catchment characteristics. The flux estimates thus produced will also be compared with those predicted by the current models for air-water gas exchange based on wind speed.

  4. Discrete Element study of granular material - Bumpy wall interface behavior

    NASA Astrophysics Data System (ADS)

    El Cheikh, Khadija; Rémond, Sébastien; Pizette, Patrick; Vanhove, Yannick; Djelal, Chafika

    2016-09-01

    This paper presents a DEM study of a confined granular material sheared between two parallel bumpy walls. The granular material consists of packed dry spherical particles. The bumpiness is modeled by spheres of a given diameter glued on horizontal planes. Different bumpy surfaces are modeled by varying diameter or concentration of glued spheres. The material is sheared by moving the two bumpy walls at fixed velocity. During shear, the confining pressure applied on each bumpy wall is controlled. The effect of wall bumpiness on the effective friction coefficient and on the granular material behavior at the bumpy walls is reported for various shearing conditions. For given bumpiness and confining pressure that we have studied, it is found that the shear velocity does not affect the shear stress. However, the effective friction coefficient and the behavior of the granular material depend on the bumpiness. When the diameter of the glued spheres is larger than about the average grains diameter of the medium, the latter is uniformly sheared and the effective friction coefficient remains constant. For smaller diameters of the glued spheres, the effective friction coefficient increases with the diameter of glued spheres. The influence of glued spheres concentration is significant only for small glued spheres diameters, typically half of average particle diameter of the granular material. In this case, increasing the concentration of glued spheres leads to a decrease in effective friction coefficient and to shear localization at the interface. For different diameters and concentrations of glued spheres, we show that the effect of bumpiness on the effective friction coefficient can be characterized by the depth of interlocking.

  5. Air-water oxygen exchange in a large whitewater river

    USGS Publications Warehouse

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  6. Near-surface physics during convection affecting air-water gas transfer

    NASA Astrophysics Data System (ADS)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-05-01

    The gas flux at the water surface is affected by physical processes including turbulence from wind shear, microscale wave breaking, large-scale breaking, and convection due to heat loss at the surface. The main route in the parameterizations of the gas flux has been to use the wind speed as a proxy for the gas flux velocity, indirectly taking into account the dependency of the wind shear and the wave processes. The interest in the contributions from convection processes has increased as the gas flux from inland waters (with typically lower wind and sheltered conditions) now is believed to play a substantial role in the air-water gas flux budget. The gas flux is enhanced by convection through the mixing of the mixed layer as well as by decreasing the diffusive boundary layer thickness. The direct numerical simulations performed in this study are shown to be a valuable tool to enhance the understanding of this flow configuration often present in nature.

  7. Water temperature effect on upward air-water flow in a vertical pipe: Local measurements database using four-sensor conductivity probes and LDA

    NASA Astrophysics Data System (ADS)

    Monrós-Andreu, G.; Chiva, S.; Martínez-Cuenca, R.; Torró, S.; Juliá, J. E.; Hernández, L.; Mondragón, R.

    2013-04-01

    Experimental work was carried out to study the effects of temperature variation in bubbly, bubbly to slug transition. Experiments were carried out in an upward air-water flow configuration. Four sensor conductivity probes and LDA techniques was used together for the measurement of bubble parameters. The aim of this paper is to provide a bubble parameter experimental database using four-sensor conductivity probes and LDA technique for upward air-water flow at different temperatures and also show transition effect in different temperatures under the boiling point.

  8. Atomic and electronic structure of polar oxide interfaces: Electron microscopy and density functional theory study

    NASA Astrophysics Data System (ADS)

    Lazarov, Vlado

    Polar oxide interfaces are formed when two polar oxide surfaces join. The apparent presence of an electric dipole moment in the repeat unit parallel to the surface/interface closely relate the polar oxide interfaces instability to that of the of polar oxide surfaces. In this thesis, we combined Electron Microscopy and Density Functional Theory to study how the interface polarity affects the atomic and electronic structure of polar oxide interfaces, by using Fe3O4(111)/MgO(111) as a model system. The formation of Fe nanoinclusions found at the interface and within the polar Fe3 O4(111) film is proposed to be new stabilization mechanism for the magnetite film. High-resolution electron microscopy imaging of the interface together with first principle calculations suggest an atomically abrupt substrate-film interface determined with Fe monolayer in octahedral position (FeB). This interface stacking (O/Mg/O/3FeB/O) provides lowest total interface (system) energy and the most effectively screening of the MgO(111) substrate surface polarity. The results of our study suggest that surface polarity could be used as an additional growth parameter in creating novel material structures, such as metals in oxide matrices.

  9. XPS study of the hematite-aqueous solution interface

    SciTech Connect

    Shchukarev, Andrei; Boily, Jean F.

    2008-04-01

    The electric double layer at the surface of micrometer-sized hematite platelets dominated by the basal {001} and the edge {012} planes was investigated using the cryogenic XPS technique. Thoroughly dialysed hematite suspensions revealed the presence of surface-bound sodium (2.2 at. %) and chloride (0.4 at. %). Suspensions in 10 mM and 100 mM NaCl revealed additional uptake of sodium and chloride. The Na/Cl atomic ratio follows the pH dependence found with previous studies of goethite, manganite and gibbsite. An excess of Cl- was demonstrated at positively charged hematite surface, and Na+ at negatively charged surfaces. The surface coverage of electrolyte ions was also shown to play an important role on the presence of water at the interface. At low ionic strength the water content was about of 10 at. %, yielding a water/counter-ions atomic ratio of about 3-6, depending on pH. At 100 mM NaCl, however, the large atomic concentrations of sodium and chloride resulted in a water content of about 25 at. %, nonetheless yielding a water/counter-ion atomic ratio about 1. The presence of 100 mM CsCl, on the other hand, yielded the same amount of surface-bound water as in 10 mM NaCl due to a lower surface coverage for Cs and to its weaker affinity for water. Finally, a non-equilibrated hematite sample at pH 4 enabled a description the formation of the electric double layer upon addition of 100 mM NaCl to an electrolyte-free suspension

  10. Study of lumineers' interfaces by means of optical coherence tomography

    NASA Astrophysics Data System (ADS)

    de Andrade Borges, Erica; Fernandes Cassimiro-Silva, Patrícia; Osório Fernandes, Luana; Leônidas Gomes, Anderson Stevens

    2015-06-01

    OCT has been used to evaluate dental materials, and is employed here to evaluate lumineers for the first time. Lumineers are used as esthetical indirect restoration, and after wearing and aging, several undesirable features such as gaps, bubbles and mismatch can appear in which would only be seen by invasive analysis. The OCT (spectral domain SD-OCT, 930nm central wavelength) was used to evaluate noninvasively the lumineer- cement-tooth interface. We analyzed 20 specimens of lumineers-teeth that were prepared in bovine teeth and randomly allocated in 4 experimental groups (n=5) with two different cementation techniques and two different types of cementing agent (RelyX U200 and RelyX Veneer, 3M ESPE, with the adhesive recommended by the manufacture). The lumineers were made of lithium disilicate and obtained using a vacuum injection technique. The analysis was performed by using 2D and 3D OCT images, obtained before and after cementing and the thermal cycling process to simulate thermal stress in a oral cavity. Initial measurements showed that the SD-OCT was able to see through the 500μm thick lumineer, as delivered by the fabricant, and internal stress was observed. Failures were found in the cementing process and also after ageing simulation by thermal cycling. The adhesive failures as bubbles, gaps and degradation of the cementation line are the natural precursors of other defects reported by several studies of clinical follow-up (detachments, fractures and cracks). Bubble dimensions ranging from 146 μm to 1427 μm were measured and the OCT was validated as an investigative and precise tool for evaluation of the lumineer-cement-tooth.

  11. Spatially resolved air-water emissions tradeoffs improve regulatory impact analyses for electricity generation.

    PubMed

    Gingerich, Daniel B; Sun, Xiaodi; Behrer, A Patrick; Azevedo, Inês L; Mauter, Meagan S

    2017-02-21

    Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts.

  12. An Empirical Study on Operator Interface Design for Handheld Devices to Control Micro Aerial Vehicles

    DTIC Science & Technology

    2010-10-01

    An Empirical Study on Operator Interface Design for Handheld Devices to Control Micro Aerial Vehicles Ming Hou...Report DRDC Toronto TR 2010-075 October 2010 An Empirical Study on Operator Interface Design for Handheld Devices to...drives the need for a small and light controller which will not hinder a soldier carrying it. This requirement brings an issue of designing an

  13. Interaction of monovalent ions with the water liquid-vapor interface - A molecular dynamics study

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew

    1991-01-01

    Results of molecular dynamics calculations are presented for a series of ions at infinite dilution near the water liquid-vapor interface. The free energies of ion transfer from the bulk to the interface are discussed, as are the accompanying changes of water structure at the surface and ion mobilities as a function of their proximity to the interface. It is shown that simple dielectric models do not provide an accurate description of ions at the water surface. The results of the study should be useful in the development of better models incorporating the shape and molecular structure of the interface.

  14. Feasibility study for future implantable neural-silicon interface devices.

    PubMed

    Al-Armaghany, Allann; Yu, Bo; Mak, Terrence; Tong, Kin-Fai; Sun, Yihe

    2011-01-01

    The emerging neural-silicon interface devices bridge nerve systems with artificial systems and play a key role in neuro-prostheses and neuro-rehabilitation applications. Integrating neural signal collection, processing and transmission on a single device will make clinical applications more practical and feasible. This paper focuses on the wireless antenna part and real-time neural signal analysis part of implantable brain-machine interface (BMI) devices. We propose to use millimeter-wave for wireless connections between different areas of a brain. Various antenna, including microstrip patch, monopole antenna and substrate integrated waveguide antenna are considered for the intra-cortical proximity communication. A Hebbian eigenfilter based method is proposed for multi-channel neuronal spike sorting. Folding and parallel design techniques are employed to explore various structures and make a trade-off between area and power consumption. Field programmable logic arrays (FPGAs) are used to evaluate various structures.

  15. Vibrational spectroscopy of water interfaces

    SciTech Connect

    Du, Quan

    1994-12-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful and versatile tools for studying all kinds of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the second order nonlinear susceptibility. The technique of infrared-visible sum frequency generation (SFG) is particularly attractive because it offers a viable way to do vibrational spectroscopy on any surfaces accessible to light with submonolayer sensitivity. In this thesis, the author applies SFG to study a number of important water interfaces. At the air/water interface, hydrophobic solid/water and liquid/water interfaces, it was found that approximately 25% of surface water molecules have one of their hydrogen pointing away from the liquid water. The large number of unsatisfied hydrogen bonds contributes significantly to the large interfacial energy of the hydrophobic surfaces. At the hydrophilic fused quartz/water interface and a fatty acid monolayer covered water surface, the structure and orientation of surface water molecules are controlled by the hydrogen bonding of water molecules with the surface OH groups and the electrostatic interaction with the surface field from the ionization of surface groups. A change of pH value in the bulk water can significantly change the relative importance of the two interactions and cause a drastic change in orientation of the surface water molecules. SFG has also been applied to study the tribological response of some model lubricant films. Monolayers of Langmuir-Blodgett films were found to disorder orientationaly under mildly high pressure and recover promptly upon removal of the applied pressure.

  16. A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY AIR/WATER EXCHANGE PARTNERS

    EPA Science Inventory

    Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury air/water exchange is limited by uncertainties in our understanding of all gaseous a...

  17. A Study of Learning and Retention with a Web-Based IR Interface

    ERIC Educational Resources Information Center

    Ahmed, S. M. Zabed; McKnight, Cliff; Oppenheim, Charles

    2005-01-01

    This article reports on an empirical study on novices' learning and retention with the Web-based interface to the Web of Science. The aim was to evaluate the performance of novice searchers in initially learning to use the search interface and in later use. Their performance in both sessions was measured in terms of time taken to perform tasks,…

  18. Dynamics of crack penetration vs. branching at a weak interface: An experimental study

    NASA Astrophysics Data System (ADS)

    Sundaram, Balamurugan M.; Tippur, Hareesh V.

    2016-11-01

    In this paper, the dynamic crack-interface interactions and the related mechanics of crack penetration vs. branching at a weak interface are studied experimentally. The interface is oriented perpendicular to the incoming mode-I crack in an otherwise homogeneous bilayer. The focus of this investigation is on the effect of interface location and the associated crack-tip parameters within the bilayer on the mechanics of the ensuing fracture behavior based on the optical methodologies laid down in Ref. Sundaram and Tippur (2016). Time-resolved optical measurement of crack-tip deformations, velocity and stress intensity factor histories in different bilayer configurations is performed using Digital Gradient Sensing (DGS) technique in conjunction with high-speed photography. The results show that the crack path selection at the interface and subsequently the second layer are greatly affected by the location of the interface within the geometry. Using optically measured fracture parameters, the mechanics of crack penetration and branching are explained. Counter to the intuition, a dynamically growing mode-I approaching a weak interface at a lower velocity and stress intensity factor penetrates the interface whereas a higher velocity and stress intensity factor counterpart gets trapped by the interface producing branched daughter cracks until they kink out into the next layer. An interesting empirical observation based on measured crack-tip parameters for crack penetration and branching is also made.

  19. Marine bacterioplankton can increase evaporation and gas transfer bymetabolizing insoluble surfactants from the air-seawater interface.

    PubMed

    Salter, Ian; Zubkov, Mikhail V; Warwick, Phil E; Burkill, Peter H

    2009-05-01

    Hydrophobic surfactants at the air-sea interface can retard evaporative and gaseous exchange between the atmosphere and the ocean.While numerous studies have examined the metabolic role of bacterioneuston at the air-sea interface, the interactions between hydrophobic surfactants and bacterioplankton are not well constrained. A novel experimental design was developed, using Vibrio natriegens and (3)H-labelled hexadecanoic acid tracer, to determine how the bacterial metabolism of fatty acids affects evaporative fluxes. In abiotic systems, >92% of the added hexadecanoic acid remained at the air-water interface. In contrast, the presence of V. natriegens cells draws down insoluble hexadecanoic acid from the air-water interface as an exponential function of time. The exponents characterizing the removal of hexadecanoic acid from the interface co-vary with the concentration of V. natriegens cells in the underlying water, with the largest exponent corresponding to the highest cell abundance. Radiochemical budgets show that evaporative fluxes from the system are linearly proportional to the quantity of hexadecanoic acid at the interface. Thus, bacterioplankton could influence the rate of evaporation and gas transfer in the ocean through the metabolism of otherwise insoluble surfactants.

  20. Water at an electrochemical interface - a simulation study

    SciTech Connect

    Willard, Adam; Reed, Stewart; Madden, Paul; Chandler, David

    2008-08-22

    The results of molecular dynamics simulations of the properties of water in an aqueous ionic solution close to an interface with a model metallic electrode are described. In the simulations the electrode behaves as an ideally polarizable hydrophilic metal, supporting image charge interactions with charged species, and it is maintained at a constant electrical potential with respect to the solution so that the model is a textbook representation of an electrochemical interface through which no current is passing. We show how water is strongly attracted to and ordered at the electrode surface. This ordering is different to the structure that might be imagined from continuum models of electrode interfaces. Further, this ordering significantly affects the probability of ions reaching the surface. We describe the concomitant motion and configurations of the water and ions as functions of the electrode potential, and we analyze the length scales over which ionic atmospheres fluctuate. The statistics of these fluctuations depend upon surface structure and ionic strength. The fluctuations are large, sufficiently so that the mean ionic atmosphere is a poor descriptor of the aqueous environment near a metal surface. The importance of this finding for a description of electrochemical reactions is examined by calculating, directly from the simulation, Marcus free energy profiles for transfer of charge between the electrode and a redox species in the solution and comparing the results with the predictions of continuum theories. Significant departures from the electrochemical textbook descriptions of the phenomenon are found and their physical origins are characterized from the atomistic perspective of the simulations.

  1. Application of a laser Doppler vibrometer for air-water to subsurface signature detection

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun

    2015-05-01

    There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.

  2. A Simulation Study of the Virtual Interface Architecture

    SciTech Connect

    Hu, Tan Chang; Stans, Leonard; Tarman, Thomas D.

    1999-05-18

    The Virtual Interface Architecture (VIA) is an emerging standard for interconnecting commodity computing nodes into a cluster. Since VIA protocol. operations are implemented outside the operating system kernel (often, entirely in hardware), VIA transfers can be performed at very low delay, high throughput, and minimal CPU overhead. This makes VIA ideal when building large clusters that perform complex simulations of physical events, However, the scaling properties of VIA are less clear. This paper describes the design and results of a simulation model developed in OPNET to investigate VIA's ability to scale to clusters of> 1000 nodes.

  3. Payload/orbiter contamination control requirement study: Computer interface

    NASA Technical Reports Server (NTRS)

    Bareiss, L. E.; Hooper, V. W.; Ress, E. B.; Strange, D. A.

    1976-01-01

    A preliminary assessment of the computer interface requirements of the Spacelab configuration contamination computer model was conducted to determine the compatibility of the program, as presently formatted, with the computer facilities at MSFC. The necessary Spacelab model modifications are pointed out. The MSFC computer facilities and their future plans are described, and characteristics of the various computers as to availability and suitability for processing the contamination program are discussed. A listing of the CDC 6000 series and UNIVAC 1108 characteristics is presented so that programming requirements can be compared directly and differences noted.

  4. A Theoretical Study of Remobilizing Surfactant Retarded Fluid Particle Interfaces

    NASA Technical Reports Server (NTRS)

    Wang, Yanping; Papageorgiou, Dimitri; Maldarelli, Charles

    1996-01-01

    Microgravity processes must rely on mechanisms other than bouyancy to move bubbles or droplets from one region to another in a continuous liquid phase. One suggested method is thermocapillary migration in which a temperature gradient is applied to the continuous phase. When a fluid particle contacts this gradient, one pole of the particle becomes warmer than the opposing pole. The interfacial tension between the drop or bubble phase and the continuous phase usually decreases with temperature. Thus the cooler pole is of higher interfacial tension than the warmer pole, and the interface is tugged in the direction of the cooler end. This thermocapillary or thermally induced Marangoni surface stress causes a fluid streaming in the continuous phase from which develops a viscous shear traction and pressure gradient which together propel the particle in the direction of the warmer fluid. In this paper, we provide a theoretical basis for remobilizing surfactant retarded fluid particle interfaces in an effort to make viable the use of thermocapillary migrations for the management of bubbles and drops in microgravity,

  5. Theoretical study of Ge/ BaTiO 3 Interfaces

    NASA Astrophysics Data System (ADS)

    Fredrickson, Kurt; Demkov, Alexander

    2011-03-01

    It has been shown (McKee et al., Phys. Rev. Lett. 81, 3014 (1998), and R. McKee, et al., Science 293 , 468 (2001)) that perovskite oxides SrTi O3 and BaTi O3 (BTO) can be grown epitaxially on Si and Ge, respectively. It would be interesting to achieve the reverse, i.e. to grow for example, Ge on BTO. It is not clear, however, whether one can achieve wetting of BTO by Ge. Theoretically, the energy of the Ge (001) surface is estimated to be anywhere between 591 and 1700 erg/cm2 and the surface energy of BTO is in the range of 1083-1496 erg/cm2 depending on termination and environment. The missing piece of information is the energy of the Ge/BTO interface. We examine five possible Ge/BTO interface structures and calculate their energies using density functional theory to determine which one has the lowest energy, and whether wetting can be achieved.

  6. Air-water CO2 outgassing in the Lower Lakes (Alexandrina and Albert, Australia) following a millennium drought.

    PubMed

    Li, Siyue; Bush, Richard T; Ward, Nicholas J; Sullivan, Leigh A; Dong, Fangyong

    2016-01-15

    Lakes are an important source and sink of atmospheric CO2, and thus are a vital component of the global carbon cycle. However, with scarce data on potentially important subtropical and tropical areas for whole continents such as Australia, the magnitude of large-scale lake CO2 emissions is unclear. This study presents spatiotemporal changes of dissolved inorganic carbon and water - to - air interface CO2 flux in the two of Australia's largest connected, yet geomorphically different freshwater lakes (Lake Alexandrina and Lake Albert, South Australia), during drought (2007 to September-2010) and post-drought (October 2010 to 2013). Lake levels in the extreme drought were on average approximately 1m lower than long-term average (0.71 m AHD). Drought was associated with an increase in the concentrations of dissolved inorganic species, organic carbon, nitrogen, Chl-a and major ions, as well as water acidification as a consequence of acid sulfate soil (ASS) exposure, and hence, had profound effects on lake pCO2 concentrations. Lakes Alexandrina and Albert were a source of CO2 to the atmosphere during the drought period, with efflux ranging from 0.3 to 7.0 mmol/m(2)/d. The lake air-water CO2 flux was negative in the post-drought, ranging between -16.4 and 0.9 mmol/m(2)/d. The average annual CO2 emission was estimated at 615.5×10(6) mol CO2/y during the drought period. These calculated emission rates are in the lower range for lakes, despite the potential for drought conditions that shift the lakes from sink to net source for atmospheric CO2. These observations have significant implications in the context of predicted increasing frequency and intensity of drought as a result of climate change. Further information on the spatial and temporal variability in CO2 flux from Australian lakes is urgently warranted to revise the global carbon budget for lakes.

  7. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    SciTech Connect

    Knowlton, W.B. |

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  8. Numerical and experimental study of the nonlinear interaction between a shear wave and a frictional interface.

    PubMed

    Blanloeuil, Philippe; Croxford, Anthony J; Meziane, Anissa

    2014-04-01

    The nonlinear interaction of shear waves with a frictional interface are presented and modeled using simple Coulomb friction. Analytical and finite difference implementations are proposed with both in agreement and showing a unique trend in terms of the generated nonlinearity. A dimensionless parameter ξ is proposed to uniquely quantify the nonlinearity produced. The trends produced in the numerical study are then validated with good agreement experimentally. This is carried out loading an interface between two steel blocks and exciting this interface with different amplitude normal incidence shear waves. The experimental results are in good agreement with the numerical results, suggesting the simple friction model does a reasonable job of capturing the fundamental physics. The resulting approach offers a potential way to characterize a contacting interface; however, the difficulty in activating that interface may ultimately limit its applicability.

  9. Shuttle payload interface verification equipment study. Volume 2: Technical document, part 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The technical analysis is reported that was performed during the shuttle payload interface verification equipment study. It describes: (1) the background and intent of the study; (2) study approach and philosophy covering all facets of shuttle payload/cargo integration; (3)shuttle payload integration requirements; (4) preliminary design of the horizontal IVE; (5) vertical IVE concept; and (6) IVE program development plans, schedule and cost. Also included is a payload integration analysis task to identify potential uses in addition to payload interface verification.

  10. Studies on refrigerator sensors and cooling section interface

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yoshirou

    1993-03-01

    The results of a patents examination are outlined including the following items: (1) examination methods and their results concerning the cooling type photoelectric conversion devices; (2) the infrared ray receiver with cooler radiation detector; (3) cryogenic container; (4) the expansion cylinder device; (5) the vibration isolation device for cooling a focal plane; and (6) an infrared detector. The results of users' opinion survey for JEM (Japanese Experiment Module) utilization are summarized as follows: (1) the development of cryogenic (4 K) coolers are strongly desired; (2) pointing device is indispensable for observation system users; (3) vibration condition requirements range from ten micrometer to less than 1 micrometer; (4) miniaturization is strongly desired; and (5) cooler interface is not the image of direct cooling of the sensor but overall cooling of the system. This presentation is represented by viewgraphs only.

  11. Elemental and structural studies at the bone-cartilage interface

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Kaabar, W.; Gundogdu, O.

    2012-02-01

    The techniques μProton-Induced X-and γ-ray Emission, μ-PIXE and μ-PIGE, were used to investigate trace and essential element distributions in sections of normal and osteoarthritic (OA) human femoral head. μ-PIGE yielded 2-D mappings of Na and F while Ca, Z, P and S were mapped by μ-PIXE. The concentration of chondroitin sulphate supporting functionality in healthy cartilage is significantly reduced in OA samples. Localised Zn points to osteoblastic/osteoclastic activity at the bone-cartilage interface. Small-angle X-ray scattering applied to decalcified OA-affected tissue showed spatial alterations of collagen fibres of decreased axial periodicity compared to normal collagen type I.

  12. Cadmium selenide interface states studied by electrochemical photocapacitance spectroscopy

    SciTech Connect

    Haak, R.; Tench, D.

    1984-06-01

    In this paper, the electrochemical photocapacitance spectroscopy (EPS) method, which involves measuring the differential capacitance for the reverse-biased semiconductor in an electrolyte as a function of incident subbandgap light, was applied to further elucidate the nature of interface states on n-CdSe. This method has been shown to be an unusually sensitive means for characterization of deep levels in various semiconductor materials (4). In aqueous electrolytes, the interfacial oxide structure might be expected to be similar to that formed in the ambient atmosphere. A key goal in the present work was to establish unequivocally the location of the state associated with oxygen adsorption. An alternate interpretation for previous data was that the observed states actually resided in the bulk and were rendered detectable by the enhanced thickness of the semiconductor space-charge layer resulting from the negative surface charge associated with adsorbed oxygen.

  13. Triggers for β-sheet formation at the hydrophobic-hydrophilic interface: high concentration, in-plane orientational order, and metal ion complexation.

    PubMed

    Hoernke, Maria; Falenski, Jessica A; Schwieger, Christian; Koksch, Beate; Brezesinski, Gerald

    2011-12-06

    Amyloid formation plays a causative role in neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Soluble peptides form β-sheets that subsequently rearrange into fibrils and deposit as amyloid plaques. Many parameters trigger and influence the onset of the β-sheet formation. Early stages are recently discussed to be cell-toxic. Aiming at understanding various triggers such as interactions with hydrophobic-hydrophilic interfaces and metal ion complexation and their interplay, we investigated a set of model peptides at the air-water interface. We are using a general approach to a variety of diseases such as Alzheimer's disease, Parkinson's disease, and type II diabetes that are connected to amyloid formation. Surface sensitive techniques combined with film balance measurements have been used to assess the conformation of the peptides and their orientation at the air-water interface (IR reflection-absorption spectroscopy). Additionally, the structures of the peptide layers were characterized by grazing incidence X-ray diffraction and X-ray reflectivity. The peptides adsorb to the air-water interface and immediately adopt an α-helical conformation. This helical intermediate transforms into β-sheets upon further triggering. The factors that result in β-sheet formation are dependent on the peptide sequence. In general, the interface has the strongest effect on peptide conformation compared to high concentrations or metal ions. Metal ions are able to prevent aggregation in bulk but not at the interface. At the interface, metal ion complexation has only minor effects on the peptide secondary structure, influencing the in-plane structure that is formed in two dimensions. At the air-water interface, increased concentrations or a parallel arrangement of the α-helical intermediates are the most effective triggers. This study reveals the role of various triggers for β-sheet formation and their complex interplay. Our main finding is that the

  14. Thermal boundary conductance enhancement using experimentally achievable nanostructured interfaces - analytical study combined with molecular dynamics simulation.

    PubMed

    Lee, Eungkyu; Zhang, Teng; Hu, Ming; Luo, Tengfei

    2016-06-22

    Interfacial thermal resistance presents great challenges to the thermal management of modern electronics. In this work, we perform an analytical study to enhance the thermal boundary conductance (TBC) of nanostructured interfaces with square-shape pillar arrays, extendable to the characteristic lengths that can be fabricated in practice. As a representative system, we investigate a SiC substrate with the square-shape pillar array combined with epitaxial GaN as the nanostructured interface. By applying a first-order ray tracing method and molecular dynamics simulations to analyze phonon incidence and transmission at the nanostructured interface, we systematically study the impact of the characteristic dimensions of the pillar array on the TBC. Based on the multi-scale analysis we provide a general guideline to optimize the nanostructured interfaces to achieve higher TBC, demonstrating that the optimized TBC value of the nanostructured SiC/GaN interfaces can be 42% higher than that of the planar SiC/GaN interfaces without nanostructures. The model used and results obtained in this study will guide the further experimental realization of nanostructured interfaces for better thermal management in microelectronics.

  15. Shuttle payload interface verification equipment study. Volume 2: Technical document. Part 2: Appendices

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Appendices to the shuttle payload integration study provide for: (1) The interface verification equipment hardware utilization list; (2) the horizontal IVE in-field assembly procedure; and (3) payload integration baseline functional flow block diagrams and options.

  16. Air-water fluxes of N₂O and CH₄ during microalgae (Staurosira sp.) cultivation in an open raceway pond.

    PubMed

    Ferrón, Sara; Ho, David T; Johnson, Zackary I; Huntley, Mark E

    2012-10-02

    The industrial-scale production of biofuels from cultivated microalgae has gained considerable interest in the last several decades. While the climate benefits of microalgae cultivation that result from the capture of atmospheric CO(2) are known, the counteracting effect from the potential emission of other greenhouse gases has not been well quantified. Here, we report the results of a study conducted at an industrial pilot facility in Hawaii to determine the air-water fluxes of N(2)O and CH(4) from open raceway ponds used to grow the marine diatom Staurosira sp. as a feedstock for biofuel. Dissolved O(2), CH(4), and N(2)O concentrations were measured over a 24 h cycle. During this time, four SF(6) tracer release experiments were conducted to quantify gas transfer velocities in the ponds, and these were then used to calculate air-water fluxes. Our results show that pond waters were consistently supersaturated with CH(4) (up to 725%) resulting in an average emission of 19.9 ± 5.6 μmol CH(4) m(-2) d(-1). Upon NO(3)(-) depletion, the pond shifted from being a source to being a sink of N(2)O, with an overall net uptake during the experimental period of 3.4 ± 3.5 μmol N(2)O m(-2) d(-1). The air-water fluxes of N(2)O and CH(4) expressed as CO(2) equivalents of global warming potential were 2 orders of magnitude smaller than the overall CO(2) uptake by the microalgae.

  17. Elemental and structural studies at the bone-cartilage interface

    NASA Astrophysics Data System (ADS)

    Kaabar, W.; Daar, E.; Bunk, O.; Farquharson, M. J.; Laklouk, A.; Bailey, M.; Jeynes, C.; Gundogdu, O.; Bradley, D. A.

    2011-10-01

    Micro-Proton Induced X-ray Emission (μ-PIXE) and Proton Induced Gamma-ray Emission (PIGE) techniques were employed in the investigation of trace and essential elements distribution in normal and diseased human femoral head sections affected by osteoarthritis (OA). PIGE was exploited in the determination of elements of low atomic number z<15 such as Na and F whereas elements with z>15 viz Ca, Z, P and S were determined by PIXE. Accumulations of key elements in the bone and cartilage sections were observed, significant S and Na concentrations being found in the cartilage region particularly in normal tissues. Zn showed enhanced concentrations at the bone-cartilage interface. At a synchrotron facility, small angle X-ray scattering (SAXS) was utilized on a decalcified human femoral head section affected by OA, direct measurements being made of spatial alterations of collagen fibres. The SAXS results showed a slight decrease in the axial periodicity between normal collagen type I and that in diseased tissue in various sites, in contrast with the findings of others.

  18. Three phase interfaces at electrified metal-solid electrolyte systems I. study of the Pt(hkl)-Nafion interface.

    SciTech Connect

    Subbaraman, R.; Strmcnik, D.; Stamenkovic, V.; Markovic, N. M.

    2010-01-01

    A voltammetric fingerprinting approach has been used to probe the nature of Pt-Nafion three phase interfaces for Pt(hkl) and polycrystalline platinum surfaces. Nature of adsorbing species is identified as the sulfonate anions via CO charge displacement technique. The affinity for the sulfonate anions to adsorb on the electrode surface is investigated. Adsorption strength of the sulfonate anions with the electrode surface is compared with other strongly adsorbing anions such as (bi) sulfates and chlorides. Various factors that influence the adsorption properties of the sulfonate anions are studied. Nature and strength of the anion interaction with various surface geometries is also discussed. A physical model is presented to describe the observed phenomena.

  19. Measuring air-water interfacial areas with X-ray microtomography and interfacial partitioning tracer tests.

    PubMed

    Brusseau, Mark L; Peng, Sheng; Schnaar, Gregory; Murao, Asami

    2007-03-15

    Air-water interfacial areas as a function of water saturation were measured for a sandy, natural porous medium using two methods, aqueous-phase interfacial partitioning tracer tests and synchrotron X-ray microtomography. In addition, interfacial areas measured in a prior study with the gas-phase interfacial partitioning tracer-test method for the same porous medium were included for comparison. For all three methods, total air-water interfacial areas increased with decreasing water saturation. The interfacial areas measured with the tracer-test methods were generally larger than those obtained from microtomography, and the disparity increased as water saturation decreased. The interfacial areas measured by microtomography extrapolated to a value (147 cm(-1)) very similar to the specific solid surface area (151 cm(-1)) calculated using the smooth-sphere assumption, indicating that the method does not characterize the area associated with microscopic surface heterogeneity (surface roughness, microporosity). This is consistent with the method resolution of approximately 12 microm. In contrast, the interfacial areas measured with the gas-phase tracer tests approached the N2/BET measured specific solid surface area (56000 cm(-1)), indicating that this method does characterize the interfacial area associated with microscopic surface heterogeneity. The largest interfacial area measured with the aqueous-phase tracer tests was 224 cm(-1), while the extrapolated maximum interfacial area was approximately 1100 cm(-1). Both of these values are larger than the smooth-sphere specific solid surface area but much smaller than the N2/BET specific solid surface area, which suggests that the method measures a limited portion of the interfacial area associated with microscopic surface heterogeneity. All three methods provide measures of total (capillary + film) interfacial area, a primary difference being that the film-associated area is a smooth-surface equivalent for the

  20. Spatial scanning spectroelectrochemistry. Study of the electrodeposition of Pd nanoparticles at the liquid/liquid interface.

    PubMed

    Izquierdo, Daniel; Martinez, Alberto; Heras, Aranzazu; Lopez-Palacios, Jesus; Ruiz, Virginia; Dryfe, Robert A W; Colina, Alvaro

    2012-07-03

    Spatial scanning spectroelectrochemistry is a new analytical technique that provides spectral information at different distances from an electrified liquid/liquid interface where an electrochemical process takes place. As a proof of concept, we have studied two different electrochemical processes at the electrified liquid/liquid interface: (1) Ru(bpy)(3)(2+) transfer through the water/1,2-dichloroethane interface and (2) electrodeposition of Pd nanoparticles at the water/1,2-dichloroethane interface. The instrumental setup developed consists of a movable slit for the light beam to sample at well-defined positions on both sides of the interface, providing important information about the chemical process occurring. If the slit is scanned at different distances from the interface during an electrochemical experiment, a complete picture of the reactions and equilibria in the diffusion layer can be obtained. For example, in the case of the Ru(bpy)(3)(2+), the experiments show clearly how the complex is transferred from one phase to the other. In the case of electrosynthesis of Pd nanoparticles, it is demonstrated that nanoparticles are not only deposited at the interface but diffuse to the aqueous bulk solution. These in situ observations were confirmed by ex situ experiments using transmission electron microscopy.

  1. Combined Effects of Agitation, Macromolecular Crowding, and Interfaces on Amyloidogenesis*

    PubMed Central

    Lee, Chiu Fan; Bird, Sarah; Shaw, Michael; Jean, Létitia; Vaux, David J.

    2012-01-01

    Amyloid formation and accumulation is a hallmark of protein misfolding diseases and is associated with diverse pathologies including type II diabetes and Alzheimer's disease (AD). In vitro, amyloidogenesis is widely studied in conditions that do not simulate the crowded and viscous in vivo environment. A high volume fraction of most biological fluids is occupied by various macromolecules, a phenomenon known as macromolecular crowding. For some amyloid systems (e.g. α-synuclein) and under shaking condition, the excluded volume effect of macromolecular crowding favors aggregation, whereas increased viscosity reduces the kinetics of these reactions. Amyloidogenesis can also be catalyzed by hydrophobic-hydrophilic interfaces, represented by the air-water interface in vitro and diverse heterogeneous interfaces in vivo (e.g. membranes). In this study, we investigated the effects of two different crowding polymers (dextran and Ficoll) and two different experimental conditions (with and without shaking) on the fibrilization of amyloid-β peptide, a major player in AD pathogenesis. Specifically, we demonstrate that, during macromolecular crowding, viscosity dominates over the excluded volume effect only when the system is spatially non homogeneous (i.e. an air-water interface is present). We also show that the surfactant activity of the crowding agents can critically influence the outcome of macromolecular crowding and that the structure of the amyloid species formed may depend on the polymer used. This suggests that, in vivo, the outcome of amyloidogenesis may be affected by both macromolecular crowding and spatial heterogeneity (e.g. membrane turn-over). More generally, our work suggests that any factors causing changes in crowding may be susceptibility factors in AD. PMID:22988239

  2. Critical air/water blow-down in safety valves at low qualities.

    PubMed

    Moncalvo, D; Friedel, L

    2011-02-28

    Critical air/water blow-downs in safety valves for qualities from 0.01 to 0.113 and mass flow rates from 1.5 up to 4.3 kg/s have been observed in our test facility. These critical blow-downs are characterized by a large void fraction and by an intense mixing of the phases both in the valve body and in the outlet pipe. A qualitative estimation of the flow pattern in the outlet pipe using the map of Taitel and Dukler suggests that these air/water flows are intermittent flows--presumably slug flows--evolving to annular flows for qualities above 0.1. Intermittent flows are also predicted for critical air/water and air/glycerine flows taken from the literature for the same safety valve at slightly larger relieving pressures.

  3. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  4. Mechanical Strength of Silicon/Silicon Nitride Interfaces: A Molecular-Dynamics Study

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Knudsen, Steven R.; Schiffbauer, Jarrod E.; Wang, Ye; Zhang, Jennifer; Korakakis, Dimitris

    2004-03-01

    Molecular-dynamics simulations are performed on parallel computers to investigate failure mechanisms of the crystalline Si(111)/Si_3N_4(0001) interface as strain is applied parallel to the interface. Comparisons between different rates of strain and temperatures were studied. Increased temperatures were found to have an adverse effect on the mechanical strength of the material, and increased rates of strain caused the system to fail later than those that were stretched more slowly.

  5. Study of the P3HT/PCBM interface using photoemission yield spectroscopy

    NASA Astrophysics Data System (ADS)

    Grzibovskis, Raitis; Vembris, Aivars

    2016-04-01

    Photogeneration efficiency and charge carrier extraction from active layer are the parameters that determine the efficiency of organic photovoltaics (OPVs). Devices made of organic materials often consist of thin (up to 100nm) layers. At this thickness different interface effects become more pronounced. The electron affinity and ionization energy shift can affect the charge carrier transport across metal-organic interface which can affect the performance of the entire device. In the case of multilayer OPVs, energy level compatibility at the organic-organic interface is as important. Photoemission yield spectroscopy was used for organic-organic interface study by ionization energy measurements. In this work we studied "sandwich" type samples of two well-known organic photovoltaic materials- poly(3- hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). Ionization energy changes at the P3HT/PCBM interface depending on PCBM layer thickness were studied. P3HT layer was obtained by spin-coating while PCBM was deposited on the P3HT by thermal evaporation in vacuum. No ionization energy shift of P3HT was observed. On the contrary, PCBM at the interface with P3HT created additional 0.40eV barrier for hole transport from PCBM to P3HT.

  6. Impact of Salinity on the Air-Water Partition Coefficient of Gas Tracers

    SciTech Connect

    Zhong, Lirong; Pope, Gary A.; Evans, John C.; Cameron, Richard J.

    2005-09-01

    The use of a gas partitioning interwell tracer test (PITT) has been proposed as a standard approach to the measurement of field-scale vadose zone water saturation fractions. The accuracy of the saturation measurement is largely dependent on the determination of the air-water partitioning coefficient, K, of the tracers; however, in practice, K is also strongly influenced by the physical and chemical properties of the water. In this study, column tests were conducted to investigate the impact of salinity on tracer partitioning coefficients for two promising gas phase candidate tracers, dibromomethane and dimethylether. Sodium thiosulfate was used as a salinity surrogate. The dynamic K values of the two partitioning tracers were measured for sodium thiosulfate concentrations between 0% and 36% by weight. Methane was used as the non-partitioning tracer for all experiments. K values were found to decrease significantly with increasing sodium thiosulfate concentration. Similar correlations between K values and sodium thiosulfate concentration were found for both of the partitioning tracers tested.

  7. Turbulence and wave breaking effects on air-water gas exchange

    PubMed

    Boettcher; Fineberg; Lathrop

    2000-08-28

    We present an experimental characterization of the effects of turbulence and breaking gravity waves on air-water gas exchange in standing waves. We identify two regimes that govern aeration rates: turbulent transport when no wave breaking occurs and bubble dominated transport when wave breaking occurs. In both regimes, we correlate the qualitative changes in the aeration rate with corresponding changes in the wave dynamics. In the latter regime, the strongly enhanced aeration rate is correlated with measured acoustic emissions, indicating that bubble creation and dynamics dominate air-water exchange.

  8. Verification and Validation of Numerical Models for Air/Water Flow on Coastal and Navigation Fluid-Structure Interaction Applications

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M.; Dimakopoulos, A.; DeLataillade, T.

    2015-12-01

    Performance analysis and optimization of coastal and navigation structures is becoming feasible due to recent improvements in numerical methods for multiphase flows and the steady increase in capacity and availability of high performance computing resources. Now that the concept of fully three-dimensional air/water flow modelling for real world engineering analysis is achieving acceptance by the wider engineering community, it is critical to expand careful comparative studies on verification,validation, benchmarking, and uncertainty quantification for the variety of competing numerical methods that are continuing to evolve. Furthermore, uncertainty still remains about the relevance of secondary processes such as surface tension, air compressibility, air entrainment, and solid phase (structure) modelling so that questions about continuum mechanical theory and mathematical analysis of multiphase flow are still required. Two of the most popular and practical numerical approaches for large-scale engineering analysis are the Volume-Of-Fluid (VOF) and Level Set (LS) approaches. In this work we will present a publically available verification and validation test set for air-water-structure interaction problems as well as computational and physical model results including a hybrid VOF-LS method, traditional VOF methods, and Smoothed Particle Hydrodynamics (SPH) results. The test set repository and test problem formats will also be presented in order to facilitate future comparative studies and reproduction of scientific results.

  9. Thermal conductivity study at CH/Be interface by refraction-enhanced x-ray radiography

    NASA Astrophysics Data System (ADS)

    Ping, Yuan; Landen, Otto; Koch, Jeff; Hicks, Damien; Wallace, Russel; Collins, Gilbert

    2012-10-01

    Transport properties near the fuel-ablator interface at the edge of an ICF capsule are important for modeling the growth of hydrodynamic instabilities, which determines the mix level in the fuel and is critical for successful ignition (Hammel, et al. HEDP 6, 671, 2010). A novel technique, time-resolved refraction-enhanced x-ray radiography, is developed to study thermal conductivity at the interface (Ping et al. J. Instru. 2011). Experiments using OMEGA laser have been carried out for CH/Be targets isochorically heated by x-rays to measure the evolution of the density gradient at the interface due to thermal conduction. The sensitivity of this radiographic technique to discontinuities enabled observation of shock/rarefraction waves propagating away from the interface. Comparison of data and simulation results using various conductivity models will be presented.

  10. Advanced EVA system design requirements study: EVAS/space station system interface requirements

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1985-01-01

    The definition of the Extravehicular Activity (EVA) systems interface requirements and accomodations for effective integration of a production EVA capability into the space station are contained. A description of the EVA systems for which the space station must provide the various interfaces and accomodations are provided. The discussion and analyses of the various space station areas in which the EVA interfaces are required and/or from which implications for EVA system design requirements are derived, are included. The rationale is provided for all EVAS mechanical, fluid, electrical, communications, and data system interfaces as well as exterior and interior requirements necessary to facilitate EVA operations. Results of the studies supporting these discussions are presented in the appendix.

  11. A study of the interface strength between protein and mineral in biological materials.

    PubMed

    Ji, Baohua

    2008-01-01

    Bone, tooth, mineralized tendon and sea shells are nanocomposites of protein and mineral with superior mechanical properties. As the mineral is so small at nanoscale, the volume fraction of the protein-mineral interface in the bulk materials can be enormously large; therefore, the mechanics of the interface should be critically important for the integrity of these biomaterials. Currently, people do not have a good understanding of the interface between protein and mineral, a hybrid interface between organic and inorganic constituents in biological materials. In this paper, a tension-shear chain (TSC) model is introduced into the Dugdale model for estimating the fracture energy of biomaterials. The strength of the hybrid interface is then studied with a "soft-hard" bi-layer fracture model, by which we find for the first time that the interface strength depends on both the size and geometry of the mineral crystal, and has been highly optimized through the miniaturization of mineral at nanoscale. This study may provide important insights into the mechanics of bone and tooth at small scale for tissue engineering in biomedical applications.

  12. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    SciTech Connect

    X. Sun; S. Kim; L. Cheng; M. Ishii; S.G. Beus

    2001-10-31

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in a cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 20-cm in width and 1-cm in gap. The miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions.

  13. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    SciTech Connect

    Xiaodong Sun; Seungjin Kim; Ling Cheng; Mamoru Ishii; Beus, Stephen G.

    2002-07-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200-mm in width and 10-mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions. (authors)

  14. Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes

    SciTech Connect

    Chang, Shyy Woei; Yang, Tsun Lirng

    2009-10-15

    This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

  15. Dynamics of a bubble bouncing at a compound interface

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Muradoglu, Metin; Stone, Howard A.

    2014-11-01

    Bubbly flow is extensively involved in a wide range of technological applications, which generate a great demand for understanding of bubble physics. The collision, bouncing and coalescence of moving bubbles with liquid/gas and liquid/solid interfaces, as the first stage for the formation of foams and flotation aggregates, have been the subject of many studies, but there are still unanswered questions related to how the properties of the interface influence the dynamics. For example, Zawala et al. 2013 have tried to investigate how the kinetic energy of the bubble affects the liquid film drainage during the collision with an air-water interface. Inspired by Feng et al. 2014, we study the dynamics of an air bubble bouncing at a liquid/liquid/gas interface, in which a thin layer of oil is put on top of the water. The presence of the oil layer changes the interfacial properties and thus the entire process. Combined with direct numerical simulations, extensive experiments were carried out to investigate the effects of the oil layer thickness, oil viscosity, bubble size and initial impact velocity on the bouncing of the bubble at the compound interface. In addition, a mass-spring model is proposed to describe the bubble dynamics and interactions with the oil layer.

  16. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    NASA Astrophysics Data System (ADS)

    Angermann, Heike

    2014-09-01

    The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution Dit(E), and density Dit,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on concentrated solutions. Therefore, special attention was put on the development of more environmentally acceptable processes, utilizing e.g. hot pure water with low contents of oxygen or hydrochloric acid, and of ozone, working at ambient temperatures. According to our results, these methods could be a high quality and low cost alternative to current approaches with liquid chemicals for the preparation of hydrophobic Si substrate surfaces and ultra-thin passivating oxide layers. As demonstrated for selected examples, the effect of optimized wet-chemical pre-treatments can be preserved during subsequent soft plasma enhanced chemical vapor depositions of Si oxides (SiOx), or amorphous materials such as Si (a-Si:H), Si nitride (a

  17. Interface chemistry of CdZnTe films studied by a peel-off approach

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Xu, Haitao; Zhang, Yuelu; Ji, Huanhuan; Xu, Run; Huang, Jian; Zhang, Jijun; Liang, Xiaoyan; Tang, Ke; Wang, Linjun

    2016-12-01

    CdZnTe films with thickness above 50 μm were deposited at temperatures of 200-500 °C by Close Space Sublimation method. A peel-off approach has been adopted to study the interface chemistry of CdZnTe thick films. For all the CdZnTe films, the scanning electron microscopy images show the small and round-like grains formed at interface in contrast to the large ordered grains at surface. For CdZnTe films grown at a low substrate temperature of 200 °C, the interface layer between CdZnTe and substrate is mixed with Te and CdTe, as evidenced by X-ray diffraction, Raman and X-ray photoelectron spectroscopy results. The thickness of the interface layer can be estimated to be 84 nm by depth profile using X-ray photoelectron spectroscopy. In contrast, a thin interface layer less than 14 nm is found at a high substrate temperature of 500 °C. The limited reaction of Te2 and Cd (Zn) to CdZnTe at a low growth temperature is responsible for the formation of the thick interface layer and a slow deposition rate at the nucleation stage.

  18. THE EFFECT OF SALINITY ON RATES OF ELEMENTAL MERCURY AIR/WATER EXCHANGE

    EPA Science Inventory

    The U.S. EPA laboratory in Athens, Georgia i spursuing the goal of developing a model for describing toxicant vapor phase air/water exchange under all relevant environmental conditions. To date, the two-layer exchange model (suitable for low wind speed conditions) has been modif...

  19. Atmosphere explorer missions C, D, and E. Spacecraft experiment interface definition study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Atmosphere Explorer Missions C, D, & E Spacecraft/Experiment Interface Definition Study is discussed. The objectives of the study included an analysis of the accommodation requirements of the experiments for the three missions, an assessment of the overall effect of these requirements on the spacecraft system design and performance, and the detailed definition of all experiment/spacecraft electrical, mechanical, and environmental interfaces. In addition, the study included the identification and definition of system characteristics required to ensure compatibility with the consolidated STADAN and MSFN communications networks.

  20. Emulsions stabilised by food colloid particles: role of particle adsorption and wettability at the liquid interface.

    PubMed

    Paunov, Vesselin N; Cayre, Olivier J; Noble, Paul F; Stoyanov, Simeon D; Velikov, Krassimir P; Golding, Matt

    2007-08-15

    We study the effect of the particle wettability on the preferred type of emulsion stabilised solely by food colloid particles. We present results obtained with the recently developed gel trapping technique (GTT) for characterisation of wettability and surface structuring of individual food colloid particles adsorbed at air-water and oil-water interfaces. This method allows us to replicate a particle monolayer onto the surface of polydimethylsiloxane (PDMS) without altering the position of the particles. By observing the polymer surface with scanning electron microscopy (SEM), we are able to determine the contact angle of the individual particles at the initial liquid interface. We demonstrate that the GTT can be applied to fat crystal particles, calcium carbonate particles coated with stearic acid and spray-dried soy protein/calcium phosphate particles at air-water and oil-water interfaces. Subsequently, we prepare emulsions of decane and water stabilised by the same food colloid particles and correlate the wettability data obtained for these particles to the preferred type of emulsions they stabilise.

  1. Model studies of Rayleigh instabilities via microdesigned interfaces

    SciTech Connect

    Glaeser, Andreas M.

    2000-10-17

    The energetic and kinetic properties of surfaces play a critical role in defining the microstructural changes that occur during sintering and high-temperature use of ceramics. Characterization of surface diffusion in ceramics is particularly difficult, and significant variations in reported values of surface diffusivities arise even in well-studied systems. Effects of impurities, surface energy anisotropy, and the onset of surface attachment limited kinetics (SALK) are believed to contribute to this variability. An overview of the use of Rayleigh instabilities as a means of characterizing surface diffusivities is presented. The development of models of morphological evolution that account for effects of surface energy anisotropy is reviewed, and the potential interplay between impurities and surface energy anisotropy is addressed. The status of experimental studies of Rayleigh instabilities in sapphire utilizing lithographically introduced pore channels of controlled geometry and crystallography is summarized. Results of model studies indicate that impurities can significantly influence both the spatial and temporal characteristics of Rayleigh instabilities; this is attributed at least in part to impurity effects on the surface energy anisotropy. Related model experiments indicate that the onset of SALK may also contribute significantly to apparent variations in surface diffusion coefficients.

  2. An AFM study of the chlorite-fluid interface. [Atomic Force Microscopy

    SciTech Connect

    Vrdoljak, G.A.; Henderson, G.S.; Fawcett, J.J. . Dept. of Geology)

    1992-01-01

    Chlorite is a ubiquitous mineral in many geologic environments and plays an important role in elemental adsorption and retention in soils. Chlorite has a 2:1 layer structure consisting of two tetrahedral sheets with an octahedral sheet between them (talc-like layer). The 2:1 layer is charge balanced and hydrogen-bonded by an interlayer of MgOH[sub 6] octahedra (brucite-like layer). The nature of chlorite's structure, its ease of imaging, and perfect 001 cleavage, make this mineral an ideal substrate for use in elemental adsorption studies in solution, with the AFM. The 001 cleavage plane of a 2b polytype with composition (Mg[sub 4.4]Fe[sub 0.6]Al[sub 1.0])[(Si[sub 2.9]Al[sub 1.1])]O[sub 10](OH)[sub g] has been imaged in air, water, and oil by atomic force microscopy. Dissolution features are observed in water, showing sub-micron features dissolving in real-time. Atomic resolution of both the talc-like and brucite-like layers has been obtained in air. However, only the tetrahedral sheet of the talc-like layer has been imaged at atomic resolution in oil and water, which may indicate a structural instability of the brucite-like surface in solution. Measurements of the unit-cell dimensions (a and b) for the talc-like layer in the three different media indicate a structural expansion of the mineral surface in solution. The a unit cell dimension expands by 7.4 [+-] 0.1% when in water; conversely, the b dimension varies greatly when in oil ([minus]10% to +20%), relative to air. The effects of these solution media on the structure of chlorite are revealed by characterization with the AFM. This information should prove useful in future studies of adsorption onto layer silicates.

  3. Detector-accelerator interface studies at the Tevatron

    SciTech Connect

    Drozhdin, A.I.; Mokhov, N.V.

    1998-04-10

    A summary of studies is presented towards minimization of beam loss in the critical locations at the Fermilab Tevatron to reduce background rates in the collider detectors and to protect machine components. Based on detailed Monte-Carlo simulations, measures have been proposed and incorporated in the machine to reduce accelerator-related instantaneous and residual background levels in the D0 and CDF detectors. Measurements performed are in good agreement with the predictions. Most recent results on acceptance and background rates in the D0 and CDF forward detectors are presented and discussed in detail.

  4. Development of a submersible shadowgraph for the study of interfaces in salt-gradient solar ponds

    SciTech Connect

    Huacuz, J.M.; Sierra, F.; Venegas, C.; Ramos, C. )

    1989-01-01

    In this paper the processes of development and testing of a submersible shadowgraph are described. This instrument was devised as a tool for the study of interfaces in salt-gradient solar ponds. Tests were carried out in the solar pond of the University of Texas at El Paso. Photographs of interfaces inside the pond were taken for the first time. The submersible shadowgraph can be stationed inside the pond for time dependent studies of a given region, or it can be used to scan the pond depth.

  5. First principles studies of the stability and Shottky barriers of metal/CdTe(111) interfaces

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Miao, Masoehng; Kioussis, Nicholas; Aqariden, Fikri; Chang, Y.; Grein, Christoph

    CdZnTe and CdTe based semiconductor X-Ray and Gamma-Ray detectors have been intensively studied recently due to their promising potentials for achieving high-resolution, high signal-to-noise ratios and low leakage current, all are desirable features in applications ranging from medical diagnostics to homeland security. Using density functional calculations, we systematically studied the stability, the atomic and electronic structures of the interfaces between CdTe (111) surfaces (Cd- and Te-terminated) and the selected metals (Cu, Al Ni, Pd and Pt). We also calculated the Schottky barrier height (SBH) by aligning the electrostatic potentials in semiconductor and metal regions. Our calculations revealed significant differences between the Cd- and Te- terminated interfaces. While metals tend to deposit directly on reconstructed Te-terminated surfaces, they form a Te-metal alloy layer at the Cd-Terminated metal/CdTe interface. For both Te- and Cd- terminated interfaces, the Schottky barrier heights do not depend much on the choice of metals despite the large variation of the work functions. On the other hand, the interface structure is found to have large effect on the SBH, which is attributed to the metal induced states in the gap.

  6. First-principles study of interface doping in ferroelectric junctions

    PubMed Central

    Wang, Pin-Zhi; Cai, Tian-Yi; Ju, Sheng; Wu, Yin-Zhong

    2016-01-01

    Effect of atomic monolayer insertion on the performance of ferroelectric tunneling junction is investigated in SrRuO3/BaTiO3/SrRuO3 heterostrucutures. Based on first-principles calculations, the atomic displacement, orbital occupancy, and ferroelectric polarization are studied. It is found that the ferroelectricity is enhanced when a (AlO2)− monolayer is inserted between the electrode SRO and the barrier BTO, where the relatively high mobility of doped holes effectively screen ferroelectric polarization. On the other hand, for the case of (LaO)+ inserted layer, the doped electrons resides at the both sides of middle ferroelectric barrier, making the ferroelectricity unfavorable. Our findings provide an alternative avenue to improve the performance of ferroelectric tunneling junctions. PMID:27063704

  7. MONITORING CYCLICAL AIR-WATER ELEMENTAL MERCURY EXCHANGE

    EPA Science Inventory

    Previous experimental work has demonstrated that elemental mercury evasion from natural water displays a diel cycle; evasion rates during the day can be two to three times evasion rates observed at night. A study with polychlorinated biphenyls (PCBS) found that diurnal PCB air/wa...

  8. Integrating Virtual Worlds with Tangible User Interfaces for Teaching Mathematics: A Pilot Study

    PubMed Central

    Guerrero, Graciela; Ayala, Andrés; Mateu, Juan; Casades, Laura; Alamán, Xavier

    2016-01-01

    This article presents a pilot study of the use of two new tangible interfaces and virtual worlds for teaching geometry in a secondary school. The first tangible device allows the user to control a virtual object in six degrees of freedom. The second tangible device is used to modify virtual objects, changing attributes such as position, size, rotation and color. A pilot study on using these devices was carried out at the “Florida Secundaria” high school. A virtual world was built where students used the tangible interfaces to manipulate geometrical figures in order to learn different geometrical concepts. The pilot experiment results suggest that the use of tangible interfaces and virtual worlds allowed a more meaningful learning (concepts learnt were more durable). PMID:27792132

  9. Integrating Virtual Worlds with Tangible User Interfaces for Teaching Mathematics: A Pilot Study.

    PubMed

    Guerrero, Graciela; Ayala, Andrés; Mateu, Juan; Casades, Laura; Alamán, Xavier

    2016-10-25

    This article presents a pilot study of the use of two new tangible interfaces and virtual worlds for teaching geometry in a secondary school. The first tangible device allows the user to control a virtual object in six degrees of freedom. The second tangible device is used to modify virtual objects, changing attributes such as position, size, rotation and color. A pilot study on using these devices was carried out at the "Florida Secundaria" high school. A virtual world was built where students used the tangible interfaces to manipulate geometrical figures in order to learn different geometrical concepts. The pilot experiment results suggest that the use of tangible interfaces and virtual worlds allowed a more meaningful learning (concepts learnt were more durable).

  10. Experimental study on interface region of two-dimensional Si layers by forming gas annealing

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomohisa; Suzuki, Yuhya; Kikuchi, Reika; Suzuki, Ayaka; Inoue, Ryohsuke; Yamanaka, Masahiro; Yokoyama, Miki; Nagamine, Yoshiki; Aoki, Takashi; Maeda, Tatsuro

    2016-04-01

    We experimentally studied the SiO2/Si and Si/buried oxide (BOX) interface regions of a two-dimensional (2D) Si layer, by forming gas annealing (FGA). A photoluminescence (PL) result measured at various lattice temperature, T L, values shows that the PL intensity I PL of the 2D-Si layer rapidly increases and then saturates with increasing FGA temperature, T A, and time, t A. I PL also increases with decreasing T L. A one-dimensional (1D) Schroedinger equation simulator indicates that some of the electrons in the 2D-Si layer generated by a PL excitation laser are quantum-mechanically transmitted into Si interface regions. Actually, we experimentally confirmed that the PL spectra of the 2D-Si layer can be fitted by the PL emission from two regions with different PL peak photon energy values, E PH, which consist of a typical 2D-Si and the interface regions of both the surface SiO2/Si and Si/BOX. Thus, this forming gas dependence is probably attributable to the improved lifetime τ of electrons in the surface interface region, because the Si surface is terminated by H atoms. Moreover, the E PH of the interface region is higher than that of the 2D-Si layer, because of the graded increased bandgap in the interface regions. However, the E PH of 2D-Si is independent of both T A and T L, and this T L independence does not agree with that of a 3D-Si layer. Consequently, we experimentally verified the larger impact of the Si interface on the performance of 2D-Si layer.

  11. Iron oxide mineral-water interface reactions studied by AFM

    SciTech Connect

    Hawley, M.E.; Rogers, P.S.Z.

    1994-07-01

    Natural iron mineral surfaces have been examined in air by atomic force (AFM) and scanning tunneling (STM) microscopies. A number of different surface features were found to be characteristic of the native surface. Even surfaces freshly exposed by crushing larger crystals were found to have a pebbly surface texture caused by the presence of thin coatings of what might be surface precipitates. This finding is interpreted as evidence for previous exposure to water, probably through an extensive network of microfractures. Surface reactions on the goethite crystals were studied by AFM at size resolutions ranging from microns to atomic resolution before, during, and after reaction with distilled water and 0.lN HCl. Immediate and extensive surface reconfiguration occurred on contact with water. In one case, after equilibration with water for 3 days, surface reprecipitation, etching and pitting were observed. Atomic resolution images taken under water were found to be disordered. The result of surface reaction was generally to increase the surface area substantially through the extension of surface platelet arrays, present prior to reaction. This work is being done in support of the site characterization project at Yucca Mountain.

  12. Structural stability of characteristic interface for NiTi/Nb Nanowire: First-Principle study

    NASA Astrophysics Data System (ADS)

    Li, G. F.; Zheng, H. Z.; Shu, X. Y.; Peng, P.

    2016-01-01

    Compared with some other conventional interface models, the interface of NiTi(211)/Nb(220) in NiTiNb metal nanocomposite had been simulated and analyzed carefully. Results show that only several interface models, i.e., NiTi(100)/Nb(100)(Ni⃡Nb), NiTi(110)/Nb(110) and NiTi(211)/Nb(220), can be formed accordingly with their negative formation enthalpy. Therein the cohesive energy Δ E and Griffith rupture work W of NiTi(211)/Nb(220) interface model are the lowest among them. Density of states shows that there exists only one electronic bonding peak for NiTi(211)/Nb(220) interface model at -2.5 eV. Electron density difference of NiTi(211)/ Nb(220) shows that the Nb-Nb, Nb-Ti and Nb-Ni bonding characters seem like so peaceful as a fabric twisting every atom, which is different from conventional metallic bonding performance. Such appearance can be deduced that the metallic bonding between Nb-Nb, Nb-Ti and Nb-Ni in NiTi(211)/Nb(220) may be affected by its nanostructure called nanometer size effect. Thus, our findings open an avenue for detailed and comprehensive studies of nanocomposite.

  13. New research on bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  14. In-Situ TEM Study of Interface Sliding and Migration in an Ultrafine Lamellar Structure

    SciTech Connect

    Hsiung, L M

    2005-12-06

    The instability of interfaces in an ultrafine TiAl-({gamma})/Ti{sub 3}Al-({alpha}{sub 2}) lamellar structure by straining at room temperature has been investigated using in-situ straining techniques performed in a transmission electron microscope. The purpose of this study is to obtain experimental evidence to support the creep mechanisms based upon the interface sliding in association with a cooperative movement of interfacial dislocations previously proposed to interpret the nearly linear creep behavior observed from ultrafine lamellar TiAl alloys. The results have revealed that both the sliding and migration of lamellar interfaces can take place simultaneously as a result of the cooperative movement of interfacial dislocations.

  15. Molecular Modeling of Water Interfaces: From Molecular Spectroscopy to Thermodynamics.

    PubMed

    Nagata, Yuki; Ohto, Tatsuhiko; Backus, Ellen H G; Bonn, Mischa

    2016-04-28

    Understanding aqueous interfaces at the molecular level is not only fundamentally important, but also highly relevant for a variety of disciplines. For instance, electrode-water interfaces are relevant for electrochemistry, as are mineral-water interfaces for geochemistry and air-water interfaces for environmental chemistry; water-lipid interfaces constitute the boundaries of the cell membrane, and are thus relevant for biochemistry. One of the major challenges in these fields is to link macroscopic properties such as interfacial reactivity, solubility, and permeability as well as macroscopic thermodynamic and spectroscopic observables to the structure, structural changes, and dynamics of molecules at these interfaces. Simulations, by themselves, or in conjunction with appropriate experiments, can provide such molecular-level insights into aqueous interfaces. In this contribution, we review the current state-of-the-art of three levels of molecular dynamics (MD) simulation: ab initio, force field, and coarse-grained. We discuss the advantages, the potential, and the limitations of each approach for studying aqueous interfaces, by assessing computations of the sum-frequency generation spectra and surface tension. The comparison of experimental and simulation data provides information on the challenges of future MD simulations, such as improving the force field models and the van der Waals corrections in ab initio MD simulations. Once good agreement between experimental observables and simulation can be established, the simulation can be used to provide insights into the processes at a level of detail that is generally inaccessible to experiments. As an example we discuss the mechanism of the evaporation of water. We finish by presenting an outlook outlining four future challenges for molecular dynamics simulations of aqueous interfacial systems.

  16. Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics

    SciTech Connect

    Geiger, Franz

    2015-03-27

    This is the Final Technical Report for "Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics", by Franz M. Geiger, PI, from Northwestern University, IL, USA, Grant Number SC0004101 and/or DE-PS02-ER09-07.

  17. Molecular structure and dynamics of water at the water-air interface studied with surface-specific vibrational spectroscopy.

    PubMed

    Bonn, Mischa; Nagata, Yuki; Backus, Ellen H G

    2015-05-04

    Water interfaces provide the platform for many important biological, chemical, and physical processes. The water-air interface is the most common and simple aqueous interface and serves as a model system for water at a hydrophobic surface. Unveiling the microscopic (<1 nm) structure and dynamics of interfacial water at the water-vapor interface is essential for understanding the processes occurring on the water surface. At the water interface the network of very strong intermolecular interactions, hydrogen-bonds, is interrupted and the density of water is reduced. A central question regarding water at interfaces is the extent to which the structure and dynamics of water molecules are influenced by the interruption of the hydrogen-bonded network and thus differ from those of bulk water. Herein, we discuss recent advances in the study of interfacial water at the water-air interface using laser-based surface-specific vibrational spectroscopy.

  18. COMPARATIVE EFFECTIVENESS OF AN ADJUSTABLE TRANSFEMORAL PROSTHETIC INTERFACE ACCOMMODATING VOLUME FLUCTUATION: CASE STUDY.

    PubMed

    Kahle, Jason T; Klenow, Tyler D; Highsmith, M Jason

    2016-09-01

    The socket-limb interface is vital for functionality and provides stability and mobility for the amputee. Volume fluctuation can lead to compromised fit and function. Current socket technology does not accommodate for volume fluctuation. An adjustable interface may improve function and comfort by filling this technology gap. The purpose of this study was to compare the effectiveness of the standard of care (SOC) ischial ramus containment to an adjustable transfemoral prosthetic interface socket in the accommodation of volume fluctuation. A prospective experimental case study using repeated measures of subjective and performance outcome measures between socket conditions was employed. In the baseline volume condition, the adjustable socket improved subjective and performance measures 19% to 37% over SOC, whereas the two-minute walk test demonstrated equivalence. In the volume loss condition, the adjustable socket improved all subjective and performance measures 22% to 93%. All aggregated data improved 16% to 50% compared with the SOC. In simulated volume gain, the SOC socket failed, while the subject was able to complete the protocol using the adjustable socket. In this case study, the SOC socket was inferior to the comparative adjustable transfemoral amputation interface in subjective and performance outcomes. There is a lack of clinical trials and evidence comparing socket functional outcomes related to volume fluctuation.

  19. COMPARATIVE EFFECTIVENESS OF AN ADJUSTABLE TRANSFEMORAL PROSTHETIC INTERFACE ACCOMMODATING VOLUME FLUCTUATION: CASE STUDY

    PubMed Central

    Kahle, Jason T.; Klenow, Tyler D.; Highsmith, M. Jason

    2016-01-01

    The socket-limb interface is vital for functionality and provides stability and mobility for the amputee. Volume fluctuation can lead to compromised fit and function. Current socket technology does not accommodate for volume fluctuation. An adjustable interface may improve function and comfort by filling this technology gap. The purpose of this study was to compare the effectiveness of the standard of care (SOC) ischial ramus containment to an adjustable transfemoral prosthetic interface socket in the accommodation of volume fluctuation. A prospective experimental case study using repeated measures of subjective and performance outcome measures between socket conditions was employed. In the baseline volume condition, the adjustable socket improved subjective and performance measures 19% to 37% over SOC, whereas the two-minute walk test demonstrated equivalence. In the volume loss condition, the adjustable socket improved all subjective and performance measures 22% to 93%. All aggregated data improved 16% to 50% compared with the SOC. In simulated volume gain, the SOC socket failed, while the subject was able to complete the protocol using the adjustable socket. In this case study, the SOC socket was inferior to the comparative adjustable transfemoral amputation interface in subjective and performance outcomes. There is a lack of clinical trials and evidence comparing socket functional outcomes related to volume fluctuation. PMID:28066526

  20. Design and usability study of an iconic user interface to ease information retrieval of medical guidelines

    PubMed Central

    Griffon, Nicolas; Kerdelhué, Gaétan; Hamek, Saliha; Hassler, Sylvain; Boog, César; Lamy, Jean-Baptiste; Duclos, Catherine; Venot, Alain; Darmoni, Stéfan J

    2014-01-01

    Background and objective Doc'CISMeF (DC) is a semantic search engine used to find resources in CISMeF-BP, a quality controlled health gateway, which gathers guidelines available on the internet in French. Visualization of Concepts in Medicine (VCM) is an iconic language that may ease information retrieval tasks. This study aimed to describe the creation and evaluation of an interface integrating VCM in DC in order to make this search engine much easier to use. Methods Focus groups were organized to suggest ways to enhance information retrieval tasks using VCM in DC. A VCM interface was created and improved using the ergonomic evaluation approach. 20 physicians were recruited to compare the VCM interface with the non-VCM one. Each evaluator answered two different clinical scenarios in each interface. The ability and time taken to select a relevant resource were recorded and compared. A usability analysis was performed using the System Usability Scale (SUS). Results The VCM interface contains a filter based on icons, and icons describing each resource according to focus group recommendations. Some ergonomic issues were resolved before evaluation. Use of VCM significantly increased the success of information retrieval tasks (OR=11; 95% CI 1.4 to 507). Nonetheless, it took significantly more time to find a relevant resource with VCM interface (101 vs 65 s; p=0.02). SUS revealed ‘good’ usability with an average score of 74/100. Conclusions VCM was successfully implemented in DC as an option. It increased the success rate of information retrieval tasks, despite requiring slightly more time, and was well accepted by end-users. PMID:24650636

  1. Characterization of atmospheric nanosecond discharge under highly inhomogeneous and transient electric field in air/water mixture

    NASA Astrophysics Data System (ADS)

    Ouaras, Karim; Tardiveau, Pierre; Magne, Lionel; Jeanney, Pascal; Bournonville, Blandine

    2016-09-01

    We report the studies of a centimeter range pin-to-plane nanosecond repetitively discharge (<30 ns and 10 Hz) in standard conditions of pressure and temperature under very high positive voltage pulses (20 to 100 kV). In these typical conditions, plasma exhibit unusual diffuse and large structure. This kind of discharge is not well understood and in first approach, it requires (i) a description of plasma dynamic and (ii) behavior under relevant context (environmental issues ...) using pertinent gas (humid air). Thus, we will first present sub-nanosecond imaging of the discharge obtained for typical conditions of stabilized plasma. Then we will focus on determination of rotational and vibrational temperature (OES) and preliminary results concerning the production and evolution of OH radical in temporal post-discharge in air/water mixture (PLIF). Theses spectroscopic measurements are undertaken as function of most influent parameters, i . e . voltage pulses features (amplitude, rise time and length) and water concentration.

  2. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  3. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  4. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    PubMed

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-09

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  5. Adsorption behavior of hydrophobin and hydrophobin/surfactant mixtures at the solid-solution interface.

    PubMed

    Zhang, Xiaoli L; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Bent, Julian; Cox, Andrew

    2011-09-06

    The adsorption of surface-active protein hydrophobin, HFBII, and HFBII/surfactant mixtures at the solid-solution interface has been studied by neutron reflectivity, NR. At the hydrophilic silicon surface, HFBII adsorbs reversibly in the form of a bilayer at the interface. HFBII adsorption dominates the coadsorption of HFBII with cationic and anionic surfactants hexadecyltrimethyl ammonium bromide, CTAB, and sodium dodecyl sulfate, SDS, at concentrations below the critical micellar concentration, cmc, of conventional cosurfactants. For surfactant concentrations above the cmc, HFBII/surfactant solution complex formation dominates and there is little HFBII adsorption. Above the cmc, CTAB replaces HFBII at the interface, but for SDS, there is no affinity for the anionic silicon surface hence there is no resultant adsorption. HFBII adsorbs onto a hydrophobic surface (established by an octadecyl trimethyl silane, OTS, layer on silicon) irreversibly as a monolayer, similar to what is observed at the air-water interface but with a different orientation at the interface. Below the cmc, SDS and CTAB have little impact upon the adsorbed layer of HFBII. For concentrations above the cmc, conventional surfactants (CTAB and SDS) displace most of the HFBII at the interface. For nonionic surfactant C(12)E(6), the pattern of adsorption is slightly different, and although some coadsorption at the interface takes place, C(12)E(6) has little impact on the HFBII adsorption.

  6. Segregation of ions at the interface: molecular dynamics studies of the bulk and liquid-vapor interface structure of equimolar binary mixtures of ionic liquids.

    PubMed

    Palchowdhury, Sourav; Bhargava, B L

    2015-08-14

    The structures of three different equimolar binary ionic liquid mixtures and their liquid-vapor interface have been studied using atomistic molecular dynamics simulations. Two of these binary mixtures were composed of a common cation 1-n-butyl-3-methylimidazolium and varying anions (chloride and hexafluorophosphate in one of the mixtures and chloride and trifluoromethanesulfonate in the other) and the third binary mixture was composed of a common anion, trifluoromethanesulfonate and two imidazolium cations with ethyl and octyl side chains. Binary mixtures with common cations are found to be homogeneous. The anions are preferentially located near the ring hydrogen atoms due to H-bonding interactions. Segregation of ions is observed at the interface with an enrichment of the liquid-vapor interface layer by longer alkyl chains and bigger anions with a distributed charge. The surface composition is drastically different from that of the bulk composition, with the longer alkyl tail groups and bigger anions populating the outermost layer of the interface. The longer alkyl chains of the cations and trifluoromethanesulfonate anions with a smaller charge density show orientational ordering at the liquid-vapor interface.

  7. First principles studies of the stability and Shottky barriers of metal/CdTe(111) interfaces

    NASA Astrophysics Data System (ADS)

    Dorj, Odkhuu; Miao, M. S.; Kioussis, N.; Tari, S.; Aqariden, F.; Chang, Y.; Grein, C.

    2015-03-01

    CdZnTe and CdTe based semiconductor X-Ray and Gamma-Ray detectors have been intensively studied recently due to their promising potentials for achieving high-resolution, high signal-to-noise ratios and low leakage current, all are desirable features in applications ranging from medical diagnostics to homeland security. Understanding the atomic and electronic structures of the metal/semiconductor interfaces is essential for the further improvements of performance. Using density functional calculations, we systematically studied the stability, the atomic and electronic structures of the interfaces between Cd-terminated CdTe (111) surface and the selected metals. We also calculated the Schottky barrier height (SBH) by aligning the electrostatic potentials in semiconductor and metal regions. Our calculations revealed the importance of intermixing between semiconductor and metal layers and the formation of Te-metal alloys at the interface. The obtained SBH does not depend much on the choice of metals despite the large variation of the work functions. On the other hand, the interface structure is found to have large effect to the SBH, which is attributed to the metal induced states in the gap. The position of such states is insensitive to the metal work functions, as revealed by the analysis of the electronic structures.

  8. Reactive ZnO/Ti/ZnO interfaces studied by hard x-ray photoelectron spectroscopy

    SciTech Connect

    Knut, Ronny Lindblad, Rebecka; Rensmo, Håkan; Karis, Olof; Grachev, Sergey; Faou, Jean-Yvon; Søndergård, Elin

    2014-01-28

    The chemistry and intermixing at buried interfaces in sputter deposited ZnO/Ti/ZnO thin layers were studied by hard x-ray photoelectron spectroscopy. The long mean free path of the photoelectrons allowed for detailed studies of the oxidation state, band bending effects, and intrinsic doping of the buried interfaces. Oxidation of the Ti layer was observed when ZnO was deposited on top. When Ti is deposited onto ZnO, Zn Auger peaks acquire a metallic character indicating a strong reduction of ZnO at the interface. Annealing of the stack at 200 °C results in further reduction of ZnO and oxidation of Ti. Above 300 °C, oxygen transport from the bulk of the ZnO layer takes place, leading to re-oxidation of ZnO at the interface and further oxidation of Ti layer. Heating above 500 °C leads to an intermixing of the layers and the formation of a Zn{sub x}TiO{sub y} compound.

  9. First-principles study of alloy formation at Fe/GaAs interfaces

    NASA Astrophysics Data System (ADS)

    Zutic, Igor

    2005-03-01

    The combination of the high Curie temperature of Fe, high-quality epitaxial growth of Fe on GaAs, and demonstrated high-efficiency spin injection in GaAs, together make Fe/GaAs heterojunctions very attractive candidates for room-temperature spintronic applications. However, little is known about the structure of Fe/GaAs interfaces, and there is a range of conflicting experimental results describing them---including findings of magnetically dead layers [1], an intermediate FeGaAs phase [2], and bulk-like magnetic moments at the interface [3]. Motivated by these findings, we use density-functional theory to study the structural and magnetic properties of interfaces involving possible alloyed phases occurring between Fe and GaAs. From the calculation of interface formation energies we report results on the stability of various structural and magnetic configurations, and provide microscopic parameters which may be used in studies of spin transport to assess the device potential of these heterostructures. [1] J. J. Krebs, B. T. Jonker, and G. A. Prinz, J. Appl. Phys. 61, 2596 (1987). [2] J. Deputier, R. Guerin, B. Lepine, A. Guivarc'h, and G. Jezequel, J. Alloys Comp. 262, 416 (1997). [3] J. S. Claydon, Y. B. Hu, M. Tselepi, J. A. C. Bland, and G. van der Laan, Phys. Rev. Lett. 93, 037206 (2004).

  10. Coupling of phytoplankton uptake and air-water exchange of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Baker, J.E.; Ko, F.C.; Jeremiason, J.D.

    1999-10-15

    A dynamic model that couples air-water exchange and phytoplankton uptake of persistent organic pollutants has been developed and then applied to PCB data from a small experimental lake. A sensitivity analysis of the model, taking into account the influence of physical environmental conditions such as temperature, wind speed, and mixing depth as well as plankton-related parameters such as biomass and growth rate was carried out for a number of PCBs with different physical-chemical properties. The results indicate that air-water exchange dynamics are influenced not only by physical parameters but also by phytoplankton biomass and growth rate. New phytoplankton production results in substantially longer times to reach equilibrium. Phytoplankton uptake-induced depletion of the dissolved phase concentration maintains air and water phases out of equilibrium. Furthermore, PCBs in phytoplankton also take longer times to reach equilibrium with the dissolved water phase when the latter is supported by diffusive air-water exchange. However, both model analysis and model application to the Experimental Lakes Area of northwestern Ontario (Canada) suggest that the gas phase supports the concentrations of persistent organic pollutants, such as PCBs, in atmospherically driven aquatic environments.

  11. A Study of Fluid Interface Configurations in Exploration Vehicle Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Asipauskas, Marius; Chen, Yongkang; Weislogel, Mark M.

    2010-01-01

    The equilibrium shape and location of fluid interfaces in spacecraft propellant tanks while in low-gravity is of interest to system designers, but can be challenging to predict. The propellant position can affect many aspects of the spacecraft such as the spacecraft center of mass, response to thruster firing due to sloshing, liquid acquisition, propellant mass gauging, and thermal control systems. We use Surface Evolver, a fluid interface energy minimizing algorithm, to investigate theoretical equilibrium liquid-vapor interfaces for spacecraft propellant tanks similar to those that have been considered for NASA's new class of Exploration vehicles. The choice of tank design parameters we consider are derived from the NASA Exploration Systems Architecture Study report. The local acceleration vector employed in the computations is determined by estimating low-Earth orbit (LEO) atmospheric drag effects and centrifugal forces due to a fixed spacecraft orientation with respect to the Earth or Moon, and rotisserie-type spacecraft rotation. Propellant/vapor interface positions are computed for the Earth Departure Stage and Altair lunar lander descent and ascent stage tanks for propellant loads applicable to LEO and low-lunar orbit. In some of the cases investigated the vapor ullage bubble is located at the drain end of the tank, where propellant management device hardware is often located.

  12. Study of natural convection and interface shape in directional solidification of succinonitrile

    NASA Technical Reports Server (NTRS)

    Kawaji, M.; Ojah, M.; Stojanovic, M.; De Groh, H. C.

    1992-01-01

    Flow visualization experiments in a Bridgman furnace at zero growth velocity have been performed. The experiments were intended to investigate if the photochromic dye activation method could be used in a crystal growth study. The results from this work have confirmed that with a carefully designed experimental setup, the photochromic-dye method permits qualitative and quantitative evaluation of the flow field near the interface in crystal growth experiments. For the horizontal orientation of a 6 mm x 6 mm ampoule and an axial temperature gradient of 26.5 C/cm, velocity profiles have been obtained accurately at various positions near the interface. The maximum velocity of 1.29 mm/sec was measured in the central vertical plane and the flow was symmetrical about that plane. A flow inversion point was also noted, above which the flow was towards the interface and below it, away from the interface. The results obtained are useful for validating 3-dimensional numerical models and establishing a link between the macroscopic processing conditions and the formation of crystalline defects.

  13. Deciphering β-Lactoglobulin Interactions at an Oil-Water Interface: A Molecular Dynamics Study.

    PubMed

    Zare, Davoud; McGrath, Kathryn M; Allison, Jane R

    2015-06-08

    Protein adsorption at liquid-liquid interfaces is of immense relevance to many biological processes and dairy-based functional foods. Due to experimental limitations, however, there is still a remarkable lack of understanding of the adsorption mechanism, particularly at a molecular level. In this study, atomistic molecular dynamics simulations were used to elucidate the approach and adsorption mechanism of β-lactoglobulin (β-LG) at a decane-water interface. Through multiple independent simulations starting from three representative initial orientations of β-LG relative to the decane surface the rate at which β-LG approaches the oil/water interface is found to be independent of its initial orientation, and largely stochastic in nature. While the residues that first make contact with the decane and the final orientation of β-LG upon adsorption are similar in all cases, the adsorption process is driven predominantly by structural rearrangements that preserve the secondary structure but expose hydrophobic residues to the decane surface. This detailed characterization of the adsorption of β-LG at an oil/water interface should inform the design and development of novel encapsulation and delivery systems in the food and pharmaceutical sciences.

  14. In situ studies on ferroelectric BaTiO3 interface

    NASA Astrophysics Data System (ADS)

    Shin, Junsoo; Braun Nascimento, Von; Plummer, Ward; Zhang, Jiandi; Borisevich, Albina; Meunier, Vincent; Kalinin, Sergei; Baddorf, Arthur

    2012-02-01

    Ferroelectric phase stability in ferroelectric films is critically dependent on the surface and interface phenomena, especially governed by electrostatic depolarization energy. Predictions for the minimum critical film thickness for ferroelectricity have continuously decreased down to few unit cells. We have examined surface/interface atomic structures of ultrathin BaTiO3 (BTO) films grown on conductive SrRuO3 (SRO) and Nb-doped SrTiO3. The surface structure of BTO/SRO was refined using in-situ Low Energy Electron Diffraction (LEED) I-V, resulting to observation of polar distortion in ultrathin (>= 4 ML) BTO films. The in-situ Scanning Tunneling Microscopy (STM) has been performed prior and after BTO deposition on SRO. However, the unusual 2x2 reconstruction is observed for 1-2 ML BTO films and bare SRO by STM. The surface reconstruction of SRO bottom electrode is shown to affect the interface of films deposited subsequently which could be reflected in ultrathin film properties. The in-situ LEED I-V structural studies on 1-2 ML BTO interface have been performed without SRO layer, which kept ultrathin BTO films from the preclusion of reconstructed SRO films.

  15. A theoretical study of wave dispersion and thermal conduction for HMX/additive interfaces

    NASA Astrophysics Data System (ADS)

    Long, Yao; Chen, Jun

    2014-04-01

    The wave dispersion rule for non-uniform material is useful for ultrasonic inspection and engine life prediction, and also is key in achieving an understanding of the energy dissipation and thermal conduction properties of solid material. On the basis of linear response theory and molecular dynamics, we derive a set of formulas for calculating the wave dispersion rate of interface systems, and study four kinds of interfaces inside plastic bonded explosives: HMX/{HMX, TATB, F2312, F2313}. (HMX: octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; TATB: 1,3,5-triamino-2,4,6-trinitrobenzene; F2312, F2313: fluoropolymers). The wave dispersion rate is obtained over a wide frequency range from kHz to PHz. We find that at low frequency, the rate is proportional to the square of the frequency, and at high frequency, the rate couples with the molecular vibration modes at the interface. By using the results, the thermal conductivities of HMX/additive interfaces are derived, and a physical model is built for describing the total thermal conductivity of mixture explosives, including HMX multi-particle systems and {TATB, F2312, F2313}-coated HMX.

  16. Atomistic study of mixing at high Z / low Z interfaces at Warm Dense Matter Conditions

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Glosli, James; Rudd, Robert; Lawrence Livermore National Laboratory Team

    2016-10-01

    We use atomistic simulations to study different aspects of mixing occurring at an initially sharp interface of high Z and low Z plasmas in the Warm/Hot Dense Matter regime. We consider a system of Diamond (the low Z component) in contact with Ag (the high Z component), which undergoes rapid isochoric heating from room temperature up to 10 eV, rapidly changing the solids into warm dense matter at solid density. We simulate the motion of ions via the screened Coulomb potential. The electric field, the electron density and ionizations level are computed on the fly by solving Poisson equation. The spatially varying screening lengths computed from the electron cloud are included in this effective interaction; the electrons are not simulated explicitly. We compute the electric field generated at the Ag-C interface as well as the dynamics of the ions during the mixing process occurring at the plasma interface. Preliminary results indicate an anomalous transport of high Z ions (Ag) into the low Z component (C); a phenomenon that is partially related to the enhanced transport of ions due to the generated electric field. These results are in agreement with recent experimental observation on Au-diamond plasma interface. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  17. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid–vapor interface

    SciTech Connect

    Nagayama, Gyoko Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-07

    The structure and thermodynamic properties of the liquid–vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid–vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid–vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid–vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid–vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.

  18. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface

    NASA Astrophysics Data System (ADS)

    Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-01

    The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.

  19. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface.

    PubMed

    Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-07

    The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.

  20. Lattice boltzmann study on the contact angle and contact line dynamics of liquid-vapor interfaces.

    PubMed

    Zhang, Junfeng; Kwok, Daniel Y

    2004-09-14

    The moving contact line problem of liquid-vapor interfaces was studied using a mean-field free-energy lattice Boltzmann method recently proposed [Phys. Rev. E 2004, 69, 032602]. We have examined the static and dynamic interfacial behaviors by means of the bubble and capillary wave tests and found that both the Laplace equation of capillarity and the dispersion relation were satisfied. Dynamic contact angles followed the general trend of contact line velocity observed experimentally and can be described by Blake's theory. The velocity fields near the interface were also obtained and are in good agreement with fluid mechanics and molecular dynamics studies. Our simulations demonstrated that incorporating interfacial effects into the lattice Boltzmann model can be a valuable and powerful alternative in interfacial studies.

  1. Co-Evolution of User and Organizational Interfaces: A Longitudinal Case Study of WWW Dissemination of National Statistics.

    ERIC Educational Resources Information Center

    Marchionini, Gary

    2002-01-01

    Describes how user interfaces for the Bureau of Labor Statistics (BLS) web site evolved over a 5-year period along with the larger organizational interface and how this co-evolution has influenced the institution. Interviews with BLS staff and transaction log analysis are the foci of this study, as well as user information-seeking studies and user…

  2. Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: a molecular simulation study.

    PubMed

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R

    2012-03-15

    The adsorption of gas-phase naphthalene and ozone molecules onto air/ice interfaces coated with different surfactant species (1-octanol, 1-hexadecanol, or 1-octanal) was investigated using classical molecular dynamics (MD) simulations. Naphthalene and ozone exhibit a strong preference to be adsorbed at the surfactant-coated air/ice interfaces, as opposed to either being dissolved into the bulk of the quasi-liquid layer (QLL) or being incorporated into the ice crystals. The QLL becomes thinner when the air/ice interface is coated with surfactant molecules. The adsorption of both naphthalene and ozone onto surfactant-coated air/ice interfaces is enhanced when compared to bare air/ice interface. Both naphthalene and ozone tend to stay dissolved in the surfactant layer and close to the QLL, rather than adsorbing on top of the surfactant molecules and close to the air region of our systems. Surfactants prefer to orient at a tilted angle with respect to the air/ice interface; the angular distribution and the most preferred angle vary depending on the hydrophilic end group, the length of the hydrophobic tail, and the surfactant concentration at the air/ice interface. Naphthalene prefers to have a flat orientation on the surfactant coated air/ice interface, except at high concentrations of 1-hexadecanol at the air/ice interface; the angular distribution of naphthalene depends on the specific surfactant and its concentration at the air/ice interface. The dynamics of naphthalene molecules at the surfactant-coated air/ice interface slow down as compared to those observed at bare air/ice interfaces. The presence of surfactants does not seem to affect the self-association of naphthalene molecules at the air/ice interface, at least for the specific surfactants and the range of concentrations considered in this study.

  3. Charged Diblock Copolymers at Interfaces: Micelle Dissociation Upon Compression

    SciTech Connect

    Theodoly, O.; Checco, A; Muller, P

    2010-01-01

    We use grazing incidence X-ray scattering to study the surface micellization of charged amphiphilic diblock copolymers poly(styrene-block-acrylic acid) at the air-water interface. Scattering interference peaks are consistent with the formation of hexagonally packed micelles. The remarkable increase of inter-micelle distance upon compression is explained by a dissociation of micelles into a brush. Hence, surface micelles reorganize, whereas micelles of the same copolymers in solutions are 'frozen'. We show indeed that the energetic cost of unimer extraction from micelles is much lower for surface than for solution. Finally, a model combining electrostatic interactions and micelle/brush equilibrium explains surface pressure vs. area without free parameters.

  4. Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces.

    PubMed

    Zhao, Yujuan; Tang, Lin; Rennaker, Robert; Hutchens, Chris; Ibrahim, Tamer S

    2013-01-01

    Implantable neural interfaces are designed to provide a high spatial and temporal precision control signal implementing high degree of freedom real-time prosthetic systems. The development of a Radio Frequency (RF) wireless neural interface has the potential to expand the number of applications as well as extend the robustness and longevity compared to wired neural interfaces. However, it is well known that RF signal is absorbed by the body and can result in tissue heating. In this work, numerical studies with analytical validations are performed to provide an assessment of power, heating and specific absorption rate (SAR) associated with the wireless RF transmitting within the human head. The receiving antenna on the neural interface is designed with different geometries and modeled at a range of implanted depths within the brain in order to estimate the maximum receiving power without violating SAR and tissue temperature elevation safety regulations. Based on the size of the designed antenna, sets of frequencies between 1 GHz to 4 GHz have been investigated. As expected the simulations demonstrate that longer receiving antennas (dipole) and lower working frequencies result in greater power availability prior to violating SAR regulations. For a 15 mm dipole antenna operating at 1.24 GHz on the surface of the brain, 730 uW of power could be harvested at the Federal Communications Commission (FCC) SAR violation limit. At approximately 5 cm inside the head, this same antenna would receive 190 uW of power prior to violating SAR regulations. Finally, the 3-D bio-heat simulation results show that for all evaluated antennas and frequency combinations we reach FCC SAR limits well before 1 °C. It is clear that powering neural interfaces via RF is possible, but ultra-low power circuit designs combined with advanced simulation will be required to develop a functional antenna that meets all system requirements.