Science.gov

Sample records for air-water interfacial areas

  1. Air-water interfacial areas in unsaturated soils: Evaluation of interfacial domains

    NASA Astrophysics Data System (ADS)

    Costanza-Robinson, Molly S.; Brusseau, Mark L.

    2002-10-01

    A gas-phase miscible-displacement method, using decane as an interfacial tracer, was used to measure air-water interfacial areas for a sand with water contents ranging from ˜2% to 20%. The expected trend of decreasing interfacial areas with increasing water contents was observed. The maximum estimated interfacial area of 19,500 cm-1 appears reasonable given it is smaller than the measured surface area of the porous medium (60,888 cm-1). Comparison of the experimental data presented herein with literature data provided further insight into the characterization of the air-water interface in unsaturated porous media. Specifically, comparison of interfacial areas measured using gas-phase versus aqueous-phase methods indicates that the gas-phase method generally yields larger interfacial areas than the aqueous-phase methods, even when accounting for differences in water content and physical properties of the porous media. The observations are consistent with proposed differences in interfacial accessibility of the aqueous- and gas-phase tracers. Evaluation of the data in light of functional interfacial domains, described herein, yields the hypothesis that aqueous interfacial tracers measure primarily air-water interfaces formed by "capillary water," while gas-phase tracers measure air-water interfaces formed by both capillary and surface-adsorbed (film) water. The gas- and aqueous-phase methods may each provide interfacial area information that is more relevant to specific problems of interest. For example, gas-phase interfacial area measurements may be most relevant to contaminant transport in unsaturated systems, where retention at the air-water interface may be significant. Conversely, the aqueous-phase methods may yield information with direct bearing on multiphase flow processes that are dominated by capillary-phase behavior.

  2. Measuring air-water interfacial areas with X-ray microtomography and interfacial partitioning tracer tests.

    PubMed

    Brusseau, Mark L; Peng, Sheng; Schnaar, Gregory; Murao, Asami

    2007-03-15

    Air-water interfacial areas as a function of water saturation were measured for a sandy, natural porous medium using two methods, aqueous-phase interfacial partitioning tracer tests and synchrotron X-ray microtomography. In addition, interfacial areas measured in a prior study with the gas-phase interfacial partitioning tracer-test method for the same porous medium were included for comparison. For all three methods, total air-water interfacial areas increased with decreasing water saturation. The interfacial areas measured with the tracer-test methods were generally larger than those obtained from microtomography, and the disparity increased as water saturation decreased. The interfacial areas measured by microtomography extrapolated to a value (147 cm(-1)) very similar to the specific solid surface area (151 cm(-1)) calculated using the smooth-sphere assumption, indicating that the method does not characterize the area associated with microscopic surface heterogeneity (surface roughness, microporosity). This is consistent with the method resolution of approximately 12 microm. In contrast, the interfacial areas measured with the gas-phase tracer tests approached the N2/BET measured specific solid surface area (56000 cm(-1)), indicating that this method does characterize the interfacial area associated with microscopic surface heterogeneity. The largest interfacial area measured with the aqueous-phase tracer tests was 224 cm(-1), while the extrapolated maximum interfacial area was approximately 1100 cm(-1). Both of these values are larger than the smooth-sphere specific solid surface area but much smaller than the N2/BET specific solid surface area, which suggests that the method measures a limited portion of the interfacial area associated with microscopic surface heterogeneity. All three methods provide measures of total (capillary + film) interfacial area, a primary difference being that the film-associated area is a smooth-surface equivalent for the

  3. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  4. NOVEL METHODS FOR MEASURING AIR-WATER INTERFACIAL AREA IN UNSATURATED POROUS MEDIA

    PubMed Central

    Brusseau, Mark L.; Ouni, Asma El; Araujo, Juliana B.; Zhong, Hua

    2015-01-01

    Interfacial partitioning tracer tests (IPTT) are used to measure air-water interfacial area for unsaturated porous media. The standard IPTT method involves conducting tests wherein an aqueous surfactant solution is introduced into a packed column under unsaturated flow conditions. Surfactant-induced drainage has been observed to occur for this method in some cases, which can complicate data analysis and impart uncertainty to the measured values. Two novel alternative approaches for conducting IPTTs are presented herein that are designed in part to prevent surfactant-induced drainage. The two methods are termed the dual-surfactant IPTT (IPTT-DS) and the residual-air IPTT (IPTT-RA). The two methods were used to measure air-water interfacial areas for two natural porous media. System monitoring during the tests revealed no measurable surfactant-induced drainage. The measured interfacial areas compared well to those obtained with the standard IPTT method conducted in such a manner that surfactant-induced drainage was prevented. PMID:25732632

  5. An air-water interfacial area based variable tortuosity model for unsaturated sands

    SciTech Connect

    Khaleel, Raziuddin; Saripalli, Prasad

    2006-05-01

    Based on Kozeny-Carman equation for saturated media permeability, a new model is developed for the prediction of unsaturated hydraulic conductivity, K as a function of moisture content, ?. The K(???) estimates are obtained using laboratory measurements of moisture retention and saturated hydraulic conductivity, and a saturation-dependent tortuosity based on the immiscible fluid (air-water) interfacial area. Tortuosity (?a) for unsaturated media is defined as aaw/aaw,o (ratio of the specific air-water interfacial area of a real and the corresponding idealized porous medium). A correspondence between the real and idealized media is established by using the laboratory-measured soil moisture retention curve to calculate the interfacial area. The general trend in prediction of ?a as a function water saturation is in agreement with similar recent predictions based on diffusion theory. Unsaturated hydraulic conductivities measured for a number of coarse-textured, repacked Hanford sediments agree well with predictions based on the modified Kozeny-Carman relation. Because of the use of saturated hydraulic conductivity, a slight bias is apparent in measured and predicted K at low ?. While the modified Kozeny-Carman relation was found to be reasonably accurate in predicting K(??) for the repacked, sandy soils considered in this study, a further testing of the new model for undisturbed sediments and other soil textures would be useful.

  6. Study of interfacial area transport and sensitivity analysis for air-water bubbly flow

    SciTech Connect

    Kim, S.; Sun, X.; Ishii, M.; Beus, S.G.

    2000-09-01

    The interfacial area transport equation applicable to the bubbly flow is presented. The model is evaluated against the data acquired by the state-of-the-art miniaturized double-sensor conductivity probe in an adiabatic air-water co-current vertical test loop under atmospheric pressure condition. In general, a good agreement, within the measurement error of plus/minus 10%, is observed for a wide range in the bubbly flow regime. The sensitivity analysis on the individual particle interaction mechanisms demonstrates the active interactions between the bubbles and highlights the mechanisms playing the dominant role in interfacial area transport. The analysis employing the drift flux model is also performed for the data acquired. Under the given flow conditions, the distribution parameter of 1.076 yields the best fit to the data.

  7. Surfactant-Induced Flow in Unsaturated Porous Media: Implications for Air-Water Interfacial Area Determination

    NASA Astrophysics Data System (ADS)

    Costanza-Robinson, M. S.; Zheng, Z.; Estabrook, B.; Henry, E. J.; Littlefield, M. H.

    2011-12-01

    Air-water interfacial area (AI) in porous media is an important factor governing equilibrium contaminant retention, as well as the kinetics of interphase mass transfer. Interfacial-partitioning tracer (IPT) tests are a common technique for measuring AI at a given moisture saturation (SW), where AI is calculated based on the ratio of arrival times of a surfactant and a non-reactive tracer. At surfactant concentrations often used, the aqueous surface tension of the interfacial tracer solution is ~30% lower than that of the resident porewater in the system, creating transient surface tension gradients during the IPT measurement. Because surface tension gradients create capillary pressure gradients, surfactant-induced unsaturated flow may occur during IPT tests, a process that would violate fundamental assumptions of constant SW, of steady-state flow, and of nonreactive and surfactant tracers experiencing the same transport conditions. To examine the occurrence and magnitude of surfactant-induced flow, we conducted IPT tests for unsaturated systems at ~84% initial SW using surfactant input concentrations that bracket concentrations commonly used. Despite constant boundary conditions (constant inlet flux and outlet pressure), the introduction of the surfactant solution induced considerable transience in column effluent flowrate and SW. Real-time system mass measurements revealed drainage of 20-40% SW, with the amount of drainage and the maximum rate of drainage proportional to the influent surfactant concentration, as would be expected. Because AI is inversely related to SW, the use of higher surfactant concentrations should yield larger AI estimates. Measured AI values, however, showed no clear relationship to surfactant concentration or the time-averaged SW of the system. These findings cast doubt on the reliability of IPT for AI determination.

  8. The Influence of Surface Tension Gradients on Surfactant Tracer Measurement of Air-Water Interfacial Area in Porous Media

    NASA Astrophysics Data System (ADS)

    Costanza-Robinson, M. S.; Estabrook, B. D.; Henry, E. J.

    2009-12-01

    Air-water interfacial area (AI) in porous media is an important factor governing equilibrium contaminant retention, as well as the kinetics of interphase mass transfer, such as delivery of oxygen to roots and volatilization of methane from landfills. Despite this importance, significant method-dependence is observed among techniques used to determine AI in porous media. In this work, possible low bias in conventional aqueous interfacial-partitioning tracer methodology (IPT) was examined by comparison of IPT-AI estimates with more direct estimates obtained using synchrotron X-ray microtomographic (µCT) imaging. Sodium dodecyl benzene sulfonate and pentafluorobenzoate were used as interfacial and nonreactive tracers, respectively, to measure AI at three water saturations (Sw) in a natural fine sand. IPT-AI exhibited expected trends, with higher areas associated with drier conditions, but the magnitude of AI was as much as 50% lower than those measured by µCT. IPT-AI values for the driest system agreed most closely with microtomography data. Real-time system mass measurements revealed that upon introduction of the surfactant tracer, system Sw decreased by 15-30%; the driest system exhibited the least drainage. This drainage is consistent with a reduction in capillarity caused by the lower surface tension of the surfactant solution as compared to the surfactant-free resident fluid. Drainage in the direction of flow would lead to earlier breakthrough of the surfactant tracer and a lower AI-estimate. In fact, the magnitude of drainage and magnitude of AI-underestimation relative to µCT were qualitatively correlated. Although this effect was expected, its magnitude and potential influence on AI was previously unknown and was larger than anticipated.

  9. The configuration of water on rough natural surfaces: Implications for understanding air-water interfacial area, film thickness, and imaging resolution

    NASA Astrophysics Data System (ADS)

    Kibbey, Tohren C. G.

    2013-08-01

    Previous studies of air-water interfacial areas in unsaturated porous media have often distinguished between interfacial area corresponding to water held by capillary forces between grains and area corresponding to water associated with solid surfaces. The focus of this work was on developing a better understanding of the nature of interfacial area associated with solid surfaces following drainage of porous media. Stereoscopic scanning electron microscopy was used to determine surface elevation maps for eight different surfaces of varying roughness. An algorithm was developed to calculate the true configuration of an air-water interface in contact with the solid surface as a function of capillary pressure. The algorithm was used to calculate surface-associated water configurations for capillary pressures ranging from 10 to 100 cm water. The results of the work show that, following drainage, the configuration of surface-associated water is dominated by bridging of macroscopic surface roughness features over the range of capillary pressures studied, and nearly all of the surface-associated water is capillary held. As such, the thicknesses of surface-associated water were found to be orders-of-magnitude greater than might be expected at the same capillary pressures based on calculations of adsorbed film thickness. The fact that capillary forces in air-water interfaces dominate surface-associated water configuration means that interface shapes are largely unaffected by microscopic surface roughness, and interfaces are considerably smoother than the underlying solid. As such, calculations suggest that microscopic surface roughness likely has minimal impact on the accuracy of surface-associated air-water interfacial areas determined by limited-resolution imaging methods such as computed microtomography.

  10. Surfactant-induced flow compromises determination of air-water interfacial areas by surfactant miscible-displacement.

    PubMed

    Costanza-Robinson, Molly S; Henry, Eric J

    2017-03-01

    Surfactant miscible-displacement (SMD) column experiments are used to measure air-water interfacial area (AI) in unsaturated porous media, a property that influences solute transport and phase-partitioning. The conventional SMD experiment results in surface tension gradients that can cause water redistribution and/or net drainage of water from the system ("surfactant-induced flow"), violating theoretical foundations of the method. Nevertheless, the SMD technique is still used, and some suggest that experimental observations of surfactant-induced flow represent an artifact of improper control of boundary conditions. In this work, we used numerical modeling, for which boundary conditions can be perfectly controlled, to evaluate this suggestion. We also examined the magnitude of surfactant-induced flow and its impact on AI measurement during multiple SMD flow scenarios. Simulations of the conventional SMD experiment showed substantial surfactant-induced flow and consequent drainage of water from the column (e.g., from 75% to 55% SW) and increases in actual AI of up to 43%. Neither horizontal column orientation nor alternative boundary conditions resolved surfactant-induced flow issues. Even for simulated flow scenarios that avoided surfactant-induced drainage of the column, substantial surfactant-induced internal water redistribution occurred and was sufficient to alter surfactant transport, resulting in up to 23% overestimation of AI. Depending on the specific simulated flow scenario and data analysis assumptions used, estimated AI varied by nearly 40% and deviated up to 36% from the system's initial AI. We recommend methods for AI determination that avoid generation of surface-tension gradients and urge caution when relying on absolute AI values measured via SMD.

  11. Interfacial structures of confined air-water two-phase bubbly flow

    SciTech Connect

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  12. Interfacial characterization of Pluronic PE9400 at biocompatible (air-water and limonene-water) interfaces.

    PubMed

    Pérez-Mosqueda, Luis M; Maldonado-Valderrama, Julia; Ramírez, Pablo; Cabrerizo-Vílchez, Miguel A; Muñoz, José

    2013-11-01

    In this work, we provide an accurate characterization of non-ionic triblock copolymer Pluronic PE9400 at the air-water and limonene-water interfaces, comprising a systematic analysis of surface tension isotherms, dynamic curves, dilatational rheology and desorption profiles. The surface pressure isotherms display two different slopes of the Π-c plot suggesting the existence of two adsorption regimes for PE9400 at both interfaces. Application of a theoretical model, which assumes the coexistence of different adsorbed states characterized by their molar areas, allows quantification of the conformational changes occurring at the adsorbed layer, indentifying differences between the conformations adopted at the air-water and the limonene-water interface. The presence of two maxima in the dilatational modulus vs. interfacial pressure importantly corroborates this conformational change from a 2D flat conformation to 3D brush one. Moreover, the dilatational response provides mechanical diferences between the interfacial layers formed at the two interfaces analyzed. Dynamic surface pressure data were transformed into a dimensionless form and fitted to another model which considers the influence of the reorganization process on the adsorption dynamics. Finally, the desorption profiles reveal that Pluronic PE9400 is irreversibly adsorbed at both interfaces regardless of the interfacial conformation and nature of the interface. The systematic characterization presented in this work provides important new findings on the interfacial properties of pluronics which can be applied in the rational development of new products, such as biocompatible limonene-based emulsions and/or microemulsions.

  13. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    SciTech Connect

    X. Sun; S. Kim; L. Cheng; M. Ishii; S.G. Beus

    2001-10-31

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in a cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 20-cm in width and 1-cm in gap. The miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions.

  14. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    SciTech Connect

    Xiaodong Sun; Seungjin Kim; Ling Cheng; Mamoru Ishii; Beus, Stephen G.

    2002-07-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200-mm in width and 10-mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions. (authors)

  15. Interfacial area transport in bubbly flow

    SciTech Connect

    Ishii, M.; Wu, Q.; Revankar, S.T.

    1997-12-31

    In order to close the two-fluid model for two-phase flow analyses, the interfacial area concentration needs to be modeled as a constitutive relation. In this study, the focus was on the investigation of the interfacial area concentration transport phenomena, both theoretically and experimentally. The interfacial area concentration transport equation for air-water bubbly up-flow in a vertical pipe was developed, and the models for the source and sink terms were provided. The necessary parameters for the experimental studies were identified, including the local time-averaged void fraction, interfacial area concentration, bubble interfacial velocity, liquid velocity and turbulent intensity. Experiments were performed with air-water mixture at atmospheric pressure. Double-sensor conductivity probe and hot-film probe were employed to measure the identified parameters. With these experimental data, the preliminary model evaluation was carried out for the simplest form of the developed interfacial area transport equation, i.e., the one-dimensional transport equation.

  16. Interfacial behavior of simple inorganic salts at the air-water interface investigated with a polarizable model with electrostatic damping.

    PubMed

    Cummings, Oneka T; Wick, Collin D

    2013-08-14

    New molecular models that incorporated polarizable interactions with electrostatic damping were developed to better understand the interfacial properties of aqueous electrolyte systems. The models were parameterized to give free energies of aqueous solvation and the change in activity with respect to concentration in agreement with experiment. Specifically, we investigated NaCl, NaBr, and NaI systems, finding anion propensity for the air-water interface was reduced in comparison with previously developed polarizable models. This coincided with a more negative surface excess than that given by previously developed polarizable models. Furthermore, we investigated the interfacial properties of SrCl2 aqueous systems, finding that strontium had a moderate enhancement in interfacial density in comparison with bulk, while still having a fairly large negative surface excess, in agreement with experimental results.

  17. Interfacial Area Transport of Vertical Upward Bubbly Flow in an Annulus

    SciTech Connect

    Takashi Hibiki; Ye Mi; Rong Situ; Mamoru Ishii; Michitsugu Mori

    2002-07-01

    In relation to the development of the interfacial area transport equation, hydrodynamic separate tests without phase change were performed in an adiabatic air-water bubbly flow in a vertical annulus to identify the effect of bubble coalescence and breakup on the interfacial area transport. A total of 20 data sets on axial developments of local void fraction, interfacial area concentration, and interfacial velocity were acquired by using the double-sensor conductivity probe method in an extensive bubbly flow region. The detailed discussion was given for the mechanism of the axial development of the local flow parameters. The one-dimensional interfacial area transport equation could reproduce proper trends of the interfacial area concentration change along the flow direction and good agreement between predicted and measured interfacial area concentration was obtained with an average relative deviation of {+-}8.96 %. (authors)

  18. SYNCHROTRON X-RAY MICROTOMOGRAPHY AND INTERFACIAL PARTITIONING TRACER TEST MEASUREMENTS OF NAPL-WATER INTERFACIAL AREAS

    PubMed Central

    Brusseau, Mark L.; Janousek, Hilary; Murao, Asami; Schnaar, Gregory

    2013-01-01

    Interfacial areas between an immiscible organic liquid (NAPL) and water were measured for two natural porous media using two methods, aqueous-phase interfacial partitioning tracer tests and synchrotron X-ray microtomography. The interfacial areas measured with the tracer tests were similar to previously reported values obtained with the method. The values were, however, significantly larger than those obtained from microtomography. Analysis of microtomography data collected before and after introduction of the interfacial tracer solution indicated that the surfactant tracer had minimal impact on fluid-phase configuration and interfacial areas under conditions associated with typical laboratory application. The disparity between the tracer-test and microtomography values is attributed primarily to the inability of the microtomography method to resolve interfacial area associated with microscopic surface heterogeneity. This hypothesis is consistent with results recently reported for a comparison of microtomographic analysis and interfacial tracer tests conducted for an air-water system. The tracer-test method provides a measure of effective, total (capillary and film) interfacial area, whereas microtomography can be used to determine separately both capillary-associated and film-associated interfacial areas. Both methods appear to provide useful information for given applications. A key to their effective use is recognizing the specific nature of the information provided by each, as well as associated limitations. PMID:23678204

  19. Predictions of one-group interfacial area transport in TRACE

    SciTech Connect

    Worosz, T.; Talley, J. D.; Kim, S.; Bajorek, S. M.; Ireland, A.

    2012-07-01

    In current nuclear reactor system analysis codes utilizing the two-fluid model, flow regime dependent correlations are used to specify the interfacial area concentration (a i). This approach does not capture the continuous evolution of the interfacial structures, and thus, it can pose issues near the transition boundaries. Consequently, a pilot version of the system analysis code TRACE is being developed that employs the interfacial area transport equation (IATE). In this approach, dynamic estimation of a i is provided through mechanistic models for bubble coalescence and breakup. The implementation of the adiabatic, one-group IATE into TRACE is assessed against experimental data from 50 air-water, two-phase flow conditions in pipes ranging in inner diameter from 2.54 to 20.32 cm for both vertical co-current upward and downward flows. Predictions of pressure, void fraction, bubble velocity, and a i data are made. TRACE employing the conventional flow regime-based approach is found to underestimate a i and can only predict linear trends since the calculation is governed by the pressure. Furthermore, trends opposite to that of the data are predicted for some conditions. In contrast, TRACE with the one-group IATE demonstrates a significant improvement in predicting the experimental data with an average disagreement of {+-} 13%. Additionally, TRACE with the one-group IATE is capable of predicting nonlinear axial development of a, by accounting for various bubble interaction mechanisms, such as coalescence and disintegration. (authors)

  20. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  1. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  2. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  3. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  4. Experimentally probing the libration of interfacial water: the rotational potential of water is stiffer at the air/water interface than in bulk liquid.

    PubMed

    Tong, Yujin; Kampfrath, Tobias; Campen, R Kramer

    2016-07-21

    Most properties of liquid water are determined by its hydrogen-bond network. Because forming an aqueous interface requires termination of this network, one might expect the molecular level properties of interfacial water to markedly differ from water in bulk. Intriguingly, much prior experimental and theoretical work has found that, from the perspective of their time-averaged structure and picosecond structural dynamics, hydrogen-bonded OH groups at an air/water interface behave the same as hydrogen-bonded OH groups in bulk liquid water. Here we report the first experimental observation of interfacial water's libration (i.e. frustrated rotation) using the laser-based technique vibrational sum frequency spectroscopy. We find this mode has a frequency of 834 cm(-1), ≈165 cm(-1) higher than in bulk liquid water at the same temperature and similar to bulk ice. Because libration frequency is proportional to the stiffness of water's rotational potential, this increase suggests that one effect of terminating bulk water's hydrogen bonding network at the air/water interface is retarding rotation of water around intact hydrogen bonds. Because in bulk liquid water the libration plays a key role in stabilizing reaction intermediates and dissipating excess vibrational energy, we expect the ability to probe this mode in interfacial water to open new perspectives on the kinetics of heterogeneous reactions at aqueous interfaces.

  5. Experimental study on interfacial area transport in downward two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Guanyi

    In view of the importance of two group interfacial area transport equations and lack of corresponding accurate downward flow database that can reveal two group interfacial area transport, a systematic database for adiabatic, air-water, vertically downward two-phase flow in a round pipe with inner diameter of 25.4 mm was collected to gain an insight of interfacial structure and provide benchmarking data for two-group interfacial area transport models. A four-sensor conductivity probe was used to measure the local two phase flow parameters and data was collected with data sampling frequency much higher than conventional data sampling frequency to ensure the accuracy. Axial development of local flow parameter profiles including void fraction, interfacial area concentration, and Sauter mean diameter were presented. Drastic inter-group transfer of void fraction and interfacial area was observed at bubbly to slug transition flow. And the wall peaked interfacial area concentration profiles were observed in churn-turbulent flow. The importance of local data about these phenomenon on flow structure prediction and interfacial area transport equation benchmark was analyzed. Bedsides, in order to investigate the effect of inlet conditions, all experiments were repeated after installing the flow straightening facility, and the results were briefly analyzed. In order to check the accuracy of current data, the experiment results were cross-checked with rotameter measurement as well as drift-flux model prediction, the averaged error is less than 15%. Current models for two-group interfacial area transport equation were evaluated using these data. The results show that two-group interfacial area transport equations with current models can predict most flow conditions with error less than 20%, except some bubbly to slug transition flow conditions and some churn-turbulent flow conditions. The disagreement between models and experiments could result from underestimate of inter

  6. The contact area dependent interfacial thermal conductance

    SciTech Connect

    Liu, Chenhan; Wei, Zhiyong; Bi, Kedong; Yang, Juekuan; Chen, Yunfei; Wang, Jian

    2015-12-15

    The effects of the contact area on the interfacial thermal conductance σ are investigated using the atomic Green’s function method. Different from the prediction of the heat diffusion transport model, we obtain an interesting result that the interfacial thermal conductance per unit area Λ is positively dependent on the contact area as the area varies from a few atoms to several square nanometers. Through calculating the phonon transmission function, it is uncovered that the phonon transmission per unit area increases with the increased contact area. This is attributed to that each atom has more neighboring atoms in the counterpart of the interface with the increased contact area, which provides more channels for phonon transport.

  7. Combined surface pressure-interfacial shear rheology studies of the interaction of proteins with spread phospholipid monolayers at the air-water interface.

    PubMed

    Roberts, Simon A; Kellaway, Ian W; Taylor, Kevin M G; Warburton, Brian; Peters, Kevin

    2005-08-26

    The adsorption of two model proteins, catalase and lysozyme, to phospholipid monolayers spread at the air-water interface has been studied using a combined surface pressure-interfacial shear rheology technique. Monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG) and DPPC:DPPG (7:3) were spread on a phosphate buffer air-water interface at pH 7.4. Protein solutions were introduced to the subphase and the resultant changes in surface pressure and interfacial storage and loss moduli were recorded with time. The results show that catalase readily adsorbs to all the phospholipid monolayers investigated, inducing a transition from liquid-like to gel-like rheological behaviour in the process. The changes in surface rheology as a result of the adsorption of catalase increase in the order DPPC

  8. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate

  9. Interfacial area and interfacial transfer in two-phase systems. DOE final report

    SciTech Connect

    Ishii, Mamoru; Hibiki, T.; Revankar, S.T.; Kim, S.; Le Corre, J.M.

    2002-07-01

    In the two-fluid model, the field equations are expressed by the six conservation equations consisting of mass, momentum and energy equations for each phase. The existence of the interfacial transfer terms is one of the most important characteristics of the two-fluid model formulation. The interfacial transfer terms are strongly related to the interfacial area concentration and to the local transfer mechanisms such as the degree of turbulence near interfaces. This study focuses on the development of a closure relation for the interfacial area concentration. A brief summary of several problems of the current closure relation for the interfacial area concentration and a new concept to overcome the problem are given.

  10. Temperature-dependent interfacial properties of hydrophobically end-modified poly(2-isopropyl-2-oxazoline)s assemblies at the air/water interface and on solid substrates.

    PubMed

    Obeid, Rodolphe; Park, Jin-Young; Advincula, Rigoberto C; Winnik, Françoise M

    2009-12-15

    We describe herein the properties at the air/water (A/W) interface of hydrophobically end-modified (HM) poly(2-isopropyl-2-oxazoline)s (PiPrOx) bearing an n-octadecyl chain on both termini (telechelic HM-PiPrOx) or on one chain end (semitelechelic HM-PiPrOx) for different subphase temperatures and spreading solvents using the Langmuir film balance technique. The polymer interfacial properties revealed by the pi-A isotherms depend markedly on the architecture and molecular weight of the polymer. On cold water subphases (14 degrees C), diffusion of PiPrOx chains onto water takes place for all polymers in the intermediate compressibility region (5mNm(-1)). At higher subphase temperatures (36 and 48 degrees C), the HM-PiPrOx film exhibited remarkable stability with time. Brewster angle microscopy (BAM) imaging of the A/W interface showed that the polymer assembly was not uniform and that large domains formed, either isolated grains or pearl necklaces, depending on the polymer structure, the concentration of the spreading solution and the subphase temperature. The Langmuir films were transferred onto hydrophilic substrates (silica) by the Langmuir-Blodgett (LB) technique and onto hydrophobic substrates (gold) by Langmuir-Schaefer (LS) film deposition, resulting in the formation of adsorbed particles ranging in size from 200 to 500nm, depending on the polymer architecture and the substrate temperature. The particles presented "Janus"-like hydrophilic/hydrophobic characteristics.

  11. Interfacial area, velocity and void fraction in two-phase slug flow

    SciTech Connect

    Kojasoy, G.; Riznic, J.R.

    1997-12-31

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections.

  12. Interfacial area transport equation for bubbly to cap-bubbly transition flows

    NASA Astrophysics Data System (ADS)

    Worosz, Theodore S.

    To fully realize the benefit of the two-group interfacial area transport equation (IATE) as a constitutive model for the interfacial area concentration in the two-fluid model, it is imperative that models be developed to dynamically transition from one-group to two-group flows. With this in mind, the two-group IATE is derived in detail to establish new expansion source terms that correctly account for the effects of intergroup bubble transport. In addition to this theoretical effort, the state-of-the-art four-sensor conductivity probe is used to establish a reliable experimental database of local two-phase flow parameters to characterize one-group to two-group transition flows and to support model development. The experiments are performed in verticalupward air-water two-phase flow in a 5.08cm pipe. Additionally, the local conductivity probe is improved through systematic studies into: 1) signal "ghosting" electrical interference among probe sensors, 2) sampling frequency sensitivity, 3) measurement duration sensitivity, and 4) probe sensor orientation. Wake-dominated bubble transport characterizes the transition from onegroup to two-group flows. Therefore, the necessary intergroup and intragroup wake entrainment source terms that are required for two-group interfacial area transport in transition flows are developed. Furthermore, an approach is developed to initiate the shearing-off source and reduce the one-group interaction mechanisms as an established two-group flow develops. The new interfacial area transport model for one-group to two-group transition flows is evaluated against the experimental database. The model accurately captures the exchange of void fraction and interfacial area concentration between group-I and group-II in transition flows. Overall, the group-I void fraction and interfacial area concentration are predicted within +/-6% and +/-4%, respectively, of the experimental data. The group-II void fraction and interfacial area concentration are

  13. Effect of temperature on the interfacial behavior of a polystyrene-b-poly(methyl methacrylate) diblock copolymer at the air/water interface.

    PubMed

    Seo, Yongsok; Cho, Chung Yeon; Hwangbo, Minyoung; Choi, Hyoung Jin; Hong, Soon Man

    2008-03-18

    Monolayers of a polystyrene-poly(methyl methacrylate) (PS-PMMA) diblock copolymer at the air-water interface were studied by measuring the surface pressure-area isotherms at several temperatures. Langmuir film balance experiments and atomic force microscopy showed that the diblock copolymer molecules formed surface micelles. In the plot of the surface pressure versus surface area per repeating unit, the monolayer changed from the gas phase to the liquid expanded phase at lower surface pressure for systems at low temperature compared to those at high temperature. In addition, a plateau, corresponding to the transition from the liquid expanded to liquid condensed phase, appeared in that plot at lower surface pressure for systems with a higher subphase (water) temperature. Hysteresis was observed in the compression-expansion cycle process. Increasing the subphase temperature alleviated this hyteresis gap, especially at low surface pressures. The minimum in the plot of the surface pressure versus surface area per repeating unit in the expansion process (which arises from the transition) and the transition plateau appeared more vividly at higher water temperature. These dynamic experimental results show that PS-PMMA diblock copolymers, in which both blocks are insoluble in water, do not form complicated entanglements in two-dimensional space. Although higher water temperature provided more entropy to the chains, and thus more conformational freedom, it did not change the surface morphology of the condensed film because both blocks of PS-PMMA are insoluble in water.

  14. Modeling interfacial area transport in multi-fluid systems

    SciTech Connect

    Yarbro, Stephen Lee

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  15. Experimentally Determined Interfacial Area Between Immiscible Fluids in Porous Media

    SciTech Connect

    Crandall, Dustin; Niessner, J; Hassanizadeh, S.M; Smith, Duane

    2008-01-01

    When multiple fluids flow through a porous medium, the interaction between the fluid interfaces can be of great importance. While this is widely recognized in practical applications, numerical models often disregard interactios between discrete fluid phases due to the computational complexity. And rightly so, for this level of detail is well beyond most extended Darcy Law relationships. A new model of two-phase flow including the interfacial area has been proposed by Hassarizadeh and Gray based upon thermodynamic principles. A version of this general equation set has been implemented by Nessner and Hassarizadeh. Many of the interfacial parameters required by this equation set have never been determined from experiments. The work presented here is a description of how the interfacial area, capillary pressure, interfacial velocity and interfacial permeability from two-phase flow experiments in porous media experiments can be used to determine the required parameters. This work, while on-going, has shown the possibility of digitizing images within translucent porous media and identifying the location and behavior of interfaces under dynamic conditions. Using the described methods experimentally derived interfacial functions to be used in larger scale simulations are currently being developed. In summary, the following conclusions can be drawn: (1) by mapping a pore-throat geometry onto an image of immiscible fluid flow, the saturation of fluids and the individual interfaces between the fluids can be identified; (2) the resulting saturation profiles of the low velocity drainage flows used in this study are well described by an invasion percolation fractal scaling; (3) the interfacial area between fluids has been observed to increase in a linear fashion during the initial invasion of the non-wetting fluid; and (4) the average capillary pressure within the entire cell and representative elemental volumes were observed to plateau after a small portion of the volume was

  16. Identification of Novel Fluid-Fluid Interfacial Area in Geologic Media

    NASA Astrophysics Data System (ADS)

    Araujo, J. B.; Brusseau, M. L. L.

    2015-12-01

    Pore-scale fluid processes in geological media are critical for applications such as oil and gas recovery, radioactive waste disposal, carbon sequestration, soil moisture distribution, soil and groundwater pollution, and land stability. The continued improvement of high-resolution image acquisition and processing methods has provided a means to directly measure pore-scale fluid processes for natural geomedia, and to test the usefulness of theoretical and computational models developed to simulate them. High-resolution synchrotron X-ray microtomography was used to measure air-water interfacial area at multiple wetting-phase saturations for natural sand. Analysis of the raw and processed image data with advanced visualization tools revealed the presence of air-water interface associated with macroscopic features such as pits and crevices on the surfaces of the solids. These features and respective fluid interfaces, which are not accounted for in current theoretical or computational models, may have a significant impact on accurate understanding and simulation of multi-phase flow, energy, heat, and mass transfer, and contaminant transport.

  17. Measurement of Interfacial Area Production and Permeability within Porous Media

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.

    2010-01-01

    An understanding of the pore-level interactions that affect multi-phase flow in porous media is important in many subsurface engineering applications, including enhanced oil recovery, remediation of dense non-aqueous liquid contaminated sites, and geologic CO2 sequestration. Standard models of two-phase flow in porous media have been shown to have several shortcomings, which might partially be overcome using a recently developed model based on thermodynamic principles that includes interfacial area as an additional parameter. A few static experimental studies have been previously performed, which allowed the determination of static parameters of the model, but no information exists concerning the interfacial area dynamic parameters. A new experimental porous flow cell that was constructed using stereolithography for two-phase gas-liquid flow studies was used in conjunction with an in-house analysis code to provide information on dynamic evolution of both fluid phases and gas-liquid interfaces. In this paper, we give a brief introduction to the new generalized model of two-phase flow model and describe how the stereolithography flow cell experimental setup was used to obtain the dynamic parameters for the interfacial area numerical model. In particular, the methods used to determine the interfacial area permeability and production terms are shown.

  18. Implementation of the interfacial area transport equation in trace for boiling two-phase flows

    NASA Astrophysics Data System (ADS)

    Bernard, Matthew S.

    Correctly predicting the interfacial area concentration (a i) is vital to the overall accuracy of the two-fluid model because ai describes the amount of surface area that exists between the two-phases, and is therefore directly related to interfacial mass, momentum and energy transfer. The conventional method for specifying ai in the two-fluid model is through flow regime-based empirical correlations coupled with regime transition criteria. However, a more physically consistent approach to predicting ai is through the interfacial area transport equation (IATE), which can address the deficiencies of the flow regime-based approach. Some previous studies have been performed to demonstrate the feasibility of IATE in developmental versions of the nuclear reactor systems analysis code, TRACE. However, a full TRACE version capable of predicting boiling two-phase flows with the IATE has not been established. Therefore, the current work develops a version of TRACE that is capable of predicting boiling two-phase flows using the IATE. The development is carried out in stages. First, a version of TRACE which employs the two-group IATE for adiabatic, vertical upward, air-water conditions is developed. An in-depth assessment on the existing experimental database is performed to select reliable experimental data for code assessment. Then, the implementation is assessed against the qualified air-water two-phase flow experimental data. Good agreement is observed between the experimental data for ai and the TRACE code with an average error of +/-9% for all conditions. Following the initial development, one-group IATE models for vertical downward and horizontal two-phase flows are implemented and assessed against qualified data. Finally, IATE models capable of predicting subcooled boiling two-phase flows are implemented. An assessment of the models shows that TRACE is capable of generating ai in subcooled boiling two-phase flows with the IATE and that heat transfer effects dominate

  19. The Interfacial-Area-Based Relative Permeability Function

    SciTech Connect

    Zhang, Z. F.; Khaleel, Raziuddin

    2009-09-25

    CH2M Hill Plateau Remediation Company (CHPRC) requested the services of the Pacific Northwest National Laboratory (PNNL) to provide technical support for the Remediation Decision Support (RDS) activity within the Soil & Groundwater Remediation Project. A portion of the support provided in FY2009, was to extend the soil unsaturated hydraulic conductivity using an alternative approach. This alternative approach incorporates the Brooks and Corey (1964), van Genuchten (1980), and a modified van Genuchten water-retention models into the interfacial-area-based relative permeability model presented by Embid (1997). The general performance of the incorporated models is shown using typical hydraulic parameters. The relative permeability models for the wetting phase were further examined using data from literature. Results indicate that the interfacial-area-based model can describe the relative permeability of the wetting phase reasonably well.

  20. Direct, Dynamic Measurement of Interfacial Area within Porous Media

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.; Bromhal, Grant

    2010-01-01

    Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the

  1. Morphological changes in adsorbed protein films at the air-water interface subjected to large area variations, as observed by brewster angle microscopy.

    PubMed

    Xu, Rong; Dickinson, Eric; Murray, Brent S

    2007-04-24

    Adsorbed films of proteins at the air-water interface have been imaged using Brewster angle microscopy (BAM). The proteins beta-lactoglobulin (beta-L) and ovalbumin (OA) were studied at a range of protein concentrations and surface ages at 25.0 degrees C and two pH values (7 and 5) in a Langmuir trough. The adsorbed films were periodically subjected to compression and expansion cycles such that the film area was typically varied between 125% and 50% of the original film area. With beta-L on its own, no structural changes were observable at pH 7. When a low-area fraction (less than 0.01%) of 20 mum polystyrene latex particles was spread at the interface before adsorption of beta-L, the particles became randomly distributed throughout the interface, but after protein adsorption and compression/expansion, the particles highlighted notable structural features not visible in their absence. Such features included the appearance of long (several hundred micrometers or more) folds and cracks in the films, generally oriented at right angles to the direction of compression, and also aggregates of protein and/or particles. Such structuring was more visible the longer the film was aged or at higher initial protein concentrations for shorter adsorption times. At pH 5, close to the isoelectric pH of beta-L, such features were just noticeable in the absence of particles but were much more pronounced than at pH 7 in the presence of particles. Similar experiments with OA revealed even more pronounced structural features, both in the absence and presence of particles, particularly at pH 5 (close to the isoelectric pH of OA also), producing striking stripelike and meshlike domains. Changes in the dilatational elasticity of the films could be correlated with the variations in the structural integrity of the films as observed via BAM. The results indicate that interfacial area changes of this type, typical of those that occur in food colloid processing, will lead to highly

  2. INTERFACIAL AREA TRANSPORT AND REGIME TRANSITION IN COMBINATORIAL CHANNELS

    SciTech Connect

    Seugjin Kim

    2011-01-28

    . This study investigates the geometric effects of 90-degree vertical elbows and flow configurations in two-phase flow. The study shows that the elbows make a significant effect on the transport characteristics of two-phase flow, which includes the changes in interfacial structures, bubble interaction mechanisms and flow regime transition. The effect of the elbows is characterized for global and local two-phase flow parameters. The global two-phase flow parameters include two-phase pressure, interfacial structures and flow regime transition. In order to characterize the frictional pressure drop and minor loss across the vertical elbows, pressure measurements are obtained across the test section over a wide range of flow conditions in both single-phase and two-phase flow conditions. A two-phase pressure drop correlation analogous to Lockhart-Martinelli correlation is proposed to predict the minor loss across the elbows. A high speed camera is employed to perform extensive flow visualization studies across the elbows in vertical upward, horizontal and vertical downward sections and modified flow regime maps are proposed. It is found that modified flow regime maps immediately downstream of the vertical upward elbow deviate significantly from the conventional flow regime map. A qualitative assessment of the counter-current flow limitation characteristics specific to the current experimental facility is performed. A multi-sensor conductivity probe is used to measure local two-phase flow parameters such as: void fraction, bubble velocity, interfacial area concentration and bubble frequency. The local measurements are obtained for six different flow conditions at ten measurement locations along axial direction of the test section. Both the vertical-upward and vertical-downward elbows have a significant impact on bubble distribution, resulting in, a bimodal distribution along the horizontal radius of the tube cross-section and migration of bubbles towards the inside of the

  3. Interfacial assembly of cinnamoyl-terminated bolaamphiphiles through the air/water interface: headgroup-dependent assembly, supramolecular nanotube and photochemical sewing.

    PubMed

    Liu, Xufei; Wang, Tianyu; Liu, Minghua

    2011-10-06

    A series of cinnamoyl-terminated bolaamphiphiles were synthesized and their assemblies at the air/water interface were investigated. It was found that the assembly behaviour depended on the substituted groups on the cinnamoyl unit. The bolaamphiphile with 4-hydroxycinnamoyl head groups (HCDA) was found to assemble into a supramolecular nanotube, while the others formed only layer-structured films. Moreover, the nanotube formed from HCDA showed supramolecular chirality due to the symmetry breaking. Both the layered films and the nanotubes showed photochemical dimerization upon UV irradiation, which were studied from the UV-Vis, FT-IR spectral and MALDI-TOF MS analysis. Interestingly, such dimerization behavior of the cinnamoyl group could be used to stabilize the nanotube of HCDAvia photochemical sewing. During such a process both the supramolecular chirality and the tubular shapes were kept. Remarkably, such a photochemical sewed chiral nanotube could further induce the chirality of an achiral porphyrin derivative assembled on it, and produced the induced chirality without using any chiral molecules.

  4. Comparison of fluid-fluid interfacial areas measured with X-ray microtomography and interfacial partitioning tracer tests for the same samples: COMPARISON OF FLUID-FLUID INTERFACIAL AREAS

    SciTech Connect

    McDonald, Kieran; Carroll, Kenneth C.; Brusseau, Mark L.

    2016-07-01

    Two different methods are currently used for measuring interfacial areas between immiscible fluids within 3-D porous media, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Both methods were used in this study to measure nonwetting/wetting interfacial areas for a natural sand. The microtomographic imaging was conducted on the same packed columns that were used for the IPTTs. This is in contrast to prior studies comparing the two methods, for which in all cases different samples were used for the two methods. In addition, the columns were imaged before and after the IPTTs to evaluate the potential impacts of the tracer solution on fluid configuration and attendant interfacial area. The interfacial areas measured using IPTT are ~5 times larger than the microtomographic-measured values, which is consistent with previous work. Analysis of the image data revealed no significant impact of the tracer solution on NAPL configuration or interfacial area. Other potential sources of error were evaluated, and all were demonstrated to be insignificant. The disparity in measured interfacial areas between the two methods is attributed to the limitation of the microtomography method to characterize interfacial area associated with microscopic surface roughness due to resolution constraints.

  5. Internal structure and interfacial area in two-phase flow systems

    SciTech Connect

    Kojasoy, G.

    1991-01-01

    The interfacial transfer terms and the importance of the interfacial area concentration are reviewed first with respect to the two-fluid model formulation of two-phase flow systems. Then the available measurement techniques for interfacial area are reviewed. At present, it appears that various methods such as the chemical, light attenuation, photographic, ultrasound attenuation and probe techniques have a number of limitations. Among these measurement techniques, however, the local probe method using one or more double sensors seems to have the greatest potential in terns of accuracy and wider applicability in various two-phase flow patterns. From the brief review of existing interfacial area modeling methods, it is concluded that the conventional approaches might not be sufficient, and new directions are indicated. Recent experimental results on local interfacial structural characteristics of horizontal bubbly two-phase flow and internal flow structure development are presented. More specifically, experimental results on local void fraction, interfacial area concentration, bubble size, bubble interface velocity and bubble frequency are documented in detail. Finally, a theoretical model predicting the mean bubble size and interfacial area concentration is proposed. The theoretically predicted bubble size and interfacial area concentration are found to agree reasonably well with those measured by using a double-sensor resistivity technique.

  6. Internal structure and interfacial area in two-phase flow systems

    SciTech Connect

    Kojasoy, G.

    1991-12-31

    The interfacial transfer terms and the importance of the interfacial area concentration are reviewed first with respect to the two-fluid model formulation of two-phase flow systems. Then the available measurement techniques for interfacial area are reviewed. At present, it appears that various methods such as the chemical, light attenuation, photographic, ultrasound attenuation and probe techniques have a number of limitations. Among these measurement techniques, however, the local probe method using one or more double sensors seems to have the greatest potential in terns of accuracy and wider applicability in various two-phase flow patterns. From the brief review of existing interfacial area modeling methods, it is concluded that the conventional approaches might not be sufficient, and new directions are indicated. Recent experimental results on local interfacial structural characteristics of horizontal bubbly two-phase flow and internal flow structure development are presented. More specifically, experimental results on local void fraction, interfacial area concentration, bubble size, bubble interface velocity and bubble frequency are documented in detail. Finally, a theoretical model predicting the mean bubble size and interfacial area concentration is proposed. The theoretically predicted bubble size and interfacial area concentration are found to agree reasonably well with those measured by using a double-sensor resistivity technique.

  7. Estimation of NAPL/Water Interfacial Areas in Well-Characterized Porous Media

    NASA Astrophysics Data System (ADS)

    Dobson, R.; Schroth, M. H.; Oostrom, M.; Zeyer, J.

    2004-12-01

    The NAPL/water interfacial area is an important parameter which affects the rate of NAPL dissolution in porous media. We generated a set of baseline data for specific interfacial area in a well-characterised laboratory system, and subsequently used these data to evaluate current models that seek to predict this parameter. The interfacial tracer technique was used to measure specific NAPL/water interfacial areas at residual NAPL-saturation in four grades of silica sand wet-packed into a 28cm-long, 3cm-i.d. column. The two-phase system contained water and hexadecane as NAPL. The first model tested distributes entrapped NAPL over the pore classes based on Land's algorithm and assumes spherical geometry for the resulting ganglia. The other model is thermodynamically based, assuming that reversible work done on the system results in an increase in the interfacial area, such that the area between drainage and imbibition curves can be related to the interfacial area. The interfacial tracer tests gave specific interfacial areas between 57 cm-1 for the finest sand and 16 cm-1 for the coarsest, compared to values between 33 cm-1 and 7 cm-1 for the first model and between 19 cm-1 and 5cm-1 for the thermodynamic model. The assumption of spherical geometry made by the first model serves to minimise the specific interfacial areas of the ganglia. Computed tomography (CT) scans of similar samples to those used in the column experiments showed that the geometry of the visible blobs was generally not spherical; hence it is reasonable to suggest that this may explain the underprediction by the first model. We believe the thermodynamic model underestimates the interfacial area because it assumes that entrapment occurs only within the largest pores. We also calculated a modified version of this model assuming entrapment across all pore classes; this yielded values between 64 cm-1 and 14 cm-1, suggesting that this may be a more appropriate method.

  8. Laser Ablation Increases PEM/Catalyst Interfacial Area

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; Yalisove, Steve

    2009-01-01

    An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken

  9. Comparison of fluid-fluid interfacial areas measured with X-ray microtomography and interfacial partitioning tracer tests for the same samples

    NASA Astrophysics Data System (ADS)

    McDonald, Kieran; Carroll, Kenneth C.; Brusseau, Mark L.

    2016-07-01

    Two different methods are currently used for measuring interfacial areas between immiscible fluids within 3-D porous media, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Both methods were used in this study to measure nonwetting/wetting interfacial areas for a natural sand. The microtomographic imaging was conducted on the same packed columns that were used for the IPTTs. This is in contrast to prior studies comparing the two methods, for which in all cases different samples were used for the two methods. In addition, the columns were imaged before and after the IPTTs to evaluate the potential impacts of the tracer solution on fluid configuration and attendant interfacial area. The interfacial areas measured using IPTT are ˜5 times larger than the microtomographic-measured values, which is consistent with previous work. Analysis of the image data revealed no significant impact of the tracer solution on NAPL configuration or interfacial area. Other potential sources of error were evaluated, and all were demonstrated to be insignificant. The disparity in measured interfacial areas between the two methods is attributed to the limitation of the microtomography method to characterize interfacial area associated with microscopic surface roughness due to resolution constraints.

  10. Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code

    SciTech Connect

    Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.

    1992-01-01

    FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime.

  11. Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code

    SciTech Connect

    Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.

    1992-12-31

    FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime.

  12. Measurement and Estimation of Organic-Liquid/Water Interfacial Areas for Several Natural Porous Media

    SciTech Connect

    Brusseau, M.L.; Narter, M.; Schnaar, G.; Marble, J.

    2009-06-01

    The objective of this study was to quantitatively characterize the impact of porous-medium texture on interfacial area between immiscible organic liquid and water residing within natural porous media. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of solid and liquid phases in packed columns. The image data were processed to generate quantitative measurements of organic-liquid/water interfacial area and of organic-liquid blob sizes. Ten porous media, comprising a range of median grain sizes, grain-size distributions, and geochemical properties, were used to evaluate the impact of porous-medium texture on interfacial area. The results show that fluid-normalized specific interfacial area (A{sub f}) and maximum specific interfacial area (A{sub m}) correlate very well to inverse median grain diameter. These functionalities were shown to result from a linear relationship between effective organic-liquid blob diameter and median grain diameter. These results provide the basis for a simple method for estimating specific organic-liquid/water interfacial area as a function of fluid saturation for a given porous medium. The availability of a method for which the only parameter needed is the simple-to-measure median grain diameter should be of great utility for a variety of applications.

  13. Comparison of Interfacial Partitioning Tracer Test and X-ray Microtomography Measurements of Immiscible Fluid-Fluid Interfacial Areas within the Identical System

    NASA Astrophysics Data System (ADS)

    Carroll, K. C.; McDonald, K.; Brusseau, M. L. L.

    2015-12-01

    The interfacial area between immiscible fluids in porous media has been demonstrated to be a critical entity for improved understanding, characterization, and simulation of multiphase flow and mass transport in the subsurface. Two general methods are available for measuring interfacial areas for 3-D porous-media systems, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Each method has their associated advantages and disadvantages. A few prior research efforts have conducted comparative analyses of the two methods, which have generally indicated disparities in measured values for natural geomedia. For these studies, however, interfacial areas were measured for separate samples with each method due to method restrictions. Thus, to date, there has been no comparative analysis conducted wherein the two measurement methods were applied to the exact same sample. To address this issue, trichloroethene-water interfacial areas were measured for a system comprising a well-sorted, natural sand (median grain diameter of 0.323 mm) using both X-ray microtomography and IPTTs. The microtomographic imaging was conducted on the same packed columns used to conduct the IPTTs. Columns were imaged before and after the IPTTs to evaluate potential impacts of the tracer tests on fluid configuration. The interfacial areas measured using IPTT were 4-6 times larger than the microtomography results, which is consistent with previous work. This disparity was attributed to the inability of the microtomography method to characterize interfacial area associated with microscopic surface roughness. The results indicate that both methods provide useful measures of interfacial area as long as their limitations are recognized.

  14. PREDICTION OF INTERFACIAL AREAS DURING IMBIBITION IN SIMPLE POROUS MEDIA. (R827116)

    EPA Science Inventory

    The interfacial area between wetting (W-) and non-wetting (NW-) phases is one of the crucial parameters in several flow and transport processes in porous media. This paper gives predictions of such areas during imbibition (displacement of NW-phase by W) in simple porous media....

  15. Two-Fluid Models and Interfacial Area Transport in Microgravity Condition

    NASA Technical Reports Server (NTRS)

    Ishii, Mamoru; Sun, Xiao-Dong; Vasavada, Shilp

    2004-01-01

    The objective of the present study is to develop a two-fluid model formulation with interfacial area transport equation applicable for microgravity conditions. The new model is expected to make a leapfrog improvement by furnishing the constitutive relations for the interfacial interaction terms with the interfacial area transport equation, which can dynamically model the changes of the interfacial structures. In the first year of this three-year project supported by the U.S. NASA, Office of Biological and Physics Research, the primary focus is to design and construct a ground-based, microgravity two-phase flow simulation facility, in which two immiscible fluids with close density will be used. In predicting the two-phase flow behaviors in any two-phase flow system, the interfacial transfer terms are among the most essential factors in the modeling. These interfacial transfer terms in a two-fluid model specify the rate of phase change, momentum exchange, and energy transfer at the interface between the two phases. For the two-phase flow under the microgravity condition, the stability of the fluid particle interface and the interfacial structures are quite different from those under normal gravity condition. The flow structure may not reach an equilibrium condition and the two fluids may be loosely coupled such that the inertia terms of each fluid should be considered separately by use of the two-fluid model. Previous studies indicated that, unless phase-interaction terms are accurately modeled in the two-fluid model, the complex modeling does not necessarily warrant an accurate solution.

  16. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  17. Effect of Particulate Contaminants on the Development of Biofilms at Air/Water Interfaces.

    PubMed

    Zhang, Zhenhuan; Christopher, Gordon

    2016-03-22

    The development of biofilms at air/water or oil/water interfaces has important ramifications on several applications, but it has received less attention than biofilm formation on solid surfaces. A key difference between the growth of biofilms on solid surfaces versus liquid interfaces is the range of complicated boundary conditions the liquid interface can create that may affect bacteria, as they adsorb onto and grow on the interface. This situation is exacerbated by the existence of complex interfaces in which interfacially adsorbed components can even more greatly affect interfacial boundary conditions. In this work, we present evidence as to how particle-laden interfaces impact biofilm growth at an air/water interface. We find that particles can enhance the rate of growth and final strength of biofilms at liquid interfaces by providing sites of increased adhesive strength for bacteria. The increased adhesion stems from creating localized areas of hydrophobicity that protrude in the water phase and provide sites where bacteria preferentially adhere. This mechanism is found to be primarily controlled by particle composition, with particle size providing a secondary effect. This increased adhesion through interfacial conditions creates biofilms with properties similar to those observed when adhesion is increased through biological means. Because of the generally understood ubiquity of increased bacteria attachment to hydrophobic surfaces, this result has general applicability to pellicle formation for many pellicle-forming bacteria.

  18. Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact

    NASA Astrophysics Data System (ADS)

    Yang, Chunyan; Persson, Bo

    2008-03-01

    We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load [1-4]. For high load the contact area approaches to the nominal contact area (i.e., complete contact), and the interfacial separation approaches to zero. The present results may be very important for soft solids, e.g., rubber, or for very smooth surfaces, where complete contact can be reached at moderate high loads without plastic deformation of the solids. References: [1] C. Yang and B.N.J. Persson, arXiv:0710.0276, (to appear in Phys. Rev. Lett.) [2] B.N.J. Persson, Phys. Rev. Lett. 99, 125502 (2007) [3] L. Pei, S. Hyun, J.F. Molinari and M.O. Robbins, J. Mech. Phys. Sol. 53, 2385 (2005) [4] M. Benz, K.J. Rosenberg, E.J. Kramer and J.N. Israelachvili, J. Phy. Chem. B.110, 11884 (2006)

  19. Structure and orientation changes of omega- and gamma-gliadins at the air-water interface: a PM-IRRAS spectroscopy and Brewster angle microscopy study.

    PubMed

    Banc, Amélie; Desbat, Bernard; Renard, Denis; Popineau, Yves; Mangavel, Cécile; Navailles, Laurence

    2007-12-18

    Microscopic and molecular structures of omega- and gamma-gliadin monolayers at the air-water interface were studied under compression by three complementary techniques: compression isotherms, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). For high molecular areas, gliadin films are homogeneous, and a flat orientation of secondary structures relative to the interface is observed. With increasing compression, the nature and orientation of secondary structures changed to minimize the interfacial area. The gamma-gliadin film is the most stable at the air-water interface; its interfacial volume is constant with increasing compression, contrary to omega-gliadin films whose molecules are forced out of the interface. gamma-Gliadin stability at a high level of compression is interpreted by a stacking model.

  20. Thermocapillary migration of a drop: an exact solution with Newtonian interfacial rheology and stretching/shrinkage of interfacial area elements for small Marangoni numbers

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Subramanian, R. Shankar

    2004-01-01

    In this paper we analyze the effects of the following phenomena associated with the thermocapillary migration of a drop. The first is the influence of Newtonian surface rheology of the interface and the second is that of the energy changes associated with stretching and shrinkage of the interfacial area elements, when the drop is in motion. The former occurs because of dissipative processes in the interfacial region, such as when surfactant molecules are adsorbed at the interface in sufficient concentration. The interface is typically modeled in this instance by ascribing to it a surface viscosity. This is a different effect from that of interfacial tension gradients arising from surfactant concentration gradients. The stretching and shrinkage of interfacial area elements leads to changes in the internal energy of these elements that affects the transport of energy in the fluids adjoining the interface. When an element on the interface is stretched, its internal energy increases because of the increase in its area. This energy is supplied by the neighboring fluids that are cooled as a consequence. Conversely, when an element on the interface shrinks, the adjoining fluids are warmed. In the case of a moving drop, elements of interfacial area are stretched in the forward half of the drop, and are shrunk in the rear half. Consequently, the temperature variation on the surface of the drop and its migration speed are modified. The analysis of the motion of a drop including these effects was first performed by LeVan in 1981, in the limit when convective transport of momentum and energy are negligible. We extend the analysis of LeVan to include the convective transport of momentum by demonstrating that an exact solution of the momentum equation is obtained for an arbitrary value of the Reynolds number. This solution is then used to calculate the slightly deformed shape of the drop from a sphere.

  1. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  2. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    SciTech Connect

    Wardle, K.E.

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.

  3. Interfacial area and two-phase flow structure development measured by a double-sensor probe

    SciTech Connect

    Leung, Waihung; Revankar, S.T.; Ishii, Yoshihiko; Ishii, Mamoru.

    1992-06-01

    In this report, we studied the local phasic characters of dispersed flow regime both at the entrance and at the fully developed regions. Since the dispersed phase is distributed randomly in the medium and enclosed in relatively small interfaces, the phasic measurement becomes difficult to obtain. Local probe must be made with a miniaturized sensor in order to reduce the interface distortion. The double-sensor resistivity probe has been widely used in local void fraction and interface velocity measurements because the are small in comparison with the interfaces. It has been tested and proved to be an accurate local phasic measurement tool. In these experiments, a double-sensor probe was employed to measure the local void fraction and interface velocity in an air-water system. The test section was flow regime can be determined by visualization. Furthermore, local phasic measurements can be verified by photographic studies. We concentrated our study on the bubbly flow regime only. The local measurements were conducted at two axial locations, L/D = 8 and 60, in which the first measurement represents the entrance region where the flow develops, and the second measurement represents the fully developed flow region where the radial profile does not change as the flow moves along the axial direction. Four liquid flow rates were chosen in combination with four different gas injection rates. The superficial liquid velocities were j{sub t} = 1.0, 0.6,0.4, and 0.1 m/s and superficial gas velocities were j{sub g} = 0.0965, 0.0696, 0.0384, and 0.0192 m/s. These combinations put the two-phase flow well in the bubbly flow regime. In this sequence of phenomenological studies, the local void fraction, interface area concentration, sauter mean diameter, bubble velocity and bubble frequency were measured.

  4. A CSF-SPH method for simulating drainage and imbibition at pore-scale resolution while tracking interfacial areas

    NASA Astrophysics Data System (ADS)

    Sivanesapillai, Rakulan; Falkner, Nadine; Hartmaier, Alexander; Steeb, Holger

    2016-09-01

    We present a conservative smoothed particle hydrodynamics (SPH) model to study the flow of multiple, immiscible fluid phases in porous media using direct pore-scale simulations. Particular focus is put on continuously tracking the evolution of interfacial areas, which are considered to be important morphological quantities affecting multiphase transport in porous media. In addition to solving the Navier-Stokes equations, the model accounts for the effects of capillarity at interfaces and contact lines. This is done by means of incorporating the governing interfacial mass and momentum balances using the continuum surface force (CSF) method, thus rendering model calibration routines unnecessary and minimizing the set of constitutive and kinematic assumptions. We address the application of boundary conditions at rigid solid surfaces and study the predictive capability of the model as well as optimal choices for numerical parameters using an extensive model validation procedure. We demonstrate the applicability of the model to simulate multiphase flows involving partial wettability, dynamic effects, large density ratios (up to 1000), large viscosity ratios (up to 100), as well as fragmentation and coalescence of fluid phases. The model is used to study the evolution of fluid-fluid interfacial areas during saturation-controlled primary drainage and main imbibition of heterogeneous pore spaces at low capillary numbers. A variety of pore-scale effects, such as wetting phase entrapment and fragmentation due to snap-off, are observed. Specific fluid-fluid interfacial area is observed to monotonically increase during primary drainage and hysteretic effects are apparent during main imbibition.

  5. ISSUES IN SIMULATING ELEMENTAL MERCURY AIR/WATER EXCHANGE AND AQUEOUS MONOMETHYLMERCURY SPECIATION

    EPA Science Inventory

    This presentation focuses on two areas relevant to assessing the global fate and bioavailability of mercury: elemental mercury air/water exchange and aqueous environmental monomethylmercury speciation.

  6. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  7. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    PubMed

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after

  8. Interfacial area transport for reduced-gravity two-phase flows

    NASA Astrophysics Data System (ADS)

    Vasavada, Shilp

    An extensive experimental and theoretical study of two-phase flow behavior in reduced-gravity conditions has been performed as part of the current research and the results of the same are presented in this thesis. The research was undertaken to understand the behavior of two-phase flows in an environment where the gravity field is reduced as compared to that on earth. The goal of the study was to develop a model capable of predicting the flow behavior. An experimental program was developed and accomplished which simulated reduced-gravity conditions on earth by using two liquids of similar density, thereby decreasing the body force effect akin to actual reduced-gravity conditions. The justification and validation of this approach has been provided based on physical arguments as well as comparison of acquired data with that obtained aboard parabolic flights by previous researchers. The experimental program produced an extensive dataset of local and averaged two-phase flow parameters using state-of-the-art instrumentation. Such data were acquired for a wide range of flow conditions at different radial and axial locations in a 25 mm inner diameter test facility. The current dataset is, in the author's opinion, the most extensive and detailed dataset available for such conditions at present. Analysis of the data revealed important differences between two-phase flows in normal and reduced-gravity conditions. The data analysis also highlighted key interaction mechanisms between the fluid particles and physical phenomena occurring in two-phase flows under reduced-gravity conditions. The interfacial area transport equation (IATE) for reduced-gravity conditions has been developed by considering two groups of bubbles/drops and mechanistically modeling the interaction mechanisms. The developed model has been benchmarked against the acquired data and the predictions of the model compared favorably against the experimental data. This signifies the success achieved in modeling

  9. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  10. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds.

  11. The two-phase flow IPTT method for measurement of nonwetting-wetting liquid interfacial areas at higher nonwetting saturations in natural porous media

    NASA Astrophysics Data System (ADS)

    Zhong, Hua; El Ouni, Asma; Lin, Dan; Wang, Bingguo; Brusseau, Mark L.

    2016-07-01

    Interfacial areas between nonwetting-wetting (NW-W) liquids in natural porous media were measured using a modified version of the interfacial partitioning tracer test (IPTT) method that employed simultaneous two-phase flow conditions, which allowed measurement at NW saturations higher than trapped residual saturation. Measurements were conducted over a range of saturations for a well-sorted quartz sand under three wetting scenarios of primary drainage (PD), secondary imbibition (SI), and secondary drainage (SD). Limited sets of experiments were also conducted for a model glass-bead medium and for a soil. The measured interfacial areas were compared to interfacial areas measured using the standard IPTT method for liquid-liquid systems, which employs residual NW saturations. In addition, the theoretical maximum interfacial areas estimated from the measured data are compared to specific solid surface areas measured with the N2/BET method and estimated based on geometrical calculations for smooth spheres. Interfacial areas increase linearly with decreasing W-phase (water) saturation over the range of saturations employed. The maximum interfacial areas determined for the glass beads, which have no surface roughness, are 32 ± 4 and 36 ± 5 cm-1 for PD and SI cycles, respectively. The values are similar to the geometric specific solid surface area (31 ± 2 cm-1) and the N2/BET solid surface area (28 ± 2 cm-1). The maximum interfacial areas are 274 ± 38, 235 ± 27, and 581 ± 160 cm-1 for the sand for PD, SI, and SD cycles, respectively, and ˜7625 cm-1 for the soil for PD and SI. The maximum interfacial areas for the sand and soil are significantly larger than the estimated smooth-sphere specific solid surface areas (107 ± 8 cm-1 and 152 ± 8 cm-1, respectively), but much smaller than the N2/BET solid surface area (1387 ± 92 cm-1 and 55224 cm-1, respectively). The NW-W interfacial areas measured with the two-phase flow method compare well to values measured using the

  12. Fluorescence light microscopy of pulmonary surfactant at the air-water interface of an air bubble of adjustable size.

    PubMed

    Knebel, D; Sieber, M; Reichelt, R; Galla, H-J; Amrein, M

    2002-07-01

    The structural dynamics of pulmonary surfactant was studied by epifluorescence light microscopy at the air-water interface of a bubble as a model close to nature for an alveolus. Small unilamellar vesicles of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, a small amount of a fluorescent dipalmitoylphosphatidylcholine-analog, and surfactant-associated protein C were injected into the buffer solution. They aggregated to large clusters in the presence of Ca(2+) and adsorbed from these units to the interface. This gave rise to an interfacial film that eventually became fully condensed with dark, polygonal domains in a fluorescent matrix. When now the bubble size was increased or decreased, respectively, the film expanded or contracted. Upon expansion of the bubble, the dark areas became larger to the debit of the bright matrix and reversed upon contraction. We were able to observe single domains during the whole process. The film remained condensed, even when the interface was increased to twice its original size. From comparison with scanning force microscopy directly at the air-water interface, the fluorescent areas proved to be lipid bilayers associated with the (dark) monolayer. In the lung, such multilayer phase acts as a reservoir that guarantees a full molecular coverage of the alveolar interface during the breathing cycle and provides mechanical stability to the film.

  13. Protein interfacial structure and nanotoxicology

    NASA Astrophysics Data System (ADS)

    White, John W.; Perriman, Adam W.; McGillivray, Duncan J.; Lin, Jhih-Min

    2009-02-01

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between β-casein and κ-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a β-casein monolayer is attacked by a κ-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a β-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle "corona" thought to be important for nanoparticle-cell wall penetration.

  14. Two-phase flow interfacial structures in a rod bundle geometry

    NASA Astrophysics Data System (ADS)

    Paranjape, Sidharth S.

    Interfacial structure of air-water two-phase flow in a scaled nuclear reactor rod bundle geometry was studied in this research. Global and local flow regimes were obtained for the rod bundle geometry. Local two-phase flow parameters were measured at various axial locations in order to understand the transport of interfacial structures. A one-dimensional two-group interfacial area transport model was evaluated using the local parameter database. Air-water two-phase flow experiments were performed in an 8 X 8 rod bundle test section to obtain flow regime maps at various axial locations. Area averaged void fraction was measured using parallel plate type impedance void meters. The cumulative probability distribution functions of the signals from the impedance void meters were used along with a self organizing neural network to identify flow regimes. Local flow regime maps revealed the cross-sectional distribution of flow regimes in the bundle. Local parameters that characterize interfacial structure, that is, void fraction alpha, interfacial area concentration, ai, bubble Sauter mean diameter, DSm and bubble velocity, vg were measured using four sensor conductivity probe technique. The local data revealed the distribution of the interfacial structure in the radial direction, as well as its development in the axial direction. In addition to this, the effect of spacer grid on the flow structure at different gas and liquid velocities was revealed by local parameter measurements across the spacer grids. A two-group interfacial area transport equation (IATE) specific to rod bundle geometry was derived. The derivation of two-group IATE required certain assumption on the bubble shapes in the subchannels and the bubbles spanning more than a subchannel. It was found that the geometrical relationship between the volume and the area of a cap bubble distorted by rods was similar to the one derived for a confined channel under a specific geometrical transformation. The one

  15. Cleaning verification by air/water impingement

    NASA Technical Reports Server (NTRS)

    Jones, Lisa L.; Littlefield, Maria D.; Melton, Gregory S.; Caimi, Raoul E. B.; Thaxton, Eric A.

    1995-01-01

    This paper will discuss how the Kennedy Space Center intends to perform precision cleaning verification by Air/Water Impingement in lieu of chlorofluorocarbon-113 gravimetric nonvolatile residue analysis (NVR). Test results will be given that demonstrate the effectiveness of the Air/Water system. A brief discussion of the Total Carbon method via the use of a high temperature combustion analyzer will also be given. The necessary equipment for impingement will be shown along with other possible applications of this technology.

  16. Understanding the structure of hydrophobic surfactants at the air/water interface from molecular level.

    PubMed

    Zhang, Li; Liu, Zhipei; Ren, Tao; Wu, Pan; Shen, Jia-Wei; Zhang, Wei; Wang, Xinping

    2014-11-25

    Understanding the behavior of fluorocarbon surfactants at the air/water interface is crucial for many applications, such as lubricants, paints, cosmetics, and fire-fighting foams. In this study, molecular dynamics (MD) simulations were employed to investigate the microscopic properties of non-ionic fluorocarbon surfactants at the air/water interface. Several properties, including the distribution of head groups, the distribution probability of the tilt angle between hydrophobic tails with respect to the xy plane, and the order parameter of surfactants, were computed to probe the structure of hydrophobic surfactants at the air/water interface. The effects of the monomer structure on interfacial phenomena of non-ionic surfactants were investigated as well. It is observed that the structure of fluorocarbon surfactants at the air/water interface is more ordered than that of hydrocarbons, which is dominated by the van der Waals interaction between surfactants and water molecules. However, replacing one or two CF2 with one or two CH2 group does not significantly influence the interfacial structure, suggesting that hydrocarbons may be promising alternatives to perfluorinated surfactants.

  17. Interfacial characteristic measurements in horizontal bubbly two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Huang, W. D.; Srinivasmurthy, S.; Kocamustafaogullari, G.

    1990-10-01

    Advances in the study of two-phase flow increasingly require detailed internal structure information upon which theoretical models can be formulated. The void fraction and interfacial area are two fundamental parameters characterizing the internal structure of two-phase flow. However, little information is currently available on these parameters, and it is mostly limited to vertical flow configurations. In view of the above, the internal phase distribution of concurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.59 m/s, respectively, and average void fractions ranged from 2.12 to 22.5 percent. The local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity, bubble chord-length and bubble frequency distributions were measured. The experimental results indicate that the void fraction interfacial area concentration and bubble frequency have local maxima near the upper pipe wall, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can go up to 900 approximately 1000 sq m/cu m, and the bubble frequency can reach a value of 2200 per s. These ranges of values have never been reported for vertical bubbly flow. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency.

  18. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using

  19. Surface coupling effects on contact mechanics: contact area and interfacial separation between an elastic solid and a hard substrate with randomly rough, self-affine fractal surfaces

    NASA Astrophysics Data System (ADS)

    Feshanjerdi, M.; Masoudi, A. A.; Khorrami, M.

    2016-12-01

    The objective of this study is to investigate both the contact area and the interfacial separation between two surfaces. Both surfaces are considered to be rough, one of them being elastic and the other one hard. The work is based on an extended version of Persson's model of contact mechanics to study the behavior of the contact area, the interfacial separation and the pressure distribution. The results are compared with the case merely the hard substrate is rough. It is seen that introducing a roughness in the elastic surface decreases the real contact, if the surfaces are uncorrelated. A positive (negative) correlation increases (decreases) the real contact. A reverse pattern occurs for the width of the pressure distribution, as well as the interfacial separation (at equal pressures).

  20. Dynamic film and interfacial tensions in emulsion and foam systems

    SciTech Connect

    Kim, Y.H.; Koczo, K.; Wasan, D.T.

    1997-03-01

    In concentrated fluid dispersions the liquid films are under dynamic conditions during film rupture or drainage. Aqueous foam films stabilized with sodium decylsulfonate and aqueous emulsion films stabilized with the nonionic Brij 58 surfactant were formed at the tip of a capillary and the film tension was measured under static and dynamic conditions. In the stress relaxation experiments the response of the film tension to a sudden film area expansion was studied. These experiments also allowed the direct measurement of the Gibbs film elasticity. In the dynamic film tension experiments, the film area was continuously increased by a constant rate and the dynamic film tension was monitored. The measured film tensions were compared with the interfacial tensions of the respective single air/water and oil/water interfaces, which were measured using the same radius of curvature, relative expansion, and expansion rate as in the film studies. It was found that under dynamic conditions the film tension is higher than twice the single interfacial tension (IFT) and a mechanism was suggested to explain the difference. When the film, initially at equilibrium, is expanded and the interfacial area increases, a substantial surfactant depletion occurs inside the film. As a result, the surfactant can be supplied only from the adjoining meniscus (Plateau border) by surface diffusion, and the film tension is controlled by the diffusion and adsorption of surfactant in the meniscus. The results have important implications for the stability and rheology of foams and emulsions with high dispersed phase ratios (polyhedral structure).

  1. Toward mechanistic understanding of nuclear reprocessing chemistries by quantifying lanthanide solvent extraction kinetics via microfluidics with constant interfacial area and rapid mixing.

    PubMed

    Nichols, Kevin P; Pompano, Rebecca R; Li, Liang; Gelis, Artem V; Ismagilov, Rustem F

    2011-10-05

    The closing of the nuclear fuel cycle is an unsolved problem of great importance. Separating radionuclides produced in a nuclear reactor is useful both for the storage of nuclear waste and for recycling of nuclear fuel. These separations can be performed by designing appropriate chelation chemistries and liquid-liquid extraction schemes, such as in the TALSPEAK process (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes). However, there are no approved methods for the industrial scale reprocessing of civilian nuclear fuel in the United States. One bottleneck in the design of next-generation solvent extraction-based nuclear fuel reprocessing schemes is a lack of interfacial mass transfer rate constants obtained under well-controlled conditions for lanthanide and actinide ligand complexes; such rate constants are a prerequisite for mechanistic understanding of the extraction chemistries involved and are of great assistance in the design of new chemistries. In addition, rate constants obtained under conditions of known interfacial area have immediate, practical utility in models required for the scaling-up of laboratory-scale demonstrations to industrial-scale solutions. Existing experimental techniques for determining these rate constants suffer from two key drawbacks: either slow mixing or unknown interfacial area. The volume of waste produced by traditional methods is an additional, practical concern in experiments involving radioactive elements, both from disposal cost and experimenter safety standpoints. In this paper, we test a plug-based microfluidic system that uses flowing plugs (droplets) in microfluidic channels to determine absolute interfacial mass transfer rate constants under conditions of both rapid mixing and controlled interfacial area. We utilize this system to determine, for the first time, the rate constants for interfacial transfer of all lanthanides, minus promethium, plus yttrium, under TALSPEAK

  2. pH effects on the molecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology.

    PubMed

    Engelhardt, Kathrin; Lexis, Meike; Gochev, Georgi; Konnerth, Christoph; Miller, Reinhard; Willenbacher, Norbert; Peukert, Wolfgang; Braunschweig, Björn

    2013-09-17

    Macroscopic properties of aqueous β-lactoglobulin (BLG) foams and the molecular properties of BLG modified air-water interfaces as their major structural element were investigated with a unique combination of foam rheology measurements and interfacial sensitive methods such as sum-frequency generation and interfacial dilatational rheology. The molecular structure and protein-protein interactions at the air-water interface can be changed substantially with the solution pH and result in major changes in interfacial dilational and foam rheology. At a pH near the interfacial isoelectric point BLG molecules carry zero net charge and disordered multilayers with the highest interfacial dilatational elasticity are formed at the air-water interface. Increasing or decreasing the pH with respect to the isoelectric point leads to the formation of a BLG monolayer with repulsive electrostatic interactions among the adsorbed molecules which decrease the interfacial dilational elasticity. The latter molecular information does explain the behavior of BLG foams in our rheological studies, where in fact the highest apparent yield stresses and storage moduli are established with foams from electrolyte solutions with a pH close to the isoelectric point of BLG. At this pH the gas bubbles of the foam are stabilized by BLG multilayers with attractive intermolecular interactions at the ubiquitous air-water interfaces, while BLG layers with repulsive interactions decrease the apparent yield stress and storage moduli as stabilization of gas bubbles with a monolayer of BLG is less effective.

  3. The Influence of Short-Chain Alcohols on Interfacial Tension, Mechanical Properties, Area/Molecule, and Permeability of Fluid Lipid Bilayers

    PubMed Central

    Ly, Hung V.; Longo, Marjorie L.

    2004-01-01

    We used micropipette aspiration to directly measure the area compressibility modulus, bending modulus, lysis tension, lysis strain, and area expansion of fluid phase 1-stearoyl, 2-oleoyl phosphatidylcholine (SOPC) lipid bilayers exposed to aqueous solutions of short-chain alcohols at alcohol concentrations ranging from 0.1 to 9.8 M. The order of effectiveness in decreasing mechanical properties and increasing area per molecule was butanol>propanol>ethanol>methanol, although the lysis strain was invariant to alcohol chain-length. Quantitatively, the trend in area compressibility modulus follows Traube's rule of interfacial tension reduction, i.e., for each additional alcohol CH2 group, the concentration required to reach the same area compressibility modulus was reduced roughly by a factor of 3. We convert our area compressibility data into interfacial tension values to: confirm that Traube's rule is followed for bilayers; show that alcohols decrease the interfacial tension of bilayer-water interfaces less effectively than oil-water interfaces; determine the partition coefficients and standard Gibbs adsorption energy per CH2 group for adsorption of alcohol into the lipid headgroup region; and predict the increase in area per headgroup as well as the critical radius and line tension of a membrane pore for each concentration and chain-length of alcohol. The area expansion predictions were confirmed by direct measurements of the area expansion of vesicles exposed to flowing alcohol solutions. These measurements were fitted to a membrane kinetic model to find membrane permeability coefficients of short-chain alcohols. Taken together, the evidence presented here supports a view that alcohol partitioning into the bilayer headgroup region, with enhanced partitioning as the chain-length of the alcohol increases, results in chain-length-dependent interfacial tension reduction with concomitant chain-length-dependent reduction in mechanical moduli and membrane thickness. PMID

  4. Anisotropic orientational motion of molecular adsorbates at the air-water interface

    SciTech Connect

    Zimdars, D.; Dadap, J.I.; Eisenthal, K.B.; Heinz, T.F.

    1999-04-29

    The ultrafast orientational motions of coumarin 314 (C314) adsorbed at the air/water interface were investigated by time-resolved surface second harmonic generation (TRSHG). The theory and method of using TRSHG to detect both out-of-plane and in-plane orientational motions are discussed. The interfacial solute motions were found to be anisotropic, with differing out-of-plane and in-plane reorientation time constants. This report presents the first direct observation of in-plane orientational motion of a molecule (C314) at the air/water interface using TRSHG. The in-plane reorientation time constant is 600 {+-} 40 ps. The out-of-plane reorientation time constant is 350 {+-} 20 ps. The out-of-plane orientational motion of C314 is similar to the previous results on rhodamine 6G at the air/water interface which indicated increased interfacial friction compared with bulk aqueous solution. The surface reorientation times are 2--3 times slower than the bulk isotropic orientational diffusion time.

  5. Hydrodynamics of a self-propelled camphor boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Akella, Sathish; Singh, Dhiraj; Singh, Ravi; Bandi, Mahesh

    2015-11-01

    A camphor tablet, when placed at the air-water interface undergoes sublimation and camphor vapour spreads radially outwards across the surface due to Marangoni forces. This steady camphor influx from tablet onto the air-water interface is balanced by the camphor outflux due to evaporation. When spontaneous fluctuations in evaporation break the axial symmetry of Marangoni force acting radially outwards, the camphor tablet is propelled like a boat along the water surface. We report experiments on the hydrodynamics of a self-propelled camphor boat at air-water interfaces. We observe three different modes of motion, namely continuous, harmonic and periodic, due to the volatile nature of camphor. We explain these modes in terms of ratio of two time-scales: the time-scale over which viscous forces are dominant over the Marangoni forces (τη) and the time-scale over which Marangoni forces are dominant over the viscous forces (τσ). The continuous, harmonic and periodic motions are observed when τη /τσ ~ 1 , τη /τσ >= 1 and τη /τσ >> 1 respectively. Experimentally, the ratio of the time scales is varied by changing the interfacial tension of the air-water interface using Sodium Dodecyl Sulfate. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  6. Tailored interfacial rheology for gastric stable adsorption layers.

    PubMed

    Scheuble, N; Geue, T; Windhab, E J; Fischer, P

    2014-08-11

    Human lipid digestion begins at the interface of oil and water by interfacial adsorption of lipases. Tailoring the available surface area for lipase activity can lead to specific lipid sensing in the body, thus, tailored satiety hormone release. In this study we present biopolymer layers at the MCT-oil/water interface with different stabilities under human gastric environment (37 °C, pH 2, pepsin). Physicochemical changes and enzymatic degradation of interfacial layers were monitored online by interfacial shear rheology. We show the weakening of β-lactoglobulin (β-lg) layers at body temperature and acidification and their hydrolysis by pepsin. If sufficient concentrations of nanocrystalline cellulose (NCC) are given to an existing β-lg layer, this weakening is buffered and the proteolysis delayed. A synergistic, composite layer is formed by adding methylated NCC to the β-lg layer. This layer thermogels at body temperature and resists hydrolysis by pepsin. Coexistence of these two emulsifiers at the air/water interface is evidenced by neutron reflectometry measurements, where morphological information are extracted. The utilized layers and their analysis provide knowledge of physicochemical changes during in vitro digestion of interfaces, which promote functional food formulations.

  7. Amphiphilic derivatives of dextran: adsorption at air/water and oil/water interfaces.

    PubMed

    Rotureau, E; Leonard, M; Dellacherie, E; Durand, A

    2004-11-01

    Ionic amphiphilic dextran derivatives were synthesized by the attachment of sodium sulfopropyl and phenoxy groups on the native polysaccharide. A family of dextran derivatives was thus obtained with varying hydrophobic content and charge density in the polymer chains. The surface-active properties of polymers were studied at the air-water and dodecane-water interfaces using dynamic surface/interfacial tension measurements. The adsorption was shown to begin in a diffusion-limited regime at low polymer concentrations, that is to say, with the diffusion of macromolecules in the bulk solution. In contrast, at long times the interfacial adsorption is limited by interfacial phenomena: adsorption kinetics or transfer into the adsorbed layer. A semiempirical equation developed by Filippov was shown to correctly fit the experimental curves over the whole time range. The presence of ionic groups in the chains strongly lowers the adsorption kinetics. This effect can be interpreted by electrostatic interactions between the free molecules and the already adsorbed ones. The adsorption kinetics at air-water and oil-water interfaces are compared.

  8. Tomographic investigation of the influence of initial wetting saturation, wettability and geometry of porous media on residual NAPL/water interfacial area

    NASA Astrophysics Data System (ADS)

    Al-Raoush, R. I.

    2010-12-01

    While fluid-fluid interfacial area is a key parameter governing many flow and transport processes in porous media, it is usually not accounted for in standard continuum-based models. In particular, fluid-fluid interfacial area is critical to such processes as dissolution, volatilization, biodegradation and to such constitutive relations as pressure-saturation and saturation-permeability. We present in this paper a pore-scale quantification of residual NAPL/water interfacial areas from high-resolution three-dimensional images at different experimental conditions. Experimental parameters of interest include geometry and wettability of porous media surfaces and initial saturation of the wetting phase. The synchrotron microtomography facility at the Advanced Photon Source, Argonne National Laboratory, was used to obtain three-dimensional images of the systems. Silica and quartz sands of different shape indices and different grain size distributions (median diameter ranged from 200 µm to 500 µm) were used to represent the porous media. Grain sizes were selected to achieve the minimum representative elementary volume of the samples. Residual NAPL in each sand system was obtained following cycles of drainage and imbibition of water and NAPL. Initial wetting saturations of the samples ranged from partial to complete saturation conditions. Five different fractionally wet sand systems (comprised of 100%, 75%, 50%, 25% and 0% hydrophobic mass fraction) were imaged and analyzed. Findings indicate that geometry and spatial variation in wettability of porous media surfaces have a significant impact on pore-scale characteristics of residual NAPL/water interfacial areas in porous media systems.

  9. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  10. Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate].

    PubMed

    Ojijo, Vincent; Sinha Ray, Suprakas; Sadiku, Rotimi

    2012-12-01

    Binary blends of two biodegradable polymers: polylactide (PLA), which has high modulus and strength but is brittle, and poly[(butylene succinate)-co-adipate] (PBSA), which is flexible and tough, were prepared through batch melt mixing. The PLA/PBSA compositions were 100/0, 90/10, 70/30, 60/40, 50/50, 40/60, 30/70, 10/90, and 0/100. Fourier-transform infrared measurements revealed the absence of any chemical interaction between the two polymers, resulting in a phase-separated morphology as shown by scanning electron microscopy (SEM). SEM micrographs showed that PLA-rich blends had smaller droplet sizes when compared to the PBSA-rich blends, which got smaller with the reduction in PBSA content due to the differences in their melt viscosities. The interfacial area of PBSA droplets per unit volume of the blend reached a maximum in the 70PLA/30PBSA blend. Thermal stability and mechanical properties were not only affected by the composition of the blend, but also by the interfacial area between the two polymers. Through differential scanning calorimetry, it was shown that molten PBSA enhanced crystallization of PLA while the stiff PLA hindered cold crystallization of PBSA. Optimal synergies of properties between the two polymers were found in the 70PLA/30PBSA blend because of the maximum specific interfacial area of the PBSA droplets.

  11. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media: A pore-scale network modeling approach

    NASA Astrophysics Data System (ADS)

    Raeesi, Behrooz; Piri, Mohammad

    2009-10-01

    SummaryWe use a three-dimensional mixed-wet random pore-scale network model to investigate the impact of wettability and trapping on the relationship between interfacial area, capillary pressure and saturation in two-phase drainage and imbibition processes. The model is a three-dimensional network of interconnected pores and throats of various geometrical shapes. It allows multiple phases to be present in each capillary element in wetting and spreading layers, as well as occupying the center of the pore space. Two different random networks that represent the pore space in Berea and a Saudi Arabia reservoir sandstone are used in this study. We allow the wettability of the rock surfaces contacted by oil to alter after primary drainage. The model takes into account both contact angle and trapping hystereses. We model primary oil drainage and water flooding for mixed-wet conditions, and secondary oil injection for a water-wet system. The total interfacial area for pores and throats are calculated when the system is at capillary equilibrium. They include contributions from the arc menisci (AMs) between the bulk and corner fluids, and from the main terminal menisci (MTMs) between different bulk fluids. We investigate hysteresis in these relationships by performing water injection into systems of varying wettability and initial water saturation. We show that trapping and contact angle hystereses significantly affect the interfacial area. In a strongly water-wet system, a sharp increase is observed at the beginning of water flood, which shifts the area to a higher level than primary drainage. As we change the wettability of the system from strongly water-wet to strongly oil-wet, the trapped oil saturation decreases significantly. Starting water flood from intermediate water saturations, greater than the irreducible water saturation, can also affect the non-wetting phase entrapment, resulting in different interfacial area behaviors. This can increase the interfacial area

  12. On the inclusion of the interfacial area between phases in the physical and mathematical description of subsurface multiphase flow. 1998 annual progress report

    SciTech Connect

    Gray, W.G.; Tompson, A.; Soll, W.E.

    1998-06-01

    'Improved capabilities for modeling multiphase flow in the subsurface requires that several aspects of the system which impact the flow and transport processes be more properly accounted for. A distinguishing feature of multiphase flow in comparison to single phase flow is the existence of interfaces between fluids. At the microscopic (pore) scale, these interfaces are known to influence system behavior by supporting non-zero stresses such that the pressures in adjacent phases are not equal. In problems of interphase transport at the macroscopic (core) scale, knowledge of the total amount of interfacial area in the system provides a clue to the effectiveness of the communication between phases. Although interfacial processes are central to multiphase flow physics, their treatment in traditional porous-media theories has been implicit rather than explicit; and no attempts have been made to systematically account for the evolution of the interfacial area in dynamic systems or to include the dependence of constitutive functions, such as capillary pressure, on the interfacial area. This project implements a three-pronged approach to assessing the importance of various features of multiphase flow to its description. The research contributes to the improved understanding and precise physical description of multiphase subsurface flow by combining: (1) theoretical derivation of equations, (2) lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and (3) solution of the field-scale equations using a discrete numerical method to assess the advantages and disadvantages of the complete theory. This approach includes both fundamental scientific inquiry and a path for inclusion of the scientific results obtained in a technical tool that will improve assessment capabilities for multiphase flow situations that have arisen due to the introduction of organic materials in the natural environment. This report summarizes work after 1.5 years of a 3

  13. Hydrodynamics of a fixed camphor boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Singh, Dhiraj; Akella, Sathish; Singh, Ravi; Mandre, Shreyas; Bandi, Mahesh

    2015-11-01

    A camphor tablet, when introduced at the air-water interface undergoes sublimation and the camphor vapour spreads radially outwards across the surface. This radial spreading of camphor is due to Marangoni forces setup by the camphor concentration gradient. We report experiments on the hydrodynamics of this process for a camphor tablet held fixed at the air-water interface. During the initial transient, the time-dependent spread radius R (t) of camphor scales algebraically with time t (R (t) ~t 1 / 2) in agreement with empirical scalings reported for spreading of volatile oils on water surface. But unlike surfactants, the camphor stops spreading when the influx of camphor from the tablet onto the air-water interface is balanced by the outflux of camphor due to evaporation, and a steady-state condition is reached. The spreading camphor however, shears the underlying fluid and sets up bulk convective flow. We explain the coupled steady-state dynamics between the interfacial camphor spreading and bulk convective flow with a boundary layer approximation, supported by experimental evidence. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  14. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE PAGES

    McClure, James E.; Berrill, Mark A.; Gray, William G.; ...

    2016-09-02

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  15. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    SciTech Connect

    McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.

    2016-09-02

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, or the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.

  16. Comparison of positional surfactant isomers for displacement of rubisco protein from the air-water interface.

    PubMed

    He, Lizhong; Onaizi, Sagheer A; Dimitrijev-Dwyer, Mirjana; Malcolm, Andrew S; Shen, Hsin-Hui; Dong, Chuchuan; Holt, Stephen A; Thomas, Robert K; Middelberg, Anton P J

    2011-08-15

    Protein-surfactant interaction, which is a function of the protein and surfactant characteristics, is a common phenomenon in a wide range of industrial applications. In this work, we used rubisco, the most abundant protein in nature, as a model protein and sodium dodecylbenzenesulfonate (SDOBS), one of the most widely used commercial surfactants, with two positional isomers (SDOBS-2 and SDOBS-6), as a model surfactant. We first examined the surface tension and the mechanical properties of interfacial mixed rubisco-SDOBS films adsorbed at the air-water interface. The concentration of rubisco in solution was fixed at 0.1 mg mL(-1) while the SDOBS concentration varied from 0 to 150 μM. Both the surface tension and the mechanical strength of the interfacial film decreased with increasing SDOBS concentration. Overall, the surface tension of a rubisco-SDOBS-6 mixture is lower than that of rubisco-SDOBS-2, while the mechanical strength of both systems is similar. Neutron reflection data suggest that rubisco protein is likely denatured at the interface. The populations of rubisco and SDOBS of the mixed systems at the interface were determined by combining non-deuterated and deuterated SDOBS to provide contrast variation. At a low surfactant concentration, SDOBS-6 has a stronger ability to displace rubisco from the air-water interface than SDOBS-2. However, when surfactant concentration reaches 50 μM, SDOBS-2 has a higher population than SDOBS-6, with more rubisco displaced from the interface. The results presented in this work suggest that the extent of protein displacement from the air-water interface, and hence the nature of the protein-surfactant interactions at the interface, are strongly affected by the position of surfactant isomerisation, which might allow the design of formulations for efficient removal of protein stains.

  17. Dynamic properties of cationic diacyl-glycerol-arginine-based surfactant/phospholipid mixtures at the air/water interface.

    PubMed

    Lozano, Neus; Pinazo, Aurora; Pérez, Lourdes; Pons, Ramon

    2010-02-16

    In this Article, we study the binary surface interactions of 1,2-dimyristoyl-rac-glycero-3-O-(N(alpha)-acetyl-L-arginine) hydrochloride (1414RAc) with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) on 0.1 M sodium chloride solutions. 1414RAc is a novel monocationic surfactant that has potential applications as an antimicrobial agent, is biodegradable, and shows a toxicity activity smaller than that of other commercial cationic surfactants. DPPC phospholipid was used as a model membrane component. The dynamic surface tension of 1414RAc/DPPC aqueous dispersions injected into the saline subphase was followed by tensiometry. The layer formation for the mixtures is always accelerated with respect to DPPC, and surprisingly, the surface tension reduction is faster and reaches lower surface tension values at surfactant concentration below its critical micellar concentration (cmc). Interfacial dilational rheology properties of mixed films spread on the air/water interface were determined by the dynamic oscillation method using a Langmuir trough. The effect of surfactant mole fraction on the rheological parameters of 1414RAc/DPPC mixed monolayers was studied at a relative amplitude of area deformation of 5% and a frequency of 50 mHz. The monolayer viscoelasticity shows a nonideal mixing behavior with predominance of the surfactant properties. This nonideal behavior has been attributed to the prevalence of electrostatic interactions.

  18. Chiral discrimination of a gemini-type surfactant with rigid spacer at the air-water interface.

    PubMed

    Shankar, B Vijai; Patnaik, Archita

    2007-10-04

    Spontaneous separation of chiral phases was observed in the monolayers of a racemate of gemini-type twin-tailed, twin-chiral amphiphiles, (2R,3R)-(+)-bis(decyloxy)succinic acid and (2S,3S)-(-)-bis(decyloxy)succinic acid. The pressure-area isotherms of the interfacial monolayers formed at the liquid-air interface, and the 2D lattice structures studied through surface probe measurements revealed that the racemate exhibits a homochiral discrimination of the enantiomers in two dimensions. An enantiomeric excess (e,e) of 20% was sufficient to break the chiral symmetry at the air-water interface for a homochiral interaction. Langmuir monolayers on ZnCl2 and CaCl2 subphases manifested chiral discrimination with Zn2+ evidencing homochiral interaction with a chelate-type complex, whereas Ca2+ resulted in a heterochiral interaction forming an ionic-type complex. For the chiral asymmetric units, oblique and rectangular unit cells of the racemic monolayer had exclusive requirements of homo- and heterochiral recognitions for Zn2+ and Ca2+ ions, respectively. Monolayers transferred from the condensed phase at 25 mN/m onto hydrophilic Si(100) and quartz substrates revealed the formation of bilayers through transfer-induced monolayer buckling. The emergence of homochiral discrimination was explained using the effective-pair-potential (EPP) approach.

  19. Emulsions for interfacial filtration.

    SciTech Connect

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.

    2006-11-01

    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  20. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2010-11-01

    In this contribution, we present experimental information about the effect of xanthan gum (XG) on the adsorption behaviour of two milk whey protein samples (MWP), beta-lactoglobulin (beta-LG) and whey protein concentrate (WPC), at the air-water interface. The MWP concentration studied corresponded to the protein bulk concentration which is able to saturate the air-water interface (1.0 wt%). Temperature, pH and ionic strength of aqueous systems were kept constant at 20 degrees C, pH 7 and 0.05 M, respectively, while the XG bulk concentration varied in the range 0.00-0.25 wt%. Biopolymer interactions in solution were analyzed by extrinsic fluorescence spectroscopy using 1-anilino-8-naphtalene sulphonic acid (ANS) as a protein fluorescence probe. Interfacial biopolymer interactions were evaluated by dynamic tensiometry and surface dilatational rheology. Adsorption behaviour was discussed from a rheokinetic point of view in terms of molecular diffusion, penetration and conformational rearrangement of adsorbed protein residues at the air-water interface. Differences in the interaction magnitude, both in solution and at the interface vicinity, and in the adsorption rheokinetic parameters were observed in MWP/XG mixed systems depending on the protein type (beta-LG or WPC) and biopolymer relative concentration. beta-LG adsorption in XG presence could be promoted by mechanisms based on biopolymer segregative interactions and thermodynamic incompatibility in the interface vicinity, resulting in better surface and viscoelastic properties. The same mechanism could be responsible of WPC interfacial adsorption in the presence of XG. The interfacial functionality of WPC was improved by the synergistic interactions with XG, although WPC chemical complexity might complicate the elucidation of molecular events that govern adsorption dynamics of WPC/XG mixed systems at the air-water interface.

  1. Interfacial structure of sugar beet pectin studied by atomic force microscopy.

    PubMed

    Gromer, A; Kirby, A R; Gunning, A P; Morris, V J

    2009-07-21

    Unlike pectins from other origins, sugar beet pectin (SBP) acts as an emulsifier, a property which has been correlated to its more hydrophobic character and high protein content. In this work, we have investigated the structure of SBP at interfaces by atomic force microscopy (AFM). Three situations were studied: the mica/water, graphite/water, and air/water interface. For the latter, the interfacial film was transferred onto mica using the Langmuir-Blodgett method. While the adsorption of individual pectin chains on mica requires the addition of divalent cations, on graphite a thin layer containing amorphous areas and rodlike chains forms spontaneously. We suggest that the layer contains proteins and pectin chains which are bound to the graphite via CH-pi interactions. SBP adsorbed at the air/water interface forms an elastic layer, as evidenced by pendant drop and surface shear rheology measurements. AFM Images reveal the layer is crippled with holes and contains rodlike chains, suggesting that the pectin chains prevent the formation of a densely packed protein layer. Nevertheless, we show that the interfacial pectin film is more resistant to displacement by surfactants than a pure protein film, possibly because of the formation of linkages between the pectin chains. In contrast, alkali treatment of the pectin appears to remove the pectin chains from the air/water interface and leaves a film that behaves similarly to pure protein. This work gives a new insight into the nanoscale organization of polysaccharides and polysaccharide-protein mixtures at macroscopic surfaces. The results gathered from the different interfaces studied permit a better understanding of the likely structure of SBP at the interface of emulsion droplets. Such knowledge might be used to modify rationally the pectin in order to improve its emulsifying properties, leading to broader commercial applications.

  2. Methylglyoxal at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Wren, S. N.; Gordon, B. P.; McWilliams, L.; Valley, N. A.; Richmond, G.

    2014-12-01

    Recently, it has been suggested that aqueous-phase processing of atmospheric α-dicarbonyl compounds such as methylglyoxal (MG) could constitute an important source of secondary organic aerosol (SOA). The uptake of MG to aqueous particles is higher than expected due to the fact that its carbonyl moieties can hydrate to form diols, as well as the fact that MG can undergo aldol condensation reactions to form larger oligomers in solution. MG is known to be surface active but an improved description of its surface behaviour is crucial to understanding MG-SOA formation, in addition to understanding its gas-to-particle partitioning and cloud forming potential. Here, we employ a combined experimental and theoretical approach involving vibrational sum frequency generation spectroscopy (VSFS), surface tensiometry, molecular dynamics simulations, and density functional theory calculations to study MG's surface adsorption, in both the presence and absence of salts. We are particularly interested in determining MG's hydration state at the surface. Our experimental results indicate that MG slowly adsorbs to the air-water interface and strongly perturbs the water structure there. This perturbation is enhanced in the presence of NaCl. Together our experimental and theoretical results suggest that singly-hydrated MG is the dominant form of MG at the surface.

  3. Sorption and Interfacial Rheology Study of Model Asphaltene Compounds.

    PubMed

    Pradilla, Diego; Simon, Sébastien; Sjöblom, Johan; Samaniuk, Joseph; Skrzypiec, Marta; Vermant, Jan

    2016-03-29

    The sorption and rheological properties of an acidic polyaromatic compound (C5PeC11), which can be used to further our understanding of the behavior of asphaltenes, are determined experimentally. The results show that C5PeC11 exhibits the type of pH-dependent surface activity and interfacial shear rheology observed in C6-asphaltenes with a decrease in the interfacial tension concomitant with the elastic modulus when the pH increases. Surface pressure-area (Π-A) isotherms show evidence of aggregation behavior and π-π stacking at both the air/water and oil/water interfaces. Similarly, interactions between adsorbed C5PeC11 compounds are evidenced through desorption experiments at the oil/water interface. Contrary to indigenous asphaltenes, adsorption is reversible, but desorption is slower than for noninteracting species. The reversibility enables us to create layers reproducibly, whereas the presence of interactions between the compounds enables us to mimic the key aspects of interfacial activity in asphaltenes. Shear and dilatational rheology show that C5PeC11 forms a predominantly elastic film both at the liquid/air and the liquid/liquid interfaces. Furthermore, a soft glassy rheology model (SGR) fits the data obtained at the liquid/liquid interface. However, it is shown that the effective noise temperature determined from the SGR model for C5PeC11 is higher than for indigenous asphaltenes measured under similar conditions. Finally, from a colloidal and rheological standpoint, the results highlight the importance of adequately addressing the distinction between the material functions and true elasticity extracted from a shear measurement and the apparent elasticity measured in dilatational-pendant drop setups.

  4. Characterizing the Impact of Enhanced Solubilization Reagents on Organic-Liquid Morphology and Organic-Liquid/Water Interfacial Area Using Synchrotron X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Narter, M.; Brusseau, M.

    2010-12-01

    A primary goal of enhanced solubilization reagents is to increase contaminant mass transfer into the aqueous phase in order to achieve faster and more efficient mass removal from the subsurface. The rate of mass transfer depends on the degree of contact between the aqueous phase and the contaminant, and thus is dependent upon the interfacial area between the two phases. It is therefore important to understand the impact of enhanced solubilization reagents on organic-liquid distribution and morphology. This was accomplished using synchrotron X-ray microtomography to examine entrapped organic liquid in a natural porous medium. Polyoxyethylene Sorbitan Monooleate (tween 80), hydroxypropyl-β-cyclodextrin (HPCD), sodium dodecyl sulfate (SDS), and ethanol were used as the solubilization agents. Tetrachloroethene (PCE) was used as the entrapped organic immiscible liquid. Microtomography images were collected prior to and after successive floods with three concentrations of each reagent. The results were compared to those obtained from equivalent experiments conducted with water flooding.

  5. Ionic Nature of a Gemini Surfactant at the Air/Water Interface.

    PubMed

    Phan, Chi M; Nguyen, Cuong V; Nakahara, Hiromichi; Shibata, Osamu; Nguyen, Thanh V

    2016-12-06

    The ionic state of an adsorbed gemini surfactant at the air/water interface was investigated using a combination of surface potential and surface tension data. The combined model was developed and successfully described the experimental data. The results verified the existence of three ionic states of the gemini surfactant in the interfacial zone. Furthermore, the model can quantify the adsorbed concentrations of these species. At low concentrations, the fully dissociated state dominates the adsorption. At high concentrations, the fully associated state dominates, accounting for up to 80% of the total adsorption. In the middle range, the adsorption is dominated by the partially associated state, which has a maximum percentage of 80% at a critical micelle concentration of 0.5. The variation in the ionic state is a unique characteristic of gemini surfactants, which can be the underlying mechanism for their advantages over conventional surfactants.

  6. A model for sound velocity in a two-phase air-water bubbly flow

    SciTech Connect

    Chung, N.M.; Lin, W.K.; Pei, B.S.; Hsu, Y.Y. )

    1992-07-01

    In this paper, wave propagation in a homogeneous, low void fraction, two-phase air-water bubbly flow is analyzed through the compressibility of a single bubble to derive a P({rho}) relation; the dispersion relation is then derived by a homogeneous model. The phase velocity and attenuation calculated from the model are compared with existing data and are in good agreement. The momentum transfer effect is considered through the virtual mass term and is significant at a higher void fraction. The interfacial heat transfer between phases is significant at low frequency, while bubble scattering effects are important at high frequency (near resonance). Bubble behavior at both low and high frequency is derived based on the isothermal and the adiabatic cases, respectively. The phase velocity occurs at the limiting condition in both cases. Furthermore, resonance is present in the model, and the resonant frequency is determined.

  7. Mechanical Stability of Polystyrene and Janus Particle Monolayers at the Air/Water Interface.

    PubMed

    Lenis, Jessica; Razavi, Sepideh; Cao, Kathleen D; Lin, Binhua; Lee, Ka Yee C; Tu, Raymond S; Kretzschmar, Ilona

    2015-12-16

    The compressional instability of particle-laden air/water interfaces is investigated with plain and surface-anisotropic (Janus) particles. We hypothesize that the amphiphilic nature of Janus particles leads to both anisotropic particle-particle and particle-interface interactions that can yield particle films with unique collapse mechanisms. Analysis of Langmuir isotherms and microstructural characterization of the homogeneous polystyrene particle films during compression reveal an interfacial buckling instability followed by folding, which is in good agreement with predictions from classical elasticity theory. In contrast, Janus particle films exhibit a different behavior during compression, where the collapse mode occurs through the subduction of the Janus particle film. Our results suggest that particle-laden films comprised of surface-anisotropic particles can be engineered to evolve new material properties.

  8. Thermodynamics of iodide adsorption at the instantaneous air-water interface

    NASA Astrophysics Data System (ADS)

    Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.

    2013-03-01

    We performed molecular dynamics simulations using both polarizable and non-polarizable force fields to study the adsorption of iodide to the air-water interface. A novel aspect of our analysis is that the progress of ion adsorption is measured as the distance from the instantaneous interface, which is defined by a coarse-graining scheme proposed recently by Willard and Chandler ["Instantaneous liquid interfaces," J. Phys. Chem. B 114, 1954-1958 (2010), 10.1021/jp909219k]. Referring structural and thermodynamic quantities to the instantaneous interface unmasks molecular-scale details that are obscured by thermal fluctuations when the same quantities are referred to an average measure of the position of the interface, such as the Gibbs dividing surface. Our results suggest that an ion adsorbed at the interface resides primarily in the topmost water layer, and the interfacial location of the ion is favored by enthalpy and opposed by entropy.

  9. Reversed interfacial fractionation of carbonate and bicarbonate evidenced by X-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Lam, Royce K.; Smith, Jacob W.; Rizzuto, Anthony M.; Karslıoǧlu, Osman; Bluhm, Hendrik; Saykally, Richard J.

    2017-03-01

    The fractionation of ions at liquid interfaces and its effects on the interfacial structure are of vital importance in many scientific fields. Of particular interest is the aqueous carbonate system, which governs both the terrestrial carbon cycle and physiological respiration systems. We have investigated the relative fractionation of carbonate, bicarbonate, and carbonic acid at the liquid/vapor interface finding that both carbonate (CO32-) and carbonic acid (H2CO3) are present in higher concentrations than bicarbonate (HCO3-) in the interfacial region. While the interfacial enhancement of a neutral acid relative to a charged ion is expected, the enhancement of doubly charged, strongly hydrated carbonate anion over the singly charged, less strongly hydrated bicarbonate ion is surprising. As vibrational sum frequency generation experiments have concluded that both carbonate and bicarbonate anions are largely excluded from the air/water interface, the present results suggest that there exists a significant accumulation of carbonate below the depletion region outside of the area probed by sum frequency generation.

  10. Shear turbulence, Langmuir circulation and scalar transfer at an air-water interface

    NASA Astrophysics Data System (ADS)

    Hafsi, Amine; Tejada-Martinez, Andres; Veron, Fabrice

    2016-11-01

    DNS of an initially quiescent coupled air-water interface driven by an air-flow with free stream speed of 5 m/s generates gravity-capillary waves and small-scale (centimeter-scale) Langmuir circulation (LC) beneath the interface. In addition to LC, the waterside turbulence is characterized by shear turbulence with structures similar to classical "wall streaks" in wall-bounded flow. These streaks, denoted here as "shear streaks", consist of downwind-elongated vortices alternating in sign in the crosswind direction. The presence of interfacial waves causes interaction between these vortices giving rise to bigger vortices, namely LC. LES with momentum equation augmented with the Craik-Leibovich (C-L) vortex force is used to understand the roles of the shear streaks (i.e. the shear turbulence) and the LC in determining scalar flux from the airside to the waterside and vertical scalar transport beneath. The C-L force consists of the cross product between the Stokes drift velocity (induced by the interface waves) and the flow vorticity. It is observed that Stokes drift shear intensifies the shear streaks (with respect to flow without wave effects) leading to enhanced scalar flux at the air-water interface. LC leads to increased vertical scalar transport at depths below the interface.

  11. Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface

    PubMed Central

    Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R.; Tang, Jay X.

    2013-01-01

    Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments. PMID:23823220

  12. Molecular adsorption steers bacterial swimming at the air/water interface.

    PubMed

    Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R; Tang, Jay X

    2013-07-02

    Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments.

  13. Mechanical properties of protein adsorption layers at the air/water and oil/water interface: a comparison in light of the thermodynamical stability of proteins.

    PubMed

    Mitropoulos, Varvara; Mütze, Annekathrin; Fischer, Peter

    2014-04-01

    Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates.

  14. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  15. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  16. Disclosing the distinct interfacial behaviors of structurally and configurationally diverse triazologlycolipids.

    PubMed

    He, Xiao-Peng; Xu, Xiaolian; Zhang, Hai-Lin; Chen, Guo-Rong; Xu, Shouhong; Liu, Honglai

    2011-08-16

    1- or 6-Triazologluco- and galactolipid derivatives bearing a lipid chain length of 16 carbons were efficiently constructed via click chemistry. The differentiation in their surface pressure-molecular area (π-A) isotherms first implies that these structurally and configurationally diverse amphiphiles adopt different distribution manner at air-water interfaces. The Langmuir-Blodgett (LB) films of the synthesized glycoconjugates on mica surface were subsequently prepared and visualized via atomic force microscopy (AFM), which exhibited diverse topographies and possess different contact angles with water. These data further suggest that the structural variation as well as epimeric identity of triazologlycolipids may result in their distinct interfacial behaviors at the air-solid interface. Furthermore, the addition of increasing amounts of 1-triazologalactolipid 2 to poly-diacetylene (PDA) was determined to impact the π-A isotherm of the latter, prompting us to further fabricate new colorimetrically detectable mixed-type vesicles containing triazologlycolipids for biochemical studies.

  17. Influence of material transition and interfacial area changes on flow and concentration in electro-osmotic flows.

    PubMed

    Rani, Sudheer D; You, Byoung-Hee; Soper, Steve A; Murphy, Michael C; Nikitopoulos, Dimitris E

    2013-04-03

    This paper presents a numerical study to investigate the effect of geometrical and material transition on the flow and progression of a sample plug in electrokinetic flows. Three cases were investigated: (a) effect of sudden cross-sectional area change (geometrical transition or mismatch) at the interface, (b) effect of only material transition (i.e. varying ζ-potential), and (c) effect of combined material transition and cross-sectional area change at the interface. The geometric transition was quantified based on the ratio of reduced flow area A2 at the mismatch plane to the original cross-sectional area A1. Multiple simulations were performed for varying degrees of area reduction i.e. 0-75% reduction in the available flow area, and the effect of dispersion on the sample plug was quantified by standard metrics. Simulations showed that a 13% combined material and geometrical transition can be tolerated without significant loss of sample resolution. A 6.54% reduction in the flow rates was found between 0% and 75% combined material and geometrical transition.

  18. Fabrication of Large-Area Two-Dimensional Microgel Colloidal Crystals via Interfacial Thiol-Ene Click Reaction.

    PubMed

    Li, Xiaoyun; Weng, Junying; Guan, Ying; Zhang, Yongjun

    2016-04-26

    A method for the fabrication of high quality, large area 2D colloidal crystals (CCs) using poly(N-isopropylacrylamide) (PNIPAM) microgel sphere, an extremely soft colloid, as building block was proposed. First the microgel spheres were assembled into 3D colloidal crystals. The first 111 plane of the 3D crystal close to the substrate was then fixed in situ onto the substrate. Highly efficient photoinitiated thiol-ene coupling was chosen for the fixing purpose. Thanks to the high quality of 3D microgel CCs, the resulting 2D CCs exhibit a high degree of ordering. Large area 2D CCs were fabricated because large area 3D microgel CCs can be facilely fabricated. Besides planar substrates, the method allows the fabrication of 2D CCs on curved surface, too. In addition, the interpartical distance in the 2D CCs can be tuned by the concentration of the microgel dispersion.

  19. Foam fractionation as a tool to study the air-water interface structure-function relationship of wheat gluten hydrolysates.

    PubMed

    Wouters, Arno G B; Rombouts, Ine; Schoebrechts, Nele; Fierens, Ellen; Brijs, Kristof; Blecker, Christophe; Delcour, Jan A

    2017-03-01

    Enzymatic hydrolysis of wheat gluten protein improves its solubility and produces hydrolysates with foaming properties which may find applications in food products. First, we here investigated whether foam-liquid fractionation can concentrate wheat gluten peptides with foaming properties. Foam and liquid fractions had high and very low foam stability (FS), respectively. In addition, foam fractions were able to decrease surface tension more pronouncedly than un-fractionated samples and liquid fractions, suggesting they are able to arrange themselves more efficiently at an interface. As a second objective, foam fractionation served as a tool to study the structural properties of the peptides, causing these differences in air-water interfacial behavior. Zeta potential and surface hydrophobicity measurements did not fully explain these differences but suggested that hydrophobic interactions at the air-water interface are more important than electrostatic interactions. RP-HPLC showed a large overlap between foam and liquid fractions. However, a small fraction of very hydrophobic peptides with relatively high average molecular mass was clearly enriched in the foam fraction. These peptides were also more concentrated in un-fractionated DH 2 hydrolysates, which had high FS, than in DH 6 hydrolysates, which had low FS. These peptides most likely play a key role in stabilizing the air-water interface.

  20. Shear characteristics, miscibility, and topography of sodium caseinate-monoglyceride mixed films at the air-water interface.

    PubMed

    Rodríguez Patino, Juan M; Carrera Sánchez, Cecilio

    2004-01-01

    In this contribution, we are concerned with the study of structure, topography, and surface rheological characteristics (under shear conditions) of mixed sodium caseinate and monoglycerides (monopalmitin and monoolein) at the air/water interface. Combined surface chemistry (surface film balance and surface shear rheometry) and microscopy (Brewster angle microscopy, BAM) techniques have been applied in this study to mixtures of insoluble lipids and sodium caseinate spread at the air-water interface. At a macroscopic level, sodium caseinate and monoglycerides form an heterogeneous and practically immiscible monolayer at the air-water interface. The images from BAM show segregated protein and monoglyceride domains that have different topography. At surface pressures higher than that for the sodium caseinate collapse, this protein is displaced from the interface by monoglycerides. These results and those derived from interfacial shear rheology (at a macroscopic level) appear to support the idea that immiscibility and heterogeneity of these emulsifiers at the interface have important repercussions on the shear characteristics of the mixed films, with the alternating flow of segregated monoglyceride domains (of low surface shear viscosity, etas) and protein domains (of high etas) across the canal.

  1. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface.

    PubMed

    Vila Verde, Ana; Bolhuis, Peter G; Campen, R Kramer

    2012-08-09

    We use classical atomistic molecular dynamics simulations of two water models (SPC/E and TIP4P/2005) to investigate the orientation and reorientation dynamics of two subpopulations of OH groups belonging to water molecules at the air/water interface at 300 K: those OH groups that donate a hydrogen bond (called "bonded") and those that do not (called "free"). Free interfacial OH groups reorient in two distinct regimes: a fast regime from 0 to 1 ps and a slow regime thereafter. Qualitatively similar behavior was reported by others for free OH groups near extended hydrophobic surfaces. In contrast, the net reorientation of bonded OH groups occurs at a rate similar to that of bulk water. This similarity in reorientation rate results from compensation of two effects: decreasing frequency of hydrogen-bond breaking/formation (i.e., hydrogen-bond exchange) and faster rotation of intact hydrogen bonds. Both changes result from the decrease in density at the air/water interface relative to the bulk. Interestingly, because of the presence of capillary waves, the slowdown of hydrogen-bond exchange is significantly smaller than that reported for water near extended hydrophobic surfaces, but it is almost identical to that reported for water near small hydrophobic solutes. In this sense water at the air/water interface has characteristics of water of hydration of both small and extended hydrophobic solutes.

  2. Interaction between graphene oxide and Pluronic F127 at the air-water interface.

    PubMed

    Li, Shanghao; Guo, Jingru; Patel, Ravi A; Dadlani, Anup L; Leblanc, Roger M

    2013-05-14

    Triblock copolymer Pluronic F127 (PF127) has previously been demonstrated to disperse graphene oxide (GO) in electrolyte solution and block the hydrophobic interaction between GO and l-tryptophan and l-tyrosine. However, the nature of this interaction between PF127 and GO remains to be characterized and elucidated. In the present study, we aimed to characterize and understand the interaction between GO and PF127 using a 2-dimensional Langmuir monolayer methodology at the air-water interface by surface pressure-area isotherm measurement, stability, adsorption, and atomic force microscopy (AFM) imaging. Based on the observation of surface pressure-area isotherms, adsorption, and stability of PF127 and PF127/GO mixture at the air-water interface, GO is suggested to change the conformation of PF127 at the air-water interface and also drag PF127 from the interface to the bulk subphase. Atomic force microscopy (AFM) image supports this assumption, as GO and PF127 can be observed by spreading the subphase solution outside the compressing barriers, as shown in the TOC graphic.

  3. Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer.

    PubMed

    Keller, R; Kwak, M; de Vries, J W; Sawaryn, C; Wang, J; Anaya, M; Müllen, K; Butt, H-J; Herrmann, A; Berger, R

    2013-11-01

    The self-assembly of amphiphilic hybrid materials containing an oligonucleotide sequence at the air/water interface was investigated by means of pressure-molecular area (Π-A) isotherms. In addition, films were transferred onto solid substrates and imaged using scanning force microscopy. We used oligonucleotide molecules with lipid tails, which consisted of a single stranded oligonucleotide 11 mer containing two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases (dU11) at the 5'-end of the oligonucleotide sequence. The air/water interface was used as confinement for the self-assembling process of dU11. Scanning force microscopy of films transferred via Langmuir-Blodgett technique revealed mono-, bi- (Π ≥ 2 mN/m) and multilayer formation (Π ≥ 30 mN/m). The first layer was 1.6 ± 0.1 nm thick. It was oriented with the hydrophilic oligonucleotide moiety facing the hydrophilic substrate while the hydrophobic alkyl chains faced air. In the second layer the oligonucleotide moiety was found to face the air. The second layer was found to cover up to 95% of the sample area. Our measurements indicated that the rearrangement of the molecules into bi- and multiple bilayers happened already at the air/water interface. Similar results were obtained with a second type of oligonucleotide amphiphile, an oligonucleotide block copolymer, which was composed of an oligonucleotide 11 mer covalently attached at the terminus to polypropyleneoxide (PPO).

  4. Foaming and adsorption behavior of bovine and camel proteins mixed layers at the air/water interface.

    PubMed

    Lajnaf, Roua; Picart-Palmade, Laetitia; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A

    2017-03-01

    The aim of this work was to examine foaming and interfacial behavior of three milk protein mixtures, bovine α-lactalbumin-β-casein (M1), camel α-lactalbumin-β-casein (M2) and β-lactoglobulin-β-casein (M3), alone and in binary mixtures, at the air/water interface in order to better understand the foaming properties of bovine and camel milks. Different mixture ratios (100:0; 75:25; 50:50; 25:75; 0:100) were used during foaming tests and interfacial protein interactions were studied with a pendant drop tensiometer. Experimental results evidenced that the greatest foam was obtained with a higher β-casein amount in all camel and bovine mixtures. Good correlation was observed with the adsorption and the interfacial rheological properties of camel and bovine protein mixtures. The proteins adsorbed layers are mainly affected by the presence of β-casein molecules, which are probably the most abundant protein at interface and the most efficient in reducing the interfacial properties. In contrast of, the globular proteins, α-lactalbumin and β-lactoglobulin that are involved in the protein layer composition, but could not compact well at the interface to ensure foams creation and stabilization because of their rigid molecular structure.

  5. Mechanism of vibrational energy dissipation of free OH groups at the air-water interface.

    PubMed

    Hsieh, Cho-Shuen; Campen, R Kramer; Okuno, Masanari; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa

    2013-11-19

    Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air-water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air-H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces.

  6. Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors.

    PubMed

    Quijano, Guillermo; Rocha-Ríos, José; Hernández, Maria; Villaverde, Santiago; Revah, Sergio; Muñoz, Raúl; Thalasso, Frédéric

    2010-03-15

    The effect of liquid and solid transfer vectors (silicone oil and Desmopan, respectively) on the gaseous interfacial area (a(g)) was evaluated in a two-phase partitioning bioreactor (TPPB) using fresh mineral salt medium and the cultivation broth of a toluene degradation culture (Pseudomonas putida DOT-T1E cultures continuously cultivated with and without silicone oil at low toluene loading rates). Higher values of a(g) were recorded in the presence of both silicone oil and Desmopan compared to the values obtained in the absence of a vector, regardless of the aqueous medium tested (1.6 and 3 times higher, respectively, using fresh mineral salt medium). These improvements in a(g) were well correlated to the oxygen mass transfer enhancements supported by the vectors (1.3 and 2.5 for liquid and solid vectors, respectively, using fresh medium). In this context, oxygen transfer rates of 2.5 g O(2)L(-1)h(-1) and 1.3 g O(2)L(-1)h(-1) were recorded in the presence of Desmopan and silicone oil, respectively, which are in agreement with previously reported values in literature. These results suggest that mass transfer enhancements in TPPBs might correspond to an increase in a(g) rather than to the establishment of a high-performance gas/vector/water transfer pathway.

  7. Two-Phase Wall and Interfacial Friction Forces in Triangle Tight Lattice Rod Bundle Subchannel

    NASA Astrophysics Data System (ADS)

    Kawahara, Akimaro; Sadatomi, Michio; Shirai, Hiroshi

    In order to obtain the data on wall and interfacial friction forces for two-phase flows in a triangle tight lattice subchannel, adiabatic experiments were conducted for single- and two-phase flows under hydrodynamic equilibrium flow conditions. In the experiment, air was used as the test gas, while water and water with a surfactant as test liquids to know the effects of the reduced surface tension on the wall and the interfacial friction forces. The data showed that both the wall and the interfacial friction forces were higher in air-water with a surfactant system than air-water one. In the analysis, the respective data have been compared with the predicted values by existing correlations, and the existing correlations were modified to improve its prediction accuracy against the present data. The modified correlations can predict well the present data on the wall and the interfacial friction forces for both air-water and air-water with a surfactant systems.

  8. Morphological variation of stimuli-responsive polypeptide at air-water interface

    NASA Astrophysics Data System (ADS)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho

    2016-12-01

    The morphological variation of stimuli-responsive polypeptide molecules at the air-water interface as a function of temperature and compression was described. The surface pressure-area (π-A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir-Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air-water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π-A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air-water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  9. Studies of Athabasca asphaltene Langmuir films at air-water interface.

    PubMed

    Zhang, Li Yan; Lawrence, Steven; Xu, Zhenghe; Masliyah, Jacob H

    2003-08-01

    Asphaltenes are present in heavy oils and bitumen. They are a mixture of hydrocarbons having complex structures of polyaromatic rings and short side chains. In general, the high-molecular-weight asphaltene is the most aromatic fraction with the highest number of side chains and the low-molecular-weight asphaltene contains the lowest number of side chains, while the number of side chains of the whole asphaltene fraction lies in between. In this study, asphaltenes were extracted and/or fractionated from Athabasca oil sand bitumen. Subfractions of high and low molecular weight and the whole asphaltenes were characterized using a Langmuir trough and complementary techniques such as VPO, FTIR, AFM, and contact angle measurements. At an air-water interface, amphiphilic asphaltene molecules can form a monolayer. Various fractions (high, low, and whole) of the asphaltene molecules behave similarly at the air-water interface, characterized by close resemblance of their surface pressure-area, hysteresis, and relaxation isotherms. The high-molecular-weight asphaltene is the most expanded fraction, while the low-molecular-weight asphaltene fraction is the most condensed, with the whole asphaltene lying in between. At the air-water interface a monolayer of the low-molecular-weight asphaltene relaxes at a faster rate than one of the high-molecular-weight asphaltene.

  10. Coupling of phytoplankton uptake and air-water exchange of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Baker, J.E.; Ko, F.C.; Jeremiason, J.D.

    1999-10-15

    A dynamic model that couples air-water exchange and phytoplankton uptake of persistent organic pollutants has been developed and then applied to PCB data from a small experimental lake. A sensitivity analysis of the model, taking into account the influence of physical environmental conditions such as temperature, wind speed, and mixing depth as well as plankton-related parameters such as biomass and growth rate was carried out for a number of PCBs with different physical-chemical properties. The results indicate that air-water exchange dynamics are influenced not only by physical parameters but also by phytoplankton biomass and growth rate. New phytoplankton production results in substantially longer times to reach equilibrium. Phytoplankton uptake-induced depletion of the dissolved phase concentration maintains air and water phases out of equilibrium. Furthermore, PCBs in phytoplankton also take longer times to reach equilibrium with the dissolved water phase when the latter is supported by diffusive air-water exchange. However, both model analysis and model application to the Experimental Lakes Area of northwestern Ontario (Canada) suggest that the gas phase supports the concentrations of persistent organic pollutants, such as PCBs, in atmospherically driven aquatic environments.

  11. Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface.

    PubMed

    Engin, Ozge; Sayar, Mehmet

    2012-02-23

    Peptide oligomers play an essential role as model compounds for identifying key motifs in protein structure formation and protein aggregation. Here, we present our results, based on extensive molecular dynamics simulations, on adsorption, folding, and packing within a surface monolayer of an amphiphilic peptide at the air/water interface. Experimental results suggest that these molecules spontaneously form ordered monolayers at the interface, adopting a β-hairpin-like structure within the surface layer. Our results reveal that the β-hairpin structure can be observed both in bulk and at the air/water interface. However, the presence of an interface leads to ideal partitioning of the hydrophobic and hydrophilic residues, and therefore reduces the conformational space for the molecule and increases the stability of the hairpin structure. We obtained the adsorption free energy of a single β-hairpin at the air/water interface, and analyzed the enthalpic and entropic contributions. The adsorption process is favored by two main factors: (1) Free-energy reduction due to desolvation of the hydrophobic side chains of the peptide and release of the water molecules which form a cage around these hydrophobic groups in bulk water. (2) Reduction of the total air/water contact area at the interface upon adsorption of the peptide amphiphile. By performing mutations on the original molecule, we demonstrated the relative role of key design features of the peptide. Finally, by analyzing the potential of mean force among two peptides at the interface, we investigated possible packing mechanisms for these molecules within the surface monolayer.

  12. Rheology and microrheology of materials at the air-water interface

    NASA Astrophysics Data System (ADS)

    Walder, Robert Benjamin

    2008-10-01

    The study of materials at the air-water interface is an important area of research in soft condensed matter physics. Films at the air-water interface have been a system of interest to physics, chemistry and biology for the last 20 years. The unique properties of these surface films provide ideal models for 2-d films, surface chemistry and provide a platform for creating 2 dimensional analogue materials to cellular membranes. Measurements of the surface rheology of cross-linked F-actin networks associated with a lipid monolayer at the air-water interface of a Langmuir monolayer have been performed. The rheological measurements are made using a Couette cell. These data demonstrate that the network has a finite elastic modulus that grows as a function of the cross-linking concentration. We also note that under steady-state flow the system behaves as a power law fluid in which the effective viscosity decreases with imposed shear. A Langmuir monolayer trough that is equipped for simultaneous microrheology and standard rheology measurements has been constructed. The central elements are the trough itself with a full range of optical tools accessing the air-water interface from below the trough and a portable knife-edge torsion pendulum that can access the interface from above. The ability to simultaneously measure the mechanical response of Langmuir monolayers on very different length scales is an important step for our understanding of the mechanical response of two-dimensional viscoelastic networks. The optical tweezer microrheometer is used to study the micromechanical properties of Langmuir monolayers. Microrheology measurements are made a variety of surface pressures that correspond to different ordered phases of the monolayer. The complex shear modulus shows an order of magnitude increase for the liquid condensed phase of DPPC compared to the liquid expanded phase.

  13. External exposure to radionuclides in air, water, and soil

    SciTech Connect

    Eckerman, K.F.; Ryman, J.C.

    1996-05-01

    Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. The dose coefficients are intended for use by Federal Agencies in calculating the dose equivalent to organs and tissues of the body.

  14. Propagation of density disturbances in air-water flow

    NASA Technical Reports Server (NTRS)

    Nassos, G. P.

    1969-01-01

    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  15. Directed disassembly of an interfacial rubisco protein network.

    PubMed

    Onaizi, Sagheer A; Malcolm, Andrew S; He, Lizhong; Middelberg, Anton P J

    2007-05-22

    We present the first study of the directed disassembly of a protein network at the air-water interface by the synergistic action of a surfactant and an enzyme. We seek to understand the fundamentals of protein network disassembly by using rubisco adsorbed at the air-water interface as a model. We propose that rubisco adsorption at the air-water interface results in the formation of a fishnet-like network of interconnected protein molecules, capable of transmitting lateral force. The mechanical properties of the rubisco network during assembly and disassembly at the air-water interface were characterized by direct measurement of laterally transmitted force through the protein network using the Cambridge interfacial tensiometer. We have shown that, when used individually, either 2 ppm of the surfactant, sodium dodecyl benzyl sulfonate (SDOBS), or 2 ppm of the enzyme, subtilisin A (SA), were insufficient to completely disassemble the rubisco network within 1 h of treatment. However, a combination of 2 ppm SDOBS and 2 ppm SA led to almost complete disassembly within 1 h. Increasing the concentration of SA in the mixture from 2 to 10 ppm, while keeping the SDOBS concentration constant, significantly decreased the time required to completely disassemble the rubisco network. Furthermore, the initial rate of network disassembly using formulations containing SDOBS was surprisingly insensitive to this increase in SA concentration. This study gives insight into the role of lateral interactions between protein molecules at interfaces in stabilizing interfacial protein networks and shows that surfactant and enzyme working in combination proves more effective at disrupting and mobilizing the interfacial protein network than the action of either agent alone.

  16. Catechol oxidation by ozone and hydroxyl radicals at the air-water interface.

    PubMed

    Pillar, Elizabeth A; Camm, Robert C; Guzman, Marcelo I

    2014-12-16

    Anthropogenic emissions of aromatic hydrocarbons promptly react with hydroxyl radicals undergoing oxidation to form phenols and polyphenols (e.g., catechol) typically identified in the complex mixture of humic-like substances (HULIS). Because further processing of polyphenols in secondary organic aerosols (SOA) can continue mediated by a mechanism of ozonolysis at interfaces, a better understanding about how these reactions proceed at the air-water interface is needed. This work shows how catechol, a molecular probe of the oxygenated aromatic hydrocarbons present in SOA, can contribute interfacial reactive species that enhance the production of HULIS under atmospheric conditions. Reactive semiquinone radicals are quickly produced upon the encounter of 40 ppbv-6.0 ppmv O3(g) with microdroplets containing [catechol] = 1-150 μM. While the previous pathway results in the instantaneous formation of mono- and polyhydroxylated aromatic rings (PHA) and chromophoric mono- and polyhydroxylated quinones (PHQ), a different channel produces oxo- and dicarboxylic acids of low molecular weight (LMW). The cleavage of catechol occurs at the 1,2 carbon-carbon bond at the air-water interface through the formation of (1) an ozonide intermediate, (2) a hydroperoxide, and (3) cis,cis-muconic acid. However, variable [catechol] and [O3(g)] can affect the ratio of the primary products (cis,cis-muconic acid and trihydroxybenzenes) and higher order products observed (PHA, PHQ, and LMW oxo- and dicarboxylic acids). Secondary processing is confirmed by mass spectrometry, showing the production of crotonic, maleinaldehydic, maleic, glyoxylic, and oxalic acids. The proposed pathway can contribute precursors to aqueous SOA (AqSOA) formation, converting aromatic hydrocarbons into polyfunctional species widely found in tropospheric aerosols with light-absorbing brown carbon.

  17. Structure of Air-Water Bubbly Flow in a Vertical Annulus

    SciTech Connect

    Rong Situ; Takashi Hibiki; Ye Mi; Mamoru Ishii; Michitsugu Mori

    2002-07-01

    Local measurements of flow parameters were performed for vertical upward bubbly flows in an annulus. The annulus channel consisted of an inner rod with a diameter of 19.1 mm and an outer round tube with an inner diameter of 38.1 mm, and the hydraulic equivalent diameter was 19.1 mm. Double-sensor conductivity probe was used for measuring void fraction, interfacial area concentration, and interfacial velocity, and Laser Doppler anemometer was utilized for measuring liquid velocity and turbulence intensity. The mechanisms to form the radial profiles of local flow parameters were discussed in detail. The constitutive equations for distribution parameter and drift velocity in the drift-flux model, and the semi-theoretical correlation for Sauter mean diameter namely interfacial area concentration, which were proposed previously, were validated by local flow parameters obtained in the experiment using the annulus. (authors)

  18. Vibrational sum-frequency generation spectroscopy of ionic liquid 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate at the air-water interface

    NASA Astrophysics Data System (ADS)

    Saha, Ankur; SenGupta, Sumana; Kumar, Awadhesh; Choudhury, Sipra; Naik, Prakash D.

    2016-08-01

    The structure and orientation of room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [PF3(C2F5)3], commonly known as [bmim][fap], have been investigated at the air-[bmim][fap] and air-water interfaces, employing vibrational sum-frequency generation (VSFG) spectroscopy. The VSFG spectra in the CH stretch region suggest presence of the [bmim] cation at the interfaces. Studies reveal that the butyl chain protrudes out into air, and the imidazolium ring lies almost planar to the interface. The CH stretch intensities get enhanced at the air-water interface, mainly because of polar orientation of imidazolium cation induced by interfacial water molecules. The OH stretch intensities are also enhanced at the air-water interface due to polar orientation of interfacial water molecules induced by [bmim][fap]. The Brewster angle microscopy suggests self aggregation of [bmim][fap] in the presence of water, and the aggregation becomes extensive showing dense surface domains with time. However, the surface pressure is almost unaffected due to aggregation.

  19. Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry.

    PubMed

    Svitova, T F; Wetherbee, M J; Radke, C J

    2003-05-01

    Dynamic interfacial tensiometry, gauged by axisymmetric drop shape analysis of static drops or bubbles, provides useful information on surfactant adsorption kinetics. However, the traditional pendant-drop methodology is not readily amenable to the study of desorption kinetics. Thus, the question of sorption reversibility is difficult to assess by this technique. We extend classical pendant/sessile drop dynamic tensiometry by immersing a sessile bubble in a continuously mixed optical cell. Ideal-mixed conditions are established by stirring and by constant flow through the cell. Aqueous surface-active-agent solutions are either supplied to the cell (loading) or removed from the cell by flushing with water (washout), thereby allowing study of both adsorption and desorption kinetics. Well-mixed conditions and elimination of any mass transfer resistance permit direct identification of sorption kinetic barriers to and from the external aqueous phase with time constants longer than the optical-cell residence time. The monodisperse nonionic surfactant ethoxy dodecyl alcohol (C(12)E(5)), along with cationic cetyltrimethyl ammonium bromide (CTAB) in the presence of added salt, adsorbs and desorbs instantaneously at the air/water interface. In these cases, the experimentally observed dynamic-tension curves follow the local-equilibrium model precisely for both loading and washout. Accordingly, these surfactants below their critical micelle concentrations (CMC) exhibit no detectable sorption-activation barriers on time scales of order a min. However, the sorption dynamics of dilute CTAB in the absence of electrolyte is markedly different from that in the presence of KBr. Here CTAB desorption occurs at local equilibrium, but the adsorption rate is kinetically limited, most likely due to an electrostatic barrier arising as the charged surfactant accumulates at the interface. The commercial, polydisperse nonionic surfactant ethoxy nonylphenol (NP9) loads in good agreement with

  20. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  1. Cationic Gemini surfactant at the air/water interface.

    PubMed

    Qibin, Chen; Xiaodong, Liang; Shaolei, Wang; Shouhong, Xu; Honglai, Liu; Ying, Hu

    2007-10-15

    The surface properties and structures of a cationic Gemini surfactant with a rigid spacer, p-xylyl-bis(dimethyloctadecylammonium bromide) ([C(18)H(37)(CH(3))(2)N(+)CH(2)C(6)H(4)CH(2)N(+)(CH(3))(2)C(18)H(37)],2Br(-), abbreviated as 18-Ar-18,2Br(-1)), at the air/water interface were investigated. It is found that the surface pressure-molecular area isotherms observed at different temperatures do not exhibit a plateau region but display an unusual "kink" before collapse. The range of the corresponding minimum compressibility and maximum compressibility modulus indicates that the monolayer is in the liquid-expanded state. The monolayers were transferred onto mica and quartz plates by the Langmuir-Blodgett (LB) technique. The structures of monolayers at various surface pressures were studied by atomic force microscopy (AFM) and UV-vis spectroscopy, respectively. AFM measurements show that at lower surface pressures, unlike the structures of complex or hybrid films formed by Gemini amphiphiles with DNA, dye, or inorganic materials or the Langmuir film formed by the nonionic Gemini surfactant, in this case network-like labyrinthine interconnected ridges are formed. The formation of the structures can be interpreted in terms of the spinodal decomposition mechanism. With the increase of the surface pressure up to 35 mN/m, surface micelles dispersed in the network-like ridges gradually appear which might be caused by both the spinodal decomposition and dewetting. The UV-vis adsorption shows that over the whole range of surface pressures, the molecules form a J-aggregate in LB films, which implies that the spacers construct a pi-pi aromatic stacking. This pi-pi interaction between spacers and the van der Waals interaction between hydrophobic chains lead to the formation of both networks and micelles. The labyrinthine interconnected ridges are formed first because of the rapid evaporation of solvent during the spreading processes; with increasing surface pressure, some of the

  2. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  3. Toward a unified picture of the water self-ions at the air-water interface: a density functional theory perspective.

    PubMed

    Baer, Marcel D; Kuo, I-Feng W; Tobias, Douglas J; Mundy, Christopher J

    2014-07-17

    The propensities of the water self-ions, H3O(+) and OH(-), for the air-water interface have implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O(+) and/or OH(-) prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs interfacial behavior of H3O(+) and OH(-) that employs forces derived from density functional theory with a generalized gradient approximation exchange-correlation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF) for H3O(+) as a function of the position of the ion in the vicinity of an air-water interface. The PMF suggests that H3O(+) has equal propensity for the interface and the bulk. We compare the PMF for H3O(+) to our previously computed PMF for OH(-) adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs in the bulk are connected with interfacial propensity. We find that the solvation shell of H3O(+) is only slightly dependent on its position in the water slab, while OH(-) partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions.

  4. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean Air-Water Pollution Control Acts. 1274... AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.926 Clean Air-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative agreement or...

  5. A novel method to quantify the amount of surfactant at the oil/water interface and to determine total interfacial area of emulsions.

    PubMed

    James-Smith, Monica A; Alford, Kile; Shah, Dinesh O

    2007-06-15

    We present a methodology to quantitatively determine the fraction of sodium dodecyl sulfate (SDS) that partitions to the oil/water interface in oil-in-water macroemulsions and calculate the total interfacial area (TIA) through the novel use of filtration through nanoporous membranes. Ultrafiltration was carried out in centrifuge tubes having nanoporous filters with a 30,000 molecular weight cutoff (MWCO), so that emulsion droplets would not pass through, and only SDS (as monomers and micelles) that is in the bulk water phase (i.e., not at the interface) could pass through. The concentration of SDS in the filtrate was determined and used to calculate the TIA for each system. The mean droplet diameter of the emulsions was measured by light scattering. We analyzed the effects of total SDS concentration and oil chain length on the amount of SDS that partitions to the interface, the TIA, and the droplet diameter. The results showed that partitioning of SDS to the oil/water interface increases with increasing total SDS concentration in emulsion systems (i.e., the more SDS we add to the bulk solution, the more SDS partitions to the oil/water interface). However, the surface-to-bulk partition coefficient (i.e., the SDS concentration at the interface divided by the SDS concentration in the aqueous phase) remains the same over the entire concentration range (8-200 mM). The results showed a chain-length compatibility effect in that the minimum amount of SDS partitioned to the interface for C(12) oil. The droplet size measurements revealed a maximum size of droplets for C(12) oil. Penetration of oil molecules into SDS film at the interface has been proposed to account for the maximum droplet size and minimum partitioning of SDS at the oil/water interface for C(12) oil+SDS emulsion system. The TIA, as determined from our ultrafiltration method, was consistently two orders of magnitude greater than that calculated from the droplet size measured by light scattering. Possible

  6. Measuring interactions between polydimethylsiloxane and serum proteins at the air-water interface.

    PubMed

    Liao, Zhengzheng; Hsieh, Wan-Ting; Baumgart, Tobias; Dmochowski, Ivan J

    2013-07-30

    The interaction between synthetic polymers and proteins at interfaces is relevant to basic science as well as a wide range of applications in biotechnology and medicine. One particularly common and important interface is the air-water interface (AWI). Due to the special energetics and dynamics of molecules at the AWI, the interplay between synthetic polymer and protein can be very different from that in bulk solution. In this paper, we applied the Langmuir-Blodgett technique and fluorescence microscopy to investigate how the compression state of polydimethylsiloxane (PDMS) film at the AWI affects the subsequent adsorption of serum protein [e.g., human serum albumin (HSA) or immunoglobulin G (IgG)] and the interaction between PDMS and protein. Of particular note is our observation of circular PDMS domains with micrometer diameters that form at the AWI in the highly compressed state of the surface film: proteins were shown to adsorb preferentially to the surface of these circular PDMS domains, accompanied by a greater than 4-fold increase in protein found in the interfacial film. The PDMS-only film and the PDMS-IgG composite film were transferred to cover glass, and platinum-carbon replicas of the transferred films were further characterized by scanning electron microscopy and atomic force microscopy. We conclude that the structure of the PDMS film greatly affects the amount and distribution of protein at the interface.

  7. Air-Water Exchange of Legacy and Emerging Organic Pollutants across the Great Lakes

    NASA Astrophysics Data System (ADS)

    Lohmann, R.; Ruge, Z.; Khairy, M.; Muir, D.; Helm, P.

    2014-12-01

    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are transported to great water bodies via long-range atmospheric transport and released from the surface water as air concentrations continue to diminish. As the largest fresh water bodies in North America, the Great Lakes have both the potential to accumulate and serve as a secondary source of persistent bioaccumulative toxins. OCP and PCB concentrations were sampled at 30+ sites across Lake Superior, Ontario and Erie in the summer of 2011. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine air-water gaseous exchange of OCPs and PCBs. In Lake Superior, surface water and atmospheric concentrations were dominated by α-HCH (average 250 pg/L and 4.2 pg/m3, respectively), followed by HCB (average 17 pg/L and 89 pg/m3, respectively). Air-water exchange varied greatly between sites and individual OCPs, however α-endosulfan was consistently deposited into the surface water (average 19 pg/m2/day). PCBs in the air and water were characterized by penta- and hexachlorobiphenyls with distribution along the coast correlated with proximity to developed areas. Air-water exchange gradients generally yielded net volatilization of PCBs out of Lake Superior. Gaseous concentrations of hexachlorobenzene, dieldrin and chlordanes were significantly higher (p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression that incorporated meteorological, landuse and population data was used to explain variability in the atmospheric concentrations. Results indicated that landuse (urban and/or cropland) greatly explained the variability in the data. Freely dissolved concentrations of OCPs (

  8. Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes

    SciTech Connect

    Chang, Shyy Woei; Yang, Tsun Lirng

    2009-10-15

    This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

  9. Studies on behaviors of dipalmitoylposphatidylcholine and bilirubin in mixed monolayer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Shen, Yuhua; Tang, Yufeng; Xie, Anjian; Zhu, Jinmiao; Li, Shikuo; Zhang, Yong

    2006-06-01

    Mixed monolayers of dipalmitoylposphatidylcholine (DPPC) and bilirubin (BR) were prepared on different subphases. The properties of DPPC/BR monolayer, such as collapse pressure ( πcoll), limiting area per molecule ( Alim), surface compressibility modulus, free energy (Δ Gmix) and excess free energy (Δ Gex), were investigated based on the analysis of the surface pressure-area isotherms on pure water. The results showed that DPPC and BR were miscible and formed non-ideal mixed monolayers at the air/water interface. With the molar fraction of BR ( XBR) increasing, the LE-LC coexistence region of DPPC monolayer was eliminated gradually. The DPPC/BR complex (M D-B) of 1:2 stoichiometry formed as a result of the strong hydrogen bonds between the polar groups of DPPC and BR. The studies of effects of pH values and calcium ions in subphase on the DPPC/BR monolayers showed that the mixed monolayer became expanded on alkali aqueous solution and on 1 mmol/L CaCl 2 aqueous solution. The orientation of DPPC and BR at air/water interface was also discussed.

  10. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2015-12-29

    Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects.

  11. Polydopamine Films from the Forgotten Air/Water Interface.

    PubMed

    Ponzio, Florian; Payamyar, Payam; Schneider, Anne; Winterhalter, Mathias; Bour, Jérôme; Addiego, Frédéric; Krafft, Marie-Pierre; Hemmerle, Joseph; Ball, Vincent

    2014-10-02

    The formation of polydopamine under mild oxidation conditions from dopamine solutions with mechanical agitation leads to the formation of films that can functionalize all kinds of materials. In the absence of stirring of the solution, we report the formation of polydopamine films at the air/water interface (PDA A/W) and suggest that it arises from an homogeneous nucleation process. These films grow two times faster than in solution and can be deposited on hydrophilic or hydrophobic substrates by the Langmuir-Schaeffer technique. Thanks to this new method, porous and hydrophobic materials like polytetrafluoroethylene (PTFE) membranes can be completely covered with a 35 nm thick PDA A/W film after only 3h of reaction. Finally the oxidation of a monomer followed by a polymerization in water is not exclusive to polydopamine since we also transferred polyaniline functional films from the air/water interface to solid substrates. These findings suggest that self-assembly from a solution containing hydrophilic monomers undergoing a chemical transformation (here oxidation and oligomerization) could be a general method to produce films at the liquid/air interface.

  12. The cis-bis(decanoate)tin phthalocyanine/DPPC film at the air/water interface.

    PubMed

    Ramos, Salvador; Garza, Cristina; Beltran, Hiram I; Campos-Terán, José; Arenas-Alatorre, Jesús; Castillo, Rolando

    2012-03-01

    Films made of cis-bis-decanoate-tin(IV) phthalocyanine (PcSn10) and racemic dipalmitoylphosphatidylcholine (DPPC) are studied with compression isotherms and Brewster angle microscopy (BAM) at the air/water interface. Films enriched in PcSn10 present phase separation elliptical-shaped domains. These domains present optical anisotropy and molecular order. They are enriched in PcSn10, and the film outside these domains is enriched in DPPC, as shown in by high-angle annular dark-field transmission electron microscopy on Langmuir-Blodgett (LB) transferred films. Film collapse area and atomic force microscopy images of LB transferred films on mica indicate that the films are actually multilayers. A computational survey was performed to determine how the PcSn10 molecules prefer to self-assemble, in films basically made of PcSn10. The relative energetic stability for several dimeric assemblies was obtained, and a crystal model of the film was developed through packing and repeating the PcSn10 molecules, along the crystallographic directions of the unit cell. Our results contribute to understanding the strong interaction between PcSn10 and DPPC at the air/water interface, where even small quantities of DPPC (~1-2%) can modify the film in an important way.

  13. Separating Octadecyltrimethoxysilane Hydrolysis and Condensation at the Air/Water Interface through Addition of Methyl Stearate

    PubMed Central

    Britt, David W.; Hlady, Vladimir

    2012-01-01

    The hydrolysis and condensation of octadecyltrimethoxysilane (OTMS) at the air/water interface were monitored through molecular area changes at a constant surface pressure of 10 mN/m. The onset of condensation was delayed through the addition of methyl stearate (SME) acting as an inert filler molecule. In the absence of SME, complete gelation of OTMS required 30 h, during which time OTMS condensation occurred concomitantly with hydrolysis. In the presence of SME, the OTMS monolayer gelation rate increased in proportion to the amount of SME present. A 1:6 OTMS:SME molar ratio resulted in monolayer gelation within 30 min, suggesting completion of monomer hydrolysis prior to condensation. These findings indicate that lability of OTMS to hydrolysis at the air/water interface is governed by steric and conformational constraints at the silicon atom site, with monomeric OTMS being much more reactive than oligomeric OTMS. Fluorescence microscope images demonstrated that the OTMS condensed domain size also decreased with increasing SME concentrations, further implicating SME’s role as an inert filler. PMID:25132807

  14. Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.

    PubMed

    Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N

    2011-08-04

    The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.

  15. Interfacial adsorption and aggregation of amphiphilic proteins

    NASA Astrophysics Data System (ADS)

    Cheung, David

    2012-02-01

    The adsorption and aggregation on liquid interfaces of proteins is important in many biological contexts, such as the formation of aerial structures, immune response, and catalysis. Likewise the adsorption of proteins onto interfaces has applications in food technology, drug delivery, and in personal care products. As such there has been much interest in the study of a wide range of biomolecules at liquid interfaces. One class of proteins that has attracted particular attention are hydrophobins, small, fungal proteins with a distinct, amphiphilic surface structure. This makes these proteins highly surface active and they recently attracted much interest. In order to understand their potential applications a microscopic description of their interfacial and self-assembly is necessary and molecular simulation provides a powerful tool for providing this. In this presentation I will describe some recent work using coarse-grained molecular dynamics simulations to study the interfacial and aggregation behaviour of hydrophobins. Specifically this will present the calculation of their adsorption strength at oil-water and air-water interfaces, investigate the stability of hydrophobin aggregates in solution and their interaction with surfactants.

  16. Conformational changes of a calix[8]arene derivative at the air-water interface.

    PubMed

    de Miguel, Gustavo; Pedrosa, José M; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2005-03-10

    The particular behavior of a p-tert-butyl calix[8]arene derivative (C8A) has been studied at the air-water interface using surface pressure-area isotherms, surface potential-area isotherms, film relaxation measurements, Brewster angle microscopy (BAM), and infrared spectroscopy for Langmuir-Blodgett films. Thus, it is observed that the properties of the film, for example, isotherms, domain formation, and FTIR spectra, recorded during the first compression cycle differ appreciably from those during the second compression and following cycles. The results obtained are interpreted on the basis of the conformational changes of the C8A molecules by surface pressure, allowing us to inquire into the inter- and intramolecular interactions (hydrogen bonds) of those molecules. Thus, the compression induces changes in the kind of hydrogen bonds from intra- and intermolecular with other C8A molecules to hydrogen bonds with water molecules.

  17. Protonation, Hydrolysis, and Condensation of Mono- and Trifunctional Silanes at the Air/Water Interface

    PubMed Central

    Britt, David W.; Hlady, Vladimir

    2012-01-01

    The protonation, hydrolysis, and condensation kinetics of octadecyldimethylmethoxysilane (OMMS) and octadecyltrimethoxysilane (OTMS) at the air/water interface were investigated using a monolayer trough. OTMS chemical condensation within physically condensed phases was observed in transferred monolayers using fluorescence microscopy. Molecular area increases and decreases attributed to protonation and hydrolysis, respectively, of silane methoxy groups were measured by a surface balance. These area changes at constant surface pressure suggested a stepwise protonation and hydrolysis of the three OTMS methoxy groups. In contrast, only a single protonation and hydrolysis event was observed for monofunctional OMMS. The influences of monolayer spreading time, silane packing density, and subphase pH on the reaction kinetics are presented. PMID:25147424

  18. Self-similar assemblies of globular whey proteins at the air-water interface: effect of the structure.

    PubMed

    Mahmoudi, Najet; Gaillard, Cédric; Boué, François; Axelos, Monique A V; Riaublanc, Alain

    2010-05-01

    We investigated the structure of heat-induced assemblies of whey globular proteins using small angle neutron scattering (SANS), static and dynamic light scattering (SLS and DLS), and cryogenic transmission electron microscopy (Cryo-TEM). Whey protein molecules self-assemble in fractal aggregates with a structure density depending on the electrostatic interactions. We determined the static and dynamic properties of interfacial layer formed by the protein assemblies, upon adsorption and spreading at the air-water interface using surface film balance and interfacial dilatational rheology. Upon spreading, all whey protein systems show a power-law scaling behavior of the surface pressure versus concentration in the semi-dilute surface concentration regime, with an exponent ranging from 5.5 to 9 depending on the electrostatic interactions and the aggregation state. The dilatational modulus derived from surface pressure isotherms shows a main peak at 6-8 mN/m, generally considered to be the onset of a conformational change in the monolayer, and a second peak or a shoulder at 15 mN/m. Long-time adsorption kinetics give similar results for both the native whey proteins and the corresponding self-similar assemblies, with a systematic effect of the ionic strength.

  19. Flow-induced molecular segregation in beta-casein-monoglyceride mixed films spread at the air-water interface.

    PubMed

    Sánchez, Cecilio Carrera; Rodríguez Patino, Juan M

    2004-07-20

    In this work, we have used different and complementary interfacial techniques (surface film balance, Brewster angle microscopy, and interfacial shear rheology) to analyze the static (structure, topography, reflectivity, miscibility, and interactions) and flow characteristics (surface shear characteristics) of beta-casein and monoglyceride (monopalmitin and monoolein) mixed films spread on the air-water interface. The structural, topographical, and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity (etas) varies greatly with the surface pressure. In general, the greater the surface pressure, the greater the values of etas. At higher surface pressures, collapsed beta-casein residues may be displaced from the interface by monoglyceride molecules with important repercussions on the shear characteristics of the mixed films. A shear-induced change in the topography of monoglyceride and beta-casein domains, on one hand, and a segregation between domains of the film-forming components, on the other hand, were also observed. The displacement of the beta-casein by the monoglycerides is facilitated under shear conditions, especially for beta-casein-monoolein mixed films.

  20. Powder wettability at a static air-water interface.

    PubMed

    Dupas, Julien; Forny, Laurent; Ramaioli, Marco

    2015-06-15

    The reconstitution of a beverage from a dehydrated powder involves several physical mechanisms that determine the practical difficulty to obtain a homogeneous drink in a convenient way and within an acceptable time for the preparation of a beverage. When pouring powder onto static water, the first hurdle to overcome is the air-water interface. We propose a model to predict the percentage of powder crossing the interface in 45 s, namely the duration relevant for this application. We highlight theoretically the determinant role of the contact angle and of the particle size distribution. We validate experimentally the model for single spheres and use it to predict the wettability performance of commercial food powders for different contact angles and particles sizes. A good agreement is obtained when comparing the predictions and the wettability of the tested powders.

  1. Reacting chemistry at the air-water interface

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Morgan, Thomas; Huwel, Lutz; Graham, William

    2016-09-01

    Plasma interaction with gas-liquid interfaces is becoming increasingly important in biological applications, chemical analysis and medicine. It introduces electrons, new ionic species and reactive species and contributes to chemical and electrical self-organization at the interface. To provide insight into the associated physics and chemistry at work in the evolution of the plasma in the air-water interface (AWI), a time-dependent one-dimensional modelling has been developed. The numerical simulation is used to solve the kinetic equations and help identify the important reaction mechanisms and describe the phenomena associated with hundreds of reacting pathways in gas-phase and liquid-phase AWI chemistry. This work was partly supported by JSPS KAKENHI Grant Number 16K04998.

  2. [Virus adsorption from batch experiments as influenced by air-water interface].

    PubMed

    Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji

    2007-12-01

    The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface.

  3. Two-dimensional crystallization of proteins on lipid monolayers at the air water interface and transfer to an electron microscopy grid

    NASA Astrophysics Data System (ADS)

    Brisson, Alain; Bergsma-Schutter, Wilma; Oling, Frank; Lambert, Olivier; Reviakine, Ilya

    1999-01-01

    The two-dimensional (2-D) crystallization of proteins on lipid monolayers at the air-water interface is a well established method for crystallizing soluble proteins. The transfer of 2-D crystals from the air-water interface to an electron microscopy (EM) grid constitutes a critical and ill-controlled step in the whole procedure, which is likely to be responsible for the high variability of results obtained with this method. In this paper, we address the following questions: (1) does the material observed on EM grids constitute a true representation of the material present at the air-water interface? (2) is there an optimal method of transfer to obtain well-ordered protein 2-D crystals? To answer these questions, we combine data obtained on three different protein systems, annexin V, streptavidin and cholera toxin, using two types of EM grids, coated with either holey carbon films or continuous carbon films. These combined observations help us draw a coherent picture of the state of the interfacial films at the air-water surface and provide new insight into the perturbing influence of the transfer step. The main conclusions are: (1) both annexin V and streptavidin form crystalline monolayers at the air-water interface, which are well preserved when transfer is performed by means of holey carbon films; (2) a major reorganization of the material present at the water surface accompanies transfer with continuous carbon films; the basal monolayer is extensively damaged, transforming into domains and vesicular structures, which do not pre-exist at the water surface; with the three protein systems studied here, these domains are often crystalline; (3) the most striking structural reorganization induced by transfer with continuous carbon films is observed with annexin V, for which the native p6 crystalline assembly is transformed into another crystal form more ordered, with p3 symmetry. It is most probable that these conclusions also apply to other protein 2-D crystals

  4. The effect of bubbles on air-water oxygen transfer in the breaker zone

    NASA Astrophysics Data System (ADS)

    Kakuno, Shohachi; Moog, Douglas B.; Tatekawa, Tetsuya; Takemura, Kenji; Yamagishi, Tatsuya

    The effect of bubbles entrained in the breaker zone on air-water oxygen transfer is examined. First, the area of bubbles entrained by breakers generated on a sloping bottom in a wave tank is analyzed using a color image sensor which can count the pixel number of a specific color in a frame. It was found that the time-averaged pixel number over a wave period has a strong relationship to the energy dissipation rate per unit mass of the breaker. The time-averaged pixel number is then incorporated with some modification into an equation proposed by Eckenfelder for the calculation of the mass transfer coefficient from bubble surfaces in an aeration tank. The coefficient resulting from the modified equation shows a strong relationship between the mass transfer coefficient and the dissipation rate.

  5. Air-water exchange and dry deposition of polybrominated diphenyl ethers at a coastal site in Izmir Bay, Turkey.

    PubMed

    Cetin, Banu; Odabasi, Mustafa

    2007-02-01

    The air-water exchange of polybrominated diphenyl ethers (PBDEs), an emerging class of persistent organic pollutants (POPs), was investigated using paired air-water samples (n = 15) collected in July and December, 2005 from Guzelyali Port in Izmir Bay, Turkey. Total dissolved-phase water concentrations of PBDEs (sigma7PBDEs) were 212 +/- 65 and 87 +/- 57 pg L(-1) (average +/- SD) in summer and winter, respectively. BDE-209 was the most abundant congener in all samples, followed by BDE-99 and -47. Average ambient gas-phase sigma7PBDE concentrations were between 189 +/- 61 (summer) and 76 +/- 65 pg m(-3) (winter). Net air-water exchange fluxes ranged from -0.9 +/- 1.0 (BDE-28) (volatilization) to 11.1 +/- 5.4 (BDE-209) ng m(-2) day(-1) (deposition). The BDE-28 fluxes were mainly volatilization while the other congeners were deposited. Gas- and dissolved-phase concentrations were significantly correlated (P = 0.33-0.55, p < 0.05, except for BDE-209, r = 0.05, p > 0.05) indicating thatthe atmosphere controls the surface water PBDE levels in this coastal environment. Estimated particulate dry deposition fluxes ranged between 2.7 +/- 1.9 (BDE-154) and 116 +/- 84 ng m(-2) day(-1) (BDE-209) indicating that dry deposition is also a significant input to surface waters in the study area.

  6. Reorientation of the ‘free OH’ group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy

    SciTech Connect

    Feng, Ran-Ran; Guo, Yuan; Wang, Hongfei

    2014-09-17

    Many experimental and theoretical studies have established the specific anion, as well as cation effects on the hydrogen-bond structures at the air/water interface of electrolyte solutions. However, the ion effects on the top-most layer of the air/water interface, which is signified by the non-hydrogen-bonded so-called ‘free O-H’ group, has not been discussed or studied. In this report, we present the measurement of changes of the orientational angle of the ‘free O-H’ group at the air/water interface of the sodium fluoride (NaF) solutions at different concentrations using the interface selective sum-frequency generation vibrational spectroscopy (SFG-VS) in the ssp and ppp polarizations. The polarization dependent SFG-VS results show that the average tilt angle of the ‘free O-H’ changes from about 35.3 degrees ± 0.5 degrees to 43.4 degrees ± 2.1degrees as the NaF concentration increase from 0 to 0.94M (nearly saturated). Such tilt angle change is around the axis of the other O-H group of the same water molecule at the top-most layer at the air/water interface that is hydrogen-bonded to the water molecules below the top-most layer. These results provide quantitative molecular details of the ion effects of the NaF salt on the structure of the water molecules at the top-most layer of the air/water interfacial, even though both the Na+ cation and the F- anion are believed to be among the most excluded ions from the air/water interface.

  7. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  8. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  9. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  10. 14 CFR § 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean Air-Water Pollution Control Acts. Â...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  11. The effects of excipients on protein aggregation during agitation: an interfacial shear rheology study.

    PubMed

    Liu, Lu; Qi, Wei; Schwartz, Daniel K; Randolph, Theodore W; Carpenter, John F

    2013-08-01

    We investigated the effects of excipients in solutions of keratinocyte growth factor 2 (KGF-2) on protein aggregation during agitation as well as on interfacial shear rheology at the air-water interface. Samples were incubated with or without agitation, and in the presence or absence of the excipients heparin, sucrose, or polysorbate 80 (PS80). The effect of excipients on the extent of protein aggregation was determined by UV-visible spectroscopy and micro-flow imaging. Interfacial shear rheology was used to detect the gelation time and strength of protein gels at the air-water interface. During incubation, protein particles of size ≥1 μm and insoluble aggregates formed faster for KGF-2 solutions subjected to agitation. Addition of either heparin or sucrose promoted protein aggregation during agitation. In contrast, PS80 substantially inhibited agitation-induced KGF-2 aggregation but facilitated protein particulate formation in quiescent solutions. The combination of PS80 and heparin or sucrose completely prevented protein aggregation during both nonagitated and agitated incubations. Interfacial rheological measurements showed that KGF-2 in buffer alone formed an interfacial gel within a few minutes. In the presence of heparin, KGF-2 interfacial gels formed too quickly for gelation time to be determined. KGF-2 formed gels in about 10 min in the presence of sucrose. The presence of PS80 in the formulation inhibited gelation of KGF-2. Furthermore, the interfacial gels formed by the protein in the absence of PS80 were reversible when PS80 was added to the samples after gelation. Therefore, there is a correspondence between formulations that exhibited interfacial gelation and formulations that exhibited agitation-induced aggregation.

  12. The Importance of Moving Air-Water Interfaces for Colloid Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Flury, M.

    2015-12-01

    In the vadose zone, or in unsaturated porous media in general, transport of colloids is usually less pronounced than in groundwater. An important retention mechanism for colloids in unsaturated porous media is attachment to air-water interfaces. However, air-water interfaces can also lead to colloid mobilization and enhanced transport if air-water interfaces are moving, such as during infiltration, imbibition, and drainage. Colloid attachment to air-water interfaces is caused by surface tension forces, and these forces usually exceed other interactions forces; therefore, surface tension forces play a dominant role for colloid transport in unsaturated porous media. In this presentation, experimental and theoretical evidence of surface tension forces acting on colloids will be presented, and the role of moving air-water interfaces will be discussed.

  13. Air-water gas exchange of toxaphene in Lake Superior.

    PubMed

    Jantunen, Liisa M; Bidleman, Terry F

    2003-06-01

    Parallel air and water samples were collected in Lake Superior during August 1996 and May 1997, to determine the levels and air-water exchange direction of toxaphene. Concentration of toxaphene in water did not vary across Lake Superior or between seasons (averaging 918 +/- 218 pg/L) but atmospheric levels were lower in May (12 +/- 4.6 pg/m3) than in August (28 +/- 10 pg/m3). Two recalcitrant congeners, Parlar 26 and 50, also were determined. These congeners were enriched in the air samples, compared to a standard of technical toxaphene, but not in the water. Water-air fugacity ratios varied from 1.4 to 2.6 in August and 1.3 to 4.7 in May, implying volatilization of toxaphene from the lake. Estimated net fluxes ranged from 5.4 to 13 and 1.8 to 6.4 nm/m2d, respectively. The temperature dependence of toxaphene partial pressure (P) in air was log P/Pa = -3.291/T(a) + 1.67, where T(a) is air temperature. By using this relationship, the atmospheric levels of toxaphene, fugacity ratios, and net fluxes were estimated for the entire year. Fugacity ratios were highest in the winter and lowest in the summer; thus toxaphene was predicted to undergo net volatilization from the lake during all months. A net removal of approximately 220 kg/year by gas exchange was estimated.

  14. Nonlinear Acoustics at the Air-Water Free Surface

    NASA Astrophysics Data System (ADS)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  15. The Effect of Rain on Air-Water Gas Exchange

    NASA Technical Reports Server (NTRS)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  16. Air-water interface equilibrium partitioning coefficients of aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Cheng, Wen-Hsi; Chu, Fu-Sui; Liou, Jia-Jiunn

    The single equilibration technique was used to determine the equilibrium partitioning coefficients ( pc) of an air-water interface for target aromatic volatile organic compounds (VOCs), including benzene, toluene and ethylbenzene. The tested liquid concentrations ( CL) of VOC ranged from 0.5 to 20 mg/l, and the temperatures ( Tw) of the solutions were 300, 305, 310 and 315 K, respectively. The pc values were calculated using the gaseous concentrations ( Cg*) of aromatic hydrocarbons in equilibrium with the aqueous phase and the formula pc=( Cg*/ CL). The heats of VOC of liquid and gaseous phase transfer (Δ Htr) in pure water, and the highly linear regression relationship (with squared correlation coefficients, R2, from 0.900 to 0.999) between ( ln C g*) and (1/ Tw) are also evaluated. Experimental results indicated that the pc values of the target VOC components increase with Tw but, in contrast, are not significantly affected by CL in pure water. However, pc of more soluble compounds, like iso-propanol and methyl ethyl ketone, have been evaluated to be significant with CL in the earlier investigation. Finally, the co-solute effect on pc is also evaluated in this work, as determining pc of the aromatic hydrocarbons by using aqueous ethanol (in a volume ration of 1-15%) as solutes.

  17. Diffusive exchange of PAHs across the air-water interface of the Kaohsiung Harbor lagoon, Taiwan.

    PubMed

    Fang, Meng-Der; Lee, Chon-Lin; Jiang, Jheng-Jie; Ko, Fung-Chi; Baker, Joel E

    2012-11-15

    Instantaneous air-water polycyclic aromatic hydrocarbons (PAHs) exchange fluxes were calculated in 22 pairs of ambient air and water samples from Kaohsiung Harbor lagoon, from December 2003 to January 2005. The highest net volatilization (3135 ng m(-2) day(-1)) and absorptive (-1150 ng m(-2) day(-1)) fluxes in the present study were obtained for the three-ring PAH phenanthrene on 7 April and 27 January 2004, respectively. All PAH diffusive fluxes for three-ring PAHs except phenanthrene were mainly volatilization exchange across the air-water interface. Phenanthrene and the four-ring PAHs were absorbed primarily from the atmosphere and deposited to the surface water, although some minor volatilization fluxes were also observed. Differences in flux magnitude and direction between the dry and wet seasons were also evident for PAHs. Strong absorptive/weaker volatilization PAH fluxes occurred in the dry season, but the opposite was found in the wet season. The mean daily PAH diffusive fluxes were an in flux of -635 ng m(-2) day(-1) in the dry season and an efflux of 686 ng m(-2) day(-1) in the wet season. The integrated absorbed and emitted fluxes of PAHs for harbor lagoon surface waters in the dry and wet seasons were 3.1 kg and 3.4 kg, respectively. Different from water bodies located in temperate zone, phenanthrene diffusive fluxes in Kaohsiung Harbor lagoon was favored in volatilization from surface waters during the wet season (April to September) because of scavenging by precipitation and dilution by prevailing southwesterly winds. In addition, this study used both of salinity and temperature to improve estimation of Henry's law constants (H) of PAHs in a tropical coastal area and show that correction for salinity produced 13-15% of differences in H values.

  18. Air-water CO2 exchange in five hypereutrophic lakes in Bangalore, India

    NASA Astrophysics Data System (ADS)

    Singh, G.; Ghosh, P.; Bala, G.; Bastviken, D.

    2014-12-01

    Inland water bodies play a significant role in terrestrial carbon cycling, rather than being just conduits for the transport of terrestrial carbon to the oceans. Recent syntheses estimate that freshwaters emit substantial amounts of CO2 (1.4 Pg C yr-1) (Tranvik et al. 2009) and CH4 (0.65 Pg C yr-1) (Bastviken et al. 2011), which are similar in magnitude to the global terrestrial carbon sink (2.5 ± 1.7 Pg C yr-1) (IPCC 2013). However, eutrophic waters, which constitute the majority of the global freshwater supply (ILEC/UNEP 1994, Liu et al. 2012, Carpenter et al. 1998), are vastly underrepresented in these estimates. These waters, due to high primary productivity leading to CO2 undersaturation, can act as sinks rather than sources of CO2, thus reversing the role of lakes in the carbon cycle (Balmer and Downing 2011, Pacheco et al. 2013). We are investigating the air-water CO2 exchange of five hypereutrophic lakes in urban Bangalore using a novel Non-Dispersive Infrared (NDIR)-based CO2 sensor installed in flux chambers that can be used to measure CO2 exchange in lakes in situ. This work is a part of a larger study called Bangalore Carbon Mapping Study that aims to track the spatial flows of carbon in an urban area of a developing country. Preliminary observations reveal that these lakes absorb CO2 during the photosynthetic hours, at an average rate of 3.4 mg C m-2 h-1. The ongoing study will characterize the complete diurnal cycle of CO2 exchange, its variation over different seasons, and its relationships with various limnological and catchment characteristics. The flux estimates thus produced will also be compared with those predicted by the current models for air-water gas exchange based on wind speed.

  19. Precision cleaning verification of fluid components by air/water impingement and total carbon analysis

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.; Fogarty, Chris; Cantrell, Chris; Melton, Gregory S.

    1994-01-01

    NASA personnel at Kennedy Space Center's Material Science Laboratory have developed new environmentally sound precision cleaning and verification techniques for systems and components found at the center. This technology is required to replace existing methods traditionally employing CFC-113. The new patent-pending technique of precision cleaning verification is for large components of cryogenic fluid systems. These are stainless steel, sand cast valve bodies with internal surface areas ranging from 0.2 to 0.9 sq m. Extrapolation of this technique to components of even larger sizes (by orders of magnitude) is planned. Currently, the verification process is completely manual. In the new technique, a high velocity, low volume water stream impacts the part to be verified. This process is referred to as Breathing Air/Water Impingement and forms the basis for the Impingement Verification System (IVS). The system is unique in that a gas stream is used to accelerate the water droplets to high speeds. Water is injected into the gas stream in a small, continuous amount. The air/water mixture is then passed through a converging/diverging nozzle where the gas is accelerated to supersonic velocities. These droplets impart sufficient energy to the precision cleaned surface to place non-volatile residue (NVR) contaminants into suspension in the water. The sample water is collected and its NVR level is determined by total organic carbon (TOC) analysis at 880 C. The TOC, in ppm carbon, is used to establish the NVR level. A correlation between the present gravimetric CFC113 NVR and the IVS NVR is found from experimental sensitivity factors measured for various contaminants. The sensitivity has the units of ppm of carbon per mg/sq ft of contaminant. In this paper, the equipment is described and data are presented showing the development of the sensitivity factors from a test set including four NVRs impinged from witness plates of 0.05 to 0.75 sq m.

  20. Precision Cleaning Verification of Fluid Components by Air/Water Impingement and Total Carbon Analysis

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.; Fogarty, Chris; Cantrell, Chris; Melton, Gregory S.

    1995-01-01

    NASA personnel at Kennedy Space Center's Material Science Laboratory have developed new environmentally sound precision cleaning and verification techniques for systems and components found at the center. This technology is required to replace existing methods traditionally employing CFC-113. The new patent-pending technique of precision cleaning verification is for large components of cryogenic fluid systems. These are stainless steel, sand cast valve bodies with internal surface areas ranging from 0.2 to 0.9 m(exp 2). Extrapolation of this technique to components of even larger sizes (by orders of magnitude) is planned. Currently, the verification process is completely manual. In the new technique, a high velocity, low volume water stream impacts the part to be verified. This process is referred to as Breathing Air/Water Impingement and forms the basis for the Impingement Verification System (IVS). The system is unique in that a gas stream is used to accelerate the water droplets to high speeds. Water is injected into the gas stream in a small, continuous amount. The air/water mixture is then passed through a converging-diverging nozzle where the gas is accelerated to supersonic velocities. These droplets impart sufficient energy to the precision cleaned surface to place non-volatile residue (NVR) contaminants into suspension in the water. The sample water is collected and its NVR level is determined by total organic carbon (TOC) analysis at 880 C. The TOC, in ppm carbon, is used to establish the NVR level. A correlation between the present gravimetric CFC-113 NVR and the IVS NVR is found from experimental sensitivity factors measured for various contaminants. The sensitivity has the units of ppm of carbon per mg-ft(exp 2) of contaminant. In this paper, the equipment is described and data are presented showing the development of the sensitivity factors from a test set including four NVR's impinged from witness plates of 0.05 to 0.75 m(exp 2).

  1. Development of a numerical workflow based on μ-CT imaging for the determination of capillary pressure-saturation-specific interfacial area relationship in 2-phase flow pore-scale porous-media systems: a case study on Heletz sandstone

    NASA Astrophysics Data System (ADS)

    Peche, Aaron; Halisch, Matthias; Bogdan Tatomir, Alexandru; Sauter, Martin

    2016-05-01

    In this case study, we present the implementation of a finite element method (FEM)-based numerical pore-scale model that is able to track and quantify the propagating fluid-fluid interfacial area on highly complex micro-computed tomography (μ-CT)-obtained geometries. Special focus is drawn to the relationship between reservoir-specific capillary pressure (pc), wetting phase saturation (Sw) and interfacial area (awn). The basis of this approach is high-resolution μ-CT images representing the geometrical characteristics of a georeservoir sample. The successfully validated 2-phase flow model is based on the Navier-Stokes equations, including the surface tension force, in order to consider capillary effects for the computation of flow and the phase-field method for the emulation of a sharp fluid-fluid interface. In combination with specialized software packages, a complex high-resolution modelling domain can be obtained. A numerical workflow based on representative elementary volume (REV)-scale pore-size distributions is introduced. This workflow aims at the successive modification of model and model set-up for simulating, such as a type of 2-phase problem on asymmetric μ-CT-based model domains. The geometrical complexity is gradually increased, starting from idealized pore geometries until complex μ-CT-based pore network domains, whereas all domains represent geostatistics of the REV-scale core sample pore-size distribution. Finally, the model can be applied to a complex μ-CT-based model domain and the pc-Sw-awn relationship can be computed.

  2. Interfacial rheology: an overview of measuring techniques and its role in dispersions and electrospinning.

    PubMed

    Pelipenko, Jan; Kristl, Julijana; Rošic, Romana; Baumgartner, Saša; Kocbek, Petra

    2012-06-01

    Interfacial rheological properties have yet to be thoroughly explored. Only recently, methods have been introduced that provide sufficient sensitivity to reliably determine viscoelastic interfacial properties. In general, interfacial rheology describes the relationship between the deformation of an interface and the stresses exerted on it. Due to the variety in deformations of the interfacial layer (shear and expansions or compressions), the field of interfacial rheology is divided into the subcategories of shear and dilatational rheology. While shear rheology is primarily linked to the long-term stability of dispersions, dilatational rheology provides information regarding short-term stability. Interfacial rheological characteristics become relevant in systems with large interfacial areas, such as emulsions and foams, and in processes that lead to a large increase in the interfacial area, such as electrospinning of nanofibers.

  3. Regio-selective Lipase catalyzed Hydrolysis of Oxanorbornane-based Sugar-like Amphiphiles at Air - Water Interface: a Polarized FT-IRRAS Study.

    PubMed

    Sarangi, Nirod Kumar; Ganesan, M; Muraleedharan, K M; Patnaik, Archita

    2017-02-21

    Interfacial hydrolysis of oxanorbornane-based amphiphile (Triol C16) by Candida rugosa lipase was investigated using real-time polarized Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS). The kinetics of hydrolysis was studied by analyzing the ester carbonyl ν(C=O) stretching vibration band across the two dimensional (2D) array of molecules at the confined interface. In particular, we demonstrate Triol C16 to form Michaelis-Menten type complex, like that of lipid-substrate analogues, where the Triol C16 head group remained accessible to the catalytic triad of the lipase. The enzyme-induced selective cleavage of the ester bond was spectroscopically monitored by the disappearance of the intense ν (C=O) resonance at 1736cm(-1). Consequently, the in-situ spectroscopic measurements evidenced selective ester hydrolysis of Triol C16 yielding Tetrol C(2)OH and Palmitic acid, which remained predominantly in the undissociated form at the interface. The conformation sensitive amide I (majorly ν (C=O)) and the interfacial water reorganization suggested 2D ordering of the enzyme molecules following which interfacial reactions were employed towards probing the enzyme kinetics at the air/water interface. The investigation demonstrated further the potential of IRRAS spectroscopy for real-time monitoring the hydrolytic product formation and selectivity at biomimetic interfaces.

  4. Air-water oxygen exchange in a large whitewater river

    USGS Publications Warehouse

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  5. Interfacial bonding stability

    NASA Technical Reports Server (NTRS)

    Boerio, J.

    1984-01-01

    Interfacial bonding stability by in situ ellipsometry was investigated. It is found that: (1) gamma MPS is an effective primer for bonding ethylene vinyl acetate (EVA) to aluminum; (2) ellipsometry is an effective in situ technique for monitoring the stability of polymer/metal interfaces; (3) the aluminized back surface of silicon wafers contain significant amounts of silicon and may have glass like properties.

  6. Modulation of organic interfacial spin polarization by interfacial angle

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Li, Ying; Zhang, Guang-ping; Ren, Jun-feng; Wang, Chuan-kui; Hu, Gui-chao

    2017-01-01

    Based on ab initio theory, we theoretically investigated the interfacial spin polarization by adsorbing a benzene-dithiolate molecule onto a nickel surface with different interfacial angles. A variable magnitude and even an inversion of the interfacial spin polarization are observed with the increase of the interfacial angle. The orbital analysis shows that the interfacial spin polarization is codetermined by two kinds of orbital hybridization between the molecule and the ferromagnet, the pz-d hybridization and the sp3-d hybridization, which show different dependence on the angle. These results indicate a new way to manipulate the spin polarization at organic spinterface.

  7. Surface activity coefficients of spread monolayers of behenic acid salts at air-water interface.

    PubMed

    Chattoraj, D K; Halder, E; Das, K P; Mitra, A

    2006-11-16

    The pressure-area isotherms of ionized monolayers of behenic acid at air-water interface at pH 12.0 have been obtained from the Langmuir film balance experiments under various physico-chemical conditions. The value of the measured surface pressure at a given area per molecule is equal to the sum of the ideal pressure, cohesive pressure and electrical pressure. The electrical pressure term is regarded as the sum of the pressure originating from the Gouy-Chapman double layer including discrete ion effect, ion binding and monolayer hydration effect. At a given area, the deviation of the measured surface pressure from its ideal value has been calculated in terms of the apparent surface compressibility coefficients, surface fugacity coefficients for gaseous monolayer and surface activity coefficients of solute forming two-dimensional solutions in the monolayer phase respectively. Values of all these coefficients have been calculated for different compositions of the monolayer using non-ideal gas model and Raoult's and Henry's laws modified for two-dimensional non-ideal solutions respectively. Values of these coefficients may be higher or lower than unity depending upon ionic strengths and nature of inorganic salts present in the sub-phase. Using these values of surface activity coefficients, the standard free energies of formation, of spread monolayers of salts of behenic acid have been calculated at different standard states of reference.

  8. Lipases at interfaces: unique interfacial properties as globular proteins.

    PubMed

    Reis, P; Miller, R; Krägel, J; Leser, M; Fainerman, V B; Watzke, H; Holmberg, K

    2008-06-01

    The adsorption behavior of two globular proteins, lipase from Rhizomucor miehei and beta-lactoglobulin, at inert oil/water and air/water interfaces was studied by the pendant drop technique. The kinetics and adsorption isotherms were interpreted for both proteins in different environments. It was found that the adopted mathematical models well describe the adsorption behavior of the proteins at the studied interfaces. One of the main findings is that unique interfacial properties were observed for lipase as compared to the reference beta-lactoglobulin. A folded drop with a "skinlike" film was formed for the two proteins after aging followed by compression. This behavior is normally associated with protein unfolding and covalent cross-linking at the interface. Despite this, the lipase activity was not suppressed. By highlighting the unique interfacial properties of lipases, we believe that the presented work contributes to a better understanding of lipase interfacial activation and the mechanisms regulating lipolysis. The results indicate that the understanding of the physical properties of lipases can lead to novel approaches to regulate their activity.

  9. Porphyrin assemblies through the air/water interface: effect of hydrogen bond, thermal annealing, and amplification of supramolecular chirality.

    PubMed

    Rong, Yunlong; Chen, Penglei; Wang, Dongjun; Liu, Minghua

    2012-04-17

    Molecular assemblies of two achiral porphyrins with different substituents, 5-(4-methoxycarbonylphenyl)-10,15,20-triphenyl-21H,23H-porphine (TPPCOOMe) and 5-(4-carboxyphenyl)-10,15,20-triphenyl-21H,23H-porphine (TPPCOOH), have been fabricated by the Langmuir-Blodgett (LB) technique. It is disclosed that although only slight differences exist in the molecular skeleton of these two compounds, their interfacial assemblies display distinct chiroptical properties. It is found that weak circular dichroism (CD) signals are observed from the TPPCOOH assemblies, while in the case of the TPPCOOMe assemblies, only negligible CD signals could be detected. Interestingly, after the assemblies are subjected to a thermal annealing treatment, TPPCOOH assemblies show a distinct amplification of CD signals, while those of TPPCOOMe do not. An explanation in terms of the effect of substituents on the spreading properties of the compounds and the effect of intermolecular hydrogen bonds on the cooperative stacking of the building blocks is proposed to explain these new findings. The investigation suggests that in the present porphyrin systems, besides a nice spreading property, the cooperative interaction of various noncovalent interactions, including hydrogen bonding, π-π stacking, and hydrophobic interactions, is essentially required for the occurrence of symmetry breaking at the air/water interface.

  10. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System

    PubMed Central

    Yang, Guang; Hallinan, Daniel T.

    2016-01-01

    Using a three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange takes place which temporarily traps them at the water/oil interface. The ligand-exchanged particles then spontaneously migrate to the air/water interface, where they self-assemble, forming a monolayer under certain conditions. The spontaneous formation of the NP film at the air/water interface was due to the minimization of the system Helmholtz free energy. However, the extent of surface functionalization was dictated by kinetics. This decouples interfacial ligand exchange from interfacial self-assembly, while maintaining the simplicity of a single system. The interparticle center-to-center distance was dictated by the amine ligand length. The Au NP monolayers exhibit tunable surface plasma resonance and excellent spatial homogeneity, which is useful for surface-enhanced Raman scattering. The “air/water/oil” self-assembly method developed here not only benefits the fundamental understanding of NP ligand conformations, but is also applicable to the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. PMID:27762394

  11. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Hallinan, Daniel T.

    2016-10-01

    Using a three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange takes place which temporarily traps them at the water/oil interface. The ligand-exchanged particles then spontaneously migrate to the air/water interface, where they self-assemble, forming a monolayer under certain conditions. The spontaneous formation of the NP film at the air/water interface was due to the minimization of the system Helmholtz free energy. However, the extent of surface functionalization was dictated by kinetics. This decouples interfacial ligand exchange from interfacial self-assembly, while maintaining the simplicity of a single system. The interparticle center-to-center distance was dictated by the amine ligand length. The Au NP monolayers exhibit tunable surface plasma resonance and excellent spatial homogeneity, which is useful for surface-enhanced Raman scattering. The “air/water/oil” self-assembly method developed here not only benefits the fundamental understanding of NP ligand conformations, but is also applicable to the manufacture of plasmonic nanoparticle devices with precisely designed optical properties.

  12. A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY AIR/WATER EXCHANGE PARTNERS

    EPA Science Inventory

    Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury air/water exchange is limited by uncertainties in our understanding of all gaseous a...

  13. Amphiphilic siloxane phosphonate macromolecule monolayers at the air/water interface: effects of structure and temperature.

    PubMed

    Cabasso, Israel; Stesikova, Elvira

    2008-11-20

    A comprehensive study is reported of Langmuir-Blodgett (LB) films (spread at the air/water interface using the Langmuir balance technique) composed of surface active, nonionic, and OH-free amphiphilic siloxane phosphonate ester macromolecules. Analysis is made on three molecular structures in the form of linear polymer poly(diethylphosphono-benzyl-alphabeta-ethyl methylsiloxane) (PPEMS), cyclic oligomer methylphosphonobenzyl-alphabeta-ethyl cyclosiloxane (MPECS), and copolymer poly(PEMS-co-DMS). The surface pressure-surface area (pi -A) isotherms of homopolymer at 3-40 degrees C show a clear temperature-induced phase transition (plateaus at pit approximately 17-19 mN/m) below 10 degrees C. The magnitude of the transition substantially increases upon lowering the temperature (partial differential DeltaAt/ partial differential T approximately -0.1 nm2 unit(-1) deg(-1) and partial differential pi t / partial differential T approximately -0.25 mN m(-1) deg(-1)). The positive entropy and enthalpy gain infers that strong coupling with the subphase and excess hydration attributed to hydrogen bonding between the P=O bond and the subphase prevails at low temperatures. The cyclic oligomer MPECS forms a condensed monolayer at the air/water interface that does not display a similar transition in the experimental temperature range. The temperature sensitivity of MPECS film is observed only in the collapsed region. The nature of the interaction with the subphase is similar for MPECS and PPEMS, indicating that the size and thermal mobility are the controlling factors in these processes. The elasticity plot reveals two distinct states (above and below transition). This observation is supported by BAM images that show irregular spiral structures below 10 degrees C. The transition occurring in the copolymer at 20 degrees C is due to relaxation of the PDMS component. The two maxima shown in the elasticity plot indicate additive fractions of PPEMS and PDMS. The surface areas of these

  14. Association of alkanes with the aqueous liquid-vapor interface: a reference system for interpreting hydrophobicity generally through interfacial fluctuations.

    PubMed

    Ou, Shu-Ching; Cui, Di; Patel, Sandeep

    2014-12-28

    We report free energy calculations and fluctuation profiles of single alkanes (from methane to pentane) along the direction normal to the air-water interface. The induced fluctuations and the interfacial stabilities of alkanes are found to be correlated and similar to the results of inorganic monovalent ions (Ou et al., J. Phys. Chem. B, 2013, 117, 11732). This suggests that hydrophobic solvation of solutes and ions is important in determining the adsorption behavior.

  15. Role of the interfacial area for structure and dynamics in polymer nanocomposites: molecular dynamics simulations of polystyrene with silica nanoparticles of different shapes

    NASA Astrophysics Data System (ADS)

    Liu, Shengyuan; Böhm, Michael C.; Müller-Plathe, Florian

    2016-10-01

    Polystyrene nanocomposites containing a fraction of silica nanoparticles of different geometries (sphere, cube and regular tetrahedron) have been investigated by coarse-grained molecular dynamics simulations. Structural and dynamic properties of the polymer chains in the presence of the nanoparticles have been analyzed as a function of the nanoparticle mass fraction and geometrical shape. It has been found that the dimension of the polymer chains in the interphase expands due to the polymer-nanoparticle interaction. Their global dimension (averaged over the whole sample), however, shrinks when increasing the total surface area of the nanoparticles. The conformational changes of polymer chains in the interphase are monitored by a chain orientation parameter. The profiles of the chain dimension and orientation as a function of their distance from the nanoparticle center of mass show that the interphase thickness is roughly equal to the radius of gyration of the polymer chains. Moreover, the dynamic behavior of the polymer chains in nanocomposites is analyzed by the center of mass diffusion coefficient, the relaxation time of the chain end-to-end vector and the characteristic escape time of the polymer chains from the interphase. Compared with neat polymers, both the global and local chain dynamics in nanocomposites are hindered with an increasing nanoparticle mass fraction and with an increasing surface area. The local chain dynamics in the interphase is stronger affected by the surface area of the nanoparticles than the global one. Specifically, the global diffusion coefficient of polymer chains is almost linearly reduced with the total surface area of the nanoparticles, whereas the global relaxation time of the chain end-to-end vector increases almost linearly with it. The interphase relaxation time of the polymer chains increases superlinearly with the surface area of an individual nanoparticle. Additionally, the characteristic escape time of polymer chains from

  16. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  17. Iridium Interfacial Stack (IRIS)

    NASA Technical Reports Server (NTRS)

    Spry, David James (Inventor)

    2015-01-01

    An iridium interfacial stack ("IrIS") and a method for producing the same are provided. The IrIS may include ordered layers of TaSi.sub.2, platinum, iridium, and platinum, and may be placed on top of a titanium layer and a silicon carbide layer. The IrIS may prevent, reduce, or mitigate against diffusion of elements such as oxygen, platinum, and gold through at least some of its layers.

  18. Experimental study of the decrease in the temperature of an air/water-cooled turbine blade

    NASA Astrophysics Data System (ADS)

    Ryzhov, A. A.; Sereda, A. V.; Shaiakberov, V. F.; Iskakov, K. M.; Shatalov, Iu. S.

    Results of the full-scale testing of an air/water-cooled deflector-type turbine blade are reported. Data on the decrease in the temperature of the cooling air and of the blade are presented and compared with the calculated values. An analysis of the results indicates that the use of air/water cooling makes it possible to significantly reduce the temperature of the cooling air and of the blade with practically no increase in the engine weight and dimensions.

  19. Highly Enhanced Electromechanical Stability of Large-Area Graphene with Increased Interfacial Adhesion Energy by Electrothermal-Direct Transfer for Transparent Electrodes.

    PubMed

    Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk

    2016-09-07

    Graphene, a two-dimensional sheet of carbon atoms in a hexagonal lattice structure, has been extensively investigated for research and industrial applications as a promising material with outstanding electrical, mechanical, and chemical properties. To fabricate graphene-based devices, graphene transfer to the target substrate with a clean and minimally defective surface is the first step. However, graphene transfer technologies require improvement in terms of uniform transfer with a clean, nonfolded and nontorn area, amount of defects, and electromechanical reliability of the transferred graphene. More specifically, uniform transfer of a large area is a key challenge when graphene is repetitively transferred onto pretransferred layers because the adhesion energy between graphene layers is too low to ensure uniform transfer, although uniform multilayers of graphene have exhibited enhanced electrical and optical properties. In this work, we developed a newly suggested electrothermal-direct (ETD) transfer method for large-area high quality monolayer graphene with less defects and an absence of folding or tearing of the area at the surface. This method delivers uniform multilayer transfer of graphene by repetitive monolayer transfer steps based on high adhesion energy between graphene layers and the target substrate. To investigate the highly enhanced electromechanical stability, we conducted mechanical elastic bending experiments and reliability tests in a highly humid environment. This ETD-transferred graphene is expected to replace commercial transparent electrodes with ETD graphene-based transparent electrodes and devices such as a touch panels with outstanding electromechanical stability.

  20. Langmuir films of dipalmitoyl phosphatidylethanolamine grafted poly(ethylene glycol). In-situ evidence of surface aggregation at the air-water interface.

    PubMed

    Clop, Eduardo M; Corvalán, Natalia A; Perillo, María A

    2016-12-01

    The molecular packing-dependent interfacial organization of polyethylene glycol grafted dipalmitoylphosphatidylethanolamine (PE-PEGs) Langmuir films was studied. The PEG chains covered a wide molecular mass range (350, 1000 and 5000Da). In surface pressure-area (π-A), isotherms PE-PEG(1000) and PE-PEG(5000) showed transitions (midpoints at πm,t1∼11mN/m, "t1"), which appeared as a long non-horizontal line region. Thus, t1 cannot be considered a first-order phase transition but may reflect a transition within the polymer, comprising its desorption from the air-water interface and compaction upon compression. This is supported by the increase in the νs(C-O-C) PM-IRRAS signal intensity and the increasing surface potentials at maximal compression, which reflect thicker polymeric layers. Furthermore, changes in hydrocarbon chain (HC) packing and tilt with respect to the surface led to reorientation in the PO2(-) group upon compression, indicated by the inversion of the νasym(PO2(-)) PM-IRRAS signal around t1. The absence of a t1 in PE-PEG(350) supports the requisite of a critical polymer chain length for this transition to occur. In-situ epifluorescence microscopy revealed 2D-domain-like structures in PE-PEG(1000) and PE-PEG(5000) around t1, possibly associated with gelation/dehydration of the polymeric layer and appearing at decreasing π as the polymeric tail became longer. Another transition, t2, appearing in PE-PEG(350) and PE-PEG(1000) at πm,t2=29.4 and 34.8mN/m, respectively, was associated with HC condensation and was impaired in PE-PEG(5000) due to steric hindrance imposed by the large size of its polymer moiety. Two critical lengths of polymer chains were found, one of which allowed the onset of polymeric-tail gelation and the other limited HC compaction.

  1. Capillary forces between sediment particles and an air-water interface.

    PubMed

    Chatterjee, Nirmalya; Lapin, Sergey; Flury, Markus

    2012-04-17

    In the vadose zone, air-water interfaces play an important role in particle fate and transport, as particles can attach to the air-water interfaces by action of capillary forces. This attachment can either retard or enhance the movement of particles, depending on whether the air-water interfaces are stationary or mobile. Here we use three standard PTFE particles (sphere, circular cylinder, and tent) and seven natural mineral particles (basalt, granite, hematite, magnetite, mica, milky quartz, and clear quartz) to quantify the capillary forces between an air-water interface and the different particles. Capillary forces were determined experimentally using tensiometry, and theoretically assuming volume-equivalent spherical, ellipsoidal, and circular cylinder shapes. We experimentally distinguished between the maximum capillary force and the snap-off force when the air-water interface detaches from the particle. Theoretical and experimental values of capillary forces were of similar order of magnitude. The sphere gave the smallest theoretical capillary force, and the circular cylinder had the largest force due to pinning of the air-water interface. Pinning was less pronounced for natural particles when compared to the circular cylinder. Ellipsoids gave the best agreement with measured forces, suggesting that this shape can provide a reasonable estimation of capillary forces for many natural particles.

  2. Characterisation of the interaction of lactate dehydrogenase with Tween-20 using isothermal titration calorimetry, interfacial rheometry and surface tension measurements.

    PubMed

    McAuley, William J; Jones, David S; Kett, Vicky L

    2009-08-01

    In this study the nature of the interaction between Tween-20 and lactate dehydrogenase (LDH) was investigated using isothermal titration calorimetry (ITC). In addition the effects of the protein and surfactant on the interfacial properties were followed with interfacial rheology and surface tension measurements in order to understand the mechanism by which the surfactant prevents protein adsorption to the air-water interface. Comparisons were made with Tween-40 and Tween-80 in order to further investigate the mechanism. ITC measurements indicated a weak, probably hydrophobic, interaction between Tween-20 and LDH. Prevention of LDH adsorption to the air-water interface by the Tween surfactants was correlated with surface energy rather than surfactant CMC. While surface pressure appears to be the main driving force for the displacement of LDH from the air-water interface by Tween-20 a solubilisation mechanism may exist for other protein molecules. More generally the results of this study highlight the value of the use of ITC and interfacial measurements in characterising the surface behaviour of mixed surfactant and protein systems.

  3. The impact of transitions between two-fluid and three-fluid phases on fluid configuration and fluid-fluid interfacial area in porous media

    NASA Astrophysics Data System (ADS)

    Carroll, Kenneth C.; McDonald, Kieran; Marble, Justin; Russo, Ann E.; Brusseau, Mark L.

    2015-09-01

    Multiphase-fluid distribution and flow is inherent in numerous areas of hydrology. Yet pore-scale characterization of transitions between two and three immiscible fluids is limited. The objective of this study was to examine the impact of such transitions on the pore-scale configuration of organic liquid in a multifluid system comprising natural porous media. Three-dimensional images of an organic liquid (trichloroethene) in two-phase (organic-liquid/water) and three-phase (air/organic-liquid/water) systems were obtained using X-ray microtomography before and after drainage and imbibition. Upon transition from a two-phase to a three-phase system, a significant portion of the organic liquid (intermediate wetting fluid) was observed to exist as lenses and films in contact with air (nonwetting fluid). In these cases, the air was either encased by or contiguous to the organic liquid. The presence of air resulted in an increase in the surface-area-to-volume ratios for the organic-liquid blobs. Upon imbibition, the air was displaced downgradient, and concomitantly, the morphology of the organic-liquid blobs no longer in contact with air reverted to that characteristic of a two-phase distribution (i.e., more spherical blobs and ganglia). This change in morphology resulted in a reduction in the surface-area-to-volume ratio. These results illustrate the impact of transitions between two-phase and three-phase conditions on fluid configuration, and they demonstrate the malleable nature of fluid configuration under dynamic, multiphase-flow conditions. The results have implications for characterizing and modeling pore-scale flow and mass transfer processes.

  4. Proton transport by bacteriorhodopsin in planar membranes assembled from air-water interface films

    PubMed Central

    Korenbrot, J. I.; Hwang, S. B.

    1980-01-01

    Bacteriorhodopsin, in known amounts and controlled orientation, is incorporated into planar membrane films. These films are formed by the sequential transfer of two air-water interface films onto a thin, hydrophilic, electrically conductive support cast from nitrocellulose. The films are easily accessible to electrical measurements and to control of the ionic milieu on either side of the membrane. The area of the assembled membrane films can be varied between 2.3 x 10(-2) cm2 and 0.7 cm2. Illumination of these films produces photocurrents, photovoltages, and changes in the pH of the surrounding medium. The peak amplitude of the photocurrent increases linearly with light intensity for dim lights, and it approaches a saturating value for brighter lights. In the linear range, the stoichiometry of transport is 0.65 +/- 0.06 protons/absorbed photon. The rate of transport is linearly proportional to light at all intensities tested. The amplitude and kinetics of the photovoltage measured are accurately predicted by the photocurrent generated and the passive electrical features of the film. Parallel measurements of pH and photocurrent reveal that the light-induced changes in pH are fully accounted for by the rate and amount of charge transport across the membrane. Preceding the transport of protons, a transient photovoltage is detected that exhibits no detectable latency, reaches peak in about 80 microseconds, and probably arises from light-induced intramolecular charge displacements. PMID:10822498

  5. Area-Selective Lift-Off Mechanism Based on Dual-Triggered Interfacial Adhesion Switching: Highly Facile Fabrication of Flexible Nano-Mesh Electrode.

    PubMed

    Yu, Seunghee; Han, Hyeuk Jin; Kim, Jong Min; Yim, Soonmin; Sim, Dong Min; Lim, Hunhee; Lee, Jung Hye; Park, Woon Ik; Park, Jae Hong; Kim, Kwang Ho; Jung, Yeon Sik

    2017-02-28

    With the recent emergence of flexible and wearable optoelectronic devices, the achievement of sufficient bendability and stretchability of transparent and conducting electrodes (TCEs) has become an important requirement. Although metal-mesh-based structures have been investigated for TCEs because of their excellent performances, the fabrication of mesh or grid structures with a sub-micron line width is still complex due to the requirements of laborious lithography and pattern transfer steps. Here, we introduce an extremely facile fabrication technique for metal patterns embedded in a flexible substrate based on sub-micron replication and an area-selective delamination (ASD) patterning. The high-yield, area-specific lift-off process is based on the principle of solvent-assisted delamination of deposited metal thin films and a mechanical triggering effect by soft wiping or ultrasonication. Our fabrication process is highly simple, convenient, and cost-effective in that it does not require any lithography/etching steps or sophisticated facilities. Moreover, their outstanding optical and electrical properties (e.g. sheet resistances of 0.43 Ω sq(-1) at 94% transmittance), which are markedly superior to those of other flexible TCEs, are demonstrated. Furthermore, there is no significant change of resistance during over 1,000 repeated bending cycles with a bending radius of 5 mm and for immersing in various solvents such as salt water and organic solvents. Finally, we demonstrate high-performance transparent heaters and flexible touch panels using the fabricated nanomesh electrode, confirming the long-range electrical conduction and reliability of the electrode.

  6. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    SciTech Connect

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H

    2009-04-14

    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  7. Structural and interfacial properties of large area n-a-Si:H/i-a-Si:H/p-c-Si heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Pehlivan, Özlem; Menda, Deneb; Yilmaz, Okan; Kodolbaş, Alp Osman; Ödemir, Orhan; Duygulu, Özgur; Kutlu, Kubilay; Tomak, Mehmet

    2013-09-01

    Large area (72 cm2) doping inversed HIT solar cells (n-a-Si:H/i-a-Si:H/p-c-Si) were investigated by High Resolution Transmission Electron Microscopy (HR-TEM), Spectroscopic Ellipsometry (SE), Fourier Transform Infrared Attenuated Total Reflection spectroscopy (FTIR-ATR) and current-voltage (I-V) measurement. Mixture of microcrystalline and amorphous phase was identified via HR-TEM picture at the interface of i-a-Si:H/p-c-Si heterojunction. Using multilayer and Effective Medium Approximation (EMA) to the SE data, excellent fit was obtained, describing the evolution of microstructure of a-Si:H deposited at 225 °C on p-c-Si. Cody energy gap with combination of FTIR-ATR analyses were consistent with HRTEM and SE results in terms of mixture of microcrystalline and amorphous phase. Presence of such hetero-interface resulted poor open circuit voltage, Voc, of the fabricated solar cell devices, determined by I-V measurement under 1 sun. Moreover, Voc was also estimated from dark I-V analysis, revealing consistent Voc values. Efficiencies of fabricated cells over complete c-Si wafer (72 cm2) were calculated as 4.7 and 9.2 %. Improvement in efficiency was interpreted due to the back surface cleaning and selecting aluminum/silver alloy as front contact.

  8. Effects on the self-assembly of n-alkane/gold nanoparticle mixtures spread at the air-water interface.

    PubMed

    Gagnon, Brandon P; Meli, M-Vicki

    2014-01-14

    Nanoparticle films formed at the air-water interface readily form rigid films, where the nanoparticles irreversibly associate into floating "islands", often riddled with voids and defects, upon solvent evaporation. Improving the nanoparticle mobility in these films is key to achieving control over the nanoparticle packing parameters, which is attractive for a variety of applications. In this study, a variety of n-alkanes were mixed with tetradecanethiol-capped 2 nm gold nanoparticles and studied as Langmuir films at 18 and 32 °C. Pressure-area isotherms at 18 °C reveal a mixed liquid-expanded phase of nanoparticles and alkane at the air-water interface, but only for n-alkanes that are equal to or exceed the nanoparticle capping ligand in carbon chain length. Transmission electron microscopy images of the corresponding films suggest that the nanoparticles are mixed with a continuous hydrocarbon phase at 0 mN/m and that the hydrocarbon is squeezed out of the nanoparticle film during compression.

  9. Effect of nanoscale patterned interfacial roughness on interfacial toughness.

    SciTech Connect

    Zimmerman, Jonathan A.; Moody, Neville Reid; Mook, William M.; Kennedy, Marian S.; Bahr, David F.; Zhou, Xiao Wang; Reedy, Earl David, Jr.

    2007-09-01

    The performance and the reliability of many devices are controlled by interfaces between thin films. In this study we investigated the use of patterned, nanoscale interfacial roughness as a way to increase the apparent interfacial toughness of brittle, thin-film material systems. The experimental portion of the study measured the interfacial toughness of a number of interfaces with nanoscale roughness. This included a silicon interface with a rectangular-toothed pattern of 60-nm wide by 90-nm deep channels fabricated using nanoimprint lithography techniques. Detailed finite element simulations were used to investigate the nature of interfacial crack growth when the interface is patterned. These simulations examined how geometric and material parameter choices affect the apparent toughness. Atomistic simulations were also performed with the aim of identifying possible modifications to the interfacial separation models currently used in nanoscale, finite element fracture analyses. The fundamental nature of atomistic traction separation for mixed mode loadings was investigated.

  10. Effect of particle shape on capillary forces acting on particles at the air-water interface.

    PubMed

    Chatterjee, Nirmalya; Flury, Markus

    2013-06-25

    The capillary forces exerted by moving air-water interfaces can dislodge particles from stationary surfaces. The magnitude of the capillary forces depends on particle shape, orientation, and surface properties, such as contact angle and roughness. The objective was to quantify, both experimentally and theoretically, capillary force variations as an air-water interface moves over the particles. We measured capillary forces as a function of position, i.e., force-position curves, on particles of different shape by using force tensiometry. The particles (5 mm nominal size) were made of polyacrylate and were fabricated using a 3D printer. Experimental measurements were compared with theoretical calculations. We found that force-position curves could be classified into in three categories according to particle shapes: (1) curves for particles with round cross sections, such as spheroidal particles, (2) curves for particles with fixed cross sections, such cylindrical or cubical particles, and (3) curves for particles with tapering cross sections, such as prismatic or tetrahedral particles. Spheroidal particles showed a continuously varying capillary force. Cylindrical or cubical particles showed pronounced pinning of the air-water interface line at edges. The pinning led to an increased capillary force, which was relaxed when the interface snapped off from the edges. Particles with tapering cross section did not show pinning and showed reduced capillary forces as the air-water interface line perimeter and displacement cross section continuously decrease when the air-water interface moved over the particles.

  11. Langmuir structure of poly (2-vinylpyridine-b-hexyl isocyanate) rod-coil diblock copolymers at the air/water Interface

    NASA Astrophysics Data System (ADS)

    Ahmad, Farhan

    2005-03-01

    We conducted a systematic interfacial study for the complete range (5%-90% of rod mole percentage) of an amphiphilic rod-coil system, poly (hexyl isocyanate)-b-(2-vinylpyridine) at the air/water and air/solid interface. We applied Langmuir balance technique, scanning probe microscopy (SPM), transmission electron microscopy (TEM) and X-ray reflectivity for the complete characterization of the monolayer at the interfaces. The phase isotherms showed the well amphiphilic balance for the diblock copolymers, and the formation of stable monolayers. With the increasing rod content, the consistent increase in the monolayer packing density was observed by the phase isotherms and supported by X-ray reflectivity. SPM and TEM characterization showed their interesting surface morphology according to the varying rod mole percentage in the rod-coil system. Rod mole percentage 5%-15% showed micellar morphology. Rod mole percentage 23%-32% showed distinct and dispersed rods, whereas rod mole percentage 70%-90% showed well packed structure similar to lamella phase. We found the tendency of the diblock system to adopt a packed monomolecular structure has increased by the increasing rod content. This lead us to conclude that it is the hexyl-isocyanate (rod part) that governs mostly the interfacial behavior of rod-coil block copolymers.

  12. Modification of bovine beta-lactoglobulin by glycation in a powdered state or in aqueous solution: adsorption at the air-water interface.

    PubMed

    Gauthier, F; Bouhallab, S; Renault, A

    2001-07-01

    The adsorption at the air-water interface of native and various glycated forms of beta-Lactoglobulin B (beta-LG), prepared under two different experimental conditions, was investigated by ellipsometry, surface tension and shear elastic constant measurements. The measurements were performed in 0.1 M phosphate buffer, 0.1 M NaCl, pH 6.8. It was found that the interfacial properties of beta-LG were more affected when the glycation was performed in solution than in the dry-way system. Dry-way glycated beta-LG, despite a higher glycation extent, affected slightly its interfacial behaviour. Solution glycated beta-LG exhibited a higher adsorption and more rigid interface as expressed by shear elastic constant measurement at saturation (16.5 mN/m against 8.7 and 11.5 mN/m for native and control treated beta-LG, respectively). These results were attributed to the specific molecular species induced during glycation in solution, which includes monomers and unfolded covalent homodimers of beta-LG molecules with a high tendency to self-association via non-covalent interactions.

  13. Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometry.

    PubMed

    Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre

    2011-12-29

    We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates.

  14. The interaction of eugenol with cell membrane models at the air-water interface is modulated by the lipid monolayer composition.

    PubMed

    Gonçalves, Giulia E G; de Souza, Fernanda S; Lago, João Henrique G; Caseli, Luciano

    2015-12-01

    Eugenol, a natural phenylpropanoid derivative with possible action in biological surfaces as microbicide, anesthetic and antioxidant, was incorporated in lipid monolayers of selected lipids at the air-water interface, representing cell membrane models. Interaction of eugenol with the lipids dipalmitoylphosphatidylcholine (DPPC), dioctadecyldimethylammonium bromide (DODAB), and dipalmitoylphosphatidylserine (DPPS) could be inferred by means of surface pressure-area isotherms and Polarization-Modulation Reflection-Absorption Spectroscopy. The interaction showed different effects on the different lipids. A higher monolayer expansion was observed for DPPS and DODAB, while more significant effects on the polar groups of the lipids were observed for DPPS and DPPC. These results pointed to the fact that the interaction of eugenol with lipid monolayers at the air-water interface is modulated by the lipid composition, which may be important to comprehend at the molecular level the interaction of this drug with biological surfaces.

  15. Specific effects of Ca(2+) ions and molecular structure of β-lactoglobulin interfacial layers that drive macroscopic foam stability.

    PubMed

    Braunschweig, Björn; Schulze-Zachau, Felix; Nagel, Eva; Engelhardt, Kathrin; Stoyanov, Stefan; Gochev, Georgi; Khristov, Khr; Mileva, Elena; Exerowa, Dotchi; Miller, Reinhard; Peukert, Wolfgang

    2016-07-06

    β-Lactoglobulin (BLG) adsorption layers at air-water interfaces were studied in situ with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry as a function of bulk Ca(2+) concentration. The relation between the interfacial molecular structure of adsorbed BLG and the interactions with the supporting electrolyte is additionally addressed on higher length scales along the foam hierarchy - from the ubiquitous air-water interface through thin foam films to macroscopic foam. For concentrations <1 mM, a strong decrease in SFG intensity from O-H stretching bands and a slight increase in layer thickness and surface pressure are observed. A further increase in Ca(2+) concentrations above 1 mM causes an apparent change in the polarity of aromatic C-H stretching vibrations from interfacial BLG which we associate to a charge reversal at the interface. Foam film measurements show formation of common black films at Ca(2+) concentrations above 1 mM due to considerable decrease of the stabilizing electrostatic disjoining pressure. These observations also correlate with a minimum in macroscopic foam stability. For concentrations >30 mM Ca(2+), micrographs of foam films show clear signatures of aggregates which tend to increase the stability of foam films. Here, the interfacial layers have a higher surface dilatational elasticity. In fact, macroscopic foams formed from BLG dilutions with high Ca(2+) concentrations where aggregates and interfacial layers with higher elasticity are found, showed the highest stability with much smaller bubble sizes.

  16. Structure of Polystyrene Sulfonate/Surfactant Mixtures at Air-Water Interfaces and their Role as Building Blocks for Macroscopic Foam.

    PubMed

    Schulze-Zachau, Felix; Braunschweig, Björn

    2017-03-20

    Air/water interfaces were modified by oppositely charged poly(sodium 4-styrenesulfonate) (NaPSS) and hexadecyltrimethylammonium bromide (CTAB) polyelectrolyte/surfactant mixtures and were studied on a molecular level with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry. In order to deduce structure property relations, our results on the interfacial molecular structure and lateral interactions of PSS(-)/CTA(+) complexes were compared to the stability and structure of macroscopic foam as well as to bulk properties. For that, the CTAB concentration was fixed to 0.1 mM, while the NaPSS concentration was varied. At NaPSS monomer concentrations <0.1 mM, PSS(-)/CTA(+) complexes start to replace free CTA(+) surfactants at the interface and thus reduce the interfacial electric field in the process. This causes the O-H bands from interfacial H2O molecules in our SFG spectra to decrease substantially, which reach a local minimum in intensity close to equimolar concentrations. Once electrostatic repulsion is fully screened at the interface, hydrophobic PSS(-)/CTA(+) complexes dominate and tend to aggregate at the interface and in the bulk solution. As a consequence, adsorbate layers with the highest film thickness, surface pressure and dilatational elasticity are formed. These surface layers provide much higher stabilities and foamabilities of polyhedral macroscopic foams. Mixtures around this concentration show precipitation after a few days, while their surfaces to air are in a local equilibrium state. Concentrations >0.1 mM result in a significant decrease in surface pressure and a complete loss in foamability. However, SFG and surface dilatational rheology provide strong evidence for the existence of PSS(-)/CTA(+) complexes at the interface. At polyelectrolyte concentrations >10 mM, air-water interfaces are dominated by an excess of free PSS(-) polyelectrolytes and small amounts of PSS(-)/CTA(+) complexes which

  17. Towards a unified picture of the water self-ions at the air-water interface: a density functional theory perspective

    SciTech Connect

    Baer, Marcel D.; Kuo, I-F W.; Tobias, Douglas J.; Mundy, Christopher J.

    2014-07-17

    The propensities of the water self ions, H3O+ and OH- , for the air-water interface has implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O+ and/or OH- prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs. interfacial behavior of H3O+ and OH- that employs forces derived from density functional theory with a generalized gradient approximation exchangecorrelation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF) for H3O+ as a function of the position of the ion in a 215-molecule water slab. The PMF is flat, suggesting that H3O+ has equal propensity for the air-water interface and the bulk. We compare the PMF for H3O+ to our previously computed PMF for OH- adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs. the bulk are connected with interfacial propensity. We find that the solvation shell of H3O+ is only slightly dependent on its position in the water slab, while OH- partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions. DJT was supported by National Science Foundation grant CHE-0909227. CJM was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. The potential of mean force required resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC05-00OR22725. The remaining simulations

  18. Critical air/water blow-down in safety valves at low qualities.

    PubMed

    Moncalvo, D; Friedel, L

    2011-02-28

    Critical air/water blow-downs in safety valves for qualities from 0.01 to 0.113 and mass flow rates from 1.5 up to 4.3 kg/s have been observed in our test facility. These critical blow-downs are characterized by a large void fraction and by an intense mixing of the phases both in the valve body and in the outlet pipe. A qualitative estimation of the flow pattern in the outlet pipe using the map of Taitel and Dukler suggests that these air/water flows are intermittent flows--presumably slug flows--evolving to annular flows for qualities above 0.1. Intermittent flows are also predicted for critical air/water and air/glycerine flows taken from the literature for the same safety valve at slightly larger relieving pressures.

  19. Surface behavior of malonic acid adsorption at the air/water interface.

    PubMed

    Blower, Patrick G; Shamay, Eric; Kringle, Loni; Ota, Stephanie T; Richmond, Geraldine L

    2013-03-28

    The presence of organic materials adsorbed to the surfaces of aerosol particles has been demonstrated to be a determining factor in relevant atmospheric processes. Malonic acid is a small, water-soluble organic acid that is common in aerosols and is surface-active. A comprehensive investigation of the adsorption of malonic acid to the air/water interface was accomplished using vibrational sum frequency spectroscopy (VSFS) and surface tension measurements as functions of concentration and pH. Malonic acid was found to be weakly solvated at the air/water interface, and its orientation as a function of concentration was explored through different VSFS polarization schemes. pH-dependent experiments revealed that the surface-active species is the fully protonated species. Computational analyses were used to obtain depth-specific geometries of malonic acid at the air/water interface that confirm and enrich the experimental results.

  20. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  1. Does colloid shape affect detachment of colloids by a moving air-water interface?

    PubMed

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L; Davis, Howard P

    2013-05-14

    Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An air bubble was introduced into the channel and passed through, thereby generating a receding followed by an advancing air-water interface. The detachment of colloids by the air-water interfaces was visualized with a confocal microscope, quantified by image analysis, and analyzed statistically to determine significant differences. For all colloid shapes, the advancing air-water interface caused pronounced colloid detachment (>63%), whereas the receding interface was ineffective in colloid detachment (<1.5%). Among the different colloid shapes, the barrels were most readily removed (94%) by the advancing interface, followed by the spheres and oblong disks (80%) and the rods (63%). Colloid detachment was significantly affected by colloid shape. The presence of an edge, as it occurs in a barrel-shaped colloid, promoted colloid detachment because the air-water interface is being pinned at the edge of the colloid. This suggests that the magnitude of colloid mobilization and transport in porous media is underestimated for edged particles and overestimated for rodlike particles when a sphere is used as a model colloid.

  2. Femtosecond-laser-induced shockwaves in water generated at an air-water interface.

    PubMed

    Strycker, B D; Springer, M M; Traverso, A J; Kolomenskii, A A; Kattawar, G W; Sokolov, A V

    2013-10-07

    We report generation of femtosecond-laser-induced shockwaves at an air-water interface by millijoule femtosecond laser pulses. We document and discuss the main processes accompanying this phenomenon, including light emission, development of the ablation plume in the air, formation of an ablation cavity, and, subsequently, a bubble developing in water. We also discuss the possibility of remotely controlling the characteristics of laser-induced sound waves in water through linear acoustic superposition of sound waves that results from millijoule femtosecond laser-pulse interaction with an air-water interface, thus opening up the possibility of remote acoustic applications in oceanic and riverine environments.

  3. Interaction of Charged Colloidal Particles at the Air-Water Interface.

    PubMed

    Girotto, Matheus; Dos Santos, Alexandre P; Levin, Yan

    2016-07-07

    We study, using Monte Carlo simulations, the interaction between charged colloidal particles confined to the air-water interface. The dependence of force on ionic strength and counterion valence is explored. For 1:1 electrolyte, we find that the electrostatic interaction at the interface is very close to the one observed in the bulk. On the other hand, for salts with multivalent counterions, an interface produces an enhanced attraction between like charged colloids. Finally, we explore the effect of induced surface charge at the air-water interface on the interaction between colloidal particles.

  4. Turbulence and wave breaking effects on air-water gas exchange

    PubMed

    Boettcher; Fineberg; Lathrop

    2000-08-28

    We present an experimental characterization of the effects of turbulence and breaking gravity waves on air-water gas exchange in standing waves. We identify two regimes that govern aeration rates: turbulent transport when no wave breaking occurs and bubble dominated transport when wave breaking occurs. In both regimes, we correlate the qualitative changes in the aeration rate with corresponding changes in the wave dynamics. In the latter regime, the strongly enhanced aeration rate is correlated with measured acoustic emissions, indicating that bubble creation and dynamics dominate air-water exchange.

  5. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  6. Mechanobiology of interfacial growth

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.; Preziosi, L.; Maugin, G. A.

    2013-03-01

    A multiscale analysis integrating biomechanics and mechanobiology is today required for deciphering the crosstalk between biochemistry, geometry and elasticity in living materials. In this paper we derive a unified thermomechanical theory coupling growth processes with mass transport phenomena across boundaries and/or material interfaces. Inside a living system made by two contiguous bodies with varying volumes, an interfacial growth mechanism is considered to force fast but continuous variations of the physical fields inside a narrow volume across the material interface. Such a phenomenon is modelled deriving homogenized surface fields on a growing non-material discontinuity, possibly including a singular edge line. A number of balance laws is derived for imposing the conservation of the thermomechanical properties of the biological system. From thermodynamical arguments we find that the normal displacement of the non-material interface is governed by the jump of a new form of material mechanical-energy flux, also involving the kinetic energies and the mass fluxes. Furthermore, the configurational balance indicates that the surface Eshelby tensor is the tangential stress measure driving the material inhomogeneities on the non-material interface. Accordingly, stress-dependent evolution laws for bulk and interfacial growth processes are derived for both volume and surface fields. The proposed thermomechanical theory is finally applied to three biological system models. The first two examples are focused on stress-free growth problems, concerning the morphogenesis of animal horns and of seashells. The third application finally deals with the stress-driven surface evolution of avascular tumours with heterogeneous structures. The results demonstrate that the proposed theory can successfully model those biological systems where growth and mass transport phenomena interact at different length-scales. Coupling biological, mechanical and geometrical factors, the proposed

  7. Insect flight on fluid interfaces: a chaotic interfacial oscillator

    NASA Astrophysics Data System (ADS)

    Mukundarajan, Haripriya; Prakash, Manu

    2013-11-01

    Flight is critical to the dominance of insect species on our planet, with about 98 percent of insect species having wings. How complex flight control systems developed in insects is unknown, and arboreal or aquatic origins have been hypothesized. We examine the biomechanics of aquatic origins of flight. We recently reported discovery of a novel mode of ``2D flight'' in Galerucella beetles, which skim along an air-water interface using flapping wing flight. This unique flight mode is characterized by a balance between capillary forces from the interface and biomechanical forces exerted by the flapping wings. Complex interactions on the fluid interface form capillary wave trains behind the insect, and produce vertical oscillations at the surface due to non-linear forces arising from deformation of the fluid meniscus. We present both experimental observations of 2D flight kinematics and a dynamic model explaining the observed phenomena. Careful examination of this interaction predicts the chaotic nature of interfacial flight and takeoff from the interface into airborne flight. The role of wingbeat frequency, stroke plane angle and body angle in determining transition between interfacial and fully airborne flight is highlighted, shedding light on the aquatic theory of flight evolution.

  8. Mesoscale Interfacial Dynamics in Magnetoelectric Nanocomposites

    SciTech Connect

    Shashank, Priya

    2009-12-14

    Biphasic composites are the key towards achieving enhanced magnetoelectric response. In order understand the control behavior of the composites and resultant symmetry of the multifunctional product tensors, we need to synthesized model material systems with the following features (i) interface formation through either deposition control or natural decomposition; (ii) a very high interphase-interfacial area, to maximize the ME coupling; and (iii) an equilibrium phase distribution and morphology, resulting in preferred crystallographic orientation relations between phases across the interphase-interfacial boundaries. This thought process guided the experimental evolution in this program. We initiated the research with the co-fired composites approach and then moved on to the thin film laminates deposited through the rf-magnetron sputtering and pulsed laser deposition process

  9. Microcapsule Buckling Triggered by Compression-Induced Interfacial Phase Change.

    PubMed

    Salmon, Andrew Roy; Parker, Richard M; Groombridge, Alexander S; Maestro, Armando; Coulston, Roger J; Hegemann, Jonas; Kierfeld, Jan; Scherman, Oren A; Abell, Chris

    2016-10-04

    There is an emerging trend towards the fabrication of microcapsules at liquid interfaces. In order to control the parameters of such capsules, the interfacial processes governing their formation must be understood. Here, poly(vinyl alcohol) films are assembled at the interface of water-in-oil microfluidic droplets. The polymer is cross-linked using cucurbit[8]uril ternary supramolecular complexes. It is shown that compression-induced phase change causes the onset of buckling in the interfacial film. On evaporative compression, the interfacial film both increases in density and thickens, until it reaches a critical density and a phase change occurs. We show that this increase in density can be simply related to the film Poisson ratio and area compression. This description captures fundamentals of many compressive interfacial phase changes and can also explain the observation of a fixed thickness-to-radius ratio at buckling, (T/R)buck.

  10. Long-range attraction between colloidal spheres at the air-water interface: the consequence of an irregular meniscus

    PubMed

    Stamou; Duschl; Johannsmann

    2000-10-01

    Recent observations of charged colloidal particles trapped at the air-water interface revealed long-range interparticle attractive forces, not accounted for by the standard theories of colloidal interactions. We propose a mechanism for attraction which is based on nonuniform wetting causing an irregular shape of the particle meniscus. The excess water surface area created by these distortions can be minimized when two adjacent particles assume an optimum relative orientation and distance. Typically, for spheres with diameter of 1 &mgr;m at an interparticle distance of 2 &mgr;m, deviations from the ideal contact line by as little as 50 nm result in an interaction energy of the order of 10(4)kT. Roughness-induced capillarity explains the experimental findings, including the cluster dissolution caused by addition of detergent to the subphase and the formation of linear aggregates. This kind of interaction should also be of importance in particle-stabilized foams and emulsions.

  11. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.

    PubMed

    Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko

    2016-05-14

    In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures.

  12. Interfacial Instabilities in Evaporating Drops

    NASA Astrophysics Data System (ADS)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  13. It's Alive!: Students Observe Air-Water Interface Samples Rich with Organisms

    ERIC Educational Resources Information Center

    Avant, Thomas

    2002-01-01

    This article describes an experiment, designed by Cindy Henk, manager of the Socolofsky Microscopy Center at Louisiana State University (LSU), that involved collecting and viewing microorganisms in the air-water interface. The experiment was participated by Leesville High School microbiology students. The students found that the air-water…

  14. Physicochemical Study of Viral Nanoparticles at the Air/Water Interface.

    PubMed

    Torres-Salgado, Jose F; Comas-Garcia, Mauricio; Villagrana-Escareño, Maria V; Durán-Meza, Ana L; Ruiz-García, Jaime; Cadena-Nava, Ruben D

    2016-07-07

    The assembly of most single-stranded RNA (ssRNA) viruses into icosahedral nucleocapsids is a spontaneous process driven by protein-protein and RNA-protein interactions. The precise nature of these interactions results in the assembly of extremely monodisperse and structurally indistinguishable nucleocapsids. In this work, by using a ssRNA plant virus (cowpea chlorotic mottle virus [CCMV]) as a charged nanoparticle we show that the diffusion of these nanoparticles from the bulk solution to the air/water interface is an irreversible adsorption process. By using the Langmuir technique, we measured the diffusion and adsorption of viral nucleocapsids at the air/water interface at different pH conditions. The pH changes, and therefore in the net surface charge of the virions, have a great influence in the diffusion rate from the bulk solution to the air/water interface. Moreover, assembly of mesoscopic and microscopic viral aggregates at this interface depends on the net surface charge of the virions and the surface pressure. By using Brewster's angle microscopy we characterized these structures at the interface. Most common structures observed were clusters of virions and soap-frothlike micron-size structures. Furthermore, the CCMV films were compressed to form monolayers and multilayers from moderate to high surface pressures, respectively. After transferring the films from the air/water interface onto mica by using the Langmuir-Blodgett technique, their morphology was characterized by atomic force microscopy. These viral monolayers showed closed-packing nano- and microscopic arrangements.

  15. Effects of flow on insulin fibril formation at an air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2009-11-01

    The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.

  16. Oil lenses on the air-water surface and the validity of Neumann's rule.

    PubMed

    Nikolov, Alex; Wasan, Darsh

    2016-05-10

    Many studies have focused on the mechanisms of oil spreading over the air-water surface, oil lens formation, and lens dynamics: Franklin et al.(1774), Rayleigh (1890), Neumann and Wangerin (1894), Hardy (1912), Lyons (1930), Langmuir (1933), Miller (1941), Zisman (1941), Pujado and Scriven (1972), Seeto et al. (1983), and Takamura et al. (2012). Despite all of these studies, the phenomenon of the oil lens's air-water surface equilibrium is still under discussion. Here, we highlight an accurate method to study the oil lens's three-phase-contact angle by reflected light interferometry, using both common (CRLI) and differential reflected light interferometry (DRLI) to verify Neumann's rule (the vectorial sum of the three tensions is zero). For non-spreading oils, the validity of Neumann's rule is confirmed for small lenses when the role of the oil film tension around the lens's meniscus is taken into consideration. Neumann's rule was also validated when the monolayer surface pressure isotherm was taken into consideration for oil spreading on the air-water surface. The periodic monolayer surface pressure oscillation of the oil phase monolayer created by the air-evaporating biphilic oil was monitored with time. The monolayer's surface pressure periodic oscillation was attributed to the instability of the aqueous film covering the oil drop phase. The knowledge gained from this study will benefit the fundamental understanding of the oil lens's air-water surface equilibrium and oil spill mechanisms, thereby promoting better methods for the prevention and clean-up of oil spills.

  17. THE EFFECT OF SALINITY ON RATES OF ELEMENTAL MERCURY AIR/WATER EXCHANGE

    EPA Science Inventory

    The U.S. EPA laboratory in Athens, Georgia i spursuing the goal of developing a model for describing toxicant vapor phase air/water exchange under all relevant environmental conditions. To date, the two-layer exchange model (suitable for low wind speed conditions) has been modif...

  18. Modeling interfacial fracture in Sierra.

    SciTech Connect

    Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.

    2013-09-01

    This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

  19. Charge dependent condensation of macro-ions at air-water interfaces

    NASA Astrophysics Data System (ADS)

    Bera, Mrinal; Antonio, Mark

    2015-03-01

    Ordering of ions at and near air-water interfaces is a century old problem for researchers and has implications on a host of physical, chemical and biological processes. The dynamic nature of water surface and the surface fluctuations created by thermally excited capillary waves have always limited measurement of near surface ionic-distributions. We demonstrate that this limitation can be overcome by using macro-ions of sizes larger than the capillary wave roughness ~3Å. Our attempts to measure distributions of inorganic macro-ions in the form of Keggin heteropolyanions (HPAs) of sizes ~10Å have unraveled novel charge-dependent condensation of macro-ions beneath air-water interfaces. Our results demonstrate that HPAs with -3 charges condense readily beneath air-water interfaces. This is in contrast to the absence of surface preference for HPAs with -4 charges. The similarity of HPA-HPA separations near air-water interfaces and in bulk crystal structures suggests the presence of the planar Zundel ions (H5O2+), which interact with HPAs and the water surface to facilitate the charge dependent condensation beneath the air-water interfaces.This work and the use of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility at Argonne National Laboratory, is based upon work supported by the U.S. DOE, Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences, under contract No DE-AC02-06CH11357.

  20. Detachment of colloids from a solid surface by a moving air-water interface.

    PubMed

    Sharma, Prabhakar; Flury, Markus; Zhou, Jun

    2008-10-01

    Colloid attachment to liquid-gas interfaces is an important process used in industrial applications to separate suspended colloids from the fluid phase. Moving gas bubbles can also be used to remove colloidal dust from surfaces. Similarly, moving liquid-gas interfaces lead to colloid mobilization in the natural subsurface environment, such as in soils and sediments. The objective of this study was to quantify the effect of moving air-water interfaces on the detachment of colloids deposited on an air-dried glass surface, as a function of colloidal properties and interface velocity. We selected four types of polystyrene colloids (positive and negative surface charge, hydrophilic and hydrophobic). The colloids were deposited on clean microscope glass slides using a flow-through deposition chamber. Air-water interfaces were passed over the colloid-deposited glass slides, and we varied the number of passages and the interface velocity. The amounts of colloids deposited on the glass slides were visualized using confocal laser scanning microscopy and quantified by image analysis. Our results showed that colloids attached under unfavorable conditions were removed in significantly greater amounts than those attached under favorable conditions. Hydrophobic colloids were detached more than hydrophilic colloids. The effect of the air-water interface on colloid removal was most pronounced for the first two passages of the air-water interface. Subsequent passages of air-water interfaces over the colloid-deposited glass slides did not cause significant additional colloid removal. Increasing interface velocity led to decreased colloid removal. The force balances, calculated from theory, supported the experimental findings, and highlight the dominance of detachment forces (surface tension forces) over the attachment forces (DLVO forces).

  1. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  2. Interfacial and foaming properties of prolylenglycol alginates. Effect of degree of esterification and molecular weight.

    PubMed

    Baeza, Rosa; Sanchez, Cecilio Carrera; Pilosof, Ana M R; Patino, Juan M Rodríguez

    2004-08-01

    In the present work we have studied the characteristics of propylene glycol alginates (PGA) adsorption at the air-water interface and the viscoelastic properties of the films in relation to its foaming properties. To evaluate the effect of the degree of PGA esterification and viscosity, different commercial samples were studied--Kelcoloid O (KO), Kelcoloid LVF (KLVF) and Manucol ester (MAN). The temperature (20 degrees C) and pH (7.0) were maintained constant. For time-dependent surface pressure measurements and surface dilatational properties of adsorbed PGA at the air-water interface an automatic drop tensiometer was used. The foam was generated by whipping and then the foam capacity and stability was determined. The results reveal a significant interfacial activity for PGA due to the hydrophobic character of the propylene glycol groups. The kinetics of adsorption at the air-water interface can be monitored by the diffusion and penetration of PGA at the interface. The adsorbed PGA film showed a high viscoelasticity. The surface dilatational modulus depends on the PGA and its concentration in the aqueous phase. Foam capacity of PGA solutions increased in the order KO > MAN > KLVF, which followed the increase in surface pressure and the decrease in the viscosities of PGA solutions. The stability of PGA foams monitored by the drainage rate and collapse time follows the order MAN > KLVF > KO. The foam stability depends on the combined effect of molecular weight/degree of esterification of PGA, solution viscosity and viscoelasticity of the adsorbed PGA film.

  3. Liquid-Vapor Interfacial Properties of Aqueous Solutions of Guanidinium and Methyl Guanidinium Chloride: Influence of Molecular Orientation on Interface Fluctuations

    PubMed Central

    Ou, Shuching; Cui, Di; Patel, Sandeep

    2014-01-01

    The guanidinium cation (C(NH2)3+) is a highly stable cation in aqueous solution due to its efficient solvation by water molecules and resonance stabilization of the charge. Its salts increase the solubility of nonpolar molecules (”salting-in”) and decrease the ordering of water. It is one of the strongest denaturants used in biophysical studies of protein folding. We investigate the behavior of guanidinium and its derivative, methyl guanidinium (an amino acid analogue) at the air-water surface, using atomistic molecular dynamics (MD) simulations and calculation of potentials of mean force. Methyl guanidinium cation is less excluded from the air-water surface than guanidinium cation, but both cations show orientational dependence of surface affinity. Parallel orientations of the guanidinium ring (relative to the Gibbs dividing surface) show pronounced free energy minima in the interfacial region, while ring orientations perpendicular to the GDS exhibit no discernible surface stability. Calculations of surface fluctuations demonstrate that near the air-water surface, the parallel-oriented cations generate significantly greater interfacial fluctuations compared to other orientations, which induces more long-ranged perturbations and solvent density redistribution. Our results suggest a strong correlation with induced interfacial fluctuations and ion surface stability. These results have implications for interpreting molecular-level, mechanistic action of this osmolyte’s interaction with hydrophobic interfaces as they impact protein denaturation (solubilization). PMID:23937431

  4. Effects of Temperature, Oxygen Level, Ionic Strength, and pH on the Reaction of Benzene with Hydroxyl Radicals at the Air-Water Interface in Comparison to the Bulk Aqueous Phase.

    PubMed

    Heath, Aubrey A; Valsaraj, Kalliat T

    2015-08-06

    Atmospheric aerosols (e.g., fog droplets) are complex, multiphase mediums. Depending on location, time of day, and/or air mass source, there can be considerable variability within these droplets, relating to temperature, pH, and ionic strength. Due to the droplets' inherently small size, the reactions that occur within these droplets are determined by bulk aqueous phase and air-water interfacial conditions. In this study, the reaction of benzene and hydroxyl radicals is examined kinetically in a thin-film flow-tube reactor. By varying the aqueous volume (e.g., film thickness) along the length of the reactor, both bulk and interfacial reaction rates are measured from a single system. Temperature, pH, and ionic strength are varied to model conditions typical of fog events. Oxygen-poor conditions are measured to study oxygen's overall effect on the reaction pathway. Initial rate activation energies and the bulk aqueous phase and interfacial contributions to the overall rate constant are also obtained.

  5. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  6. Evolution of Nanoflowers and Nanospheres of Zinc Bisporphyrinate Tweezers at the Air/water Interface.

    PubMed

    Xie, Fan; Zhuo, Congcong; Hu, Chuanjiang; Liu, Ming Hua

    2017-03-22

    While the sophisticated Langmuir and Langmuir-Blodgett technique facilitates the fabrication of uniform ultrathin monolayer and films, it is also revealed as a powerful tool for the bottom-up constructions of the nanostructures through the air/water interface. In this paper, unique nanoflowers or nanospheres were constructed based on the synthesized m-phthalic diamide-linked Zinc bis-porphyrinate tweezers using the Langmuir and Langmuir-Blodgett (LB) technique. It was found that both the two tweezer type Zinc bisporphyrinates could form stable two-dimensional spreading films at the air/water interface, which could be subsequently transferred onto solid substrates by the vertical lifting method. The atomic force microscope (AFM) revealed that at the initial spreading stage the compound formed flat disk-like domains and then hierarchically evolved into nanoflowers or nanospheres upon compressing the floating film. Such nanostructures have not been reported before and cannot be fabricated using the other self-assembly methods.

  7. Structure of phospholipid monolayers containing poly(ethylene glycol) lipids at the air-water interface

    SciTech Connect

    Majewski, J.; Smith, G.S.; Kuhl, T.L.; Israelachvili, J.N.; Gerstenberg, M.C.

    1997-04-17

    The density distribution of a lipid monolayer at the air-water interface mixed with varying amounts of lipid with poly(ethylene glycol)polymer headgroups (polymer-lipid or PEG-lipid) was measured using neutron reflectometry. The structure of the monolayer at the interface was greatly perturbed by the presence of the bulky polymer-lipid headgroups resulting in a large increase in the thickness of the headgroup region normal to the interface and a systematic roughening of the interface with increasing polymer-lipid content. These results show how bulky hydrophilic moieties cause significant deformations and out-of-place protrusions of phospholipid monolayers and presumably bilayers, vesicles and biological membranes. In terms of polymer physics, very short polymer chains tethered to the air-water interface follow scaling behavior with a mushroom to brush transition with increasing polymer grafting density. 34 refs., 9 figs., 1 tab.

  8. Behavior of pH-sensitive core shell particles at the air-water interface.

    PubMed

    Mathew, Mark D'Souza; Manga, Mohamed S; Hunter, Timothy N; Cayre, Olivier J; Biggs, Simon

    2012-03-20

    In this article, the adsorption of latex core-responsive polymer-shell nanoparticles at the air-water interface is investigated using a Langmuir trough. Phase transition isotherms are used to explore their responsive behavior at the interface as a function of changes in the pH of the subphase. By adjusting the pH of the water prior to particle deposition, we probe the effect of the stabilizing polymer wetting by the water subphase on the stability of these particles at the air-water interface. In addition, by initially compressing a stable film of adsorbed particles and then subsequently changing the pH of the subphase we study desorption of these particles into the water phase.

  9. Effect of surfactants on bubble collisions with an air-water interface

    NASA Astrophysics Data System (ADS)

    Wang, Shiyan; Guo, Tianqi; Dabiri, Sadegh; Vlachos, Pavlos P.; Ardekani, Arezoo M.

    2016-11-01

    Collisions of bubbles on an air-water interface are frequently observed in natural environments and industrial applications. We study the coefficient of restitution of a bubble colliding on an air-water interface in the presence of surfactants through a combination of experimental and numerical approaches. In a high concentration surfactant solution, bubbles experience perfectly inelastic collisions, and bubbles are arrested by the interface after the collision. As the surfactant concentration decreases, collisions are altered to partially inelastic, and eventually, elastic collisions occur in the pure water. In a high concentration surfactant solution, the reduced bouncing is attributed to the Marangoni stress. We identify the Langmuir number, the ratio between absorption and desorption rates, as the fundamental parameter to quantify the Marangoni effect on collision processes in surfactant solutions. The effect of Marangoni stress on the bubble's coefficient of restitution is non-monotonic, where the coefficient of restitution first decreases with Langmuir number, and then increases.

  10. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.

    PubMed

    Zhu, Chongqin; Kumar, Manoj; Zhong, Jie; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-09-07

    Understanding Criegee chemistry has become one of central topics in atmospheric research recently. The reaction of Criegee intermediates with gas-phase water clusters has been widely viewed as a key Criegee reaction in the troposphere. However, the effect of aerosols or clouds on Criegee chemistry has received little attention. In this work, we have investigated the reaction between the smallest Criegee intermediate, CH2OO, and water clusters in the gas phase, as well as at the air/water surface using ab initio quantum chemical calculations and adaptive buffered force quantum mechanics/molecular mechanics (QM/MM) dynamics simulations. Our simulation results show that the typical time scale for the reaction of CH2OO with water at the air/water interface is on the order of a few picoseconds, 2-3 orders of magnitude shorter than that in the gas phase. Importantly, the adbf-QM/MM dynamics simulations suggest several reaction pathways for the CH2OO + water reaction at the air/water interface, including the loop-structure-mediated mechanism and the stepwise mechanism. Contrary to the conventional gas-phase CH2OO reaction, the loop-structure is not a prerequisite for the stepwise mechanism. For the latter, a water molecule and the CH2OO at the air/water interface, upon their interaction, can result in the formation of (H3O)(+) and (OH)CH2(OO)(-). Thereafter, a hydrogen bond can be formed between (H3O)(+) and the terminal oxygen atom of (OH)CH2(OO)(-), leading to direct proton transfer and the formation of α-hydroxy methylperoxide, HOCH2OOH. The mechanistic insights obtained from this simulation study should motivate future experimental studies of the effect of water clouds on Criegee chemistry.

  11. Foam and cluster structure formation by latex particles at the air/water interface

    NASA Astrophysics Data System (ADS)

    Ruiz-Garcia, Jaime; Gámez-Corrales, Rogelio; Ivlev, Boris I.

    1997-02-01

    We report the formation of two-dimensional foam and cluster structures by spherical polystyrene particles trapped at the air/water interface. The colloidal foam is a transient structure that evolves to the formation of clusters, but clusters can also be formed after deposition of the sample. We also observed the formation of small aggregates, whose formation along with the cluster stabilization can be explained in terms of a balance between electrostatic repulsive and van der Waals attractive interactions.

  12. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface.

    PubMed

    Wang, Zhenhui; Liu, Yanming; Tao, Peng; Shen, Qingchen; Yi, Nan; Zhang, Fangyu; Liu, Quanlong; Song, Chengyi; Zhang, Di; Shang, Wen; Deng, Tao

    2014-08-27

    Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer.

  13. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed Central

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-01-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the

  14. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-10-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the

  15. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  16. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow.

    PubMed

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  17. Interactions between the ganglioside GM1 and hexadecylphosphocholine (miltefosine) in monolayers at the air/water interface.

    PubMed

    Gómez-Serranillos, Isabel Rey; Miñones, José; Dynarowicz-Łatka, Patrycja; Iribarnegaray, Eduardo; Casas, Matilde

    2005-03-10

    The ganglioside, GM1, was studied as Langmuir monolayers at the air/water interface with surface pressure-area measurements in addition to Brewster angle microscopy. A characteristic plateau transition, observed on aqueous subphases of pH 2 and 6, 20 degrees C, at the surface pressure of ca. 20 mN/m, was attributed to the reorientation of GM1 polar group upon film compression. This transition was found to disappear at alkaline subphases (pH 10) due to the hydration of fully ionized polar group, hindering its reorientation. The interactions between GM1 and hexadecylphosphocholine (miltefosine) were investigated in mixed monolayers and analyzed with the mean molecular areas, excess areas of mixing and the excess free energy of mixing versus film composition plots. The monolayers stability, quantified by the collapse pressure values, as well as the strength of interaction was found to diminish in the following order: pH 6>pH 2>pH 10. The strongest interaction occurs for mixed films of miltefosine molar fraction, XM=0.7-0.8, especially at low pressure region, and are explained as being due to the surface complex formation of 3:1 or 4:1 (miltefosine:ganglioside) stoichiometry (XM=0.75 or 0.8, respectively).

  18. Effects of chain unsaturation on the equation of state for lipid monolayers at the air-water interface.

    PubMed Central

    Feng, S S; MacDonald, R C

    1995-01-01

    An equation of state for lipid monolayers at the air-water interface is presented, which takes into account the effects of the conformation and the number and position of double bonds of the hydrocarbon chains. The total Hamiltonian of the monolayer is assumed to consist of three terms. Two of them are calculated exactly within the limitations of the formulation. These are the two-dimensional entropy of mixing of the lipid and water molecules at the surface and the conformational entropy of the chains using a model available from the literature. These two terms give rise to positive surface pressure. The third term, which includes all energies that are not amenable to calculation, was obtained as the difference between the sum of the two calculated terms and experimental data and is found to represent an approximately area-independent tension. The effects of chain unsaturation on the equation of state were modeled in the present theory in two ways; the chain bend caused by cis double bonds increases the minimal molecular area, and the double bond linkage on a chain decreases the degrees of freedom of the chain. Calculations revealed that the former is highly significant whereas the latter is negligible. The deduced equation of state reproduces experimental data with appropriate values for three parameters, which represent the collapse area, the overlap of adjacent chains, and the combined effects of the intra- and intermolecular interactions other than the surface mixing entropy and the chain conformational energy. PMID:8527660

  19. An analysis of interfacial waves and air ingestion mechanisms

    NASA Astrophysics Data System (ADS)

    Galimov, Azat

    This research was focused on developing analytical methods with which to derive the functional forms of the various interfacial forces in two-fluid models [Galimov et al., 2004], and on the Direct Numerical Simulations (DNS) of traveling breaking waves and plunging liquid jets. Analytical results are presented for a stable stratified wavy two-phase flow and the associated interfacial force densities of a two-fluid model. In particular, the non-drag interfacial force density [Drew & Passman, 1998], the Reynolds stress tensor, and the term ( p˜cli -pcl)∇alphacl, which drives surface waves, were derived, where p˜cli is interfacial average pressure, pcl is the average pressure, and alphacl is the volume fraction of the continuous liquid phase. These functional forms are potentially useful for developing two-fluid model closure relations for computational multiphase fluid dynamics (CMFD) numerical solvers. Moreover, it appears that this approach can be generalized to other flow regimes (e.g., annular flows). A comparison of the analytical and ensemble-averaged DNS results show good agreement, and it appears that this approach can be used to develop phenomenological flow-regime-specific closure laws for two-fluid models [Lahey & Drew, 2004], [Lahey, 2005]. A successful 2-D DNS of breaking traveling waves was performed. These calculations had periodic boundary conditions and the physical parameters for air/water flow at atmospheric pressure, including a liquid/gas density ratio of 1,000 and representative surface tension and viscosities. Detailed 3-D DNS was also made for a plunging liquid jet. The processes of forming the liquid jet, the associated air cavity, capturing an initial large donut-shaped air bubble, and developing and breaking-up this bubble into smaller bubbles due to liquid shear, were shown. These simulations showed that the inertia of the liquid jet initially depressed the pool's surface and the toroidal liquid eddy formed subsequently resulted in air

  20. Anomalous Transmission of Infrasound Through Air-Water and Air-Ground Interfaces

    NASA Astrophysics Data System (ADS)

    Godin, O. A.

    2009-05-01

    Speed of compressional waves in air is smaller than in water and in the ground, while mass density of air is much smaller than mass densities of water and the ground. This results in a very strong acoustic impedance contrast at air-water and air-ground interfaces. Sound transmission through a boundary with a strong impedance contrast is normally very weak. This paper reports theoretical studies of the power output of localized sound sources and acoustic power fluxes through plane gas-liquid and gas-solid interfaces in a layered medium. It is found that the transparency of the interfaces increases dramatically at low frequencies. For low-frequency sound, a phenomenon of anomalous transparency can occur where most of the acoustic power generated by a source in water is radiated into the atmosphere. Contrary to the conventional wisdom based on ray-theoretical predictions and observations at higher frequencies, infrasonic energy from localized waterborne sources can be effectively transmitted into air. The main physical mechanism responsible for the anomalous transparency of air-water interface is found to be an acoustic power transfer by inhomogeneous (evanescent) waves in the plane-wave decomposition of the acoustic field in water. The effects of ocean and atmosphere stratification and of guided sound propagation in water or in air on the anomalous transparency of the air-water interface are considered. In the case of air-ground interface, the increase of the acoustic power flux into atmosphere, when a compact source approaches the interface from below, proves to be even larger than for an underwater source. The physics behind the increase of the power flux into the atmosphere, when the source depth decreases, is shown to be rather different for the air-ground and air-water interfaces. Depending on attenuation of compressional and shear waves in the ground, a leaky interface wave supported by the air-ground interface can be responsible for the bulk of acoustic power

  1. Surface properties and conformation of Nephila clavipes spider recombinant silk proteins at the air-water interface.

    PubMed

    Renault, Anne; Rioux-Dubé, Jean-François; Lefèvre, Thierry; Pezennec, Stéphane; Beaufils, Sylvie; Vié, Véronique; Tremblay, Mélanie; Pézolet, Michel

    2009-07-21

    The dragline fiber of spiders is composed of two proteins, the major ampullate spidroins I and II (MaSpI and MaSpII). To better understand the assembly mechanism and the properties of these proteins, the adsorption behavior of the recombinant proteins of the spider Nephila clavipes produced by Nexia Biotechnologies Inc. has been studied at the air-water interface using ellipsometry, surface pressure, rheological, and infrared measurements. The results show that the adsorption is more rapid and more molecules are present at the interface for MaSpII than for MaSpI. MaSpII has thus a higher affinity for the interface than MaSpI, which is consistent with its higher aggregation propensity in water. The films formed at the interface consist of networks containing a high content of intermolecular beta-sheets as revealed by the in situ polarization modulation infrared absorption reflection spectra. The infrared results further demonstrate that, for MaSpI, the beta-sheets are formed as soon as the proteins adsorb to the interface while for MaSpII the beta-sheet formation occurs more slowly. The amount of beta-sheets is lower for MaSpII than for MaSpI, most likely due to the presence of proline residues in its sequence. Both proteins form elastic films, but they are heterogeneous for MaSpI and homogeneous for MaSpII most probably as a result of a more ordered and slower aggregation process for MaSpII. This difference in their mechanism of assembly and interfacial behaviors does not seem to arise from their overall hydrophobicity or from a specific pattern of hydrophobicity, but rather from the longer polyalanine motifs, lower glycine content, and higher proline content of MaSpII. The propensity of both spidroins to form beta-sheets, especially the polyalanine blocks, suggests the participation of both proteins in the silk's beta-sheet crystallites.

  2. Mixed layers of β-lactoglobulin and SDS at air-water interfaces with tunable intermolecular interactions.

    PubMed

    Engelhardt, Kathrin; Weichsel, Ulrike; Kraft, Elena; Segets, Doris; Peukert, Wolfgang; Braunschweig, Björn

    2014-04-17

    Mixtures of β-lactoglobulin (BLG) and sodium dodecyl sulfate (SDS) were studied at pH 3.8 and 6.7 under equilibrium conditions. At these pH conditions, BLG carries either a positive or a negative net charge, respectively, which enables tunable electrostatic interactions between anionic SDS surfactants and BLG proteins. For pH 3.8, vibrational sum-frequency generation (SFG) and ellipsometry indicate strong BLG-SDS complex formation at air-water interfaces that is caused by attractive electrostatic interactions. The latter complexes are already formed in the bulk solution which was confirmed by a thermodynamic study of BLG-SDS mixtures using isothermal titration calorimetry (ITC). For acidic conditions we determine from our ITC data an exothermal binding enthalpy of -40 kJ mol(-1). Increasing SDS/BLG molar ratios above 10 leads to a surface excess of SDS and thus to a charge reversal from a positive net charge with BLG as the dominating surface adsorbed species to a negatively charged layer with SDS as the dominating surface species. The latter is evidenced by a pronounced minimum in SFG intensities that is also accompanied by a phase change of O-H stretching bands due to a reorientation of H2O within the local electric field. This phase change which occurs at SDS/BLG molar ratio between 1 and 10 causes a polarity change in SFG intensities from BLG aromatic C-H stretching vibrations. Conclusions from SFG spectra are corroborated by ellipsometry which shows a dramatic increase in layer thicknesses at molar ratios where a charge reversal occurs. The formation of interfacial multilayers comprising SDS-BLG complexes is, thus, caused by cancellation of electrostatic interactions which leads to agglomeration at the interface. In contrast to pH 3.8, behavior of BLG-SDS mixtures at pH 6.7 is different due to repulsive electrostatic interactions between SDS and BLG which lead to a significantly reduced binding enthalpy of -17 kJ mol(-1). Finally, it has to be mentioned that

  3. Interfacial properties, thin film stability and foam stability of casein micelle dispersions.

    PubMed

    Chen, Min; Sala, Guido; Meinders, Marcel B J; van Valenberg, Hein J F; van der Linden, Erik; Sagis, Leonard M C

    2017-01-01

    Foam stability of casein micelle dispersions (CMDs) strongly depends on aggregate size. To elucidate the underlying mechanism, the role of interfacial and thin film properties was investigated. CMDs were prepared at 4°C and 20°C, designated as CMD4°C and CMD20°C. At equal protein concentrations, foam stability of CMD4°C (with casein micelle aggregates) was markedly higher than CMD20°C (without aggregates). Although the elastic modulus of CMD4°C was twice as that of CMD20°C at 0.005Hz, the protein adsorbed amount was slightly higher for CMD20°C than for CMD4°C, which indicated a slight difference in interfacial composition of the air/water interface. Non-linear surface dilatational rheology showed minor differences between mechanical properties of air/water interfaces stabilized by two CMDs. These differences in interfacial properties could not explain the large difference in foam stability between two CMDs. Thin film analysis showed that films made with CMD20°C drained to a more homogeneous film compared to films stabilized by CMD4°C. Large casein micelle aggregates trapped in the thin film of CMD4°C made the film more heterogeneous. The rupture time of thin films was significantly longer for CMD4°C (>1h) than for CMD20°C (<600s) at equal protein concentration. After homogenization, which broke down the aggregates, the thin films of CMD4°C became much more homogeneous, and both the rupture time of thin films and foam stability decreased significantly. In conclusion, the increased stability of foam prepared with CMD4°C appears to be the result of entrapment of casein micelle aggregates in the liquid films of the foam.

  4. Conformational analyses of bacillomycin D, a natural antimicrobial lipopeptide, alone or in interaction with lipid monolayers at the air-water interface.

    PubMed

    Nasir, Mehmet Nail; Besson, Françoise

    2012-12-01

    Bacillomycin D is a natural antimicrobial lipopeptide belonging to the iturin family. It is produced by Bacillus subtilis strains. Bacillomycin D is characterized by its strong antifungal and hemolytic properties, due to its interaction with the plasma membrane of sensitive cells. Until now, only few limited analyses were conducted to understand the biological activities of bacillomycin D at the molecular level. Our purpose was to analyze the conformation of bacillomycin D using IR spectroscopy and to model its interactions with cytoplasmic membranes using Langmuir interfacial monolayers. Our findings indicate that bacillomycin D contains turns and allow to model its three-dimensional structure. Bacillomycin D formed a monolayer film at the air-water interface and kept its turn conformation, as shown by polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). To identify the membrane lipid target of bacillomycin D, its interactions with pure lipid monolayers were analyzed and an original behavior of the lipopeptide toward cholesterol-containing monolayers was shown. This original behavior was lost when bacillomycin D was interacting with pure cholesteryl acetate monolayers, suggesting the involvement of the alcohol group of cholesterol in the lipopeptide-cholesterol interaction.

  5. Quantitative morphological characterization of bicontinuous Pickering emulsions via interfacial curvatures

    NASA Astrophysics Data System (ADS)

    Reeves, Matthew; Stratford, Kevin; Thijssen, Job H. J.

    Bicontinuous Pickering emulsions (bijels) are a physically interesting class of soft materials with many potential applications including catalysis, microfluidics and tissue engineering. They are created by arresting the spinodal decomposition of a partially-miscible liquid with a (jammed) layer of interfacial colloids. Porosity $L$ (average interfacial separation) of the bijel is controlled by varying the radius ($r$) and volume fraction ($\\phi$) of the colloids ($L \\propto r/\\phi$). However, to optimize the bijel structure with respect to other parameters, e.g. quench rate, characterizing by $L$ alone is insufficient. Hence, we have used confocal microscopy and X-ray CT to characterize a range of bijels in terms of local and area-averaged interfacial curvatures. In addition, the curvatures of bijels have been monitored as a function of time, which has revealed an intriguing evolution up to 60 minutes after bijel formation, contrary to previous understanding.

  6. Liquid Surface X-ray Studies of Gold Nanoparticle-Phospholipid Films at the Air/Water Interface.

    PubMed

    You, Siheng Sean; Heffern, Charles T R; Dai, Yeling; Meron, Mati; Henderson, J Michael; Bu, Wei; Xie, Wenyi; Lee, Ka Yee C; Lin, Binhua

    2016-09-01

    Amphiphilic phospholipids and nanoparticles functionalized with hydrophobic capping ligands have been extensively investigated for their capacity to self-assemble into Langmuir monolayers at the air/water interface. However, understanding of composite films consisting of both nanoparticles and phospholipids, and by extension, the complex interactions arising between nanomaterials and biological membranes, remains limited. In this work, dodecanethiol-capped gold nanoparticles (Au-NPs) with an average core diameter of 6 nm were incorporated into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers with surface densities ranging from 0.1 to 20% area coverage at a surface pressure of 30 mN/m. High resolution liquid surface X-ray scattering studies revealed a phase separation of the DPPC and Au-NP components of the composite film, as confirmed with atomic force microscopy after the film was transferred to a substrate. At low Au-NP content, the structural organization of the phase-separated film is best described as a DPPC film containing isolated islands of Au-NPs. However, increasing the Au-NP content beyond 5% area coverage transforms the structural organization of the composite film to a long-range interconnected network of Au-NP strands surrounding small seas of DPPC, where the density of the Au-NP network increases with increasing Au-NP content. The observed phase separation and structural organization of the phospholipid and nanoparticle components in these Langmuir monolayers are useful for understanding interactions of nanoparticles with biological membranes.

  7. Spatial Distribution, Air-Water Fugacity Ratios and Source Apportionment of Polychlorinated Biphenyls in the Lower Great Lakes Basin.

    PubMed

    Khairy, Mohammed; Muir, Derek; Teixeira, Camilla; Lohmann, Rainer

    2015-12-01

    Polychlorinated biphenyls (PCBs) continue to be contaminants of concern across the Great Lakes. It is unclear whether current concentrations are driven by ongoing primary emissions from their original uses, or whether ambient PCBs are dominated by their environmental cycling. Freely dissolved PCBs in air and water were measured using polyethylene passive samplers across Lakes Erie and Ontario during summer and fall, 2011, to investigate their spatial distribution, determine and apportion their sources and to asses their air-water exchange gradients. Average gaseous and freely dissolved ∑29 PCB concentrations ranged from 5.0 to 160 pg/m(3) and 2.0 to 55 pg/L respectively. Gaseous concentrations were significantly correlated (R(2) = 0.80) with the urban area within a 3-20 km radius. Fugacity ratios indicated that the majority of PCBs are volatilizing from the water thus acting as a secondary source for the atmosphere. Dissolved PCBs were probably linked to PCB emissions from contaminated sites and areas of concern. Positive matrix factorization indicated that although volatilized Aroclors (gaseous PCBs) and unaltered Aroclors (dissolved PCBs) dominate in some samples, ongoing non-Aroclor sources such as paints/pigments (PCB 11) and coal/wood combustion showed significant contributions across the lower Great Lakes. Accordingly, control strategies should give further attention to PCBs emitted from current use sources.

  8. A Thermodynamic Study of Dopant Interfacial Segregation Effect on Nanostability and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Wu, Longjia

    Nanoparticles, with great surface area and high surface to volume ratio, have been widely applied in many applications due to their unique size related effects. However, this high surface area character of nanoparticles also brings great excess energy to the whole system, making the system unstable and even causing the failure of nanoparticles, especially at higher temperatures. In order to maintain nanocrystalline structure of the materials, nanostability enhancement is of great significance in nanotechnology. It is well known that the global driving force for particles growth is to eliminate the excess energy brought by surface and grain boundary. Therefore, interfacial energetics has a great influence on the nanostability of the materials. And according to previous studies, dopant interfacial segregation could be a potential way to control the interfacial energetics of the nanoparticles and possibly lead to an improved nanostability. Furthermore, the interfacial energetics even can affect mechanical properties of nano-grain ceramic materials based on recent research. The main goals of the present work were to experimentally measure the interfacial energies of nanoparticles as well as nano-grain ceramics, modify the interfacial energetics through dopant segregation effect and engineer the nanostability and mechanical properties of the nanocrystalline materials through interfacial energetics modification. To achieve this goal, Mn cation has been chosen to introduce Mn interfacial segregation on ceria nanoparticles, and La cation has been added to 12 mol% yttria stabilized zirconia (12YSZ) and magnesium aluminate spinel (MAO) two-phase nano-grain ceramics to cause La interfacial segregation. Both of the dopant segregation phenomena were directly proved by electron energy loss spectroscopy (EELS). To quantify the dopant segregation effect on the interfacial energies, high-temperature oxide melt drop solution calorimetry, water adsorption calorimetry and differential

  9. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Hoff, R.M.

    2000-03-15

    The influence of eutrophication on the biogeochemical cycles of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) is largely unknown. In this paper, the application of a dynamic air-water-phytoplankton exchange model to Lake Ontario is used as a framework to study the influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of POPs. The results of these simulations demonstrate that air-water exchange controls phytoplankton concentrations in remote aquatic environments with little influence from land-based sources of pollutants and supports levels in even historically contaminated systems. Furthermore, eutrophication or high biomass leads to a disequilibrium between the gas and dissolved phase, enhanced air-water exchange, and vertical sinking fluxes of PCBs. Increasing biomass also depletes the water concentrations leading to lower than equilibrium PCB concentrations in phytoplankton. Implications to future trends in PCB pollution in Lake Ontario are also discussed.

  10. Interaction between heterogeneous environmental quality domains (air, water, land, socio-demographic and built environment) on preterm birth.

    EPA Science Inventory

    Environmental exposures are often measured individually, though many occur in tandem. To address aggregate exposures, a county-level Environmental Quality Index (EQI) representing five environmental domains (air, water, land, built and sociodemographic) was constructed. Recent st...

  11. Interfacial behavior of polymer electrolytes

    SciTech Connect

    Kerr, John; Kerr, John B.; Han, Yong Bong; Liu, Gao; Reeder, Craig; Xie, Jiangbing; Sun, Xiaoguang

    2003-06-03

    Evidence is presented concerning the effect of surfaces on the segmental motion of PEO-based polymer electrolytes in lithium batteries. For dry systems with no moisture the effect of surfaces of nano-particle fillers is to inhibit the segmental motion and to reduce the lithium ion transport. These effects also occur at the surfaces in composite electrodes that contain considerable quantities of carbon black nano-particles for electronic connection. The problem of reduced polymer mobility is compounded by the generation of salt concentration gradients within the composite electrode. Highly concentrated polymer electrolytes have reduced transport properties due to the increased ionic cross-linking. Combined with the interfacial interactions this leads to the generation of low mobility electrolyte layers within the electrode and to loss of capacity and power capability. It is shown that even with planar lithium metal electrodes the concentration gradients can significantly impact the interfacial impedance. The interfacial impedance of lithium/PEO-LiTFSI cells varies depending upon the time elapsed since current was turned off after polarization. The behavior is consistent with relaxation of the salt concentration gradients and indicates that a portion of the interfacial impedance usually attributed to the SEI layer is due to concentrated salt solutions next to the electrode surfaces that are very resistive. These resistive layers may undergo actual phase changes in a non-uniform manner and the possible role of the reduced mobility polymer layers in dendrite initiation and growth is also explored. It is concluded that PEO and ethylene oxide-based polymers are less than ideal with respect to this interfacial behavior.

  12. Fugacity gradients of hydrophobic organics across the air-water interface measured with a novel passive sampler.

    PubMed

    Wu, Chen-Chou; Yao, Yao; Bao, Lian-Jun; Wu, Feng-Chang; Wong, Charles S; Tao, Shu; Zeng, Eddy Y

    2016-11-01

    Mass transfer of hydrophobic organic contaminants (HOCs) across the air-water interface is an important geochemical process controlling the fate and transport of HOCs at the regional and global scales. However, few studies have characterized concentration or fugacity profiles of HOCs near both sides of the air-water interface, which is the driving force for the inter-compartmental mass transfer of HOCs. Herein, we introduce a novel passive sampling device which is capable of measuring concentration (and therefore fugacity) gradients of HOCs across the air-water interface. Laboratory studies indicated that the escaping fugacity values of polycyclic aromatic hydrocarbons (PAHs) from water to air were negatively correlated to their volatilization half-lives. Results for field deployment were consistent between the passive sampler and an active method, i.e., a combination of grab sampling and liquid-liquid extraction. In general, the fugacity profiles of detected PAHs were indicative of an accumulation mechanism in the surface microlayer of the study regions (Haizhu Lake and Hailing Bay of Guangdong Province, China), while p,p'-DDD tended to volatilize from water to the atmosphere in Hailing Bay. Furthermore, the fugacity profiles of the target analytes increased towards the air-water interface, reflecting the complexity of environmental behavior of the target analytes near the air-water interface. Overall, the passive sampling device provides a novel means to better characterize the air-water diffusive transfer of HOCs, facilitating the understanding of the global cycling of HOCs.

  13. Monolayer film behavior of lipopolysaccharide from Pseudomonas aeruginosa at the air-water interface.

    PubMed

    Abraham, Thomas; Schooling, Sarah R; Beveridge, Terry J; Katsaras, John

    2008-10-01

    Lipopolysaccharide (LPS) is an essential biomacromolecule making up approximately 50% of the outer membrane of gram-negative bacteria. LPS chemistry facilitates cellular barrier and permeability functions and mediates interactions between the cell and its environment. To better understand the local interactions within LPS membranes, the monolayer film behavior of LPS extracted from Pseudomonas aeruginosa, an opportunistic pathogen of medical importance, was investigated by Langmuir film balance. LPS formed stable monolayers at the air-water interface and the measured lateral stresses and modulus (rigidity) of the LPS film in the compressed monolayer region were found to be appreciable. Scaling theories for two-dimensional (2D) polymer chain conformations were used to describe the pi-A profile, in particular, the high lateral stress region suggested that the polysaccharide segments reside at the 2D air-water interface. Although the addition of monovalent and divalent salts caused LPS molecules to adopt a compact conformation at the air-water interface, they did not appear to have any influence on the modulus (rigidity) of the LPS monolayer film under biologically relevant stressed conditions. With increasing divalent salt (CaCl2) content in the subphase, however, there is a progressive reduction of the LPS monolayer's collapse pressure, signifying that, at high concentrations, divalent salts weaken the ability of the membrane to withstand elevated stress. Finally, based on the measured viscoelastic response of the LPS films, we hypothesize that this property of LPS-rich outer membranes of bacteria permits the deformation of the membrane and may consequently protect bacteria from catastrophic structural failure when under mechanical-stress.

  14. Formation of H-type liquid crystal dimer at air-water interface

    SciTech Connect

    Karthik, C. Gupta, Adbhut Joshi, Aditya Manjuladevi, V. Gupta, Raj Kumar; Varia, Mahesh C.; Kumar, Sandeep

    2014-04-24

    We have formed the Langmuir monolayer of H-shaped Azo linked liquid crystal dimer molecule at the air-water interface. Isocycles of the molecule showed hysteresis suggesting the ir-reversible nature of the monolayer formed. The thin film deposited on the silicon wafer was characterized using Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The images showed uniform domains of the dimer molecule. We propose that these molecules tend to take book shelf configuration in the liquid phase.

  15. Influence of Gas Turbulence on the Instability of an Air-Water Mixing Layer.

    PubMed

    Matas, Jean-Philippe; Marty, Sylvain; Dem, Mohamed Seydou; Cartellier, Alain

    2015-08-14

    We present the first evidence of the direct influence of gas turbulence on the shear instability of a planar air-water mixing layer. We show with two different experiments that increasing the level of velocity fluctuations in the gas phase continuously increases the frequency of the instability, up to a doubling of frequency for the largest turbulence intensity investigated. A modified spatiotemporal stability analysis taking turbulence into account via a simple Reynolds stress closure provides the right trend and magnitude for this effect.

  16. Rediscovering the Schulze-Hardy Rule in Competitive Adsorption to an Air-Water Interface

    PubMed Central

    Stenger, Patrick C.; Isbell, Stephen G.; Hillaire, Debra St.; Zasadzinski, Joseph A.

    2009-01-01

    The ratio of divalent to monovalent ion concentration necessary to displace the surface-active protein, albumin, by lung surfactant monolayers and multilayers at an air-water interface scales as 2−6, the same concentration dependence as the critical flocculation concentration (CFC) for colloids with a high surface potential. Confirming this analogy between competitive adsorption and colloid stability, polymer-induced depletion attraction and electrostatic potentials are additive in their effects; the range of the depletion attraction, twice the polymer radius of gyration, must be greater than the Debye length to have an effect on adsorption. PMID:19705897

  17. Interfacial stabilization of the antitumoral drug Paclitaxel in monolayers of GM1 and GD1a gangliosides.

    PubMed

    Heredia, Valeria; Maggio, Bruno; Beltramo, Dante M; Dupuy, Fernando G

    2015-10-01

    Molecular interactions between the anti-cancer agent Paclitaxel (Ptx), and two gangliosides with different sialic acid content, GM1 and GD1a, were investigated using the Langmuir film balance technique. Ptx showed interfacial activity reducing the air/water surface tension by 18 mN·m(-1). However, the drug was able to insert into preformed ganglioside monolayers at much higher surface pressures, indicating a preferential interaction of Ptx with GM1 and GD1a. Compression isotherms of binary mixtures of Ptx and GM1 or GD1a also indicated non-ideal mixed monolayers in which the drug became stabilized at the interface in the presence of gangliosides. Ptx reached much higher surface pressure values in the mixed monolayers than those sustained in pure Ptx, although partial desorption of the drug from the interface into the subphase was also observed at high Ptx contents. The mean molecular area of the mixtures showed condensation, mainly in the case of GD1a, whereas Ptx induced a decrease in the compressibility of monolayers when mixed with either GM1 or GD1a. Additionally, Brewster angle microscopy analysis indicated that higher amounts of Ptx are present at the mixed ganglioside/Ptx interface when compared to pure drug monolayers. Finally, GD1a micelles increased in size in the presence of Ptx, whereas GM1 micelles kept their diameter, according to dynamic light scattering measurements, which could be explained by the different properties of ganglioside monolayers. The results obtained on ganglioside-Ptx interactions allowed interpreting the different Ptx loading capacity of GM1 and GD1a, enabling them to act as potential drug carriers.

  18. Self-assembly and lipid interactions of diacylglycerol lactone derivatives studied at the air/water interface.

    PubMed

    Philosof-Mazor, Liron; Volinsky, Roman; Comin, Maria J; Lewin, Nancy E; Kedei, Noemi; Blumberg, Peter M; Marquez, Victor E; Jelinek, Raz

    2008-10-07

    Synthetic diacylglycerol lactones (DAG-lactones) have been shown to be effective modulators of critical cellular signaling pathways. The biological activity of these amphiphilic molecules depends in part upon their lipid interactions within the cellular plasma membrane. This study explores the thermodynamic and structural features of DAG-lactone derivatives and their lipid interactions at the air/water interface. Surface-pressure/area isotherms and Brewster angle microscopy revealed the significance of specific side-groups attached to the terminus of a very rigid 4-(2-phenylethynyl)benzoyl chain of the DAG-lactones, which affected both the self-assembly of the molecules and their interactions with phospholipids. The experimental data highlight the formation of different phases within mixed DAG-lactone/phospholipid monolayers and underscore the relationship between the two components in binary mixtures of different mole ratios. Importantly, the results suggest that DAG-lactones are predominantly incorporated within fluid phospholipid phases rather than in the condensed phases that form, for example, by cholesterol. Moreover, the size and charge of the phospholipid headgroups do not seem to affect DAG-lactone interactions with lipids.

  19. Conformation and Aggregation of LKα14 Peptide in Bulk Water and at the Air/Water Interface.

    PubMed

    Dalgicdir, Cahit; Sayar, Mehmet

    2015-12-10

    Historically, the protein folding problem has mainly been associated with understanding the relationship between amino acid sequence and structure. However, it is known that both the conformation of individual molecules and their aggregation strongly depend on the environmental conditions. Here, we study the aggregation behavior of the model peptide LKα14 (with amino acid sequence LKKLLKLLKKLLKL) in bulk water and at the air/water interface. We start by a quantitative analysis of the conformational space of a single LKα14 in bulk water. Next, in order to analyze the aggregation tendency of LKα14, by using the umbrella sampling technique we calculate the potential of mean force for pulling a single peptide from an n-molecule aggregate. In agreement with the experimental results, our calculations yield the optimal aggregate size as four. This equilibrium state is achieved by two opposing forces: Coulomb repulsion between the lysine side chains and the reduction of solvent accessible hydrophobic surface area upon aggregation. At the vacuum/water interface, however, even dimers of LKα14 become marginally stable, and any larger aggregate falls apart instantaneously. Our results indicate that even though the interface is highly influential in stabilizing the α-helix conformation for a single molecule, it significantly reduces the attraction between two LKα14 peptides, along with their aggregation tendency.

  20. Effect of perfluoroalkyl chain length on monolayer behavior of partially fluorinated oleic acid molecules at the air-water interface.

    PubMed

    Baba, Teruhiko; Takai, Katsuki; Takagi, Toshiyuki; Kanamori, Toshiyuki

    2013-01-01

    A series of oleic acid (OA) analogs containing terminal perfluoroalkyl groups (CF3, C2F5, n-C3F7, n-C4F9 or n-C8F17) was synthesized to clarify how the fluorinated chain length affects the stability and molecular packing of liquid-expanded OA monolayers at the air-water interface. Although the substitution of terminal CF3 group for CH3 in OA had no effect on monolayer stability, further fluorination led to a gradual increase in monolayer stability at 25 °C. Surface pressure-area isotherm revealed that partially fluorinated OA analogs form more expanded monolayers than OA at low surface pressures, and that the monolayer behavior of OA analogs with the even-carbon numbered fluorinated chain is almost the same as that of OA upon monolayer compression, whereas the behavior of OA analogs with the odd-carbon numbered fluorinated chain significantly differs from that of OA. These results indicate: (i) the terminal short part (at least C2 residue) in OA predominantly determines the liquid-expanded monolayer stability; (ii) the molecular packing state of OA may be perturbed by the substitution of a short odd-carbon numbered fluorinated chain; (iii) hence, OA analogs with even-carbon numbered chain are considered to be preferable as hydrophobic building blocks for the synthesis of fluorinated phospholipids.

  1. Concentrations, Trends, and Air-Water Exchange of PAHs and PBDEs Derived from Passive Samplers in Lake Superior in 2011.

    PubMed

    Ruge, Zoe; Muir, Derek; Helm, Paul; Lohmann, Rainer

    2015-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenylethers (PBDEs) are both currently released into the environment from anthropogenic activity. Both are hence primarily associated with populated or industrial areas, although wildfires can be an important source of PAHs, as well. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine spatial trends and air-water gaseous exchange of 21 PAHs and 11 PBDEs at 19 sites across Lake Superior in 2011. Surface water and atmospheric PAH concentrations were greatest at urban sites (up to 65 ng L(-1) and 140 ng m(-3), respectively, averaged from June to October). Near populated regions, PAHs displayed net air-to-water deposition, but were near equilibrium off-shore. Retene, probably depositing following major wildfires in the region, dominated dissolved PAH concentrations at most Lake Superior sites. Atmospheric and dissolved PBDEs were greatest near urban and populated sites (up to 6.8 pg L(-1) and 15 pg m(-3), respectively, averaged from June to October), dominated by BDE-47. At most coastal sites, there was net gaseous deposition of BDE-47, with less brominated congeners contributing to Sault Ste. Marie and eastern open lake fluxes. Conversely, the central open lake and Eagle Harbor sites generally displayed volatilization of PBDEs into the atmosphere, mainly BDE-47.

  2. Mechanics of interfacial composite materials.

    PubMed

    Subramaniam, Anand Bala; Abkarian, Manouk; Mahadevan, L; Stone, Howard A

    2006-11-21

    Recent experiments and simulations have demonstrated that particle-covered fluid/fluid interfaces can exist in stable nonspherical shapes as a result of the steric jamming of the interfacially trapped particles. The jamming confers the interface with solidlike properties. We provide an experimental and theoretical characterization of the mechanical properties of these armored objects, with attention given to the two-dimensional granular state of the interface. Small inhomogeneous stresses produce a plastic response, while homogeneous stresses produce a weak elastic response. Shear-driven particle-scale rearrangements explain the basic threshold needed to obtain the near-perfect plastic deformation that is observed. Furthermore, the inhomogeneous stress state of the interface is exhibited experimentally by using surfactants to destabilize the particles on the surface. Since the interfacially trapped particles retain their individual characteristics, armored interfaces can be recognized as a kind of composite material with distinct chemical, structural, and mechanical properties.

  3. Elastocapillary-mediated interfacial assembly

    NASA Astrophysics Data System (ADS)

    Evans, Arthur

    2015-11-01

    Particles confined to an interface are present in a large number of industrial applications and ubiquitous in cellular biophysics. Interactions mediated by the interface, such as capillary effects in the presence of surface tension, give rise to rafts and aggregates whose structure is ultimately determined by geometric characteristics of these adsorbed particles. A common strategy for assembling interfacial structures relies on exploiting these interactions by tuning particle anisotropy, either by constructing rigid particles with heterogeneous wetting properties or fabricating particles that have a naturally anisotropic shape. Less explored, however, is the scenario where the interface causes the particles to deform. In this talk I will discuss the implications for interfacial assembly using elastocapillary-mediated interactions. The competition between surface energy and elasticity can wrinkle and buckle adsorbed soft particles, leading to complicated (but programmable) aggregates.

  4. Supramolecular interfacial architectures for biosensing

    NASA Astrophysics Data System (ADS)

    Yu, Fang; Yao, Danfeng; Christensen, Danica; Neumann, Thomas; Sinner, Eva-Kathrin; Knoll, Wolfgang

    2004-12-01

    This contribution summarizes some of our efforts in designing, assembling and functionally characterizing supramolecular interfacial architectures for bio-affinity studies and for biosensor development. All the surface interaction studies will be based on the recently introduced novel sensor platforms involving surface plasmon fluorescence spectroscopy (SPFS) and -microscopy (SPFM). Emphasis will be put on documenting the distance-dependence of fluorescence intensity at the metal-dielectric interface and utilizing this principle to optimize the conformation/orientation of the interfacial supra-molecular sensor coatings. This is exemplified by a number of examples, including a layer-by-layer assembly system, antibody-antigen interactions, oligonucleotide-oligonucleotide, and oligonucleotide-PCR amplicon hybridization. For practical sensing purposes, a three-dimensionally extended surface coating is then employed to overcome the fluorescence quenching problem on a planar matrix. A commercial dextran layer is shown to be an optimized matrix for SPFS, with an example of a protein-binding study.

  5. Investigation of the interfacial tension of complex coacervates using field-theoretic simulations

    SciTech Connect

    Kumar, Rajeev

    2012-01-01

    Complex coacervation, a liquid-liquid phase separation that occurs when two oppositely charged polyelectrolytes are mixed in a solution, has the potential to be exploited for many emerging applications including wet adhesives and drug delivery vehicles. The ultra-low interfacial tension of coacervate systems against water is critical for such applications, and it would be advantageous if molecular models could be used to characterize how various system properties (e.g., salt concentration) affect the interfacial tension. In this article we use field-theoretic simulations to characterize the interfacial tension between a complex coacervate and its supernatant. After demonstrating that our model is free of ultraviolet divergences (calculated properties converge as the collocation grid is refined), we develop two methods for calculating the interfacial tension from field-theoretic simulations. One method relies on the mechanical interpretation of the interfacial tension as the interfacial pressure, and the second method estimates the change in free energy as the area between the two phases is changed. These are the first calculations of the interfacial tension from full field theoretic simulation of which we are aware, and both the magnitude and scaling behaviors of our calculated interfacial tension agree with recent experiments.

  6. Air-water ‘tornado’-type microwave plasmas applied for sugarcane biomass treatment

    NASA Astrophysics Data System (ADS)

    Bundaleska, N.; Tatarova, E.; Dias, F. M.; Lino da Silva, M.; Ferreira, C. M.; Amorim, J.

    2014-02-01

    The production of cellulosic ethanol from sugarcane biomass is an attractive alternative to the use of fossil fuels. Pretreatment is needed to separate the cellulosic material, which is packed with hemicellulose and lignin in cell wall of sugarcane biomass. A microwave ‘tornado’-type air-water plasma source operating at 2.45 GHz and atmospheric pressure has been applied for this purpose. Samples of dry and wet biomass (˜2 g) have been exposed to the late afterglow plasma stream. The experiments demonstrate that the air-water highly reactive plasma environment provides a number of long-lived active species able to destroy the cellulosic wrapping. Scanning electron microscopy has been applied to analyse the morphological changes occurring due to plasma treatment. The effluent gas streams have been analysed by Fourier-transform infrared spectroscopy (FT-IR). Optical emission spectroscopy and FT-IR have been applied to determine the gas temperature in the discharge and late afterglow plasma zones, respectively. The optimal range of the operational parameters is discussed along with the main active species involved in the treatment process. Synergistic effects can result from the action of singlet O2(a 1Δg) oxygen, NO2, nitrous acid HNO2 and OH hydroxyl radical.

  7. Air-water two-phase flow in a 3-mm horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Ing Youn; Chang, Yu-Juei; Wang, Chi-Chung

    2000-01-01

    Two-phase flow pattern and friction characteristics for air-water flow in a 3.17 mm smooth tube are reported in this study. The range of air-water mass flux is between 50 to 700 kg/m2.s and gas quality is between 0.0001 to 0.9. The pressure drop data are analyzed using the concept of the two-phase frictional multipliers and the Martinelli parameter. Experimental data show that the two-phase friction multipliers are strongly related to the flow pattern. Taitel & Dukler flow regime map fails to predict the stratified flow pattern data. Their transition lines between annular-wavy and annular-intermittent give fair agreement with data. A modified correlation from Klimenko and Fyodoros criterion is able to distinguish the annular and stratified data. For two-phase flow in small tubes, the effect of surface tension force should be significantly present as compared to gravitational force. The tested empirical frictional correlations couldn't predict the pressure drop in small tubes for various working fluids. It is suggested to correlate a reliable frictional multiplier for small horizontal tubes from a large database of various working fluids, and to develop the flow pattern dependent models for the prediction of two-phase pressure drop in small tubes. .

  8. Air-water gas exchange of organochlorine compounds in Lake Baikal, Russia

    SciTech Connect

    McConnell, L.L.; Kucklick, J.R.; Bidleman, T.F.; Ivanov, G.P.; Chernyak, S.M.

    1996-10-01

    Air and surface water samples were collected at Lake Baikal, Russia, during June 1991 to determine concentrations of organochlorine pesticides and polychlorinated biphenyl (PCB) congeners. These data were combined with Henry`s law constants to estimate the gas flux rate across the air-water interface of each compound class. Air samples were collected at Lake Baikal and from nearby Irkutsk. Water samples were collected from three mid-lake stations and at the mouth of two major tributaries. Average air concentrations of chlorinated bornanes (14 pg m{sup -3}), chlordanes (4.9 pg m{sup -3}), and hexachlorobenzene (HCB) (194 pg m{sup -3}) were similar to global backgound of Arctic levels. However, air concentrations of hexachlorocyclohexanes (HCHs), DDTs, and PCBs were closer to those observed in the Great Lakes region. Significantly higher levels of these three compound classes in air over Irkutsk suggests that regional atmospheric transport and deposition may be an important source of these persistent compounds to Lake Baikal. Air-water gas exchange calculations resulted in net depositional flux values for {alpha}-HCH, {gamma}-HCH, DDTs, and chlorinated bornanes at 112, 23, 3.6, and 2.4 ng m{sup -2} d{sup -1}, respectively. The total net flux of 22 PCB congeners, chlordanes, and HCB was from water to air (volatilization) at 47, 1.8, and 32 ng m{sup -2} d{sup -1}, respectively. 50 refs., 7 figs., 5 tabs.

  9. Surface properties and morphology of mixed POSS-DPPC monolayers at the air/water interface.

    PubMed

    Rojewska, Monika; Skrzypiec, Marta; Prochaska, Krystyna

    2017-02-01

    From the point of view of the possible medical applications of POSS (polyhedral oligomeric silsesquioxanes), it is crucial to analyse interactions occurring between POSS and model biological membrane at molecular level. Knowledge of the interaction between POSS and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) allows prediction of the impact of POSS contained in biomaterials or cosmetics on a living organism. In the study presented, the surface properties and morphology of Langmuir monolayers formed by mixtures of POSS and the phospholipid (DPPC) at the air/water surface are examined. We selected two POSS derivatives, with completely different chemical structure of substituents attached to the corner of the silicon open cage, which allowed the analysis of the impact of the character of organic moieties (strongly hydrophobic or clearly hydrophilic) on the order of POSS molecules and their tendency to form self-aggregates at the air/water surface. POSS derivatives significantly changed the profile of the π-A isotherms obtained for DPPC but in different ways. On the basis of the regular solution theory, the miscibility and stability of the two components in the monolayer were analysed in terms of compression modulus (Cs(-1)), excess Gibbs free energy (ΔGexc), activity coefficients (γ) and interaction parameter (ξ). The results obtained indicate the existence of two different interaction mechanisms between DPPC and POSS which depend on the chemical character of moieties present in POSS molecules.

  10. An investigation of channel flow with a smooth air-water interface

    NASA Astrophysics Data System (ADS)

    Madad, Reza; Elsnab, John; Chin, Cheng; Klewicki, Joseph; Marusic, Ivan

    2015-06-01

    Experiments and numerical simulation are used to investigate fully developed laminar and turbulent channel flow with an air-water interface as the lower boundary condition. Laser Doppler velocimetry measurements of streamwise and wall-normal velocity components are made over a range of Reynolds number based upon channel height and bulk velocity from 1100 to 4300, which encompasses the laminar, transitional and low Reynolds numbers turbulent regimes. The results show that the airflow statistics near the stationary wall are not significantly altered by the air-water moving interface and reflect those found in channel flows. The mean statistics on the water interface side largely exhibit results similar to simulated Poiseuille-Couette flow (PCF) with a solid moving wall. For second-order statistics, however, the simulation and experimental results show some discrepancies near the moving water surface, suggesting that a full two-phase simulation is required. A momentum and energy transport tubes analysis is investigated for laminar and turbulent PCFs. This analysis builds upon the classical notion of a streamtube and indicates that part of the energy from the pressure gradient is transported towards the stationary wall and is dissipated as heat inside the energy tubes, while the remainder is transmitted to the moving wall. For the experiments, the airflow energy is transmitted towards the water to overcome the drag force and drive the water forward; therefore, the amount of energy transferred to the water is higher than the energy transferred to a solid moving wall.

  11. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    USGS Publications Warehouse

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  12. Research on measurement-device-independent quantum key distribution based on an air-water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-yuan; Zhou, Xue-jun; Xu, Hua-bin; Cheng, Kang

    2016-11-01

    A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel's asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

  13. Dipole Moment of a Charged Particle Trapped at the Air-Water Interface.

    PubMed

    Bossa, Guilherme Volpe; Bohinc, Klemen; Brown, Matthew A; May, Sylvio

    2016-07-07

    The interaction between two charged particles (such as nanoparticles or colloids) trapped at the air-water interface becomes dipolar at large separations. The corresponding dipole moment can be modeled by considering a single point charge located exactly at the interface, but this model fails to correctly predict the dipole moment's dependence on the salt concentration in the aqueous medium. We extend the single point charge model to two point charges that are separated by a fixed distance and are located at the air-water interface, with one charge being immersed in air and the other in the solvent. The two point charges represent the surface charges at the air-exposed and water-exposed regions of an interface-trapped particle. The two point charges also account for the spatial extension of the particle. On the basis of the Debye-Hückel model, we derive mathematical expressions for the interaction between two pairs of charges and discuss the salt concentration dependence of the dipolar moment at large separations. Our results reveal a residual dipole moment in the limit of large salt content that originates from the charge attached to the air-exposed region of the particle. We discuss nonlinear screening effects and compare the predicted dipolar moments with recent experimental results.

  14. Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface

    PubMed Central

    Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.

    2009-01-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599

  15. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h-1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m-2 d-1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  16. Evaporative assembly of MEH-PPV rings using mixed solvents at the air/water interface.

    PubMed

    Chao, Kung-Po; Biswal, Sibani L

    2014-04-22

    Controlling the morphology of conjugated polymers has recently attracted considerable attention because of their applications in photovoltaic (PV) devices and organic light-emitting diodes (OLEDs). Here, we describe the self-assembly of a common conjugated polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), into ringlike structures via solvent evaporation on an air/water interface. The films are monitored using Brewster angle microscopy (BAM) and transferred onto a solid substrate by either the Langmuir-Blodgett (LB) or the Langmuir-Schaefer (LS) method and further characterized by atomic force microscopy (AFM). The morphology of the MEH-PPV thin film at the air/water interface can be controlled by the spreading solvent. By mixing solvents of varying spreading coefficients and evaporation rates, such as chloroform and chlorobenzene, MEH-PPV can be assembled into micrometer-sized ring structures. The optical properties of these MEH-PPV ring structures are also characterized. Lastly, MEH-PPV can be used as a soft template to organize microscale structures of nanoparticles.

  17. The Effect of monoglycerides on structural and topographical characteristics of adsorbed beta-casein films at the air-water interface.

    PubMed

    Fernández, Marta Cejudo; Sánchez, Cecilio Carrera; Rodríguez Niño, M Rosario; Rodríguez Patino, Juan M

    2006-02-01

    The effect of monoglycerides (monopalmitin and monoolein) on the structural and topographical characteristics of beta-casein adsorbed film at the air-water interface has been analyzed by means of surface pressure (pi)-area (A) isotherms and Brewster angle microscopy (BAM). At surface pressures lower than that for the beta-casein collapse (pi(c)(beta-casein)), attractive interactions between beta-casein and monoglycerides were observed. At higher surface pressures, the collapsed beta-casein is partially displaced from the interface by monoglycerides. However, beta-casein displacement by monoglycerides is not quantitative at the monoglyceride concentrations studied in this work. From the results derived from these experiments, we have concluded that interactions, miscibility, and displacement of proteins by monoglycerides in adsorbed mixed monolayers at the air-water interface depend on the particular protein-monoglyceride system, the interactions between film-forming components being higher for adsorbed than for spread films. The adsorbed films are more segregated than spread films, and both collapsed protein domains and monoglyceride domains in adsorbed films are smaller than for spread films.

  18. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India.

    PubMed

    Yadav, Ishwar Chandra; Devi, Ningombam Linthoingambi; Syed, Jabir Hussain; Cheng, Zhineng; Li, Jun; Zhang, Gan; Jones, Kevin C

    2015-04-01

    Though the use of pesticides has offered significant economic benefits by enhancing the production and yield of food and fibers and the prevention of vector-borne diseases, evidence suggests that their use has adversely affected the health of human populations and the environment. Pesticides have been widely distributed and their traces can be detected in all areas of the environment (air, water and soil). Despite the ban of DDT and HCH in India, they are still in use, both in domestic and agricultural settings. In this comprehensive review, we discuss the production and consumption of persistent organic pesticides, their maximum residual limit (MRL) and the presence of persistent organic pesticides in multicomponent environmental samples (air, water and soil) from India. In order to highlight the global distribution of persistent organic pesticides and their impact on neighboring countries and regions, the role of persistent organic pesticides in Indian region is reviewed. Based on a review of research papers and modeling simulations, it can be concluded that India is one of the major contributors of global persistent organic pesticide distribution. This review also considers the health impacts of persistent organic pesticides, the regulatory measures for persistent organic pesticides, and the status of India's commitment towards the elimination of persistent organic pesticides.

  19. Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface.

    PubMed

    Dai, Zhengfei; Li, Yue; Duan, Guotao; Jia, Lichao; Cai, Weiping

    2012-08-28

    Flexible structural design and accurate controlled fabrication with structural tunability according to need for binary or multicomponent colloidal crystals have been expected. However, it is still a challenge. In this work, the phase diagram of monolayer binary colloidal crystals (bCCs) is established on the assumption that both large and small polystyrene (PS) colloidal spheres can stay at the air/water interface, and the range diagram for the size ratio and number ratio of small to large colloidal spheres is presented. From this phase diagram, combining the range diagram, we can design and relatively accurately control fabrication of the bCCs with specific structures (or patterns) according to need, including single or mixed patterns with the given relative content. Further, a simple and facile approach is presented to fabricate large-area (more than 10 cm(2)) monolayer bCCs without any surfactants, using differently sized PS spheres, based on ethanol-assisted self-assembly at the air/water interface. bCCs with different patterns and stoichiometries are thus designed from the established phase diagram and then successfully fabricated based on the volume ratios (V(S/L)) of the small to large PS suspensions using the presented colloidal self-assembling method. Interestingly, these monolayer bCCs can be transferred to any desired substrates using water as the medium. This study allows us to design desired patterns of monolayer bCCs and to more accurately control their structures with the used V(S/L).

  20. Measuring Interfacial Tension Between Immiscible Liquids

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser; Balasubramaniam, R.; Delsignore, David M.

    1995-01-01

    Glass capillary tube technique measures interfacial tension between two immiscible liquids. Yields useful data over fairly wide range of interfacial tensions, both for pairs of liquids having equal densities and pairs of liquids having unequal densities. Data on interfacial tensions important in diverse industrial chemical applications, including enhanced extraction of oil; printing; processing foods; and manufacture of paper, emulsions, foams, aerosols, detergents, gel encapsulants, coating materials, fertilizers, pesticides, and cosmetics.

  1. Time-Dependent Interfacial Properties and DNAPL Mobility

    SciTech Connect

    Tuck, D.M.

    1999-03-10

    Interfacial properties play a major role in governing where and how dense nonaqueous phase liquids (DNAPLs) move in the subsurface. Interfacial tension and contact angle measurements were obtained for a simple, single component DNAPL (tetrachloroethene, PCE), complex laboratory DNAPLs (PCE plus Sudan IV dye), and a field DNAPL from the Savannah River Site (SRS) M-Area DNAPL (PCE, trichloroethene [TCE], and maching oils). Interfacial properties for complex DNAPLs were time-dependent, a phenomenon not observed for PCE alone. Drainage capillary pressure-saturation curves are strongly influenced by interfacial properties. Therefore time-dependence will alter the nature of DNAPL migration and penetration. Results indicate that the time-dependence of PCE with relatively high Sudan IV dye concentrations is comparable to that of the field DNAPL. Previous DNAPL mobility experiments in which the DNAPL was dyed should be reviewed to determine whether time-dependent properties influenced the resutls. Dyes appear to make DNAPL more complex, and therefore a more realistic analog for field DNAPLs than single component DNAPLs.

  2. The Hydrophobic Effect in Solute Partitioning and Interfacial Tension

    NASA Astrophysics Data System (ADS)

    Jackson, Meyer B.

    2016-01-01

    Studies of the partitioning of hydrophobic solutes between water and nonpolar solvents provide estimates for the energy cost of creating hydrophobic-water contacts. This energy is a factor of three lower than the work of adhesion derived from interfacial tension measurements. This discrepancy noted by Tanford in 1979 is widely viewed as a serious challenge to our understanding of hydrophobic interactions. However, the interfacial energy of a water-alkane interface depends on chain length. A simple analysis of published data shows that the loss of rotational freedom of an alkane chain at an interface accounts quantitatively for the length-dependent contribution to interfacial tension, leaving a length-independent contribution very close to the free energy of transfer per unit of solvent accessible surface area. This analysis thus clarifies the discrepancy between the thermodynamic and interfacial tension measurements of hydrophobic interaction energy. Alkanes do not loose rotational freedom when transferred between two different liquid phases but they do at an interface. This reconciles the difference between microscopic and macroscopic measurements. Like the partitioning free energy, the work of adhesion also has a large entropy and small enthalpy at 20 oC.

  3. Interfacial thermodynamics of water and six other liquid solvents.

    PubMed

    Pascal, Tod A; Goddard, William A

    2014-06-05

    We examine the thermodynamics of the liquid-vapor interface by direct calculation of the surface entropy, enthalpy, and free energy from extensive molecular dynamics simulations using the two-phase thermodynamics (2PT) method. Results for water, acetonitrile, cyclohexane, dimethyl sulfoxide, hexanol, N-methyl acetamide, and toluene are presented. We validate our approach by predicting the interfacial surface tensions (IFT--excess surface free energy per unit area) in excellent agreement with the mechanical calculations using Kirkwood-Buff theory. Additionally, we evaluate the temperature dependence of the IFT of water as described by the TIP4P/2005, SPC/Ew, TIP3P, and mW classical water models. We find that the TIP4P/2005 and SPC/Ew water models do a reasonable job of describing the interfacial thermodynamics; however, the TIP3P and mW are quite poor. We find that the underprediction of the experimental IFT at 298 K by these water models results from understructured surface molecules whose binding energies are too weak. Finally, we performed depth profiles of the interfacial thermodynamics which revealed long tails that extend far into what would be considered bulk from standard Gibbs theory. In fact, we find a nonmonotonic interfacial free energy profile for water, a unique feature that could have important consequences for the absorption of ions and other small molecules.

  4. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    PubMed Central

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; Gibaud, A.; Lin, B.; Meron, M.

    2015-01-01

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initial monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate. PMID:25687953

  5. Velocity and phase distribution measurements in vertical air-water annular flows

    SciTech Connect

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film.

  6. Novel Behavior in Self-Assembled Superparamagnetic Nanoparticle Monolayers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Stanley, Jacob; Boucheron, Leandra; Dai, Yeling; Lin, Binhua; Meron, Mati; Shpyrko, Oleg

    2013-03-01

    Iron oxide nanoparticles, coated with an oleic acid ligand, have been found to form self-assembled monolayers when deposited at the air-water interface. Even for low particle densities these particles aggregate into hexagonally close-packed islands which merge into a uniform layer at higher densities. Using Grazing Incidence Small Angle X-Ray Scattering (GISAXS) we were able to measure the first through fifth order diffraction peaks. By analyzing the positions and shapes of these peaks we investigated the in-plane structure of these monolayers and characterized how the structure changes as a function of compression in a Langmuir-Blodgett trough. Since iron oxide nanoparticles are known to be super-paramagnetic, we sought to investigate the role magnetic effects may have on the interparticle interactions and ordering within the film. We performed Grazing Incidence Diffraction (GID) measurements on the film while varying an external magnetic field. We will discuss the results of our findings.

  7. Denaturation resistance of beta-lactoglobulin in monomolecular films at the air-water interface.

    PubMed

    Lin, Jhih-Min; White, John W

    2009-10-29

    Using X-ray reflectometry we report strong differences in the denaturation response of beta-lactoglobulin adsorbed as a monomolecular film at the air-water interface from that observed in mixed denaturant/beta-lactoglobulin bulk solutions. Using the "flow trough" technique an isolated monomolecular film of the protein showed little change in structure when subjected to a 4.0 M guanidinium hydrochloride substrate. Unlike the bulk solution where a new protein layer structure appears, small changes in the protein packing and the roughness of the film are the only evidence of change. These parameters have been studied as a function of denaturant concentration and film quality. The strength of the response depends on the degree of perfection of the originally formed film; quickly formed films are more easily denatured. As the response is so subtle, possible interfering effects such as denaturant release of protein adsorbed on the trough have been quantified.

  8. Robust Gold Nanoparticle Sheets by Ligand Cross-Linking at the Air-Water Interface.

    PubMed

    Kosif, Irem; Kratz, Katrina; You, Siheng Sean; Bera, Mrinal K; Kim, Kyungil; Leahy, Brian; Emrick, Todd; Lee, Ka Yee C; Lin, Binhua

    2017-02-28

    We report the results of cross-linking of two-dimensional gold nanoparticle (Au-NP) assemblies at the air-water interface in situ. We introduce an aqueous soluble ruthenium benzylidene catalyst into the water subphase to generate a robust, elastic two-dimensional network of nanoparticles containing cyclic olefins in their ligand framework. The most striking feature of the cross-linked Au-NP assemblies is that the extended connectivity of the nanoparticles enables the film to preserve much of its integrity under compression and expansion, features that are absent in its non-cross-linked counterparts. The cross-linking process appears to "stitch" the nanoparticle crystalline domains together, allowing the cross-linked monolayers to behave like a piece of fabric under lateral compression.

  9. Structure of hydroxylated galactocerebrosides from myelin at the air-water interface.

    PubMed Central

    Graf, Karlheinz; Baltes, Hubert; Ahrens, Heiko; Helm, Christiane A; Husted, Cynthia A

    2002-01-01

    Hydroxy-galactocerebrosides (mixed chain length, constituent of myelin membranes) from bovine brain are investigated as monolayers at the air-water interface with isotherms, fluorescence microscopy, x-ray reflectivity and grazing incidence diffraction. With grazing incidence diffraction a monoclinic tilted chain lattice is found in the condensed phase. According to x-ray reflectivity, the longest chains protrude above the chain lattice and roughen the lipid/air interface. On compressing the chain lattice, the correlation length increases by approximately 65%; obviously, the sugar headgroups are flexible enough to allow for lattice deformation. With fluorescence experiments, small coexisting fluid and ordered domains are observed, and there is lipid dissolution into the subphase as well. The dissolved hydroxy-galactocerebroside molecules reenter on monolayer expansion. The electron density profiles derived from x-ray reflectometry (coherent superposition) show that the chain-ordering transition causes the molecules to grow into the subphase. PMID:11806931

  10. Two-dimensional crystallization of phthalocyanine pigments at the air/water interface

    SciTech Connect

    Gregory, B.W.; Vaknin, D.; Gray, J.D.; Cotton, T.M.; Struve, W.S. |; Ocko, B.M.

    1999-01-21

    Two-dimensional crystallization of highly planar phthalocyanine (Pc) pigments underneath the headgroups of a lipid Langmuir monolayer was observed and characterized by synchrotron X-ray diffraction at grazing angles of incidence (GID). The crystallization was achieved through spontaneous adsorption of positively charged, water-soluble Pc`s to a spread dihexadecyl phosphate (DHDP) monolayer at the air/water interface. Analysis of the GID and rod profiles show that the lipid, pigment, and counterions form a complex in which the pigment plane is tilted with respect to the liquid surface; this is consistent with previous independent X-ray reflectivity investigations. In addition, the two-dimensional crystalline order of DHDP monolayers on pure H{sub 2}O has been determined and an analysis of its structure both before and after complexation is presented.

  11. Turbulent heat and mass transfers across a thermally stratified air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  12. Near-surface physics during convection affecting air-water gas transfer

    NASA Astrophysics Data System (ADS)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-05-01

    The gas flux at the water surface is affected by physical processes including turbulence from wind shear, microscale wave breaking, large-scale breaking, and convection due to heat loss at the surface. The main route in the parameterizations of the gas flux has been to use the wind speed as a proxy for the gas flux velocity, indirectly taking into account the dependency of the wind shear and the wave processes. The interest in the contributions from convection processes has increased as the gas flux from inland waters (with typically lower wind and sheltered conditions) now is believed to play a substantial role in the air-water gas flux budget. The gas flux is enhanced by convection through the mixing of the mixed layer as well as by decreasing the diffusive boundary layer thickness. The direct numerical simulations performed in this study are shown to be a valuable tool to enhance the understanding of this flow configuration often present in nature.

  13. Partitioning of semi-volatile organic compounds to the air/water interface

    NASA Astrophysics Data System (ADS)

    Pankow, James F.

    Partition coefficients ( Kia, m 3m -2) for sorption of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes at the air/water interface were estimated by extrapolating quartz/gas sorption data to relative humidity (RH) values of 100%. For each compound class, the log Kia values were found to be well correlated with log pLo where pLo (Torr) is the vapor pressure of the pure subcooled liquid. For the PAHs, correlation equation is log Kia = -1.20 log pLo - 5.82 ( R2 = 0.98). For the n-alkanes, the correlation equation is log Kia = -0.93 log pLo - 4.42 ( R2 = 0.95).

  14. Crystalline self-assembly into monolayers of folded oligomers at the air-water interface

    PubMed

    Lederer; Godt; Howes; Kjaer; Als-Nielsen; Lahav; Wegner; Leiserowitz; Weissbuch

    2000-06-16

    Insertion of the 1,3-bis(ethynylene)benzene unit as a rigid spacer into a linear alkyl chain, thus separating the two resulting stems by 9 A. induces chain folding at the air-water interface. These folded molecules self-assemble into crystalline monolayers at this interface, with the plane of the folding unit almost perpendicular to the water surface, as determined by synchrotron grazing-incidence X-ray diffraction. Three distinct molecular shapes, of the types U, inverted U, and M, were obtained in the two-dimensional crystalline state, depending upon the number of spacer units, and the number and position of the hydrophilic groups in the molecule. The molecules form ribbons with a higher crystal coherence in the direction of stacking between the molecular ribbons, and a lower coherence along the ribbon direction. A similar molecule, but with a spacer unit that imposes a 5 A separation between alkyl chains, yields the conventional herringbone arrangement.

  15. Surface enhanced Raman scattering of a lipid Langmuir monolayer at the air-water interface.

    PubMed

    Mangeney, C; Dupres, V; Roche, Y; Felidj, N; Levi, G; Aubard, J; Bernard, S

    Surface enhanced Raman spectra were recorded from a phospholipid monolayer directly at the air-water interface. We used an organized monolayer of negatively charged tetramyristoyl cardiolipins as a template for the electrochemical generation of silver deposits. This two-dimensional electrodeposition of silver under potentiostatic control was the substrate for enhancement of Raman spectra. We report the optimized conditions for the Raman enhancement, the microscopic observations of the deposits, and their characterization by atomic force microscopy. Laser excitation at 514.5 nm leads to intense and reproducible surface enhanced Raman scattering spectra recorded in situ from one monolayer of cardiolipin, using 0.5 mol % of 10N nonyl acridine orange or 5 mol % of acridine in the film, and demonstrates the possibility of estimating the pH at the metal/phospholipidic film interface.

  16. Atmospheric photochemistry at a fatty acid-coated air-water interface

    NASA Astrophysics Data System (ADS)

    Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian

    2016-08-01

    Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.

  17. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  18. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    USGS Publications Warehouse

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  19. Air/water two-phase flow test tunnel for airfoil studies

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.

    1990-02-01

    A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.

  20. Air/water two-phase flow test tunnel for airfoil studies

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.

    1994-01-01

    A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.

  1. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    DOE PAGES

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; ...

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initialmore » monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.« less

  2. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    SciTech Connect

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; Gibaud, A.; Lin, B.; Meron, M.

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initial monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.

  3. Substrate-constituted three-liquid-phase system: a green, highly efficient and recoverable platform for interfacial enzymatic reactions.

    PubMed

    Li, Zhigang; Chen, Huayong; Wang, Weifei; Qu, Man; Tang, Qingyun; Yang, Bo; Wang, Yonghua

    2015-08-21

    Highly efficient interfacial enzymatic hydrolysis of oil was achieved in a three-liquid-phase system, wherein the substrate constituted one of the phases. The enlarged interfacial area and relieved product inhibition were responsible for the high catalytic efficiency. Convenient product isolation and the high reusability of the enzyme were also demonstrated.

  4. Spatially resolved air-water emissions tradeoffs improve regulatory impact analyses for electricity generation.

    PubMed

    Gingerich, Daniel B; Sun, Xiaodi; Behrer, A Patrick; Azevedo, Inês L; Mauter, Meagan S

    2017-02-21

    Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts.

  5. Non-linear surface dilatational rheology as a tool for understanding microstructures of air/water interfaces stabilized by oligofructose fatty acid esters.

    PubMed

    van Kempen, Silvia E H J; Schols, Henk A; van der Linden, Erik; Sagis, Leonard M C

    2013-10-28

    In this paper, the rheological response of air/water interfaces, stabilized by various oligofructose fatty acid esters, to oscillatory dilatational deformations was studied and compared to the response of interfaces stabilized by sucrose esters. We have followed a traditional approach to surface rheology, where the development of the modulus as a function of time is studied as well as the frequency dependence of the modulus. We also adopted a different approach where we investigate in detail the amplitude dependence of the modulus. Finally, we studied the temperature dependence. We show that for an accurate characterization of the dilatational rheology of fluid–fluid interfaces with a complex microstructure, a protocol should be used that not only involves variations of surface pressure, frequency, and temperature, but also establishes amplitude dependence. We show that Lissajous plots of surface pressure versus deformation can be useful tools to help interpret surface dilatational behavior in terms of interfacial microstructure. The rheological response of interfaces stabilized by oligofructose esters differed significantly from the response of those stabilized by sucrose esters. Sucrose esters behaved like typical low molecular weight surfactants, and gave interfaces with relatively low moduli, a frequency scaling of the dilatational modulus with an exponent close to 0.5, and displayed no asymmetries in Lissajous plots. In contrast, the oligofructose esters gave, depending on the fatty acid tail, relatively high moduli, almost independent of frequency. Significant asymmetries were observed in the Lissajous plots, with strain hardening during compression and strain softening during extension. Our results suggest that the unusual rheological properties of interfaces stabilized by oligofructose esters may be the result of the formation of a two-dimensional soft glass phase by the oligofructose part of the ester.

  6. Sinusoidal Forcing of Interfacial Films

    NASA Astrophysics Data System (ADS)

    Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir; Lopez, Juan

    2015-11-01

    Fluid transport, in vivo, is accomplished via pumping mechanisms of the heart and lungs, which results in biological fluids being subjected to oscillatory shear. Flow is known to influence biological macromolecules, but predicting the effect of shear is incomplete without also accounting for the influence of complex interfaces ubiquitous throughout the body. Here, we investigated the oscillatory response of the structure of aqueous interfacial films using a cylindrical knife edge viscometer. Vitamin K1 was used as a model monolayer because its behaviour has been thoroughly quantified and it doesn't show any measurable hysteresis. The monolayer was subjected to sinusoidal forcing under varied conditions of surface concentrations, periodic frequencies, and knife edge amplitudes. Particle Image Velocimetry(PIV) data was collected using Brewster Angle Microscopy(BAM), revealing the influence of oscillatory interfacial shear stress on the monolayer. Insights were gained as to how the velocity profile dampens at specific distances from the knife edge contact depending on the amplitude, frequency, and concentration of Vitamin K1. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  7. Convection and interfacial mass exchange

    NASA Astrophysics Data System (ADS)

    Colinet, P.; Legros, J. C.; Dauby, P. C.; Lebon, G.; Bestehorn, M.; Stephan, P.; Tadrist, L.; Cerisier, P.; Poncelet, D.; Barremaecker, L.

    2005-10-01

    Mass-exchange through fluid interfaces is ubiquitous in many natural and industrial processes. Yet even basic phase-change processes such as evaporation of a pure liquid are not fully understood, in particular when coupled with fluid motions in the vicinity of the phase-change interface, or with microscopic physical phenomena in the vicinity of a triple line (where the interface meets a solid). Nowadays, many industries recognise that this lack of fundamental knowledge is hindering the optimisation of existing processes. Their modelling tools are too dependent on empirical correlations with a limited - and often unknown - range of applicability. In addition to the intrinsic multiscale nature of the phenomena involved in typical industrial processes linked to interfacial mass exchange, their study is highly multi-disciplinary, involving tools and techniques belonging to physical chemistry, chemical engineering, fluid dynamics, non-linear physics, non-equilibrium thermodynamics, chemistry and statistical physics. From the experimental point of view, microgravity offers a unique environment to obtain valuable data on phase-change processes, greatly reducing the influence of body forces and allowing the detailed and accurate study of interfacial dynamics. In turn, such improved understanding leads to optimisation of industrial processes and devices involving phase-change, both for space and ground applications.

  8. Particle monolayer formation with arrayed structure by PMMA-grafted polystyrene Latex at the air-water interface.

    PubMed

    Mouri, Emiko; Terada, Motokazu; Koga, Ryosuke; Karakawa, Hiroyuki; Yoshinaga, Kohji

    2010-09-01

    The structure of the particle monolayer formed by the polymer-grafted latex particle at the air-water interface was estimated mainly by pi--A isotherm measurement and SEM observation to examine the effect of core particle characteristics and to generalize the key factors in determining the polymer-grafted particle monolayer structure. Methyl methacrylate (MMA) was polymerized from the polystyrene latex (PSL) surface by atom transfer radical polymerization to give a PMMA-grafted PSL (PSL-PMMA) with a relatively high graft density of about 0.2 nm-2. We obtained PSL-PMMA with PMMA of different molecular weights but almost the same graft density. The onset area of increasing surface pressure in pi-A isotherm was in agreement with the value of effective radius of PSL-PMMA with quite extended PMMA chains. The particle monolayer structure deposited on the substrate was strongly dependent on the molecular weight of the grafted PMMA. The aggregation size was reduced with increasing molecular weight and a lattice-like structure was observed for PSL-PMMA monolayer with a high molecular weight PMMA. The interparticle distance was decreased and structure becomes ordered with increasing surface pressure. The monolayer structure obtained here was consistent with that of the PMMA-grafted silica particle system. We also synthesized polystyrene (PS)-grafted PMMA latex (PML-PS) and compared the two systems. We confirmed that the lattice-like structure depended on the nature of the grafted PMMA chain, not the core particle characteristics.

  9. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging.

    PubMed

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan; Bjørnholm, Thomas

    2011-12-01

    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring the surface pressure and surface area decrease versus time. In the second approach we applied AFM imaging of the supported BSA monolayers adsorbed on mica solid supports and extracted information for the enzyme action by analyzing the obtained images of the surface topography in the course of enzyme action. In both cases we obtained an estimate for the turnover number (TON) of the enzyme reaction.

  10. The AirWaterGas Teacher Professional Development Program: Lessons Learned by Pairing Scientists and Teachers to Develop Curriculum on Global Climate Change and Regional Unconventional Oil and Gas Development

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Hatheway, B.; Rogers, J. D.; Casey, J. G.; Lackey, G.; Birdsell, D.; Brown, K.; Polmear, M.; Capps, S.; Rosenblum, J.; Sitterley, K.; Hafich, K. A.; Hannigan, M.; Knight, D.

    2015-12-01

    The AirWaterGas Teacher Professional Development Program, run by the UCAR Center for Science Education, brought together scientists and secondary science teachers in a yearlong program culminating in the development of curriculum related to the impacts of unconventional oil and gas development. Graduate students and research scientists taught about their research area and its relationship to oil and gas throughout three online courses during the 2015-16 school year, during which teachers and scientists engaged in active online discussions. Topics covered included climate change, oil and gas infrastructure, air quality, water quality, public health, and practices and policies relating to oil and gas development. Building upon their initial online interactions and a face-to-face meeting in March, teachers were paired with appropriate AirWaterGas team members as science advisors during a month-long residency in Boulder, Colorado. During the residency, graduate student scientists provided resources and feedback as teachers developed curriculum projects in collaboration with each other and UCAR science educators. Additionally, teachers and AirWaterGas researchers shared experiences on an oil and gas well site tour, and a short course on drilling methods with a drilling rig simulator. Here, we share lessons learned from both sides of the aisle, including initial results from program assessment conducted with the participating teachers.

  11. Interfacial material for solid oxide fuel cell

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  12. Interfacial instabilities in vibrated fluids

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced

  13. Air-water gas exchange of mercury in the Bay Saint François wetlands: Observation and model parameterization

    NASA Astrophysics Data System (ADS)

    Zhang, Hong H.; Poissant, Laurier; Xu, Xiaohong; Pilote, Martin; Beauvais, Conrad; Amyot, Marc; Garcia, Edenise; Laroulandie, Jerome

    2006-09-01

    Total gaseous mercury (TGM) air-water flux measurements were taken using a dynamic flux chamber (DFC) coupled with a gaseous mercury (Hg) analyzer at the Bay St. François (BSF) wetlands (Quebec, Canada) in summer 2003. The measured TGM fluxes over water exhibited a consistent diurnal pattern, with maximum emissions during daytime and minimum fluxes occurring at night. Pearson correlation analysis showed that solar radiation was the most influential environmental parameter in TGM air-water exchange. Significant correlations were also found between TGM fluxes and 1 hour time-lagged water temperature, indicating the enhancement of fluxes by bacterial activities or chemical reactions. The concentrations of dissolved gaseous mercury (DGM) in water were measured during the 2003 sampling period and indicated that DGM was always supersaturated, which implied that the water body acted primarily as a source of mercury to the atmosphere. Several empirical models of mercury air-water gas exchange were developed and evaluated. Compared to the published models, these proposed models were capable of producing good results, leading to a better agreement between the measured and modeled fluxes (improvements by 48-98%). Among these empirical models, the ones linking TGM fluxes with net radiation were superior because of their strong predictive capability. Two preferred models were selected for air-water TGM flux estimation from Lake St. Pierre's surrounding wetlands. These two models yield a mean emission of 0.19-0.24 kg mercury during May-September each year from 1999 to 2003.

  14. Pollution: A Selected Bibliography of U.S. Government Publications on Air, Water, and Land Pollution 1965-1970.

    ERIC Educational Resources Information Center

    Kiraldi, Louis, Comp.; Burk, Janet L., Comp.

    Materials on environmental pollution published by the various offices of the federal government are presented in this select bibliography. Limited in scope to publications on air, water, and land pollution, the document is designed to serve teachers and researchers working in the field of environmental problems who wish reference to public…

  15. Interfacial adhesion - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Banerjea, Amitava; Bozzolo, Guillermo H.; Finley, Clarence W.

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along with recommendations for future progress and needs.

  16. Interfacial adhesion: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Bozzolo, Guillermo H.; Finley, Clarence W.; Banerjea, Amitava

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along wiith recommendations for future progress and needs.

  17. Reliability assessment on interfacial failure of thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Wei; Yang, Li; Zhou, Yi-Chun; He, Li-Min; Zhu, Wang; Cai, Can-Ying; Lu, Chun-Sheng

    2016-10-01

    Thermal barrier coatings (TBCs) usually exhibit an uncertain lifetime owing to their scattering mechanical properties and severe service conditions. To consider these uncertainties, a reliability assessment method is proposed based on failure probability analysis. First, a limit state equation is established to demarcate the boundary between failure and safe regions, and then the failure probability is calculated by the integration of a probability density function in the failure area according to the first- or second-order moment. It is shown that the parameters related to interfacial failure follow a Weibull distribution in two types of TBC. The interfacial failure of TBCs is significantly affected by the thermal mismatch of material properties and the temperature drop in service.

  18. Topology-generating interfacial pattern formation during liquid metal dealloying

    PubMed Central

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-01-01

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics. PMID:26582248

  19. Topology-generating interfacial pattern formation during liquid metal dealloying

    SciTech Connect

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  20. Topology-generating interfacial pattern formation during liquid metal dealloying

    DOE PAGES

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; ...

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growthmore » of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.« less

  1. Interfacial assignment of branched-alkyl benzene sulfonates: A molecular simulation

    NASA Astrophysics Data System (ADS)

    Liu, Zi-Yu; Wei, Ning; Wang, Ce; Zhou, He; Zhang, Lei; Liao, Qi; Zhang, Lu

    2015-11-01

    A molecular dynamics simulation was conducted to analyze orientations of sodium branched-alkyl benzene sulfonates molecules at nonane/water interface, which is helpful to design optimal surfactant structures to achieve ultralow interfacial tension (IFT). Through the two dimensional density profiles, monolayer collapses are found when surfactant concentration continues to increase. Thus the precise scope of monolayer is certain and orientation can be analyzed. Based on the simulated results, we verdict the interfacial assignment of branched-alkyl benzene sulfonates at the oil-water interface, and discuss the effect of hydrophobic tail structure on surfactant assignment. Bigger hydrophobic size can slow the change rate of surfactant occupied area as steric hindrance, and surfactant meta hydrophobic tails have a stronger tendency to stretch to the oil phase below the collapsed concentration. Furthermore, an interfacial model with reference to collapse, increasing steric hindrance and charge repulsive force between interfacial surfactant molecules, responsible for effecting of surfactant concentration and structure has been supposed.

  2. THE ROLE OF AQUEOUS THIN FILM EVAPORATIVE COOLING ON RATES OF ELEMENTAL MERCURY AIR-WATER EXCHANGE UNDER TEMPERATURE DISEQUILIBRIUM CONDITIONS

    EPA Science Inventory

    The technical conununity has only recently addressed the role of atmospheric temperature variations on rates of air-water vapor phase toxicant exchange. The technical literature has documented that: 1) day time rates of elemental mercury vapor phase air-water exchange can exceed ...

  3. Resistance of β-casein at the air-water interface to enzymatic cleavage.

    PubMed

    Lin, Jhih-Min; Ang, Joo Chuan; White, J W

    2010-12-21

    X-ray reflectivity from an air-buffer interfacial β-casein monomolecular film placed on a solution of chymosin (renin) showed unexpectedly slow proteolytic cleavage. To understand this, the separate structures of β-casein and chymosin, the presentation of each molecule to the other at the air/liquid interface, and that of their mixtures is reported. At the air/solution interface, the hydrophobicity of the protein molecules causes orientation and some deformation of the conformation. When β-casein was presented to a chymosin monomolecular interfacial film, the chymosin was largely displaced from the surface, which was accounted for by the different surfactancy of the two molecules at 25 °C. There was no observable proteolysis. In the reverse experiment, a significant enzymatic degradation and the signature of hydrophobic fragments was observed but only at and above an enzyme concentration of 0.015 mg/mL in the substrate. For comparison, the air/solution interface of premixed β-casein with chymosin in phosphate buffer showed that the film was composed of β-casein proteolytic fragments and chymosin.

  4. Estimating human exposure through multiple pathways from air, water, and soil.

    PubMed

    McKone, T E; Daniels, J I

    1991-02-01

    This paper describes a set of multipathway, multimedia models for estimating potential human exposure to environmental contaminants. The models link concentrations of an environmental contaminant in air, water, and soil to human exposure through inhalation, ingestion, and dermal-contact routes. The relationship between concentration of a contaminant in an environmental medium and human exposure is determined with pathway exposure factors (PEFs). A PEF is an algebraic expression that incorporates information on human physiology and lifestyle together with models of environmental partitioning and translates a concentration (i.e., mg/m3 in air, mg/liter in water, or mg/kg in soil) into a lifetime-equivalent chronic daily intake (CDI) in mg/kg-day. Human, animal, and environmental data used in calculating PEFs are presented and discussed. Generalized PEFs are derived for air----inhalation, air----ingestion, water----inhalation, water----ingestion, water----dermal uptake, soil----inhalation, soil----ingestion, and soil----dermal uptake pathways. To illustrate the application of the PEF expressions, we apply them to soil-based contamination of multiple environmental media by arsenic, tetrachloroethylene (PCE), and trinitrotoluene (TNT).

  5. Impact of artificial monolayer application on stored water quality at the air-water interface.

    PubMed

    Pittaway, P; Martínez-Alvarez, V; Hancock, N; Gallego-Elvira, B

    2015-01-01

    Evaporation mitigation has the potential to significantly improve water use efficiency, with repeat applications of artificial monolayer formulations the most cost-effective strategy for large water storages. Field investigations of the impact of artificial monolayers on water quality have been limited by wind and wave turbulence, and beaching. Two suspended covers differing in permeability to wind and light were used to attenuate wind turbulence, to favour the maintenance of a condensed monolayer at the air/water interface of a 10 m diameter tank. An octadecanol formulation was applied twice-weekly to one of two covered tanks, while a third clean water tank remained uncovered for the 14-week duration of the trial. Microlayer and subsurface water samples were extracted once a week to distinguish impacts associated with the installation of covers, from the impact of prolonged monolayer application. The monolayer was selectively toxic to some phytoplankton, but the toxicity of hydrocarbons leaching from a replacement liner had a greater impact. Monolayer application did not increase water temperature, humified dissolved organic matter, or the biochemical oxygen demand, and did not reduce dissolved oxygen. The impact of an octadecanol monolayer on water quality and the microlayer may not be as detrimental as previously considered.

  6. Impact of Salinity on the Air-Water Partition Coefficient of Gas Tracers

    SciTech Connect

    Zhong, Lirong; Pope, Gary A.; Evans, John C.; Cameron, Richard J.

    2005-09-01

    The use of a gas partitioning interwell tracer test (PITT) has been proposed as a standard approach to the measurement of field-scale vadose zone water saturation fractions. The accuracy of the saturation measurement is largely dependent on the determination of the air-water partitioning coefficient, K, of the tracers; however, in practice, K is also strongly influenced by the physical and chemical properties of the water. In this study, column tests were conducted to investigate the impact of salinity on tracer partitioning coefficients for two promising gas phase candidate tracers, dibromomethane and dimethylether. Sodium thiosulfate was used as a salinity surrogate. The dynamic K values of the two partitioning tracers were measured for sodium thiosulfate concentrations between 0% and 36% by weight. Methane was used as the non-partitioning tracer for all experiments. K values were found to decrease significantly with increasing sodium thiosulfate concentration. Similar correlations between K values and sodium thiosulfate concentration were found for both of the partitioning tracers tested.

  7. Visualization of oxygen transfer across the air-water interface using a fluorescence oxygen visualization method.

    PubMed

    Lee, Minhee

    2002-04-01

    Oxygen concentration fields in a water body were visualized by the fluorescence oxygen visualization (FOV) method. Pyrenebutyric acid (PBA) was used as a fluorescent indicator of oxygen, and an intensive charge coupled-device (ICCD) camera as an image detector. Sequential images (over 2000 images) of the oxygen concentration field around the surface water of the tank (1 x 1 x 0.75 m3) were produced during the 3 h experiment. From image processing, the accurate pathway of oxygen-rich, cold water at the water surface was also visualized. The amount of oxygen transferred through the air-water interface during the experiment was measured and the oxygen transfer coefficient (K(L)) was determined as 0.22 m/d, which was much higher than that is expected in molecular diffusion. Results suggest that vertical penetration of cold water was the main pathway of oxygen in the water body in the tank. The average velocity of cold water penetrating downward in water body was also measured from consecutive images and the value was 0.3-0.6 mm/s. The FOV method used in this research should have wide application in experimental fluid mechanics and can also provide a phenomenological description of oxygen transfer under physically realizable natural conditions in lakes and reservoirs.

  8. On the stability of an accelerated coupled air-water flow.

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Ierley, Glenn; Melville, W. Kendall

    2000-11-01

    We present the results of a study of the stability of the interface of an accelerated coupled air-water flow. We develop a general solution of the two-layer, laminar parallel flow driven by a pressure gradient in the air. The velocity profiles in both fluids are given by analytical functions for pressure gradients that can be represented as power series in time. The stability of the coupled flow is then examined by solving the two layer Orr-Sommerfeld equations allowing for linear displacements of the interface. In the simple case of the linearly accelerating flow, we find that the flow is always stable for an air velocity below 0.6 m s-1. Instabilities first appear in the form of surface waves with a phase speed of approximately 30 cm s-1 and a wavenumber of O(1) cm-1. In cases when the flow in the air is turbulent, and represented by a continuously differentiable analytical approximation of the log-linear mean velocity profile, we find that the flow is rapidly unstable to surface waves. Comparisons are made with the previous computations of Kawai (1979) and Wheless and Csanady (1993), and with the measurements of Veron and Melville (2000).

  9. Bifurcations of a creeping air-water flow in a conical container

    NASA Astrophysics Data System (ADS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2016-10-01

    This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air-water flow, driven by a rotating top disk in a vertical conical container. As water height Hw and cone half-angle β vary, numerous flow metamorphoses occur. They are investigated for β =30°, 45°, and 60°. For small Hw, the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as Hw exceeds a threshold depending on β . For all β , the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.

  10. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): a review.

    PubMed

    Net, Sopheak; Delmont, Anne; Sempéré, Richard; Paluselli, Andrea; Ouddane, Baghdad

    2015-05-15

    Because of their widespread application, phthalates or phthalic acid esters (PAEs) are ubiquitous in the environment. Their presence has attracted considerable attention due to their potential impacts on ecosystem functioning and on public health, so their quantification has become a necessity. Various extraction procedures as well as gas/liquid chromatography and mass spectrometry detection techniques are found as suitable for reliable detection of such compounds. However, PAEs are ubiquitous in the laboratory environment including ambient air, reagents, sampling equipment, and various analytical devices, that induces difficult analysis of real samples with a low PAE background. Therefore, accurate PAE analysis in environmental matrices is a challenging task. This paper reviews the extensive literature data on the techniques for PAE quantification in natural media. Sampling, sample extraction/pretreatment and detection for quantifying PAEs in different environmental matrices (air, water, sludge, sediment and soil) have been reviewed and compared. The concept of "green analytical chemistry" for PAE determination is also discussed. Moreover useful information about the material preparation and the procedures of quality control and quality assurance are presented to overcome the problem of sample contamination and these encountered due to matrix effects in order to avoid overestimating PAE concentrations in the environment.

  11. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  12. The existence of longitudinal vortices in the flow of air above an air/water interface

    NASA Astrophysics Data System (ADS)

    Kou, J.; Saylor, J. R.

    2009-11-01

    Many researchers have observed the formation of longitudinal vortices in boundary layers developing over heated solid surfaces. In the present work, such vortices were observed in an air boundary layer developing over a heated water surface. The existence of these vortices was documented via infrared imaging of the water surface, which showed a consistent pattern of hot and cold streaks, coinciding with the vortex position. These vortices were also visualized through smoke injected into the air-side flow. The onset position Xc and lateral vortex spacing λ were investigated for a range of wind speeds (0.1 - 1 m/s) and air/water temperature differences (26 - 42 ^oC). Plots of Xc/λ versus the Reynolds number exhibit power-law behavior similar to that of prior work on boundary layers over heated solid surfaces. However, plots of Xc/λ versus the Grashof number show significant differences from the power-law behavior observed for heated solid plates. A theory explaining the similarity and difference between the present results and those for heated solid plates is discussed which is based on differences in the thermal boundary conditions.

  13. Surface shear rheology of WPI-monoglyceride mixed films spread at the air-water interface.

    PubMed

    Carrera Sánchez, Cecilio; Rodríguez Patino, Juan M

    2004-07-01

    Surface shear viscosity of food emulsifiers may contribute appreciably to the long-term stability of food dispersions (emulsions and foams). In this work we have analyzed the structural, topographical, and shear characteristics of a whey protein isolate (WPI) and monoglyceride (monopalmitin and monoolein) mixed films spread on the air-water interface at pH 7 and at 20 degrees C. The surface shear viscosity (etas) depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity varies greatly with the surface pressure. In general, the greater the surface pressure, the greater are the values of etas. The values of etas for the mixed WPI-monoolein monolayer were more than one order of magnitude lower than those for a WPI-monopalmitin mixed film, especially at the higher surface pressures. At higher surface pressures, collapsed WPI residues may be displaced from the interface by monoglyceride molecules with important repercussions on the shear characteristics of the mixed films. A shear-induced change in the topography and a segregation between domains of the film forming components were also observed. The displacement of the WPI by the monoglycerides is facilitates under shear conditions, especially for WPI-monoolein mixed films.

  14. Equation of state and adsorption dynamics of soft microgel particles at an air-water interface.

    PubMed

    Deshmukh, Omkar S; Maestro, Armando; Duits, Michel H G; van den Ende, Dirk; Stuart, Martien Cohen; Mugele, Frieder

    2014-09-28

    Understanding the adsorption dynamics of soft microgel particles is a key step in designing such particles for potential applications as stimuli-responsive Pickering stabilizers for foams or emulsions. In this study we experimentally determine an equation of state (EOS) for poly (N-isopropylacrylamide) (PNIPAM) microgel particles adsorbed onto an air-water interface using a Langmuir film balance. We detect a finite surface pressure at very low surface concentration of particles, for which standard theories based on hard disk models predict negligible pressures, implying that the particles must deform strongly upon adsorption to the interface. Furthermore, we study the evolution of the surface pressure due to the adsorption of PNIPAM particles as a function of time using pendant drop tensiometry. The equation of state determined in the equilibrium measurements allows us to extract the adsorbed amount as a function of time. We find a mixed-kinetic adsorption that is initially controlled by the diffusion of particles towards the interface. At later stages, a slow exponential relaxation indicates the presence of a coverage-dependent adsorption barrier related to crowding of particles at the interface.

  15. Amyloid fibril formation at a uniformly sheared air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Hirsa, Amir

    2013-11-01

    Amyloid fibril formation is a process by which protein molecules in solution form nuclei and aggregate into fibrils. Amyloid fibrils have long been associated with several common diseases such as Parkinson's disease and Alzheimer's. More recently, fibril protein deposition has been implicated in uncommon disorders leading to the failure of various organs including the kidneys, heart, and liver. Fibrillization can also play a detrimental role in biotherapeutic production. Results from previous studies show that a hydrophobic interface, such air/water, can accelerate fibrillization. Studies also show that agitation accelerates fibrillization. When attempting to elucidate fundamental mechanisms of fibrillization and distinguish the effects of interfaces and flow, it can be helpful to experiment with uniformly sheared interfaces. A new Taylor-Couette device is introduced for in situ, real-time high resolution microscopy. With a sub-millimeter annular gap, surface tension acts as the channel floor, permitting a stable meniscus to be placed arbitrarily close to a microscope to study amyloid fibril formation over long periods.

  16. Interaction of the cationic peptide bactenecin with mixed phospholipid monolayers at the air-water interface.

    PubMed

    López-Oyama, Ana B; Taboada, Pablo; Burboa, María G; Rodríguez, Ezequiel; Mosquera, Víctor; Valdez, Miguel A

    2011-07-01

    The initial mechanism by which antimicrobial peptides target microbes occurs via electrostatic interactions; however, the mechanism is not well understood. We investigate the interaction of the antimicrobial peptide bactenecin with a 50:50 w:w% 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) phospholipid mixture at the air-water interface with different NaCl concentrations (0.01, 0.05, 0.1, 0.5 M) in the subphase. A larger shift of DPPC:DMPG isotherms was obtained for 0.1 M salt concentration at lower and higher pressures, demonstrating the influence of the negative charge of DMPG molecules and the screening of the electrostatic interaction by the salt concentration. Raman spectroscopy of monolayers demonstrated the presence of cysteine-cysteine bridges in bactenecin loops. The peptide adsorption in DPPC:DMPG monolayers observed by AFM images suggests a self-assembled aggregation process, starting with filament-like networks. Domains similar to carpets were formed and pore structures were obtained after a critical peptide concentration, according to the carpet model.

  17. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    USGS Publications Warehouse

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  18. Dynamic mechanical properties of a polyelectrolyte adsorbed insoluble lipid monolayer at the air-water interface.

    PubMed

    Park, Chang Young; Kim, Mahn Won

    2015-04-23

    Polymers have been used to stabilize interfaces or to tune the mechanical properties of interfaces in various contexts, such as in oil emulsions or biological membranes. Although the structural properties of these systems are relatively well-studied, instrumental limitations continue to make it difficult to understand how the addition of polymer affects the dynamic mechanical properties of thin and soft films. We have solved this challenge by developing a new instrument, an optical-tweezer-based interface shear microrheometer (ISMR). With this technique, we observed that the interface shear modulus, G*, of a dioctadecyldimethylammonium chloride (DODAC) monolayer at the air-water interface significantly increased with adsorption of polystyrenesulfonate (PSS). In addition, the viscous film (DODAC monolayer) became a viscoelastic film with PSS adsorption. At a low salt concentration, 10 mM of NaCl in the subphase, the viscoelasticity of the DODAC/PSS composite was predominantly determined by a particular property of PSS, that is, it behaves as a Gaussian chain in a θ-solvent. At a high salt concentration, 316 mM of NaCl, the thin film behaved as a polymer melt excluding water molecules.

  19. Dipolar interactions between domains in lipid monolayers at the air-water interface.

    PubMed

    Rufeil-Fiori, Elena; Wilke, Natalia; Banchio, Adolfo J

    2016-05-25

    A great variety of biologically relevant monolayers present phase coexistence characterized by domains formed by lipids in an ordered phase state dispersed in a continuous, disordered phase. From the difference in surface densities between these phases, inter-domain dipolar interactions arise. These interactions are relevant for the determination of the spacial distribution of domains as well as their dynamics. In this work, we propose a novel way of estimating the dipolar repulsion using a passive method that involves the analysis of images of the monolayer with phase coexistence. This method is based on the comparison of the pair correlation function obtained from experiments with that obtained from Brownian dynamics simulations of a model system. As an example, we determined the difference in dipolar density of a binary monolayer of DSPC/DMPC at the air-water interface from the analysis of the radial distribution of domains, and the results are compared with those obtained by surface potential determinations. A systematic analysis for the experimentally relevant parameter range is given, which may be used as a working curve for obtaining the dipolar repulsion in different systems.

  20. Mechanistic Insights on the Photosensitized Chemistry of a Fatty Acid at the Air/Water Interface

    PubMed Central

    2016-01-01

    Interfaces are ubiquitous in the environment and many atmospheric key processes, such as gas deposition, aerosol, and cloud formation are, at one stage or another, strongly impacted by physical and chemical processes occurring at interfaces. Here, the photoinduced chemistry of an air/water interface coated with nonanoic acid—a fatty acid surfactant we use as a proxy for chemically complex natural aqueous surface microlayers—was investigated as a source of volatile and semivolatile reactive organic species. The carboxylic acid coating significantly increased the propensity of photosensitizers, chosen to mimic those observed in real environmental waters, to partition to the interface and enhance reactivity there. Photochemical formation of functionalized and unsaturated compounds was systematically observed upon irradiation of these coated surfaces. The role of a coated interface appears to be critical in providing a concentrated medium allowing radical–radical reactions to occur in parallel with molecular oxygen additions. Mechanistic insights are provided from extensive analysis of products observed in both gas and aqueous phases by online switchable reagent ion-time of flight-mass spectrometry and by off-line ultraperformance liquid chromatography coupled to a Q Exactive high resolution mass spectrometer through heated electrospray ionization, respectively. PMID:27611489

  1. Interfacial reactions in titanium-matrix composites

    SciTech Connect

    Yang, J.M.; Jeng, S.M. )

    1989-11-01

    A study of the interfacial reaction characteristics of SiC fiber-reinforced titanium aluminide and disordered titanium alloy composites has determined that the matrix alloy compositions affect the microstructure and the distribution of the reaction products, as well as the growth kinetics of the reaction zones. The interfacial reaction products in the ordered titanium aluminide composite are more complicated than those in the disordered titanium-alloy composite. The activation energy of the interfacial reaction in the ordered titanium aluminide composite is also higher than that in the disordered titanium alloy composite. Designing an optimum interface is necessary to enhance the reliability and service life at elevated temperatures. 16 refs.

  2. Renewal of the air-water interface as a critical system parameter of protein stability: aggregation of the human growth hormone and its prevention by surface-active compounds.

    PubMed

    Wiesbauer, Johanna; Prassl, Ruth; Nidetzky, Bernd

    2013-12-10

    Soluble proteins are often highly unstable under mixing conditions that involve dynamic contacting between the main liquid phase and a gas phase. The recombinant human growth hormone (rhGH) was recently shown to undergo aggregation into micrometer-sized solid particles composed of non-native (mis- or unfolded) protein, once its solutions were stirred or shaken to generate a continuously renewed air-water interface. To gain deepened understanding and improved quantification of the air-water interface effect on rhGH stability, we analyzed the protein's aggregation rate (r(agg)) at controlled specific air-water surface areas (a(G/L)) established by stirring or bubble aeration. We show that in spite of comparable time-averaged values for a(G/L) (≈ 100 m(2)/m(3)), aeration gave a 40-fold higher r(agg) than stirring. The enhanced r(agg) under aeration was ascribed to faster macroscopic regeneration of free a(G/L) during aeration as compared to stirring. We also show that r(agg) was independent of the rhGH concentration in the range 0.67 - 6.7 mg/mL, and that it increased linearly dependent on the available a(G/L). The nonionic surfactant Pluronic F-68, added in 1.6-fold molar excess over rhGH present, resulted in complete suppression of r(agg). Foam formation was not a factor influencing r(agg). Using analysis by circular dichroism spectroscopy and small-angle X-ray scattering, we show that in the presence of Pluronic F-68 under both stirring and aeration, the soluble protein retained its original fold, featuring native-like relative composition of secondary structural elements. We further provide evidence that the efficacy of Pluronic F-68 resulted from direct, probably hydrophobic protein-surfactant interactions that prevented rhGH from becoming attached to the air-water interface. Surface-induced aggregation of rhGH is suggested to involve desorption of non-native protein from the air-water interface as the key limiting step. Proteins or protein aggregates released

  3. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.

    1990-01-01

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.

  4. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, H.K.; Babcock, W.C.; Friensen, D.T.; Smith, K.L.; Johnson, B.M.; Wamser, C.C.

    1990-08-14

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclosed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers. 3 figs.

  5. Recovery of small bioparticles by interfacial partitioning.

    PubMed

    Jauregi, P; Hoeben, M A; van der Lans, R G J M; Kwant, G; van der Wielen, L A M

    2002-05-20

    In this article, a qualitative study of the recovery of small bioparticles by interfacial partitioning in liquid-liquid biphasic systems is presented. A range of crystallised biomolecules with varying polarities have been chosen such as glycine, phenylglycine and ampicillin. Liquid-liquid biphasic systems in a range of polarity differences were selected such as an aqueous two-phase system (ATPS), water-butanol and water-hexanol. The results indicate that interfacial partitioning of crystals occurs even when their density exceeds that of the individual liquid phases. Yet, not all crystals partition to the same extent to the interface to form a stable and thick interphase layer. This indicates some degree of selectivity. From the analysis of these results in relation to the physicochemical properties of the crystals and the liquid phases, a hypothetical mechanism for the interfacial partitioning is deduced. Overall these results support the potential of interfacial partitioning as a large scale separation technology.

  6. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives.

    PubMed

    Yin, Zhigang; Wei, Jiajun; Zheng, Qingdong

    2016-08-01

    Organic solar cells (OSCs) have shown great promise as low-cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single-junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single-junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small-molecules, metals and metal salts/complexes, carbon-based materials, organic-inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron-transporting and hole-transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure-property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research.

  7. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives

    PubMed Central

    Yin, Zhigang; Wei, Jiajun

    2016-01-01

    Organic solar cells (OSCs) have shown great promise as low‐cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single‐junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single‐junction and tandem OSCs. Electron or hole transporting materials, including metal oxides, polymers/small‐molecules, metals and metal salts/complexes, carbon‐based materials, organic‐inorganic hybrids/composites, and other emerging materials, are systemically presented as cathode and anode interface layers for high performance OSCs. Meanwhile, incorporating these electron‐transporting and hole‐transporting layer materials as building blocks, a variety of interconnecting layers for conventional or inverted tandem OSCs are comprehensively discussed, along with their functions to bridge the difference between adjacent subcells. By analyzing the structure–property relationships of various interfacial materials, the important design rules for such materials towards high efficiency and stable OSCs are highlighted. Finally, we present a brief summary as well as some perspectives to help researchers understand the current challenges and opportunities in this emerging area of research. PMID:27812480

  8. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-Lun; Onuki, Akira

    1996-01-01

    The study of the interface in a charge-free, nonpolar, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In zero gravity, the interface is unstable at all long wavelengths in the presence of a field applied across it. It is conjectured that this will cause the binary fluid to break up into domains small enough to be outside the instability condition. The resulting pattern formation, and the effects on the critical properties as the domains approach the correlation length are of acute interest. With direct observation, laser light scattering, and interferometry, the phenomena can be probed to gain further understanding of interfacial instabilities and the pattern formation which results, and dimensional crossover in critical systems as the critical fluctuations in a particular direction are suppressed by external forces.

  9. Interfacial Instabilities on a Droplet

    NASA Astrophysics Data System (ADS)

    Jalaal, Maziyar; Mehravaran, Kian

    2013-11-01

    The fragmentation of droplets is an essential stage of several natural and industrial applications such as fuel atomization and rain phenomena. In spite of its relatively long history, the mechanism of fragmentation is not clear yet. This is mainly due to small length and time scales as well as the non-linearity of the process. In the present study, two and three-dimensional numerical simulations have been performed to understand the early stages of the fragmentation of an initially spherical droplet. Simulations are performed for high Reynolds and a range of relatively high Weber numbers (shear breakup). To resolve the small-scale instabilities generated over the droplet, a second-order adaptive finite volume/volume of fluids (FV/VOF) method is employed, where the grid resolution is increased with the curvature of the gas-liquid interface as well as the vorticity magnitude. The study is focused on the onset and growth of interfacial instabilities. The role of Kelvin-Helmholtz instability (in surface wave formation) and Rayleigh-Taylor instability (in azimuthal transverse modulation) are shown and the obtained results are compared with the linear instability theories for zero and non-zero vorticity layers. Moreover, the analogy between the fragmentation of a single drop and a co-axial liquid jet is discussed. The current results can be used for the further development of the current secondary atomization models.

  10. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    PubMed

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  11. Application of a laser Doppler vibrometer for air-water to subsurface signature detection

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun

    2015-05-01

    There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.

  12. Advances in simulating radiance signatures for dynamic air/water interfaces

    NASA Astrophysics Data System (ADS)

    Goodenough, Adam A.; Brown, Scott D.; Gerace, Aaron

    2015-05-01

    The air-water interface poses a number of problems for both collecting and simulating imagery. At the surface, the magnitude of observed radiance can change by multiple orders of magnitude at high spatiotemporal frequency due to glinting effects. In the volume, similarly high frequency focusing of photons by a dynamic wave surface significantly changes the reflected radiance of in-water objects and the scattered return of the volume itself. These phenomena are often manifest as saturated pixels and artifacts in collected imagery (often enhanced by time delays between neighboring pixels or interpolation between adjacent filters) and as noise and greater required computation times in simulated imagery. This paper describes recent advances made to the Digital Image and Remote Sensing Image Generation (DIRSIG) model to address the simulation issues to better facilitate an understanding of a multi/hyper-spectral collection. Glint effects are simulated using a dynamic height field that can be driven by wave frequency models and generates a sea state at arbitrary time scales. The volume scattering problem is handled by coupling the geometry representing the surface (facetization by the height field) with the single scattering contribution at any point in the water. The problem is constrained somewhat by assuming that contributions come from a Snell's window above the scattering point and by assuming a direct source (sun). Diffuse single scattered and multiple scattered energy contributions are handled by Monte Carlo techniques employed previously. The model is compared to existing radiative transfer codes where possible, with the objective of providing a robust movel of time-dependent absolute radiance at many wavelengths.

  13. Air-water exchange of PAHs and OPAHs at a superfund mega-site.

    PubMed

    Tidwell, Lane G; Blair Paulik, L; Anderson, Kim A

    2017-03-31

    Chemical fate is a concern at environmentally contaminated sites, but characterizing that fate can be difficult. Identifying and quantifying the movement of chemicals at the air-water interface are important steps in characterizing chemical fate. Superfund sites are often suspected sources of air pollution due to legacy sediment and water contamination. A quantitative assessment of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAH (OPAHs) diffusive flux in a river system that contains a Superfund Mega-site, and passes through residential, urban and agricultural land, has not been reported before. Here, passive sampling devices (PSDs) were used to measure 60 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAH (OPAHs) in air and water. From these concentrations the magnitude and direction of contaminant flux between these two compartments was calculated. The magnitude of PAH flux was greater at sites near or within the Superfund Mega-site than outside of the Superfund Mega-site. The largest net individual PAH deposition at a single site was naphthalene at a rate of -14,200 (±5780) (ng/m(2))/day. The estimated one-year total flux of phenanthrene was -7.9×10(5) (ng/m(2))/year. Human health risk associated with inhalation of vapor phase PAHs and dermal exposure to PAHs in water were assessed by calculating benzo[a]pyrene equivalent concentrations. Excess lifetime cancer risk estimates show potential increased risk associated with exposure to PAHs at sites within and in close proximity to the Superfund Mega-site. Specifically, estimated excess lifetime cancer risk associated with dermal exposure and inhalation of PAHs was above 1 in 1 million within the Superfund Mega-site. The predominant depositional flux profile observed in this study suggests that the river water in this Superfund site is largely a sink for airborne PAHs, rather than a source.

  14. Single Molecule Lateral Mobility and Membrane Organization in DMPC/Cholesterol Mixtures at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Shaikh, Saame; Stillwell, William; Naumann, Christoph

    2002-03-01

    To better understand the lipid heterogeneity of biological membranes, we have studied the lateral mobility and membrane organization of DMPC and cholesterol (Chol) mixtures at the air-water interface using single molecule fluorescence imaging and epifluorescence microscopy. The single molecule imaging technique was used to track the lateral diffusion of single molecules of TRITC-DPPE or cholesteryl Bodipy. In the absence of Chol, mean square displacement histograms obtained from single molecule tracking of TRITC-DPPE show unobstructed diffusion. Including Chol at low levels of Chol (<10 moldiffusion at intermediate levels ( 30 molof Chol (>40 molmacroscopic phase separations. Data obtained from tracking experiments of cholesteryl-Bodipy also show complementary changes in diffusion. Our results indicate that our techniques provide insight into the micro and macro organization of lipid domains at the air-water interface.

  15. Air-water CO2 outgassing in the Lower Lakes (Alexandrina and Albert, Australia) following a millennium drought.

    PubMed

    Li, Siyue; Bush, Richard T; Ward, Nicholas J; Sullivan, Leigh A; Dong, Fangyong

    2016-01-15

    Lakes are an important source and sink of atmospheric CO2, and thus are a vital component of the global carbon cycle. However, with scarce data on potentially important subtropical and tropical areas for whole continents such as Australia, the magnitude of large-scale lake CO2 emissions is unclear. This study presents spatiotemporal changes of dissolved inorganic carbon and water - to - air interface CO2 flux in the two of Australia's largest connected, yet geomorphically different freshwater lakes (Lake Alexandrina and Lake Albert, South Australia), during drought (2007 to September-2010) and post-drought (October 2010 to 2013). Lake levels in the extreme drought were on average approximately 1m lower than long-term average (0.71 m AHD). Drought was associated with an increase in the concentrations of dissolved inorganic species, organic carbon, nitrogen, Chl-a and major ions, as well as water acidification as a consequence of acid sulfate soil (ASS) exposure, and hence, had profound effects on lake pCO2 concentrations. Lakes Alexandrina and Albert were a source of CO2 to the atmosphere during the drought period, with efflux ranging from 0.3 to 7.0 mmol/m(2)/d. The lake air-water CO2 flux was negative in the post-drought, ranging between -16.4 and 0.9 mmol/m(2)/d. The average annual CO2 emission was estimated at 615.5×10(6) mol CO2/y during the drought period. These calculated emission rates are in the lower range for lakes, despite the potential for drought conditions that shift the lakes from sink to net source for atmospheric CO2. These observations have significant implications in the context of predicted increasing frequency and intensity of drought as a result of climate change. Further information on the spatial and temporal variability in CO2 flux from Australian lakes is urgently warranted to revise the global carbon budget for lakes.

  16. Coalescence of protein-stabilized bubbles undergoing expansion at a simultaneously expanding planar air-water interface.

    PubMed

    Murray, Brent S; Dickinson, Eric; Lau, Cathy Ka; Nelson, Phillip V; Schmidt, Estelle

    2005-05-10

    A novel design of apparatus is described that allows observation of the coalescence stability of bubbles at a planar interface when the planar interface and the bubble surface both expand. Bubbles are introduced beneath the planar air-water interface contained within a square barrier made of perfluorocarbon rubber. The bubbles are then expanded by reducing the air pressure above the interface, while at the same time the rubber barrier is mechanically expanded, maintaining its square shape, to give the same rate and extent of expansion of the planar interface. The area can typically be increased by a factor of three over time scales as short as 0.2 s. This arrangement has been designed to mimic the behavior of aerated products when they exit from a pressurized aeration unit or product dispenser. Compared to results obtained via a previous technique, where it was only possible to expand the bubbles but not the planar interface, the bubbles are less stable. The apparatus has been used to compare the stabilizing effects of ovalbumin, beta-lactoglobulin, whey protein isolate, and sodium caseinate, in a model aqueous food system thickened with 40% invert sugar. Stability improved with increasing concentration of all the proteins and with a decrease in expansion rate, but considerable instability remained even at protein concentrations as high as 4 to 6 wt % and also at very low expansion rates, though the systems were stable in the absence of expansion. However, the stability was greatly improved by the replacement of the above proteins by the hydrocolloids gelatine or polypropylene glycol alginate. Detailed analysis revealed that the coalescence of individual bubbles in clusters of bubbles were not strongly correlated in distance or time, but larger bubbles and bubbles toward the outside of a cluster were found to be, on average, less stable than smaller bubbles and bubbles located more toward the interior of a cluster. The different degrees of stability are discussed

  17. Aqueous solubility, Henry's law constants and air/water partition coefficients of n-octane and two halogenated octanes.

    PubMed

    Sarraute, S; Delepine, H; Costa Gomes, M F; Majer, V

    2004-12-01

    New data on the aqueous solubility of n-octane, 1-chlorooctane and 1-bromooctane are reported between 1 degree C and 45 degrees C. Henry's law constants, K(H), and air/water partition coefficients, K(AW), were calculated by associating the measured solubility values to vapor pressures taken from literature. The mole fraction aqueous solubility varies between (1.13-1.60)x10(-7) for n-octane with a minimum at approximately 23 degrees C, (3.99-5.07)x10(-7) for 1-chlorooctane increasing monotonically with temperature and (1.60-3.44)x10(-7) for 1-bromooctane with a minimum near 18 degrees C. The calculated air-water partition coefficients increase with temperature and are two orders of magnitude lower for the halogenated derivatives compared to octane. The precision of the results, taken as the average absolute deviations of the aqueous solubility, the Henry's law constants, or the air/water partition coefficients, from appropriate smoothing equations as a function of temperature is of 3% for n-octane and of 2% and 4% for 1-chlorooctane and 1-bromooctane, respectively. A new apparatus based on the dynamic saturation column method was used for the solubility measurements. Test measurements with n-octane indicated the capability of measuring solubilities between 10(-6) and 10(-10) in mole fraction, with an estimated accuracy better than +/-10%. A thorough thermodynamic analysis of converting measured data to air/water partition coefficients is presented.

  18. Flow through an Array of Superhydrophopic Pillars: The Role of the Air-Water Interface Shape on Drag Reduction

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyun; Rothstein, Jonathan

    2016-11-01

    In this study, measurements of the pressure drop and the velocity fields associated with the flow of water through a regular array of superhydrophobic pillars were systematically performed to investigate the role of the air-water interface shape on drag reduction. A microfluidic channel was created with circular and superhydrophobic apple-core-shaped pillars bridging across the entire channel. The apple-core-shaped pillars were designed to trap an air pocket along the side of the pillars. The shape of the interface was systematically modified from concave to convex by changing the static pressure within the microchannel. For superhydrophobic pillars having a circular cross section, D /D0 = 1.0, a drag reduction of 7% and a slip velocity of 20% the average channel velocity along the air-water interface were measured. At large static pressures, the interface was driven into the pillars resulting in a decrease in the effective size of the pillars, an increase in the effective spacing between pillars and a pressure drop reduction of as much as 18% when the interface was compressed to D /D0 = 0.8. At low static pressures, the pressure drop increased significantly even as the slip velocity increased as the expanding air-water interface constricted flow through the array of pillars. This research was supported by the National Science Foundation under Grant CBET-1334962.

  19. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  20. Vibrational Spectra and Adsorption of Trisiloxane Superspreading Surfactant at Air/Water Interface Studied with Sum Frequency Generation Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Wu, Dan; Wen, Jia; Liu, Shi-lin; Wang, Hong-fei

    2008-08-01

    The C-H stretch vibrational spectra of the trisiloxane superspreading surfactant Silwet L-77 ((CH3)3Si-O-Si(CH3)(C3H6)(OCH2CH2)7-8OCH3)-O-Si(CH3)3) at the air/water interface are measured with the surface Sum Frequency Generation Vibrational Spectroscopy (SFG-VS). The spectra are dominated with the features from the -Si-CH3 groups around 2905 cm-1 (symmetric stretch or SS mode) and 2957 cm-1 (mostly the asymmetric stretch or AS mode), and with the weak but apparent contribution from the -O-CH2- groups around 2880 cm-1 (symmetric stretch or SS mode). Comparison of the polarization dependent SFG spectra below and above the critical aggregate or micelle concentration (CAC) indicates that the molecular orientation of the C-H related molecular groups remained unchanged at different surface densities of the Silwet L-77 surfactant. The SFG-VS adsorption isotherm suggested that there was no sign of Silwet L-77 bilayer structure formation at the air/water interface. The Gibbs adsorption free energy of the Silwet surfactant to the air/water interface is -42.2±0.8kcal/mol, indicating the unusually strong adsorption ability of the Silwet L-77 superspreading surfactant.

  1. Synthesis at the air-water interface of a two-dimensional semi-interpenetrating network based on poly(dimethylsiloxane) and cellulose acetate butyrate.

    PubMed

    El Haitami, Alae; Backus, Ellen H G; Cantin, Sophie

    2014-10-14

    The UV-induced cross-linking of methacryloxypropyl-terminated poly(dimethylsiloxane) oligomers was studied at the air-water interface either in pure PDMS Langmuir monolayers or in mixed films containing cellulose acetate butyrate. Surface pressure-area isotherms, area measurement at constant surface pressure, Brewster angle microscopy observations, and infrared-visible sum frequency generation (SFG) spectroscopy were combined to follow the evolution of the monolayers upon in situ UV photoirradiation. For both systems, the mean area per repeat unit decreases with irradiation time reflecting the monolayer contraction. In addition, SFG measurements evidence the conversion of the methacrylate groups into unconjugated poly(methacrylate) ones. These results demonstrate PDMS cross-linking, leading to the formation of either a single PDMS network or a PDMS network entrapped in a CAB matrix. The network formation is accompanied by morphology changes as shown by atomic force microscopy on the transferred monolayer. Indeed, filamentous structures appear on both pure and mixed preirradiated monolayers.

  2. Interfacial phase-change memory.

    PubMed

    Simpson, R E; Fons, P; Kolobov, A V; Fukaya, T; Krbal, M; Yagi, T; Tominaga, J

    2011-07-03

    Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating or some other excitation process. For example, switching the composite Ge(2)Sb(2)Te(5) (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude, and also increases reflectivity across the visible spectrum. Moreover, phase-change memory based on GST is scalable, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process. In particular, aligning the c-axis of a hexagonal Sb(2)Te(3) layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb(2)Te(3) interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds.

  3. Surface and interfacial effect of filler particle on electrical properties of polyvinyledene fluoride/nickel composites

    NASA Astrophysics Data System (ADS)

    Panda, Maheswar; Srinivas, V.; Thakur, A. K.

    2008-12-01

    The effect of processing conditions and filler particle size/surface area on the dielectric behavior of polyvinyledene fluoride/nickel composites is reported. Large enhancement of low frequency dielectric constant with reduction in metal particle size in a metal-polymer composite is observed. Enhancement in the dielectric constant has been attributed to increase in interfacial area and consequent interfacial polarization with reduction in metal particle size. The increased interparticle contacts from the nearest neighbors result in enhanced tunneling probability leading to lowering of percolation threshold for nanosized nickel/polyvinyledene fluoride composites as compared to micron nickel/polyvinyledene fluoride composites.

  4. Interfacial and near interfacial crack growth phenomena in metal bonded alumina

    SciTech Connect

    Kruzic, Jamie Joseph

    2001-01-01

    Metal/ceramic interfaces can be found in many engineering applications including microelectronic packaging, multi-layered films, coatings, joints, and composite materials. In order to design reliable engineering systems that contain metal/ceramic interfaces, a comprehensive understanding of interfacial and near interfacial failure mechanisms is necessary.

  5. Micrometeorological Measurement of Fetch- and Atmospheric Stability-Dependent Air- Water Exchange of Legacy Semivolatile Organic Contaminants in Lake Superior

    NASA Astrophysics Data System (ADS)

    Perlinger, J. A.; Tobias, D. E.; Rowe, M. D.

    2008-12-01

    Coastal waters including the Laurentian Great Lakes are particularly susceptible to local, regional, and long- range transport and deposition of semivolatile organic contaminants (SOCs) as gases and/or associated with particles. Recently-marketed SOCs can be expected to undergo net deposition in surface waters, whereas legacy SOCs such as polychlorinated biphenyls (PCBs) are likely to be at equilibrium with respect to air-water exchange, or, if atmospheric concentrations decrease through, e.g., policy implementation, to undergo net gas emission. SOC air-water exchange flux is usually estimated using the two-film model. This model describes molecular diffusion through the air and water films adjacent to the air-water interface. Air-water exchange flux is estimated as the product of SOC fugacity, typically based on on-shore gaseous concentration measurements, and a transfer coefficient, the latter which is estimated from SOC properties and environmental conditions. The transfer coefficient formulation commonly applied neglects resistance to exchange in the internal boundary layer under atmospherically stable conditions, and the use of on-shore gaseous concentration neglects fetch-dependent equilibration, both of which will tend to cause overestimation of flux magnitude. Thus, for legacy chemicals or in any highly contaminated surface water, the rate at which the water is cleansed through gas emission tends to be over-predicted using this approach. Micrometeorological measurement of air-water exchange rates of legacy SOCs was carried out on ships during four transect experiments during off-shore flow in Lake Superior using novel multicapillary collection devices and thermal extraction technology to measure parts-per-quadrillion SOC levels. Employing sensible heat in the modified Bowen ratio, fluxes at three over-water stations along the transects were measured, along with up-wind, onshore gaseous concentration and aqueous concentration. The atmosphere was unstable for

  6. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface

    NASA Astrophysics Data System (ADS)

    Zhou, Yanguang; Zhang, Xiaoliang; Hu, Ming

    2016-01-01

    Pursuing extremely low interfacial thermal resistance has long been the task of many researchers in the area of nano-scale heat transfer, in particular pertaining to improve heat dissipation performance in electronic cooling. While it is well known and documented that confining a macroscopic third layer between two dissimilar materials usually increases the overall interfacial thermal resistance, no research has realized the fundamental decrease in resistance so far. By performing nonequilibrium molecular dynamics simulations, we report that the overall interfacial thermal resistance can be reduced by 6 fold by confining mass graded materials with thickness of the order of nanometers. As comparison we also studied the thermal transport across the perfectly abrupt interface and the widely used alloyed (rough) interface, which shows an opposing and significantly large increase in the overall thermal resistance. With the help of frequency dependent interfacial thermal conductance and wave packet dynamics simulation, different mechanisms governing the heat transfer across these three types of interfaces are identified. It is found that for the rough interface there are two different regimes of interfacial heat transfer, which originates from the competition between phonon scattering and the thickness of the interface. The mechanism of dramatically improved interfacial heat transfer across the nano-confined mass graded interface resides in the minor phonon reflection when the phonons first reach the mass graded area and the rare occurrence of phonon scattering in the subsequent interior region. The phonons are found to be gradually truncated by the geometric interfaces and can travel through the mass graded layer with a high transmission coefficient, benefited from the small mass mismatch between two neighboring layers in the interfacial region. Our findings provide deep insight into the phonon transport across nano-confined mass graded layers and also offer significant

  7. Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface.

    PubMed

    Hua, Wei; Verreault, Dominique; Allen, Heather C

    2015-11-04

    Sulfuric acid (H2SO4), bisulfate (HSO4(-)), and sulfate (SO4(2-)) are among the most abundant species in tropospheric and stratospheric aerosols due to high levels of atmospheric SO2 emitted from biomass burning and volcanic eruptions. The air/aqueous interfaces of sulfuric acid and bisulfate solutions play key roles in heterogeneous reactions, acid rain, radiative balance, and polar stratospheric cloud nucleation. Molecular-level knowledge about the interfacial distribution of these inorganic species and their perturbation of water organization facilitates a better understanding of the reactivity and growth of atmospheric aerosols and of the aerosol surface charge, thus shedding light on topics of air pollution, climate change, and thundercloud electrification. Here, the air/aqueous interface of NaHSO4, NH4HSO4, and Mg(HSO4)2 salt solutions as well as H2SO4 and HCl acid solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne-detected (HD) VSFG spectroscopy. VSFG spectra of all acid solutions show higher SFG response in the OH-bonded region relative to neat water, with 1.1 M H2SO4 being more enhanced than 1.1 M HCl. In addition, VSFG spectra of bisulfate salt solutions highly resemble that of the dilute H2SO4 solution (0.26 M) at a comparable pH. HD-VSFG (Im χ((2))) spectra of acid and bisulfate salt solutions further reveal that hydrogen-bonded water molecules are oriented preferentially toward the bulk liquid phase. General agreement between Im χ((2)) spectra of 1.1 M H2SO4 and 1.1 M HCl acid solutions indicate that HSO4(-) ions have a similar surface preference as that of chloride (Cl(-)) ions. By comparing the direction and magnitude of the electric fields arising from the interfacial ion distributions and the concentration of each species, the most reasonable relative surface preference that can be deduced from a simplified model follows the order H3O(+) > HSO4(-) > Na(+), NH4(+), Mg(2+) > SO4(2-). Interestingly

  8. The initial generation of waves in an accelerated coupled air-water flow.

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Ierley, Glenn; Melville, Ken

    2001-11-01

    The initial generation of surface waves over the ocean has a long been a problem of great interest. With the globally averaged wind speed in the range 6-7 m/s, and 40 % of the time below 6 m/s, much of the air-sea interface is in a low wind speed regime, and therefore the initial generation of waves under these conditions is of special interest. There is also a transition in the surface heat flux and surface cool skin at these low wind speeds when gravity capillary waves are first generated. We present the results of laboratory and field experiments, and numerical studies, on the stability of a wind-driven water surface to the initial generation of surface waves. Using modern quantitative flow visualization techniques, we show that the classical wave generation problem, where the wind is linearly accelerated over a still water surface, leads to the generation of a two-dimensional wave field. At this stage, the flow in the water phase has been observed to be sub-critical. These results are compared with numerical solutions of the stability of the coupled air-water problem obtained by solving both the linear and non-linear Orr-Sommerfeld coupled equations. The effects of non-linearity will be discussed. In addition, we show that the wave generation problem is accompanied by the turbulent transition of the water surface boundary layer through the formation and dislocation of Langmuir circulations. Field data suggest that this transition, rather than microscale breaking waves, first disrupt the cool skin. We show that this turbulent transition also marks the change from a two- to three-dimensional surface wave field as the coherent sub-surface velocities modulate the waves. This rapid evolution from 2D to 3D surface wave patterns in the early stages of the wave generation implies that 2D models for wind-wave generation might only apply in the very early stages of wave growth. This will be discussed in light of linear and non-linear wave generation models.

  9. Determination of interfacial tension of binary mixtures from perturbative approaches

    NASA Astrophysics Data System (ADS)

    Martínez-Ruiz, F. J.; Blas, F. J.

    2015-05-01

    We determine the interfacial properties of mixtures of spherical Lennard-Jones molecules from direct simulation of the vapour-liquid interface. We consider mixtures with same molecular size but different dispersive energy parameter values. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janeček, presented recently by MacDowell and Blas and Martínez-Ruiz et al., to deal with the interaction energy and microscopic components of the pressure tensor. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of mixtures of Lennard-Jones molecules with a cut-off distance rc = 3σ in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The vapour-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, and interfacial thickness as functions of pressure, at a given temperature. According to our results, the main effect of increasing the ratio between the dispersive energy parameters of the mixture, ε22/ε11, is to sharpen the vapour-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative maximum in the density profiles of the less volatile component at the interface. This maximum is related with adsorption or accumulation of these molecules at the interface, a direct consequence of stronger attractive interactions between these molecules in

  10. On the hierarchy of interfacial dislocation structure

    NASA Astrophysics Data System (ADS)

    Balluffi, R. W.; Olson, G. B.

    1985-04-01

    Many different types of dislocations have been defined in dislocation models for grain boundaries and interphase boundaries. It is emphasized that there is no unique dislocation model for a boundary, and that the formal dislocation content depends upon the choice of the lattice correspondence relating the adjoining lattices. However, it is concluded that no problems of real physical significance arise from this lack of uniqueness. “Best≓, or most useful, descriptions often exist, and these are discussed. A hierarchy consisting of four different types of interfacial dislocations may be distinguished, which is useful in describing the dislocation content of interfaces. These entities are termed: (1) primary interfacial dislocations; (2) secondary interfacial dislocations; (3) coherency interfacial dislocations; and (4) translational interfacial dislocations. While there may be a lack of agreement on terminology in the literature, it is believed that these dislocation types are distinguishable and play unique roles in useful dislocation models for interfaces. Detailed descriptions of these dislocation types are given, and actual examples in real interfaces are presented. It is concluded that dislocation descriptions of interface structures become of purely formal significance in the limit of fully incoherent interfaces since the cores are then delocalized. The utility of various dislocation descriptions therefore depends on the degree to which various types of local coherency exist.

  11. Molecular architecture in cyanine dye aggregates at the air-water interface. Effect of monolayer composition and organization on fluorescent behavior

    SciTech Connect

    Vaidyanathan, S.; Patterson, L.K.; Moebius, D.; Gruniger, H.R.

    1985-01-31

    The fluorescence behavior of an amphiphatic oxacyanine dye and its thiacyanine analogue has been investigated in spread monolayers at the air-water interface. J-aggregate formation as a function of area/(dye molecule) was monitored by spectral changes in pure dye monolayers and in 1:1 mixtures of dye with various fatty acid coaggregates. Simultaneously, the thermodynamic behavior of these systems was characterized by the associated surface pressure-area isotherms. In all cases, J-aggregate formation may be related to a phase transition in the isotherm. The intensity of aggregate fluorescence is found to be inversely related to the work, ..delta..W, of compression of the monolayer through the transition. Inclusion of the fatty acid coaggregate was shown to facilitate J-aggregate formation in the order stearic > elaidic > oleic. Both fluorescence and thermodynamic data indicate more extensive aggregate formation in the thiacyanine systems. Aside from the paramount role played by the chromophore-chromophore interactions in determining J-aggregate phenomena, this study suggests important contributions from dispersion forces involving the long hydrocarbon moieties. 13 refs., 10 figs.

  12. Interfacial Properties of a Hydrophobic Dye in the Tetrachloroethylene-Water-Glass Systems

    SciTech Connect

    Tuck, D.M.

    1999-02-23

    condition at the highest dye concentration. The contact angle, measured through the aqueous phase, changed from 58 degrees for undyed PCE to 93 degrees at a dye concentration of 5.08 g/L. Complete reversal of the wettability is likely given the short equilibration time used in this study (approximately five minutes) together with literature indications that hundreds to thousands of hours may be required to reach equilibrium during contact angle measurements. Observations suggesting changing wetting relationships were also noted between PCE, water, and the platinum-iridium surface used in the standard du No/374y ring method for measuring interfacial tension.Observations of the dyed-PCE-water interface behavior during du No/374y ring interfacial tension measurements were similar to observations noted previously during measurements of the interfacial tension between the Savannah River Site (SRS) M-Area Settling Basin DNAPL (M-Area DNAPL) and water. This observation suggests that the M-Area DNAPL may contain surface active components. If this proves to be the case, it would have significant implications for how the M-Area DNAPL is distributed and moves in the SRS subsurface.

  13. Magneto-ionic control of interfacial magnetism.

    PubMed

    Bauer, Uwe; Yao, Lide; Tan, Aik Jun; Agrawal, Parnika; Emori, Satoru; Tuller, Harry L; van Dijken, Sebastiaan; Beach, Geoffrey S D

    2015-02-01

    In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O(2-) migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm(-2) at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.

  14. Interfacial Shear Rheology of Coffee Samples

    NASA Astrophysics Data System (ADS)

    Läuger, Jörg; Heyer, Patrick

    2008-07-01

    Both oscillatory and rotational measurements on the film formation process and on interfacial rheological properties of the final film of coffee samples with different concentrations are presented. As higher the concentration as faster the film formation process is, whereas the concentration does not have a large effect on the visco-elastic properties of the final films. Two geometries, a biconical geometry and a Du Noüy ring have been employed. The presented results show that interfacial shear rheology allows detailed investigations on coffee films. Although with a Du Noüy ring it is possible to measure the qualitative behavior and relative differences only the biconical geometry is sensitive enough to test weak films and to reveal real absolute values for the interfacial shear rheological quantities.

  15. Magneto-ionic control of interfacial magnetism

    NASA Astrophysics Data System (ADS)

    Bauer, Uwe; Yao, Lide; Tan, Aik Jun; Agrawal, Parnika; Emori, Satoru; Tuller, Harry L.; van Dijken, Sebastiaan; Beach, Geoffrey S. D.

    2015-02-01

    In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O2- migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm-2 at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.

  16. Investigation of oil recovery improvement by coupling an interfacial tension agent and a mobility control agent in light oil reservoirs. Annual report, October 1992--September 1993

    SciTech Connect

    Pitts, M.J.

    1994-06-01

    Investigation of Oil Recovery Improvement by Coupling and Interfacial Tension Agent and a Mobility Control Agent in Light Oil Reservoirs will study two major areas concerning co-injecting an interfacial tension reduction agent(s) and a mobility control agent. The first area defines the interactions of alkaline agent, surfactants, and polymers on a fluid-fluid and fluid-rock basis. The second area concerns the economic improvement of the combined technology. This report examines the interactions of different alkaline agents, surfactants, and polymer combinations on a fluid-fluid basis. Alkali and surfactant combine to reduce the interfacial tension between a low acid number, 42 API gravity crude oil and the aqueous solution to values lower than either agent alone. Surfactant structure can vary from linear chain sulfonates to alkyl aryl sulfonates to produce low interfacial tension values when combined with alkali. However as a class, the alkyl aryl sulfonates were the most effective surfactants. Surfactant olefinic character appears to be critical in developing low interfacial tensions. For the 42 API gravity crude oil, surfactants with molecular weights ranging from 370 to 450 amu are more effective in lowering interfacial tension. Ultra low interfacial tensions were achieved with all of the alkaline agents evaluated when combined with appropriate surfactants. Different interfacial tension reduction characteristics with the various alkali types indicates alkali interacts synergistically with the surfactants to develop interfacial tension reduction. The solution pH is not a determining factor in lowering interfacial tension. Surfactant is the dominant agent for interfacial tension reduction.

  17. Mephisto: Interfacial Destabilization in Metal Alloys

    NASA Technical Reports Server (NTRS)

    Favier, J. J.; Malmejac, Y.

    1985-01-01

    The destabilizing mechanisms at a solidification interface were studied to obtain information on the kinetics and morphologies in the transient and steady state, and to separate the influences of liquid phase instabilities from interfacial instabilities. A differential seebeck voltage measurements technique was developed to provide a continuous record of the solid-liquid interface temperature as the solidification rate is varied to determine the kinetic coefficients. Signal processing and noise suppression techniques allow nonovolt precision which corresponds to mK accuracy for the interfacial temperature.

  18. Ecosystem Metabolism and Air-Water Fluxes of Greenhouse Gases in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; Venkiteswaran, J.; St. Louis, V. L.; Emmerton, C.; Schiff, S. L.

    2012-12-01

    Freshwater lakes and wetlands can be very productive systems on the Arctic landscape compared to terrestrial tundra ecosystems and provide valuable resources to many organisms, including waterfowl, fish and humans. Rates of ecosystem productivity dictate how much energy flows through food webs, impacting the abundance of higher-level organisms (e.g., fish), as well as the net carbon balance, which determines whether a particular ecosystem is a source or sink of carbon. Climate change is predicted to result in warmer temperatures, increased precipitation and permafrost melting in the Arctic and is already altering northern ecosystems at unprecedented rates; however, it is not known how freshwater systems are responding to these changes. To predict how freshwater systems will respond to complex environmental changes, it is necessary to understand the key processes, such as primary production and ecosystem respiration, that are driving these systems. We sampled wetland ponds (n=8) and lakes (n=2) on northern Ellesmere Island (81° N, Nunavut, Canada) during the open water season for a suite of biogeochemical parameters, including concentrations of dissolved gases (O2, CO2, CH4, N2O) as well as stable-isotope ratios of dissolved inorganic carbon (δ13C-DIC), dissolved oxygen (δ18O-DO), and water (δ18O-H2O). We will present rates of primary production and ecosystem respiration, modeled from the concentration and stable isotope ratios of DIC and DO, as well as air-water gas exchange of greenhouse gases in these high Arctic ponds and lakes. Preliminary results demonstrate that ecosystem metabolism in these ponds was high enough to result in significant deviations in the isotope ratios of DIC and DO from atmospheric equilibrium conditions. In other words ecosystem rates of primary production and respiration were faster than gas exchange even in these small, shallow, well-mixed ponds. Furthermore, primary production was elevated enough at all sites except Lake Hazen, a

  19. Phase transitions in films of lung surfactant at the air-water interface.

    PubMed Central

    Nag, K; Perez-Gil, J; Ruano, M L; Worthman, L A; Stewart, J; Casals, C; Keough, K M

    1998-01-01

    45 mN/m. It also induced formation of large amounts of novel, nearly circular domains containing probe above pi of 50 mN/m, these domains being different in appearance than any seen at lower pressures with calcium or higher pressures in the absence of calcium. Surfactant protein-A (SP-A) adsorbed from the subphase onto solvent-spread LSE films, and aggregated condensed domains in presence of calcium. This study indicates that spread or adsorbed lung surfactant films can undergo expanded to condensed, and possibly other, phase transitions at the air-water interface as lateral packing density increases. These phase transitions are affected by divalent cations and SP-A in the subphase, and possibly by loss of material from the surface upon cyclic compression and expansion. PMID:9635752

  20. Conversion of Iodide to Hypoiodous Acid and Molecular Iodine at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Pillar, E. A.; Guzman, M. I.

    2013-12-01

    Sea spray aerosols continuously transfer a significant amount of halides to the marine boundary layer, where they play a major role in the depletion of tropospheric ozone. The reactivity of iodide is of special interest in sea spray aerosols, where this species is enriched relative to chloride and bromide in surface seawater. This work presents laboratory experiments that provide mechanistic information to understand the reactivity of halides in atmospheric aerosols. Pneumatically assisted electrospray is used to aerosolize solutions of sodium iodide (0.01-100 μM), which are rapidly (~3 μs) oxidized by ozone at 25 °C. Reaction products include HIO, IO2-, IO3-, I2, HI2O-, and I3-, all identified by mass spectrometry. The distribution of products varies along two different reaction pathways, one favoring the production of I2 and HIO for typical tropospheric ozone levels (~50 ppbv), and another one directed to the production of IO3- at higher oxidizer concentrations. The formation of products increases exponentially with rising concentrations of initial sodium iodide, [NaI]0. The process is determined to be pH independent for the pH range 6-8 representative of surface waters. The substitution of aqueous solutions by organic solvents, such as methanol or acetonitrile, causes a decrease in the surface tension and lifetime of the droplets, leading to larger I2 production. The presence of surface active organic compounds, which alter the structure of the interfacial region, promote the pathway of I2 formation over IO3-. In conclusion, this presentation will show how the oxidation of iodide in aqueous microdroplets can release reactive gas-phase species, such as I2 and HIO, capable to affect tropospheric ozone globally. Normalized intensity of products observed during the ozonolysis of iodide solutions at 130 ppbv ozone. Cone voltage = 70 V, needle voltage = 2.5 kV.

  1. pCO2 distributions and air-water CO2 fluxes in the Columbia River estuary

    NASA Astrophysics Data System (ADS)

    Evans, Wiley; Hales, Burke; Strutton, Peter G.

    2013-01-01

    Sources of time and space variability in the distributions of surface water carbon dioxide partial pressure (pCO2) and air-water CO2 flux were quantified in the Columbia River estuary (CRE) during five cruises in spring, summer and autumn 2007/08. The CRE is an upwelling margin river-dominated mesotidal system that is an estuary class not represented in global flux compilations. Data from the CRE show instances of pCO2 under and oversaturation with respect to the atmosphere during every season in association with tidal, wind, biological and storm-driven sources of variability. On average the CRE is a sink for atmospheric CO2 during spring and a source during summer and autumn, with large positive air-water CO2 fluxes during the snowmelt freshet coinciding with the functional transition in the estuary. It is hypothesized here that interannual variability in size of the snowmelt freshet largely influences the extent of springtime CO2 uptake in the CRE, and subsequently the magnitude of net annual CO2 emission from the estuary. Data collected during an autumn storm show that large fluxes can drop quickly, even in the presence of high gas transfer velocities, because of rapid CO2 exchange with the atmosphere in this weakly buffered system. Combining seasonal observations of CO2 exchange with an assumption of winter conditions, we estimate that the net annual emission from the CRE is approximately 1 mol C m-2 yr-1. The air-water CO2 fluxes reported here are the first from an upwelling margin river-dominated mesotidal estuary, and the estimate of net annual exchange is substantially lower than those from other tidal and/or large river systems represented in global flux compilations.

  2. Numerical Modeling of Flow Dynamics in The Aluminum Smelting Process: Comparison Between Air-Water and CO2-Cryolite Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Zhibin; Feng, Yuqing; Schwarz, M. Philip; Witt, Peter J.; Wang, Zhaowen; Cooksey, Mark

    2016-12-01

    Air-water models have been widely applied as substitutes for CO2-cryolite systems in the study of the complex bubble dynamics and bubble-driven flow that occurs in the molten electrolyte phase in the aluminum electrolytic process, but the detailed difference between the two systems has not been studied. This paper makes a numerical comparison between the bubble dynamics for the two systems. Simulations of both single bubble and continuous bubbling were conducted using a three-dimensional computational fluid dynamics (3D CFD) modeling approach with a volume of fluid (VOF) method to capture the phase interfaces. In the single bubble simulations, it was found that bubbles sliding under an anode in a CO2-cryolite system have a smaller bubble thickness and a higher sliding velocity than those in the air-water system for bubbles of the same volume. Dimensionless analysis and numerical simulation show that contact angle is the dominant factor producing these differences; the effects of kinematic viscosity, surface tension, and density are very small. In the continuous bubbling simulations, the continuous stream of air bubbles detaches from the anode sidewall after a period of climbing, just as it does in the single bubble simulation, but bubbles have less tendency to migrate away from the wall. Quasi-stable state flow characteristics, i.e., time-averaged bath flow pattern, turbulence kinetic energy, turbulence dissipation rate, and gas volume fraction, show a remarkable agreement between the two systems in terms of distribution and magnitude. From the current numerical comparisons, it is believed that the air-water model is a close substitutive model for studying bubble-driven bath flow in aluminum smelting processes. However, because of the difference in bubble morphologies between the two systems, and also the reactive generation and growth of bubbles in the real system, there will likely be some differences in bubble coverage of the anode in the anode-cathode gap.

  3. Towards Organized Hybrid Nanomaterials at the Air/Water Interface Based on Liquid-Crystal/ZnO Nanocrystals.

    PubMed

    Paczesny, Jan; Wolska-Pietkiewicz, Małgorzata; Binkiewicz, Ilona; Wróbel, Zbigniew; Wadowska, Monika; Matuła, Kinga; Dzięcielewski, Igor; Pociecha, Damian; Smalc-Koziorowska, Julita; Lewiński, Janusz; Hołyst, Robert

    2015-11-16

    The ability to self-assemble nanosized ligand-stabilized metal oxide or semiconductor materials offers an intriguing route to engineer nanomaterials with new tailored properties from the disparate components. We describe a novel one-pot two-step organometallic approach to prepare ZnO nanocrystals (NCs) coated with deprotonated 4-(dodecyloxy)benzoic acid (i.e., an X-type liquid-crystalline ligand) as a model LC system (termed ZnO-LC1 NCs). Langmuir and Langmuir-Blodgett films of the resulting hybrids are investigated. The observed behavior of the ZnO NCs at the air/water interface is rationalized by invoking a ZnO-interdigitation process mediated by the anchored liquid-crystalline shell. The ordered superstructures form according to mechanism based on a ZnO-interdigitation process mediated by liquid crystals (termed ZIP-LC). The external and directed force applied upon compression at the air/water interface and the packing of the ligands that stabilize the ZnO cores drives the formation of nanorods of ordered internal structure. To study the process in detail, we follow a nontraditional protocol of thin-film investigation. We collect the films from the air/water interface in powder form (ZnO-LC1 LB), resuspend the powder in organic solvents and utilize otherwise unavailable experimental techniques. The structural and physical properties of the resulting superlattices were studied by using electron microscopy, atomic force microscopy, X-ray studies, dynamic light scattering, thermogravimetric analysis, UV/Vis absorption, and photoluminescence spectroscopy.

  4. Air-water fluxes of N₂O and CH₄ during microalgae (Staurosira sp.) cultivation in an open raceway pond.

    PubMed

    Ferrón, Sara; Ho, David T; Johnson, Zackary I; Huntley, Mark E

    2012-10-02

    The industrial-scale production of biofuels from cultivated microalgae has gained considerable interest in the last several decades. While the climate benefits of microalgae cultivation that result from the capture of atmospheric CO(2) are known, the counteracting effect from the potential emission of other greenhouse gases has not been well quantified. Here, we report the results of a study conducted at an industrial pilot facility in Hawaii to determine the air-water fluxes of N(2)O and CH(4) from open raceway ponds used to grow the marine diatom Staurosira sp. as a feedstock for biofuel. Dissolved O(2), CH(4), and N(2)O concentrations were measured over a 24 h cycle. During this time, four SF(6) tracer release experiments were conducted to quantify gas transfer velocities in the ponds, and these were then used to calculate air-water fluxes. Our results show that pond waters were consistently supersaturated with CH(4) (up to 725%) resulting in an average emission of 19.9 ± 5.6 μmol CH(4) m(-2) d(-1). Upon NO(3)(-) depletion, the pond shifted from being a source to being a sink of N(2)O, with an overall net uptake during the experimental period of 3.4 ± 3.5 μmol N(2)O m(-2) d(-1). The air-water fluxes of N(2)O and CH(4) expressed as CO(2) equivalents of global warming potential were 2 orders of magnitude smaller than the overall CO(2) uptake by the microalgae.

  5. Numerical Modeling of Flow Dynamics in The Aluminum Smelting Process: Comparison Between Air-Water and CO2-Cryolite Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Zhibin; Feng, Yuqing; Schwarz, M. Philip; Witt, Peter J.; Wang, Zhaowen; Cooksey, Mark

    2017-04-01

    Air-water models have been widely applied as substitutes for CO2-cryolite systems in the study of the complex bubble dynamics and bubble-driven flow that occurs in the molten electrolyte phase in the aluminum electrolytic process, but the detailed difference between the two systems has not been studied. This paper makes a numerical comparison between the bubble dynamics for the two systems. Simulations of both single bubble and continuous bubbling were conducted using a three-dimensional computational fluid dynamics (3D CFD) modeling approach with a volume of fluid (VOF) method to capture the phase interfaces. In the single bubble simulations, it was found that bubbles sliding under an anode in a CO2-cryolite system have a smaller bubble thickness and a higher sliding velocity than those in the air-water system for bubbles of the same volume. Dimensionless analysis and numerical simulation show that contact angle is the dominant factor producing these differences; the effects of kinematic viscosity, surface tension, and density are very small. In the continuous bubbling simulations, the continuous stream of air bubbles detaches from the anode sidewall after a period of climbing, just as it does in the single bubble simulation, but bubbles have less tendency to migrate away from the wall. Quasi-stable state flow characteristics, i.e., time-averaged bath flow pattern, turbulence kinetic energy, turbulence dissipation rate, and gas volume fraction, show a remarkable agreement between the two systems in terms of distribution and magnitude. From the current numerical comparisons, it is believed that the air-water model is a close substitutive model for studying bubble-driven bath flow in aluminum smelting processes. However, because of the difference in bubble morphologies between the two systems, and also the reactive generation and growth of bubbles in the real system, there will likely be some differences in bubble coverage of the anode in the anode-cathode gap.

  6. The Constrained Vapor Bubble Experiment - Interfacial Flow Region

    NASA Technical Reports Server (NTRS)

    Kundan, Akshay; Wayner, Peter C., Jr.; Plawsky, Joel L.

    2015-01-01

    Internal heat transfer coefficient of the CVB correlated to the presence of the interfacial flow region. Competition between capillary and Marangoni flow caused Flooding and not a Dry-out region. Interfacial flow region growth is arrested at higher power inputs. 1D heat model confirms the presence of interfacial flow region. 1D heat model confirms the arresting phenomena of interfacial flow region Visual observations are essential to understanding.

  7. Effects of Divalent Cations on Phase Behavior and Structure of a Zwitterionic Phospholipid (DMPC) Mono layer at the Air-Water Interface

    SciTech Connect

    Kewalramani, S.; Hlaing, H.; Ocko, B.M.; Kuzmenko, I.; Fukuto, M.

    2010-01-21

    Effects of divalent cations (Ca{sup 2+}, Mg{sup 2+}, Ni{sup 2+}, and Zn{sup 2+}) on a zwitterionic phospholipid monolayer at the air-water interface are investigated by surface pressure-area isotherms and in situ X-ray scattering. Divalent cations lower the surface pressure for the fluid (LE) to condensed (L{sub 2}) phase transition in a strongly ion-specific manner. Surprisingly, the two-dimensional lattice dimensions and the tilt of the lipids alkyl tails in the L{sub 2} phase show a nearly ion-nonspecific dependence on the excess surface pressure above the transition pressure. An empirical 'universal' relationship was found between the tail tilt and the excess pressure, with the tails in the L{sub 2} phase always displaying a tilt of 29{sup o} at the transition. A practical implication of these results is that, regardless of the divalent cation present, the microscopic details of the lipid tail packing in the L{sub 2} phase can be deduced at any surface pressure once the transition pressure is obtained from isotherms.

  8. Phase behaviour and morphology of binary mixtures of DPPC with stearonitrile, stearic acid, and octadecanol at the air-water interface.

    PubMed

    Romão, Rute I S; Gonçalves da Silva, Amélia M

    2004-08-01

    The behaviour of dipalmitoylphosphatidylcholine (DPPC), mixed with stearonitrile (SN), was investigated at the air-water interface by surface pressure-area (pi-A) measurements and by direct visualisation of monolayers by Brewster angle microscopy (BAM). The pi-A-X diagram of system DPPC/SN was compared with the corresponding diagrams of systems DPPC/stearic acid (SA) and DPPC/octadecanol (OD) at 20 degrees C. Monolayers of the three systems reach the closest packing of alkyl chains in the 0.4-0.6 range of XDPPC. Thermodynamic analysis indicates miscibility in the three binary systems with negative deviations from the ideal behaviour. Morphological features of system DPPC/SN change significantly with XDPPC and temperature in the range 10-30 degrees C. At 10 and 20 degrees C mixed monolayers form condensed states from low pi all over the composition range. At 30 degrees C, the liquid-expanded (LE)--liquid-condensed (LC) phase transition occurs at increasing pi with XDPPC. The shape and size of condensed domains change with XDPPC and pi. Contrarily to the behaviour of pure components, mixed monolayers of DPPC/SN exhibit orientational order in the 0.2-0.6 mol fraction range of DPPC. BAM observation confirmed the partial miscibility indicated by GE data in a limited range of compositions at 30 degrees C.

  9. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    PubMed

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning.

  10. Preparation of high-quality colloidal mask for nanosphere lithography by a combination of air/water interface self-assembly and solvent vapor annealing.

    PubMed

    Yu, Jie; Geng, Chong; Zheng, Lu; Ma, Zhaohui; Tan, Tianya; Wang, Xiaoqing; Yan, Qingfeng; Shen, Dezhong

    2012-08-28

    Nanosphere lithography (NSL) has been regarded as an inexpensive, inherently parallel, high-throughput, materials-general approach to the fabrication of nanoparticle arrays. However, the order of the resulting nanoparticle array is essentially dependent on the quality of the colloidal monolayer mask. Furthermore, the lateral feature size of the nanoparticles created using NSL is coupled with the diameter of the colloidal spheres, which makes it inconvenient for studying the size-dependent properties of nanoparticles. In this work, we demonstrate a facile approach to the fabrication of a large-area, transferrable, high-quality latex colloidal mask for nanosphere lithography. The approach is based on a combination of the air/water interface self-assembly method and the solvent-vapor-annealing technique. It enables the fabrication of colloidal masks with a higher crystalline integrity compared to those produced by other strategies. By manipulating the diameter of the colloidal spheres and precisely tuning the solvent-vapor-annealing process, flexible control of the size, shape, and spacing of the interstice in a colloidal mask can be realized, which may facilitate the broad use of NSL in studying the size-, shape-, and period-dependent optical, magnetic, electronic, and catalytic properties of nanomaterials.

  11. New flange correction formula applied to interfacial resistance measurements of ohmic contacts to GaAs

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo; Hannaman, David J.

    1987-01-01

    A quasi-two-dimensional analytical model is developed to account for vertical and horizontal current flow in and adjacent to a square ohmic contact between a metal and a thin semiconducting strip which is wider than the contact. The model includes side taps to the contact area for voltage probing and relates the 'apparent' interfacial resistivity to the (true) interfacial resistivity, the sheet resistance of the semiconducting layer, the contact size, and the width of the 'flange' around the contact. This relation is checked against numerical simulations. With the help of the model, interfacial resistivities of ohmic contacts to GaAs were extracted and found independent of contact size in the range of 1.5-10 microns.

  12. Exchange bias mediated by interfacial nanoparticles (invited)

    SciTech Connect

    Berkowitz, A. E.; Sinha, S. K.; Fullerton, E. E.; Smith, D. J.

    2015-05-07

    The objective of this study on the iconic exchange-bias bilayer Permalloy/CoO has been to identify those elements of the interfacial microstructure and accompanying magnetic properties that are responsible for the exchange-bias and hysteretic properties of this bilayer. Both epitaxial and polycrystalline samples were examined. X-ray and neutron reflectometry established that there existed an interfacial region, of width ∼1 nm, whose magnetic properties differed from those of Py or CoO. A model was developed for the interfacial microstructure that predicts all the relevant properties of this system; namely; the temperature and Permalloy thickness dependence of the exchange-bias, H{sub EX}, and coercivity, H{sub C}; the much smaller measured values of H{sub EX} from what was nominally expected; the different behavior of H{sub EX} and H{sub C} in epitaxial and polycrystalline bilayers. A surprising result is that the exchange-bias does not involve direct exchange-coupling between Permalloy and CoO, but rather is mediated by CoFe{sub 2}O{sub 4} nanoparticles in the interfacial region.

  13. Interfacial shear rheology of DPPC under physiologically relevant conditions.

    PubMed

    Hermans, Eline; Vermant, Jan

    2014-01-07

    Lipids, and phosphatidylcholines in particular, are major components in cell membranes and in human lung surfactant. Their ability to encapsulate or form stable layers suggests a significant role of the interfacial rheological properties. In the present work we focus on the surface rheological properties of dipalmitoylphosphatidylcholine (DPPC). Literature results are confusing and even contradictory; viscosity values have been reported differ by several orders of magnitude. Moreover, even both purely viscous and gel-like behaviours have been described. Assessing the literature critically, a limited experimental window has been explored correctly, which however does not yet include conditions relevant for the physiological state of DPPC in vivo. A complete temperature and surface pressure analysis of the interfacial shear rheology of DPPC is performed, showing that the monolayer behaves as a viscoelastic liquid with a domain structure. At low frequencies and for a thermally structured monolayer, the interaction of the molecules within the domains can be probed. The low frequency limit of the complex viscosity is measured over a wide range of temperatures and surface pressures. The effects of temperature and surface pressure on the low frequency viscosity can be analysed in terms of the effects of free molecular area. However, at higher frequencies or following a preshear at high shear rates, elasticity becomes important; most probably elasticity due to defects at the edge of the domains in the layer is probed. Preshearing refines the structure and induces more defects. As a result, disagreeing interfacial rheology results in various publications might be due to different pre-treatments of the interface. The obtained dataset and scaling laws enable us to describe the surface viscosity, and its dependence under physiological conditions of DPPC. The implications on functioning of lung surfactants and lung surfactant replacements will be discussed.

  14. Novel Colloidal and Dynamic Interfacial Phenomena in Liquid Crystalline Systems

    DTIC Science & Technology

    2014-09-13

    investigation supported by this grant moved beyond past studies of interfacial and colloidal phenomena involving isotropic liquids to explore and understand a...2010 20-May-2014 Approved for Public Release; Distribution Unlimited Final Report: Novel Colloidal and Dynamic Interfacial Phenomena in Liquid...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 liquid crystals, interfacial phenomena, colloids , amphiphiles

  15. Verification and Validation of Numerical Models for Air/Water Flow on Coastal and Navigation Fluid-Structure Interaction Applications

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M.; Dimakopoulos, A.; DeLataillade, T.

    2015-12-01

    Performance analysis and optimization of coastal and navigation structures is becoming feasible due to recent improvements in numerical methods for multiphase flows and the steady increase in capacity and availability of high performance computing resources. Now that the concept of fully three-dimensional air/water flow modelling for real world engineering analysis is achieving acceptance by the wider engineering community, it is critical to expand careful comparative studies on verification,validation, benchmarking, and uncertainty quantification for the variety of competing numerical methods that are continuing to evolve. Furthermore, uncertainty still remains about the relevance of secondary processes such as surface tension, air compressibility, air entrainment, and solid phase (structure) modelling so that questions about continuum mechanical theory and mathematical analysis of multiphase flow are still required. Two of the most popular and practical numerical approaches for large-scale engineering analysis are the Volume-Of-Fluid (VOF) and Level Set (LS) approaches. In this work we will present a publically available verification and validation test set for air-water-structure interaction problems as well as computational and physical model results including a hybrid VOF-LS method, traditional VOF methods, and Smoothed Particle Hydrodynamics (SPH) results. The test set repository and test problem formats will also be presented in order to facilitate future comparative studies and reproduction of scientific results.

  16. Gas exchange in wetlands with emergent vegetation: The effects of wind and thermal convection at the air-water interface

    NASA Astrophysics Data System (ADS)

    Poindexter, Cristina M.; Variano, Evan A.

    2013-07-01

    Methane, carbon dioxide, and oxygen are exchanged between wetlands and the atmosphere through multiple pathways. One of these pathways, the hydrodynamic transport of dissolved gas through the surface water, is often underestimated in importance. We constructed a model wetland in the laboratory with artificial emergent plants to investigate the mechanisms and magnitude of this transport. We measured gas transfer velocities, which characterize the near-surface stirring driving air-water gas transfer, while varying two stirring processes important to gas exchange in other aquatic environments: wind and thermal convection. To isolate the effects of thermal convection, we identified a semiempirical model for the gas transfer velocity as a function of surface heat loss. The laboratory results indicate that thermal convection will be the dominant mechanism of air-water gas exchange in marshes with emergent vegetation. Thermal convection yielded peak gas transfer velocities of 1 cm h-1. Because of the sheltering of the water surface by emergent vegetation, gas transfer velocities for wind-driven stirring alone are likely to exceed this value only in extreme cases.

  17. Surface Partitioning and Stability of Mixed Films of Fluorinated Alcohols and Acids at the Air- Water Interface

    NASA Astrophysics Data System (ADS)

    Rontu, N. A.; Vaida, V.

    2007-05-01

    The production of fluorinated compounds over the past 50 years has had numerous industrial applications. For example, perfluorinated carboxylic acids are used in the synthesis of polymers and fire retardants, perfluoroalkyl sulfonates act as surface protectors, and fluorotelomer alcohols are incorporated into products such as paints, coatings, polymers, and adhesives. Fluorotelomer alcohols (FTOHs) are linear polyfluorinated alcohols with the formula CF3(CF2)nCH2CH2OH (n=1,3,5,...). They have been suggested as possible precursors for perfluorinated carboxylic acids and detected in the troposphere over several North American sites. Perfluorocarboxylic acids have even been detected in the arctic food chain, human blood, tissues of animals and environmental waters. We report the surface activity of fluorotelomer alcohols and perfluorinated carboxylic acids at the air-water interface by using a Langmuir trough. Isotherms of the pure compounds along with mixed films with other organic carboxylic acids were collected. The main objective of these experiments was to understand their heterogeneous chemistry by characterizing the pure and mixed films, which serves as a representative model for organic films on atmospheric surfaces such as those found on oceans and aqueous aerosols. Film properties and behavior, notably stabilization, evaporation from the subphase, and miscibility in the single-component mixtures as well as in the mixed films will be discussed. An important consequence of FTOHs and perfluorocarboxylic acids being found to partition to the air-water interface is the possibility of their transport and widespread distribution and deposition using atmospheric aerosols.

  18. Collapsed bipolar glycolipids at the air/water interface: effect of the stereochemistry on the stretched/bent conformations.

    PubMed

    Jacquemet, Alicia; Terme, Nolwenn; Benvegnu, Thierry; Vié, Véronique; Lemiègre, Loïc

    2013-12-15

    This article describes a comparative study of several bipolar lipids derived from tetraether structures. The sole structural difference between the main two glycolipids is a unique stereochemical variation on a cyclopentyl ring placed in the middle of the lipids. We discuss the comparative results obtained at the air/water interface on the basis of tensiometry and ellipsometry. Langmuir-Blodgett depositions during lipid film compressions and decompressions were also analyzed by AFM. The lactosylated tetraether (bipolar) lipid structures involved the formation of highly stable multilayers, which are still present at 10 mN m(-1) during decompression. This study suggests also that the stereochemistry of a central cyclopentyl ring dramatically drives the conformation of the corresponding bipolar lipids. Both isomers (trans and cis) adopt a U-shaped (bent) conformation at the air/water interface but the trans cyclopentyl ring induces a much more frustration within this type of conformation. Consequently, this bipolar lipid (trans-tetraether) undergoes a flip of one polar head-group (lactosyl) leading to a stretched conformation during collapse.

  19. Interpreting Vibrational Sum-frequency Spectra of Sulfur Dioxide at the Air/Water Interface: A Comprehensive Molecular Dynamics Study

    SciTech Connect

    Baer, Marcel; Mundy, Christopher J.; Chang, Tsun-Mei; Tao, Fu-Ming; Dang, Liem X.

    2010-06-01

    We investigated the solvation and spectroscopic properties of SO2 at the air/water interface using molecular simulation techniques. Molecular interactions from both Kohn-Sham (KS) density functional theory (DFT) and classical polarizable models were utilized to understand the properties of SO2:(H2O)x complexes in the vicinity of the air/water interface. The KS-DFT was included to allow comparisons with sum-frequency generation spectroscopy through the identification of surface SO2:(H2O)x complexes. Using our simulation results, we were able to develop a much more detailed picture for the surface structure of SO2 that is consistent with the spectroscopic data obtained Richmond and coworkers (J. Am. Chem. Soc. 127, 16806 (2005)). We also found many similarities and differences between to the two interaction potentials, including a noticeable weakness of the classical potential model in reproducing the asymmetric hydrogen bonding of water with SO2 due to its inability to account for SO2 resonance structures. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  20. Polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH (OPAH) air-water exchange during the deepwater horizon oil spill.

    PubMed

    Tidwell, Lane G; Allan, Sarah E; O'Connell, Steven G; Hobbie, Kevin A; Smith, Brian W; Anderson, Kim A

    2015-01-06

    Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m(3) and 0.3 and 27 ng/m(3), respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10,000 ng/m(2)/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m(2)/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology.

  1. Electrochemical Surface Potential due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface

    SciTech Connect

    Baer, Marcel D.; Stern, Abraham C.; Levin, Yan; Tobias, Douglas J.; Mundy, Christopher J.

    2012-06-07

    Herein, we present research that suggests that the underlying physics that drive simple empirical models of anions (e.g. point charge, no polarization) to the air-water interface, with water described by SPC/E, or related partial charge models is different than when both ions and water are modeled with quantum mechanical based interactions. Specifically, we will show that the driving force of ions to the air-water interface for point charge models results from both cavitation and the negative electrochemical surface potential. We will demonstrate that we can fully characterize the role of the free energy due to the electrochemical surface potential computed from simple empirical models and its role in ionic adsorption within the context of dielectric continuum theory (DCT). Our research suggests that a significant part of the electrochemical surface potential in empirical models appears to be an artifact of the failure of point charge models in the vicinity of a broken symmetry. This work was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle.

  2. Recent Advances in Colloidal and Interfacial Phenomena Involving Liquid Crystals

    PubMed Central

    Bai, Yiqun; Abbott, Nicholas L.

    2011-01-01

    This article describes recent advances in several areas of research involving the interfacial ordering of liquid crystals (LCs). The first advance revolves around the ordering of LCs at bio/chemically functionalized surfaces. Whereas the majority of past studies of surface-induced ordering of LCs have involved surfaces of solids that present a limited diversity of chemical functional groups (surfaces at which van der Waals forces dominate surface-induced ordering), recent studies have moved to investigate the ordering of LCs on chemically complex surfaces. For example, surfaces decorated with biomolecules (e.g. oligopeptides and proteins) and transition metal ions have been investigated, leading to an understanding of the roles that metal-ligand coordination interactions, electrical double-layers, acid-base interactions, and hydrogen bonding can have on the interfacial ordering of LCs. The opportunity to create chemically-responsive LCs capable of undergoing ordering transitions in the presence of targeted molecular events (e.g., ligand exchange around a metal center) has emerged from these fundamental studies. A second advance has focused on investigations of the ordering of LCs at interfaces with immiscible isotropic fluids, particularly water. In contrast to prior studies of surface-induced ordering of LCs on solid surfaces, LC- aqueous interfaces are deformable and molecules at these interfaces exhibit high levels of mobility and thus can reorganize in response to changes in interfacial environment. A range of fundamental investigations involving these LC-aqueous interfaces have revealed that (i) the spatial and temporal characteristics of assemblies formed from biomolecular interactions can be reported by surface-driven ordering transitions in the LCs, (ii) the interfacial phase behaviour of molecules and colloids can be coupled to (and manipulated via) the ordering (and nematic elasticity) of LCs, and (iii) confinement of LCs leads to unanticipated size

  3. Interfacial and foaming interactions between casein glycomacropeptide (CMP) and propylene glycol alginate.

    PubMed

    Martinez, María J; Pizones Ruiz-Henestrosa, Víctor M; Carrera Sánchez, Cecilio; Rodríguez Patino, Juan M; Pilosof, Ana M R

    2012-06-15

    Proteins and polysaccharides are widely used in food formulation. While most of the proteins are surface active, only few polysaccharides can adsorb at the air-water interface; this is the case of propylene glycol alginates (PGA). It is known that casein glycomacropeptide (CMP), a bioactive polypeptide derived from κ-casein by the action of chymosin, presents a great foaming capacity but provides unstable foams. So, the objective of this work was to analyze the impact of mixing CMP and a commercial variety of PGA, Kelcoloid O (KO), on the interfacial and foaming properties at pH 7.0. It was determined the surface pressure isotherm, the dynamics of adsorption and the foaming properties for CMP, KO and the mixed system CMP-KO. CMP dominated the surface pressure of CMP-KO mixed system. The presence of KO synergistically improved the viscoelastic properties of surface film. The foaming capacity of CMP was altered by KO. KO foam presented a higher stability than CMP foam and it controlled the stability against drainage and the initial collapse in the mixed foam.

  4. Interfacial binding of divalent cations to calixarene-based Langmuir monolayers

    DOE PAGES

    Tulli, Ludovico G.; Wang, Wenjie; Lindemann, William R.; ...

    2015-02-20

    The interactions of Langmuir monolayers produced through the self-assembly of an amphiphilic p-carboxycalix[4]arene with a series of divalent, fourth-period transition metals, at the air-water interface, were investigated. Changes in the interfacial behavior of 1 in response to the presence of CuCl2, CoCl2, MnCl2, and NiCl2 were studied by means of Langmuir compression isotherms and Brewster angle microscopy (BAM). The measurements revealed that the self-assembly properties of 1 are significantly affected by Cu2+ ions. The interactions of 1-based monolayers with Co2+ and Cu2+ ions were further investigated by means of synchrotron radiation-based X-ray reflectivity (XRR), X-ray near-total-reflection fluorescence (XNTRF), and grazingmore » incidence X-ray diffraction (GIXD). XNTRF and XRR analyses revealed that the monolayer of 1 binds more strongly to Cu2+ than Co2+ ions. In the presence of relatively high concentrations of Cu2+ ions in the subphase (1.4 × 10-3 M), XNTRF exhibited anomalous depth profile behavior and GIXD measurements showed considerably strong diffuse scattering. Furthermore, both measurements suggest the formation of Cu2+ clusters contiguous to the monolayer of 1.« less

  5. Interfacial Binding of Divalent Cations to Calixarene-Based Langmuir Monolayers

    SciTech Connect

    Tulli, Ludovico G.; Wang, Wenjie; Lindemann, William R.; Kuzmenko, Ivan; Meier, Wolfgang; Vaknin, David; Shahgaldian, Patrick

    2015-02-20

    The interactions of Langmuir monolayers produced through the self-assembly of an amphiphilic p-carboxycalix[4]arene with a series of divalent, fourth-period transition metals, at the air-water interface, were investigated. Changes in the interfacial behavior of 1 in response to the presence of CuCl2, CoCl2, MnCl2, and NiCl2 were studied by means of Langmuir compression isotherms and Brewster angle microscopy (BAM). The measurements revealed that the self-assembly properties of 1 are significantly affected by Cu2+ ions. The interactions of 1-based monolayers with Co2+ and Cu2+ ions were further investigated by means of synchrotron radiation-based X-ray reflectivity (XRR), X-ray near-total-reflection fluorescence (XNTRF), and grazing incidence X-ray diffraction (GIXD). XNTRF and XRR analyses revealed that the monolayer of 1 binds more strongly to Cu2+ than Co2+ ions. In the presence of relatively high concentrations of Cu2+ ions in the subphase (1.4 × 10-3 M), XNTRF exhibited anomalous depth profile behavior and GIXD measurements showed considerably strong diffuse scattering. Both measurements suggest the formation of Cu2+ clusters contiguous to the monolayer of 1.

  6. Interfacial binding of divalent cations to calixarene-based Langmuir monolayers

    SciTech Connect

    Tulli, Ludovico G.; Wang, Wenjie; Lindemann, William R.; Kuzmenko, Ivan; Meier, Wolfgang; Vaknin, David; Shahgaldian, Patrick

    2015-02-20

    The interactions of Langmuir monolayers produced through the self-assembly of an amphiphilic p-carboxycalix[4]arene with a series of divalent, fourth-period transition metals, at the air-water interface, were investigated. Changes in the interfacial behavior of 1 in response to the presence of CuCl2, CoCl2, MnCl2, and NiCl2 were studied by means of Langmuir compression isotherms and Brewster angle microscopy (BAM). The measurements revealed that the self-assembly properties of 1 are significantly affected by Cu2+ ions. The interactions of 1-based monolayers with Co2+ and Cu2+ ions were further investigated by means of synchrotron radiation-based X-ray reflectivity (XRR), X-ray near-total-reflection fluorescence (XNTRF), and grazing incidence X-ray diffraction (GIXD). XNTRF and XRR analyses revealed that the monolayer of 1 binds more strongly to Cu2+ than Co2+ ions. In the presence of relatively high concentrations of Cu2+ ions in the subphase (1.4 × 10-3 M), XNTRF exhibited anomalous depth profile behavior and GIXD measurements showed considerably strong diffuse scattering. Furthermore, both measurements suggest the formation of Cu2+ clusters contiguous to the monolayer of 1.

  7. Apparent Interfacial Fracture Toughness of Resin/Ceramic Systems

    PubMed Central

    Della Bona, A.; Anusavice, K.J.; Mecholsky, J.J.

    2008-01-01

    We suggest that the apparent interfacial fracture toughness (KA) may be estimated by fracture mechanics and fractography. This study tested the hypothesis that the KA of the adhesion zone of resin/ceramic systems is affected by the ceramic microstructure. Lithia disilicate-based (Empress2-E2) and leucite-based (Empress-E1) ceramics were surface-treated with hydrofluoric acid (HF) and/or silane (S), followed by an adhesive resin. Microtensile test specimens (n = 30; area of 1 ± 0.01 mm2) were indented (9.8 N) at the interface and loaded to failure in tension. We used tensile strength (σ) and the critical crack size (c) to calculate KA (KA = Yσc1/2) (Y = 1.65). ANOVA and Weibull analyses were used for statistical analyses. Mean KA (MPa•m1/2) values were: (E1HF) 0.26 ± 0.06; (E1S) 0.23 ± 0.06; (E1HFS) 0.30 ± 0.06; (E2HF) 0.31 ± 0.06; (E2S) 0.13 ± 0.05; and (E2HFS) 0.41 ± 0.07. All fractures originated from indentation sites. Estimation of interfacial toughness was feasible by fracture mechanics and fractography. The KA for the systems tested was affected by the ceramic microstructure and surface treatment. PMID:17062746

  8. Ordered mesoporous materials based on interfacial assembly and engineering.

    PubMed

    Li, Wei; Yue, Qin; Deng, Yonghui; Zhao, Dongyuan

    2013-10-04

    Ordered mesoporous materials have inspired prominent research interest due to their unique properties and functionalities and potential applications in adsorption, separation, catalysis, sensors, drug delivery, energy conversion and storage, and so on. Thanks to continuous efforts over the past two decades, great achievements have been made in the synthesis and structural characterization of mesoporous materials. In this review, we summarize recent progresses in preparing ordered mesoporous materials from the viewpoint of interfacial assembly and engineering. Five interfacial assembly and synthesis are comprehensively highlighted, including liquid-solid interfacial assembly, gas-liquid interfacial assembly, liquid-liquid interfacial assembly, gas-solid interfacial synthesis, and solid-solid interfacial synthesis, basics about their synthesis pathways, princples and interface engineering strategies.

  9. Interactions between polymers and lipid monolayers at the air/water interface: surface behavior of poly(methyl methacrylate)-cholesterol mixed films.

    PubMed

    Miñones Conde, M; Conde, O; Trillo, J M; Miñones, J

    2010-08-26

    The behavior of mixed monolayers of cholesterol and poly(methyl methacrylate) (PMMA) with molecular weights of M(w) = 120,000 g/mol and M(w) = 15,000 g/mol was investigated at the air/water interface using Langmuir and Brewster angle microscopy techniques. From the data of surface pressure (pi)-area (A) isotherms, compressional modulus-surface pressure (C(s)(-1)-pi) curves, and film thickness, complemented with Brewster angle microscopy images, the interaction between the components was analyzed. Regardless of the surface pressure (pi = 10, 20, or 30 mN/m) at which the mean molecular/monomer areas (Am) were calculated, the Am-mole fraction plots (corresponding to X(PMMA) = 0.1, 0.3, 0.5, 0.7, and 0.9) show that all the experimental points obtained are placed on the theoretical straight line calculated according to the additivity rule. This fact, together with the existence of two collapses in the mixed monolayers and with the fact that the surface pressure of the liquid-expanded LE-L'E phase transition of PMMA does not change with the monolayer composition, demonstrates the immiscibility of the film components at the interface. The application of the Crisp phase rule to the phase diagram of PMMA-cholesterol mixed monolayers helps to explain the existence of a biphasic system, regardless of their composition and surface pressure. Besides, Brewster angle microscopy (BAM) images showed the existence of heterogeneous cholesterol domains with high reflectivity immersed in a homogeneous polymer separate phase with low reflectivity.

  10. Interfacial geometry dictates cancer cell tumorigenicity

    NASA Astrophysics Data System (ADS)

    Lee, Junmin; Abdeen, Amr A.; Wycislo, Kathryn L.; Fan, Timothy M.; Kilian, Kristopher A.

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

  11. Scaling for interfacial tensions near critical endpoints.

    PubMed

    Zinn, Shun-Yong; Fisher, Michael E

    2005-01-01

    Parametric scaling representations are obtained and studied for the asymptotic behavior of interfacial tensions in the full neighborhood of a fluid (or Ising-type) critical endpoint, i.e., as a function both of temperature and of density/order parameter or chemical potential/ordering field. Accurate nonclassical critical exponents and reliable estimates for the universal amplitude ratios are included naturally on the basis of the "extended de Gennes-Fisher" local-functional theory. Serious defects in previous scaling treatments are rectified and complete wetting behavior is represented; however, quantitatively small, but unphysical residual nonanalyticities on the wetting side of the critical isotherm are smoothed out "manually." Comparisons with the limited available observations are presented elsewhere but the theory invites new, searching experiments and simulations, e.g., for the vapor-liquid interfacial tension on the two sides of the critical endpoint isotherm for which an amplitude ratio -3.25+/-0.05 is predicted.

  12. Interfacial thermodynamics of micro heat pipes

    SciTech Connect

    Swanson, L.W. ); Peterson, G.P. )

    1995-02-01

    Successful analysis and modeling of micro heat pipes requires a complete understanding of the vapor-liquid interface. A thermodynamic model of the vapor-liquid interface in micro heat pipes has been formulated that includes axial pressure and temperature differences, changes in local interfacial curvature, Marangoni effects, and the disjoining pressure. Relationships were developed for the interfacial mass flux in an extended meniscus, the heat transfer rate in the intrinsic meniscus, the 'thermocapillary' heat-pipe limitation, as well as the nonevaporating superheated liquid film thickness that exists between adjacent menisci and occurs during liquid dry out in the evaporator. These relationships can be used to define quantitative restrictions and/or requirements necessary for proper operation of micro heat pipes. They also provide fundamental insight into the critical mechanisms required for proper heat pipe operation. 29 refs., 6 figs.

  13. Frontiers of interfacial water research :workshop report.

    SciTech Connect

    Cygan, Randall Timothy; Greathouse, Jeffery A.

    2005-10-01

    Water is the critical natural resource of the new century. Significant improvements in traditional water treatment processes require novel approaches based on a fundamental understanding of nanoscale and atomic interactions at interfaces between aqueous solution and materials. To better understand these critical issues and to promote an open dialog among leading international experts in water-related specialties, Sandia National Laboratories sponsored a workshop on April 24-26, 2005 in Santa Fe, New Mexico. The ''Frontiers of Interfacial Water Research Workshop'' provided attendees with a critical review of water technologies and emphasized the new advances in surface and interfacial microscopy, spectroscopy, diffraction, and computer simulation needed for the development of new materials for water treatment.

  14. Interfacial chemistry and structure in ceramic composites

    SciTech Connect

    Jones, R.H.; Saenz, N.T.; Schilling, C.H.

    1990-09-01

    The interfacial chemistry and structure of ceramic matrix composites (CMCs) play a major role in the properties of these materials. Fiber-matrix interfaces chemistries are vitally important in the fracture strength, fracture toughness, and fracture resistance of ceramic composites because they influence fiber loading and fiber pullout. Elevated-temperature properties are also linked to the interfacial characteristics through the chemical stability of the interface in corrosive environments and the creep/pullout behavior of the interface. Physical properties such as electrical and thermal conductivity are also dependent on the interface. Fiber-matrix interfaces containing a 1-{mu}m-thick multilayered interface with amorphous and graphitic C to a 1-nm-thick SiO{sub 2} layer can result from sintering operations for some composite systems. Fibers coated with C, BN, C/BC/BN, and Si are also used to produce controlled interface chemistries and structures. Growth interfaces within the matrix resulting from processing of CMCs can also be crucial to the behavior of these materials. Evaluation of the interfacial chemistry and structure of CMCs requires the use of a variety of analytical tools, including optical microscopy, scanning electron microscopy, Auger electron spectroscopy, and transmission electron microscopy coupled with energy dispersive x-ray analysis. A review of the interfacial chemistry and structure of SiC whisker- and fiber-reinforced Si{sub 3}N{sub 4} and SiC/SiC materials is presented. Where possible, correlations with fracture properties and high-temperature stability are made. 94 refs., 10 figs.

  15. Intrinsic interfacial phenomena in manganite heterostructures.

    PubMed

    Vaz, C A F; Walker, F J; Ahn, C H; Ismail-Beigi, S

    2015-04-01

    We review recent advances in our understanding of interfacial phenomena that emerge when dissimilar materials are brought together at atomically sharp and coherent interfaces. In particular, we focus on phenomena that are intrinsic to the interface and review recent work carried out on perovskite manganites interfaces, a class of complex oxides whose rich electronic properties have proven to be a useful playground for the discovery and prediction of novel phenomena.

  16. Interfacial chemistry in solvent extraction systems

    SciTech Connect

    Neuman, R.D.

    1992-01-01

    Research last year emphasized the nature of microscopic interfaces, i. e., reversed micelles and other association microstructures, which form in both practical and simplified acidic organophosphorus extraction systems associated with Ni, Co and Na in order to improve on a recently proposed model for aggregation of metal-extractant complexes. Also, the macroscopic interfacial behavior of extractant molecules and their interactions with metal ions which occur in hydrometallurgical solvent extraction systems were further investigated.

  17. Interfacial chemistry in solvent extraction systems

    SciTech Connect

    Neuman, R.D.

    1993-01-01

    Research this past year continued to emphasize characterization of the physicochemical nature of the microscopic interfaces, i.e., reversed micelles and other association microstructures, which form in both practical and simplified acidic organophosphorus extraction systems associated with Ni, Co, and Na in order to improve on the model for aggregation of metal-extractant complexes. Also, the macroscopic interfacial behavior of model extractant (surfactant) molecules was further investigated. 1 fig.

  18. Magnetoelectric Coupling Induced by Interfacial Orbital Reconstruction.

    PubMed

    Cui, Bin; Song, Cheng; Mao, Haijun; Wu, Huaqiang; Li, Fan; Peng, Jingjing; Wang, Guangyue; Zeng, Fei; Pan, Feng

    2015-11-01

    Reversible orbital reconstruction driven by ferroelectric polarization modulates the magnetic performance of model ferroelectric/ferromagnetic heterostructures without onerous limitations. Mn-d(x2-y2) orbital occupancy and related interfacial exotic magnetic states are enhanced and weakened by negative and positive electric fields, respectively, filling the missing member-orbital in the mechanism of magnetoelectric coupling and advancing the application of orbitals to microelectronics.

  19. Driving force behind adsorption-induced protein unfolding: a time-resolved X-ray reflectivity study on lysozyme adsorbed at an air/water interface.

    PubMed

    Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Takagaki, Masafumi; Yamada, Hironari

    2009-01-06

    Time-resolved X-ray reflectivity measurements for lysozyme (LSZ) adsorbed at an air/water interface were performed to study the mechanism of adsorption-induced protein unfolding. The time dependence of the density profile at the air/water interface revealed that the molecular conformation changed significantly during adsorption. Taking into account previous work using Fourier transform infrared (FTIR) spectroscopy, we propose that the LSZ molecules initially adsorbed on the air/water interface have a flat unfolded structure, forming antiparallel beta-sheets as a result of hydrophobic interactions with the gas phase. In contrast, as adsorption continues, a second layer forms in which the molecules have a very loose structure having random coils as a result of hydrophilic interactions with the hydrophilic groups that protrude from the first layer.

  20. Investigation of interfacial rheology & foam stability.

    SciTech Connect

    Yaklin, Melissa A.; Cote, Raymond O.; Grillet, Anne Mary; Walker, Lynn M.; Koehler, Timothy P.; Reichert, Matthew D.; Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-05-01

    The rheology at gas-liquid interfaces strongly influences the stability and dynamics of foams and emulsions. Several experimental techniques are employed to characterize the rheology at liquid-gas interfaces with an emphasis on the non-Newtonian behavior of surfactant-laden interfaces. The focus is to relate the interfacial rheology to the foamability and foam stability of various aqueous systems. An interfacial stress rheometer (ISR) is used to measure the steady and dynamic rheology by applying an external magnetic field to actuate a magnetic needle suspended at the interface. Results are compared with those from a double wall ring attachment to a rotational rheometer (TA Instruments AR-G2). Micro-interfacial rheology (MIR) is also performed using optical tweezers to manipulate suspended microparticle probes at the interface to investigate the steady and dynamic rheology. Additionally, a surface dilatational rheometer (SDR) is used to periodically oscillate the volume of a pendant drop or buoyant bubble. Applying the Young-Laplace equation to the drop shape, a time-dependent surface tension can be calculated and used to determine the effective dilatational viscosity of an interface. Using the ISR, double wall ring, SDR, and MIR, a wide range of sensitivity in surface forces (fN to nN) can be explored as each experimental method has different sensitivities. Measurements will be compared to foam stability.

  1. Interfacial gauge methods for incompressible fluid dynamics

    PubMed Central

    Saye, Robert

    2016-01-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567

  2. Interfacial gauge methods for incompressible fluid dynamics.

    PubMed

    Saye, Robert

    2016-06-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.

  3. Interfacial Studies of Sized Carbon Fiber

    SciTech Connect

    Shahrul, S. N.; Hartini, M. N.; Hilmi, E. A.; Nizam, A.

    2010-03-11

    This study was performed to investigate the influence of sizing treatment on carbon fiber in respect of interfacial adhesion in composite materials, Epolam registered 2025. Fortafil unsized carbon fiber was used to performed the experiment. The fiber was commercially surface treated and it was a polyacrylonitrile based carbon fiber with 3000 filament per strand. Epicure registered 3370 was used as basic sizing chemical and dissolved in two types of solvent, ethanol and acetone for the comparison purpose. The single pull out test has been used to determine the influence of sizing on carbon fiber. The morphology of carbon fiber was observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The apparent interfacial strength IFSS values determined by pull out test for the Epicure registered 3370/ethanol sized carbon fiber pointed to a good interfacial behaviour compared to the Epicure registered 3370/acetone sized carbon fiber. The Epicure registered 3370/ethanol sizing agent was found to be effective in promoting adhesion because of the chemical reactions between the sizing and Epolam registered 2025 during the curing process. From this work, it showed that sized carbon fiber using Epicure registered 3370 with addition of ethanol give higher mechanical properties of carbon fiber in terms of shear strength and also provided a good adhesion between fiber and matrix compared to the sizing chemical that contain acetone as a solvent.

  4. Interfacial tension and interfacial profiles: an equation-of-state approach.

    PubMed

    Panayiotou, Costas

    2003-11-15

    A quasi-thermodynamic approach of inhomogeneous systems is used for modeling the fluid-fluid interface. It is based on the recently introduced QCHB (quasi-chemical hydrogen bonding) equation-of-state model of fluids and their mixtures, which is used for the estimation of the Helmholtz free energy density difference, Deltapsi(0), between the system with interface and another system of the same constitution but without interface. Consistent expressions for the interfacial tension and interfacial profiles for various properties are presented. The interfacial tension is proportional to the integral of Deltapsi(0) along the full height of the system, the proportionality constant being equal to 1, when no density gradient contributions are taken into consideration, 2, when the Cahn-Hilliard approximation is adopted, and 4, when the full density gradient contributions are taken into consideration. A satisfactory agreement is obtained between experimental and calculated surface tensions. Extension of the approach to mixtures is examined along with the associated problems for the numerical calculations of the interfacial profiles. A new equation is derived for the chemical potentials in the interfacial region, which facilitates very much the calculation of the composition profiles across the interface.

  5. Introducing high-quality planar defects into colloidal crystals via self-assembly at the air/water interface

    NASA Astrophysics Data System (ADS)

    Zhong, Kuo; Demeyer, Pieter-Jan; Zhou, Xingping; Kruglova, Olga; Verellen, Niels; Moshchalkov, Victor V.; Song, Kai; Clays, Koen

    2015-02-01

    We demonstrate a facile method for fabrication of colloidal crystals containing a planar defect by using PS@SiO2 core-shell spheres as building blocks. A monolayer of solid spheres was embedded in core-shell colloidal crystals serving as the defect layer, which formed by means of self-assembly at the air/water interface. Compared with previous methods, this fabrication method results in pronounced passbands in the band gaps of the colloidal photonic crystal. The FWHM of the obtained passband is only ~16nm, which is narrower than the previously reported results. The influence of the defect layer thickness on the optical properties of these sandwiched structures was also investigated. No high-cost processes or specific equipment is needed in our approach. Inverse opals with planar defects can be obtained via calcination of the PS cores, without the need of infiltration. The experimental results are in good agreement with simulations performed using the FDTD method.

  6. Air/water subchannel measurements of the equilibrium quality and mass-flux distribution in a rod bundle. [BWR

    SciTech Connect

    Sterner, R.W.; Lahey, R.T. Jr.

    1983-07-01

    Subchannel measurements were performed in order to determine the equilibrium quality and mass flux distribution in a four rod bundle, using air/water flow. An isokinetic technique was used to sample the flow in the center, side and corner subchannels of this test section. Flow rates of the air and water in each sampled subchannel were measured. Experiments were performed for two test-section-average mass fluxes (0.333x10/sup 6/ and 0.666x10/sup 6/ lb/sub m//h-ft/sup 2/), and the test-section-average quality was varied from 0% to 0.54% for each mass flux. Single-phase liquid, bubbly, slug and churn-turbulent two-phase flow regimes were achieved. The observed data trends agreed with previous diabatic measurements in which the center subchannel had the highest quality and mass flux, while the corner subchannel had the lowest.

  7. Viscoelastic Drag Forces and Crossover from No-Slip to Slip Boundary Conditions for Flow near Air-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Maali, A.; Boisgard, R.; Chraibi, H.; Zhang, Z.; Kellay, H.; Würger, A.

    2017-02-01

    The "free" water surface is generally prone to contamination with surface impurities, be they surfactants, particles, or other surface active agents. The presence of such impurities can modify flow near such interfaces in a drastic manner. Here we show that vibrating a small sphere mounted on an atomic force microscope cantilever near a gas bubble immersed in water is an excellent probe of surface contamination. Both viscous and elastic forces are exerted by an air-water interface on the vibrating sphere even when very low doses of contaminants are present. The viscous drag forces show a crossover from no-slip to slip boundary conditions while the elastic forces show a nontrivial variation as the vibration frequency changes. We provide a simple model to rationalize these results and propose a simple way of evaluating the concentration of such surface impurities.

  8. Characterization of atmospheric nanosecond discharge under highly inhomogeneous and transient electric field in air/water mixture

    NASA Astrophysics Data System (ADS)

    Ouaras, Karim; Tardiveau, Pierre; Magne, Lionel; Jeanney, Pascal; Bournonville, Blandine

    2016-09-01

    We report the studies of a centimeter range pin-to-plane nanosecond repetitively discharge (<30 ns and 10 Hz) in standard conditions of pressure and temperature under very high positive voltage pulses (20 to 100 kV). In these typical conditions, plasma exhibit unusual diffuse and large structure. This kind of discharge is not well understood and in first approach, it requires (i) a description of plasma dynamic and (ii) behavior under relevant context (environmental issues ...) using pertinent gas (humid air). Thus, we will first present sub-nanosecond imaging of the discharge obtained for typical conditions of stabilized plasma. Then we will focus on determination of rotational and vibrational temperature (OES) and preliminary results concerning the production and evolution of OH radical in temporal post-discharge in air/water mixture (PLIF). Theses spectroscopic measurements are undertaken as function of most influent parameters, i . e . voltage pulses features (amplitude, rise time and length) and water concentration.

  9. Study of relaxation process of dipalmitoyl phosphatidylcholine monolayers at air-water interface: effect of electrostatic energy.

    PubMed

    Ou-Yang, Wei; Weis, Martin; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-04-21

    The instability of organic monolayer composed of polar molecules at the air-water interface has been a spotlight in interface science for many decades. However, the effect of electrostatic energy contribution to the free energy in the system is still not understood. Herein, we investigate the mechanical and electrical properties by studying the isobaric relaxation process of a dipalmitoyl phosphatidylcholine monolayer on water subphase with various concentrations of divalent ions to reveal the effect of electrostatic energy on thermodynamics and kinetics of the collapse mechanism. Our results demonstrate that electrical energy among the dipolar molecules plays an important role in the stability of monolayer and enhances the formation of micelles into subphase under high pressure. In addition, to confirm the electrostatic energy contribution, the well-known thermal effect on the stability of the film is compared. Hence, the general description of the monolayer free energy with contribution of electrostatic energy is suggested to describe the phase transition.

  10. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  11. Molecular interactions of organic molecules at the air/water interface investigated by sum frequency generation vibrational spectroscopy.

    PubMed

    Wang, Wenting; Ye, Shuji

    2017-02-08

    The molecular structure and dynamics of organic molecules at the aqueous interface have attracted a number of investigations owing to their importance and specific nature. However, there are relatively few studies on the direct characterization of the molecular interactions at the air/water interface because they are extremely difficult to measure in experiments. In this study, we use dibutyl ester molecules (R1CO2R2O2CR1) as a model of organic molecules, and investigate their molecular structure and interactions using sum frequency generation vibrational spectroscopy. We demonstrate that the molecular interactions can be estimated by measuring the intensity ratio of the symmetric stretching (ν1) and Fermi resonant bands (2ν2) of methyl groups. Here, dibutyl ester molecules are widely used as plasticizers in polymers to improve the properties of the plastics and polymers. It is found that the orientation angles of the tailed methyl groups at the air/water interface decrease from 34° to 19° when the chain length of R2 increases from 0 to 8. The total intermolecular interactions of the dibutyl ester molecules decrease as the chain length of R2 increases because the van der Waals interactions between the hydrocarbon chains increase, while the hydrogen bond interactions between the carbonyl group and water molecules decrease. Our study demonstrates the stability of ester-based plasticizers in polymers can be well predicted from the intensity ratio of the ν1 and 2ν2 bands of methyl group. Such an intensity ratio can be thus used as an effective vibrational optical ruler for characterizing molecular interactions between plasticizers and polymers.

  12. On the coefficients of small eddy and surface divergence models for the air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Liao, Qian; Fillingham, Joseph H.; Bootsma, Harvey A.

    2015-03-01

    Recent studies suggested that under low to moderate wind conditions without bubble entraining wave breaking, the air-water gas transfer velocity k+ can be mechanistically parameterized by the near-surface turbulence, following the small eddy model (SEM). Field measurements have supported this model in a variety of environmental forcing systems. Alternatively, surface divergence model (SDM) has also been shown to predict the gas transfer velocity across the air-water interface in laboratory settings. However, the empirically determined model coefficients (α in SEM and c1 in SDM) scattered over a wide range. Here we present the first field measurement of the near-surface turbulence with a novel floating PIV system on Lake Michigan, which allows us to evaluate the SEM and SDM in situ in the natural environment. k+ was derived from the CO2 flux that was measured simultaneously with a floating gas chamber. Measured results indicate that α and c1 are not universal constants. Regression analysis showed that α˜log>(ɛ>) while the near-surface turbulence dissipation rate ɛ is approximately greater than 10-6 m2 s-3 according to data measured for this study as well as from other published results measured in similar environments or in laboratory settings. It also showed that α scales linearly with the turbulent Reynolds number. Similarly, coefficient c1 in the SDM was found to linearly scale with the Reynolds number. These findings suggest that larger eddies are also important parameters, and the dissipation rate in the SEM or the surface divergence β' in the SDM alone may not be adequate to determine k+ completely.

  13. Kinetics of adsorption of whey proteins and hydroxypropyl-methyl-cellulose mixtures at the air-water interface.

    PubMed

    Pérez, Oscar E; Carrera Sánchez, Cecilio; Pilosof, Ana M R; Rodríguez Patino, Juan M

    2009-08-15

    The aim of this research is to quantify the competitive adsorption of a whey protein concentrate (WPC) and hydroxypropyl-methyl-cellulose (HPMC so called E4M, E50LV and F4M) at the air-water interface by means of dynamic surface tensiometry and Brewster angle microscopy (BAM). These biopolymers are often used together in many food applications. The concentration of both protein and HPMC, and the WPC/HPMC ratio in the aqueous bulk phase were variables, while pH (7), the ionic strength (0.05 M) and temperature (20 degrees C) were kept constant. The differences observed between mixed systems were in accordance with the relative bulk concentration of these biopolymers (C(HPMC) and C(WPC)) and the molecular structure of HPMC. At short adsorption times, the results show that under conditions where both WPC and HPMC could saturate the air-water interface on their own or when C(HPMC) > or = C(WPC), the polysaccharide dominates the surface. At concentrations where none of the biopolymers was able to saturate the interface, a synergistic behavior was observed for HPMC with lower surface activity (E50LV and F4M), while a competitive adsorption was observed for E4M (the HPMC with the highest surface activity). At long-term adsorption the rate of penetration controls the adsorption of mixed components. The results reflect complex competitive/synergistic phenomena under conditions of thermodynamic compatibility or in the presence of a "depletion mechanism". Finally, the order in which the different components reach the interface will influence the surface composition and the film properties.

  14. Water temperature effect on upward air-water flow in a vertical pipe: Local measurements database using four-sensor conductivity probes and LDA

    NASA Astrophysics Data System (ADS)

    Monrós-Andreu, G.; Chiva, S.; Martínez-Cuenca, R.; Torró, S.; Juliá, J. E.; Hernández, L.; Mondragón, R.

    2013-04-01

    Experimental work was carried out to study the effects of temperature variation in bubbly, bubbly to slug transition. Experiments were carried out in an upward air-water flow configuration. Four sensor conductivity probes and LDA techniques was used together for the measurement of bubble parameters. The aim of this paper is to provide a bubble parameter experimental database using four-sensor conductivity probes and LDA technique for upward air-water flow at different temperatures and also show transition effect in different temperatures under the boiling point.

  15. Control of Metal/graphite Interfacial Energy Through the Interfacial Segregation of Alloying Additions.

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Utpal

    Equilibrium segregation of Ni to the interface of a solid Pb/graphite and Au/graphite was studied using a solid state wetting approach and the crater edge profiling technique on a scanning Auger microprobe (SAM). All experiments were performed under ultra high vacuum (UHV) to reduce the effects due to surface adsorption of impurities. For the Pb/graphite system, increasing amounts of Ni ranging from 0 to 0.2wt% Ni added to Pb were found to systematically lower the contact angle for samples equilibrated at 285 ^circC. No significant surface segregation of Ni was observed at the Pb surface. The reduction of the contact angle was therefore attributed entirely to the lowering of the interfacial energy by interfacial adsorption of Ni. The interfacial energy and interfacial Ni concentration were obtained as a function of bulk Ni content. The presence of excess Ni at the interface was also determined using the crater edge profiling technique on the SAM for various bulk concentrations of Ni in Pb. The temperature dependence of the segregation process was also studied using the solid state wetting approach. The contact angle of Pb(Ni)/graphite was found to vary as a function of temperature for a given Ni content. No temperature dependence was observed in the case of pure Pb/graphite. The change in interfacial energy and the interfacial Ni concentration were obtained as a function of temperature from thermodynamic considerations, and from that the enthalpy and the entropy of interfacial segregation were determined. For the Au/graphite system at 850^circC, addition of 15at%Ni to Au caused a reduction of contact angle by 7.8^circ with accompanying reduction in interfacial energy. Ni was found to segregate to both the free Au surface as well as to the Au/graphite interface. In addition C was also found to segregate to the Au surface thus lowering the surface energy. The modified surface energy was considered in the determination of the interfacial energy and interfacial Ni

  16. Interfacial inhibitors of protein-nucleic acid interactions.

    PubMed

    Pommier, Yves; Marchand, Christophe

    2005-07-01

    This essay develops the paradigm of "Interfacial Inhibitors" (Pommier and Cherfils, TiPS, 2005, 28: 136) for inhibitory drugs beside orthosteric (competitive or non-competitive) and allosteric inhibitors. Interfacial inhibitors bind with high selectivity to a binding site involving two or more macromolecules within macromolecular complexes undergoing conformational changes. Interfacial binding traps (generally reversibly) a transition state of the complex, resulting in kinetic inactivation. The exemplary case of interfacial inhibitor of protein-DNA interface is camptothecin and its clinical derivatives. We will also provide examples generalizing the interfacial inhibitor concept to inhibitors of topoisomerase II (anthracyclines, ellipticines, epipodophyllotoxins), gyrase (quinolones, ciprofloxacin, norfloxacin), RNA polymerases (alpha-amanitin and actinomycin D), and ribosomes (antibiotics such as streptomycin, hygromycin B, tetracycline, kirromycin, fusidic acid, thiostrepton, and possibly cycloheximide). We discuss the implications of the interfacial inhibitor concept for drug discovery.

  17. Interaction of polyhedral oligomeric silsesquioxane containing epoxycyclohexyl groups with cholesterol at the air/water interface.

    PubMed

    Dopierała, Katarzyna; Maciejewski, Hieronim; Prochaska, Krystyna

    2016-04-01

    Binary mixtures of cholesterol and fully-condensed octakis[{2-(3,4-epoxycyclohexyl) etyl}dimethyl-silyloxy]octasilsesquioxane (OE-POSS) were characterized using Langmuir trough for obtaining surface pressure-area isotherms. The most characteristic feature of the mixed films is the presence of two collapse points on the isotherms. The first one is attributed to the collapse of less stable OE-POSS and it occurs at similar surface pressures for all compositions, while the second one corresponds to cholesterol collapse. Brewster angle microscopy observations confirmed the collapse behavior of the mixed film. Strong condensing effect was observed for the mean molecular areas dependence on cholesterol content in the film. Moreover, formation of microdomains of each component in the matrix of the other one was confirmed by BAM images. For the reasons of molecular structures and interactions a true mixed and homogenous film did not form in the systems considered. Phase separation was observed for all the compositions experimented. The lack of the interactions of OE-POSS with biomembrane components represented by cholesterol is beneficial for applications of OE-POSS in biomedical devices.

  18. Open, microfluidic flow cell for studies of interfacial processes at gas-liquid interfaces.

    PubMed

    Hoang, Khanh C; Malakhov, Dmitry; Momsen, William E; Brockman, Howard L

    2006-03-01

    Interfacial processes involving peripheral proteins depend on the composition and packing density of the interfacial lipid molecules. As a biological membrane model, lipid monolayers at the gas-liquid interface allow independent control of these parameters. However, measuring protein adsorption to monolayers has been difficult. To aid in this and other studies of the interfacial processes, we have developed an open, microfluidic flow cell with which surface physical properties can be controlled and monitored in well-defined lipid monolayers while varying aqueous-phase composition. Using this apparatus, we implement a recently described fluorescence method (Momsen, W. E.; Mizuno, N. K.; Lowe, M. E.; Brockman, H. L. Anal. Biochem. 2005, 346, 139-49) to characterize the adsorption/desorption of glucagon to 1,2-dioleoyl-sn-glycerol monolayers at 27 mN/m. Analysis of the data gives reasonable and self-consistent results for kinetic and thermodynamic constants. Varying the packing density of 1,2-dioleoyl-sn-glycerol does not alter the extent of glucagon adsorption, but comparable measurements with 1-steaoryl-2-oleoyl-sn-glycero-3-phosphocholine show a critical dependence. Because it allows a high degree of control of both lipid monolayer properties and aqueous-phase composition, this microfluidic flow cell should find wide applicability in many areas of research into interfacial processes.

  19. SUPRAMOLECULAR SYSTEMS BEHAVIOR AT THE AIR-WATER INTERFACE. MOLECULAR DYNAMIC SIMULATION STUDY

    SciTech Connect

    Sandoval, C.; Saavedra, M.; Gargallo, L.; Radic, D.

    2008-08-28

    Atomistic molecular dynamics simulation (MDS) was development to investigate the structural and dynamic properties of a monolayer of supramolecular systems. The simulations were performed at room temperature, on inclusion complexes (ICs) of {alpha}-cyclodextrin (CD) with poly(ethylene-oxide)(PEO), poly({epsilon}-caprolactone)(PEC) and poly(tetrahydrofuran)(PTHF). The simulations were carried out for a surface area of 30A ring . The trajectories of the MDS show that the system more stable was IC-PEC, being the less stable IC-PEO. The disordered monolayer for the systems was proved by the orientation correlation function and the radial distribution function between the polar groups of ICs and the water molecules. We found that the system IC-PEC was more stable that the systems IC-PTHF and IC-PEO.

  20. Photoinduced electron transfer in a monolayer at the air-water interface

    SciTech Connect

    Matsumoto, Mutsuyoshi; Ahuja, R.C.; Moebius, D.

    1992-07-09

    Photoinduced electron transfer from the amphiphilic oxacyanine (donor) to the amphiphilic viologen (acceptor) embedded on a DMPC matrix is investigated in the monolayer. Steady-state fluorescence intensity-area isotherms were measured simultaneously with surface pressure-area isotherms. In the absence of the acceptor, the fluorescence intensity normalized to surface density increased with an increase in surface pressure, which was suggested to be due to an increase in the lifetime of the excited state of the donor. Dimer formation of the donor is not found in the present case even at the donor density of 0.22 nm{sup {minus}2}, contrary to the LB film case where it is found at donor densities as low as 0.01 nm{sup {minus}2} with cadmium arachidate/methyl arachidate = 1/1 as a matrix. This shows the important role of the matrix in this type of work. In the presence of the acceptor, the relative fluorescence intensity decreases strongly with increasing surface pressure and molar fraction of the acceptor. This is due to the electron transfer from the excited state of the donor to the ground state of the acceptor. The relative fluorescence intensity depends on the densities of the donor and the acceptor and also on the lifetime of the excited state of the donor. The critical distance for the electron transfer is 0.9 nm at 2 mN m{sup {minus}1} and 1.5 nm at 40 mN m{sup {minus}1}. The close match between the observed and simulated values shows that the energy delocalization via incoherent exciton hopping is not significant in the present monolayer case as opposed to the LB film systems where the donor and acceptor are localized at the same interface. The discrepancy may be due to the larger values of the donor-to-acceptor ratio in the LB film case. 24 refs., 6 figs.

  1. Functionalization enhancement on interfacial shear strength between graphene and polyethylene

    NASA Astrophysics Data System (ADS)

    Jin, Yikuang; Duan, Fangli; Mu, Xiaojing

    2016-11-01

    Pull-out processes were simulated to investigate the interfacial mechanical properties between the functionalized graphene sheet (FGS) and polyethylene (PE) matrix by using molecular dynamics simulation with ReaxFF reactive force field. The interfacial structure of polymer and the interfacial interaction in the equilibrium FGS/PE systems were also analyzed to reveal the enhancement mechanism of interfacial shear strength. We observed the insertion of functional groups into polymer layer in the equilibrium FGS/PE systems. During the pull-out process, some interfacial chains were attached on the FGS and pulled out from the polymer matrix. The behavior of these pulled out chains was further analyzed to clarify the different traction action of functional groups applied on them. The results show that the traction effect of functional groups on the pulled-out chains is agreement with their enhancement influence on the interfacial shear strength of the FGS/PE systems. They both are basically dominated by the size of functional groups, suggesting the enhancement mechanism of mechanical interlocking. However, interfacial binding strength also exhibits an obvious influence on the interfacial shear properties of the hybrid system. Our simulation show that geometric constrains at the interface is the principal contributor to the enhancement of interfacial shear strength in the FGS/PE systems, which could be further strengthened by the wrinkled morphology of graphene in experiments.

  2. Direct handling of sharp interfacial energy for microstructural evolution

    DOE PAGES

    Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence; ...

    2014-08-24

    In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.

  3. Interfacial properties of semifluorinated alkane diblock copolymers

    NASA Astrophysics Data System (ADS)

    Pierce, Flint; Tsige, Mesfin; Borodin, Oleg; Perahia, Dvora; Grest, Gary S.

    2008-06-01

    The liquid-vapor interfacial properties of semifluorinated linear alkane diblock copolymers of the form F3C(CF2)n-1(CH2)m-1CH3 are studied by fully atomistic molecular dynamics simulations. The chemical composition and the conformation of the molecules at the interface are identified and correlated with the interfacial energies. A modified form of the Optimized Parameter for Liquid Simulation All-Atom (OPLS-AA) force field of Jorgensen and co-workers [J. Am. Chem. Soc. 106, 6638 (1984); 118, 11225 (1996); J. Phys. Chem. A 105, 4118 (2001)], which includes specific dihedral terms for H-F blocks-and corrections to the H-F nonbonded interaction, is used together with a new version of the exp-6 force field developed in this work. Both force fields yield good agreement with the available experimental liquid density and surface tension data as well as each other over significant temperature ranges and for a variety of chain lengths and compositions. The interfacial regions of semifluorinated alkanes are found to be rich in fluorinated groups compared to hydrogenated groups, an effect that decreases with increasing temperature but is independent of the fractional length of the fluorinated segments. The proliferation of fluorine at the surface substantially lowers the surface tension of the diblock copolymers, yielding values near those of perfluorinated alkanes and distinct from those of protonated alkanes of the same chain length. With decreasing temperatures within the liquid state, chains are found to preferentially align perpendicular to the interface, as previously seen.

  4. Simulating the Vapour Phase Air/Water Exchange of p,p′-DDE, p,p′-DDT, Lindane, and 2,3,7,8-Tetrachlorodibenzodioxin

    EPA Science Inventory

    Uncertainties in our understanding of gaseous air/water exchange have emerged as major sources of concern in efforts to construct global and regional mass balances of both the green house gas carbon dioxide and semi-volatile persistent, bioaccumulative and toxic chemicals. Hoff e...

  5. Interfacial Molecular Searching Using Forager Dynamics

    NASA Astrophysics Data System (ADS)

    Monserud, Jon H.; Schwartz, Daniel K.

    2016-03-01

    Many biological and technological systems employ efficient non-Brownian intermittent search strategies where localized searches alternate with long flights. Coincidentally, molecular species exhibit intermittent behavior at the solid-liquid interface, where periods of slow motion are punctuated by fast flights through the liquid phase. Single-molecule tracking was used here to observe the interfacial search process of DNA for complementary DNA. Measured search times were qualitatively consistent with an intermittent-flight model, and ˜10 times faster than equivalent Brownian searches, suggesting that molecular searches for reactive sites benefit from similar efficiencies as biological organisms.

  6. Interfacial supersaturation, secondary nucleation, and crystal growth

    NASA Astrophysics Data System (ADS)

    Tai, Clifford Y.; Wu, Jenn-Fang; Rousseau, Ronald W.

    1992-02-01

    A theory describing the source of nuclei in secondary nucleation is presented and used to rationalize experimental data from the literature, some of which had appeared to be conflicting. The theory rests on a model in which an adsorption layer consisting of clusters of growth units of varying size is formed on the surface of growing crystals. The existence of the layer is related to the two-resistance model of crystal growth; by varying system conditions, the relative importance of the two resistances is altered and thereby changes the interfacial supersaturation even though overall supersaturation remains constant. Interracial supersaturation and contact energy determine kinetics in a system dominated by contact nucleation.

  7. Viscosity of interfacial water regulates ice nucleation

    SciTech Connect

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun Song, Yanlin

    2014-03-10

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J{sub 0} and Γ, in the context of classical nucleation theory. From the extracted J{sub 0} and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces.

  8. Dynamic interfacial behavior of viscoelastic aqueous hyaluronic acid: effects of molecular weight, concentration and interfacial velocity.

    PubMed

    Vorvolakos, Katherine; Coburn, James C; Saylor, David M

    2014-04-07

    An aqueous hyaluronic acid (HA(aq)) pericellular coat, when mediating the tactile aspect of cellular contact inhibition, has three tasks: interface formation, mechanical signal transmission and interface separation. To quantify the interfacial adhesive behavior of HA(aq), we induce simultaneous interface formation and separation between HA(aq) and a model hydrophobic, hysteretic Si-SAM surface. While surface tension γ remains essentially constant, interface formation and separation depend greatly on concentration (5 ≤ C ≤ 30 mg mL(-1)), molecular weight (6 ≤ MW ≤ 2000 kDa) and interfacial velocity (0 ≤ V ≤ 3 mm s(-1)), each of which affect shear elastic and loss moduli G′ and G′′, respectively. Viscoelasticity dictates the mode of interfacial motion: wetting-dewetting, capillary necking, or rolling. Wetting-dewetting is quantified using advancing and receding contact angles θ(A) and θ(R), and the hysteresis between them, yielding data landscapes for each C above the [MW, V] plane. The landscape sizes, shapes, and curvatures disclose the interplay, between surface tension and viscoelasticity, which governs interfacial dynamics. Gel point coordinates modulus G and angular frequency ω appear to predict wetting-dewetting (G < 75 ω0.2), capillary necking (75 ω0.2 < G < 200 ω0.075) or rolling (G > 200ω0.075). Dominantly dissipative HA(aq) sticks to itself and distorts irreversibly before separating, while dominantly elastic HA(aq) makes contact and separates with only minor, reversible distortion. We propose the dimensionless number (G′V)/(ω(r)γ), varying from 10(-5) to 10(3) in this work, as a tool to predict the mode of interface formation-separation by relating interfacial kinetics with bulk viscoelasticity. Cellular contact inhibition may be thus aided or compromised by physiological or interventional shifts in [C, MW, V], and thus in (G′V)/(ω(r)γ), which affect both mechanotransduction and interfacial dynamics. These observations

  9. A Deterministic Interfacial Cyclic Oxidation Spalling Model. Part 1; Model Development and Parametric Response

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2002-01-01

    An equation has been developed to model the iterative scale growth and spalling process that occurs during cyclic oxidation of high temperature materials. Parabolic scale growth and spalling of a constant surface area fraction have been assumed. Interfacial spallation of the only the thickest segments was also postulated. This simplicity allowed for representation by a simple deterministic summation series. Inputs are the parabolic growth rate constant, the spall area fraction, oxide stoichiometry, and cycle duration. Outputs include the net weight change behavior, as well as the total amount of oxygen and metal consumed, the total amount of oxide spalled, and the mass fraction of oxide spalled. The outputs all follow typical well-behaved trends with the inputs and are in good agreement with previous interfacial models.

  10. Gas exchange across the air - water interface determined with man-made and natural tracers

    SciTech Connect

    Wanninkhof, R.H.

    1986-01-01

    Gas exchange coefficients were determined on Rockland Lake, NY; Crowley Lake, CA; and Mono Lake, CA which have surface areas of 1 km/sup 2/, 20 km/sup 2/, and 190 km/sup 2/, respectively, by injecting a small amount of man made tracer gas, sulfur hexafluoride (SF/sub 6/) into the lake and measuring the rate of concentration decrease in the water column with time. The dependency of gas exchange on wind speed is similar for the three lakes indicating that wind fetch is not a critical parameter for the gas exchange coefficient for lakes with sizes greater than 1 km/sup 2/. Little gas exchange occurs for wind speeds less than 2.5 m/s and gas exchange increases linearly with wind speed from 2.5 to 6 m/s. The relationship of gas exchange and wind speed for the lakes agrees well with a compilation of earlier single wind speed - exchange coefficient measurements on lakes and oceans but they are lower than most results obtained in wind tunnels.

  11. Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Shi, Ruixin; Hao, Changchun; Chen, Huan; Zhang, Lei; Li, Junhua; Xu, Guoqing; Sun, Runguang

    2016-09-01

    The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics. The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine (DPPE) by analyzing the data of surface pressure-area (π-A) isotherms and surface pressure-time (π-T) curves. Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 mN/m. However, the changes of DPPE are larger than DPPC, indicating stronger interaction of lysozyme with DPPE than DPPC. The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 mN/m. Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers, which leads to self-aggregation and self-assembly, forming irregular multimers and conical multimeric. Through analysis, we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603026), and the National University Science and Technology Innovation Project of China (Grant No. 201610718013).

  12. Evaluation of Natural Radioactivity in Subsurface Air, Water and Soil in Western Japan

    SciTech Connect

    Fukui, Masami

    2008-08-07

    Surveys of radon concentrations in western Japan were carried out to estimate the contents not only of waters in the environment but also in soil gas. The maximum concentration measured for drinking water as public supply exceeded the 1991 United States Environmental Protection Agency-recommended limit for drinking water (11 Bq L{sup -1}) but did not exceed that of several European countries (100 Bq L{sup -1}). Overall, the concentrations of radon in subsurface water ranged from 1 to 100 Bq L{sup -1} and those in surface water were below 1 Bq L{sup -1} in a residential area. Fifty nine samples in soil gas at 4 Prefectures of the Kinki district were analyzed together with 19 samples of interest due to karst and uranium mining sites from another two Prefectures to compare with the above samples. The cumulative frequency of the {sup 222}Rn-concentrations both in environmental water and soil gas showed a log-normal distribution. Surveys of natural radioactivity in soils were also carried out with a Ge(Li) detector to determine the concentrations.

  13. Organization of T-shaped facial amphiphiles at the air/water interface studied by infrared reflection absorption spectroscopy.

    PubMed

    Schwieger, Christian; Chen, Bin; Tschierske, Carsten; Kressler, Jörg; Blume, Alfred

    2012-10-11

    We studied the behavior of monolayers at the air/water interface of T-shaped facial amphiphiles which show liquid-crystalline mesophases in the bulk. The compounds are composed of a rigid p-terphenyl core (TP) with two terminal hydrophobic ether linked alkyl chains of equal length and one facial hydrophilic tri(ethylene oxide) chain with a carboxylic acid end group. Due to their amphiphilic nature they form stable Langmuir films at the air/water interface. Depending on the alkyl chain length they show markedly different compression isotherms. We used infrared reflection absorption spectroscopy (IRRAS) to study the changes in molecular organization of the TP films upon compression. We could retrieve information on layer thickness, alkyl chain crystallization, and the orientation of the TP cores within the films. Films of TPs with long (16 carbon atoms: TP 16/3) and short (10 carbon atoms: TP 10/3) alkyl chains were compared. Compression of TP 16/3 leads to crystallization of the terminal alkyl chains, whereas the alkyl chains of TP 10/3 stay fluid over the complete compression range. TP 10/3 shows an extended plateau in the compression isotherm which is due to a layering transition. The mechanism of this layering transition is discussed. Special attention was paid to the question of whether a so-called roll-over collapse occurs during compression. From the beginning to the end of the plateau, the layer thickness is increased from 15 to 38 Å and the orientation of the TP cores changes from parallel to the water surface to isotropic. We conclude that the plateau in the compression isotherm reflects the transition of a TP monolayer to a TP multilayer. The monolayer consists of a sublayer of well-organized TP cores underneath a sublayer of fluid alkyl chains whereas the multilayer consists of a well oriented bottom layer and a disordered top layer. Our findings do not support the model of a roll-over collapse. This study demonstrates how the IRRA band intensity of OH

  14. Attachment of composite porous supra-particles to air-water and oil-water interfaces: theory and experiment.

    PubMed

    Paunov, Vesselin N; Al-Shehri, Hamza; Horozov, Tommy S

    2016-09-29

    experimental data for the attachment of porous supra particles to the air-water interface from both air and water also agree with the theoretical model. This study gives important insights about how porous particles and particle aggregates attach to the oil-water interface in Pickering emulsions and the air-water surface in particle-stabilised aqueous foams relevant in ore flotation and a range of cosmetic, pharmaceutical, food, home and personal care formulations.

  15. Atmospheric partitioning and the air-water exchange of polycyclic aromatic hydrocarbons in a large shallow Chinese lake (Lake Chaohu).

    PubMed

    Qin, Ning; He, Wei; Kong, Xiang-Zhen; Liu, Wen-Xiu; He, Qi-Shuang; Yang, Bin; Ouyang, Hui-Ling; Wang, Qing-Mei; Xu, Fu-Liu

    2013-11-01

    The residual levels of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere and in dissolved phase from Lake Chaohu were measured by (GC-MS). The composition and seasonal variation were investigated. The diffusive air-water exchange flux was estimated by a two-film model, and the uncertainty in the flux calculations and the sensitivity of the parameters were evaluated. The following results were obtained: (1) the average residual levels of all PAHs (PAH16) in the atmosphere from Lake Chaohu were 60.85±46.17 ng m(-3) in the gaseous phase and 14.32±23.82 ng m(-3) in the particulate phase. The dissolved PAH16 level was 173.46±132.89 ng L(-1). (2) The seasonal variation of average PAH16 contents ranged from 43.09±33.20 ng m(-3) (summer) to 137.47±41.69 ng m(-3) (winter) in gaseous phase, from 6.62±2.72 ng m(-3) (summer) to 56.13±22.99 ng m(-3) (winter) in particulate phase, and 142.68±74.68 ng L(-1) (winter) to 360.00±176.60 ng L(-1) (summer) in water samples. Obvious seasonal trends of PAH16 concentrations were found in the atmosphere and water. The values of PAH16 for both the atmosphere and the water were significantly correlated with temperature. (3) The monthly diffusive air-water exchange flux of total PAH16 ranged from -1.77×10(4) ng m(-2) d(-1) to 1.11×10(5) ng m(-2) d(-1), with an average value of 3.45×10(4) ng m(-2) d(-1). (4) The results of a Monte Carlo simulation showed that the monthly average PAH fluxes ranged from -3.4×10(3) ng m(-2) d(-1) to 1.6×10(4) ng m(-2) d(-1) throughout the year, and the uncertainties for individual PAHs were compared. (5) According to the sensitivity analysis, the concentrations of dissolved and gaseous phase PAHs were the two most important factors affecting the results of the flux calculations.

  16. Mercury in the air, water and biota at the Great Salt Lake (Utah, USA).

    PubMed

    Peterson, Christianna; Gustin, Mae

    2008-11-01

    The Great Salt Lake, Utah (USA), is the fourth largest terminal lake on Earth and a stop-over location for 35 million birds on the Pacific Flyway. Recently, the Utah Department of Health and Utah Division of Wildlife Resources issued tissue mercury (Hg) consumption advisories for several species of birds that consume the lake's brine shrimp. We hypothesized that the chemistry of the atmosphere above the Great Salt Lake would facilitate atmospheric deposition of Hg to the water. Because little information was available on Hg at the Great Salt Lake, and to begin to test this hypothesis, we measured atmospheric elemental (Hg(0)) and reactive gaseous mercury (RGM) concentrations as well as Hg concentrations in water and brine shrimp five times over a ~year. Surrogate surfaces and a dry deposition model were applied to estimate the amount of Hg that could be input to the lake surface, and HYSPLIT model back trajectories were developed to investigate potential sources of RGM to the lake. Atmospheric Hg(0) concentrations were similar to global ambient background values and RGM concentrations were similar to those reported for rural areas. Both Hg(0) and RGM exhibited regular diel variability. Model estimated deposition velocities for RGM to the lake ranged from 0.9 to 3.0 cm s(-1) while that determined for surrogate surfaces ranged from 2.8 to 7.8 cm s(-1). Filtered total and methyl Hg concentrations in Great Salt Lake surface waters were consistent throughout the year (3.6+/-0.8 ng L(-1) and 0.93+/-0.59 ng L(-1), respectively), while brine shrimp concentrations had a statistically significant increase from summer to fall. Data collected and data analyses indicated no direct local or regional source of Hg to the lake and that factors within the Great Salt Lake basin are important in controlling Hg(0) and RGM concentrations.

  17. Air-water greenhouse gases exchange in two coastal systems in Cadiz Bay (SW Spain)

    NASA Astrophysics Data System (ADS)

    Burgos, Macarena; Ortega, Teodora; Forja, Jesús

    2014-05-01

    Coastal areas are subject to a great anthropogenic pressure because more than half of the world's population lives in its vicinity, causing organic matter inputs, which intensifies greenhouse gas emissions into the atmosphere. Water surface greenhouse gas concentrations (CH4 and N2O) have been estimated in two aquatic systems of Cadiz Bay Natural Park: Rio San Pedro Creek and Sancti Petri Channel Water renewal in Rio San Pedro Creek is tidally controlled. Due to its little freshwater input, the Creek is essentially a marine system. Several fish farms are distributed on its banks discharging effluents without previous treatment. Nine sampling stations are distributed along this system 12 Km length. Sancti Petri Channel is a flow channel-ebb tides extending from the inner Cadiz Bay to the Atlantic Ocean along 17 Km. Organic matter pollution sources in this environment are straggly. There exist anthropogenic inputs such as aquaculture effluents and sewage discharges coming through the Iro River, which flows into the Channel central part. In addition there are natural organic matter inputs from surrounding marshes. It has been established 11 sampling stations crossing this system. Sampling was conducted seasonally during 2013. CH4 and N2O concentrations were obtained though a gas chromatograph connected to an equilibration system. Greenhouse gas values vary between 24 and 295 nM and 16 and 27 nM for CH4 and N2O, respectively. Gas concentrations increase close to the fish farm effluent in Rio San Pedro Creek, and next to Iro River's mouth in Sancti Petri tidal Channel. Both environments act as greenhouse gas sources into the atmosphere, showing seasonal variations. It has been estimated mean fluxes of 75.3 μmol m-2 d-1 of CH4 and 31.9 μmol m-2 d-1 of N2O for both systems.

  18. Model colloid system for interfacial sorption kinetics

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hudson, Steven

    2014-11-01

    Adsorption kinetics of nanometer scale molecules, such as proteins at interfaces, is usually determined through measurements of surface coverage. Their small size limits the ability to directly observe individual molecule behavior. To better understand the behavior of nanometer size molecules and the effect on interfacial kinetics, we use micron size colloids with a weak interfacial interaction potential as a model system. Thus, the interaction strength is comparable to many nanoscale systems (less than 10 kBT). The colloid-interface interaction potential is tuned using a combination of depletion, electrostatic, and gravitational forces. The colloids transition between an entropically trapped adsorbed state and a desorbed state through Brownian motion. Observations are made using an LED-based Total Internal Reflection Microscopy (TIRM) setup. The observed adsorption and desorption rates are compared theoretical predictions based on the measured interaction potential and near wall particle diffusivity. This experimental system also allows for the study of more complex dynamics such as nonspherical colloids and collective effects at higher concentrations.

  19. Membrane Perturbation Induced by Interfacially Adsorbed Peptides

    PubMed Central

    Zemel, Assaf; Ben-Shaul, Avinoam; May, Sylvio

    2004-01-01

    The structural and energetic characteristics of the interaction between interfacially adsorbed (partially inserted) α-helical, amphipathic peptides and the lipid bilayer substrate are studied using a molecular level theory of lipid chain packing in membranes. The peptides are modeled as “amphipathic cylinders” characterized by a well-defined polar angle. Assuming two-dimensional nematic order of the adsorbed peptides, the membrane perturbation free energy is evaluated using a cell-like model; the peptide axes are parallel to the membrane plane. The elastic and interfacial contributions to the perturbation free energy of the “peptide-dressed” membrane are evaluated as a function of: the peptide penetration depth into the bilayer's hydrophobic core, the membrane thickness, the polar angle, and the lipid/peptide ratio. The structural properties calculated include the shape and extent of the distorted (stretched and bent) lipid chains surrounding the adsorbed peptide, and their orientational (C-H) bond order parameter profiles. The changes in bond order parameters attendant upon peptide adsorption are in good agreement with magnetic resonance measurements. Also consistent with experiment, our model predicts that peptide adsorption results in membrane thinning. Our calculations reveal pronounced, membrane-mediated, attractive interactions between the adsorbed peptides, suggesting a possible mechanism for lateral aggregation of membrane-bound peptides. As a special case of interest, we have also investigated completely hydrophobic peptides, for which we find a strong energetic preference for the transmembrane (inserted) orientation over the horizontal (adsorbed) orientation. PMID:15189858

  20. Enhancing interfacial magnetization with a ferroelectric

    DOE PAGES

    Meyer, Tricia L.; Herklotz, Andreas; Lauter, Valeria; ...

    2016-11-21

    Ferroelectric control of interfacial magnetism has attracted much attention. However, the coupling of these two functionalities has not been understood well at the atomic scale. The lack of scientific progress is mainly due to the limited characterization methods by which the interface’s magnetic properties can be probed at an atomic level. In this paper, we use polarized neutron reflectometry to probe the evolution of the magnetic moment at interfaces in ferroelectric/strongly correlated oxide [PbZr0.2Ti0.8O3/La0.8Sr0.2MnO3(PZT/LSMO)] heterostructures. We find that the magnetization at the surfaces and interfaces of our LSMO films without PZT are always deteriorated and such magnetic deterioration can bemore » greatly improved by interfacing with a strongly polar PZT film. Magnetoelectric coupling of magnetism and ferroelectric polarization was observed within a couple of nanometers of the interface via an increase in the LSMO surface magnetization to 4.0μB/f.u., a value nearly 70% higher than the surface magnetization of our LSMO film without interfacing with a ferroelectric layer. We attribute this behavior to hole depletion driven by the ferroelectric polarization. Finally, these compelling results not only probe the presence of nanoscale magnetic suppression and its control by ferroelectrics, but also emphasize the importance of utilizing probing techniques that can distinguish between bulk and interfacial phenomena.« less

  1. Enhancing interfacial magnetization with a ferroelectric

    NASA Astrophysics Data System (ADS)

    Meyer, Tricia L.; Herklotz, Andreas; Lauter, Valeria; Freeland, John W.; Nichols, John; Guo, Er-Jia; Lee, Shinbuhm; Ward, T. Zac; Balke, Nina; Kalinin, Sergei V.; Fitzsimmons, Michael R.; Lee, Ho Nyung

    2016-11-01

    Ferroelectric control of interfacial magnetism has attracted much attention. However, the coupling of these two functionalities has not been understood well at the atomic scale. The lack of scientific progress is mainly due to the limited characterization methods by which the interface's magnetic properties can be probed at an atomic level. Here, we use polarized neutron reflectometry to probe the evolution of the magnetic moment at interfaces in ferroelectric/strongly correlated oxide [PbZ r0.2T i0.8O3/L a0.8S r0.2Mn O3(PZT /LSMO ) ] heterostructures. We find that the magnetization at the surfaces and interfaces of our LSMO films without PZT are always deteriorated and such magnetic deterioration can be greatly improved by interfacing with a strongly polar PZT film. Magnetoelectric coupling of magnetism and ferroelectric polarization was observed within a couple of nanometers of the interface via an increase in the LSMO surface magnetization to 4.0 μB/f .u . , a value nearly 70% higher than the surface magnetization of our LSMO film without interfacing with a ferroelectric layer. We attribute this behavior to hole depletion driven by the ferroelectric polarization. These compelling results not only probe the presence of nanoscale magnetic suppression and its control by ferroelectrics, but also emphasize the importance of utilizing probing techniques that can distinguish between bulk and interfacial phenomena.

  2. Phases, line tension and pattern formation in molecularly thin films at the air-water interface

    NASA Astrophysics Data System (ADS)

    Mandal, Pritam

    A Langmuir film, which is a molecularly thin insoluble film on a liquid substrate, is one practical realization of a quasi-two dimensional matter. The major advantages of this system for the study of phase separation and phase co-existence are (a) it allows accurate control of the components and molecular area of the film and (b) it can be studied by various methods that require very flat films. Phase separation in molecularly thin films plays an important role in a range of systems from biomembranes to biosensors. For example, phase-separated lipid nano-domains in biomembranes are thought to play crucial roles in membrane function. I use Brewster Angel Microscopy (BAM) coupled with Fluorescence Microscopy (FM) and static Light Scattering Microscopy (LSM) to image phases and patterns within Langmuir films. The three microscopic techniques --- BAM, FM and LSM --- are complimentary to each other, providing distinct sets of information. They allow direct comparison with literature results in lipid systems. I have quantitatively validated the use of detailed hydrodynamic simulations to determine line tension in monolayers. Line tension decreases as temperature rises. This decrease gives us information on the entropy associated with the line, and thus about line structure. I carefully consider the thermodynamics of line energy and entropy to make this connection. In the longer run, LSM will be exploited to give us further information about line structure. I have also extended the technique by testing it on domains within the curved surface of a bilayer vesicle. I also note that in the same way that the presence of surface-active agents, known as surfactants, affects surface energy, the addiction of line active agents alters the inter-phase line energy. Thus my results set to stage to systematically study the influence of line active agents ---'linactants' --- on the inter-phase line energy. Hierarchal self-assembled chiral patterns were observed as a function of

  3. The effect of interfacial mass transfer on steady-state water radiolysis

    NASA Astrophysics Data System (ADS)

    Yakabuskie, Pamela A.; Joseph, Jiju M.; Clara Wren, J.

    2010-07-01

    The effect of aqueous-gas interfacial transfer of volatile species on the γ-radiolysis of water was studied as a function of gas-to-liquid volume ratio at various solution pHs and cover gas compositions. Water samples with cover-gas headspace were irradiated at an absorbed dose rate of 2.5 Gy s -1 and the radiolytic productions of H 2 in the cover gas and H 2O 2 in the water phase were monitored as a function of irradiation time. The experimental results were compared with computer simulations using a water radiolysis kinetics model that included primary radiolysis, subsequent reactions of the primary radiolysis products in the aqueous phase, and aqueous-gas interfacial transfer of the volatile species H 2 and O 2. This study shows that the impact of the interfacial mass transfer strongly depends on pH. At pH≤8 (lower than the pKa of •H of 9.6) the effect of aqueous-to-gas phase transfer of the volatile species on the steady-state concentrations of the other radiolysis products is negligible. At higher pHs (≥8), radiolytic production of O 2 is slow but considerable, which results in significant increase in the steady-state concentrations of H 2 and H 2O 2 compared to those at lower pHs. Thus, in the presence of headspace, the interfacial transfer of both H 2 and O 2 becomes significant, and the aqueous concentrations of H 2 and O 2 are no longer independent of the interfacial surface area and water volume. Nevertheless, the accumulated mass of H 2(g) in the headspace is proportional to the aqueous concentration of H 2 at all pHs, and the gaseous concentration of H 2 in the headspace can be used to infer the aqueous concentration of H 2.

  4. From nanodroplets by the ouzo effect to interfacial nanolenses.

    PubMed

    Peng, Shuhua; Xu, Chenglong; Hughes, Timothy C; Zhang, Xuehua

    2014-10-21

    Polymerizing nanodroplets at solid-liquid interfaces is a facile solution-based approach to the functionalization of large surface areas with polymeric lens-shaped nanostructures. In this work, we have applied a one-pot approach to obtain polymeric nanolenses with controlled sizes and densities. We take advantage of the formation mechanism by the direct adsorption of nanodroplets from a surfactant-free microemulsion onto an immersed hydrophobic substrate. The interfacial nanodroplets were photopolymerized to produce polymeric nanolenses on the substrate surface. The surfactant-free microemulsion of the monomer nanodroplets was obtained through the spontaneous emulsification (i.e., ouzo effect) in the tertiary system of ethanol, water, and precusor monomer. The size of nanolenses on the surface was adjusted by the nanodroplet size, following a linear relationship with the ratio of the components in the microemulsion. This simple approach is applicable to produce nanolenses over the entire surface area or on any specific area at will by depositing a drop of the microemulsion. Possessing high optical transparency, the resulting substrates may have potential applicatio