Science.gov

Sample records for air-water surface tension

  1. The Influence of Surface Tension Gradients on Surfactant Tracer Measurement of Air-Water Interfacial Area in Porous Media

    NASA Astrophysics Data System (ADS)

    Costanza-Robinson, M. S.; Estabrook, B. D.; Henry, E. J.

    2009-12-01

    Air-water interfacial area (AI) in porous media is an important factor governing equilibrium contaminant retention, as well as the kinetics of interphase mass transfer, such as delivery of oxygen to roots and volatilization of methane from landfills. Despite this importance, significant method-dependence is observed among techniques used to determine AI in porous media. In this work, possible low bias in conventional aqueous interfacial-partitioning tracer methodology (IPT) was examined by comparison of IPT-AI estimates with more direct estimates obtained using synchrotron X-ray microtomographic (µCT) imaging. Sodium dodecyl benzene sulfonate and pentafluorobenzoate were used as interfacial and nonreactive tracers, respectively, to measure AI at three water saturations (Sw) in a natural fine sand. IPT-AI exhibited expected trends, with higher areas associated with drier conditions, but the magnitude of AI was as much as 50% lower than those measured by µCT. IPT-AI values for the driest system agreed most closely with microtomography data. Real-time system mass measurements revealed that upon introduction of the surfactant tracer, system Sw decreased by 15-30%; the driest system exhibited the least drainage. This drainage is consistent with a reduction in capillarity caused by the lower surface tension of the surfactant solution as compared to the surfactant-free resident fluid. Drainage in the direction of flow would lead to earlier breakthrough of the surfactant tracer and a lower AI-estimate. In fact, the magnitude of drainage and magnitude of AI-underestimation relative to µCT were qualitatively correlated. Although this effect was expected, its magnitude and potential influence on AI was previously unknown and was larger than anticipated.

  2. Surface Tension

    SciTech Connect

    2011-01-01

    Surface tension in the kitchen sink. At Berkeley Lab's Molecular Foundry, scientists study surface tension to understand how molecules "self-assemble." The coin trick in the video uses the re-arrangement of water molecules to seemingly create order out of disorder. The same principle can be used to create order in otherwise hard-to-handle nano materials. Scientists can then transfer these ordered materials onto surfaces by dipping them through the air-water interface, or (as we've recently shown) squeeze them so that they collapse into the water as two-molecule-thick nano sheets. http://newscenter.lbl.gov/feature-stories/2011/10/17/shaken-not-stirred/

  3. Surface Tension

    NASA Technical Reports Server (NTRS)

    Theissen, David B.; Man, Kin F.

    1996-01-01

    The effect of surface tension is observed inmany everyday situations. For example, a slowly leaking faucet drips because the force surface tension allows the water to cling to it until a sufficient mass of water is accumulated to break free.

  4. Demonstration of Surface Tension.

    ERIC Educational Resources Information Center

    Rosenthal, Andrew J.

    2001-01-01

    Surface tension is a fundamental obstacle in the spontaneous formation of bubbles, droplets, and crystal nuclei in liquids. Describes a simple overhead projector demonstration that illustrates the power of surface tension that can prevent so many industrial processes. (ASK)

  5. Surface behavior of malonic acid adsorption at the air/water interface.

    PubMed

    Blower, Patrick G; Shamay, Eric; Kringle, Loni; Ota, Stephanie T; Richmond, Geraldine L

    2013-03-28

    The presence of organic materials adsorbed to the surfaces of aerosol particles has been demonstrated to be a determining factor in relevant atmospheric processes. Malonic acid is a small, water-soluble organic acid that is common in aerosols and is surface-active. A comprehensive investigation of the adsorption of malonic acid to the air/water interface was accomplished using vibrational sum frequency spectroscopy (VSFS) and surface tension measurements as functions of concentration and pH. Malonic acid was found to be weakly solvated at the air/water interface, and its orientation as a function of concentration was explored through different VSFS polarization schemes. pH-dependent experiments revealed that the surface-active species is the fully protonated species. Computational analyses were used to obtain depth-specific geometries of malonic acid at the air/water interface that confirm and enrich the experimental results.

  6. Oil lenses on the air-water surface and the validity of Neumann's rule.

    PubMed

    Nikolov, Alex; Wasan, Darsh

    2016-05-10

    Many studies have focused on the mechanisms of oil spreading over the air-water surface, oil lens formation, and lens dynamics: Franklin et al.(1774), Rayleigh (1890), Neumann and Wangerin (1894), Hardy (1912), Lyons (1930), Langmuir (1933), Miller (1941), Zisman (1941), Pujado and Scriven (1972), Seeto et al. (1983), and Takamura et al. (2012). Despite all of these studies, the phenomenon of the oil lens's air-water surface equilibrium is still under discussion. Here, we highlight an accurate method to study the oil lens's three-phase-contact angle by reflected light interferometry, using both common (CRLI) and differential reflected light interferometry (DRLI) to verify Neumann's rule (the vectorial sum of the three tensions is zero). For non-spreading oils, the validity of Neumann's rule is confirmed for small lenses when the role of the oil film tension around the lens's meniscus is taken into consideration. Neumann's rule was also validated when the monolayer surface pressure isotherm was taken into consideration for oil spreading on the air-water surface. The periodic monolayer surface pressure oscillation of the oil phase monolayer created by the air-evaporating biphilic oil was monitored with time. The monolayer's surface pressure periodic oscillation was attributed to the instability of the aqueous film covering the oil drop phase. The knowledge gained from this study will benefit the fundamental understanding of the oil lens's air-water surface equilibrium and oil spill mechanisms, thereby promoting better methods for the prevention and clean-up of oil spills.

  7. Surface Tension Microscopy

    NASA Astrophysics Data System (ADS)

    Neumann, Burkhard; Engel, Horst; Schleifenbaum, Bernd

    1989-12-01

    A new microscopic technique will be presented for imaging surface topography and the locally varying surface tension of the object. With this technique it is possible to image the locally varying chemical composition of the specimen surface on a microscopic scale because the surface tension depends on the chemical composition. The imaging technique can be described as follows: By a simple preparation technique a thin (thickness several microns) liquid layer (e.g. immersion oil), is placed on the surface of the specimen. The resulting surface tension forces the boundary of the liquid layer to move. As the surface tension is a function of the location the boundary is modulated according to the magnitude of the surface tension at each place. Thus registering the shape of the moving boundary of the liquid layer at equidistant time intervals yields information on the specimen surface. The shape of the moving boundary is detected by a light microscope with differential interference contrast in combination with an image analysis system suited for real-time processing of image sequences in a threshold detection mode.

  8. Surface Tension of Spacetime

    NASA Astrophysics Data System (ADS)

    Perko, Howard

    2017-01-01

    Concepts from physical chemistry and more specifically surface tension are introduced to spacetime. Lagrangian equations of motion for membranes of curved spacetime manifold are derived. The equations of motion in spatial directions are dispersion equations and can be rearranged to Schrodinger's equation where Plank's constant is related to membrane elastic modulus. The equation of motion in the time-direction has two immediately recognizable solutions: electromagnetic waves and corpuscles. The corpuscular membrane solution can assume different genus depending on quantized amounts of surface energy. A metric tensor that relates empty flat spacetime to energetic curved spacetime is found that satisfies general relativity. Application of the surface tension to quantum electrodynamics and implications for quantum chromodynamics are discussed. Although much work remains, it is suggested that spacetime surface tension may provide a classical explanation that combines general relativity with field theories in quantum mechanics and atomic particle physics.

  9. Detachment of colloids from a solid surface by a moving air-water interface.

    PubMed

    Sharma, Prabhakar; Flury, Markus; Zhou, Jun

    2008-10-01

    Colloid attachment to liquid-gas interfaces is an important process used in industrial applications to separate suspended colloids from the fluid phase. Moving gas bubbles can also be used to remove colloidal dust from surfaces. Similarly, moving liquid-gas interfaces lead to colloid mobilization in the natural subsurface environment, such as in soils and sediments. The objective of this study was to quantify the effect of moving air-water interfaces on the detachment of colloids deposited on an air-dried glass surface, as a function of colloidal properties and interface velocity. We selected four types of polystyrene colloids (positive and negative surface charge, hydrophilic and hydrophobic). The colloids were deposited on clean microscope glass slides using a flow-through deposition chamber. Air-water interfaces were passed over the colloid-deposited glass slides, and we varied the number of passages and the interface velocity. The amounts of colloids deposited on the glass slides were visualized using confocal laser scanning microscopy and quantified by image analysis. Our results showed that colloids attached under unfavorable conditions were removed in significantly greater amounts than those attached under favorable conditions. Hydrophobic colloids were detached more than hydrophilic colloids. The effect of the air-water interface on colloid removal was most pronounced for the first two passages of the air-water interface. Subsequent passages of air-water interfaces over the colloid-deposited glass slides did not cause significant additional colloid removal. Increasing interface velocity led to decreased colloid removal. The force balances, calculated from theory, supported the experimental findings, and highlight the dominance of detachment forces (surface tension forces) over the attachment forces (DLVO forces).

  10. Surface tension and microgravity

    NASA Astrophysics Data System (ADS)

    Meseguer, J.; Sanz-Andrés, A.; Pérez-Grande, I.; Pindado, S.; Franchini, S.; Alonso, G.

    2014-09-01

    The behaviour of confined liquids on board an orbiting spacecraft is mainly driven by surface tension phenomena, which cause an apparently anomalous response of the liquid when compared with the behaviour that can be observed on an Earth laboratory provided that the amount of liquid is high enough. The reason is that in an orbiting spacecraft the different inertial forces acting on the bulk of the liquid are almost zero, causing thus capillary forces to be the dominant ones. Of course, since gravity forces are proportional to the liquid volume, whereas surface tension forces are proportional to the liquid surface, there are situations on Earth where capillarity can be the dominant effect, as it happens when very small volume liquid samples are considered. However, work with small size samples may require the use of sophisticated optical devices. Leaving aside the neutral buoyancy technique, a way of handling large liquid interfaces is by using drop towers, where the sample falls subjected to the action of Earth’s gravity. This approach is suitable when the characteristic time of the problem under consideration is much smaller than the drop time. In this work the transformation of an out-of-use chimney into a drop tower is presented. Because of the miniaturization, hardiness and low cost of current electronic devices, a drop tower can be used as an inexpensive tool for undergraduate students to experimentally analyse a large variety of surface tension driven phenomena.

  11. Surface tension of spherical drops from surface of tension

    SciTech Connect

    Homman, A.-A.; Bourasseau, E.; Malfreyt, P.; Strafella, L.; Ghoufi, A.

    2014-01-21

    The determination of surface tension of curved interfaces is a topic that raised many controversies during the last century. Explicit liquid-vapor interface modelling (ELVI) was unable up to now to reproduce interfacial behaviors in drops due to ambiguities in the mechanical definition of the surface tension. In this work, we propose a thermodynamic approach based on the location of surface of tension and its use in the Laplace equation to extract the surface tension of spherical interfaces from ELVI modelling.

  12. Nonlinear Acoustics at the Air-Water Free Surface

    NASA Astrophysics Data System (ADS)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  13. Phases, line tension and pattern formation in molecularly thin films at the air-water interface

    NASA Astrophysics Data System (ADS)

    Mandal, Pritam

    A Langmuir film, which is a molecularly thin insoluble film on a liquid substrate, is one practical realization of a quasi-two dimensional matter. The major advantages of this system for the study of phase separation and phase co-existence are (a) it allows accurate control of the components and molecular area of the film and (b) it can be studied by various methods that require very flat films. Phase separation in molecularly thin films plays an important role in a range of systems from biomembranes to biosensors. For example, phase-separated lipid nano-domains in biomembranes are thought to play crucial roles in membrane function. I use Brewster Angel Microscopy (BAM) coupled with Fluorescence Microscopy (FM) and static Light Scattering Microscopy (LSM) to image phases and patterns within Langmuir films. The three microscopic techniques --- BAM, FM and LSM --- are complimentary to each other, providing distinct sets of information. They allow direct comparison with literature results in lipid systems. I have quantitatively validated the use of detailed hydrodynamic simulations to determine line tension in monolayers. Line tension decreases as temperature rises. This decrease gives us information on the entropy associated with the line, and thus about line structure. I carefully consider the thermodynamics of line energy and entropy to make this connection. In the longer run, LSM will be exploited to give us further information about line structure. I have also extended the technique by testing it on domains within the curved surface of a bilayer vesicle. I also note that in the same way that the presence of surface-active agents, known as surfactants, affects surface energy, the addiction of line active agents alters the inter-phase line energy. Thus my results set to stage to systematically study the influence of line active agents ---'linactants' --- on the inter-phase line energy. Hierarchal self-assembled chiral patterns were observed as a function of

  14. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using

  15. Fluoride glass: Crystallization, surface tension

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1988-01-01

    Fluoride glass was levitated acoustically in the ACES apparatus on STS-11, and the recovered sample had a different microstructure from samples cooled in a container. Further experiments on levitated samples of fluoride glass are proposed. These include nucleation, crystallization, melting observations, measurement of surface tension of molten glass, and observation of bubbles in the glass. Ground experiments are required on sample preparation, outgassing, and surface reactions. The results should help in the development and evaluation of containerless processing, especially of glass, in the development of a contaminent-free method of measuring surface tensions of melts, in extending knowledge of gas and bubble behavior in fluoride glasses, and in increasing insight into the processing and properties of fluoride glasses.

  16. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  17. Axelrod's model with surface tension

    NASA Astrophysics Data System (ADS)

    Pace, Bruno; Prado, Carmen P. C.

    2014-06-01

    In this work we propose a subtle change in Axelrod's model for the dissemination of culture. The mechanism consists of excluding from the set of potentially interacting neighbors those that would never possibly exchange. Although the alteration proposed does not alter the state space topologically, it yields significant qualitative changes, specifically the emergence of surface tension, driving the system in some cases to metastable states. The transient behavior is considerably richer, and cultural regions become stable leading to the formation of different spatiotemporal patterns. A metastable "glassy" phase emerges between the globalized phase and the disordered, multicultural phase.

  18. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  19. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow.

    PubMed

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  20. Dynamical Modeling of Surface Tension

    NASA Technical Reports Server (NTRS)

    Brackbill, Jeremiah U.; Kothe, Douglas B.

    1996-01-01

    In a recent review it is said that free-surface flows 'represent some of the difficult remaining challenges in computational fluid dynamics'. There has been progress with the development of new approaches to treating interfaces, such as the level-set method and the improvement of older methods such as the VOF method. A common theme of many of the new developments has been the regularization of discontinuities at the interface. One example of this approach is the continuum surface force (CSF) formulation for surface tension, which replaces the surface stress given by Laplace's equation by an equivalent volume force. Here, we describe how CSF formulation might be made more useful. Specifically, we consider a derivation of the CSF equations from a minimization of surface energy as outlined by Jacqmin (1996). This reformulation suggests that if one eliminates the computation of curvature in terms of a unit normal vector, parasitic currents may be eliminated. For this reformulation to work, it is necessary that transition region thickness be controlled. Various means for this, in addition to the one discussed by Jacqmin (1996), are discussed.

  1. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds.

  2. Effect of surfactants on surface activity and rheological properties of type I collagen at air/water interface.

    PubMed

    Kezwoń, Aleksandra; Góral, Ilona; Frączyk, Tomasz; Wojciechowski, Kamil

    2016-12-01

    We describe the effect of three synthetic surfactants (anionic - sodium dodecyl sulfate (SDS), cationic - cetyltrimethylammonium bromide (CTAB) and nonionic - Triton X-100 (TX-100)) on surface properties of the type I calf skin collagen at the air/water interface in acidic solutions (pH 1.8). The protein concentration was fixed at 5×10(-6)molL(-1) and the surfactant concentration was varied in the range 5×10(-6)molL(-1)-1×10(-4)molL(-1), producing the protein/surfactant mixtures with molar ratios of 1:1, 1:2, 1:5, 1:10 and 1:20. An Axisymmetric Drop Shape Analysis (ADSA) method was used to determine the dynamic surface tension and surface dilatational moduli of the mixed adsorption layers. Two spectroscopic techniques: UV-vis spectroscopy and fluorimetry allowed us to determine the effect of the surfactants on the protein structure. The thermodynamic characteristic of the mixtures was studied using isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). Modification of the collagen structure by SDS at low surfactant/protein ratios has a positive effect on the mixture's surface activity with only minor deterioration of the rheological properties of the adsorbed layers. The collagen/CTAB mixtures do not show that pronounced improvement in surface activity, while rheological properties are significantly deteriorated. The mixtures with non-ionic TX-100 do not show any synergistic effects in surface activity.

  3. Effect of Gravity on Surface Tension

    NASA Technical Reports Server (NTRS)

    Weislogel, M. M.; Azzam, M. O. J.; Mann, J. A.

    1998-01-01

    Spectroscopic measurements of liquid-vapor interfaces are made in +/- 1-g environments to note the effect of gravity on surface tension. A slight increase is detected at -1-g0, but is arguably within the uncertainty of the measurement technique. An increased dependence of surface tension on the orientation and magnitude of the gravitational vector is anticipated as the critical point is approached.

  4. The surface tension of liquid gallium

    NASA Technical Reports Server (NTRS)

    Hardy, S. C.

    1985-01-01

    The surface tension of liquid gallium has been measured using the sessile drop technique in an Auger spectrometer. The experimental method is described. The surface tension in mJ/sq m is found to decrease linearly with increasing temperature and may be represented as 708-0.66(T-29.8), where T is the temperature in centigrade. This result is of interest because gallium has been suggested as a model fluid for Marangoni flow experiments. In addition, the surface tension is of technological significance in the processing of compound semiconductors involving gallium.

  5. The Dynamic Surface Tension of Water.

    PubMed

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-03-23

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m(-1)) than under equilibrium conditions (∼72 mN m(-1)) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  6. The Dynamic Surface Tension of Water

    PubMed Central

    2017-01-01

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m–1) than under equilibrium conditions (∼72 mN m–1) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  7. Surface properties and morphology of mixed POSS-DPPC monolayers at the air/water interface.

    PubMed

    Rojewska, Monika; Skrzypiec, Marta; Prochaska, Krystyna

    2017-02-01

    From the point of view of the possible medical applications of POSS (polyhedral oligomeric silsesquioxanes), it is crucial to analyse interactions occurring between POSS and model biological membrane at molecular level. Knowledge of the interaction between POSS and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) allows prediction of the impact of POSS contained in biomaterials or cosmetics on a living organism. In the study presented, the surface properties and morphology of Langmuir monolayers formed by mixtures of POSS and the phospholipid (DPPC) at the air/water surface are examined. We selected two POSS derivatives, with completely different chemical structure of substituents attached to the corner of the silicon open cage, which allowed the analysis of the impact of the character of organic moieties (strongly hydrophobic or clearly hydrophilic) on the order of POSS molecules and their tendency to form self-aggregates at the air/water surface. POSS derivatives significantly changed the profile of the π-A isotherms obtained for DPPC but in different ways. On the basis of the regular solution theory, the miscibility and stability of the two components in the monolayer were analysed in terms of compression modulus (Cs(-1)), excess Gibbs free energy (ΔGexc), activity coefficients (γ) and interaction parameter (ξ). The results obtained indicate the existence of two different interaction mechanisms between DPPC and POSS which depend on the chemical character of moieties present in POSS molecules.

  8. Near-surface physics during convection affecting air-water gas transfer

    NASA Astrophysics Data System (ADS)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-05-01

    The gas flux at the water surface is affected by physical processes including turbulence from wind shear, microscale wave breaking, large-scale breaking, and convection due to heat loss at the surface. The main route in the parameterizations of the gas flux has been to use the wind speed as a proxy for the gas flux velocity, indirectly taking into account the dependency of the wind shear and the wave processes. The interest in the contributions from convection processes has increased as the gas flux from inland waters (with typically lower wind and sheltered conditions) now is believed to play a substantial role in the air-water gas flux budget. The gas flux is enhanced by convection through the mixing of the mixed layer as well as by decreasing the diffusive boundary layer thickness. The direct numerical simulations performed in this study are shown to be a valuable tool to enhance the understanding of this flow configuration often present in nature.

  9. Surface enhanced Raman scattering of a lipid Langmuir monolayer at the air-water interface.

    PubMed

    Mangeney, C; Dupres, V; Roche, Y; Felidj, N; Levi, G; Aubard, J; Bernard, S

    Surface enhanced Raman spectra were recorded from a phospholipid monolayer directly at the air-water interface. We used an organized monolayer of negatively charged tetramyristoyl cardiolipins as a template for the electrochemical generation of silver deposits. This two-dimensional electrodeposition of silver under potentiostatic control was the substrate for enhancement of Raman spectra. We report the optimized conditions for the Raman enhancement, the microscopic observations of the deposits, and their characterization by atomic force microscopy. Laser excitation at 514.5 nm leads to intense and reproducible surface enhanced Raman scattering spectra recorded in situ from one monolayer of cardiolipin, using 0.5 mol % of 10N nonyl acridine orange or 5 mol % of acridine in the film, and demonstrates the possibility of estimating the pH at the metal/phospholipidic film interface.

  10. Surface shear rheology of WPI-monoglyceride mixed films spread at the air-water interface.

    PubMed

    Carrera Sánchez, Cecilio; Rodríguez Patino, Juan M

    2004-07-01

    Surface shear viscosity of food emulsifiers may contribute appreciably to the long-term stability of food dispersions (emulsions and foams). In this work we have analyzed the structural, topographical, and shear characteristics of a whey protein isolate (WPI) and monoglyceride (monopalmitin and monoolein) mixed films spread on the air-water interface at pH 7 and at 20 degrees C. The surface shear viscosity (etas) depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity varies greatly with the surface pressure. In general, the greater the surface pressure, the greater are the values of etas. The values of etas for the mixed WPI-monoolein monolayer were more than one order of magnitude lower than those for a WPI-monopalmitin mixed film, especially at the higher surface pressures. At higher surface pressures, collapsed WPI residues may be displaced from the interface by monoglyceride molecules with important repercussions on the shear characteristics of the mixed films. A shear-induced change in the topography and a segregation between domains of the film forming components were also observed. The displacement of the WPI by the monoglycerides is facilitates under shear conditions, especially for WPI-monoolein mixed films.

  11. Surface activity coefficients of spread monolayers of behenic acid salts at air-water interface.

    PubMed

    Chattoraj, D K; Halder, E; Das, K P; Mitra, A

    2006-11-16

    The pressure-area isotherms of ionized monolayers of behenic acid at air-water interface at pH 12.0 have been obtained from the Langmuir film balance experiments under various physico-chemical conditions. The value of the measured surface pressure at a given area per molecule is equal to the sum of the ideal pressure, cohesive pressure and electrical pressure. The electrical pressure term is regarded as the sum of the pressure originating from the Gouy-Chapman double layer including discrete ion effect, ion binding and monolayer hydration effect. At a given area, the deviation of the measured surface pressure from its ideal value has been calculated in terms of the apparent surface compressibility coefficients, surface fugacity coefficients for gaseous monolayer and surface activity coefficients of solute forming two-dimensional solutions in the monolayer phase respectively. Values of all these coefficients have been calculated for different compositions of the monolayer using non-ideal gas model and Raoult's and Henry's laws modified for two-dimensional non-ideal solutions respectively. Values of these coefficients may be higher or lower than unity depending upon ionic strengths and nature of inorganic salts present in the sub-phase. Using these values of surface activity coefficients, the standard free energies of formation, of spread monolayers of salts of behenic acid have been calculated at different standard states of reference.

  12. The Importance of Moving Air-Water Interfaces for Colloid Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Flury, M.

    2015-12-01

    In the vadose zone, or in unsaturated porous media in general, transport of colloids is usually less pronounced than in groundwater. An important retention mechanism for colloids in unsaturated porous media is attachment to air-water interfaces. However, air-water interfaces can also lead to colloid mobilization and enhanced transport if air-water interfaces are moving, such as during infiltration, imbibition, and drainage. Colloid attachment to air-water interfaces is caused by surface tension forces, and these forces usually exceed other interactions forces; therefore, surface tension forces play a dominant role for colloid transport in unsaturated porous media. In this presentation, experimental and theoretical evidence of surface tension forces acting on colloids will be presented, and the role of moving air-water interfaces will be discussed.

  13. Carbon speciation and surface tension of fog

    USGS Publications Warehouse

    Capel, P.D.; Gunde, R.; Zurcher, F.; Giger, W.

    1990-01-01

    The speciation of carbon (dissolved/particulate, organic/inorganic) and surface tension of a number of radiation fogs from the urban area of Zurich, Switzerland, were measured. The carbon species were dominated by "dissolved" organic carbon (DOC; i.e., the fraction that passes through a filter), which was typically present at levels of 40-200 mg/L. Less than 10% of the DOC was identified as specific individual organic compounds. Particulate organic carbon (POC) accounted for 26-41% of the mass of the particles, but usually less than 10% of the total organic carbon mass. Inorganic carbon species were relatively minor. The surface tensions of all the measured samples were less than pure water and were correlated with their DOC concentrations. The combination of high DOC and POC and low surface tension suggests a mechanism for the concentration of hydrophobic organic contaminants in the fog droplet, which have been observed by numerous investigators. ?? 1990 American Chemical Society.

  14. Measuring the surface tension of soap bubbles

    NASA Technical Reports Server (NTRS)

    Sorensen, Carl D.

    1992-01-01

    The objectives are for students to gain an understanding of surface tension, to see that pressure inside a small bubble is larger than that inside a large bubble. These concepts can be used to explain the behavior of liquid foams as well as precipitate coarsening and grain growth. Equipment, supplies, and procedures are explained.

  15. Pumpless Transport of Low Surface Tension Liquids in Surface Tension Confined (STC) Tracks

    NASA Astrophysics Data System (ADS)

    Megaridis, Constantine; Schutzius, Thomas; Elsharkawy, Mohamed; Tiwari, Manish

    2012-11-01

    Surfaces with patterned wettability have potential applications in microfluidics, fog capture, pool boiling, etc. With recent fabrication advancements, surfaces with adjacent superhydrophobic and superhydrophilic regions are feasible at a reasonable cost; with properly designed patterns, one can produce microfluidic paths (a.k.a. surface tension confined or STC tracks) where a liquid is confined and transported by surface tension alone. The surface tension of water is relatively high (72 mN/m), as compared with oils (~25 mN/m) and organic solvents (~20 mN/m). This makes the design of STC channels for oils and organic solvents far more difficult. In this study, open STC tracks for pumpless transport of low-surface tension liquids (acetone, ethanol, and hexadecane) on microfluidic chips are fabricated using a large-area, wet-processing technique. Wettable, wax-based, submillimeter-wide tracks are applied by a fountain-pen procedure on superoleophobic, fluoroacrylic carbon nanofiber (CNF) composite coatings. The fabricated anisotropic wetting patterns confine the low-surface tension liquids onto the flow tracks, driving them with meniscus velocities exceeding 3 cm/s. Scaling arguments and Washburn's equation provide estimates of the liquid velocities measured in these tracks, which also act as rails for directional sliding control of mm-sized water droplets. The present facile patterned wettability approach can be extended to deposit micrometer-wide tracks.

  16. Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces

    PubMed Central

    Rykaczewski, Konrad; Paxson, Adam T.; Staymates, Matthew; Walker, Marlon L.; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H.; Chinn, Jeff; Scott, John Henry J.; Varanasi, Kripa K.

    2014-01-01

    Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient. PMID:24595171

  17. Dropwise condensation of low surface tension fluids on omniphobic surfaces.

    PubMed

    Rykaczewski, Konrad; Paxson, Adam T; Staymates, Matthew; Walker, Marlon L; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H; Chinn, Jeff; Scott, John Henry J; Varanasi, Kripa K

    2014-03-05

    Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient.

  18. Surface tension effects in levitated helium drops

    NASA Astrophysics Data System (ADS)

    Vicente, Carlos Luis

    We report our investigations of surface tension driven flows in magnetically levitated 4He drops. By levitating helium drops in a magnetic trap we are able to observe the free surface of drops as they undergo shape oscillations. We also study the dynamics of the free surface during the process of coalescence. Our experimental method allows us to excite shape oscillations in the levitated helium drops and measure their normal mode frequencies. By measuring the frequency of the fundamental (l = 2) mode, we obtain new measurements of the surface tension of helium for temperatures between 1.5 and 0.5 K. Our measurements extrapolate to a value of 0.375 erg cm -2 at T = 0 K. Our results agree with the capillary wave measurements of Roche et al., and Atkins and Narahra. We study how the shape of the trap used to levitate the drops influences the resonant frequency of the l = 2 mode. Measurements of the frequency spectrum were performed using different trap potentials. We have calculated the resonant frequencies for the trap shapes produced by different magnet coil currents. We compare our measurements of the resonant frequencies at various magnet currents with these theoretical predictions and find good agreement. We describe experiments to study the coalescence of He II drops levitated in a magnetic trap. Using a high speed CCD camera, we have produced movies of drops coalescing at temperatures as low as 0.7 K. We examine some interesting features of the motion during and following coalescence.

  19. STAND: Surface Tension for Aggregation Number Determination.

    PubMed

    Garrido, Pablo F; Brocos, Pilar; Amigo, Alfredo; García-Río, Luis; Gracia-Fadrique, Jesús; Piñeiro, Ángel

    2016-04-26

    Taking advantage of the extremely high dependence of surface tension on the concentration of amphiphilic molecules in aqueous solution, a new model based on the double equilibrium between free and aggregated molecules in the liquid phase and between free molecules in the liquid phase and those adsorbed at the air/liquid interface is presented and validated using literature data and fluorescence measurements. A key point of the model is the use of both the Langmuir isotherm and the Gibbs adsorption equation in terms of free molecules instead of the nominal concentration of the solute. The application of the model should be limited to non ionic compounds since it does not consider the presence of counterions. It requires several coupled nonlinear fittings for which we developed a software that is publicly available in our server as a web application. Using this tool, it is straightforward to get the average aggregation number of an amphiphile, the micellization free energy, the adsorption constant, the maximum surface excess (and so the minimum area per molecule), the distribution of solute in the liquid phase between free and aggregate species, and the surface coverage in only a couple of seconds, just by uploading a text file with surface tension vs concentration data and the corresponding uncertainties.

  20. Surface energy and surface tension at holes and cracks

    NASA Technical Reports Server (NTRS)

    Rajapakse, Y. D. S.

    1975-01-01

    The concept of surface tension and surface energy of solids was used by Griffith to obtain a criterion for the extension of cracks in brittle materials. Griffith, however, neglected the stresses due to the normal traction at the crack implied by the surface tension. A complete solution to the problem of an elliptic hole in an infinite plate with surface tension loading at the hole is given. Complex potentials are given in closed form in terms of elliptic integrals of the first, second, and third kinds. Stress distributions are studied. For a flat crack, the nature of the singularity at the tip is shown to be radically different from that usually encountered in fracture mechanics. The implications of our analysis for theories of fracture in brittle materials are discussed.

  1. Review of literature surface tension data for molten silicon

    NASA Technical Reports Server (NTRS)

    Hardy, S.

    1981-01-01

    Measurements of the surface tension of molten silicon are reported. For marangoni flow, the important parameter is the variation of surface tension with temperature, not the absolute value of the surface tension. It is not possible to calculate temperature coefficients using surface tension measurements from different experiments because the systematic errors are usually larger than the changes in surface tension because of temperature variations. The lack of good surface tension data for liquid silicon is probably due to its extreme chemical reactivity. A material which resists attack by molten silicon is not found. It is suggested that all of the sessile drip surface tension measurements are probably for silicon which is contaminated by the substrate materials.

  2. Method for Measuring Changes in Surface Tension on Agar

    PubMed Central

    Weisberg, David S.; Dworkin, Martin

    1983-01-01

    The surface tension of agar surfaces was determined by measuring the contact angles formed by drops of various hydrophobic liquids on the surface and then calculating the composite surface free energy function by solving a series of simultaneous equations derived from these data. This method was used to measure the change in the surface tension of agar produced by the addition of various concentrations of albumin. The resulting curve was typical of the effect of increasing concentrations of surfactants on surface tension. The method was compared with other methods of determining surface tension of solids, and it was concluded that the technique used here provided the most reliable results. PMID:16346273

  3. Surface Tension of Nano-Confined Lattice Polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Wang, Qiang

    2015-03-01

    Surface tension at solid/liquid interface is a key concept in understanding many important surface and interfacial phenomena such as wetting and capillarity. It is, however, not trivial to accurately calculate surface tension in lattice Monte Carlo (LMC) simulations, which are much faster than simulations in continuum. Here we propose a novel, efficient, and accurate method for calculating the surface tension of polymers confined between two parallel and impenetrable surfaces in LMC simulations, and examine how surface tension varies with the degree of confinement (i.e., separation distance between the two surfaces). Direct comparisons between our LMC results and the corresponding lattice self-consistent field (LSCF) calculations also unambiguously and quantitatively reveal the fluctuation/correlation effects on surface tension neglected in LSCF theory. Keywords: Surface tension, lattice polymers, Monte Carlo simulations

  4. Surface tension confined (STC) tracks for capillary-driven transport of low surface tension liquids.

    PubMed

    Schutzius, Thomas M; Elsharkawy, Mohamed; Tiwari, Manish K; Megaridis, Constantine M

    2012-12-21

    Surface tension confined (STC) open tracks for pumpless transport of low-surface tension liquids (e.g., acetone, ethanol, hexadecane) on microfluidic chips are fabricated using a large-area, wet-processing technique. Wettable, paraffin-wax, submillimeter-wide tracks are applied by a fountain-pen procedure on superoleophobic, fluoroacrylic-carbon nanofiber (CNF) composite coatings. The fabricated anisotropic wetting patterns confine the low-surface-tension liquids onto the flow tracks, driving them with meniscus velocities up to 3.1 cm s(-1). Scaling arguments and Washburn's equation provide estimates of the liquid velocities measured in the STC tracks. These tracks are also shown to act as rails for directional sliding control of mm-sized water droplets. The present facile top-down patterned wettability approach can be extended to deposit micrometer-wide tracks, which bear promise for pumpless handling of low-surface tension liquids (e.g., aqueous solutions containing alcohols or surfactants) in lab-on-a-chip type applications or in low power, high-throughput bio-microfluidics for health care applications.

  5. Surface tension effects on submerged electrosprays

    PubMed Central

    Marín, Álvaro G.; Loscertales, Ignacio G.; Barrero, Antonio

    2012-01-01

    Electrosprays are a powerful technique to generate charged micro/nanodroplets. In the last century, the technique has been extensively studied, developed, and recognized with a shared Nobel price in Chemistry in 2002 for its wide spread application in mass spectrometry. However, nowadays techniques based on microfluidic devices are competing to be the next generation in atomization techniques. Therefore, an interesting development would be to integrate the electrospray technique into a microfluidic liquid-liquid device. Several works in the literature have attempted to build a microfluidic electrospray with disputable results. The main problem for its integration is the lack of knowledge of the working parameters of the liquid-liquid electrospray. The “submerged electrosprays” share similar properties as their counterparts in air. However, in the microfluidic generation of micro/nanodroplets, the liquid-liquid interfaces are normally stabilized with surface active agents, which might have critical effects on the electrospray behavior. In this work, we review the main properties of the submerged electrosprays in liquid baths with no surfactant, and we methodically study the behavior of the system for increasing surfactant concentrations. The different regimes found are then analyzed and compared with both classical and more recent experimental, theoretical and numerical studies. A very rich phenomenology is found when the surface tension is allowed to vary in the system. More concretely, the lower states of electrification achieved with the reduced surface tension regimes might be of interest in biological or biomedical applications in which excessive electrification can be hazardous for the encapsulated entities. PMID:24155865

  6. Surface tension of ionic liquids and ionic liquid solutions.

    PubMed

    Tariq, Mohammad; Freire, Mara G; Saramago, Benilde; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luís Paulo N

    2012-01-21

    Some of the most active scientific research fronts of the past decade are centered on ionic liquids. These fluids present characteristic surface behavior and distinctive trends of their surface tension versus temperature. One way to explore and understand their unique nature is to study their surface properties. This critical review analyses most of the surface tension data reported between 2001 and 2010 (187 references).

  7. Surface Tension Driven Convection Experiment (STDCE)

    NASA Technical Reports Server (NTRS)

    Ostrach, S.; Kamotani, Y.

    1996-01-01

    This document reports the results obtained from the Surface Tension Driven Convection Experiment (STDCE) conducted aboard the USML-1 Spacelab in 1992. The experiments used 10 cSt silicone oil placed in an open circular container that was 10 cm wide and 5 cm deep. Thermocapillary flow was induced by using either a cylindrical heater placed along the container centerline or by a CO2 laser. The tests were conducted under various power settings, laser beam diameters, and free surface shapes. Thermistors located at various positions in the test section recorded the temperature of the fluid, heater, walls, and air. An infrared imager was used to measure the free surface temperature. The flow field was studied by flow visualization and the data was analyzed by a PTV technique. The results from the flow visualization and the temperature measurements are compared with the numerical analysis that was conducted in conjunction with the experiment. The compared results include the experimental and numerical velocity vector plots, the streamline plots, the fluid temperature, and the surface temperature distribution.

  8. Direct determination of surface tension in the lung.

    PubMed

    Schürch, S; Goerke, J; Clements, J A

    1976-12-01

    We have used the spreading behavior of small drops of several fluorocarbon fluids and silicone oil on air-liquid interfaces to measure the surface tension of lungs in situ. The test fluids were calibrated in a surface balance at 37 degrees on monolayers of dipalmitoylphosphatidylcholine. At particular surface tensions characteristic of each fluid used, an increase in the tension of 1 mN/m or less caused the droplets to spread reversibly from a sphere to a lens shape. Using micropipettes we placed such droplets on the alveolar surfaces of excised rat lungs held at functional residual capacity and 37 degrees and found that the surface tension remained below 9 mN/m for at least 30 min. The surface tension-volume relationship was linear for tensions ranging from 9 to 20 mN/m.

  9. Surface tension of low-temperature aqueous solutions

    SciTech Connect

    Horibe, A.; Fukusako, S.; Yamada, M.

    1996-03-01

    Measurements of the surface tension have been carried out to determine the effects of both temperature and concentration on the surface tension of aqueous solutions of sodium chloride, propylene glycol, and ethylene glycol. A differential capillary-rise method was employed for the measurements. The results show that the surface tension of the ethylene glycol solution and the propylene glycol solution increases as the concentration of the solution decreases, while for the sodium chloride solution the surface tension increases monotonically as the concentration increases. The surface tension of the liquids was found to be an almost-linear function of temperature from 20{degrees}C to just above the freezing temperature. Equations for the surface tension of the three binary aqueous solutions as a function of temperature and concentration are presented.

  10. Surface Partitioning and Stability of Mixed Films of Fluorinated Alcohols and Acids at the Air- Water Interface

    NASA Astrophysics Data System (ADS)

    Rontu, N. A.; Vaida, V.

    2007-05-01

    The production of fluorinated compounds over the past 50 years has had numerous industrial applications. For example, perfluorinated carboxylic acids are used in the synthesis of polymers and fire retardants, perfluoroalkyl sulfonates act as surface protectors, and fluorotelomer alcohols are incorporated into products such as paints, coatings, polymers, and adhesives. Fluorotelomer alcohols (FTOHs) are linear polyfluorinated alcohols with the formula CF3(CF2)nCH2CH2OH (n=1,3,5,...). They have been suggested as possible precursors for perfluorinated carboxylic acids and detected in the troposphere over several North American sites. Perfluorocarboxylic acids have even been detected in the arctic food chain, human blood, tissues of animals and environmental waters. We report the surface activity of fluorotelomer alcohols and perfluorinated carboxylic acids at the air-water interface by using a Langmuir trough. Isotherms of the pure compounds along with mixed films with other organic carboxylic acids were collected. The main objective of these experiments was to understand their heterogeneous chemistry by characterizing the pure and mixed films, which serves as a representative model for organic films on atmospheric surfaces such as those found on oceans and aqueous aerosols. Film properties and behavior, notably stabilization, evaporation from the subphase, and miscibility in the single-component mixtures as well as in the mixed films will be discussed. An important consequence of FTOHs and perfluorocarboxylic acids being found to partition to the air-water interface is the possibility of their transport and widespread distribution and deposition using atmospheric aerosols.

  11. Electrochemical Surface Potential due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface

    SciTech Connect

    Baer, Marcel D.; Stern, Abraham C.; Levin, Yan; Tobias, Douglas J.; Mundy, Christopher J.

    2012-06-07

    Herein, we present research that suggests that the underlying physics that drive simple empirical models of anions (e.g. point charge, no polarization) to the air-water interface, with water described by SPC/E, or related partial charge models is different than when both ions and water are modeled with quantum mechanical based interactions. Specifically, we will show that the driving force of ions to the air-water interface for point charge models results from both cavitation and the negative electrochemical surface potential. We will demonstrate that we can fully characterize the role of the free energy due to the electrochemical surface potential computed from simple empirical models and its role in ionic adsorption within the context of dielectric continuum theory (DCT). Our research suggests that a significant part of the electrochemical surface potential in empirical models appears to be an artifact of the failure of point charge models in the vicinity of a broken symmetry. This work was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle.

  12. Tunable Superomniphobic Surfaces for Sorting Droplets by Surface Tension

    NASA Astrophysics Data System (ADS)

    Movafaghi, Sanli; Wang, Wei; Metzger, Ari; Williams, Desiree; Williams, John; Kota, Arun

    2016-11-01

    Manipulation of liquid droplets on super-repellent surfaces (i.e., surfaces that are extremely repellent to liquids) has been widely studied because droplets exhibit high mobility on these surfaces due to the ultra-low adhesion, which leads to minimal sample loss and contamination. Although droplet manipulation has been demonstrated using electric fields, magnetic fields, guiding tracks and wettability gradients, to the best of our knowledge, there are no reports of droplet manipulation methods that can sort droplets by surface tension on super-repellent surfaces. In this work, we utilized tunable superomniphobic surfaces (i.e., surfaces that are extremely repellent to virtually all liquids) to develop a simple device with precisely tailored solid surface energy domains that, for the first time, can sort droplets by surface tension. Droplet sorting occurs on our device entirely due to a balance between the work done by gravity and the work expended due to adhesion, without the need for any external energy input. Our device can be fabricated easily in a short time and is particularly useful for in-the-field and on-the-go operations, where complex analysis equipment is unavailable. We envision that our methodology for droplet sorting will enable inexpensive and energy-efficient analytical devices for personalized point-of-care diagnostic platforms and lab-on-a-chip systems.

  13. Surface tension and long range corrections of cylindrical interfaces.

    PubMed

    Bourasseau, E; Malfreyt, P; Ghoufi, A

    2015-12-21

    The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential, (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.

  14. Surface tension and long range corrections of cylindrical interfaces

    SciTech Connect

    Bourasseau, E.; Ghoufi, A.

    2015-12-21

    The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential, (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.

  15. Sintering of viscous droplets under surface tension

    PubMed Central

    Vasseur, Jérémie; Llewellin, Edward W.; Schauroth, Jenny; Dobson, Katherine J.; Scheu, Bettina; Dingwell, Donald B.

    2016-01-01

    We conduct experiments to investigate the sintering of high-viscosity liquid droplets. Free-standing cylinders of spherical glass beads are heated above their glass transition temperature, causing them to densify under surface tension. We determine the evolving volume of the bead pack at high spatial and temporal resolution. We use these data to test a range of existing models. We extend the models to account for the time-dependent droplet viscosity that results from non-isothermal conditions, and to account for non-zero final porosity. We also present a method to account for the initial distribution of radii of the pores interstitial to the liquid spheres, which allows the models to be used with no fitting parameters. We find a good agreement between the models and the data for times less than the capillary relaxation timescale. For longer times, we find an increasing discrepancy between the data and the model as the Darcy outgassing time-scale approaches the sintering timescale. We conclude that the decreasing permeability of the sintering system inhibits late-stage densification. Finally, we determine the residual, trapped gas volume fraction at equilibrium using X-ray computed tomography and compare this with theoretical values for the critical gas volume fraction in systems of overlapping spheres. PMID:27274687

  16. Sintering of viscous droplets under surface tension

    NASA Astrophysics Data System (ADS)

    Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Schauroth, Jenny; Dobson, Katherine J.; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    We conduct experiments to investigate the sintering of high-viscosity liquid droplets. Free-standing cylinders of spherical glass beads are heated above their glass transition temperature, causing them to densify under surface tension. We determine the evolving volume of the bead pack at high spatial and temporal resolution. We use these data to test a range of existing models. We extend the models to account for the time-dependent droplet viscosity that results from non-isothermal conditions, and to account for non-zero final porosity. We also present a method to account for the initial distribution of radii of the pores interstitial to the liquid spheres, which allows the models to be used with no fitting parameters. We find a good agreement between the models and the data for times less than the capillary relaxation timescale. For longer times, we find an increasing discrepancy between the data and the model as the Darcy outgassing time-scale approaches the sintering timescale. We conclude that the decreasing permeability of the sintering system inhibits late-stage densification. Finally, we determine the residual, trapped gas volume fraction at equilibrium using X-ray computed tomography and compare this with theoretical values for the critical gas volume fraction in systems of overlapping spheres.

  17. Ice Accretion with Varying Surface Tension

    NASA Technical Reports Server (NTRS)

    Bilanin, Alan J.; Anderson, David N.

    1995-01-01

    During an icing encounter of an aircraft in flight, super-cooled water droplets impinging on an airfoil may splash before freezing. This paper reports tests performed to determine if this effect is significant and uses the results to develop an improved scaling method for use in icing test facilities. Simple laboratory tests showed that drops splash on impact at the Reynolds and Weber numbers typical of icing encounters. Further confirmation of droplet splash came from icing tests performed in the NaSA Lewis Icing Research Tunnel (IRT) with a surfactant added to the spray water to reduce the surface tension. The resulting ice shapes were significantly different from those formed when no surfactant was added to the water. These results suggested that the droplet Weber number must be kept constant to properly scale icing test conditions. Finally, the paper presents a Weber-number-based scaling method and reports results from scaling tests in the IRT in which model size was reduced up to a factor of 3. Scale and reference ice shapes are shown which confirm the effectiveness of this new scaling method.

  18. Pendant-Drop Surface-Tension Measurement On Molten Metal

    NASA Technical Reports Server (NTRS)

    Man, Kin Fung; Thiessen, David

    1996-01-01

    Method of measuring surface tension of molten metal based on pendant-drop method implemented in quasi-containerless manner and augmented with digital processing of image data. Electrons bombard lower end of sample rod in vacuum, generating hanging drop of molten metal. Surface tension of drop computed from its shape. Technique minimizes effects of contamination.

  19. The Cartesian Diver, Surface Tension and the Cheerios Effect

    ERIC Educational Resources Information Center

    Chen, Chi-Tung; Lee, Wen-Tang; Kao, Sung-Kai

    2014-01-01

    A Cartesian diver can be used to measure the surface tension of a liquid to a certain extent. The surface tension measurement is related to the two critical pressures at which the diver is about to sink and about to emerge. After sinking because of increasing pressure, the diver is repulsed to the centre of the vessel. After the pressure is…

  20. Measuring Surface Tension of a Flowing Soap Film

    NASA Astrophysics Data System (ADS)

    Sane, Aakash; Kim, Ildoo; Mandre, Shreyas

    2016-11-01

    It is well known that surface tension is sensitive to the presence of surfactants and many conventional methods exist to measure it. These techniques measure surface tension either by intruding into the system or by changing its geometry. Use of conventional methods in the case of a flowing soap film is not feasible because intruding the soap film changes surface tension due to Marangoni effect. We present a technique in which we measure the surface tension in situ of a flowing soap film without intruding into the film. A flowing soap film is created by letting soap solution drip between two wires. The interaction of the soap film with the wires causes the wires to deflect which can be measured. Surface tension is calculated using a relation between curvature of the wires and the surface tension. Our measurements indicate that the surface tension of the flowing soap film for our setup is around 0.05 N/m. The nature of this technique makes it favorable for measuring surface tension of flowing soap films whose properties change on intrusion.

  1. On the coefficients of small eddy and surface divergence models for the air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Liao, Qian; Fillingham, Joseph H.; Bootsma, Harvey A.

    2015-03-01

    Recent studies suggested that under low to moderate wind conditions without bubble entraining wave breaking, the air-water gas transfer velocity k+ can be mechanistically parameterized by the near-surface turbulence, following the small eddy model (SEM). Field measurements have supported this model in a variety of environmental forcing systems. Alternatively, surface divergence model (SDM) has also been shown to predict the gas transfer velocity across the air-water interface in laboratory settings. However, the empirically determined model coefficients (α in SEM and c1 in SDM) scattered over a wide range. Here we present the first field measurement of the near-surface turbulence with a novel floating PIV system on Lake Michigan, which allows us to evaluate the SEM and SDM in situ in the natural environment. k+ was derived from the CO2 flux that was measured simultaneously with a floating gas chamber. Measured results indicate that α and c1 are not universal constants. Regression analysis showed that α˜log>(ɛ>) while the near-surface turbulence dissipation rate ɛ is approximately greater than 10-6 m2 s-3 according to data measured for this study as well as from other published results measured in similar environments or in laboratory settings. It also showed that α scales linearly with the turbulent Reynolds number. Similarly, coefficient c1 in the SDM was found to linearly scale with the Reynolds number. These findings suggest that larger eddies are also important parameters, and the dissipation rate in the SEM or the surface divergence β' in the SDM alone may not be adequate to determine k+ completely.

  2. Experimental Values of the Surface Tension of Supercooled Water

    NASA Technical Reports Server (NTRS)

    Hacker, P. T.

    1951-01-01

    The results of surface-tension measurements for supercooled water are presented. A total of 702 individual measurements of surface tension of triple-distilled water were made in the temperature range, 27 to -22.2 C, with 404 of these measurements at temperatures below 0 C. The increase in magnitude of surface tension with decreasing temperature, as indicated by measurements above 0 C, continues to -22.2 C. The inflection point in the surface-tension - temperature relation in the vicinity of 0 C, as indicated by the International Critical Table values for temperatures down to -8 C, is substantiated by the measurements in the temperature range, 0 to -22.2 C. The surface tension increases at approximately a linear rate from a value of 76.96+/-0.06 dynes per centimeter at -8 C to 79.67+/-0.06 dynes per centimeter at -22.2 C.

  3. Surface tension of Nanofluid-type fuels containing suspended nanomaterials

    NASA Astrophysics Data System (ADS)

    Tanvir, Saad; Qiao, Li

    2012-04-01

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension.

  4. Surface tension and the dodecahedron model for lung elasticity.

    PubMed

    Kimmel, E; Budiansky, B

    1990-05-01

    Macroscopic elastic moduli governing the incremental deformations of lung parenchyma are calculated on the basis of a model for an individual lung element in the shape of a regular dodecahedron. Elastic stiffness within the element is provided by pin-jointed tension members along the edges of the dodecahedron, surface tension is incorporated into its pentagonal faces, and the influence of transpulmonary pressure is simulated by an externally applied hydrostatic tension. The analysis is based on a variational statement of nonlinear structural mechanics, and the results show how the moduli depend on the effective inflation pressure, the constitutive behavior of the idealized truss members, and the surface-area dependent surface tension. The theory is discussed in the light of available experimental information. A more general analysis is needed to account for the effects of structural as well as surface-tension hysteresis.

  5. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed Central

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-01-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the

  6. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-10-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the

  7. Thermal characteristics of air-water spray impingement cooling of hot metallic surface under controlled parametric conditions

    NASA Astrophysics Data System (ADS)

    Nayak, Santosh Kumar; Mishra, Purna Chandra

    2016-06-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper. The controlling input parameters investigated were the combined air and water pressures, plate thickness, water flow rate, nozzle height from the target surface and initial temperature of the hot surface. The effects of these input parameters on the important thermal characteristics such as heat transfer rate, heat transfer coefficient and wetting front movement were measured and examined. Hot flat plate samples of mild steel with dimension 120 mm in length, 120 mm breadth and thickness of 4 mm, 6 mm, and 8 mm respectively were tested. The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface. Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e, 4 mm thick plates. Increase in the nozzle height reduced the heat transfer efficiency of spray cooling. At an inlet water pressure of 4 bar and air pressure of 3 bar, maximum cooling rates 670°C/s and average cooling rate of 305.23°C/s were achieved for a temperature of 850°C of the steel plate.

  8. Molecular Dynamic Simulations on Surface Tension of Methanol

    NASA Astrophysics Data System (ADS)

    Obeidat, Abdalla

    2015-04-01

    Molecular dynamic simulations have been performed to study the surface tension of methanol at low temperatures. Six different models of methanol have been studied to compute the surface tension of different models. The models have been used to predict the surface tensions are: OPLS, Gromos 96, H1, J1, J2, and van Leeuwen model. Our results show that the most accurate model compared to true methanol was van Leeuwen model. The results were fitted to a straight line to predict other data of surface tension at specific temperature. The simulation were performed using the Gromacs package at temperatures: 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, and 300 K. This work is supported by JUST.

  9. NEW APPROACHES: Surface tension from deflating a soap bubble

    NASA Astrophysics Data System (ADS)

    Rämme, Göran

    1997-05-01

    The surface tension of soap bubbles can be measured using simple apparatus. Results found using the method described here can be compared with a modified standard method also described, to allow students to evaluate the different approaches.

  10. Surface Tension Gradients Induced by Temperature: The Thermal Marangoni Effect

    ERIC Educational Resources Information Center

    Gugliotti, Marcos; Baptisto, Mauricio S.; Politi, Mario J.

    2004-01-01

    Surface tensions gradients were generated in a thin liquid film because of the local increase in temperature, for demonstration purposes. This is performed using a simple experiment and allows different alternatives for heat generation to be used.

  11. Surface tension of highly magnetized degenerate quark matter

    NASA Astrophysics Data System (ADS)

    Lugones, G.; Grunfeld, A. G.

    2017-01-01

    We study the surface tension of highly magnetized three-flavor quark matter within the formalism of multiple reflection expansion. Quark matter is described as a mixture of free Fermi gases composed of quarks u , d , s and electrons in chemical equilibrium under weak interactions. Due to the presence of strong magnetic fields the particles' transverse motion is quantized into Landau levels, and the surface tension has a different value in the parallel and transverse directions with respect to the magnetic field. We calculate the transverse and longitudinal surface tension for different values of the magnetic field and for quark-matter drops with different sizes, from a few fm to the bulk limit. For baryon number densities between 2 to 10 times the nuclear saturation density, the surface tension falls in the range of 2 to 20 MeV /fm2 . The largest contribution comes from strange quarks which have a surface tension an order of magnitude larger than the one for u or d quarks and more than two orders of magnitude larger than for electrons. Our results show that the total surface tension is quite insensitive to the size of the drop. We also find that the surface tensions in the transverse and parallel directions are almost unaffected by the magnetic field if e B is below ˜5 ×10-3GeV2 . Nevertheless, for higher values of e B , there is a significant increase in the parallel surface tension and a significant decrease in the transverse one with respect to the unmagnetized case.

  12. Surface Tensions and Their Variations with Temperature and Impurities

    NASA Technical Reports Server (NTRS)

    Hardy, S. C.; Fine, J.

    1985-01-01

    The surface tensions in this work were determined using the sessile drop technique. This method is based on a comparison of the profile of a liquid drop with the profile calculated by solving the Young-Laplace equation. The comparison can be made in several ways; the traditional Bashforth-Adams procedure was used in conjunction with recently calculated drop shape tables which virtually eliminate interpolation errors. Although previous study has found little difference in measurements with pure and oxygen doped silicon, there is other evidence suggesting that oxygen in dilute concentrations severely depresses the surface tension of silicon. The surface tension of liquid silicon in purified argon atmospheres was measured. A temperature coefficient near -0.28 mJ/square meters K was found. The experiments show a high sensitivity of the surface tension to what is believed are low concentrations of oxygen. Thus one cannot rule out some effect of low levels of oxygen in the results. However, the highest surface tension values obtained in conditions which minimized the residual oxygen pressure are in good agreement with a previous measurement in pure hydrogen. Therefore, depression of the surface tension by oxygen is insignificant in these measurements.

  13. Liquid Surface X-ray Studies of Gold Nanoparticle-Phospholipid Films at the Air/Water Interface.

    PubMed

    You, Siheng Sean; Heffern, Charles T R; Dai, Yeling; Meron, Mati; Henderson, J Michael; Bu, Wei; Xie, Wenyi; Lee, Ka Yee C; Lin, Binhua

    2016-09-01

    Amphiphilic phospholipids and nanoparticles functionalized with hydrophobic capping ligands have been extensively investigated for their capacity to self-assemble into Langmuir monolayers at the air/water interface. However, understanding of composite films consisting of both nanoparticles and phospholipids, and by extension, the complex interactions arising between nanomaterials and biological membranes, remains limited. In this work, dodecanethiol-capped gold nanoparticles (Au-NPs) with an average core diameter of 6 nm were incorporated into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers with surface densities ranging from 0.1 to 20% area coverage at a surface pressure of 30 mN/m. High resolution liquid surface X-ray scattering studies revealed a phase separation of the DPPC and Au-NP components of the composite film, as confirmed with atomic force microscopy after the film was transferred to a substrate. At low Au-NP content, the structural organization of the phase-separated film is best described as a DPPC film containing isolated islands of Au-NPs. However, increasing the Au-NP content beyond 5% area coverage transforms the structural organization of the composite film to a long-range interconnected network of Au-NP strands surrounding small seas of DPPC, where the density of the Au-NP network increases with increasing Au-NP content. The observed phase separation and structural organization of the phospholipid and nanoparticle components in these Langmuir monolayers are useful for understanding interactions of nanoparticles with biological membranes.

  14. Characterisation of the interaction of lactate dehydrogenase with Tween-20 using isothermal titration calorimetry, interfacial rheometry and surface tension measurements.

    PubMed

    McAuley, William J; Jones, David S; Kett, Vicky L

    2009-08-01

    In this study the nature of the interaction between Tween-20 and lactate dehydrogenase (LDH) was investigated using isothermal titration calorimetry (ITC). In addition the effects of the protein and surfactant on the interfacial properties were followed with interfacial rheology and surface tension measurements in order to understand the mechanism by which the surfactant prevents protein adsorption to the air-water interface. Comparisons were made with Tween-40 and Tween-80 in order to further investigate the mechanism. ITC measurements indicated a weak, probably hydrophobic, interaction between Tween-20 and LDH. Prevention of LDH adsorption to the air-water interface by the Tween surfactants was correlated with surface energy rather than surfactant CMC. While surface pressure appears to be the main driving force for the displacement of LDH from the air-water interface by Tween-20 a solubilisation mechanism may exist for other protein molecules. More generally the results of this study highlight the value of the use of ITC and interfacial measurements in characterising the surface behaviour of mixed surfactant and protein systems.

  15. The ripplon and surface tension of a ? liquid

    NASA Astrophysics Data System (ADS)

    Tamura, Akira

    1998-11-01

    For a 0953-8984/10/45/003/img2 liquid surface, we derive an analytical form of the ripplon dispersion relation considering surface diffusiveness. The diffusiveness reduces the ripplon frequency for a 0953-8984/10/45/003/img2 liquid with an abrupt surface. Comparison of our dispersion curve with the recently measured spectrum gives the width of the diffusiveness and surface tension. Using the dispersion relation and applying the Atkins theory, we can explain well the measured surface tension in the temperature range from 0 K to 0953-8984/10/45/003/img4 K.

  16. Surface tension of liquid metals and alloys--recent developments.

    PubMed

    Egry, I; Ricci, E; Novakovic, R; Ozawa, S

    2010-09-15

    Surface tension measurements are a central task in the study of surfaces and interfaces. For liquid metals, they are complicated by the high temperatures and the consequently high reactivity characterising these melts. In particular, oxidation of the liquid surface in combination with evaporation phenomena requires a stringent control of the experimental conditions, and an appropriate theoretical treatment. Recently, much progress has been made on both sides. In addition to improving the conventional sessile drop technique, new containerless methods have been developed for surface tension measurements. This paper reviews the experimental progress made in the last few years, and the theoretical framework required for modelling and understanding the relevant physico-chemical surface phenomena.

  17. Measurement of dynamic surface tension by mechanically vibrated sessile droplets.

    PubMed

    Iwata, Shuichi; Yamauchi, Satoko; Yoshitake, Yumiko; Nagumo, Ryo; Mori, Hideki; Kajiya, Tadashi

    2016-04-01

    We developed a novel method for measuring the dynamic surface tension of liquids using mechanically vibrated sessile droplets. Under continuous mechanical vibration, the shape of the deformed droplet was fitted by numerical analysis, taking into account the force balance at the drop surface and the momentum equation. The surface tension was determined by optimizing four parameters: the surface tension, the droplet's height, the radius of the droplet-substrate contact area, and the horizontal symmetrical position of the droplet. The accuracy and repeatability of the proposed method were confirmed using drops of distilled water as well as viscous aqueous glycerol solutions. The vibration frequency had no influence on surface tension in the case of pure liquids. However, for water-soluble surfactant solutions, the dynamic surface tension gradually increased with vibration frequency, which was particularly notable for low surfactant concentrations slightly below the critical micelle concentration. This frequency dependence resulted from the competition of two mechanisms at the drop surface: local surface deformation and surfactant transport towards the newly generated surface.

  18. Measurement of dynamic surface tension by mechanically vibrated sessile droplets

    NASA Astrophysics Data System (ADS)

    Iwata, Shuichi; Yamauchi, Satoko; Yoshitake, Yumiko; Nagumo, Ryo; Mori, Hideki; Kajiya, Tadashi

    2016-04-01

    We developed a novel method for measuring the dynamic surface tension of liquids using mechanically vibrated sessile droplets. Under continuous mechanical vibration, the shape of the deformed droplet was fitted by numerical analysis, taking into account the force balance at the drop surface and the momentum equation. The surface tension was determined by optimizing four parameters: the surface tension, the droplet's height, the radius of the droplet-substrate contact area, and the horizontal symmetrical position of the droplet. The accuracy and repeatability of the proposed method were confirmed using drops of distilled water as well as viscous aqueous glycerol solutions. The vibration frequency had no influence on surface tension in the case of pure liquids. However, for water-soluble surfactant solutions, the dynamic surface tension gradually increased with vibration frequency, which was particularly notable for low surfactant concentrations slightly below the critical micelle concentration. This frequency dependence resulted from the competition of two mechanisms at the drop surface: local surface deformation and surfactant transport towards the newly generated surface.

  19. Nanopore wall effect on surface tension of methane

    NASA Astrophysics Data System (ADS)

    Bui, Khoa; Yucel Akkutlu, I.

    2015-11-01

    Local pressure is known to be anisotropic across the interfaces separating fluids in equilibrium. Tangential pressure profiles show characteristic negative peaks as a result of surface tension forces parallel to the interface. Nearby attractive forces parallel to the interface are larger than the repulsive forces and, hence, constitute the surface tension. In this work, using molecular dynamics simulations of methane inside nano-scale pores, we show this surface tension behaviour could be significantly influenced by confinement effects. The layering structure, characterised by damped oscillations in local liquid density and tangential pressures, extends deep into the pore and can be a few nanometers thick. The surface tension is measured numerically using local pressures across the interface. Results show that the tension is smaller under confinement and becomes a variable in small pores, mainly controlled by the thickness of the liquid density layering (or liquid saturation) and the pore width. If the liquid saturation inside the pore is high enough, the vapour-liquid interface is not interfered by the pore wall and the surface tension remains the same as the bulk values. The results are important for understanding phase change and multi-phase transport phenomena in nanoporous materials.

  20. Strong evidence of surface tension reduction in microscopic aqueous droplets

    NASA Astrophysics Data System (ADS)

    Ruehl, C. R.; Chuang, P. Y.; Nenes, A.; Cappa, C. D.; Kolesar, K. R.; Goldstein, A. H.

    2012-12-01

    The ability of airborne particles to take up water may be enhanced by surface-active components, but the importance of this effect is controversial because direct measurement of the surface tension of microscopic droplets has not been possible. Here we infer droplet surface tension from water uptake measurements of mixed organic-inorganic particles at relative humidities just below saturation (99.3-99.9%). The surface tension of droplets formed on particles composed of NaCl and α-pinene ozonolysis products was reduced by 50-75%, but only when enough organic material was present to form a film on the droplet surface at least 0.8 nm thick. This study suggests that if atmospheric particles are predominantly (≳80%) composed of surface-active material, their influence on cloud properties and thus climate could be enhanced, and their atmospheric lifetimes could be reduced.

  1. The configuration of water on rough natural surfaces: Implications for understanding air-water interfacial area, film thickness, and imaging resolution

    NASA Astrophysics Data System (ADS)

    Kibbey, Tohren C. G.

    2013-08-01

    Previous studies of air-water interfacial areas in unsaturated porous media have often distinguished between interfacial area corresponding to water held by capillary forces between grains and area corresponding to water associated with solid surfaces. The focus of this work was on developing a better understanding of the nature of interfacial area associated with solid surfaces following drainage of porous media. Stereoscopic scanning electron microscopy was used to determine surface elevation maps for eight different surfaces of varying roughness. An algorithm was developed to calculate the true configuration of an air-water interface in contact with the solid surface as a function of capillary pressure. The algorithm was used to calculate surface-associated water configurations for capillary pressures ranging from 10 to 100 cm water. The results of the work show that, following drainage, the configuration of surface-associated water is dominated by bridging of macroscopic surface roughness features over the range of capillary pressures studied, and nearly all of the surface-associated water is capillary held. As such, the thicknesses of surface-associated water were found to be orders-of-magnitude greater than might be expected at the same capillary pressures based on calculations of adsorbed film thickness. The fact that capillary forces in air-water interfaces dominate surface-associated water configuration means that interface shapes are largely unaffected by microscopic surface roughness, and interfaces are considerably smoother than the underlying solid. As such, calculations suggest that microscopic surface roughness likely has minimal impact on the accuracy of surface-associated air-water interfacial areas determined by limited-resolution imaging methods such as computed microtomography.

  2. Multiscale surface roughening of commercial purity titanium during uniaxial tension

    SciTech Connect

    Panin, Alexey; Kazachenok, Marina Kozelskaya, Anna Sinyakova, Elena; Lider, Andrey Sklyarova, Elena

    2015-10-27

    The mechanisms of the surface roughening of the titanium specimens during uniaxial tension were demonstrated. By means of optical profilometry and electron backscattered diffraction it was shown that the formation of surface roughening is a multilevel process. The correlation between the density of slip in some grains, and grain rotation, and their displacement towards the free surface was investigated.

  3. Surface-tension-driven flow in a glass melt

    NASA Technical Reports Server (NTRS)

    Mcneil, Thomas J.; Cole, Robert; Shankar Subramanian, R.

    1985-01-01

    Motion driven by surface tension gradients was observed in a vertical capillary liquid bridge geometry in a sodium borate melt. The surface tension gradients were introduced by maintaining a temperature gradient on the free melt surface. The flow velocities at the free surface of the melt, which were measured using a tracer technique, were found to be proportional to the applied temperature difference and inversely proportional to the melt viscosity. The experimentally observed velocities were in reasonable accord with predictions from a theoretical model of the system.

  4. Surface tension regularizes the crack singularity of adhesion.

    PubMed

    Karpitschka, Stefan; van Wijngaarden, Leen; Snoeijer, Jacco H

    2016-05-11

    The elastic and adhesive properties of a solid surface can be quantified by indenting it with a rigid sphere. Indentation tests are classically described by the JKR-law when the solid is very stiff, while recent work highlights the importance of surface tension for exceedingly soft materials. Here we show that surface tension plays a crucial role even in stiff solids: Young's wetting angle emerges as a boundary condition and this regularizes the crack-like singularity at the edge of adhesive contacts. We find that the edge region exhibits a universal, self-similar structure that emerges from the balance of surface tension and elasticity. The similarity theory is solved analytically and provides a complete description of adhesive contacts, by which we reconcile global adhesion laws and local contact mechanics.

  5. The role of dynamic surface tension in cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Petters, Markus D.; Suda, Sarah R.; Christensen, Sara I.

    2013-05-01

    We present new data on the cloud droplet forming abilities of two-component particles that contain the surfactant sodium dodecyl sulfate and sodium chloride or ammonium sulfate. The experiments were designed to test specific predictions made by Kohler theory that accounts for the reduction of surface tension and the partitioning of the surfactant between the interior and the surface of the droplet. We also introduced a pre-humidification step followed by a six minute time delay to test whether dynamic surface tension may lead to kinetic limitations on the partitioning process. Our results confirm previous studies that show that surfactants do not enhance cloud droplet activation relative to what would be predicted from water activity alone. The data obtained with and without time delay were indistinguishable within measurement uncertainty, suggesting that dynamic surface tension does not need to be considered in Kohler theory.

  6. Surface tension propellant control for Viking 75 Orbiter

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Hise, R. E.; Peterson, R. G.; Debrock, S. C.

    1976-01-01

    The paper describes the selection, development and qualification of the surface tension system and includes results of low-g drop tower tests of scale models, 1-g simulation tests of low-g large ullage settling and liquid withdrawal, structural qualification tests, and propellant surface tension/contact angle studies. Subscale testing and analyses were used to evaluate the ability of the system to maintain or recover the desired propellant orientation following possible disturbances during the Viking mission. This effort included drop tower tests to demonstrate that valid wick paths exist for moving any displaced propellant back over the tank outlet. Variations in surface tension resulting from aging, temperature, and lubricant contamination were studied and the effects of surface finish, referee fluid exposure, aging, and lubricant contamination on contact angle were assessed. Results of movies of typical subscale drop tower tests and full scale slosh tests are discussed.

  7. Surface tension driven flow in glass melts and model fluids

    NASA Technical Reports Server (NTRS)

    Mcneil, T. J.; Cole, R.; Subramanian, R. S.

    1982-01-01

    Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.

  8. A new drop-shape methodology for surface tension measurement

    NASA Astrophysics Data System (ADS)

    Cabezas, M. G.; Bateni, A.; Montanero, J. M.; Neumann, A. W.

    2004-11-01

    Drop-shape techniques, such as axisymmetric drop-shape analysis (ADSA), have been widely used to measure surface tension. In the current schemes, theoretical curves are fitted to the experimental profiles by adjusting the value of surface tension. The best match between theoretical and experimental profiles identifies the surface tension of the drop. Extracting the experimental drop profile using edge detection, is an important part of the current drop-shape techniques. However, edge detections fail when acquisition of sharp images is not possible due to experimental or optical limitations. A new drop-shape approach is presented, which eliminates the need for the edge detection and provides a wider range of applicability. The new methodology, called theoretical image fitting analysis (TIFA), generates theoretical images of the drop and forms an error function that describes the pixel-by-pixel deviation of the theoretical image from the experimental one. Taking surface tension as an adjustable parameter, TIFA minimizes the error function, i.e. fits the theoretical image to the experimental one. The validity of the new methodology is examined by comparing the results with those of ADSA. Using the new methodology it is finally possible to enhance the study of the surface tension of lung surfactants at higher concentrations. Due to the opaqueness of the solution, such studies were limited to the low concentrations of surfactants heretofore.

  9. Contact Angles and Surface Tension of Germanium-Silicon Melts

    NASA Technical Reports Server (NTRS)

    Croell, A.; Kaiser, N.; Cobb, S.; Szofran, F. R.; Volz, M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the contact (wetting) angle and the surface tension, determining meniscus shapes and surface-tension driven flows in a variety of methods (Czochralski, EFG, floating-zone, detached Bridgman growth). The sessile drop technique allows the measurement of both parameters simultaneously and has been used to measure the contact angles and the surface tension of Ge(1-x)Si(x) (0 less than or equal to x less than or equal to 1.3) alloys on various substrate materials. Fused quartz, Sapphire, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AIN, Si3N4, and polycrystalline CVD diamond were used as substrate materials. In addition, the effect of different cleaning procedures and surface treatments on the wetting behavior were investigated. Measurements were performed both under dynamic vacuum and gas atmospheres (argon or forming gas), with temperatures up to 1100 C. In some experiments, the sample was processed for longer times, up to a week, to investigate any changes of the contact angle and/or surface tension due to slow reactions with the substrate. For pure Ge, stable contact angles were found for carbon-based substrates and for pBN, for Ge(1-x)Si(x) only for pBN. The highest wetting angles were found for pBN substrates with angles around 170deg. For the surface tension of Ge, the most reliable values resulted in gamma(T) = (591- 0.077 (T-T(sub m)) 10(exp -3)N/m. The temperature dependence of the surface tension showed similar values for Ge(1-x)Si(x), around -0.08 x 10(exp -3)N/m K, and a compositional dependence of 2.2 x 10(exp -3)N/m at%Si.

  10. Surface tension of the Widom-Rowlinson model.

    PubMed

    de Miguel, E; Almarza, N G; Jackson, G

    2007-07-21

    We consider the computation of the surface tension of the fluid-fluid interface for the Widom-Rowlinson [J. Chem. Phys. 52, 1670 (1970)] binary mixture from direct simulation of the inhomogeneous system. We make use of the standard mechanical route, in which the surface tension follows from the computation of the normal and tangential components of the pressure tensor of the system. In addition to the usual approach, which involves simulations of the inhomogeneous system in the canonical ensemble, we also consider the computation of the surface tension in an ensemble where the pressure perpendicular (normal) to the planar interface is kept fixed. Both approaches are seen to provide consistent values of the interfacial tension. The issue of the system-size dependence of the surface tension is addressed. In addition, simulations of the fluid-fluid coexistence properties of the mixture are performed in the semigrand canonical ensemble. Our results are compared with existing data of the Widom-Rowlinson mixture and are also examined in the light of the vapor-liquid equilibrium of the thermodynamically equivalent one-component penetrable sphere model.

  11. Theoretical Studies of the Surface Tension of Liquid Metal System

    NASA Technical Reports Server (NTRS)

    Stroud, D. G.; Shih, W. H.

    1985-01-01

    A major goal of this project is to understand the surface tension and other thermophysical properties of liquid metals and alloys from a fundamental viewpoint. The approach is to calculate these quantities by a first principles technique which combines the statistical-mechanical theory of the liquid state with an electronic pseudopotential theory of electrons in metals. The inhomogeneity of the surface is treated using an ionic-density-functional formalism developed with the support of NASA. Of particular interest are the variation of surface tension with temperature and impurity concentration: such variations strongly influence the types of convection which make take place in a low-gravity environment. Some progress has already been achieved in computing the reduction of surface tension due to the presence of low-surface-tension impurities, and the corresponding surface segregation of such impurities. In the coming year, it is planned to concentrate on the surface properties of materials of particular interest to the MSA program: Si, Ga and GaSn alloys. An additional goal is to gain some theoretical understanding of the high temperature thermophysical properties of liquid metals, particularly high melting point materials which have not been studied extensively from a theoretical viewpoint.

  12. Variational Methods For Sloshing Problems With Surface Tension

    NASA Astrophysics Data System (ADS)

    Tan, Chee Han; Carlson, Max; Hohenegger, Christel; Osting, Braxton

    2016-11-01

    We consider the sloshing problem for an incompressible, inviscid, irrotational fluid in a container, including effects due to surface tension on the free surface. We restrict ourselves to a constant contact angle and we seek time-harmonic solutions of the linearized problem, which describes the time-evolution of the fluid due to a small initial disturbance of the surface at rest. As opposed to the zero surface tension case, where the problem reduces to a partial differential equation for the velocity potential, we obtain a coupled system for the velocity potential and the free surface displacement. We derive a new variational formulation of the coupled problem and establish the existence of solutions using the direct method from the Calculus of Variations. In the limit of zero surface tension, we recover the variational formulation of the classical Steklov eigenvalue problem, as derived by B. A. Troesch. For the particular case of an axially symmetric container, we propose a finite element numerical method for computing the sloshing modes of the coupled system. The scheme is implemented in FEniCS and we obtain a qualitative description of the effect of surface tension on the sloshing modes.

  13. Surface tension mediated conversion of light to work

    DOEpatents

    Okawa, David; Pastine, Stefan J; Zettl, Alexander K; Frechet, Jean M. J

    2014-12-02

    Disclosed are a method and apparatus for converting light energy to mechanical energy by modification of surface tension on a supporting fluid. The apparatus comprises an object which may be formed as a composite object comprising a support matrix and a highly light absorptive material. The support matrix may comprise a silicon polymer. The highly light absorptive material may comprise vertically aligned carbon nanotubes (VANTs) embedded in the support matrix. The composite object is supported on a fluid. By exposing the highly light absorptive material to light, heat is generated, which changes the surface tension of the composite object, causing it to move physically within the fluid.

  14. Instantons and surface tension at a first-order transition

    NASA Astrophysics Data System (ADS)

    Gupta, Sourendu

    1994-04-01

    We study the dynamics of the first-order phase transition in the two-dimensional 15-state Potts model, both at and off equilibrium. We find that phase changes take place through nucleation in both cases, and finite volume effects are described well through an instanton computation. Thus a dynamical measurement of the surface tension is possible. We find that the order-disorder surface tension is compatible with perfect wetting. An accurate treatment of fluctuations about the instanton solution is seen to be of great importance. Current Address: Theory Group, TIFR, Homi Bhabha Road, Bombay 400005, India.

  15. Surface tension effects on instability in viscoelastic respiratory fluids.

    PubMed

    Vasudevan, Muraari; Lange, Carlos F

    2007-02-01

    This paper establishes the mathematical formalism for the modeling of the mucus layer in the human trachea as a viscoelastic multiphase fluid system with surface tension with a view toward study of instability properties of the air-mucus system aimed at improving the design of new bioaerosol suppressing medication. The effects of surface tension, previously only conjectured and very poorly understood, are clearly established with quantitative relationships. Several very important physiological conclusions are obtained supporting one method of potential treatment and prevention of disease transmission by alteration of the mucus layer properties over other potential methods.

  16. Molecular basis for calculating the surface tension of binary droplets

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.; Zaitseva, E. S.; Rabinovich, A. B.

    2017-01-01

    A procedure for calculating the surface tension of droplets consisting of two components in the vapor phase is considered. The calculations are performed using the lattice gas model in the quasi-chemical approximation with allowance for the correlation effects of the nearest interacting molecules. A layered model of the structure of a vapor-liquid interface is used. Ways of calculating the surface tension of droplets with different radii are considered. They are based on different thermodynamic definitions of reference surfaces. Typical dependences of the surface tension of metastable and equilibrium droplets on the droplets' radii are analyzed for four types of phase diagram. It is found that if the energy of interaction between the components of one type exceeds by 150% the energies of interaction between components of another type and between particles of different types, and if the component with the highest energy of interaction predominates in a droplet, this results in a nonmonotonic profile of the component with the lowest energy of interaction in the region of transition. Mixture components are distributed in the region of transition such that the component with the highest energy of interaction is concentrated on the liquid side and the other component is concentrated on the vapor side. The surface tension of equilibrium droplets is less than that of metastable droplets.

  17. Dynamic surface tension analysis of dodecyl sulfate association complexes.

    PubMed

    Quigley, W W; Nabi, A; Prazen, B J; Lenghor, N; Grudpan, K; Synovec, R E

    2001-09-13

    First, a novel calibration method is used to expand the current understanding of spherical drop growth and elongation that occurs during on-line measurements of surface pressure using the dynamic surface tension detector (DSTD). Using a novel surface tension calibration method, the drop radius is calculated as a function of time from experimental drop pressure data and compared to the theoretical drop radius calculated from volumetric flow rate. From this comparison, the drop volume at which the drop shape starts to deviate ( approximately 4 mul) from a spherical shape is readily observed and deviates more significantly by approximately 6 mul drop volume (5% deviation in the ideal spherical drop radius) for the capillary sensing tip employed in the DSTD. From this assessment of drop shape, an experimental method for precise drop detachment referred to as pneumatic drop detachment is employed at a drop volume of 2 mul (two second drops at 60 mul/min) in order to provide rapid dynamic surface tension measurements via the novel on-line calibration methodology. Second, the DSTD is used to observe and study kinetic information for surface-active molecules and association complexes adsorbing to an air-liquid drop interface. Dynamic surface tension measurements are made for sodium dodecyl sulfate (SDS) in the absence and presence of either tetra butyl ammonium (TBA) or chromium (III). Sensitive, indirect detection of chromium and other multiply charged metals at low concentrations is also investigated. The DSTD is utilized in examining the dynamic nature of SDS: cation association at the air-liquid interface of a growing drop. Either TBA or Cr(III) were found to substantially enhance the surface tension lowering of dodecyl sulfate (DS), but the surface tension lowering is accompanied by a considerable kinetic dependence. Essentially, the surface tension lowering of these DS: cation complexes is found to be a fairly slow process in the context of the two second DSTD

  18. New thermodynamics for evaluating the surface-phase enrichment in the lower surface tension component.

    PubMed

    Santos, M Soledade C S; Reis, João Carlos R

    2014-09-15

    Regarding the surface phase of liquid mixtures as a thermodynamic phase, ideal surface phases are designed so that at fixed bulk-phase composition, real and ideal surface phases have the same chemical composition and identical limiting slopes for the dependence of surface tension on mole fraction. Standard chemical potentials are introduced for surface phase components, and quasi-exact expressions are worked out to compute ideal surface tensions and surface-phase compositions of real liquid mixtures. Guidelines for choosing molecular models to estimate the molar surface area of pure constituents are given. Ideal and excess surface tensions are calculated by using literature data for aqueous ethanol solutions at 298 K. These results show treatment based on Butler's equations grossly overestimate predicted surface tensions, thus leading to lower ethanol content in the surface phase. These inaccuracies are ascribed to the use of molar surface areas in model equations that are too small.

  19. Adsorption of Egg-PC to an Air/Water and Triolein/Water Bubble Interface: Use of the 2-Dimensional Phase Rule to Estimate the Surface Composition of a Phospholipid/Triolein/Water Surface as a Function of Surface Pressure

    PubMed Central

    Mitsche, Matthew A.; Wang, Libo; Small, Donald M.

    2010-01-01

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces including all membranes, the alveoli of the lung, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg-phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low salt buffer. The surface tension (γ) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts ~12 and 15 mN/m of pressure (Π) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette and the surface was compressed to study the Π/area relationship. To determine the surface concentration (Γ), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques, thus Γ on the bubble can be determined by overlaying the two isotherms. TO and EPC are both surface active so in a mixed TO/EPC monolayer both molecules will be exposed to water. Since TO is less surface active than EPC, as Π increases the TO is progressively ejected. To understand the Π/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Γ can be estimated. This allows determination of Γ of EPC on a TO bubble as a function of Π. PMID:20151713

  20. Surface properties and conformation of Nephila clavipes spider recombinant silk proteins at the air-water interface.

    PubMed

    Renault, Anne; Rioux-Dubé, Jean-François; Lefèvre, Thierry; Pezennec, Stéphane; Beaufils, Sylvie; Vié, Véronique; Tremblay, Mélanie; Pézolet, Michel

    2009-07-21

    The dragline fiber of spiders is composed of two proteins, the major ampullate spidroins I and II (MaSpI and MaSpII). To better understand the assembly mechanism and the properties of these proteins, the adsorption behavior of the recombinant proteins of the spider Nephila clavipes produced by Nexia Biotechnologies Inc. has been studied at the air-water interface using ellipsometry, surface pressure, rheological, and infrared measurements. The results show that the adsorption is more rapid and more molecules are present at the interface for MaSpII than for MaSpI. MaSpII has thus a higher affinity for the interface than MaSpI, which is consistent with its higher aggregation propensity in water. The films formed at the interface consist of networks containing a high content of intermolecular beta-sheets as revealed by the in situ polarization modulation infrared absorption reflection spectra. The infrared results further demonstrate that, for MaSpI, the beta-sheets are formed as soon as the proteins adsorb to the interface while for MaSpII the beta-sheet formation occurs more slowly. The amount of beta-sheets is lower for MaSpII than for MaSpI, most likely due to the presence of proline residues in its sequence. Both proteins form elastic films, but they are heterogeneous for MaSpI and homogeneous for MaSpII most probably as a result of a more ordered and slower aggregation process for MaSpII. This difference in their mechanism of assembly and interfacial behaviors does not seem to arise from their overall hydrophobicity or from a specific pattern of hydrophobicity, but rather from the longer polyalanine motifs, lower glycine content, and higher proline content of MaSpII. The propensity of both spidroins to form beta-sheets, especially the polyalanine blocks, suggests the participation of both proteins in the silk's beta-sheet crystallites.

  1. Surface tension, surface energy, and chemical potential due to their difference.

    PubMed

    Hui, C-Y; Jagota, A

    2013-09-10

    It is well-known that surface tension and surface energy are distinct quantities for solids. Each can be regarded as a thermodynamic property related first by Shuttleworth. Mullins and others have suggested that the difference between surface tension and surface energy cannot be sustained and that the two will approach each other over time. In this work we show that in a single-component system where changes in elastic energy can be neglected, the chemical potential difference between the surface and bulk is proportional to the difference between surface tension and surface energy. By further assuming that mass transfer is driven by this chemical potential difference, we establish a model for the kinetics by which mass transfer removes the difference between surface tension and surface energy.

  2. Surface tension dominates insect flight on fluid interfaces

    PubMed Central

    Mukundarajan, Haripriya; Bardon, Thibaut C.; Kim, Dong Hyun; Prakash, Manu

    2016-01-01

    ABSTRACT Flight on the 2D air–water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary–gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air–water interface presents a radically modified force landscape for flapping wing flight compared with air. PMID:26936640

  3. Dynamic surface tension of surfactant TA: experiments and theory.

    PubMed

    Otis, D R; Ingenito, E P; Kamm, R D; Johnson, M

    1994-12-01

    A bubble surfactometer was used to measure the surface tension of an aqueous suspension of surfactant TA as a function of bubble area over a range of cycling rates and surfactant bulk concentrations. Results of the surface tension-interfacial area loops exhibited a rich variety of phenomena, the character of which varied systematically with frequency and bulk concentration. A model was developed to interpret and explain these data and for use in describing the dynamics of surface layers under more general circumstances. Surfactant was modeled as a single component with surface tension taken to depend on only the interfacial surfactant concentration. Two distinct mechanisms were considered for the exchange of surfactant between the bulk phase and interface. The first is described by a simple kinetic relationship for adsorption and desorption that pertains only when the interfacial concentration is below its maximum equilibrium value. The second mechanism is "squeeze-out" by which surfactant molecules are expelled from an interface compressed past a maximum packing state. The model provided good agreement with experimental measurements for cycling rates from 1 to 100 cycles/min and for bulk concentrations between 0.0073 and 7.3 mg/ml.

  4. Surface tension driven flow on a thin reaction front

    NASA Astrophysics Data System (ADS)

    Guzman, Roberto; Vasquez, Desiderio A.

    2016-11-01

    Surface tension driven convection affects the propagation of chemical reaction fronts in liquids. The changes in surface tension across the front generate this type of convection. The resulting fluid motion increases the speed and changes the shape of fronts as observed in the iodate-arsenous acid reaction. We calculate these effects using a thin front approximation, where the reaction front is modeled by an abrupt discontinuity between reacted and unreacted substances. We analyze the propagation of reaction fronts of small curvature. In this case the front propagation equation becomes the deterministic Kardar-Parisi-Zhang (KPZ) equation with the addition of fluid flow. These results are compared to calculations based on a set of reaction-diffusion-convection equations.

  5. Tissue surface tension measurement by rigorous axisymmetric drop shape analysis.

    PubMed

    David, Robert; Ninomiya, Hiromasa; Winklbauer, Rudolf; Neumann, A Wilhelm

    2009-09-01

    Certain behaviours of embryonic cell aggregates can be modelled by ascribing to them a tissue surface tension, with each cell analogous to a liquid molecule. Under normal gravity, aggregates are nearly spherical, but they can be partially flattened in a centrifuge. This allows measurement of their tissue surface tensions by a drop shape method such as axisymmetric drop shape analysis (ADSA). We study ectodermal embryonic cells from the frog Xenopus laevis subjected to centrifugation at 100 x g and 200 x g. We show that ADSA can be applied to irregular aggregate profiles and compare results with those from a previous, simpler version called ADSA-IP. With a modification in the experimental method, the two algorithms give similar results and the aggregate profiles more closely follow Laplacian curves. The ADSA fitting error allows an estimate of the relative uncertainty in the results.

  6. Acoustic measurement of the surface tension of levitated drops

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Marston, P. L.; Robey, J. L.

    1988-01-01

    The measurement of the frequency of the fundamental mode of shape oscillation of acoustically levitated drops has been carried out to determine the surface tension of the drop material. Sound fields of about 20 kHz in frequency allow the suspension of drops a few millimeters in size, as well as the necessary drive for oscillations. The surface tension of water, hexadecane, silicone oil, and aqueous solutions of glycerin levitated in air has been measured, and the results have been compared with those obtained with standard ring tensiometry. The two sets of data are in good agreement, the largest discrepancy being about 10 percent. Uncertainties in the effects of the nonspherical static shape of drops levitated in the earth's gravitational field and the rotation state of the sample are the major contributors to the experimental error. A decrease of the resonance frequency of the fundamental mode indicates a soft nonlinearity as the oscillation amplitude increases.

  7. Effects of Induced Surface Tension in Nuclear and Hadron Matter

    NASA Astrophysics Data System (ADS)

    Sagun, V. V.; Bugaev, K. A.; Ivanytskyi, A. I.; Oliinychenko, D. R.; Mishustin, I. N.

    2017-03-01

    Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. In addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.

  8. Measurement of surface and interfacial tension using pendant drop tensiometry.

    PubMed

    Berry, Joseph D; Neeson, Michael J; Dagastine, Raymond R; Chan, Derek Y C; Tabor, Rico F

    2015-09-15

    Pendant drop tensiometry offers a simple and elegant solution to determining surface and interfacial tension - a central parameter in many colloidal systems including emulsions, foams and wetting phenomena. The technique involves the acquisition of a silhouette of an axisymmetric fluid droplet, and iterative fitting of the Young-Laplace equation that balances gravitational deformation of the drop with the restorative interfacial tension. Since the advent of high-quality digital cameras and desktop computers, this process has been automated with high speed and precision. However, despite its beguiling simplicity, there are complications and limitations that accompany pendant drop tensiometry connected with both Bond number (the balance between interfacial tension and gravitational forces) and drop volume. Here, we discuss the process involved with going from a captured experimental image to a fitted interfacial tension value, highlighting pertinent features and limitations along the way. We introduce a new parameter, the Worthington number, Wo, to characterise the measurement precision. A fully functional, open-source acquisition and fitting software is provided to enable the reader to test and develop the technique further.

  9. A micro surface tension pump (MISPU) in a glass microchip.

    PubMed

    Peng, Xing Yue Larry

    2011-01-07

    A non-membrane micro surface tension pump (MISPU) was fabricated on a glass microchip by one-step glass etching. It needs no material other than glass and is driven by digital gas pressure. The MISPU can be seen working like a piston pump inside the glass microchip under a microscope. The design of the valves (MISVA) and pistons (MISTON) was based on the surface tension theory of the micro surface tension alveolus (MISTA). The digital gas pressure controls the moving gas-liquid interface to open or close the input and output MISVAs to refill or drive the MISTON for pumping a liquid. Without any moving parts, a MISPU is a kind of long-lasting micro pump for micro chips that does not lose its water pumping efficiency over a 20-day period. The volumetric pump output varied from 0 to 10 nl s(-1) when the pump cycle time decreased from 5 min to 15 s. The pump head pressure was 1 kPa.

  10. Features of the concentration dependences of the surface tension of water suspensions of bentonites

    NASA Astrophysics Data System (ADS)

    Dadashev, R. Kh.; Dzhambulatov, R. S.; Elimkhanov, D. Z.

    2015-08-01

    The concentration dependence of the surface tension of water suspensions of bentonites is studied experimentally. Possible reasons for the emergence of the minima on isotherms of the surface tensions of dispersed systems are analyzed.

  11. Investigation of surface tension phenomena using the KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Alter, W. S.

    1982-01-01

    The microgravity environment of the KC-135 aircraft was utilized in three experiments designed to determine the following: (1) the feasibility of measuring critical wetting temperatures; (2) the effectiveness of surface tension as a means of keeping the cushioning heat transfer liquid in the furnace during ampoule translation; and (3) whether a non-wetting fluid would separate from the ampoule wall under low gravity conditions. This trio of investigations concerning surface phenomena demonstrates the effectiveness of the KC-135 as a microgravity research environment for small-scale, hand-held experiments.

  12. Measurement of surface tension and viscosity by open capillary techniques

    DOEpatents

    Rye,Robert R. , Yost,Frederick G.

    1998-01-01

    An open-channel capillary is provided, having preferably a v-shaped groove in a flat wettable surface. The groove has timing marks and a source marker in which the specimen to be tested is deposited. The time of passage between the timing marks is recorded, and the ratio of surface tension .gamma. to viscosity .mu. is determined from the equation given below: ##EQU1## where h.sub.0 is the groove depth, .alpha. is the groove angle, .theta. is the liquid/solid contact angle, and t is the flow time. It has been shown by the

  13. Comparing contact angle measurements and surface tension assessments of solid surfaces.

    PubMed

    Cwikel, Dory; Zhao, Qi; Liu, Chen; Su, Xueju; Marmur, Abraham

    2010-10-05

    Four types of contact angles (receding, most stable, advancing, and "static") were measured by two independent laboratories for a large number of solid surfaces, spanning a large range of surface tensions. It is shown that the most stable contact angle, which is theoretically required for calculating the Young contact angle, is a practical, useful tool for wettability characterization of solid surfaces. In addition, it is shown that the experimentally measured most stable contact angle may not always be approximated by an average angle calculated from the advancing and receding contact angles. The "static" CA is shown in many cases to be very different from the most stable one. The measured contact angles were used for calculating the surface tensions of the solid samples by five methods. Meaningful differences exist among the surface tensions calculated using four previously known methods (Owens-Wendt, Wu, acid-base, and equation of state). A recently developed, Gibbsian-based correlation between interfacial tensions and individual surface tensions was used to calculate the surface tensions of the solid surfaces from the most stable contact angle of water. This calculation yielded in most cases higher values than calculated with the other four methods. On the basis of some low surface energy samples, the higher values appear to be justified.

  14. Combined surface pressure-interfacial shear rheology studies of the interaction of proteins with spread phospholipid monolayers at the air-water interface.

    PubMed

    Roberts, Simon A; Kellaway, Ian W; Taylor, Kevin M G; Warburton, Brian; Peters, Kevin

    2005-08-26

    The adsorption of two model proteins, catalase and lysozyme, to phospholipid monolayers spread at the air-water interface has been studied using a combined surface pressure-interfacial shear rheology technique. Monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG) and DPPC:DPPG (7:3) were spread on a phosphate buffer air-water interface at pH 7.4. Protein solutions were introduced to the subphase and the resultant changes in surface pressure and interfacial storage and loss moduli were recorded with time. The results show that catalase readily adsorbs to all the phospholipid monolayers investigated, inducing a transition from liquid-like to gel-like rheological behaviour in the process. The changes in surface rheology as a result of the adsorption of catalase increase in the order DPPC

  15. Synthetic Tracheal Mucus with Native Rheological and Surface Tension Properties

    PubMed Central

    Hamed, R.; Fiegel, J.

    2016-01-01

    In this study the development of a model tracheal mucus with chemical composition and physical properties (bulk viscoelasticity and surface tension) matched to that of native tracheal mucus is described. The mucus mimetics were formulated using components that are abundant in tracheal mucus (glycoproteins, proteins, lipids, ions and water) at concentrations similar to those found natively. Pure solutions were unable to achieve the gel behavior observed with native mucus. The addition of a bi-functional crosslinking agent enabled control over the viscoelastic properties of the mucus mimetics by tailoring the concentration of the crosslinking agent and the duration of crosslinking. Three mucus mimetic formulations with different bulk viscoelastic properties, all within the normal range for non-diseased tracheal mucus, were chosen for investigation of surfactant spreading at the air-mimetic interface. Surfactant spread quickly and completely on the least viscoelastic mimetic surface, enabling the surface tension of the mimetic to be lowered to match native tracheal mucus. However, surfactant spreading on the more viscoelastic mimetics was hindered, suggesting that the bulk properties of the mimetics dictate the range of surface properties that can be achieved. PMID:23813841

  16. Surface tension and quasi-emulsion of cavitation bubble cloud.

    PubMed

    Bai, Lixin; Chen, Xiaoguang; Zhu, Gang; Xu, Weilin; Lin, Weijun; Wu, Pengfei; Li, Chao; Xu, Delong; Yan, Jiuchun

    2017-03-01

    A quasi-emulsion phenomenon of cavitation structure in a thin liquid layer (the thin liquid layer is trapped between a radiating surface and a hard reflector) is investigated experimentally with high-speed photography. The transformation from cloud-in-water (c/w) emulsion to water-in-cloud (w/c) emulsion is related to the increase of cavitation bubble cloud. The acoustic field in the thin liquid layer is analyzed. It is found that the liquid region has higher acoustic pressure than the cloud region. The bubbles are pushed from liquid region to cloud region by the primary Bjerknes forces. The rate of change of CSF increased with the increase of CSF. The cavitation bubbles on the surface of cavitation cloud are attracted by the cavitation bubbles inside the cloud due to secondary Bjerknes forces. The existence of surface tension on the interface of liquid region and cloud region is proved. The formation mechanism of disc-shaped liquid region and cloud region are analysed by surface tension and incompressibility of cavitation bubble cloud.

  17. Effects of varying interfacial surface tension on macroscopic polymer lenses

    NASA Astrophysics Data System (ADS)

    Zimmerman, Charlotte; White, Mason; Baylor, Martha-Elizabeth

    2015-09-01

    We investigate macroscopic polymer lenses (0.5- to 2.5-cm diameter) fabricated by dropping hydrophobic photocurable resin onto the surface of various hydrophilic liquid surfaces. Due to the intermolecular forces along the interface between the two liquids, a lens shape is formed. We find that we can vary the lens geometry by changing the region over which the resin is allowed to spread and the surface tension of the substrate to produce lenses with theoretically determined focal lengths ranging from 5 to 25 mm. These effects are varied by changing the container width, substrate composition, and substrate temperature. We present data for five different variants, demonstrating that we can control the lens dimensions for polymer lens applications that require high surface quality.

  18. Drop formation by thermal fluctuations at an ultralow surface tension.

    PubMed

    Hennequin, Y; Aarts, D G A L; van der Wiel, J H; Wegdam, G; Eggers, J; Lekkerkerker, H N W; Bonn, Daniel

    2006-12-15

    We present experimental evidence that drop breakup is caused by thermal noise in a system with a surface tension that is more than 10(6) times smaller than that of water. We observe that at very small scales classical hydrodynamics breaks down and the characteristic signatures of pinch-off due to thermal noise are observed. Surprisingly, the noise makes the drop size distribution more uniform, by suppressing the formation of satellite droplets of the smallest sizes. The crossover between deterministic hydrodynamic motion and stochastic thermally driven motion has repercussions for our understanding of small-scale hydrodynamics, important in many problems such as micro- or nanofluidics and interfacial singularities.

  19. Flow rate analysis of a surface tension driven passive micropump.

    PubMed

    Berthier, Erwin; Beebe, David J

    2007-11-01

    A microfluidic passive pumping method relying on surface tension properties is investigated and a physical model is developed. When a small inlet drop is placed on the entrance of a microfluidic channel it creates more pressure than a large output drop at the channel exit, causing fluid flow. The behavior of the input drop occurs in two characteristic phases. An analytical solution is proposed and verified by experimental results. We find that during the first phase the flow rate is stable and that this phase can be prolonged by refilling the inlet drop to produce continuous flow in the microchannel.

  20. Experiments on buoyancy and surface tension following Galileo Galilei

    NASA Astrophysics Data System (ADS)

    Straulino, S.; Gambi, C. M. C.; Righini, A.

    2011-01-01

    We analyze passages of Galileo's writings on aspects of floating. Galileo encountered peculiar effects such as the "floating" of light objects made of dense material and the creation of large drops of water that were difficult to explain because they are related to our current understanding of surface tension. Even though Galileo could not understand the phenomenon, his proposed explanations and experiments are interesting from an educational point of view. We replicate the experiment on water and wine that was described by Galileo in his Two New Sciences.

  1. Restraint of Liquid Jets by Surface Tension in Microgravity Modeled

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2001-01-01

    Tension in Microgravity Modeled Microgravity poses many challenges to the designer of spacecraft tanks. Chief among these are the lack of phase separation and the need to supply vapor-free liquid or liquidfree vapor to the spacecraft processes that require fluid. One of the principal problems of phase separation is the creation of liquid jets. A jet can be created by liquid filling, settling of the fluid to one end of the tank, or even closing a valve to stop the liquid flow. Anyone who has seen a fountain knows that jets occur in normal gravity also. However, in normal gravity, the gravity controls and restricts the jet flow. In microgravity, with gravity largely absent, jets must be contained by surface tension forces. Recent NASA experiments in microgravity (Tank Pressure Control Experiment, TPCE, and Vented Tank Pressure Experiment, VTRE) resulted in a wealth of data about jet behavior in microgravity. VTRE was surprising in that, although it contained a complex geometry of baffles and vanes, the limit on liquid inflow was the emergence of a liquid jet from the top of the vane structure. Clearly understanding the restraint of liquid jets by surface tension is key to managing fluids in low gravity. To model this phenomenon, we need a numerical method that can track the fluid motion and the surface tension forces. The fluid motion is modeled with the Navier-Stokes equation formulated for low-speed incompressible flows. The quantities of velocity and pressure are placed on a staggered grid, with velocity being tracked at cell faces and pressure at cell centers. The free surface is tracked via the introduction of a color function that tracks liquid as 1/2 and gas as -1/2. A phase model developed by Jacqmin is used. This model converts the discrete surface tension force into a barrier function that peaks at the free surface and decays rapidly. Previous attempts at this formulation have been criticized for smearing the interface. However, by sharpening the phase

  2. Liquid drops and surface tension with smoothed particle applied mechanics

    NASA Astrophysics Data System (ADS)

    Nugent, S.; Posch, H. A.

    2000-10-01

    Smoothed particle applied mechanics (SPAM), also referred to as smoothed particle hydrodynamics, is a Lagrangian particle method for the simulation of continuous flows. Here we apply it to the formation of a liquid drop, surrounded by its vapor, for a van der Waals (vdW) fluid in two dimensions. The cohesive pressure of the vdW equation of state gives rise to an attractive, central force between the particles with an interaction range which is assumed to exceed the interaction range of all the other smoothed forces in the SPAM equations of motion. With this assumption, stable drops are formed, and the vdW phase diagram is well reproduced by the simulations. Below the critical temperature, the surface tension for equilibrated drops may be computed from the pressure excess in their centers. It agrees very well with the surface tension independently determined from the vibrational frequency of weakly excited drops. We also study strongly deformed drops performing large-amplitude oscillations, which are reminiscent of the oscillations of a large ball of water under microgravity conditions. In an appendix we comment on the limitations of SPAM by studying the violation of angular momentum conservation, which is a consequence of noncentral forces contributed by the full Newtonian viscous stress tensor.

  3. Functional Design and Qualification of Surface Tension Propellant Tanks

    NASA Astrophysics Data System (ADS)

    Figus, C.; Haddad, D.; Ounougha, L.; Autric, J.

    2004-10-01

    During two decades, EADS Astrium has designed and qualified the surface tension device used in the propellant tanks equipping the Eurostar telecommunication satellites platforms. Recent re- orbiting phases of Eurostar E2000 satellites, have allowed to validate those designs and to graveyard the spacecraft with less than 1 kg of propellant left per tank. Moreover, with the emergence of new powerful satellites with full chemical or mixed chemical-plasma propulsion subsystems, EADS Astrium has designed a new larger and improved surface tension propellant tank. Such challenging performances require analyses, and tests in order to assess and confirm the predicted performances. The present article shows the recent development of a new enlarged Eurostar E3000 propellant tanks for Eurostar 3000 satellites and presents the main functional analyses and neutral buoyancy tests results obtained for this new propellant tank These last two years, have contributed to improve this background with the successful graveyard of the first Eurostar spacecraft with less than 1 kg of liquid propellant per tank at the end of the manoeuvre. Moreover, a new enlarged E3000 propellant tank has been designed and qualified in order to cope with the future 12 kW telecom spacecraft applications. This tank designed by EADS-ASTRIUM, is manufactured by EADS-Space transportation. This paper presents the performances and tests results obtained on this new propellant tank.

  4. The surface tension effect on viscous liquid spreading along a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Aksenov, A. V.; Sudarikova, A. D.; Chicherin, I. S.

    2017-01-01

    Within the Stokes film approximation, unsteady plane-parallel spreading of a thin layer of a heavy viscous fluid along a horizontal superhydrophobic surface is studied. The forced spreading regimes induced by the mass supply are considered. Plane-parallel flow along the principal direction of the slip tensor of the superhydrophobic surface is studied in case that the corresponding slip tensor component is a power function of the spatial coordinate. An evolution equation for the film thickness is derived taking into account surface tension that is dependent on the spatial coordinate. The group classification problem is solved. Self-similar and invariant solutions are constructed for power and exponent time dependences on mass supply respectively at a special form of the surface tension coefficient. Surface tension is shown to have a significant influence on the character of the liquid spreading.

  5. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    PubMed

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning.

  6. Surface tension drawing of liquid from microplate capillary wells.

    PubMed

    Schwalb, Willem; Ng, Tuck Wah; Lye, Jonathan Kok Keung; Liew, Oi Wah; Cheong, Brandon Huey-Ping

    2012-01-01

    Pressure differentials are routinely used to actuate flow in capillaries. We advance here an alternative means of flow generation that capitalizes on the extension of a liquid bridge achieved by the drawing of a rod through the action of surface tension. This meets the exigencies of creating controllable flow using simpler and more compact means. We found the ability to generate controllable flow to be strongly affected by the liquid bridge sustaining features, and that the use of rod diameters larger than the capillary was more conducive. The extensional flow resulting from the rupture of the liquid bridge was also found to have a strong circulation component which facilitated mixing. The approach here is highly amenable for use in capillary well microplates which have significant advantages over standard microplates. The features of this approach offer usage possibilities in biochemical applications in the field, such as in the leukocyte cell adhesion and hemagglutination tests of blood samples.

  7. The wave numbers of supercritical surface tension driven Benard convection

    NASA Technical Reports Server (NTRS)

    Koschmieder, E. L.; Switzer, D. W.

    1991-01-01

    The cell size or the wave numbers of supercritical hexagonal convection cells in primarily surface tension driven convection on a uniformly heated plate was studied experimentally in thermal equilibrium in thin layers of silicone oil of large aspect ratio. It was found that the cell size decreases with increased temperature difference in the slightly supercritical range, and that the cell size is unique within the experimental error. It was also observed that the cell size reaches a minimum and begins to increase at larger temperature differences. This reversal of the rate of change of the wave number with temperature difference is attributed to influences of buoyancy on the fluid motion. The consequences of buoyancy were tested with three fluid layers of different depth.

  8. Experiment 6: Surface Tension Driven Convection Experiment-2 (STDCE-2)

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro; Pline, Alexander D.

    1998-01-01

    Results are reported from the Second Surface Tension Driven Convection Experiment (STDCE-2) performed aboard the Second United States Microgravity Laboratory (USML-2), which flew as Space Shuttle mission STS-73 and launched on October 20, 1995. Oscillatory thermocapillary flows were investigated in open cylindrical containers filled with 2 centistokes kinematic viscosity (Pr=27 at 25 C) silicone oil. Two different heating modes were investigated in detail. The main objectives of the experiments were to determine the onset of oscillatory thermocapillary flow under highly reduced buoyancy and gravity conditions and to study the important features of the oscillatory flow. The onset conditions were determined in three different size containers (1.2-, 2-, and 3-cm diameter) and for various free surface shapes (flat and curved). Numerical and scaling analyses were also performed to understand the basic steady flows. The analysis shows that the main flow is viscous-dominated near the onset of oscillations. The onset conditions determined in the present experiments together with our earlier ground-based data show that one could not describe the oscillation phenomenon if the fluid free surface is assumed to be rigid. Therefore, a parameter representing free surface deformation was derived, and the data are shown to be correlated well by that parameter. The oscillation patterns and frequencies are also presented.

  9. A novel methodology to study shape and surface tension of drops in Electric Fields

    NASA Astrophysics Data System (ADS)

    Bateni, A.; Susnar, S. S.; Amirfazli, A.; Neumann, A. W.

    2005-03-01

    A novel methodology is introduced that can be used to study the behavior of conducting drops in electrostatic fields, when gravity effects are negligible. This methodology, called Axisymmetric Drop Shape Analysis — Electric Field (ADSA-EF), generates numerical drop profiles in the electrostatic field, for a given surface tension. Then, it calculates the true value of the surface tension by matching the theoretical profiles with the shape of the experimental drops, with the surface tension as an adjustable parameter. ADSA-EF can be employed for simulating drop shapes in the electric field, detecting the effect of an electric field on liquid surface tensions, and measuring surface tensions in microgravity, where current drop-shape techniques are not applicable. The predicted drop shapes in the electric field were compared with experimental images, indicating good agreement. Preliminary experiments according to ADSA-EF methodology suggested that the surface tension of water increases by about one percent in the electric field.

  10. Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems

    NASA Astrophysics Data System (ADS)

    Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.

    2016-10-01

    The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.

  11. Surface Tension Driven Convection Experiment-2 (STDCE-2)

    NASA Technical Reports Server (NTRS)

    Masud, J.; Kamotani, Y.; Ostrach, S.

    1999-01-01

    Thermocapillary flows are known to become oscillatory (time-periodic), but how and when they become oscillatory in containers of unit-order aspect ratio are not yet fully understood. The present work is a part of our continuous effort to obtain a better understanding of the phenomenon. Thermocapillary flow experiments in normal gravity are limited to a narrow parametric range in order to minimize gravity and buoyancy effects, which is an important reason for our lack of full understanding of the oscillation phenomenon. One important unanswered question is what role, if any, free surface deformation plays in the oscillation mechanism. For that reason we performed thermocapillary flow experiments, called the Surface Tension Driven Convection Experiment-2 (STDCE-2), aboard the USML-2 Spacelab in 1995. The main objectives of the experiments were to investigate oscillatory thermocapillary flows in microgravity and to clarify the importance of free surface deformation in such flows. Steady and oscillatory thermocapillary flows were generated in cylindrical containers by employing two heating modes. A CO2 laser with adjustable power and beam diameter was used in the Constant Flux (CF) configuration to heat the free surface. The other configuration investigated in STDCE-2 was the Constant Temperature (CT) configuration in which a submerged cylindrical cartridge heater placed at the symmetry (axial) axis of the test container heated the fluid. Both heating modes cause non-uniform temperature distributions on the free surface, which generates thermocapillary flow. The flow field was investigated by flow visualization, and the temperature field was measured by thermistors and an infrared imager. The free surface shape and motion were measured by a Ronchi system. The hardware performed well and we were able to conduct more tests than originally planned. From the successful experiments a large amount of data was acquired. The analysis of the data is now nearly complete. Some

  12. Reduction of water surface tension significantly impacts gecko adhesion underwater.

    PubMed

    Stark, Alyssa Y; McClung, Brandon; Niewiarowski, Peter H; Dhinojwala, Ali

    2014-12-01

    The gecko adhesive system is dependent on weak van der Waals interactions that are multiplied across thousands of fine hair-like structures (setae) on geckos' toe pads. Due to the requirements of van der Waals forces, we expect that any interruption between the setae and substrate, such as a water layer, will compromise adhesion. Our recent results suggest, however, that the air layer (plastron) surrounding the superhydrophobic toe pads aid in expelling water at the contact interface and create strong shear adhesion in water when in contact with hydrophobic surfaces. To test the function of the air plastron, we reduced the surface tension of water using two surfactants, a charged anionic surfactant and a neutral nonionic surfactant. We tested geckos on three substrates: hydrophilic glass and two hydrophobic surfaces, glass with a octadecyl trichlorosilane self-assembled monolayer (OTS-SAM) and polytetrafluoroethylene (PTFE). We found that the anionic surfactant inhibited the formation of the air plastron layer and significantly reduced shear adhesion to all three substrates. Interestingly, the air plastron was more stable in the nonionic surfactant treatments than the anionic surfactant treatments and we found that geckos adhered better in the nonionic surfactant than in the anionic surfactant on OTS-SAM and PTFE but not on glass. Our results have implications for the evolution of a superhydrophobic toe pad and highlight some of the challenges faced in designing synthetic adhesives that mimic geckos' toes.

  13. Surface tension of water-alcohol mixtures from Monte Carlo simulations.

    PubMed

    Biscay, F; Ghoufi, A; Malfreyt, P

    2011-01-28

    Monte Carlo simulations are reported to predict the dependence of the surface tension of water-alcohol mixtures on the alcohol concentration. Alcohols are modeled using the anisotropic united atom model recently extended to alcohol molecules. The molecular simulations show a good agreement between the experimental and calculated surface tensions for the water-methanol and water-propanol mixtures. This good agreement with experiments is also established through the comparison of the excess surface tensions. A molecular description of the mixture in terms of density profiles and hydrogen bond profiles is used to interpret the decrease of the surface tension with the alcohol concentration and alcohol chain length.

  14. Effects of surface tension and axis stress on piezoelectric behaviors of ferroelectric nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Y. Q.; En, Y. F.; Huang, Y.; Kong, X. D.; Zheng, X. J.; Lu, Y. D.

    2011-11-01

    The effects of surface tension and axis stress on piezoelectric behaviors of ferroelectric nanowires with radius polarization were investigated by the time-dependent Ginzburg-Landau theory. When surface tension increases, both of coercive field and remnant strain decrease. The larger the surface tension is, the more they decrease. The axis compressive stress enhances the coercive field and remnant strain, while the axis tensile stress has contrary effect. The reason for the stress-modulated piezoelectricity is that radius polarization is forced by axis compressive stress but restrained by surface tension and axis tensile stress. The research is useful for ferroelectric nanostructures in strain engineering.

  15. Surface tension in human pathophysiology and its application as a medical diagnostic tool

    PubMed Central

    Fathi-Azarbayjani, Anahita; Jouyban, Abolghasem

    2015-01-01

    Introduction: Pathological features of disease appear to be quite different. Despite this diversity, the common feature of various disorders underlies physicochemical and biochemical factors such as surface tension. Human biological fluids comprise various proteins and phospholipids which are capable of adsorption at fluid interfaces and play a vital role in the physiological function of human organs. Surface tension of body fluids correlates directly to the development of pathological states. Methods: In this review, the variety of human diseases mediated by the surface tension changes of biological phenomena and the failure of biological fluids to remain in their native state are discussed. Results: Dynamic surface tension measurements of human biological fluids depend on various parameters such as sex, age and changes during pregnancy or certain disease. It is expected that studies of surface tension behavior of human biological fluids will provide additional information and might become useful in medical practice. Theoretical background on surface tension measurement and surface tension values of reference fluids obtained from healthy and sick patients are depicted. Conclusion: It is well accepted that no single biomarker will be effective in clinical diagnosis. The surface tension measurement combined with routine lab tests may be a novel non-invasive method which can not only facilitate the discovery of diagnostic models for various diseases and its severity, but also be a useful tool for monitoring treatment efficacy. We therefore expect that studies of surface tension behavior of human biological fluids will provide additional useful information in medical practice. PMID:25901295

  16. Surface Tension Driven Instability in the Regime of Stokes Flow

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei; Bowick, Mark; Xing, Xiangjun

    2010-03-01

    A cylinder of liquid inside another liquid is unstable towards droplet formation. This instability is driven by minimization of surface tension energy and was analyzed first by [1,2] and then by [3]. We revisit this problem in the limit of small Laplace number, where the inertial of liquids can be completely ignored. The stream function is found to obey biharmonic equation, and its analytic solutions are found. We rederive Tomotika's main results, and also obtain many new analytic results about the velocity fields. We also apply our formalism to study the recent experiment on toroidal liquid droplet[4]. Our framework shall have many applications in micro-fluidics. [1] L.Rayleigh, On The Instability of A Cylinder of Viscous Liquid Under Capillary Force, Scientific Papers, Cambridge, Vol.III, 1902. [2] L.Rayleigh, On The Instability of Cylindrical Fluid Surfaces, Scientific Papers, Cambridge, Vol.III, 1902. [3] S.Tomotika, On the Instability of a Cylindrical Thread of a Viscous Liquid surround by Another Viscous Fluid, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Volume 150, Issue 870, pp. 322-337. [4] E.Pairam and A.Fern'andez-Nieves, Generation and Stability of Toroidal Droplets in a Viscous Liquid, Physical Review Letters 102, 234501 (2009).

  17. A new method for measuring the dynamic surface tension of complex-mixture liquid drops

    SciTech Connect

    Zhang, X.; Harris, M.T.; Basaran, O.A.

    1994-06-29

    A simple and accurate technique has been developed for measuring dynamic surface tension. The new technique is based on growing a drop at the end of a fine capillary into another immiscible fluid and can follow the changes in tension at a freshly formed interface during its entire period of evolution. When the relative importance of the surface tension force is large compared to gravitational and viscous forces, shapes of growing drops are sections of spheres and the difference in pressure between the interior and the exterior of the drop {triangle}p is related to the surface tension {sigma} and the radius of curvature R by the static Young-Laplace formula {triangle}p = 2{sigma}/R. In contrast to related work, the new technique can determine the surface tension of an interface with a surface age of a few to tens of milliseconds by measuring transient drop shapes and pressures in 1/6 to 1 millisecond. The capabilities of the new method are demonstrated by performing tension measurements on liquid systems that do not exhibit dynamic surface tension as well as ones that exhibit significant dynamic tension effects. Tension measurements made with surfactant-laden solutions show that variation of surface tension is nonmonotonic in time. In such systems, the dynamic behavior of surface tension is shown to depend upon both the rate of interfacial dilatation and that of surfactant transport. A maximum in the surface tension is attained when the lowering of the surfactant concentration on the drop interface due to its dilatation is balanced by the addition of fresh surfactant to the interface by convection and diffusion.

  18. Surface Tension Mediated Under-Water Adhesion of Rigid Spheres on Soft, Charged Surfaces

    NASA Astrophysics Data System (ADS)

    Sinha, Shayandev; Das, Siddhartha

    2015-11-01

    Understanding the phenomenon of surface-tension-mediated under-water adhesion is necessary for studying a plethora of physiological and technical phenomena, such as the uptake of bacteria or nanoparticle by cells, attachment of virus on bacterial surfaces, biofouling on large ocean vessels and marine devices, etc. This adhesion phenomenon becomes highly non-trivial in case the soft surface where the adhesion occurs is also charged. Here we propose a theory for analyzing such an under-water adhesion of a rigid sphere on a soft, charged surface, represented by a grafted polyelectrolyte layer (PEL). We develop a model based on the minimization of free energy that, in addition to considering the elastic and the surface-tension-mediated adhesion energies, also accounts for the PEL electric double layer (EDL) induced electrostatic energies. We show that in the presence of surface charges, adhesion gets enhanced. This can be explained by the fact that the increase in the elastic energy is better balanced by the lowering of the EDL energy associated with the adhesion process. The entire behaviour is further dictated by the surface tension components that govern the adhesion energy.

  19. Aggregation behaviors of PEO-PPO-ph-PPO-PEO and PPO-PEO-ph-PEO-PPO at an air/water interface: experimental study and molecular dynamics simulation.

    PubMed

    Gong, Houjian; Xu, Guiying; Liu, Teng; Xu, Long; Zhai, Xueru; Zhang, Jian; Lv, Xin

    2012-09-25

    The block polyethers PEO-PPO-ph-PPO-PEO (BPE) and PPO-PEO-ph-PEO-PPO (BEP) are synthesized by anionic polymerization using bisphenol A as initiator. Compared with Pluronic P123, the aggregation behaviors of BPE and BEP at an air/water interface are investigated by the surface tension and dilational viscoelasticity. The molecular construction can influence the efficiency and effectiveness of block polyethers in decreasing surface tension. BPE has the most efficient ability to decrease surface tension of water among the three block polyethers. The maximum surface excess concentration (Γ(max)) of BPE is larger than that of BEP or P123. Moreover, the dilational modulus of BPE is almost the same as that of P123, but much larger than that of BEP. The molecular dynamics simulation provides the conformational variations of block polyethers at the air/water interface.

  20. Thomas Young's Surface Tension Diagram: Its History, Legacy, and Irreconcilabilities

    NASA Astrophysics Data System (ADS)

    Finn, Robert; McCuan, John; Wente, Henry C.

    2012-09-01

    The Young diagram for determining the contact angle at a triple interface formed by two fluids with a solid, although based on speculative reasoning, found on its publication in 1805 a universal acceptance, without reservation. Later expository articles pointed out consequences that had initially been overlooked, but which were consistent in the specific configurations considered. More recently, reasoning disputing the construction has appeared, and examples—the most recent of them by the present initial author—were introduced, putting the underlying concept into serious doubt. Nevertheless, the construction remains firmly embedded in the curricula of major universities and institutes throughout the world; it continues to be used in engineering design, and two articles emphatically defending it have appeared recently in major journals. In the present note we outline past literature and provide a more precise statement of the Young criterion than is customary. We present explicit examples displaying contradictions arising from it, and corresponding erroneous reasoning in one of the articles defending the criterion (the other having already been refuted in an earlier publication). Finally, we call attention to a direct conflict between the Young construction as interpreted in that article and the classical Wilhelmy method for measuring surface tension at fluid/fluid interfaces.

  1. Binding of globular proteins to DNA from surface tension measurement.

    PubMed

    Mitra, A; Chattoraj, D K; Chakraborty, P

    2001-10-01

    Extent of binding (gammap) of globular proteins to calf-thymus DNA have been measured in mole per mole of nucleotide as function of equilibrium protein concentration. We have exploited measurement of the surface tension of the protein solution in the presence and absence of DNA to calculate the binding ration (gammap). Interaction of bovine serum albumin with DNA has been studied at different pH. Interaction of bovine serum albumin with DNA has been studied at different pH, ionic strength and in presence of Ca2+. Interaction of BSA with denatured DNA has also been investigated. Binding isotherms for other globular proteins like beta-lactoglobulin, alpha-lactalbumin and lysozyme have been compared under identical physicochemical condition. It has been noted with considerable interest that globular form of protein is important to some extent in protein-DNA interaction. An attempt has been made to explain the significance of difference in binding ratios of these two biopolymers in aqueous medium for different systems in the light of electrostatic and hydrophobic effects. Values of maximum binding ration (gammap(m)) at saturated level for different systems have been also presented. The Gibb's free energy decrease (-deltaG0) of the binding of proteins to DNA has been compared more precisely for the saturation of binding sites in the DNA with the change of activity of protein in solution from zero to unity in the rational mole fraction scale.

  2. Criticality and surface tension in rotating horizon thermodynamics

    NASA Astrophysics Data System (ADS)

    Hansen, Devin; Kubizňák, David; Mann, Robert B.

    2016-08-01

    We study a modified horizon thermodynamics and the associated criticality for rotating black hole spacetimes. Namely, we show that under a virtual displacement of the black hole horizon accompanied by an independent variation of the rotation parameter, the radial Einstein equation takes a form of a ‘cohomogeneity two’ horizon first law, δ E=Tδ S+{{Ω }}δ J-σ δ A, where E and J are the horizon energy (an analogue of the Misner-Sharp mass) and the horizon angular momentum, Ω is the horizon angular velocity, A is the horizon area, and σ is the surface tension induced by the matter fields. For fixed angular momentum, the above equation simplifies and the more familiar (cohomogeneity one) horizon first law δ E=Tδ S-Pδ V is obtained, where P is the pressure of matter fields and V is the horizon volume. A universal equation of state is obtained in each case and the corresponding critical behavior is studied.

  3. Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows

    NASA Astrophysics Data System (ADS)

    Li, Qing; Luo, K. H.

    2013-11-01

    In this paper, we aim to address an important issue about the pseudopotential lattice Boltzmann (LB) model, which has attracted much attention as a mesoscopic model for simulating interfacial dynamics of complex fluids, but suffers from the problem that the surface tension cannot be tuned independently of the density ratio. In the literature, a multirange potential was devised to adjust the surface tension [Sbragaglia , Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.75.026702 75, 026702 (2007)]. However, it was recently found that the density ratio of the system will be changed when the multirange potential is employed to adjust the surface tension. An alternative approach is therefore proposed in the present work. The basic strategy is to add a source term to the LB equation so as to tune the surface tension of the pseudopotential LB model. The proposed approach can guarantee that the adjustment of the surface tension does not affect the mechanical stability condition of the pseudopotential LB model, and thus provides a separate control of the surface tension and the density ratio. Meanwhile, it still retains the mesoscopic feature and the computational simplicity of the pseudopotential LB model. Numerical simulations are carried out for stationary droplets, capillary waves, and droplet splashing on a thin liquid film. The numerical results demonstrate that the proposed approach is capable of achieving a tunable surface tension over a very wide range and can keep the density ratio unchanged when adjusting the surface tension.

  4. Effect of gravity and electric field on shape and surface tension of drops

    NASA Astrophysics Data System (ADS)

    Bateni, A.; Ababneh, A.; Elliott, J. A. W.; Neumann, A. W.; Amirfazli, A.

    Experimental work was performed in reduced gravity conditions using a novel methodology to investigate the effect of external forces, i.e., gravity and electric field, on shape and surface tension of drops. The new methodology, called axisymmetric drop-shape analysis - electric fields (ADSA-EF), can generate numerical drop profiles as a function of surface tension, at any given gravity and/or electric field. When an image of an experimental drop is available, ADSA-EF can calculate the true value of the surface tension by matching the numerical profiles with the shape of the experimental drop, taking the surface tension as an adjustable parameter. ADSA-EF is a novel technique, which can be employed to predict and simulate drop shapes in the electric field, determine the effect of external fields on surface tensions, or measure surface tensions in reduced gravity conditions, where other drop-shape techniques are not applicable. The results of the reduced gravity experiment suggested that the electric field significantly increases the surface tension of water. No significant effect of gravity on surface tension was detected.

  5. The Turbulent Boundary Layer Near the Air-Water Interface on a Surface-Piercing Flat Plate

    NASA Astrophysics Data System (ADS)

    Washuta, Nathan; Masnadi, Naeem; Duncan, James H.

    2015-11-01

    Turbulent fluctuations in the vicinity of the water free surface along a flat, vertically oriented surface-piercing plate are studied experimentally using a laboratory-scale experiment. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section between rollers. The belt is launched from rest with a 3- g acceleration in order to quickly reach steady state velocity. This creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along a flat-sided ship moving at the same velocity, with a length equivalent to the length of belt that has passed the measurement region since the belt motion began. Cinematic Stereo PIV measurements are performed in planes parallel to the free surface by imaging the flow from underneath the tank in order to study the modification of the boundary layer flow field due to the effects of the water free surface. The support of the Office of Naval Research under grant N000141110029 is gratefully acknowledged.

  6. Transparent, Superhydrophobic Surface with Varied Surface Tension Responsiveness in Wettability Based on Tunable Porous Silica Structure for Gauging Liquid Surface Tension.

    PubMed

    Wang, Yan; Zhu, Yingjie; Zhang, Chunyang; Li, Jun; Guan, Zisheng

    2017-02-01

    Any solid surface can spontaneously exhibit variational wettability toward liquids with varied surface tension (γ). However, this correspondence has seldom been proposed or used on an artificial superhydrophobic surface, which should be more remarkable and peculiar. Herein, we fabricated robust, transparent superhydrophobic surfaces utilizing acid- and base-catalyzed silica (AC- and BC-silica) particles combined with candle soot template for structural construction and the CVD process for chemical modification. Three types of porous silica structures were devised, which presented distinctive surface tension responsiveness in wettability. Interestingly, all types of surfaces (i.e., AC-, AC/BC-, and BC-silica) show high repellence to high surface tension liquid (γ > 35 mN/m), and small differences are observed. With decreasing γ of the ethanol-water mixtures (γ < 35 mN/m), the static contact angles (SCAs) on all surfaces have an evident decline, but the features of the decreases are fairly different. As γ decreases, the SCA on the AC-silica surface decreases gradually, but the extent of decline becomes larger when γ < 27.42 mN/m. However, the SCA on the BC-silica surface decreases gradually except for γ ≈ 30.81 mN/m, and the SCA undergoes a sharp decline at γ ≈ 30.81 mN/m. The SCA on the AC/BC-silica surface has a similar variation as that of the SCA on the BC-silica surface, but a lower rate of BC-silica particles, e.g., 1/16, 1/8, 1/1 (AC/BC), further diminishes the critical γ values (where a sharp SCA drop occurs) to 30.16, 29.56, and 28.04 mN/m, respectively. The diversity is believed to be ascribed to the structure-induced selectivity of pore infiltration for the liquid. The tunable responsiveness can be generalized to various classes of organic aqueous solutions including methanol, acetic acid, acetone, and N,N-dimethylformamide. Benefiting from this, we can estimate organics concentration of an organic aqueous solution as well as its liquid

  7. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  8. Interactions between polymers and lipid monolayers at the air/water interface: surface behavior of poly(methyl methacrylate)-cholesterol mixed films.

    PubMed

    Miñones Conde, M; Conde, O; Trillo, J M; Miñones, J

    2010-08-26

    The behavior of mixed monolayers of cholesterol and poly(methyl methacrylate) (PMMA) with molecular weights of M(w) = 120,000 g/mol and M(w) = 15,000 g/mol was investigated at the air/water interface using Langmuir and Brewster angle microscopy techniques. From the data of surface pressure (pi)-area (A) isotherms, compressional modulus-surface pressure (C(s)(-1)-pi) curves, and film thickness, complemented with Brewster angle microscopy images, the interaction between the components was analyzed. Regardless of the surface pressure (pi = 10, 20, or 30 mN/m) at which the mean molecular/monomer areas (Am) were calculated, the Am-mole fraction plots (corresponding to X(PMMA) = 0.1, 0.3, 0.5, 0.7, and 0.9) show that all the experimental points obtained are placed on the theoretical straight line calculated according to the additivity rule. This fact, together with the existence of two collapses in the mixed monolayers and with the fact that the surface pressure of the liquid-expanded LE-L'E phase transition of PMMA does not change with the monolayer composition, demonstrates the immiscibility of the film components at the interface. The application of the Crisp phase rule to the phase diagram of PMMA-cholesterol mixed monolayers helps to explain the existence of a biphasic system, regardless of their composition and surface pressure. Besides, Brewster angle microscopy (BAM) images showed the existence of heterogeneous cholesterol domains with high reflectivity immersed in a homogeneous polymer separate phase with low reflectivity.

  9. Surface tension of aqueous lithium bromide solutions containing 1-octanol as a heat-transfer additive

    SciTech Connect

    Ishida, Kenji; Mori, Y.H.

    1996-11-01

    The surface tension of simulated heat-pump working fluids, aqueous solutions of lithium bromide containing 1-octanol, has been measured, for the first time using a recently developed technique (Ishida et al., Rev. Sci. Instrum. 64, 1,324 (1993)) which is inherently suitable for characterizing the surfactant solution surfaces from the aspects of thermodynamic adsorption equilibrium and adsorption kinetics. The measurement has revealed that even the highest-grade reagents of lithium bromide commercially available are not necessarily free from surfactant impurities. Obtained data on the surface tension vs 1-octanol concentration have been examined on the basis of an equilibrium adsorption model. Through the optimal fitting of the Langmuir-type surface equation of state to the data, they have calculated the surface tension vs surface excess relation and also the variation in surface tension vs 1-octanol concentration relation with the surface area per unit volume of a given solution.

  10. Rotating Molten Metallic Drops and Their Applications for Surface Tension Measurements

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Ishikawa, T.

    1998-01-01

    Shapes and stability of rotating molten metal drops carrying net surface electric charges are experimentally investigated, and the feasibility of measureing surface tension based on drop rotation is examined.

  11. Critical Surface Tension, Critical Surface Energy and Parachor of MnSO3 Thin Film

    NASA Astrophysics Data System (ADS)

    Kariper, I. A.

    2016-02-01

    This study examines the critical surface energy of manganese sulfite (MnSO3) crystalline thin film, produced via chemical bath deposition (CBD) on substrates. In addition, parachor, which is an important parameter of chemical physics, and its relationship with grain size, film thickness, etc., has been investigated for thin films. For this purpose, MnSO3 thin films were deposited at room temperature using different deposition times. Structural properties of the films, such as film thickness and average grain size, were examined using X-ray diffraction; film thickness and surface properties were measured by and atomic force microscope; and critical surface tension of MnSO3 thin films was measured with Optical Tensiometer and calculated using Zisman method. The results showed that critical surface tension and parachor of the films have varied with average grain size and film thickness. Critical surface tension was calculated as 32.97, 24.55, 21.03 and 12.76mN/m for 14.66, 30.84, 37.07 and 44.56nm grain sizes, respectively. Film thickness and average grain size have been increased with the deposition time and they were found to be negatively correlated with surface tension and parachor. The relationship between film thickness and parachor was found as P=-0.1856t+183.45; whereas the relationship between average grain size and parachor was found as P=-0.8911D+150.52. We also showed the relationships between parachor and some thin films parameters.

  12. Hydrodynamics of a self-propelled camphor boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Akella, Sathish; Singh, Dhiraj; Singh, Ravi; Bandi, Mahesh

    2015-11-01

    A camphor tablet, when placed at the air-water interface undergoes sublimation and camphor vapour spreads radially outwards across the surface due to Marangoni forces. This steady camphor influx from tablet onto the air-water interface is balanced by the camphor outflux due to evaporation. When spontaneous fluctuations in evaporation break the axial symmetry of Marangoni force acting radially outwards, the camphor tablet is propelled like a boat along the water surface. We report experiments on the hydrodynamics of a self-propelled camphor boat at air-water interfaces. We observe three different modes of motion, namely continuous, harmonic and periodic, due to the volatile nature of camphor. We explain these modes in terms of ratio of two time-scales: the time-scale over which viscous forces are dominant over the Marangoni forces (τη) and the time-scale over which Marangoni forces are dominant over the viscous forces (τσ). The continuous, harmonic and periodic motions are observed when τη /τσ ~ 1 , τη /τσ >= 1 and τη /τσ >> 1 respectively. Experimentally, the ratio of the time scales is varied by changing the interfacial tension of the air-water interface using Sodium Dodecyl Sulfate. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  13. Non-linear surface dilatational rheology as a tool for understanding microstructures of air/water interfaces stabilized by oligofructose fatty acid esters.

    PubMed

    van Kempen, Silvia E H J; Schols, Henk A; van der Linden, Erik; Sagis, Leonard M C

    2013-10-28

    In this paper, the rheological response of air/water interfaces, stabilized by various oligofructose fatty acid esters, to oscillatory dilatational deformations was studied and compared to the response of interfaces stabilized by sucrose esters. We have followed a traditional approach to surface rheology, where the development of the modulus as a function of time is studied as well as the frequency dependence of the modulus. We also adopted a different approach where we investigate in detail the amplitude dependence of the modulus. Finally, we studied the temperature dependence. We show that for an accurate characterization of the dilatational rheology of fluid–fluid interfaces with a complex microstructure, a protocol should be used that not only involves variations of surface pressure, frequency, and temperature, but also establishes amplitude dependence. We show that Lissajous plots of surface pressure versus deformation can be useful tools to help interpret surface dilatational behavior in terms of interfacial microstructure. The rheological response of interfaces stabilized by oligofructose esters differed significantly from the response of those stabilized by sucrose esters. Sucrose esters behaved like typical low molecular weight surfactants, and gave interfaces with relatively low moduli, a frequency scaling of the dilatational modulus with an exponent close to 0.5, and displayed no asymmetries in Lissajous plots. In contrast, the oligofructose esters gave, depending on the fatty acid tail, relatively high moduli, almost independent of frequency. Significant asymmetries were observed in the Lissajous plots, with strain hardening during compression and strain softening during extension. Our results suggest that the unusual rheological properties of interfaces stabilized by oligofructose esters may be the result of the formation of a two-dimensional soft glass phase by the oligofructose part of the ester.

  14. Surface tension and related thermodynamic parameters of alcohols using the Traube stalagmometer

    NASA Astrophysics Data System (ADS)

    Dilmohamud, B. A.; Seeneevassen, J.; Rughooputh, S. D. D. V.; Ramasami, P.

    2005-11-01

    An apparatus was devised using the Traube Stalagmometer for the determination of the surface tension of the alcohols methanol, ethanol, propan-1-ol and butan-1-ol. Measurements were made under atmospheric pressure at temperatures between 288.15 K and 313.15 K. The surface tension values were correlated with temperature and surface thermodynamic parameters, namely surface entropy and surface enthalpy, were also calculated. The results obtained are in agreement with the literature and they are promising for the use of this low cost arrangement for accurate measurement of surface tension. Surface tension values were obtained with a maximum error of 0.5 mN m-1 and a maximum standard deviation of 0.8 mN m-1. We recommend this arrangement for students in advanced university courses and it can also be used for research work.

  15. Almost Exponential Decay of Periodic Viscous Surface Waves without Surface Tension

    NASA Astrophysics Data System (ADS)

    Guo, Yan; Tice, Ian

    2013-02-01

    We consider a viscous fluid of finite depth below the air, occupying a three-dimensional domain bounded below by a fixed solid boundary and above by a free moving boundary. The fluid dynamics are governed by the gravity-driven incompressible Navier-Stokes equations, and the effect of surface tension is neglected on the free surface. The long time behavior of solutions near equilibrium has been an intriguing question since the work of Beale (Commun Pure Appl Math 34(3):359-392, 1981). This paper is the third in a series of three (Guo in Local well-posedness of the viscous surface wave problem without surface tension, Anal PDE 2012, to appear; in Decay of viscous surface waves without surface tension in horizontally infinite domains, Preprint, 2011) that answers this question. Here we consider the case in which the free interface is horizontally periodic; we prove that the problem is globally well-posed and that solutions decay to equilibrium at an almost exponential rate. In particular, the free interface decays to a flat surface. Our framework contains several novel techniques, which include: (1) a priori estimates that utilize a "geometric" reformulation of the equations; (2) a two-tier energy method that couples the boundedness of high-order energy to the decay of low-order energy, the latter of which is necessary to balance out the growth of the highest derivatives of the free interface; (3) a localization procedure that is compatible with the energy method and allows for curved lower surface geometry. Our decay estimates lead to the construction of global-in-time solutions to the surface wave problem.

  16. Probing Effect of Salinity and pH on Surface Interactions between Air Bubbles and Hydrophobic Solids: Implications on Colloidal Assembly at Air/Water Interface.

    PubMed

    Cui, Xin; Shi, Chen; Zhang, Shuo; Xie, Lei; Liu, Jing; Jiang, Dazhi; Zeng, Hongbo

    2017-04-05

    In this work, bubble probe atomic force microscope (AFM) was employed to quantify the interactions between two air bubbles and between an air bubble and an octadecyltrichlorosilane (OTS)-hydrophobized mica under various aqueous conditions. The key parameters (e.g. surface potentials, decay length of hydrophobic attraction) were obtained by analyzing the measured forces through a theoretical model based on Reynolds lubrication theory and augmented Young-Laplace equation by including effect of disjoining pressure. The bubble-OTS hydrophobic attraction with a decay length of 1.0 nm was found to be independent of solution pH and salinity. These parameters were further used to predict the attachment of OTS-hydrophobized particles onto air/water interface, demonstrating that particle attachment driven by hydrophobic attraction could be facilitated by suppressing electrical double-layer repulsion at low pH or high salinity condition. This facile methodology can be readily extended to quantify interactions of many other colloidal particles with gas/water and oil/water interfaces, with implications on colloidal assembly at different interfaces in many engineering applications.

  17. Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid

    NASA Astrophysics Data System (ADS)

    Schroeder, Craig; Zheng, Wen; Fedkiw, Ronald

    2012-02-01

    We present a method for applying semi-implicit forces on a Lagrangian mesh to an Eulerian discretization of the Navier Stokes equations in a way that produces a sparse symmetric positive definite system. The resulting method has semi-implicit and fully-coupled viscosity, pressure, and Lagrangian forces. We apply our new framework for forces on a Lagrangian mesh to the case of a surface tension force, which when treated explicitly leads to a tight time step restriction. By applying surface tension as a semi-implicit Lagrangian force, the resulting method benefits from improved stability and the ability to take larger time steps. The resulting discretization is also able to maintain parasitic currents at low levels.

  18. Development of a new methodology to study drop shape and surface tension in electric fields.

    PubMed

    Bateni, A; Susnar, S S; Amirfazli, A; Neumann, A W

    2004-08-31

    Development of a new methodology for the study of both shape and surface tension of conducting drops in an electric field is presented. This methodology, called axisymmetric drop shape analysis-electric fields (ADSA-EF), generates numerical drop profiles in an electrostatic field, for a given surface tension. Then, it calculates the true value of the surface tension by matching theoretical profiles to the shape of experimental drops, using the surface tension as an adjustable parameter. ADSA-EF can be employed to simulate and study drop shapes in the electric field and to determine its effect on liquid surface tension. The method can also be used to measure surface tension in microgravity, where current drop-shape techniques are not applicable. The axisymmetric shape of the drop is the only assumption made in the development of ADSA-EF. The new scheme is applicable when both gravity and electrostatic forces are present. Preliminary measurements using ADSA-EF suggest that the surface tension of water increases by about 2% when an electric field with the magnitude of 10(6) V/m is applied.

  19. Density-functional calculations of the surface tension of liquid Al and Na

    NASA Technical Reports Server (NTRS)

    Stroud, D.; Grimson, M. J.

    1984-01-01

    Calculations of the surface tensions of liquid Al and Na are described using the full ionic density functional formalism of Wood and Stroud (1983). Surface tensions are in good agreement with experiment in both cases, with results substantially better for Al than those found previously in the gradient approximation. Preliminary minimization with respect to surface profile leads to an oscillatory profile superimposed on a nearly steplike ionic density disribution; the oscillations have a wavellength of about a hardsphere diameter.

  20. Hard Surface Detergency. Part I. Interfacial Tensions of Candidate Surface Decontaminating Agents in Contact with Model Fluids.

    DTIC Science & Technology

    1982-04-23

    malathion . The effect of surfactant structure and model fluid on the adsorption process were catalogued with the aid of the Szyszkowski equation and the...the interfacial tension to low values by the surfactant when combined with the kinetic energy of the flow process assists in significant erosion of...methyl salicylate, malathion and ortho- dichlorobenzene. The interfacial tension properties of the fluids used are shown in Table 3. The surface tension

  1. Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites.

    PubMed

    Lopes, M A; Monteiro, F J; Santos, J D; Serro, A P; Saramago, B

    1999-06-15

    Wettability and zeta potential studies were performed to characterize the hydrophobicity, surface tension, and surface charge of P2O5-glass-reinforced hydroxyapatite composites. Quantitative phase analysis was performed by the Rietveld method using GSAS software applied to X-ray diffractograms. Surface charge was assessed by zeta potential measurements. Protein adsorption studies were performed using vitronectin. Contact angles and surface tensions variation with time were determined by the sessile and pendent drop techniques, respectively, using ADSA-P software. The highest (-18.1 mV) and lowest (-28.7 mV) values of zeta potential were found for hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP), respectively, with composite materials presenting values in between. All studied bioceramic materials showed similar solid surface tension. For HA and beta-TCP, solid surface tensions of 46.7 and 45.3 mJ/m2, respectively, were obtained, while composites presented intermediate surface tension values. The dispersive component of surface tension was the predominant one for all materials studied. Adhesion work values between the vitronectin solution and HA and beta-TCP were found to be 79.8 and 88.0 mJ/m2, respectively, while the 4.0 wt % glass composites showed slightly lower values than the 2.5 wt % ones. The presence of beta-TCP influenced surface charge, hydrophobicity, and protein adsorption of the glass-reinforced HA composites, and therefore indirectly affected cell-biomaterial interactions.

  2. Measuring and Modeling the Surface Tensions of Organic Aqueous Solutions With Atmospheric Significance

    NASA Astrophysics Data System (ADS)

    Aumann, E.; Tabazadeh, A.

    2008-12-01

    Organic compounds account for a substantial fraction of dry submicron atmospheric aerosol mass. Additionally, single particle composition data suggest that individual aerosols are often mixtures of organic and inorganic components. This study measured the surface tensions of atmospherically relevant pure and mixed organic / inorganic aqueous solutions. Measurements were performed using the Wilhelmy plate method at 25°C and 5°C. Small water-soluble organic compounds previously identified in aerosols (i.e. sugars, dicarboxylic acids) were found to alter the surface tension of water to a limited extent. Humic and fulvic acids were used as analog species for the unidentifiable humic-like substances (HULIS) found in atmospheric particles. Natural humic substances were considerably more effective at reducing the surface tension of water than small water-soluble species. However, humic matter reduced the surface tension of water to a lesser degree than measurements reported for atmospheric HULIS. The addition of inorganic species was found to significantly affect the surface activity of natural humic materials. Surface tension data were fit to the Szyszkowski equation to extract Langmuir adsorption parameters (maximum surface excess, Γmax, and the adsorption constant, β) for the aqueous systems. Adsorption parameters were used to model the surface tensions of multi-component solutions.

  3. Accurate surface tension measurement of glass melts by the pendant drop method.

    PubMed

    Chang, Yao-Yuan; Wu, Ming-Ya; Hung, Yi-Lin; Lin, Shi-Yow

    2011-05-01

    A pendant drop tensiometer, coupled with image digitization technology and a best-fitting algorithm, was built to accurately measure the surface tension of glass melts at high temperatures. More than one thousand edge-coordinate points were obtained for a pendant glass drop. These edge points were fitted with the theoretical drop profiles derived from the Young-Laplace equation to determine the surface tension of glass melt. The uncertainty of the surface tension measurements was investigated. The measurement uncertainty (σ) could be related to a newly defined factor of drop profile completeness (Fc): the larger the Fc is, the smaller σ is. Experimental data showed that the uncertainty of the surface tension measurement when using this pendant drop tensiometer could be ±3 mN∕m for glass melts.

  4. Surface Tension of Organic Liquids Using the OPLS/AA Force Field.

    PubMed

    Zubillaga, Rafael A; Labastida, Ariana; Cruz, Bibiana; Martínez, Juan Carlos; Sánchez, Enrique; Alejandre, José

    2013-03-12

    Molecular dynamics simulations are performed to obtain the surface tension of 61 organic liquids using the OPLS/AA (all-atom optimized potential for liquid simulations). The force field parameters are the same as those recently used (Caleman et al. J. Chem. Theory Comput.2012, 8, 61) to determine several thermodynamic properties of 146 organic liquids. The correct evaluation of surface tension using slab simulations of liquids requires one to properly take into account the long-range interactions (Trukhymchuk and Alejandre J. Chem. Phys.1999, 111, 8510). In addition, the liquid density from slab simulations has to be the same as that obtained in liquid simulations at constant temperature and pressure. The new results of surface tensions from this work improve those reported by Caleman et al. The OPLS/AA force field gives good surface tensions compared with experimental data for most of the systems studied in this work, although it was developed to simulate liquids.

  5. Prediction of surface tension of binary mixtures with the parachor method

    NASA Astrophysics Data System (ADS)

    Němec, Tomáš

    2015-05-01

    The parachor method for the estimation of the surface tension of binary mixtures is modified by considering temperature-dependent values of the parachor parameters. The temperature dependence is calculated by a least-squares fit of pure-solvent surface tension data to the binary parachor equation utilizing the Peng-Robinson equation of state for the calculation of equilibrium densities. A very good agreement between experimental binary surface tension data and the predictions of the modified parachor method are found for the case of the mixtures of carbon dioxide and butane, benzene, and cyclohexane, respectively. The surface tension is also predicted for three refrigerant mixtures, i.e. propane, isobutane, and chlorodifluoromethane, with carbon dioxide.

  6. [Determination of critical surface tension--a comparison of 2 methods].

    PubMed

    Lippold, B C; Ohm, A

    1988-03-01

    Two methods for the determination of the critical surface tension (gamma c) of pharmaceutical powders are compared: the so called "sinking-technique", which works by measuring the complete sinking of powders in liquids of varying surface tension and the determination of the critical surface tension by measuring the contact angle in dependence on the surface tension of wetting solvent/water-mixtures by means of the sessile drop-technique. The simple sinking-technique gives gamma c-values which only show a moderate degree of agreement with those determined by the sessile drop-technique. Thus the values determined by the sinking-technique are usually 1-3 mN/m higher than those determined by the sessile drop-technique.

  7. Measurement of Surface Tension of Solid Cu by Improved Multiphase Equilibrium

    NASA Astrophysics Data System (ADS)

    Nakamoto, Masashi; Liukkonen, Matti; Friman, Michael; Heikinheimo, Erkki; Hämäläinen, Marko; Holappa, Lauri

    2008-08-01

    The surface tension of solid Cu was measured with the multiphase equilibrium (MPE) method in a Pb-Cu system at 700 °C, 800 °C, and 900 °C. A special focus was on the measurement of angles involved in MPE. First, the effect of reading error in each angle measurement on the final result of surface tension of solid was simulated. It was found that the two groove measurements under atmosphere conditions are the primary sources of error in the surface tension of solid in the present system. Atomic force microscopy (AFM) was applied to these angle measurements as a new method with high accuracy. The obtained surface-tension values of solid Cu in the present work were 1587, 1610, and 1521 mN/m at 700 °C, 800 °C, and 900 °C, respectively, representing reasonable temperature dependence.

  8. Practical significance and calculation of surface tension of glass, enamels and glazes

    NASA Technical Reports Server (NTRS)

    Dietzel, A.

    1987-01-01

    Surface tension is important in the formation of streaks in the whole procedure of enameling and glazing., in the action of TiO2 as opacifier, in the addition of borax to enamels, or metals to glasses, and in the corrosion of refractories by molten charges. By the use of known methods for measuring surface tension additive constants are found which give correct results within 1% with no discrepancy due to B2O3.

  9. Finite-Size Effects of Surface Tension in Two Segregated BECs Confined by Two Hard Walls

    NASA Astrophysics Data System (ADS)

    Van Thu, Nguyen; Phat, Tran Huu; Song, Pham The

    2017-01-01

    The finite-size effects of the surface tension in two segregated Bose-Einstein condensates limited by two hard walls are studied respectively in canonical ensemble and grand canonical ensemble by means of the Gross-Pitaevskii theory in the modified double-parabola approximation. The analytical formulae of surface tensions and their finite-size effects are found together with a new type of long-range forces acting on two walls.

  10. The Role of Surface Tension in Colloid Retention and Remobilization during Two-phase Flow

    NASA Astrophysics Data System (ADS)

    Zhang, Q.

    2015-12-01

    During unsaturated flow, the accumulation of colloids at fluid-fluid interfaces (AWIs) and fluid-fluid-solid contact lines (AWSs) depend on those areas and surface tension. The area and capillary forces exerting on colloids can be different by adjusting the liquid-liquid surface tension. In the present work, we adjust only surface tension to change the configuration of AWI and AWSs. Experiments were performed in a Polydimethylsiloxane (PDMS) micro-model. Fluorescent carboxylate-modified polystyrene microspheres, with diameter of 300nm were used as model colloids. Water and fluorinert-FC43 were used as the two immiscible liquids. Given the fact that PDMS is a hydrophobic material, fluorinert was the wetting phase and water was the non-wetting phase in this micro-model. Surface tension was changed by adding fluorinert soluble surfactant into fluorinert-FC43. We visualized colloids interacting with the moving fluid-fluid interfaces by confocal microscopy. We also obtained colloid concentration breakthrough curves by measuring the fluorescent intensities in the outlet of the micro-model. The breakthrough curves showed that under steady-state unsaturated flow, less colloid were retained in the system under low surface tension. The visualization results showed that, under low surface tension, the fluid-fluid interfaces are almost flat, thus less area and short contact line available for colloids to attach to. During transient flow, more colloids were remobilized by the moving fluorinert-water interfaces (FWIs) and fluorinert-water-solid contact lines (FWSCs) under high surface tension. Confocal results and measured breakthrough curves confirmed that lowing surface tension decreased capillary force and liquid-liquid area, resulting less retention and remobilization of colloids.

  11. On the existence of small amplitude solitary waves with strong surface tension

    NASA Astrophysics Data System (ADS)

    Sachs, Robert L.

    An existence theory for small amplitude solitary waves with surface tension effects included is developed for large values of the surface tension parameter ( β > {1}/{3}). Using ideas of Beale, the Nash-Moser implicit function theorem is applied to justify the well-known approximation of Korteweg and deVries. Some of the recent results of Amick and Kirchgässner are thereby achieved more directly and additional insight obtained for the open case β < {1}/{3}.

  12. Critical-point analysis of the liquid-vapor interfacial surface tension

    NASA Technical Reports Server (NTRS)

    Salvino, R. E.

    1990-01-01

    The interfacial surface tension of the liquid-vapor system is analyzed near the critical point in a manner similar to bulk thermodynamic critical-point analyses. This is accomplished by a critical-point analysis of the single-phase hard-wall surface tension. Both a Landau expansion and a scaling theory equation of state are investigated. Some general exponent relations are derived and, in addition, some thermodynamically defined correlation lengths are discussed.

  13. Surface tension of short flexible Lennard-Jones chains: Corresponding states behavior.

    PubMed

    Galliero, Guillaume

    2010-08-21

    Molecular dynamics simulations of surface tensions of short flexible Lennard-Jones chains, composed of 2, 3, 4, and 5 segments, have been performed in this work. Using the simulation results, it is shown that the reduced surface tension depends only on the chain length and the reduced temperature. As a consequence, simple three parameters corresponding states using the acentric factor is shown to yield an excellent estimation of the reduced surface tension of the flexible Lennard-Jones chain fluid model. In addition, it has been noticed that the reduced surface tension of this fluid model is a unique function of the coexisting liquid and vapor reduced densities (i.e., there exist a universal Parachor behavior) for all chain lengths tested. When applied to real fluids, this universal behavior holds rather well for a large class of real species which can be nonspherical, nonlinear, and even polar. Only the surface tension of hydrogen-bonding compounds seems to largely deviate from this universal Parachor behavior. These interesting features of the surface tension, written in appropriate scaled forms, can probably be used to improve molecular models, in particular, those on which modern molecular based equations of state rely on.

  14. Surface tension of the two center Lennard-Jones plus point dipole fluid.

    PubMed

    Werth, Stephan; Horsch, Martin; Hasse, Hans

    2016-02-07

    Molecular dynamics simulations are used for systematically studying the surface tension of the two center Lennard-Jones plus point dipole (2CLJD) model fluid. In a dimensionless representation, this model fluid has two parameters describing the elongation and the dipole moment. These parameters were varied in the entire range relevant for describing real fluids resulting in a grid of 38 individual models. For each model, the surface tension was determined at temperatures between 60% and 90% of the critical temperature. For completeness, the vapor pressure and the saturated densities were also determined. The latter results agree well with the literature data, whereas for the surface tension, only few data were previously available. From the present results, an empirical correlation for the surface tension of the 2CLJD model as a function of the model parameters is developed. The correlation is used to predict the surface tension of 46 2CLJD molecular models from the literature, which were adjusted to bulk properties, but not to interfacial properties. The results are compared to the experimental data. The molecular models overestimate the surface tension, and deviations between the predictions and experimental data are below 12% on average.

  15. Surface Tension Characteristics of Aqueous Lithium Bromide Solution with Alcoholic Surfactant

    NASA Astrophysics Data System (ADS)

    Sasaki, Naoe; Ogawa, Kiyoshi

    At present, the combination of aqueous lithium bromide (LiBr) solution as an absorbent and water as a refrigerant have widely been used as the working fluid for absorption refrigerating machines. In order to obtain absorption enhancement of water vapor into the LiBr solution by Marangoni convection, an alcoholic surfactant is being added in the LiBr solution. In that case, the surface tension of the LiBr solution with the surfactant plays an important role for the vapor absorption. In this study, the surface tensions of the LiBr solution with several alcoholic surfactants such as 1-butanol, 1-hexanol, 2-ethyl-1-butanol, 2-methyl-1-pentanol, 1-heptanol, 1-octanol and 2-ethyl-1-hexanol were measured by Wilhelmy plate method. As a result, the surface tensions of 50 wt% LiBr solution with several surfactants were obtained over the LiBr solution temperature range from 298 K to 318 K and the surfactant concentration range from 0 to 104 ppm by mass. The measured surface tension has decreased with the increasing number of carbons included in the surfactant at constant concentration, and the surface tension has increased with the increasing temperature of 50 wt% LiBr solution. The surface tension increase of 1-octanol became greater than any other surfactant used in this work. The effective carbon number of the surfactant for the absorption enhancement was in the range from 7 to 8.

  16. Changes in droplet surface tension affect the observed hygroscopicity of photochemically aged biomass burning aerosol.

    PubMed

    Giordano, Michael R; Short, Daniel Z; Hosseini, Seyedehsan; Lichtenberg, William; Asa-Awuku, Akua A

    2013-10-01

    This study examines the hygroscopic and surface tension properties as a function of photochemical aging of the aerosol emissions from biomass burning. Experiments were conducted in a chamber setting at the UC-Riverside Center for Environmental Research and Technology (CE-CERT) Atmospheric Processes Lab using two biomass fuel sources, manzanita and chamise. Cloud condensation nuclei (CCN) measurements and off-line filter sample analysis were conducted. The water-soluble organic carbon content and surface tension of the extracted filter samples were measured. Surface tension information was then examined with Köhler theory analysis to calculate the hygroscopicity parameter, κ. Laboratory measurement of biomass burning smoke from two chaparral fuels is shown to depress the surface tension of water by 30% or more at organic matter concentrations relevant at droplet activation. Accounting for surface tension depression can lower the calculated κ by a factor of 2. This work provides evidence for surface tension depression in an important aerosol system and may provide closure for differing sub- and supersaturated κ measurements.

  17. Langmuir films of dipalmitoyl phosphatidylethanolamine grafted poly(ethylene glycol). In-situ evidence of surface aggregation at the air-water interface.

    PubMed

    Clop, Eduardo M; Corvalán, Natalia A; Perillo, María A

    2016-12-01

    The molecular packing-dependent interfacial organization of polyethylene glycol grafted dipalmitoylphosphatidylethanolamine (PE-PEGs) Langmuir films was studied. The PEG chains covered a wide molecular mass range (350, 1000 and 5000Da). In surface pressure-area (π-A), isotherms PE-PEG(1000) and PE-PEG(5000) showed transitions (midpoints at πm,t1∼11mN/m, "t1"), which appeared as a long non-horizontal line region. Thus, t1 cannot be considered a first-order phase transition but may reflect a transition within the polymer, comprising its desorption from the air-water interface and compaction upon compression. This is supported by the increase in the νs(C-O-C) PM-IRRAS signal intensity and the increasing surface potentials at maximal compression, which reflect thicker polymeric layers. Furthermore, changes in hydrocarbon chain (HC) packing and tilt with respect to the surface led to reorientation in the PO2(-) group upon compression, indicated by the inversion of the νasym(PO2(-)) PM-IRRAS signal around t1. The absence of a t1 in PE-PEG(350) supports the requisite of a critical polymer chain length for this transition to occur. In-situ epifluorescence microscopy revealed 2D-domain-like structures in PE-PEG(1000) and PE-PEG(5000) around t1, possibly associated with gelation/dehydration of the polymeric layer and appearing at decreasing π as the polymeric tail became longer. Another transition, t2, appearing in PE-PEG(350) and PE-PEG(1000) at πm,t2=29.4 and 34.8mN/m, respectively, was associated with HC condensation and was impaired in PE-PEG(5000) due to steric hindrance imposed by the large size of its polymer moiety. Two critical lengths of polymer chains were found, one of which allowed the onset of polymeric-tail gelation and the other limited HC compaction.

  18. Comparison of positional surfactant isomers for displacement of rubisco protein from the air-water interface.

    PubMed

    He, Lizhong; Onaizi, Sagheer A; Dimitrijev-Dwyer, Mirjana; Malcolm, Andrew S; Shen, Hsin-Hui; Dong, Chuchuan; Holt, Stephen A; Thomas, Robert K; Middelberg, Anton P J

    2011-08-15

    Protein-surfactant interaction, which is a function of the protein and surfactant characteristics, is a common phenomenon in a wide range of industrial applications. In this work, we used rubisco, the most abundant protein in nature, as a model protein and sodium dodecylbenzenesulfonate (SDOBS), one of the most widely used commercial surfactants, with two positional isomers (SDOBS-2 and SDOBS-6), as a model surfactant. We first examined the surface tension and the mechanical properties of interfacial mixed rubisco-SDOBS films adsorbed at the air-water interface. The concentration of rubisco in solution was fixed at 0.1 mg mL(-1) while the SDOBS concentration varied from 0 to 150 μM. Both the surface tension and the mechanical strength of the interfacial film decreased with increasing SDOBS concentration. Overall, the surface tension of a rubisco-SDOBS-6 mixture is lower than that of rubisco-SDOBS-2, while the mechanical strength of both systems is similar. Neutron reflection data suggest that rubisco protein is likely denatured at the interface. The populations of rubisco and SDOBS of the mixed systems at the interface were determined by combining non-deuterated and deuterated SDOBS to provide contrast variation. At a low surfactant concentration, SDOBS-6 has a stronger ability to displace rubisco from the air-water interface than SDOBS-2. However, when surfactant concentration reaches 50 μM, SDOBS-2 has a higher population than SDOBS-6, with more rubisco displaced from the interface. The results presented in this work suggest that the extent of protein displacement from the air-water interface, and hence the nature of the protein-surfactant interactions at the interface, are strongly affected by the position of surfactant isomerisation, which might allow the design of formulations for efficient removal of protein stains.

  19. Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface.

    PubMed

    Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2016-03-07

    This review presents the state of the art in molecular simulations of interfacial systems and of the calculation of the surface tension from the underlying intermolecular potential. We provide a short account of different methodological factors (size-effects, truncation procedures, long-range corrections and potential models) that can affect the results of the simulations. Accurate calculations are presented for the calculation of the surface tension as a function of the temperature, pressure and composition by considering the planar gas-liquid interface of a range of molecular fluids. In particular, we consider the challenging problems of reproducing the interfacial tension of salt solutions as a function of the salt molality; the simulations of spherical interfaces including the calculation of the sign and size of the Tolman length for a spherical droplet; the use of coarse-grained models in the calculation of the interfacial tension of liquid-liquid surfaces and the mesoscopic simulations of oil-water-surfactant interfacial systems.

  20. Quantification of surface tension and internal pressure generated by single mitotic cells

    NASA Astrophysics Data System (ADS)

    Fischer-Friedrich, Elisabeth; Hyman, Anthony A.; Jülicher, Frank; Müller, Daniel J.; Helenius, Jonne

    2014-08-01

    During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ~ 40 Pa and 0.2 mNm-1 during interphase to ~ 400 Pa and 1.6 mNm-1 during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems.

  1. Quantification of surface tension and internal pressure generated by single mitotic cells.

    PubMed

    Fischer-Friedrich, Elisabeth; Hyman, Anthony A; Jülicher, Frank; Müller, Daniel J; Helenius, Jonne

    2014-08-29

    During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ≈ 40 Pa and 0.2 mNm(-1) during interphase to ≈ 400 Pa and 1.6 mNm(-1) during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems.

  2. Multidimensional analysis of poly(ethylene glycols) by size exclusion chromatography and dynamic surface tension detection

    PubMed

    Miller; Bramanti; Prazen; Prezhdo; Skogerboe; Synovec

    2000-09-15

    Substantial improvements in a multidimensional dynamic surface tension detector (DSTD) are presented. Rapid, online calibration and measurement of the dynamic surface tension for high-performance liquid chromatography separations is achieved. Dynamic surface tension is determined by measuring the differential pressure across the liquid-air interface of repeatedly growing and detaching drops. Continuous surface tension measurement throughout the entire drop growth (50 ms to 2 s) is achieved, for each eluting drop, providing insight into the kinetic behavior of molecular orientation processes at the liquid-air interface. Three-dimensional data are obtained, with surface tension first converted to surface pressure, which is plotted as a function of elution time axis versus drop time axis. Two key innovations will be reported. First, a novel calibration procedure is described and implemented. Differential pressure signals from three drops (mobile phase, standard in mobile phase, and analyte in mobile phase) are utilized to make the dynamic surface tension measurement, thereby eliminating the need for optical imaging, and viscosity and hydrostatic pressure corrections, as required by other methods. Only pressure signals from one mobile-phase drop and one standard drop pressure signal are required, while the analyte drop pressure signal is measured along the chromatographic time axis. Second, corrections for drop elongation are not required, because the drops are precisely detached by an air burst actuation method in a regime were the surface tension forces significantly dominate gravitational forces. Drops that would fall with a volume of approximately 10 microL due to gravity are precisely and repeatedly detached earlier at a volume of 2 microL. The sensitivity and unique selectivity of the DSTD opens up new possibilities in the analysis of small molecular weight polymers of varying degrees of surface activity, as illustrated for the size-exclusion chromatography

  3. Surface tension and contact angles: Molecular origins and associated microstructure

    NASA Technical Reports Server (NTRS)

    Davis, H. T.

    1982-01-01

    Gradient theory converts the molecular theory of inhomogeneous fluid into nonlinear boundary value problems for density and stress distributions in fluid interfaces, contact line regions, nuclei and microdroplets, and other fluid microstructures. The relationship between the basic patterns of fluid phase behavior and the occurrence and stability of fluid microstructures was clearly established by the theory. All the inputs of the theory have molecular expressions which are computable from simple models. On another level, the theory becomes a phenomenological framework in which the equation of state of homogeneous fluid and sets of influence parameters of inhomogeneous fluids are the inputs and the structures, stress tensions and contact angles of menisci are the outputs. These outputs, which find applications in the science and technology of drops and bubbles, are discussed.

  4. Surface Tensions of Ionic Liquids: Non-Regular Trend Along the Number of Cyano Groups.

    PubMed

    Almeida, Hugo F D; Carvalho, Pedro J; Kurnia, Kiki A; Lopes-da-Silva, José A; Coutinho, João A P; Freire, Mara G

    2016-02-15

    Ionic liquids (ILs) with cyano-functionalized anions are a set of fluids that are still poorly characterized despite their remarkably low viscosities and potential applications. Aiming at providing a comprehensive study on the influence of the number of -CN groups through the surface tension and surface organization of ILs, the surface tensions of imidazolium-based ILs with cyano-functionalized anions were determined at atmospheric pressure and in the (298.15 to 343.15) K temperature range. The ILs investigated are based on 1-alkyl-3-methylimidazolium cations (alkyl = ethyl, butyl and hexyl) combined with the [SCN](-), [N(CN)2](-), [C(CN)3](-) and [B(CN)4](-)anions. Although the well-known trend regarding the surface tension decrease with the increase of the size of the aliphatic moiety at the cation was observed, the order obtained for the anions is more intricate. For a common cation and at a given temperature, the surface tension decreases according to: [N(CN)2](-) > [SCN](-) > [C(CN)3](-) > [B(CN)4](-). Therefore, the surface tension of this homologous series does not decrease with the increase of the number of -CN groups at the anion as has been previously shown by studies performed with a more limited matrix of ILs. A maximum in the surface tension and critical temperature was observed for [N(CN)2]-based ILs. Furthermore, a minimum in the surface entropy, indicative of a highly structured surface, was found for the same class of ILs. All these evidences seem to be a result of stronger hydrogen-bonding interactions occurring in [N(CN)2]-based ILs, when compared with the remaining CN-based counterparts, and as sustained by cation-anion interaction energies derived from the Conductor Like Screening Model for Real Solvents (COSMO-RS).

  5. Surface Tensions of Ionic Liquids: Non-Regular Trend Along the Number of Cyano Groups

    PubMed Central

    Almeida, Hugo F. D.; Carvalho, Pedro J.; Kurnia, Kiki A.; Lopes-da-Silva, José A.; Coutinho, João A. P.; Freire, Mara G.

    2016-01-01

    Ionic liquids (ILs) with cyano-functionalized anions are a set of fluids that are still poorly characterized despite their remarkably low viscosities and potential applications. Aiming at providing a comprehensive study on the influence of the number of –CN groups through the surface tension and surface organization of ILs, the surface tensions of imidazolium-based ILs with cyano-functionalized anions were determined at atmospheric pressure and in the (298.15 to 343.15) K temperature range. The ILs investigated are based on 1-alkyl-3-methylimidazolium cations (alkyl = ethyl, butyl and hexyl) combined with the [SCN]-, [N(CN)2]−, [C(CN)3]− and [B(CN)4]-anions. Although the well-known trend regarding the surface tension decrease with the increase of the size of the aliphatic moiety at the cation was observed, the order obtained for the anions is more intricate. For a common cation and at a given temperature, the surface tension decreases according to: [N(CN)2]- > [SCN]- > [C(CN)3]- > [B(CN)4]-. Therefore, the surface tension of this homologous series does not decrease with the increase of the number of –CN groups at the anion as has been previously shown by studies performed with a more limited matrix of ILs. A maximum in the surface tension and critical temperature was observed for [N(CN)2]-based ILs. Furthermore, a minimum in the surface entropy, indicative of a highly structured surface, was found for the same class of ILs. All these evidences seem to be a result of stronger hydrogen-bonding interactions occurring in [N(CN)2]-based ILs, when compared with the remaining CN-based counterparts, and as sustained by cation-anion interaction energies derived from the Conductor Like Screening Model for Real Solvents (COSMO-RS). PMID:27642224

  6. Dropwise Condensation of Low Surface Tension Fluids on iCVD Grafted Polymer Films

    NASA Astrophysics Data System (ADS)

    Khalil, Karim; Gleason, Karen; Varanasi, Kripa

    2016-11-01

    A large majority of the work devoted to surface engineering for promoting dropwise condensation heat transfer has focused on steam. Much less attention has been dedicated to the condensation of low surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants, which are used in several industrial applications, including LNG storage and organic Rankine cycles used for heat recovery from low temperature sources such as biomass combustion, industrial waste, or geothermal heat sources. Most hydrophobic modifiers used previously to promote dropwise condensation are silane-based monolayers that have been shown to rapidly degrade under industrial conditions. Here we investigate condensation behavior of a variety of low surface tension liquids on durable covalently-grafted polymer films deposited using initiated chemical vapor deposition (iCVD) on metals such as titanium. We observe a four to seven-fold improvement in the vapor-side heat transfer coefficient by promoting dropwise condensation of low surface tension fluids on these stable films.

  7. Effect of concentration and temperature on surface tension of sodium hyaluronate saline solutions.

    PubMed

    Ribeiro, Walkiria; Mata, José Luis; Saramago, Benilde

    2007-06-19

    The effect of concentration and temperature on the surface tension of sodium hyaluronate (NaHA) saline solutions was investigated using the technique of the shape of pendant drops. The decay rate of the surface tension with the increase of NaHA concentration was well-described by the empirical Hua-Rosen equation. Adsorption at the air-liquid interface was estimated using the Gibbs equation. The temperature dependence of a dilute solution and a semidilute entangled solution was numerically fitted with a second-order polynomial equation. The surface behavior of the NaHA saline solutions was interpreted in terms of their known viscoelastic properties.

  8. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  9. Line tension and its influence on droplets and particles at surfaces

    NASA Astrophysics Data System (ADS)

    Law, Bruce M.; McBride, Sean P.; Wang, Jiang Yong; Wi, Haeng Sub; Paneru, Govind; Betelu, Santigo; Ushijima, Baku; Takata, Youichi; Flanders, Bret; Bresme, Fernando; Matsubara, Hiroki; Takiue, Takanori; Aratono, Makoto

    2017-02-01

    In this review we examine the influence of the line tension τ on droplets and particles at surfaces. The line tension influences the nucleation behavior and contact angle of liquid droplets at both liquid and solid surfaces and alters the attachment energetics of solid particles to liquid surfaces. Many factors, occurring over a wide range of length scales, contribute to the line tension. On atomic scales, atomic rearrangements and reorientations of submolecular components give rise to an atomic line tension contribution τatom (∼1 nN), which depends on the similarity/dissimilarity of the droplet/particle surface composition compared with the surface upon which it resides. At nanometer length scales, an integration over the van der Waals interfacial potential gives rise to a mesoscale contribution |τvdW| ∼ 1-100 pN while, at millimeter length scales, the gravitational potential provides a gravitational contribution τgrav ∼ +1-10 μN. τgrav is always positive, whereas, τvdW can have either sign. Near wetting, for very small contact angle droplets, a negative line tension may give rise to a contact line instability. We examine these and other issues in this review.

  10. Unusual shapes for a catenary under the effects of surface tension and gravity: A variational treatment

    SciTech Connect

    Behroozi, F. ); Mohazzabi, P.; McCrickard, J. )

    1995-02-01

    The familiar catenary is the shape assumed by a chain or string as it hangs from two points. The mathematical equation of the catenary was first published more than three hundred years ago by Leibnitz and Huygen, among others. Here we consider the shapes assumed by a hanging string in the presence of gravity and surface tension. The surface tension is introduced by suspending the string from a thin horizontal rod while the area bounded by the string and the rod is covered with a soap film. The string then assumes new and wonderful shapes depending on the relative strength of the surface tension and the weight per unit length of the string. When surface tension dominates, the string is pulled inward, assuming a convex shape similar to the Greek letter [gamma]. On the other hand, when gravity is dominant the string is pulled outward and assumes a concave shape best described as a distorted catenary. However, when the gravitational force normal to the string matches the surface tension, the string takes a linear configuration similar to the letter [ital V]. Under suitable conditions, the string can be made to assume any of the three configurations by adjusting the separation of its end points. The equations that describe the shape of the string are derived by minimizing the total energy of the system and are presented for the three principal configurations.

  11. Surface-tension phenomena in organismal biology: an introduction to the symposium.

    PubMed

    Bourouiba, Lydia; Hu, David L; Levy, Rachel

    2014-12-01

    Flows driven by surface tension are both ubiquitous and diverse, involving the drinking of birds and bees, the flow of xylem in plants, the impact of raindrops on animals, respiration in humans, and the transmission of diseases in plants and animals, including humans. The fundamental physical principles underlying such flows provide a unifying framework to interpret the adaptations of the microorganisms, animals, and plants that rely upon them. The symposium on "Surface-Tension Phenomena in Organismal Biology" assembled an interdisciplinary group of researchers to address a large spectrum of topics, all articulated around the role of surface tension in shaping biology, health, and ecology. The contributions to the symposium and the papers in this issue are meant to be a starting point for novices to familiarize themselves with the fundamentals of flows driven by surface tension; to understand how they can play a governing role in many settings in organismal biology; and how such understanding of nature's use of surface tension can, in turn, inspire humans to innovate.

  12. A dynamic technique for measuring surface tension at high temperatures in microgravity environment

    NASA Technical Reports Server (NTRS)

    Miiller, A. P.; Cezairliyan, A.

    1990-01-01

    The feasibility of a dynamic technique for measuring surface tension of liquid metals at high temperatures in a microgravity environment was demonstrated. The basic method involves heating a tubular specimen resistively from ambient temperature through its melting point in about 1 sec by passing an electrical current pulse through it, while simultaneously recording the pertinent experimental quantities. Static equilibrium for the molten specimen is achieved in a microgravity environment by splitting the current after it passes through the specimen tube and returning a fraction along the tube axis, and the remaining fraction outside the specimen. Adjustments to the current split enable a balance between the magnetic and surface tension forces acting on the specimen. Values for surface tension are determined from measurements of the equilibrium dimensions of the molten specimen tube, and the magnitudes of the currents. Rapid melting experiments, performed during microgravity simulations with the NASA KC-135 aircraft, yield a value for the surface tension of copper at its melting point which is in agreement with literature data. Measurements of surface tension of a refractory metal (tantalum) are underway.

  13. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    NASA Astrophysics Data System (ADS)

    Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.

    2013-04-01

    A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.

  14. Surface tension measurements in microgravity and their relevance to Marangoni convection.

    PubMed

    Egry, Iván

    2003-04-14

    The physical properties of liquids, such as surface tension, Marangoni convection and surface segregation are important in many technical fields and are of fundamental interest. However, inaccuracy of experiments has prevented us from fully understanding these phenomena. Recent advances in experimental techniques, such as the containerless technique and the utilization of microgravity, are described.

  15. A Quasi-Containerless Pendant Drop Method for Surface Tension Measurements of Molten Metals and Alloys

    NASA Technical Reports Server (NTRS)

    Thiessen, David B.; Man, Kin F.

    1994-01-01

    A quasi-containerless pendant drop method for measuring the surface tension of molten metals and alloys is being developed. The technique involves melting the end of a high-purity metal rod by bombardment with an electron beam to form a pendant drop under ultra-high vacuum conditions to minimize surface contamination.

  16. A Method to Calculate the Surface Tension of a Cylindrical Droplet

    ERIC Educational Resources Information Center

    Wang, Xiaosong; Zhu, Ruzeng

    2010-01-01

    The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the…

  17. Convergence and accuracy of kernel-based continuum surface tension models

    SciTech Connect

    Williams, M.W.; Kothe, D.B.; Puckett, E.G.

    1998-12-01

    Numerical models for flows of immiscible fluids bounded by topologically complex interfaces possessing surface tension inevitably start with an Eulerian formulation. Here the interface is represented as a color function that abruptly varies from one constant value to another through the interface. This transition region, where the color function varies, is a thin O(h) band along the interface where surface tension forces are applied in continuum surface tension models. Although these models have been widely used since the introduction of the popular CSF method [BKZ92], properties such as absolute accuracy and uniform convergence are often not exhibited in interfacial flow simulations. These properties are necessary if surface tension-driven flows are to be reliably modeled, especially in three dimensions. Accuracy and convergence remain elusive because of difficulties in estimating first and second order spatial derivatives of color functions with abrupt transition regions. These derivatives are needed to approximate interface topology such as the unit normal and mean curvature. Modeling challenges are also presented when formulating the actual surface tension force and its local variation using numerical delta functions. In the following they introduce and incorporate kernels and convolution theory into continuum surface tension models. Here they convolve the discontinuous color function into a mollified function that can support accurate first and second order spatial derivatives. Design requirements for the convolution kernel and a new hybrid mix of convolution and discretization are discussed. The resulting improved estimates for interface topology, numerical delta functions, and surface force distribution are evidenced in an equilibrium static drop simulation where numerically-induced artificial parasitic currents are greatly mitigated.

  18. Estimation of solid–liquid interfacial tension using curved surface of a soft solid

    PubMed Central

    Mondal, Subrata; Phukan, Monmee; Ghatak, Animangsu

    2015-01-01

    Unlike liquids, for crystalline solids the surface tension is known to be different from the surface energy. However, the same cannot be said conclusively for amorphous materials like soft cross-linked elastomers. To resolve this issue we have introduced here a direct method for measuring solid–liquid interfacial tension by using the curved surface of a solid. In essence, we have used the inner surface of tiny cylindrical channels embedded inside a soft elastomeric film for sensing the effect of the interfacial tension. When a liquid is inserted into the channel, because of wetting-induced alteration in interfacial tension, its thin wall deflects considerably; the deflection is measured with an optical profilometer and analyzed using the Föppl–von Kármán equation. We have used several liquids and cross-linked poly(dimethylsiloxane) as the solid to show that the estimated values of the solid–liquid interfacial tension matches with the corresponding solid–liquid interfacial energy reasonably well. PMID:26420871

  19. Limitations in the application of the Gibbs equation to anionic surfactants at the air/water surface: sodium dodecylsulfate and sodium dodecylmonooxyethylenesulfate above and below the CMC.

    PubMed

    Xu, Hui; Li, Pei Xun; Ma, Kun; Thomas, Robert K; Penfold, Jeffrey; Lu, Jian Ren

    2013-07-30

    This is a second paper responding to recent papers by Menger et al. and the ensuing discussion about the application of the Gibbs equation to surface tension (ST) data. Using new neutron reflection (NR) measurements on sodium dodecylsulfate (SDS) and sodium dodecylmonooxyethylene sulfate (SLES) above and below their CMCs and with and without added NaCl, in conjunction with the previous ST measurements on SDS by Elworthy and Mysels (EM), we conclude that (i) ST measurements are often seriously compromised by traces of divalent ions, (ii) adsorption does not generally reach saturation at the CMC, making it difficult to obtain the limiting Gibbs slope, and (iii) the significant width of micellization may make it impossible to apply the Gibbs equation in a significant range of concentration below the CMC. Menger et al. proposed ii as a reason for the difficulty of applying the Gibbs equation to ST data. Conclusions i and iii now further emphasize the failings of the ST-Gibbs analysis for determining the limiting coverage at the CMC, especially for SDS. For SDS, adsorption increases above the CMC to a value of 10 × CMC, which is about 25% greater than at the CMC and about the same as at the CMC in the presence of 0.1 M NaCl. In contrast, the adsorption of SLES reaches a limit at the CMC with no further increase up to 10 × CMC, but the addition of 0.1 M NaCl increases the surface excess by 20-25%. The results for SDS are combined with earlier NR results to generate an adsorption isotherm from 2 to 100 mM. The NR results for SDS are compared to the definitive surface tension (ST) measurements of EM, and the surface excesses agree over the range where they can safely be compared, from 2 to 6 mM. This confirms that the anomalous decrease in the slope of EM's σ - ln c curve between 6 mM and the CMC at 8.2 mM results from changes in activity associated with a significant width of micellization. This anomaly shows that it is impossible to apply the Gibbs equation usefully

  20. Effects of additives on volume change on melting, surface tension, and viscosity of liquid aluminum oxide

    NASA Technical Reports Server (NTRS)

    Bates, J. L.; Rasmussen, J. J.

    1972-01-01

    The effects of various oxide additives on the volume change on melting, the surface tension, and the viscosity of liquid Al2O3 were studied. Additives of Sm2O3, MgO, and Y2O3 which form solid solutions, compounds, and multiphase solids with Al2O3 were studied. A review of the property data for Al2O3 and Al2O3 containing oxide additives is presented. Oxide additives to Al2O3 reduce the volume change on melting and with the exception of SiO2 lower the viscosity; surface tensions change with oxide additives, but changes vary with different container material. Viscosity and volume change on melting appeared to be significantly more important for studying the properties of liquid oxides than surface tension. Supercooling of 270 K of yttrium aluminum garnet was observed.

  1. Drops settling in a fluid with surface tension increasing with depth

    NASA Astrophysics Data System (ADS)

    Shapiro, Avi; Blanchette, Francois

    2011-11-01

    We investigated numerically drops settling across layers of miscible fluids, representing oil droplets settling in a fluid stratified by temperature or salinity variations. The top layer is lighter than the lower one, while the drop itself is heavier than both layers. As the drop settles into the lower, its surface tension with the ambient fluid increases, which generates significant Marangoni effects. If the surface tension difference is small, the drop is delayed as it settles into the lower layer. Above a critical surface tension difference, the drop may be altogether prevented from crossing into the lower layer. We determine the conditions under which a drop may remain suspended at the transition region, and study the mixing generated by suspended drops. We acknowledge support from NSF grant DMS 0808129.

  2. On simulating lipid bilayers with an applied surface tension: periodic boundary conditions and undulations.

    PubMed Central

    Feller, S E; Pastor, R W

    1996-01-01

    As sketched in Fig. 1, a current molecular dynamics computer simulation of a lipid bilayer fails to capture significant features of the macroscopic system, including long wavelength undulations. Such fluctuations are intrinsically connected to the value of the macroscopic (or thermodynamic) surface tension (cf. Eqs. 1 and 9; for a related treatment, see Brochard et al., 1975, 1976). Consequently, the surface tension that might be evaluated in an MD simulation should not be expected to equal the surface tension obtained from macroscopic measurements. Put another way, the largest of the three simulations presented here contained over 16,000 atoms and required substantial computer time to complete, but modeled a system of only 36 lipids per side. From this perspective it is not surprising that the system is not at the thermodynamic limit. An important practical consequence of this effect is that simulations with fluctuating area should be carried out with a nonzero applied surface tension (gamma 0 of Fig. 2) even when the macroscopic tension is zero, or close to zero. Computer simulations at fixed surface area, which can explicitly determine pressure anisotropy at the molecular level, should ultimately lend insight into the value of gamma 0, including its dependence on lipid composition and other membrane components. As we have noted and will describe further in separate publications (Feller et al., 1996; Feller et al., manuscript in preparation), surface tensions obtained from simulations can be distorted by inadequate initial conditions and convergence, and are sensitive to potential energy functions, force truncation methods, and system size; it is not difficult, in fact, to tune terms in the potential energy function so as to yield surface tensions close to zero. This is why parameters should be tested extensively on simpler systems, for example, monolayers. The estimates of gamma 0 that we have presented here should be regarded as qualitative, and primarily

  3. Ultrafast imaging method to measure surface tension and viscosity of inkjet-printed droplets in flight

    NASA Astrophysics Data System (ADS)

    Staat, Hendrik J. J.; van der Bos, Arjan; van den Berg, Marc; Reinten, Hans; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2017-01-01

    In modern drop-on-demand inkjet printing, the jetted droplets contain a mixture of solvents, pigments and surfactants. In order to accurately control the droplet formation process, its in-flight dynamics, and deposition characteristics upon impact at the underlying substrate, it is key to quantify the instantaneous liquid properties of the droplets during the entire inkjet-printing process. An analysis of shape oscillation dynamics is known to give direct information of the local liquid properties of millimeter-sized droplets and bubbles. Here, we apply this technique to measure the surface tension and viscosity of micrometer-sized inkjet droplets in flight by recording the droplet shape oscillations microseconds after pinch-off from the nozzle. From the damped oscillation amplitude and frequency we deduce the viscosity and surface tension, respectively. With this ultrafast imaging method, we study the role of surfactants in freshly made inkjet droplets in flight and compare to complementary techniques for dynamic surface tension measurements.

  4. Density, Molar Volume, and Surface Tension of Liquid Al-Ti

    NASA Astrophysics Data System (ADS)

    Wessing, Johanna Jeanette; Brillo, Jürgen

    2017-02-01

    Al-Ti-based alloys are of enormous technical relevance due to their specific properties. For studies in atomic dynamics, surface physics and industrial processing the precise knowledge of the thermophysical properties of the liquid phase is crucial. In the present work, we systematically measure mass density, ρ (g cm-3), and the surface tension, γ (N m-1), as functions of temperature, T, and compositions of binary Al-Ti melts. Electromagnetic levitation in combination with the optical dilatometry method is used for density measurements and the oscillating drop method for surface tension measurements. It is found that, for all compositions, density and surface tension increase linearly upon decreasing temperature in the liquid phase. Within the Al-Ti system, we find the largest values for pure titanium and the smallest for pure aluminum, which amount to ρ(L,Ti) = 4.12 ± 0.04 g cm-3 and γ(L,Ti) = 1.56 ± 0.02 N m-1; and ρ(L,Al) = 2.09 ± 0.01 g cm-3 and γ(L,Al) = 0.87 ± 0.06 N m-1, respectively. The data are analyzed concerning the temperature coefficients, ρ T and γ T, excess molar volume, V E, excess surface tension, γ E, and surface segregation of the surface active component, Al. The results are compared with thermodynamic models. Generally, it is found that Al-Ti is a highly nonideal system.

  5. A new curvature technique calculation for surface tension contribution in PLIC-VOF method

    NASA Astrophysics Data System (ADS)

    Martinez, J.-M.; Chesneau, X.; Zeghmati, B.

    2006-01-01

    The volume of fluid (VOF) methods have been used for numerous numerical simulations. Among these techniques used to define the moving interface, the piecewise linear interface reconstruction (PLIC-VOF) is one of the most accurate. A study of the superficial tension impact on two-phase flow with free surface is presented. A new method based on direct staggered grid is developped to include surface tension in PLIC-VOF. The new numerical curvature calculation method doesn't need smoothed colour function and leads to less “spurious current”. This technique is applied to the calculus of surface tension force in the case of the rise of air bubble in viscous liquid and the fall of liquid drop in the same liquid on free surface. Droplets, thin layer and capillarity waves are observed after the free surface rupture for different Bond number. The influence of surface tension calculus is then obvioused and when the drop hit the free surface, wavelets propagate toward the virtual boundaries imposed.

  6. Renewal of the air-water interface as a critical system parameter of protein stability: aggregation of the human growth hormone and its prevention by surface-active compounds.

    PubMed

    Wiesbauer, Johanna; Prassl, Ruth; Nidetzky, Bernd

    2013-12-10

    Soluble proteins are often highly unstable under mixing conditions that involve dynamic contacting between the main liquid phase and a gas phase. The recombinant human growth hormone (rhGH) was recently shown to undergo aggregation into micrometer-sized solid particles composed of non-native (mis- or unfolded) protein, once its solutions were stirred or shaken to generate a continuously renewed air-water interface. To gain deepened understanding and improved quantification of the air-water interface effect on rhGH stability, we analyzed the protein's aggregation rate (r(agg)) at controlled specific air-water surface areas (a(G/L)) established by stirring or bubble aeration. We show that in spite of comparable time-averaged values for a(G/L) (≈ 100 m(2)/m(3)), aeration gave a 40-fold higher r(agg) than stirring. The enhanced r(agg) under aeration was ascribed to faster macroscopic regeneration of free a(G/L) during aeration as compared to stirring. We also show that r(agg) was independent of the rhGH concentration in the range 0.67 - 6.7 mg/mL, and that it increased linearly dependent on the available a(G/L). The nonionic surfactant Pluronic F-68, added in 1.6-fold molar excess over rhGH present, resulted in complete suppression of r(agg). Foam formation was not a factor influencing r(agg). Using analysis by circular dichroism spectroscopy and small-angle X-ray scattering, we show that in the presence of Pluronic F-68 under both stirring and aeration, the soluble protein retained its original fold, featuring native-like relative composition of secondary structural elements. We further provide evidence that the efficacy of Pluronic F-68 resulted from direct, probably hydrophobic protein-surfactant interactions that prevented rhGH from becoming attached to the air-water interface. Surface-induced aggregation of rhGH is suggested to involve desorption of non-native protein from the air-water interface as the key limiting step. Proteins or protein aggregates released

  7. Design of a surface deformation measuring instrument for the Surface Tension Driven Convection Experiment (STDCE-2)

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    1993-12-01

    This final technical report covers the work accomplished (under NAG3-1300) from 1 October 1991 to 1 October 1993. The grant is a direct result of Dr. H. Philip Stahl's (of Rose-Hulman Institute of Technology) participation in the NASA/ASEE Summer Faculty Fellowship Program at NASA Lewis Research Center sponsored by Case Western Reserve University and the Ohio Aerospace Institute. The Surface Tension Driven Convection Experiment (STDCE) is a fundamental fluid physics experiment designed to provide quantitative data on the thermocapillary flow of fluid under the influence of an increased localized surface temperature. STDCE flew on the Space Shuttle Columbia in the First United States Microgravity Laboratory (USML-1) in June 1992. The second flight of this experiment (STDCE-2) is scheduled for 1995. The specific science objectives of STDCE-2 are to determine the extent and nature of thermocapillary flows, the effect of heating mode and level, the effect of the liquid free-surface shape, and the onset conditions for and nature of oscillatory flows. In order to satisfy one of these objectives, an instrument for measuring the shape of an air/oil free surface must be developed.

  8. Design of a surface deformation measuring instrument for the Surface Tension Driven Convection Experiment (STDCE-2)

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    1993-01-01

    This final technical report covers the work accomplished (under NAG3-1300) from 1 October 1991 to 1 October 1993. The grant is a direct result of Dr. H. Philip Stahl's (of Rose-Hulman Institute of Technology) participation in the NASA/ASEE Summer Faculty Fellowship Program at NASA Lewis Research Center sponsored by Case Western Reserve University and the Ohio Aerospace Institute. The Surface Tension Driven Convection Experiment (STDCE) is a fundamental fluid physics experiment designed to provide quantitative data on the thermocapillary flow of fluid under the influence of an increased localized surface temperature. STDCE flew on the Space Shuttle Columbia in the First United States Microgravity Laboratory (USML-1) in June 1992. The second flight of this experiment (STDCE-2) is scheduled for 1995. The specific science objectives of STDCE-2 are to determine the extent and nature of thermocapillary flows, the effect of heating mode and level, the effect of the liquid free-surface shape, and the onset conditions for and nature of oscillatory flows. In order to satisfy one of these objectives, an instrument for measuring the shape of an air/oil free surface must be developed.

  9. Accuracy of surface tension measurement from drop shapes: the role of image analysis.

    PubMed

    Kalantarian, Ali; Saad, Sameh M I; Neumann, A Wilhelm

    2013-11-01

    Axisymmetric Drop Shape Analysis (ADSA) has been extensively used for surface tension measurement. In essence, ADSA works by matching a theoretical profile of the drop to the extracted experimental profile, taking surface tension as an adjustable parameter. Of the three main building blocks of ADSA, i.e. edge detection, the numerical integration of the Laplace equation for generating theoretical curves and the optimization procedure, only edge detection (that extracts the drop profile line from the drop image) needs extensive study. For the purpose of this article, the numerical integration of the Laplace equation for generating theoretical curves and the optimization procedure will only require a minor effort. It is the aim of this paper to investigate how far the surface tension accuracy of drop shape techniques can be pushed by fine tuning and optimizing edge detection strategies for a given drop image. Two different aspects of edge detection are pursued here: sub-pixel resolution and pixel resolution. The effect of two sub-pixel resolution strategies, i.e. spline and sigmoid, on the accuracy of surface tension measurement is investigated. It is found that the number of pixel points in the fitting procedure of the sub-pixel resolution techniques is crucial, and its value should be determined based on the contrast of the image, i.e. the gray level difference between the drop and the background. On the pixel resolution side, two suitable and reliable edge detectors, i.e. Canny and SUSAN, are explored, and the effect of user-specified parameters of the edge detector on the accuracy of surface tension measurement is scrutinized. Based on the contrast of the image, an optimum value of the user-specified parameter of the edge detector, SUSAN, is suggested. Overall, an accuracy of 0.01mJ/m(2) is achievable for the surface tension determination by careful fine tuning of edge detection algorithms.

  10. Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.

    2015-01-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.

  11. Surface tensions, viscosities, and diffusion constants in mixed component single aerosol particles

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan; Marshall, Frances; Song, Young-Chul; Haddrell, Allen; Reid, Jonathan

    2016-04-01

    Surface tension and viscosity are important aerosol properties but are challenging to measure on individual particles owing to their small size and mass. Aerosol viscosity impacts semivolatile partitioning from the aerosol phase, molecular diffusion in the bulk of the particle, and reaction kinetics. Aerosol surface tension impacts how particles activate to serve as cloud condensation nuclei. Knowledge of these properties and how they change under different conditions hinders accurate modelling of aerosol physical state and atmospheric impacts. We present measurements made using holographic optical tweezers to directly determine the viscosity and surface tension of optically trapped droplets containing ~1-4 picolitres of material (corresponding to radii of ~5-10 micrometres). Two droplets are captured in the experimental setup, equilibrated to a relative humidity, and coalesced through manipulation of the relative trap positions. The moment of coalescence is captured using camera imaging as well as from elastically backscattered light connected to an oscilloscope. For lower viscosity droplets, the relaxation in droplet shape to a sphere follows the form of a damped oscillator and gives the surface tension and viscosity. For high viscosity droplets, the relaxation results in a slow merging of the two droplets to form a sphere and the timescale of that process permits determination of viscosity. We show that droplet viscosity and surface tension can be quantitatively determined to within <10% of the expected value for low viscosity droplets and to better than 1 order of magnitude for high viscosity droplets. Examples illustrating how properties such as surface tension can change in response to environmental conditions will be discussed. Finally, a study of the relationship between viscosity, diffusion constants, vapour pressures, and reactive uptake coefficients for a mixed component aerosol undergoing oxidation and volatilisation will be discussed.

  12. Interrelation of surface tension, optical turbidity, and color of operational transformer oils

    SciTech Connect

    L'vov, S. Yu.; Lyut'ko, E. O.; Lankau, Ya. V.; Komarov, V. B.; Seliverstov, A. F.; Bondareva, V. N.; L'vov, Yu. N.; L'vov, M. Yu.; Ershov, B. G.

    2011-09-15

    Measurements of the acidity, optical turbidity, surface tension, and color of transformer oil from 54 power transformers, autotransformers, and shunt reactors are reported. Changes in surface tension, optical turbidity, and color are found to obey adequate linear correlations, while the acidity has no correlation with any of these properties. Numerical criteria for the maximum permissible state (quality) of the oil with respect to optical turbidity and color are obtained. Recommendations to operating staff are provided for cases in which the criteria for optical turbidity and color are exceeded.

  13. Effect of polymer-polymer interactions on the surface tension of colloid-polymer mixtures

    NASA Astrophysics Data System (ADS)

    Moncho-Jordá, A.; Rotenberg, B.; Louis, A. A.

    2003-12-01

    The density profile and surface tension for the interface of phase-separated colloid-polymer mixtures have been studied in the framework of the square gradient approximation for both ideal and interacting polymers in good solvent. The calculations show that in the presence of polymer-polymer excluded volume interactions the interfaces have lower widths and surface tensions compared to the case of ideal polymers. These results are a direct consequence of the shorter range and smaller depth of the depletion potential between colloidal particles induced by interacting polymers.

  14. Surface tension measurements of aqueous ammonium chloride (NH4Cl) in air

    NASA Technical Reports Server (NTRS)

    Lowry, S. A.; Mccay, M. H.; Mccay, T. D.; Gray, P. A.

    1989-01-01

    Aqueous NH4Cl's solidification is often used to model metal alloy solidification processes. The present determinations of the magnitude of the variation of aqueous NH4Cl's surface tension as a function of both temperature and solutal concentration were conducted at 3, 24, and 40 C over the 72-100 wt pct water solutal range. In general, the surface tension increases 0.31 dyn/cm per percent decrease in wt pct of water, and decreases 0.13 dyn/cm for each increase in deg C. Attention is given to the experimental apparatus employed.

  15. A simple laboratory experiment to measure the surface tension of a liquid in contact with air

    NASA Astrophysics Data System (ADS)

    Riba, Jordi-Roger; Esteban, Bernat

    2014-09-01

    A simple and accurate laboratory experiment to measure the surface tension of liquids has been developed, which is well suited to teach the behaviour of liquids to first- or second-year students of physics, engineering or chemistry. The experimental setup requires relatively inexpensive equipment usually found in physics and chemistry laboratories, since it consists of a used or recycled burette, an analytical balance and a stereoscopic microscope or a micrometer. Experimental data and error analysis show that the surface tension of distilled water, 1-butanol and glycerol can be determined with accuracy better than 1.4%.

  16. Vapor-liquid surface tension of strong short-range Yukawa fluid.

    PubMed

    Odriozola, G; Bárcenas, M; Orea, P

    2011-04-21

    The thermodynamic properties of strong short-range attractive Yukawa fluids, κ = 10, 9, 8, and 7, are determined by combining the slab technique with the standard and the replica exchange Monte Carlo (REMC) methods. A good agreement was found among the coexistence curves of these systems calculated by REMC and those previously reported in the literature. However, REMC allows exploring the coexistence at lower temperatures, where dynamics turns glassy. To obtain the surface tension we employed, for both methods, a procedure that yields the pressure tensor components for discontinuous potentials. The surface tension results obtained by the standard MC and REMC techniques are in good agreement.

  17. Increased phosphatidylcholine concentration in saliva reduces surface tension and improves airway patency in obstructive sleep apnoea.

    PubMed

    Kawai, M; Kirkness, J P; Yamamura, S; Imaizumi, K; Yoshimine, H; Oi, K; Ayuse, T

    2013-10-01

    Surface tension may have important role for maintaining upper airway patency in patients with obstructive sleep apnoea. It has been demonstrated that elevated surface tension increases the pharyngeal pressures required to reopen the upper airway following collapse. The aim of the study was to evaluate the associations between the concentrations of endogenous surfactants in saliva with indices of upper airway patency in obstructive sleep apnoea. We studied 20 male patients with obstructive sleep apnoea (age: 60·3 ± 10·3 years; BMI: 25·9 ± 4·6 kg m(-2); AHI: 41·5 ± 18·6 events h(-1)). We obtained 100-μL samples of saliva prior to overnight polysomnographic sleep study. The surface tension was determined using the pull-off force technique. The concentration of phosphatidylcholine (PC) was evaluated by liquid chromatography-mass spectrometry (LC-MS/MS). Regression analysis between apnoea, hypopnoea and apnoea/hypopnoea indices and the ratio of hypopnoea time/total disordered breathing time (HT/DBT) with surface tension and PC were performed. P < 0·05 was considered significant. The mean saliva surface tension was 48·8 ± 8·0 mN m(-1) and PC concentration was 15·7 ± 11·1 nM. The surface tension was negatively correlated with the PC concentration (r = -0·48, P = 0·03). There was a significant positive correlation between surface tension with hypopnoea index (r = 0·50, P = 0·03) and HT/DBT (r = 0·6, P = 0·006), but not apnoea or apnoea/hypopnoea index (P > 0·11). Similarly, PC concentration negatively correlated with hypopnoea index (r = -0·45, P = 0·04) and HT/DBT (r = -0·6, P = 0·004), but not with apnoea index or AHI (P > 0·08). An increase in salivary PC concentration may increase upper airway patency in obstructive sleep apnoea through a reduction in surface tension.

  18. Surface Tension and Viscosity of Quasicrystal-Forming Ti-Zr-Ni Alloys

    NASA Technical Reports Server (NTRS)

    Hyers, R. W.; Bradshaw, R. C.; Rogers, J. R.; Rathz, T. J.; Lee, G. W.; Kelton, K. F.; Gangopadhyay, A. K.

    2003-01-01

    The surface tension and viscosity of quasicrystal-forming Ti-Zr-Ni alloys were measured over a range of temperature, including both stable and undercooled liquids by an Electrostatic Levitation (ESL) technique. ESL is a containerless technique which allows processing of samples without contact, greatly reducing contamination and increasing access to the metastable undercooled liquid. The measured viscosity is typical of glass-forming alloys of similar composition to the quasicrystal-forming alloys studied here, while the surface tension shows an anomaly at deep undercoolings.

  19. Controlling the Motion of Ferrofluid Droplets Using Surface Tension Gradients and Magnetoviscous Pinning.

    PubMed

    Ody, T; Panth, M; Sommers, A D; Eid, K F

    2016-07-12

    This work demonstrates the controlled motion and stopping of individual ferrofluid droplets due to a surface tension gradient and a uniform magnetic field. The surface tension gradients are created by patterning hydrophilic aluminum regions, shaped as wedges, on a hydrophobic copper surface. This pattern facilitates the spontaneous motion of water-based ferrofluid droplets down the length of the wedge toward the more hydrophilic aluminum end due to a net capillarity force created by the underlying surface wettability gradient. We observed that applying a magnetic field parallel to the surface tension gradient direction has little or no effect on the droplet's motion, while a moderate perpendicular magnetic field can stop the motion altogether effectively "pinning" the droplet. In the absence of the surface tension gradient, droplets elongate in the presence of a parallel field but do not travel. This control of the motion of individual droplets might lend itself to some biomedical and lab-on-a-chip applications. The directional dependence of the magnetoviscosity observed in this work is believed to be the consequence of the formation of nanoparticle chains in the fluid due to the existence of a minority of relatively larger magnetic particles.

  20. Restudy of surface tension of QGP with one-loop correction in the mean-field potential

    NASA Astrophysics Data System (ADS)

    Singh, S. Somorendro; Gupta, K. K.; Jha, A. K.

    2014-07-01

    Surface tension of quark-gluon plasma (QGP) evolution with one-loop correction in the mean-field potential is studied. First, with the correction, the stable QGP droplet size decreases. Then, the value of surface tension is found to be improved and it approaches to the lattice value of surface tension 0.24Tc3. Moreover, the ratio of the surface tension to the cube of the critical temperature is found to increase the value in comparison to earlier studies without correction factor [R. Ramanathan, K. K. Gupta, A. K. Jha and S. S. Singh, Pram. J. Phys. 68, 757 (2007)].

  1. Fabrication of heterogeneous microlenses using self-surface tension

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Han; Su, Guo-Dung J.

    2014-09-01

    Solar optical modeling tools are valuable for modeling and predicting the performance of solar technology systems. Four optical modeling tools were evaluated using the National Solar Thermal Test Facility heliostat field combined with flat plate receiver geometry as a benchmark. The four optical modeling tools evaluated were DELSOL, HELIOS, SolTrace, and Tonatiuh. All are available for free from their respective developers. DELSOL and HELIOS both use a convolution of the sunshape and optical errors for rapid calculation of the incident irradiance profiles on the receiver surfaces. SolTrace and Tonatiuh use ray-tracing methods to intersect the reflected solar rays with the receiver surfaces and construct irradiance profiles. We found the ray-tracing tools, although slower in computation speed, to be more flexible for modeling complex receiver geometries, whereas DELSOL and HELIOS were limited to standard receiver geometries such as flat plate, cylinder, and cavity receivers. We also list the strengths and deficiencies of the tools to show tool preference depending on the modeling and design needs. We provide an example of using SolTrace for modeling nonconventional receiver geometries. The goal is to transfer the irradiance profiles on the receiver surfaces calculated in an optical code to a computational fluid dynamics code such as ANSYS Fluent. This approach eliminates the need for using discrete ordinance or discrete radiation transfer models, which are computationally intensive, within the CFD code. The irradiance profiles on the receiver surfaces then allows for thermal and fluid analysis on the receiver.

  2. Crack-mouth displacements for semielliptical surface cracks subjected to remote tension and bending loads

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Newman, James C., Jr.; Atluri, Satya N.

    1992-01-01

    The exact analytical solution for an embedded elliptical crack in an infinite body subjected to arbitrary loading was used in conjunction with the finite element alternating method to obtain crack-mouth-opening displacements (CMOD) for surface cracks in finite plates subjected to remote tension. Identical surface-crack configurations were also analyzed with the finite element method using 20-noded element for plates subjected to both remote tension and bending. The CMODs from these two methods generally agreed within a few percent of each other. Comparisons made with experimental results obtained from surface cracks in welded aluminum alloy specimens subjected to tension also showed good agreement. Empirical equations were developed for CMOD for a wide range of surface-crack shapes and sizes subjected to tension and bending loads. These equations were obtained by modifying the Green-Sneddon exact solution for an elliptical crack in an infinite body to account for finite boundary effects. These equations should be useful in monitoring surface-crack growth in tests and in developing complete crack-face-displacement equations for use in three-dimensional weight-function methods.

  3. Increased surface tension of the lung and surfactant in bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Horiuchi, T; Ikegami, M; Cherniack, R M; Mason, R J

    1996-10-01

    The increased elastic recoil of the lung in bleomycin-induced pulmonary fibrosis in the rat is due in part to increased surface forces. This study was designed to determine the role of surface tension in situ and in vitro 21 d after instillation of bleomycin. Using sequentially measured pressure-volume curves generated with air, saline, air after lavage with Tween 20, and saline, surface tension was significantly higher in bleomycin-treated lungs than in untreated lungs (4.7 +/- 1.1 versus 1.8 +/- 0.2 dyne/cm, p < 0.01). Surface tension was determined in vitro with a Wilhelmy balance using bronchoalveolar lavage fluid, surfactant, and organic solvent lipid extracts of surfactant. Bleomycin treatment resulted in elevated minimal surface tensions: BALF (20.7 +/- 0.6 versus 13.6 +/- 3.8 dyne/cm, p < 0.02), isolated surfactant (12.0 +/- 1.3 versus 3.0 +/- 0.5 dyne/cm, p < 0.02), and the organic solvent lipid extracted surfactant (11.0 versus 3.2 dyne/cm). These results indicate that the physical properties of surfactant in lungs of rats treated with bleomycin are abnormal and contribute to the increased elastic recoil in this model of pulmonary fibrosis.

  4. General purpose in-situ surface tension measurement

    NASA Astrophysics Data System (ADS)

    Lapham, Gary S.; Dowling, David R.; Schultz, William W.

    1996-11-01

    While the Wilhelmy method is over a century old, there is a need for clear hydrodynamic explanations for corrections to the basic weight-divided-by-slide-perimeter measurement. A technique tailored for a free surface with surfactants has been developed including the effects of hydrostatic pressure and for the angle that the free surface meets with the Wilhelmy plate. A two-dimensional hydrostatic analysis has captured much of the discrepency between the typically-applied simple model and experiments. However, three-dimensional end effects play an important role and add experimental uncertainty. To avoid these end effects, a circular geometry was used and compared to axisymmetric analysis. Unlike, the du Noüy ring, this apparatus has sharp corners and well-defined corrections. The technique can be used in any basin, with any liquid, and with any surface contamination condition provided the plate can be wetted. Experiments with standard Wilhelmy plates that prompted technique development and results from the new technique are discussed. This research is supported by the Office of Naval Research.

  5. Constrained sessile drop as a new configuration to measure low surface tension in lung surfactant systems.

    PubMed

    Yu, Laura M Y; Lu, James J; Chan, Yawen W; Ng, Amy; Zhang, Ling; Hoorfar, Mina; Policova, Zdenka; Grundke, Karina; Neumann, A Wilhelm

    2004-08-01

    Existing methodology for surface tension measurements based on drop shapes suffers from the shortcoming that it is not capable to function at very low surface tension if the liquid dispersion is opaque, such as therapeutic lung surfactants at clinically relevant concentrations. The novel configuration proposed here removes the two big restrictions, i.e., the film leakage problem that is encountered with such methods as the pulsating bubble surfactometer as well as the pendant drop arrangement, and the problem of the opaqueness of the liquid, as in the original captive bubble arrangement. A sharp knife edge is the key design feature in the constrained sessile drop that avoids film leakage at low surface tension. The use of the constrained sessile drop configuration in conjunction with axisymmetric drop shape analysis to measure surface tension allows complete automation of the setup. Dynamic studies with lung surfactant can be performed readily by changing the volume of a sessile drop, and thus the surface area, by means of a motor-driven syringe. To illustrate the validity of using this configuration, experiments were performed using an exogenous lung surfactant preparation, bovine lipid extract surfactant (BLES) at 5.0 mg/ml. A comparison of results obtained for BLES at low concentration between the constrained sessile drop and captive bubble arrangement shows excellent agreement between the two approaches. When the surface area of the BLES film (0.5 mg/ml) was compressed by about the same amount in both systems, the minimum surface tensions attained were identical within the 95% confidence limits.

  6. Surface tension and a self-consistent theory of soft composite solids with elastic inclusions.

    PubMed

    Mancarella, Francesco; Wettlaufer, John S

    2017-02-07

    The importance of surface tension effects is being recognized in the context of soft composite solids, where they are found to significantly affect the mechanical properties, such as the elastic response to an external stress. It has recently been discovered that Eshelby's inclusion theory breaks down when the inclusion size approaches the elastocapillary length L≡γ/E, where γ is the inclusion/host surface tension and E is the host Young's modulus. Extending our recent results for liquid inclusions, here we model the elastic behavior of a non-dilute distribution of isotropic elastic spherical inclusions in a soft isotropic elastic matrix, subject to a prescribed infinitesimal far-field loading. Within our framework, the composite stiffness is uniquely determined by the elastocapillary length L, the spherical inclusion radius R, and the stiffness contrast parameter C, which is the ratio of the inclusion to the matrix stiffness. We compare the results with those from the case of liquid inclusions, and we derive an analytical expression for elastic cloaking of the composite by the inclusions. Remarkably, we find that the composite stiffness is influenced significantly by surface tension even for inclusions two orders of magnitude more stiff than the host matrix. Finally, we show how to simultaneously determine the surface tension and the inclusion stiffness using two independent constraints provided by global and local measurements.

  7. On the interfacial behavior of ionic liquids: surface tensions and contact angles.

    PubMed

    Restolho, José; Mata, José L; Saramago, Benilde

    2009-12-01

    In this work the liquid/vapour and the solid/liquid interfaces of a series of ionic liquids: 1-ethyl-3-methylpyridinium ethyl sulfate, [EMPy][EtSO4], 1-ethyl-3-methylimidazolium ethyl sulfate, [EMIM][EtSO4], 1-ethanol-3-methylimidazolium tetrafluoroborate, [C2OHMIM][BF4], 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], and 1-octyl-3-methylimidazolium tetrafluoroborate, [OMIM][BF4], were investigated. The surface tension was measured in a wide temperature range, (298-453) K. The contact angles were determined on substrates of different polarities. Both on the polar (glass) and the non-polar substrates ((poly-(tetrafluoroethylene) and poly-(ethylene)), the liquids with maximum and minimum surface tensions lead, respectively, to the highest and the lowest contact angles. The dispersive, gamma(L)(d), and non-dispersive, gamma(L)(nd), components of the liquid surface tension, gamma(L), were calculated from the contact angles on the non-polar substrates using the Fowkes approach. The polarity fraction, gamma(L)(nd)/gamma(L), was compared with the polarity parameter, k, obtained from the fitting of the surface tension vs. temperature data to the Eötvös equation. Good agreement was found for the extreme cases: [OMIM][BF4] exhibits the lowest polarity and [BMIM][BF4], the highest. When compared with the polarity fractions of standard liquids considered as "polar" liquids, the ionic liquids studied may be considered as moderately polar.

  8. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    USGS Publications Warehouse

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  9. Critical Steady Surface Waves of Idea Fluid over a Bump with Surface Tension

    NASA Astrophysics Data System (ADS)

    Choi, Jeongwhan; Lee, Sangwon; Kim, Joonkyoung; Whang, Sungim

    2016-11-01

    The paper deals with steady forced surface waves propagating on a two-dimensional incompressible and inviscid fluid with a small bump placed on a rigid flat bottom. If the surface tension coefficient T on the free surface is not zero and the wave is moving with a constant speed C, the wave motion is determined by two non-dimensional constants, F = √ gh and I = T / (ρgh 2) , where g is the gravity constant and h is the height of the fluid at infinity. It has been known that F = 1 and t = 1/3 are the critical values of F and t, respectively. In the critical case F = 1 + λ 1 ɛ 2 and t = 1/3 + t1 ɛ with ɛ > 0 a small parameter, a time-dependent forced Kawahara (F-Kawahara)equation is derived to model the wave propagation on the free surface and the steady F-Kawahara equation is studied both theoretically and merically. It is shown that the steady F-Kawahara equation has many different kinds of one and multi-hump solutions when t1 and λ 1 vary. In particular, for a fixed t 1, there is a λ 0 < 0 such that if λ 1 < λ 0 , two one-hump steady solutions can be obtained, one with small amplitude and the other with large amplitude. By using the unsteady F-Kawahara equation, it appears that the small one-hump solution is stable while the large one is nstable. In addition, two-hump solutions are unstable.

  10. Design of a vapor-liquid-equilibrium, surface tension, and density apparatus

    SciTech Connect

    Holcomb, C.D.; Outcalt, S.L.

    1997-12-31

    The design and performance of a unique vapor-liquid equilibrium (VLE) apparatus with density and surface tension capabilities is presented. The apparatus operates at temperatures ranging from 218 to 423 K, at pressures to 17 MPa, at densities to 1100 kg/m{sup 3}, and at surface tensions ranging from 0.1 to 75 mN/m. Temperatures are measured with a precision of {+-}0.02 K, pressures with a precision of {+-}0.1% of full scale, densities with a precision of {+-}0.5 kg/m{sup 3}, surface tensions with a precision of {+-}0.2 mN/m, and compositions with a precision of {+-}0.005 mole fraction. The apparatus is designed to be both accurate and versatile. Capabilities include: (1) the ability to operate the apparatus as a bubble point pressure or an isothermal pressure-volume-temperature (PVT) apparatus, (2) the ability to measure densities and surface tensions of the coexisting phases, and (3) the ability for either trapped or capillary sampling. We can validate our VLE and density data by measuring PVT or bubble point pressures in the apparatus. The use of the apparatus for measurements of VLE, densities, and surface tensions over wide ranges of temperature and pressure is important in equation of state and transport property model development. The use of different sampling procedures allows measurement of a wider variety of fluid mixtures. VLE measurements on the alternative refrigerant system R32/134a are presented and compared to literature results to verify the performance of the apparatus.

  11. Interfacial tension and surface elasticity of carbon black (CB) covered oil-water interface.

    PubMed

    Powell, Kristin Conrad; Chauhan, Anuj

    2014-10-21

    Carboxyl-terminated carbon black (CB) particles have been proposed as readily available, biocompatible dispersants to stabilize oil-in-water emulsions after an oil spill. Since the reduction in interfacial tension and the increase in interfacial elasticity are the key parameters which relate interfacial mechanics to emulsion stability, this investigation explores the effect of CB adsorption and surface coverage on oil-water interfacial tension and elasticity. Flocculation of CB was explored as ionic strength was increased from 0 to 0.6 M, approximately the salinity of seawater. As salinity increases, CB aggregates into larger particles from 100 nm to 6 μm. The interfacial tension and dilational viscoelasticity were measured for two systems: a drop of a CB suspension in oil and an inverted oil drop in a CB suspension. For the arrangement of a CB suspension drop in oil, most of the CB settles and accumulates toward the bottom of the drop with only small surface adsorption and no appreciable effect is observed on the dynamic interfacial tension or the dilational viscoelasticity. On reversing the arrangement to an inverted oil drop in CB suspension and increasing the convection of the outer phase, the surface coverage increases considerably. The CB coverage becomes more uniform with higher convection with an average value of approximately 2.6 g/m(2), which is representative of the coverage in Pickering emulsions stabilized by CB particles. The CB coverage decreases the surface tension from about 30 to 8.5 mN/m accompanied by an increase in the surface elasticity to 20.7 mN/m. The sharp contrast between the results from the CB suspension drop and the oil drop could be partially due to the effect of the wetting characteristics of the particles or due to the significant differences between the convection in the two cases.

  12. Tension induced surface plasmon-polaritons at graphene-based structure

    NASA Astrophysics Data System (ADS)

    Khalandi, G.; Namdar, A.; Entezar, S. Roshan

    2017-02-01

    Dispersion properties and field distributions of TM (or p-polarized) surface plasmon-polaritons have been investigated in the system that a strained graphene sheet cladded by two dielectrics. The outcomes show that graphene TM surface plasmon-polaritons are bound confined modes, and the field components penetrate into the dielectric layers in the rang that is very smaller than the wavelength in the free space. At low photon energies, when the tension is along the zigzag (armchair) direction and parallel (perpendicular) to the tangential electric field, the wavelength, propagation length and penetration depth of TM surface plasmon-polaritons increase (decrease) with increasing the strain. Changing the angle between the tension direction and tangential electric field at cases with the constant strain, cause to existence of TM surface plasmon-polaritons in the wider range of frequency.

  13. Surface tension of polytetrafluoroethylene and its wetting by aqueous solution of some surfactants and their mixtures

    NASA Astrophysics Data System (ADS)

    Mańko, Diana; Zdziennicka, Anna; Jańczuk, Bronisław

    2017-01-01

    Measurements of the contact angle of aqueous solution of rhamnolipid (RL) mixture with n-octyl-β-D-glucopyranoside (OGP), Triton X-100 (TX-100) or/and sodium dodecylsulfate (SDDS) on polytetrafluoroethylene (PTFE) were made. To this aim there was used a plate whose surface topography was analyzed by means of optical profilometry method. Additionally, plate surface chemistry was studied employing the Fourier transform infrared spectroscopy. The obtained values of contact angle were discussed based on the PTFE surface tension (γSV) as well as the Lifshitz-van der Waals component of the water surface tension (γWLW). The contact angle of aqueous solution of several surfactants and their mixtures on PTFE was also considered on the basis of γSV and γWLW . It occured that by using the values of γSV , γWLW and surface tension of the aqueous solution of surfactants and their mixtures, the contact angle on PTFE can be predicted. It also occured that changes of adhesion tension of aqueous solutions of surfactants as a function of their concentration can be determined by the exponential function of the first or second order. Using such functions Gibbs surface excess concentration of surfactants at the PTFE-water interface, mole fraction of surfactant in the mixed monolayer and fraction of the area occupied by given surfactants in the monolayer were determined. Gibbs surface free energy of adsorption of a given surfactant in the presence of another one and adhesion work of the aqueous solution of surfactants to the PTFE surface were also evaluated.

  14. On self-diffusion and surface energy upon compression or tension of an iron crystal

    NASA Astrophysics Data System (ADS)

    Magomedov, M. N.

    2013-03-01

    The dependences of the activation parameters (formation of vacancies and self-diffusion) and specific surface energy on the volume fraction ( V/ V 0) are calculated in terms of the Mie-Lenard-Jones pair potential of interatomic interaction for bcc-Fe along the 300-K and 3000-K isotherms. It is shown that under strong compressions ( V/ V 0 < 1) or tensions ( V/ V 0 > 1), the surface energy has a negative value, which must lead to the crystal structure fragmentation.

  15. Air-water centrifugal convection

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel; Shtern, Vladimir

    2014-07-01

    A sealed cylindrical container is filled with air and water. The container rotation and the axial gradient of temperature induce the steady axisymmetric meridional circulation of both fluids due to the thermal buoyancy and surface-tension (Marangoni) effects. If the temperature gradient is small, the water circulation is one-cellular while the air circulation can be one- or two-cellular depending on water fraction Wf. The numerical simulations are performed for the cylinder length-to-radius ratio l = 1 and l = 4. The l = 4 results and the analytical solution for l → ∞ agree in the cylinder's middle part. As the temperature gradient increases, the water circulation becomes one-, two-, or three-cellular depending on Wf. The results are of fundamental interest and can be applied for bioreactors.

  16. Dynamics of surface tension driven mixing of an alcohol droplet with water

    NASA Astrophysics Data System (ADS)

    Dandekar, Raj; Pant, Anurag; Puthenveettil, Baburaj

    2016-11-01

    We study the flow induced by the surface tension driven spreading of an ethanol droplet of radius rd on the surface of a 5mm water layer, visualizing the flow using aluminium flakes on the surface of the water layer with backlighting and high speed imaging. The concentration of tracer aluminium particles was found to have no effect on the scaling law for spreading.The drop,when brought in contact with the water surface causes a local depression in surface tension ,resulting in a thin circular region to expand radially outwards.We observe that the dimensionless radius of the expanding front (r* =r/rd) scales with the dimensionless time (t* = μ rd/ Δγ) , as r* t*1/4,where μ is the viscosity of water and Δγ is the surface tension difference between water and the ethanol droplet.A scaling analysis taking the viscous and the marangoni forces into account explains the observed scaling law.Our observations differ from that in the case of continuous alcohol supply where the observed scaling law is r* t*1/2. The expanding front radius reaches a maximum value and then decreases with time.

  17. Surface Tension Estimates for Droplet Formation in Slurries with Low Concentrations of Hydrophobic Particles, Polymer Flocculants or Surface-Active Contaminants

    SciTech Connect

    Gauglitz, Phillip A.; Mahoney, Lenna A.; Blanchard, Jeremy; Bamberger, Judith A.

    2011-06-10

    In support of the K-Basin project, Pacific Northwest National Laboratory (PNNL) was requested to evaluate the appropriate surface tension value to use in models predicting the formation of droplets from spray leaks of K-Basin slurries. The specific issue was whether it was more appropriate to use the surface tension of pure water in model predictions for all plausible spray leaks or to use a lower value. The surface tension of K-Basin slurries is potentially affected not only by particles but by low concentrations of nonionic polyacrylamide flocculant and perhaps by contaminants with surfactant properties, which could decrease the surface tension below that of water. A lower surface tension value typically results in smaller droplets being formed with a larger fraction of droplets in the respirable size range, so using the higher surface tension value of pure water is not conservative and thus needs a strong technical basis.

  18. Surface tension driven processes densify and retain permeability in magma and lava

    NASA Astrophysics Data System (ADS)

    Kennedy, Ben M.; Wadsworth, Fabian B.; Vasseur, Jérémie; Ian Schipper, C.; Mark Jellinek, A.; von Aulock, Felix W.; Hess, Kai-Uwe; Kelly Russell, J.; Lavallée, Yan; Nichols, Alexander R. L.; Dingwell, Donald B.

    2016-01-01

    We offer new insights into how an explosive eruption can transition into an effusive eruption. Magma containing >0.2 wt% dissolved water has the potential to vesiculate to a porosity in excess of 80 vol.% at atmospheric pressure. Thus all magmas contain volatiles at depth sufficient to form foams and explosively fragment. Yet gas is often lost passively and effusive eruptions ensue. Magmatic foams are permeable and understanding permeability in magma is crucial for models that predict eruptive style. Permeability also governs magma compaction models. Those models generally imply that a reduction in magma porosity and permeability generates an increased propensity for explosivity. Here, our experimental results show that surface tension stresses drive densification without creating an impermeable 'plug', offering an additional explanation of why dense magmas can avoid explosive eruption. In both an open furnace and a closed autoclave, we subject pumice samples with initial porosity of ∼70 vol.% to a range of isostatic pressures (0.1-11 MPa) and temperatures (350-950 °C) relevant to shallow volcanic environments. Our experimental data and models constrain the viscosity, permeability, timescales, and length scales over which densification by pore-scale surface tension stresses competes with density-driven compaction. Where surface tension dominates the dynamics, densification halts at a plateau connected porosity of ∼25 vol.% for our samples. SEM, pycnometry and micro-tomography show that in this process (1) microporous networks are destroyed, (2) the relative pore network surface area decreases, and (3) a remaining crystal framework enhances the longevity of macro-pore connectivity and permeability critical for sustained outgassing. We propose that these observations are a consequence of a surface tension-driven retraction of viscous pore walls at areas of high bubble curvature (micro-vesicular network terminations), and that this process drives bulk

  19. Structural changes on the surface of tungsten foils under uniaxial tension

    NASA Astrophysics Data System (ADS)

    Korsukov, V. E.; Knyazev, S. A.; Butenko, P. N.; Gilyarov, V. L.; Korsukova, M. M.; Nyapshaev, I. A.; Obidov, B. A.

    2017-02-01

    A change in the surface morphology of recrystallized tungsten foil under the effect of uniaxial tension in ultrahigh vacuum is studied by low-energy electron diffraction and atomic force microscopy. It is found by using low-energy electron diffraction that on the foil surface consisting of separate blocks with dominant face (112), there is a turn in orientation of the structural blocks. The analysis of the topograms of different areas of the side surface of a broken sample, obtained by atomic force microscopy, enabled the association of changes in the atomic structure of the surface layers of foil with a change in its relief by mechanical action.

  20. Wetting Angle and Surface Tension of Germanium Melts on Different Substrate Materials

    NASA Technical Reports Server (NTRS)

    Kaiser, N.; Croell, A.; Szofran, F. R.; Benz, K. W.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The sessile drop technique has been used to measure the wetting angle and the surface tension of molten germanium (Ge) on various substrate materials. Sapphire, fused silica, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AlN, Si3N4, and CVD diamond were used as substrate materials. In addition, the effects of different cleaning procedures and surface treatments on the wetting behavior were investigated. The highest wetting angles with values around 170 deg. were found for pBN substrates under active vacuum or with a slight overpressure of 5N Argon or forming gas (2% Hydrogen in 5N Argon). The measurement of the surface tension and its temperature dependence for Ge under a forming gas atmosphere resulted in gamma(T) = 591 - 0.077 (T-T(sub m).

  1. Surface Tension Prediction Using Characteristics of the Density Profile Through the Interfacial Region

    NASA Astrophysics Data System (ADS)

    Wemhoff, A. P.; Carey, V. P.

    2006-03-01

    A simple surface tension estimation technique is described that is based solely upon the characteristics of the density profile in the interfacial region and the physical properties of the molecules in the fluid. This method, denoted free energy integration (FEI), links interfacial tension to known interfacial region density profile characteristics obtained via experiment or simulation. The general FEI methodology is provided here, and specific relations are derived for a methodology that incorporates the Redlich-Kwong fluid model. The Redlich-Kwong based FEI method was used to predict interfacial tension using the density profile characteristics of molecular dynamics (MD) simulations of argon using the Lennard-Jones potential, diatomic nitrogen using the two-center Lennard-Jones potential, and water using the extended simple point-charge (SPC/E) model. These results for argon compare favorably to values calculated by the traditional virial approach, known values from the literature using the finite-size scaling technique, and ASHRAE recommended values. In addition, the FEI predictions agree well with ASHRAE values and predictions using the virial method for nitrogen for the simulated range of temperatures in this study, and for water for reduced temperatures above 0.7. In addition, the FEI method results agree well with other established theoretical techniques for predictions of the surface tension of sulfur hexafluoride close to the critical point.

  2. Spreading and mixing of drops on a miscible liquid of different surface tension

    NASA Astrophysics Data System (ADS)

    Afkhami, S.; Seric, I.; Kondic, L.; Kim, H.; Shardt, O.; Stone, H. A.

    2016-11-01

    We carry out Volume-of-Fluid based numerical simulations of a Marangoni-driven spreading of isopropyl alcohol (IPA) drops placed on water-air interface. The two fully miscible liquids create a spatially varying surface tension, leading to the spreading of the IPA drop on the water surface. We study the spreading of drops as IPA concentration is varied. In particular, we compute the spreading velocity and show that the scaling of the front position, L, with time, t, is given by L t 0 . 7 . We observe that while the surface tension difference between the two liquids controls the spreading velocity, it only slightly alters the power-law behavior for the range of considered IPA concentrations. We also provide detailed insight of the mixing of the IPA and water, and show the time evolution of liquid-air surface tension distribution. We show that the mixing results in a volume flux in a thin region on the surface, generating a vortical flow underneath the spreading front; we investigate the details of these flow patterns and show the time evolution of the circulation within the water. The numerical results are supported by new experimental observations reported separately.

  3. Contact angle and surface tension measurements of a five-ring polyphenyl ether

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1985-01-01

    Contact angle measurements were performed for a five-ring polyphenyl ether isomeric mixture on M-50 steel in a dry nitrogen atmosphere. Two different techniques were used: (1) a tilting plate apparatus, and (2) a sessile drop apparatus. Measurements were made for the temperature range 25 to 190 C. Surface tension was measured by a differential maximum bubble pressure technique over the range 23 to 220C in room air. The critical surface energy of spreading (gamma (sub c)) was determined for the polyphenyl ether by plotting the cosine of the contact angle (theta) versus the surface tension (gamma (sub LV)). The straight line intercept at cosine theta = 1 is defined as gamma (sub c). Gamma (sub c) was found to be 30.1 dyn/cm for the tilting plate technique and 31.3 dyn/cm for the sessile drop technique. These results indicate that the polyphenyl ether is inherently autophobic (i.e., it will not spread on its own surface film until its surface tension is less than gamma (sub c). This phenomenon is discussed in light of the wettability and wear problems encountered with this fluid.

  4. Contact angle and surface tension measurements of a five-ring polyphenyl ether

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1986-01-01

    Contact angle measurements were performed for a five-ring polyphenyl ether isomeric mixture on M-50 steel in a dry nitrogen atmosphere. Two different techniques were used: (1) a tilting plate apparatus, and (2) a sessile drop apparatus. Measurements were made for the temperature range 25 to 190 C. Surface tension was measured by a differential maximum bubble pressure technique over the range 23 to 220 C in room air. The critical surface energy of spreading (gamma /sub c/) was determined for the polyphenyl ether by plotting the cosine of the contact angle (theta) versus the surface tension (gamma /sub LV/). The straight line intercept at cosine theta = 1 is defined as gamma (sub c). Gamma (sub c) was found to be 30.1 dyn/cm for the tilting plate technique and 31.3 dyn/cm for the sessile drop technique. These results indicate that the polyphenyl ether is inherently autophobic (i.e., it will not spread on its own surface film until its surface tension is less than gamma /sub c/). This phenomenon is discussed in light of the wettability and wear problems encountered with this fluid.

  5. The energy release rate of a pressurized crack in soft elastic materials: effects of surface tension and large deformation.

    PubMed

    Liu, Tianshu; Long, Rong; Hui, Chung-Yuen

    2014-10-21

    In this paper we present a theoretical study on how surface tension affects fracture of soft solids. In classical fracture theory, the resistance to fracture is partly attributed to the energy required to create new surfaces. Thus, the energy released to the crack tip must overcome the surface energy in order to propagate a crack. In soft materials, however, surface tension can cause significant deformation and can reduce the energy release rate for crack propagation by resisting the stretch of crack surfaces. We quantify this effect by studying the inflation of a penny-shaped crack in an infinite elastic body with applied pressure. To avoid numerical difficulty caused by singular fields near the crack tip, we derived an expression for the energy release rate which depends on the applied pressure, the surface tension, the inflated crack volume and the deformed crack area. This expression is evaluated using a newly developed finite element method with surface tension elements. Our calculation shows that, when the elasto-capillary number ω ≡ σ/Ea is sufficiently large, where σ is the isotropic surface tension, E is the small strain Young's modulus and a is the initial crack radius, both the energy release rate and the crack opening displacement of an incompressible neo-Hookean solid are significantly reduced by surface tension. For a sufficiently high elasto-capillary number, the energy release rate can be negative for applied pressure less than a critical amount, suggesting that surface tension can cause crack healing in soft elastic materials.

  6. Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: an experimental investigation.

    PubMed

    Pericet-Cámara, Ramón; Best, Andreas; Butt, Hans-Jürgen; Bonaccurso, Elmar

    2008-10-07

    Sessile liquid drops are predicted to deform an elastic surface onto which they are placed because of the combined action of the liquid surface tension at the periphery of the drop and the capillary pressure inside the drop. Here, we show for the first time the in situ experimental confirmation of the effect of capillary pressure on this deformation. We demonstrate micrometer-scale deformations made possible by using a low Young's modulus material as an elastic surface. The experimental profiles of the deformed surfaces fit well the theoretical predictions for surfaces with a Young's modulus between 25 and 340 kPa.

  7. Non-invasive high throughput approach for protein hydrophobicity determination based on surface tension.

    PubMed

    Amrhein, Sven; Bauer, Katharina Christin; Galm, Lara; Hubbuch, Jürgen

    2015-12-01

    The surface hydrophobicity of a protein is an important factor for its interactions in solution and thus the outcome of its production process. Yet most of the methods are not able to evaluate the influence of these hydrophobic interactions under natural conditions. In the present work we have established a high resolution stalagmometric method for surface tension determination on a liquid handling station, which can cope with accuracy as well as high throughput requirements. Surface tensions could be derived with a low sample consumption (800 μL) and a high reproducibility (<0.1‰ for water) within a reasonable time (3.5 min per sample). This method was used as a non-invasive HTP compatible approach to determine surface tensions of protein solutions dependent on protein content. The protein influence on the solutions' surface tension was correlated to the hydrophobicity of lysozyme, human lysozyme, BSA, and α-lactalbumin. Differences in proteins' hydrophobic character depending on pH and species could be resolved. Within this work we have developed a pH dependent hydrophobicity ranking, which was found to be in good agreement with literature. For the studied pH range of 3-9 lysozyme from chicken egg white was identified to be the most hydrophilic. α-lactalbumin at pH 3 exhibited the most pronounced hydrophobic character. The stalagmometric method occurred to outclass the widely used spectrophotometric method with bromophenol blue sodium salt as it gave reasonable results without restrictions on pH and protein species.

  8. Surface Tension and Viscosity Measurements in Microgravity: Some Results and Fluid Flow Observations during MSL-1

    NASA Technical Reports Server (NTRS)

    Hyer, Robert W.; Trapaga, G.; Flemings, M. C.

    1999-01-01

    The viscosity of a liquid metal was successfully measured for the first time by a containerless method, the oscillating drop technique. This method also provides a means to obtain a precise, non-contact measurement of the surface tension of the droplet. This technique involves exciting the surface of the molten sample and then measuring the resulting oscillations; the natural frequency of the oscillating sample is determined by its surface tension, and the damping of the oscillations by the viscosity. These measurements were performed in TEMPUS, a microgravity electromagnetic levitator (EML), on the Space Shuttle as a part of the First Microgravity Science Laboratory (MSL-1), which flew in April and July 1997 (STS-83 and STS-94). Some results of the surface tension and viscosity measurements are presented for Pd82Si18. Some observations of the fluid dynamic characteristics (dominant flow patterns, turbulent transition, cavitation, etc.) of levitated droplets are presented and discussed together with magnetohydrodynamic calculations, which were performed to justify these findings.

  9. Dynamic surface tension of polyelectrolyte/surfactant systems with opposite charges: two states for the surfactant at the interface.

    PubMed

    Ritacco, Hernán A; Busch, Jorge

    2004-04-27

    The molecular reorientation model of Fainerman et al. is conceptually adapted to explain the dynamic surface tension behavior in polyelectrolyte/surfactant systems with opposite charges. The equilibrium surface tension curves and the adsorption dynamics may be explained by assuming that there are two different states for surfactant molecules at the interface. One of these states corresponds to the adsorption of the surfactant as monomers, and the other to the formation of a mixed complex at the surface. The model also explains the plateaus that appear in the dynamic surface tension curves and gives a picture of the adsorption process.

  10. Slow viscous gravity-driven interaction between a bubble and a free surface with unequal surface tensions

    NASA Astrophysics Data System (ADS)

    Guémas, Marine; Sellier, Antoine; Pigeonneau, Franck

    2015-04-01

    The axisymmetric gravity-driven dynamics of a bubble rising toward a free surface is addressed for gas-liquid interfaces having unequal surface tensions. The liquid flow is governed by the Stokes equations which are here solved using a boundary element method in axisymmetric configuration. Within this framework, two dimensionless numbers arise: the Bond number Bo1 based on the surface tension of the bubble interface and the surface tension ratio γ ˆ comparing the free surface and bubble surface tensions. Under a careful and discussed selection of the code key settings (number of boundary elements, initial bubble location, and distance beyond which the free surface is truncated), it has been possible to numerically and accurately track in time the bubble and free surface shapes for several values of ( Bo 1 , γ ˆ ) . The long-time shapes are found to deeply depend upon both Bo1 and γ ˆ and also to compare well with the shapes predicted in Princen and Mason ["Shape of a fluid drop at a fluid-liquid interface. II. Theory for three-phase systems," J. Colloid. Sci. 20, 246-266 (1965)] using a hydrostatic model in which both surfaces are touching. Similarly, the drainage dynamics of the liquid film thickness between the bubble and the free surface depends on ( Bo 1 , γ ˆ ) . The long-time film thickness exponentially decays in time and a so-called thinning rate α for which the numerical behaviors and a simple model reveal two basic behaviors: (i) at small Bond number, α behaves as 1/Bo1 and (ii) at large Bond number, α is nearly constant. In addition, it is found that in the entire range of the quantity χ = ( 1 + γ ˆ ) Bo 1 / ( 2 γ ˆ ) , the thinning rate α is well approximated by the function 1/(18χ) + α∞ with α∞ ≈ 0.158. Such a result also permits one to estimate the typical drainage time versus the initial bubble radius a, the liquid density ρ and viscosity μ, the gravity and the free surface, and bubble surface tensions.

  11. Superficial composition in binary solid solutions A(B): Drastic effect of pure element surface tensions

    NASA Astrophysics Data System (ADS)

    Rolland, A.; Aufray, B.

    1985-10-01

    This paper deals with a comparative study of surface segragation of Pb and Ni respectively from Ag(Pb)(111) and Ag(Ni)(111) solid solutions. A high level of segregation of the solute is observed for both systems characterized by very low solute solubility. However, the superficial composition strongly depends on the relative surface tensions of the pure elements: the solute atoms are strictly on superficial sites when γ solute is smaller than γ solvent; in contrast uppermost layer consists purely of solvent when γ solute is greater than γ solvent. Two schematic distributions in close proximity to the surface are proposed in the last case.

  12. Development of a space qualified Surface Tension Confined Liquid Cryogen Cooler (STCLCC)

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1988-01-01

    The Surface Tension Confined Liquid Cryogen Cooler (STCLCC), a new type of cryogenic cooler which is being developed by the NASA-GSFC for spaceflight payloads, is described. The STCLCC will be capable of maintaining instrumentation within the temperature range of 10-120 K and will allow liquid cryogens to be flown in space without the risk of liquid being entrained in the vent gas. A low-density open-cell material in the STCLCC acts as a 'sponge', with the surface tension trapping the liquid cryogen within its pores and keeping the liquid away from the cooler's vent during launch, zero-g operations, and landing. It is emphasized that the STCLCC concept is amenable to a wide variety of applications, whenever a passive low-cost cooler is required or when the on-orbit service of a cooler would increase a mission's lifetime.

  13. Possible Evidence for a New Form of Liquid Buried in the Surface Tension of Supercooled Water

    PubMed Central

    Rogers, T. Ryan; Leong, Kai-Yang; Wang, Feng

    2016-01-01

    Contrary to the historical data, several recent experiments indicate that the surface tension of supercooled water follows a smooth extrapolation of the IAPWS equation in the supercooled regime. It can be seen, however, that a small deviation from the IAPWS equation is present in the recent experimental measurements. It is shown with simulations using the WAIL water potential that the small deviation in the experimental data is consistent with the tail of an exponential growth in surface tension as temperature decreases. The emergence temperature, Te, of a substantial deviation from the IAPWS equation is shown to be 227 K for the WAIL water and 235 K for real water. Since the 227 K Te is close to the Widom line in WAIL water, we argue that real water at 235 K approaches a similar crossover line at one atmospheric pressure. PMID:27615518

  14. Surface Tension of Methanol as a Function of cut-off Radius and Temperature Controllers

    NASA Astrophysics Data System (ADS)

    Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra

    Molecular dynamics is used to calculate the surface tension of van Leeuwen methanol. The van Leeuwen model of methanol is chosen over other models of methanol, since this model is widely used to study nucleation at low temperature. Usually, scientists use the cut-off radius to be three order of magnitude of segment diameter. In this study, we varied the cut-off radius to estimate the best cut-off at which the surface tension reaches its plateau. After deciding the best cut-off radius for van der Waals and Coulomb interactions (CUT-OFF and PME were used for Coulomb interaction), we varied the temperature controller (van-Housen, Berendsen, and v-rescale) to decide the best temperature controller to be used to study methanol. In all simulations, Gromacs is used at T =200-300K with periodic boundary conditions in all dimensions. JUST.

  15. Densities, surface tensions, and refractive indices of the water + 1,3-propanediol system

    SciTech Connect

    Lee, J.W.; Park, S.B.; Lee, H.

    2000-04-01

    Various working fluids have been proposed to satisfy specific conditions required for such systems as air-cooled absorption chillers, low-temperature heat-driven heat pumps, and solar-powered absorption chillers. Densities, surface tensions, and refractive indices of the binary water + 1,3-propanediol system were measured at temperatures of 298.15, 303.15, 308.15, 313.15, 318.15, and 323.15 K and at 1,3-propanediol mass fractions of 0.00, 0.10, 0.20, 0.40, 0.60, 0.80, and 1.00, respectively. The measured data were well correlated with the simple polynomial equations. The average absolute deviations were found to be 0.123% for density, 0.77% for surface tension, and 0.045% for refractive index.

  16. Pressure, Surface Tension, and Dripping of Self-Trapped Laser Beams

    SciTech Connect

    Novoa, David; Michinel, Humberto; Tommasini, Daniele

    2009-07-10

    We show that a laser beam which propagates through an optical medium with Kerr (focusing) and higher order (defocusing) nonlinearities displays pressure and surface-tension properties yielding capillarity and dripping effects totally analogous to usual liquid droplets. The system is reinterpreted in terms of a thermodynamic grand potential, allowing for the computation of the pressure and surface tension beyond the usual hydrodynamical approach based on Madelung transformation and the analogy with the Euler equation. We then show both analytically and numerically that the stationary soliton states of such a light system satisfy the Young-Laplace equation and that the dynamical evolution through a capillary is described by the same law that governs the growth of droplets in an ordinary liquid system.

  17. Possible Evidence for a New Form of Liquid Buried in the Surface Tension of Supercooled Water

    NASA Astrophysics Data System (ADS)

    Rogers, T. Ryan; Leong, Kai-Yang; Wang, Feng

    2016-09-01

    Contrary to the historical data, several recent experiments indicate that the surface tension of supercooled water follows a smooth extrapolation of the IAPWS equation in the supercooled regime. It can be seen, however, that a small deviation from the IAPWS equation is present in the recent experimental measurements. It is shown with simulations using the WAIL water potential that the small deviation in the experimental data is consistent with the tail of an exponential growth in surface tension as temperature decreases. The emergence temperature, Te, of a substantial deviation from the IAPWS equation is shown to be 227 K for the WAIL water and 235 K for real water. Since the 227 K Te is close to the Widom line in WAIL water, we argue that real water at 235 K approaches a similar crossover line at one atmospheric pressure.

  18. Experimental study of surface tension, specific heat and thermal diffusivity of liquid and solid titanium

    NASA Astrophysics Data System (ADS)

    Zhou, K.; Wang, H. P.; Chang, J.; Wei, B.

    2015-10-01

    The thermophysical properties of liquid and solid titanium such as the surface tension, specific heat and thermal diffusivity have been investigated over a wide temperature range. By using electromagnetic levitation and oscillating drop method, the surface tension of liquid titanium was measured in the temperature range of 1802-2188 K. The viscosity and density of undercooled liquid titanium were calculated by some well-known models using the measured data as input. In addition, the specific heat of liquid titanium was determined over the experimental range using electromagnetic levitation and drop calorimetry obtaining the value of 33.64 J mol-1 K-1. In addition, the thermal diffusivity of solid titanium was measured by laser flash method in the temperature range of 171-1080 K.

  19. A Synthetic Phased Array Surface Acoustic Wave Sensor for Quantifying Bolt Tension

    PubMed Central

    Martinez, Jairo; Sisman, Alper; Onen, Onursal; Velasquez, Dean; Guldiken, Rasim

    2012-01-01

    In this paper, we report our findings on implementing a synthetic phased array surface acoustic wave sensor to quantify bolt tension. Maintaining proper bolt tension is important in many fields such as for ensuring safe operation of civil infrastructures. Significant advantages of this relatively simple methodology is its capability to assess bolt tension without any contact with the bolt, thus enabling measurement at inaccessible locations, multiple bolt measurement capability at a time, not requiring data collection during the installation and no calibration requirements. We performed detailed experiments on a custom-built flexible bench-top experimental setup consisting of 1018 steel plate of 12.7 mm (½ in) thickness, a 6.4 mm (¼ in) grade 8 bolt and a stainless steel washer with 19 mm (¾ in) of external diameter. Our results indicate that this method is not only capable of clearly distinguishing properly bolted joints from loosened joints but also capable of quantifying how loose the bolt actually is. We also conducted detailed signal-to-noise (SNR) analysis and showed that the SNR value for the entire bolt tension range was sufficient for image reconstruction.

  20. The Life and Work of Joseph Plateau: Father of Film and Discoverer of Surface Tension

    NASA Astrophysics Data System (ADS)

    Wautier, Kristel; Jonckheere, Alexander; Segers, Danny

    2012-09-01

    In 1835 Joseph Plateau (1801-1883) was appointed Professor of Physics and Applied Physics at Ghent University, Belgium. By then he was well known for his groundbreaking work on the aftereffect of light on the human retina, and he would go on to become the first person to produce moving images, for which he is considered to be the Father of Film. His greatest scientific achievement, however, was his discovery of surface tension.

  1. Global Solvability of a Free Boundary Three-Dimensional Incompressible Viscoelastic Fluid System with Surface Tension

    NASA Astrophysics Data System (ADS)

    Xu, Li; Zhang, Ping; Zhang, Zhifei

    2013-06-01

    Motivated by Beale (Commun Pure Appl Math 34:359-392, 1981; Arch Ration Mech Anal 84:307-352, 1983/1984), we investigate the global well-posedness of a free boundary problem of a three-dimensional incompressible viscoelastic fluid system in an infinite strip and with surface tension on the upper free boundary, provided that the initial data is sufficiently close to the equilibrium state.

  2. Effective Darcy-Scale Contact Angles in Porous Media Imbibing Solutions of Various Surface Tensions

    SciTech Connect

    Weisbrod, Noam; McGinnis, Thomas; Rockhold, Mark L.; Niemet, Mike; Selker, John S.

    2009-10-17

    Surface tensions of high-salinity solutions are significantly different from those of pure water. Our objective was to develop and test a methodology to determine whether these surface-tension effects predictably alter imbibition into dry and moist porous media. Static and dynamic experiments were performed using four grades of quartz sand to determine the effects of solution salinity on imbibition. Results were quantified as apparent contact angles between the sand and three solutions (pure water, 5 molal NaNO3, n-hexane). Contact angles determined using a static method in initially air-dried sand ranged from 23° to 31°, with the same values found for both water and the NaNO3 solution. Effective contact angles determined for the air-dried sand using a dynamic method based on a modified version of the Green and Ampt model were about twice those found using the static method, averaging 45° and 62° for water and the NaNO3 solution, respectively. In pre-wetted sands, the dynamic imbibition data yielded apparent contact angles of 2° and 21° for water and the NaNO3 solution, respectively, with the latter value comparing well to a predicted value of 25° for the NaNO3 solution based solely on surface-tension contrast. The results of this study indicate that on the Darcy-scale, saline solutions appear to follow the relationship of non-zero contact angles with other miscible fluids of different surface tensions used to pre-wet the sand grains, in agreement with the macro-scale infiltration results of Weisbrod et al. [2004].

  3. SS/RCS surface tension propellant acquisition/expulsion tankage technology program

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of published propellant physical property data together with bubble point tests of fine-mesh screen in propellants, was conducted. The effort consisted of: (1) the collection and evaluation of pertinent physical property data for hydrazine (N2H4), monomethylhydrazine (MMH), and nitrogen tetroxide (N2O4); (2) testing to determine the effect of dissolved pressurant gas, temperature, purity, and system cleanliness or contamination on system bubble point, and (3) the compilation and publishing of both the literature and test results. The space shuttle reaction control system (SS/RCS) is a bipropellant system using N2O4 and MMH, while the auxiliary power system (SS/APU) employs monopropellant N2H4. Since both the RCS and the APU use a surface tension device for propellant acquisition, the propellant properties of interest are those which impact the design and operation of surface tension systems. Information on propellant density, viscosity, surface tension, and contact angle was collected, compiled, and evaluated.

  4. Analysis of surface cracks in finite plates under tension or bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1979-01-01

    Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.

  5. Surface Tension and Lamellar Spacing in Polyelectrolyte Blends and Block Copolymers

    NASA Astrophysics Data System (ADS)

    Sing, Charles; Olvera de La Cruz, Monica

    2015-03-01

    Heterogeneous polymer systems such as block copolymers (BCPs) are governed primarily by a competition between the surface tension between different chemical species and the entropic stretching of the polymer chains. Charged BCPs represent a class of materials that is currently of great interest to the polymer community due to the promise of charged BCPs as nanostructured membranes for batteries and fuel cells. The inclusion of charge presents a powerful way to tune the structure of BCPs, and we develop our understanding of how to do so by investigating the interfacial properties (surface tension and microstructure size) of polyelectrolyte blends and block copolymers. We use a new method that combines the features of liquid state (LS) theory and self consistent field theory (SCFT) into a multiscale LS-SCFT theory that provides beyond-mean-field predictions of polyelectrolyte systems. We find that charge size, charge correlations, and the fraction of charged monomers plays a crucial role in determining surface tension, and we therefore demonstrate how BCP structure changes upon inclusion of charges. Finally, we will show that these predictions provide the ideal basis for comparison to experiment and subsequent refinement of LS-SCFT theory.

  6. The in vitro Effect of Irrigants with Low Surface Tension on Enterococcus faecalis

    PubMed Central

    Giardino, Luciano; Estrela, Carlos; Generali, Luigi; Mohammadi, Zahed; Asgary, Saeed

    2015-01-01

    Introduction: Due to the complex anatomy of the root canal system and high surface tension of common root canal irrigants (RCI), conducting an investigation on RCIs containing surfactants is a priority. The aim of this in vitro study was to verify the antibacterial potential of RCI with low surface tension in root canals infected with Enterococcus faecalis (E. faecalis). Methods and Materials: Thirty-five extracted human maxillary anterior teeth were prepared and inoculated with E. faecalis for 60 days. After root canal preparation, the teeth were randomly divided to one positive and one negative control groups and 5 experimental groups: Hypoclean/Tetraclean NA, Hypoclean, Tetraclean, NaOCl/Tetraclean and NaOCl. Bacterial growth was observed by turbidity of culture medium and then measured using a UV spectrophotometer. Data were analyzed in three time intervals (pre-instrumentation and, 20 min and 72 h after canal preparation) using the ANOVA and post hoc Tukey’s tests. The level of significance was set at 0.05. Results: The results indicated the presence of E. faecalis in all post-irrigation samples irrespective of the RCI. However, the optical densities in both post-irrigation periods showed bacterial reduction and significant differences between groups. Conclusion: RCI with low surface tension showed antibacterial potential in E. faecalis infected roots. PMID:26229541

  7. Well-posedness for the Classical Stefan Problem and the Zero Surface Tension Limit

    NASA Astrophysics Data System (ADS)

    Hadžić, Mahir; Shkoller, Steve

    2017-01-01

    We develop a framework for a unified treatment of well-posedness for the Stefan problem with or without surface tension. In the absence of surface tension, we establish well-posedness in Sobolev spaces for the classical Stefan problem. We introduce a new velocity variable which extends the velocity of the moving free-boundary into the interior domain. The equation satisfied by this velocity is used for the analysis in place of the heat equation satisfied by the temperature. Solutions to the classical Stefan problem are then constructed as the limit of solutions to a carefully chosen sequence of approximations to the velocity equation, in which the moving free-boundary is regularized and the boundary condition is modified in a such a way as to preserve the basic nonlinear structure of the original problem. With our methodology, we simultaneously find the required stability condition for well-posedness and obtain new estimates for the regularity of the moving free-boundary. Finally, we prove that solutions of the Stefan problem with positive surface tension {σ} converge to solutions of the classical Stefan problem as {σ to 0}.

  8. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.

    PubMed

    Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N

    2014-10-01

    Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.

  9. A thermodynamical model for the surface tension of silicate melts in contact with H2O gas

    NASA Astrophysics Data System (ADS)

    Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello

    2016-02-01

    Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.

  10. A method for the direct measurement of surface tension of collected atmospherically relevant aerosol particles using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hritz, Andrew D.; Raymond, Timothy M.; Dutcher, Dabrina D.

    2016-08-01

    Accurate estimates of particle surface tension are required for models concerning atmospheric aerosol nucleation and activation. However, it is difficult to collect the volumes of atmospheric aerosol required by typical instruments that measure surface tension, such as goniometers or Wilhelmy plates. In this work, a method that measures, ex situ, the surface tension of collected liquid nanoparticles using atomic force microscopy is presented. A film of particles is collected via impaction and is probed using nanoneedle tips with the atomic force microscope. This micro-Wilhelmy method allows for direct measurements of the surface tension of small amounts of sample. This method was verified using liquids, whose surface tensions were known. Particles of ozone oxidized α-pinene, a well-characterized system, were then produced, collected, and analyzed using this method to demonstrate its applicability for liquid aerosol samples. It was determined that oxidized α-pinene particles formed in dry conditions have a surface tension similar to that of pure α-pinene, and oxidized α-pinene particles formed in more humid conditions have a surface tension that is significantly higher.

  11. A thermodynamical model for the surface tension of silicate melts in contact with H2O gas

    USGS Publications Warehouse

    Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello

    2016-01-01

    Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.

  12. Interfacial characterization of Pluronic PE9400 at biocompatible (air-water and limonene-water) interfaces.

    PubMed

    Pérez-Mosqueda, Luis M; Maldonado-Valderrama, Julia; Ramírez, Pablo; Cabrerizo-Vílchez, Miguel A; Muñoz, José

    2013-11-01

    In this work, we provide an accurate characterization of non-ionic triblock copolymer Pluronic PE9400 at the air-water and limonene-water interfaces, comprising a systematic analysis of surface tension isotherms, dynamic curves, dilatational rheology and desorption profiles. The surface pressure isotherms display two different slopes of the Π-c plot suggesting the existence of two adsorption regimes for PE9400 at both interfaces. Application of a theoretical model, which assumes the coexistence of different adsorbed states characterized by their molar areas, allows quantification of the conformational changes occurring at the adsorbed layer, indentifying differences between the conformations adopted at the air-water and the limonene-water interface. The presence of two maxima in the dilatational modulus vs. interfacial pressure importantly corroborates this conformational change from a 2D flat conformation to 3D brush one. Moreover, the dilatational response provides mechanical diferences between the interfacial layers formed at the two interfaces analyzed. Dynamic surface pressure data were transformed into a dimensionless form and fitted to another model which considers the influence of the reorganization process on the adsorption dynamics. Finally, the desorption profiles reveal that Pluronic PE9400 is irreversibly adsorbed at both interfaces regardless of the interfacial conformation and nature of the interface. The systematic characterization presented in this work provides important new findings on the interfacial properties of pluronics which can be applied in the rational development of new products, such as biocompatible limonene-based emulsions and/or microemulsions.

  13. Surface tension depression by low-solubility organic material in aqueous aerosol mimics

    NASA Astrophysics Data System (ADS)

    Schwier, Allison; Mitroo, Dhruv; McNeill, V. Faye

    2012-07-01

    Surface-active material, including long-chain fatty acids (LCFAs), comprises a significant fraction of organic aerosol mass. Surface-active species are thought to form a film at the gas-aerosol interface, with implications for aerosol heterogeneous chemistry and cloud formation. However, LCFA phase behavior and surface-bulk partitioning has not been characterized under most conditions typical of tropospheric aerosol water (i.e. acidic, high ionic content), making it challenging to predict surface film formation in aerosols. In this study, we present measurements of the surface tension of aqueous solutions containing the slightly soluble LCFAs oleic and stearic acid. The effect of varying pH, organic concentration, and inorganic salt content was tested for each system. We observe surface tension depression compared to water of up to ˜30 and 45% for aqueous solutions containing stearic or oleic acid at pH 0-8 and high inorganic salt concentrations (NaCl and (NH4)2SO4). This suggests that surface film formation is favorable for these species in atmospheric aerosols.

  14. Ionic Nature of a Gemini Surfactant at the Air/Water Interface.

    PubMed

    Phan, Chi M; Nguyen, Cuong V; Nakahara, Hiromichi; Shibata, Osamu; Nguyen, Thanh V

    2016-12-06

    The ionic state of an adsorbed gemini surfactant at the air/water interface was investigated using a combination of surface potential and surface tension data. The combined model was developed and successfully described the experimental data. The results verified the existence of three ionic states of the gemini surfactant in the interfacial zone. Furthermore, the model can quantify the adsorbed concentrations of these species. At low concentrations, the fully dissociated state dominates the adsorption. At high concentrations, the fully associated state dominates, accounting for up to 80% of the total adsorption. In the middle range, the adsorption is dominated by the partially associated state, which has a maximum percentage of 80% at a critical micelle concentration of 0.5. The variation in the ionic state is a unique characteristic of gemini surfactants, which can be the underlying mechanism for their advantages over conventional surfactants.

  15. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    USGS Publications Warehouse

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  16. Surface tensions of linear and branched alkanes from Monte Carlo simulations using the anisotropic united atom model.

    PubMed

    Biscay, F; Ghoufi, A; Goujon, F; Lachet, V; Malfreyt, P

    2008-11-06

    The anisotropic united atoms (AUA4) model has been used for linear and branched alkanes to predict the surface tension as a function of temperature by Monte Carlo simulations. Simulations are carried out for n-alkanes ( n-C5, n-C6, n-C7, and n-C10) and for two branched C7 isomers (2,3-dimethylpentane and 2,4-dimethylpentane). Different operational expressions of the surface tension using both the thermodynamic and the mechanical definitions have been applied. The simulated surface tensions with the AUA4 model are found to be consistent within both definitions and in good agreement with experiments.

  17. Experimental study of surface tension of ethane-methane solution in temperature range 213-283 K

    NASA Astrophysics Data System (ADS)

    Andbaeva, V. N.; Khotienkova, M. N.

    2013-09-01

    The differential variation of the method of capillary rise was used to measure the capillary constant and to determine the surface tension of ethane-methane solution at "high" temperatures. Measurements were performed on the isotherms in the range of temperatures 213.15 ÷ 283.15 K at pressures up to 4 MPa. Decrease of ethane surface tension with the increase of pressure and concentration of methane in the solution is shown. The experimental data are compared with the results of surface tension calculation according to Rowlinson theory. Methane adsorption in the interface layer of solution is calculated.

  18. Effect of electric fields on contact angle and surface tension of drops.

    PubMed

    Bateni, A; Laughton, S; Tavana, H; Susnar, S S; Amirfazli, A; Neumann, A W

    2005-03-01

    Contact angles of sessile drops were experimentally investigated in the electric field. The experimental setup was designed such that the electric field was applied to all three interfaces. The advanced Automated Polynomial Fitting (APF) methodology was employed to measure contact angles with high accuracy. The significance of the observations and trends was examined by conducting statistical tests of hypothesis. It was found that contact angles of polar liquids such as alcohols increase in the electric field. However, no significant trend was observed for nonpolar liquids such as alkanes. The change in the contact angle was found to be stronger for liquids with longer molecules. It was shown that the polarity of the electric field is not an underlying factor in the observed trends. Using the equation of state for interfacial tensions, the observed shift in contact angles was translated into a corresponding change in surface tension of the liquids. The results suggest that the surface tension of alcohols increases by one to two percent (depending on the size of molecules) when an electric field of the order of magnitude of 10(6) V/m is applied.

  19. Influence of Surface Tension Inhomogeneity on the Wave Flow of a Liquid Film

    NASA Astrophysics Data System (ADS)

    Prokudina, L. A.

    2014-01-01

    This paper presents a mathematical model of the three-dimensional liquid film flow taking into account the inhomogeneity of its surface tension in the condensation and evaporation processes. The wave characteristics of this flow have been calculated and the instability regions of such films have been determined. The analytical dependence for the wave flow of the liquid film in the condensation and evaporation processes taking into account the influence of the thermocapillary forces and the surface viscosity on the wave form of the liquid has been obtained.

  20. Foam fractionation as a tool to study the air-water interface structure-function relationship of wheat gluten hydrolysates.

    PubMed

    Wouters, Arno G B; Rombouts, Ine; Schoebrechts, Nele; Fierens, Ellen; Brijs, Kristof; Blecker, Christophe; Delcour, Jan A

    2017-03-01

    Enzymatic hydrolysis of wheat gluten protein improves its solubility and produces hydrolysates with foaming properties which may find applications in food products. First, we here investigated whether foam-liquid fractionation can concentrate wheat gluten peptides with foaming properties. Foam and liquid fractions had high and very low foam stability (FS), respectively. In addition, foam fractions were able to decrease surface tension more pronouncedly than un-fractionated samples and liquid fractions, suggesting they are able to arrange themselves more efficiently at an interface. As a second objective, foam fractionation served as a tool to study the structural properties of the peptides, causing these differences in air-water interfacial behavior. Zeta potential and surface hydrophobicity measurements did not fully explain these differences but suggested that hydrophobic interactions at the air-water interface are more important than electrostatic interactions. RP-HPLC showed a large overlap between foam and liquid fractions. However, a small fraction of very hydrophobic peptides with relatively high average molecular mass was clearly enriched in the foam fraction. These peptides were also more concentrated in un-fractionated DH 2 hydrolysates, which had high FS, than in DH 6 hydrolysates, which had low FS. These peptides most likely play a key role in stabilizing the air-water interface.

  1. Macroscopic surface tension in a lattice Bhatnagar-Gross-Krook model of two immiscible fluids

    NASA Astrophysics Data System (ADS)

    Halliday, I.; Thompson, S. P.; Care, C. M.

    1998-01-01

    We present a method by which an interface generating algorithm, similar to that of earlier lattice Boltzmann models of immiscible fluids, may be extended to a two component, two-speed two-dimensional (D2), nine-link (Q9) lattice Bhatnagar-Gross-Krook fluid. For two-dimensional, microcurrent-free planar interfaces between the two immiscible fluids we derive expressions for static interfacial tensions and interfacial distributions of the two fluids. Extending our analysis to curved interfaces, we propose a scheme for incorporating the influence of interfacial microcurrents that is based upon general symmetry arguments and is correct to second order in lattice velocity. The analysis demonstrates that the interfacial microcurrents have only second-order influence upon the macroscopic behavior of the model. We find good agreement between our calculations and simulation results based on the microcurrent stream function and surface tension results from the pressure tensor or Laplace law.

  2. Macroscopic Surface Tension in a Lattice Boltzmann BGK Model of Two Immiscible Fluids.

    NASA Astrophysics Data System (ADS)

    Thompson, S. P.; Halliday, I.; Care, C. M.

    1997-08-01

    We present a method by which an interface generating algorithm, similar to that of earlier lattice Boltzmann models of immisible fluids, may be extended to a two component, two-speed D2Q9 lattice Bhatnagar Gross Krook fluid. For two-dimensional, microcurrent-free planar interfaces between the two immiscible fluids we derive expressions for static interfacial tensions and interfacial distributions of the two fluids. Extending our analysis to curved interfaces we propose a scheme for incorporating the influence of interfacial microcurrents which is based upon general symmetry arguments and is correct to second order in lattice velocity. The analysis demonstrates that the interfacial microcurrents have only second order influence upon the macroscopic behaviour of the model. We find good agreement between our calculations and simulation results based on the microcurrent stream function and surface tension results from the pressure tensor or Laplace law.

  3. Influence of Turbulence on the Restraint of Liquid Jets by Surface Tension in Microgravity Investigated

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2002-01-01

    Microgravity poses many challenges to the designer of spacecraft tanks. Chief among these are the lack of phase separation and the need to supply vapor-free liquid or liquidfree vapor to the spacecraft processes that require fluid. One of the principal problems of phase separation is the creation of liquid jets. A jet can be created by liquid filling, settling of the fluid to one end of the tank, or even closing a valve to stop the liquid flow. Anyone who has seen a fountain knows that jets occur in normal gravity also. However, in normal gravity, the gravity controls and restricts the jet flow. In microgravity, with gravity largely absent, surface tension forces must contain jets. To model this phenomenon, a numerical method that tracks the fluid motion and the surface tension forces is required. Jacqmin has developed a phase model that converts the discrete surface tension force into a barrier function that peaks at the free surface and decays rapidly away. Previous attempts at this formulation were criticized for smearing the interface. This can be overcome by sharpening the phase function, double gridding the fluid function, and using a higher order solution for the fluid function. The solution of this equation can be rewritten as two coupled Poisson equations that also include the velocity. After the code was implemented in axisymmetric form and verified by several test cases at the NASA Glenn Research Center, the drop tower runs of Aydelott were modeled. Work last year with a laminar model was found to overpredict Aydelott's results, except at the lowest Reynolds number conditions of 400. This year, a simple turbulence model was implemented by adding a turbulent viscosity based on the mixing-length hypothesis and empirical measurements of previous works. Predictions made after this change was implemented have been much closer to experimentally observed flow patterns and geyser heights. Two model runs is shown. The first, without any turbulence correction

  4. Determination of the Surface Tension of Microporous Membranes Using Contact Angle Measurements

    PubMed

    Tröger; Lunkwitz; Bürger

    1997-10-15

    In this paper, a new method of determining the surface tension of the solid material that a microporous membrane is made from is introduced. The method is based on the well known determination of the so-called contact angle that is formed on the solid/liquid/gaseous three phase line. A nonideal state of the solid phase leads to a deviation of the contact angle that can be observed experimentally from the equilibrium angle that arises from the thermodynamically state of lowest energy, as it must be used to calculate the solid surface tension via the Young equation. The deviation caused from the porous structure of the solid material will be taken into account in this work. Doing so, we derived an equation that connects the surface porosity, the measured contact angle, and the equilibrium contact angle. Using this equation, the measured and therefore deviated contact angles can be corrected for the porosity of the solid material, yielding the contact angle observable on a surface made from the same but nonporous material. The equation derived was tested on different microporous membranes made from expanded poly(tetrafluoroethylene). The surface porosity needed was determined using scanning electron microscopy followed by computerized image analysis. Copyright 1997 Academic Press. Copyright 1997Academic Press

  5. Amphiphilic derivatives of dextran: adsorption at air/water and oil/water interfaces.

    PubMed

    Rotureau, E; Leonard, M; Dellacherie, E; Durand, A

    2004-11-01

    Ionic amphiphilic dextran derivatives were synthesized by the attachment of sodium sulfopropyl and phenoxy groups on the native polysaccharide. A family of dextran derivatives was thus obtained with varying hydrophobic content and charge density in the polymer chains. The surface-active properties of polymers were studied at the air-water and dodecane-water interfaces using dynamic surface/interfacial tension measurements. The adsorption was shown to begin in a diffusion-limited regime at low polymer concentrations, that is to say, with the diffusion of macromolecules in the bulk solution. In contrast, at long times the interfacial adsorption is limited by interfacial phenomena: adsorption kinetics or transfer into the adsorbed layer. A semiempirical equation developed by Filippov was shown to correctly fit the experimental curves over the whole time range. The presence of ionic groups in the chains strongly lowers the adsorption kinetics. This effect can be interpreted by electrostatic interactions between the free molecules and the already adsorbed ones. The adsorption kinetics at air-water and oil-water interfaces are compared.

  6. Effect of surface modification on interfacial nanobubble morphology and contact line tension.

    PubMed

    Rangharajan, Kaushik K; Kwak, Kwang J; Conlisk, A T; Wu, Yan; Prakash, Shaurya

    2015-07-14

    Past research has confirmed the existence of surface nanobubbles on various hydrophobic substrates (static contact angle >90°) when imaged in air-equilibrated water. Additionally, the use of solvent exchange techniques (based on the difference in saturation levels of air in various solvents) also introduced surface nanobubbles on hydrophilic substrates (static contact angle <90°). In this work, tapping mode atomic force microscopy was used to image interfacial nanobubbles formed on bulk polycarbonate (static contact angle of 81.1°), bromo-terminated silica (BTS; static contact angle of 85.5°), and fluoro-terminated silica (FTS; static contact angle of 105.3°) surfaces when immersed in air-equilibrated water without solvent exchange. Nanobubbles formed on the above three substrates were characterized on the basis of Laplace pressure, bubble density, and contact line tension. Results reported here show that (1) the Laplace pressures of all nanobubbles formed on both BTS and polycarbonate were an order of magnitude higher than those of FTS, (2) the nanobubble number density per unit area decreased with an increase in substrate contact angle, and (3) the contact line tension of the nanobubbles was calculated to be positive for both BTS and polycarbonate (lateral radius, Rs < 50 nm for all nanobubbles), and negative for FTS (Rs > 50 nm for all nanobubbles). The nanobubble morphology and distribution before and after using the solvent exchange method (ethanol-water), on the bulk polycarbonate substrate was also characterized. Analysis for these polycarbonate surface nanobubbles showed that both the Laplace pressure and nanobubble density reduced by ≈98% after ethanol-water exchange, accompanied by a flip in the magnitude of contact line tension from positive (0.19 nN) to negative (-0.11 nN).

  7. Dynamic film and interfacial tensions in emulsion and foam systems

    SciTech Connect

    Kim, Y.H.; Koczo, K.; Wasan, D.T.

    1997-03-01

    In concentrated fluid dispersions the liquid films are under dynamic conditions during film rupture or drainage. Aqueous foam films stabilized with sodium decylsulfonate and aqueous emulsion films stabilized with the nonionic Brij 58 surfactant were formed at the tip of a capillary and the film tension was measured under static and dynamic conditions. In the stress relaxation experiments the response of the film tension to a sudden film area expansion was studied. These experiments also allowed the direct measurement of the Gibbs film elasticity. In the dynamic film tension experiments, the film area was continuously increased by a constant rate and the dynamic film tension was monitored. The measured film tensions were compared with the interfacial tensions of the respective single air/water and oil/water interfaces, which were measured using the same radius of curvature, relative expansion, and expansion rate as in the film studies. It was found that under dynamic conditions the film tension is higher than twice the single interfacial tension (IFT) and a mechanism was suggested to explain the difference. When the film, initially at equilibrium, is expanded and the interfacial area increases, a substantial surfactant depletion occurs inside the film. As a result, the surfactant can be supplied only from the adjoining meniscus (Plateau border) by surface diffusion, and the film tension is controlled by the diffusion and adsorption of surfactant in the meniscus. The results have important implications for the stability and rheology of foams and emulsions with high dispersed phase ratios (polyhedral structure).

  8. Online measurements of surface tensions and viscosities based on the hydrodynamics of Taylor flow in a microchannel

    NASA Astrophysics Data System (ADS)

    Sun, Yanhong; Guo, Chaohong; Jiang, Yuyan; Wang, Tao; Zhang, Lei

    2016-11-01

    This paper demonstrates an online measurement technique which can measure both surface tension and viscosity for confined fluids in microfluidic systems. The surface tension and viscosity are determined by monitoring the liquid film thickness deposited in a microchannel based on the hydrodynamics of Taylor flow. Measurements were carried out for pure liquids and binary aqueous liquid mixtures. The results agreed well with reference data and theoretical models. This novel method has considerable potential for measuring dynamic interfacial tension of complex mixtures. Furthermore, it offers opportunity for integrating property measurement with two-phase flow in microchannel, opening new lines of applications.

  9. Online measurements of surface tensions and viscosities based on the hydrodynamics of Taylor flow in a microchannel.

    PubMed

    Sun, Yanhong; Guo, Chaohong; Jiang, Yuyan; Wang, Tao; Zhang, Lei

    2016-11-01

    This paper demonstrates an online measurement technique which can measure both surface tension and viscosity for confined fluids in microfluidic systems. The surface tension and viscosity are determined by monitoring the liquid film thickness deposited in a microchannel based on the hydrodynamics of Taylor flow. Measurements were carried out for pure liquids and binary aqueous liquid mixtures. The results agreed well with reference data and theoretical models. This novel method has considerable potential for measuring dynamic interfacial tension of complex mixtures. Furthermore, it offers opportunity for integrating property measurement with two-phase flow in microchannel, opening new lines of applications.

  10. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  11. Simultaneous measurement of contact angle and surface tension using axisymmetric drop-shape analysis-no apex (ADSA-NA).

    PubMed

    Kalantarian, A; David, R; Chen, J; Neumann, A W

    2011-04-05

    Axisymmetric drop-shape analysis-no apex (ADSA-NA) is a recent drop-shape method that allows the simultaneous measurement of contact angles and surface tensions of drop configurations without an apex (i.e., a sessile drop with a capillary protruding into the drop). Although ADSA-NA significantly enhanced the accuracy of contact angle and surface tension measurements compared to that of original ADSA using a drop with an apex, it is still not as accurate as a surface tension measurement using a pendant drop suspended from a holder. In this article, the computational and experimental aspects of ADSA-NA were scrutinized to improve the accuracy of the simultaneous measurement of surface tensions and contact angles. It was found that the results are relatively insensitive to different optimization methods and edge detectors. The precision of contact angle measurement was enhanced by improving the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. To optimize the experimental design, the capillary was replaced with an inverted sharp-edged pedestal, or holder, to control the drop height and to ensure the axisymmetry of the drops. It was shown that the drop height is the most important experimental parameter affecting the accuracy of the surface tension measurement, and larger drop heights yield lower surface tension errors. It is suggested that a minimum nondimensional drop height (drop height divided by capillary length) of 1.7 is required to reach an error of less than 0.2 mJ/m(2) for the measured surface tension. As an example, the surface tension of water was measured to be 72.46 ± 0.04 at 24 °C by ADSA-NA, compared to 72.39 ± 0.01 mJ/m(2) obtained with pendant drop experiments.

  12. Mass spectrometry analysis of surface tension reducing substances produced by a pah-degrading Pseudomonas citronellolis strain

    PubMed Central

    Jacques, Rodrigo J. S.; Santos, Eder C.; Haddad, Renato; Catharino, Rodrigo R.; Eberlin, Marcos N.; Bento, Fátima M.; de Oliveira Camargo, Flávio A.

    2008-01-01

    In this work we investigated the structure of the iron-stimulated surface tension reducing substances produced by P. citronellolis 222A isolated from a 17-years old landfarming used for sludge treatment in petrochemical industries and oil refinery. Its mass spectrum differs from P. aeruginosa spectrum, indicating that the surface tension reducing substances produced by P. citronellolis can be a new kind of biosurfactant. PMID:24031229

  13. Short-Time Structural Stability of Compressible Vortex Sheets with Surface Tension

    NASA Astrophysics Data System (ADS)

    Stevens, Ben

    2016-11-01

    Assume we start with an initial vortex-sheet configuration which consists of two inviscid fluids with density bounded below flowing smoothly past each other, where a strictly positive fixed coefficient of surface tension produces a surface tension force across the common interface, balanced by the pressure jump. We model the fluids by the compressible Euler equations in three space dimensions with a very general equation of state relating the pressure, entropy and density such that the sound speed is positive. We prove that, for a short time, there exists a unique solution of the equations with the same structure. The mathematical approach consists of introducing a carefully chosen artificial viscosity-type regularisation which allows one to linearise the system so as to obtain a collection of transport equations for the entropy, pressure and curl together with a parabolic-type equation for the velocity which becomes fairly standard after rotating the velocity according to the interface normal. We prove a high order energy estimate for the non-linear equations that is independent of the artificial viscosity parameter which allows us to send it to zero. This approach loosely follows that introduced by Shkoller et al. in the setting of a compressible liquid-vacuum interface. Although already considered by Coutand et al. [10] and Lindblad [17], we also make some brief comments on the case of a compressible liquid-vacuum interface, which is obtained from the vortex sheets problem by replacing one of the fluids by vacuum, where it is possible to obtain a structural stability result even without surface tension.

  14. Relaxation of surface tension in the liquid-solid interfaces of Lennard-Jones liquids.

    PubMed

    Lukyanov, Alex V; Likhtman, Alexei E

    2013-11-19

    We have established the surface tension relaxation time in the liquid-solid interfaces of Lennard-Jones (LJ) liquids by means of direct measurements in molecular dynamics (MD) simulations. The main result is that the relaxation time is found to be almost independent of the molecular structures and viscosity of the liquids (at 70-fold change) used in our study and lies in such a range that in slow hydrodynamic motion the interfaces are expected to be at equilibrium. The implications of our results for the modeling of dynamic wetting processes and interpretation of dynamic contact angle data are discussed.

  15. Tearing-off method based on single carbon nanocoil for liquid surface tension measurement

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Pan, Lujun; Deng, Chenghao; Li, Chengwei

    2016-11-01

    A single carbon nanocoil (CNC) is used as a highly sensitive mechanical sensor to measure the surface tension coefficient of deionized water and alcohol in the tearing-off method. The error can be constrained to within 3.8%. Conversely, the elastic spring constant of a CNC can be accurately measured using a liquid, and the error is constrained to within 3.2%. Compared with traditional methods, the CNC is used as a ring and a sensor at the same time, which may simplify the measurement device and reduce error, also all measurements can be performed under a very low liquid dosage owing to the small size of the CNC.

  16. Surface-tension-driven Stokes flow: A numerical method based on conformal geometry

    NASA Astrophysics Data System (ADS)

    Buchak, Peter; Crowdy, Darren G.

    2016-07-01

    A novel numerical scheme is presented for solving the problem of two dimensional Stokes flows with free boundaries whose evolution is driven by surface tension. The formulation is based on a complex variable formulation of Stokes flow and use of conformal mapping to track the free boundaries. The method is motivated by applications to modelling the fabrication process for microstructured optical fibres (MOFs), also known as "holey fibres", and is therefore tailored for the computation of multiple interacting free boundaries. We give evidence of the efficacy of the method and discuss its performance.

  17. A new experimental method for determining liquid density and surface tension

    NASA Astrophysics Data System (ADS)

    Chou, Kjo-Chih; Hu, Jian-Hong

    1991-02-01

    A summary concerning the measurement of liquid density relying on the Archimedes principle has been presented, based on which a new effective method with a specially designed bob for determining liquid density has been suggested. The application of this method to ethyl alcohol solution and liquid glycerol, as well as a theoretical error analysis, shows that this new method is significant, because not only can it simplify the procedure of measurement but it can also offer more precise results. Besides, this method can further provide surface tension or contact angle simultaneously. It is expected that this new method will find its application in hightemperature melts.

  18. Selection of a surface tension propellant management system for the Viking 75 Orbiter.

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Debrock, S. C.

    1972-01-01

    Discussion of the propellant management system requirements derived for the Viking 75 mission, and review of a series of surface tension propellant management system design concepts. The chosen concept is identified and its mission operation described. The ullage bubble and bulk liquid positioning characteristics are presented, along with propellant dynamic considerations entailed by thrust initiation/termination. Pressurization design considerations, required to assure minimum disturbance to the bulk propellant, are introduced as well as those of the tank ullage vent. Design provisions to assure liquid communication between tank ends are discussed. Results of a preliminary design study are presented, including mechanical testing requirements to assure structural integrity, propellant compatibility, and proper installation.

  19. Discussion on the measurement of the surface tension coefficient by the pull-off method

    NASA Astrophysics Data System (ADS)

    Tang, Lei; Liu, Guan-nan; Qian, Jun; Sun, Qian; Zhang, Chun-ling

    2016-03-01

    A simple experiment for measuring the surface tension coefficient is proposed, which is well suited for teaching and learning the behavior of liquids in typical student laboratories. It is based on the pull-off method and the dynamometer used is the Jolly balance. The experiment requires inexpensive equipment but the methods allow for serious analysis of possible systematic errors, such as the impact of the state of the spring and wire on the experimental results, and the unusual movement of the engraved line on the mirror when pulling up the water film.

  20. Effects of surface tension and electrochemical reactions in Li-ion battery electrode nanoparticles

    NASA Astrophysics Data System (ADS)

    Stein, Peter; Zhao, Ying; Xu, Bai-Xiang

    2016-11-01

    The size- and shape-dependency of the chemo-mechanical behavior of spherical and ellipsoidal nanoparticles in Li-ion battery electrodes are investigated by a stress-assisted diffusion model and 3D finite element simulations. The model features surface tension, a direct coupling between diffusion and elasticity, concentration-dependent diffusivity, and a Butler-Volmer relation for the description of electrochemical reactions that is modified to account for mechanical effects. Simulation results on spherical particles reveal that surface tension causes additional pressure fields in the particles, shifting the stress state towards the compressive regime. This provides mechanical stabilization, allowing, in principle, for higher charge/discharge rates. However, due to this pressure the attainable lithiation for a given potential difference is reduced during insertion, whereas a higher amount of ions is given off during extraction. Ellipsoidal particles with an aspect ratio deviating from that of a sphere with the same volume expose a larger surface area to the intercalation reactions. Consequently, they exhibit accelerated (dis)charge rates. However, due to the enhanced pressure in regions with high curvature, the accessible capacity of ellipsoidal particles is less than that of spherical particles.

  1. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOEpatents

    Abraham, Bernard M.; Ketterson, John B.; Bohanon, Thomas M.; Mikrut, John M.

    1994-01-01

    A non-contact method and apparatus for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement mechanical characteristics' fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use.

  2. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOEpatents

    Abraham, B.M.; Ketterson, J.B.; Bohanon, T.M.; Mikrut, J.M.

    1994-04-12

    A non-contact method and apparatus are described for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement of mechanical characteristics of fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use. 4 figures.

  3. Modeling the Restraint of Liquid Jets by Surface Tension in Microgravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Jacqmim, David A.

    2001-01-01

    An axisymmetric phase field model is developed and used to model surface tension forces on liquid jets in microgravity. The previous work in this area is reviewed and a baseline drop tower experiment selected 'for model comparison. A mathematical model is developed which includes a free surface. a symmetric centerline and wall boundaries with given contact angles. The model is solved numerically with a compact fourth order stencil on a equally spaced axisymmetric grid. After grid convergence studies, a grid is selected and all drop tower tests modeled. Agreement was assessed by comparing predicted and measured free surface rise. Trend wise agreement is good but agreement in magnitude is only fair. Suspected sources of disagreement are suspected to be lack of a turbulence model and the existence of slosh baffles in the experiment which were not included in the model.

  4. Surface tension effects on the onset of double-diffusive convection

    NASA Astrophysics Data System (ADS)

    Chen, C. F.

    Experiments have been carried out to determine the critical thermal Rayleigh number for onset of convection in a horizontal layer of density-stratified fluid with a free surface when heated from below. Three different aqueous solutions were used: salt, glycerol, and acetic acid. The rates of change in surface tension with concentration for these three solutions are positive, nearly zero, and negative, respectively. Compared to the rigid-rigid boundaries, the critical thermal Rayleigh number was found to be larger by 11.2 percent for the salt solution and smaller by 10.0 percent for the glycerol solution. With the acetic acid solution, however, the effect of the free surface was found to be negligible.

  5. Surface tension effects on the onset of double-diffusive convection

    NASA Technical Reports Server (NTRS)

    Chen, C. F.

    1992-01-01

    Experiments have been carried out to determine the critical thermal Rayleigh number for onset of convection in a horizontal layer of density-stratified fluid with a free surface when heated from below. Three different aqueous solutions were used: salt, glycerol, and acetic acid. The rates of change in surface tension with concentration for these three solutions are positive, nearly zero, and negative, respectively. Compared to the rigid-rigid boundaries, the critical thermal Rayleigh number was found to be larger by 11.2 percent for the salt solution and smaller by 10.0 percent for the glycerol solution. With the acetic acid solution, however, the effect of the free surface was found to be negligible.

  6. Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level

    NASA Astrophysics Data System (ADS)

    Lu, Gui; Duan, Yuan-Yuan; Wang, Xiao-Dong

    2014-09-01

    Nanofluids are suspensions of nanometer-sized particles which significantly modify the properties of the base fluids. Nanofluids exhibit attractive properties, such as high thermal conductivity, tunable surface tension, viscosity, and rheology. Various attempts have been made to understand the mechanisms for these property modifications caused by adding nanoparticles; however, due to the lack of direct nanoscale evidence, these explanations are still controversial. This work calculated the surface tension, viscosity, and rheology of gold-water nanofluids using molecular dynamics simulations which provide a microscopic interpretation for the modified properties on the molecular level. The gold-water interaction potential parameters were changed to mimic various nanoparticle types. The results show that the nanoparticle wettability is responsible for the modified surface tension. Hydrophobic nanoparticles always tend to stay on the free surface so they behave like a surfactant to reduce the surface tension. Hydrophilic nanoparticles immersed into the bulk fluid impose strong attractive forces on the water molecules at the free surface which reduces the free surface thickness and increases the surface tension of the nanofluid. Solid-like absorbed water layers were observed around the nanoparticles which increase the equivalent nanoparticle radius and reduce the mobility of the nanoparticles within the base fluid which increases the nanofluid viscosity. The results show the water molecule solidification between two or many nanoparticles at high nanoparticle loadings, but the solidification effect is suppressed for shear rates greater than a critical shear rate; thus Newtonian nanofluids can present shear-thinning non-Newtonian behavior.

  7. Surface tension of the core-crust interface of neutron stars with global charge neutrality

    NASA Astrophysics Data System (ADS)

    Rueda, Jorge A.; Ruffini, Remo; Wu, Yuan-Bin; Xue, She-Sheng

    2014-03-01

    It has been shown recently that taking into account strong, weak, electromagnetic, and gravitational interactions, and fulfilling the global charge neutrality of the system, a transition layer will happen between the core and crust of neutron stars, at the nuclear saturation density. We use relativistic mean field theory together with the Thomas-Fermi approximation to study the detailed structure of this transition layer and calculate its surface and Coulomb energy. We find that the surface tension is proportional to a power-law function of the baryon number density in the core bulk region. We also analyze the influence of the electron component and the gravitational field on the structure of the transition layer and the value of the surface tension, to compare and contrast with known phenomenological results in nuclear physics. Based on the above results we study the instability against Bohr-Wheeler surface deformations in the case of neutron stars obeying global charge neutrality. Assuming the core-crust transition at nuclear density ρcore≈2.7×1014 g cm-3, we find that the instability sets the upper limit to the crust density, ρcrustcrit≈1.2×1014 g cm-3. This result implies a nonzero lower limit to the maximum electric field of the core-crust transition surface and makes inaccessible a limit of quasilocal charge neutrality in the limit ρcrust=ρcore. The general framework presented here can be also applied to study the stability of sharp phase transitions in hybrid stars as well as in strange stars, both bare and with outer crust. The results of this work open the way to a more general analysis of the stability of these transition surfaces, accounting for other effects such as gravitational binding, centrifugal repulsion, magnetic field induced by rotating electric field, and therefore magnetic dipole-dipole interactions.

  8. Air-water two-phase flow in a 3-mm horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Ing Youn; Chang, Yu-Juei; Wang, Chi-Chung

    2000-01-01

    Two-phase flow pattern and friction characteristics for air-water flow in a 3.17 mm smooth tube are reported in this study. The range of air-water mass flux is between 50 to 700 kg/m2.s and gas quality is between 0.0001 to 0.9. The pressure drop data are analyzed using the concept of the two-phase frictional multipliers and the Martinelli parameter. Experimental data show that the two-phase friction multipliers are strongly related to the flow pattern. Taitel & Dukler flow regime map fails to predict the stratified flow pattern data. Their transition lines between annular-wavy and annular-intermittent give fair agreement with data. A modified correlation from Klimenko and Fyodoros criterion is able to distinguish the annular and stratified data. For two-phase flow in small tubes, the effect of surface tension force should be significantly present as compared to gravitational force. The tested empirical frictional correlations couldn't predict the pressure drop in small tubes for various working fluids. It is suggested to correlate a reliable frictional multiplier for small horizontal tubes from a large database of various working fluids, and to develop the flow pattern dependent models for the prediction of two-phase pressure drop in small tubes. .

  9. Phosphatidylcholine/vegetable oil pseudo-binary mixtures at the air-water interface: predictive formulation of oil blends with selected surface behavior.

    PubMed

    Caruso, Benjamín; Maestri, Damián M; Perillo, María A

    2010-01-01

    The present work is an attempt to define how to formulate oil blends with an expected surface behavior using easily accessible data such as chemical compositions. Hence, we determined average surface properties of triglycerides (TG) from olive (O), soybean (S), and walnut (W) oils self-organized in Langmuir films alone or in pseudo-binary mixtures with phosphatidylcholines (PC). Collapse pressure (pi(c)), compressibility modulus (K) and molecular area at the closest packing (A(min)) were determined from pi-mean molecular area (Mma) isotherms. The pi(c)-composition phase diagrams of TG-PC mixtures provided information about oils solubility limit with PCs in the monolayer phase. A thermodynamic equilibrium model was fitted to the line joining points of monolayer-TG(liquid phase) coexistence and allowed to obtain interaction parameters, omega, which consistently with those of excess surface energy (Delta G(ex)) and Mma deviations from ideality, contributed to describe interfacial intermolecular interactions. Oil molar fractions (x(TG)) for TGs-PCs self-assembling into vesicles were estimated from x(TG) values at pi(c) congruent with 30 mN/m (equilibrium pi of bilayers), which resulted higher in egg PC (0.15, 0.2, 0.15 for O, S and W, respectively) than in dipalmitoyl-PC (0.125, 0.075, 0.1). Principal component analysis performed on surface parameters, grouped S and W separated from O. This result was mainly influenced by variables estimating the effect of unsaturation degrees of fatty acids sterified at TGs, A(min) and pi(c). Peanut oils surface data interpolated in pi(c)-C16/C18 and A(min)-DBI correlation lines obtained with O-S mixtures (TG(mix)) and with TG(mix)-PC supported C16/C18 ratio and DBI as predictors to formulate oil blends with selected surface behavior.

  10. Effects of tension-compression asymmetry on the surface wrinkling of film-substrate systems

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Li, Bo; Hong, Wei; Cao, Yan-Ping; Feng, Xi-Qiao

    2016-09-01

    Many soft materials and biological tissues are featured with the tension-compression asymmetry of constitutive relations. The surface wrinkling of a stiff thin film lying on a compliant substrate is investigated through theoretical analysis and numerical simulations. It is found that the tension-compression asymmetry of the soft substrate not only affects the critical strain of buckling but, more importantly, may also influence the wrinkling pattern that occurs in the film-substrate system under specified loading conditions. Due to this mechanism, the thin film subjected to equi-biaxial compression may first buckle into a hexagonal array of dimples or bulges, instead of the checkerboard pattern, and consequently evolve into labyrinths with further loading. Under non-equi-biaxial compression, the system may buckle either into a parallel bead-chain pattern or a stripe pattern, depending on the substrate nonlinearity and the loading biaxiality. Phase diagrams are established for the wrinkling patterns in a wide range of geometric and mechanical parameters, which facilitate the design of surface patterns with desired properties and functions.

  11. Effects of surface tension and viscosity on the forming and transferring process of microscale droplets

    NASA Astrophysics Data System (ADS)

    Chen, Shulei; Liu, Kun; Liu, Cunbin; Wang, Dongyang; Ba, Dechun; Xie, Yuanhua; Du, Guangyu; Ba, Yaoshuai; Lin, Qiao

    2016-12-01

    Surface tension and viscosity act as important roles on the fluid flow in microchannel channels. In order to understand the influencing mechanism, three dimensional numerical simulations as well as experimental investigations were carried out on the slug formation and transfer in a rectangle T-junction microchannel. The simulation showed that the increasing Capillary number (Ca) resulted in the decreasing slug volume. Due to the existence of film thickness and corner flow, the characteristic length of slug was not the same trend completely. The results also showed that the pressure of junction point fluctuated periodically in the process of slug formation, which can reflect the slug formation period and the effect of the various conditions on pressure change. Two other pressure monitoring points were located in vertical channel and main channel and they monitored the pressure of two phase flow respectively. The increasing surface tension resulted in an increasing of total pressure, the interface pressure drop of two phases and the period of slug formation. The frequency of slug formation and two phases total pressure increased with the viscosity of continuous phase.

  12. Simplified Gradient Theory Modeling of the Surface Tension for Binary Mixtures

    NASA Astrophysics Data System (ADS)

    Lin, H.; Duan, Y. Y.; Zhang, J. T.

    2008-02-01

    In this work, the gradient theory was combined with the volume translation Peng-Robinson and Soave Redlich-Kwong equations of state (VTPR and VTSRK EOSs) and the influence parameter correlation to predict the surface tension of binary mixtures. The density profiles of mixtures across the interface were assumed to be linearly distributed to simplify the gradient theory model. The only two inputs of the theory are the Helmholtz free-energy density of the homogeneous fluid and the influence parameter of the inhomogeneous fluid. The VTPR and VTSRK equations of state were applied to determine the Helmholtz free-energy density and the bulk properties. The influence parameter of the inhomogeneous fluid was calculated from a correlation published previously (Lin et al. Fluid Phase Equilib 254:75, 2007). The only adjustable coefficient of the simplified gradient theory was set equal to zero, which made the theory predictive. The surface tension predicted by this model shows good agreement with experimental data for binary non-polar and polar mixtures.

  13. Conditions necessary for capillary hysteresis in porous media: Tests of grain size and surface tension influences

    NASA Astrophysics Data System (ADS)

    Tokunaga, Tetsu K.; Olson, Keith R.; Wan, Jiamin

    2004-05-01

    Hysteresis in the relation between water saturation and matric potential is generally regarded as a basic aspect of unsaturated porous media. However, the nature of an upper length scale limit for saturation hysteresis has not been previously addressed. Since hysteresis depends on whether or not capillary rise occurs at the grain scale, this criterion was used to predict required combinations of grain size, surface tension, fluid-fluid density differences, and acceleration in monodisperse systems. The Haines number (Ha), composed of the aforementioned variables, is proposed as a dimensionless number useful for separating hysteretic (Ha < 15) versus nonhysteretic (Ha > 15) behavior. Vanishing of hysteresis was predicted to occur for grain sizes greater than 10.4 ± 0.5 mm, for water-air systems under the acceleration of ordinary gravity, based on Miller-Miller scaling and Haines' original model for hysteresis. Disappearance of hysteresis was tested through measurements of drainage and wetting curves of sands and gravels and occurs between grain sizes of 10 and 14 mm (standard conditions). The influence of surface tension was tested through measurements of moisture retention in 7 mm gravel, without and with a surfactant (sodium dodecylbenzenesulfonate (SDBS)). The ordinary water system (Ha = 7) exhibited hysteresis, while the SDBS system (Ha = 18) did not. The experiments completed in this study indicate that hysteresis in moisture retention relations has an upper limit at Ha = 16 ± 2 and show that hysteresis is not a fundamental feature of unsaturated porous media.

  14. Rotating Molten Metallic Drops and Related Phenomena: A New Approach to the Surface Tension Measurement

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Ishikawa, Takehiko

    2000-01-01

    Molten aluminum and tin drops were levitated in a high vacuum by controlled electric fields, and they were systematically rotated by applying by a rotating magnetic field. When the evolution of the drop shape was measured as a function of rotation frequency, it agreed quantitatively well with the Brown and Scriven's theoretical prediction. The normalized rotation frequencies at the bifurcation point agreed with the predicted value 0.559, within 2%. An anomalous phenomenon which totally deviated from the prediction was observed in rotating molten tin drops when they were kept in a high rotation rate for several hours. No anomaly was observed in aluminum drops when they underwent similar condition. It was speculated that under the strong centrifugal force in the drop the tin isotopes must be separating. Since Al-27 is essentially the only naturally abundant isotope in the aluminum drops, the same anomaly is not expected. Based on the shape deformation of a rotating drop, an alternate approach to the surface tension measurement was verified. This new surface tension measurement technique was applied to a glassforming alloy, Zr(41.2)Ti(13.8)Cu(12.5)Ni(10.0)Be(22.5) in its highly viscous states. Also demonstrated in the paper was a use of a molten aluminum drop to verify the Busse's prediction of the influence of the drop rotation on the drop oscillation frequency.

  15. Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials.

    PubMed

    Shen, Jianfeng; Wu, Jingjie; Wang, Man; Dong, Pei; Xu, Jingxuan; Li, Xiaoguang; Zhang, Xiang; Yuan, Junhua; Wang, Xifan; Ye, Mingxin; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2016-05-01

    A proper design of direct liquid phase exfoliation (LPE) for 2D materials as graphene, MoS2 , WS2 , h-BN, Bi2 Se3 , MoSe2 , SnS2 , and TaS2 with common cosolvents is carried out based on considering the polar and dispersive components of surface tensions of various cosolvents and 2D materials. It has been found that the exfoliation efficiency is enhanced by matching the ratio of surface tension components of cosolvents to that of the targeted 2D materials, based on which common cosolvents composed of IPA/water, THF/water, and acetone/water can be designed for sufficient LPE process. In this context, the library of low-toxic and low-cost solvents with low boiling points for LPE is infinitely enlarged when extending to common cosolvents. Polymer-based composites reinforced with a series of different 2D materials are compared with each other. It is demonstrated that the incorporation of cosolvents-exfoliated 2D materials can substantially improve the mechanical and thermal properties of polymer matrices. Typically, with the addition of 0.5 wt% of such 2D material as MoS2 nanosheets, the tensile strength and Young's modulus increased up to 74.85% and 136.97%, respectively. The different enhancement effect of 2D materials is corresponded to the intrinsic properties and LPE capacity of 2D materials.

  16. The Surface-Tension Method of Visually Inspecting Honeycomb-Core Sandwich Plates

    NASA Technical Reports Server (NTRS)

    Katzoff, Samuel

    1960-01-01

    When one face of a metal-honeycomb-core sandwich plate is heated or cooled relative to the other, heat transfer through the core causes the temperature on each face at the lines of contact with the core to be slightly different from that on the rest of the face. If a thin liquid film is applied to the face, the variation of surface tension with temperature causes the liquid to move from warmer to cooler areas and thus to develop a pattern corresponding to the temperature pattern on the face. Irregularities in the pattern identify the locations where the core is not adequately bonded to the face sheet. The pattern is easily observed when a fluorescent liquid is used and illumination is by means of ultraviolet light. Observation in ordinary light is also possible when a very deeply colored liquid is used. A method based on the use of a thermographic phosphor to observe the temperature pattern was found to be less sensitive than the surface-tension method. A sublimation method was found to be not only less sensitive but also far more troublesome.

  17. Methylglyoxal at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Wren, S. N.; Gordon, B. P.; McWilliams, L.; Valley, N. A.; Richmond, G.

    2014-12-01

    Recently, it has been suggested that aqueous-phase processing of atmospheric α-dicarbonyl compounds such as methylglyoxal (MG) could constitute an important source of secondary organic aerosol (SOA). The uptake of MG to aqueous particles is higher than expected due to the fact that its carbonyl moieties can hydrate to form diols, as well as the fact that MG can undergo aldol condensation reactions to form larger oligomers in solution. MG is known to be surface active but an improved description of its surface behaviour is crucial to understanding MG-SOA formation, in addition to understanding its gas-to-particle partitioning and cloud forming potential. Here, we employ a combined experimental and theoretical approach involving vibrational sum frequency generation spectroscopy (VSFS), surface tensiometry, molecular dynamics simulations, and density functional theory calculations to study MG's surface adsorption, in both the presence and absence of salts. We are particularly interested in determining MG's hydration state at the surface. Our experimental results indicate that MG slowly adsorbs to the air-water interface and strongly perturbs the water structure there. This perturbation is enhanced in the presence of NaCl. Together our experimental and theoretical results suggest that singly-hydrated MG is the dominant form of MG at the surface.

  18. Evaluation of surface tension and ion occupancy effects on gramicidin A channel lifetime.

    PubMed Central

    Ring, A.; Sandblom, J.

    1988-01-01

    The surface tension of glycerylmonooleate-hexadecane lipid bilayer membranes and the lifetime of gramicidin A channels were measured at various concentrations of the surrounding solutions. For HCl the surface tension is essentially constant at approximately 5 mN/m up to approximately 1 M, whereas the average lifetime increases approximately 40-fold. At higher concentrations the surface tension decreases markedly. For CsCl the surface tension is constant up to about 1 M then increases with salt level. The average lifetime in this case increases about sixfold. In both cases the lifetime levels off and even decreases at higher salt levels. The increase in lifetime observed with ion activity is therefore qualitatively different from, and not explained by, the established dependence of lifetime on membrane properties (Elliot, J.R., D. Needham, J.P. Dilger, and D.A. Haydon. 1983. Biochim. Biophys. Acta. 735:95-103). We have previously proposed that ion occupancy is a determinant of channel stability, and to test this hypothesis the voltage dependence of channel lifetime was measured in asymmetrical solutions. For the case of a potassium chloride solution on one side of the membrane and a hydrogen chloride solution, on the other, the voltage dependence of the lifetime is asymmetrical. The asymmetry is such that when the electrical field is applied in the direction of the chemical gradient for each of the ions, the channel lifetime approaches, at increasing field strengths, that of a symmetrical solution of the respective ion. The voltage dependence of the surface tension, on the other hand, is negligible for the range of voltages used. These results, and the earlier findings that the order of the lifetimes for the alkali cations generally agree with the order of the permeability selectivity of the gramicidin A channel, support the hypothesis that ion occupancy is a major factor determining the lifetime of gramicidin A channels. The effects of multivalent blockers and

  19. Surface tension of binary liquid-vapor mixtures: A comparison of mean-field and scaling theories

    NASA Astrophysics Data System (ADS)

    Sahimi, Muhammad; Taylor, Byron N.

    1991-11-01

    We use two different methods to estimate surface tension of binary liquid-vapor mixtures of CO2 and a hydrocarbon near a critical point. The first method is based on the gradient theory, which is essentially a mean-field approximation to the problem that reduces the determination of the interface's structure and the surface tension to a boundary value problem. The theory's input is an equation of state of homogeneous fluid and the influence parameters of inhomogeneous fluid. The Peng-Robinson equation and a modification of it are used as the equation of state of homogeneous fluid. The second method is based on the concept of two-scale-factor universality which can predict the surface tension from the singularity in the thermodynamic properties of the bulk fluid. The inputs of the method are an equation of state and certain universal amplitude ratios near the critical point. As the equation of state, we use a modification of a model first proposed by Leung and Griffiths, and further developed by Moldover, Rainwater, and co-workers. We use the two models to examine in detail CO2+n -butane and CO2+n -decane mixtures. While both models provide accurate estimates of surface tension of CO2+n -butane mixtures, only the gradient theory can predict accurately surface tension of CO2+n -decane mixtures. Moreover, while the gradient theory and the Peng-Robinson equation of state use very few adjustable parameters (at most three parameters), calculation of surface tension based on two-scale-factor universality and the corresponding equation of state requires many adjustable parameters whose number has to be increased dramatically as the fluid mixture becomes more complex. We then use the gradient theory to predict surface tension of binary liquid-vapor mixtures of CO2 and benzene, cyclohexane, and n-hexadecane. In all cases, the predictions of the gradient theory are in good agreement with the available experimental data.

  20. A Study of the Measurement of Surface and Interfacial Tension by the Maximum Liquid Drop Volume Method.

    PubMed

    Pu, Bingyin; Chen, Donghao

    2001-03-15

    The maximum liquid drop volume (v(max)) is measured by using a back-suction micrometer syringe piston technique. Different very viscous liquids are measured by (v(max)) and (v(f)) methods to observe the effect of viscosity on tension measurement. No apparent viscosity effect was observed in surface tension data obtained by using Harkins-Brown factors and the theoretical correction factors in the viscosity range 5.9-100,900 mP. Copyright 2001 Academic Press.

  1. Surface tension measurement techniques of magnetic fluids at an interface between different fluids using perpendicular field instability

    NASA Astrophysics Data System (ADS)

    Amin, M. Shahrooz; Elborai, Shihab; Lee, Se-Hee; He, Xiaowei; Zahn, Markus

    2005-05-01

    Two measurement techniques to determine the surface tension of ferrofluids using the perpendicular field instability are described. Four ferrofluid layers were examined with magnetic field applied perpendicularly to the surface of (1) oil-based ferrofluid in air; (2) water-based ferrofluid in air, (3) oil-based ferrofluid, and (4) fluorocarbon-based ferrofluid, both below a blend of 50% n-Propyl alcohol and 50% deionized water (propanol). Surface tension was accurately calculated by utilizing the measured Taylor wavelength from measurements of incipient fluid instability peaks and the measured densities of fluids. For cases (1) and (2), the calculated surface tension values were in good agreement with a tensiometer measurement. No accurate tensiometer measurements were conducted for the superposed liquids (3) and (4) since accurate tensiometer measurements are difficult for a two fluid layer system. The second less accurate method used the ferrofluid's nonlinear Langevin magnetization characteristics to compute the surface tension from incipience of interfacial instability conditions. Discrepancies between the surface tensions measured by the two methods were probably due to the ferrofluid particle size distributions and the strong dependence of the ferrofluid magnetization on particle size.

  2. High-precision instrument for measuring the surface tension, viscosity and surface viscoelasticity of liquids using ripplon surface laser-light scattering with tunable wavelength selection

    SciTech Connect

    Nishimura, Yu; Hasegawa, Akinori; Nagasaka, Yuji

    2014-04-15

    Here we describe our new high-precision instrument that simultaneously measures the surface tension, viscosity, and surface viscoelasticity of liquids. The instrument works on the ripplon surface-laser light scattering principle and operates with an automatically tunable selection of ripplon wavelength from 4 to 1500 μm, which corresponds to the frequency range of observing surface phenomena from approximately 400 Hz to 3 MHz in the case of water. The heterodyne technique instrument uses a reference laser beam which intersects at an arbitrarily adjustable angle with a vertically directed probing beam. For the determination of the wavelength of selected ripplons we substituted with the interference fringe spacing, measured using a high-resolution beam profiler. To extract reliable surface tension and viscosity data from the experimentally obtained spectrum shape for a selected wavelength of ripplon, we developed an algorithm to calculate the exact solution of the dispersion equation. The uncertainties of surface tension and viscosity measurement were confirmed through the measurement of seven pure Newtonian liquids at 25 °C measured with the selected wavelength of ripplon from 40 μm to 467 μm. To verify the genuine capability of the tunable wavelength selection of ripplon, we measured the surface elasticity of soluble surface molecular layers spread on pentanoic acid solutions.

  3. Surface tension and buoyancy-driven flow in a non-isothermal liquid bridge

    NASA Technical Reports Server (NTRS)

    Zhang, Yiqiang; Alexander, J. I. D.

    1992-01-01

    The Navier-Stokes-Boussinesq equations governing the transport of momentum, mass and heat in a nonisothermal liquid bridge with a temperature-dependent surface tension are solved using a vorticity-stream-function formulation together with a nonorthogonal coordinate transformation. The equations are discretized using a pseudo-unsteady semi-implicit finite difference scheme and are solved by the ADI method. A Picard-type iteration is adopted which consists of inner and outer iterative processes. The outer iteration is used to update the shape of the free surface. Two schemes have been used for the outer iteration; both use the force balance normal to the free surface as the distinguished boundary condition. The first scheme involves successive approximation by the direct solution of the distinguished boundary condition. The second scheme uses the artificial force imbalance between the fluid pressure, viscous and capillary forces at the free surface which arises when the boundary condition for force balance normal to the surface is not satisfied. This artificial imbalance is then used to change the surface shape until the distinguished boundary condition is satisfied. These schemes have been used to examine a variety of model liquid bridge situations including purely thermocapillary-driven flow situations and mixed thermocapillary- and bouyancy-driven flow.

  4. A note on surface stress and surface tension and their interrelation via Shuttleworth’s equation and the Lippmann equation

    NASA Astrophysics Data System (ADS)

    Kramer, Dominik; Weissmüller, Jörg

    2007-07-01

    Some aspects of the thermodynamics of solid surfaces, in particular with respect to the surface stress, f, and surface tension, γ, including the case of solid electrodes, are examined in view of their controversial discussion in part of the recent literature. By inspection of the phenomenology that requires a distinction between f and γ, and of a toy model designed to highlight the underlying fundamental science, it is shown that some of the recent publications give misleading conclusions. These include [V.A. Marichev, Surf. Sci. 600 (19) (2006) 4527; E.M. Gutman, J. Phys. Condens. Matter. 7 (48) (1995) L663; D.J. Bottomley, T. Ogino, Phys. Rev. B 63 (2001) 165412]. In spite of claims to the contrary, the validity of the equations of Shuttleworth, Lippmann, and Couchman and Davidson is not impaired by the arguments of the aforementioned articles.

  5. Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air-water interface and of the sea surface microlayer

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Gonzalez, L.; Leithead, A.; Finewax, Z.; Thalman, R.; Vlasenko, A.; Vagle, S.; Miller, L. A.; Li, S.-M.; Bureekul, S.; Furutani, H.; Uematsu, M.; Volkamer, R.; Abbatt, J.

    2014-02-01

    Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acids (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air-seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) University of Colorado light-emitting diode cavity-enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas-phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive dicarbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and < 1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples.

  6. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids.

    PubMed

    Hu, Bin; Kieweg, Sarah L

    2012-07-15

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.

  7. Effects of Environmental Oxygen Content and Dissolved Oxygen on the Surface Tension and Viscosity of Liquid Nickel

    NASA Astrophysics Data System (ADS)

    SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.

    2016-07-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.

  8. Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air-water interface and of the sea surface microlayer

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Gonzalez, L.; Leithead, A.; Finewax, Z.; Thalman, R.; Vlasenko, A.; Vagle, S.; Miller, L.; Li, S.-M.; Bureekul, S.; Furutani, H.; Uematsu, M.; Volkamer, R.; Abbatt, J.

    2013-07-01

    Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acid (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air-seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) and light-emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive di-carbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and <1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples. The potential impact of such chemistry on the atmosphere of the marine boundary layer is discussed.

  9. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  10. Dynamic properties of cationic diacyl-glycerol-arginine-based surfactant/phospholipid mixtures at the air/water interface.

    PubMed

    Lozano, Neus; Pinazo, Aurora; Pérez, Lourdes; Pons, Ramon

    2010-02-16

    In this Article, we study the binary surface interactions of 1,2-dimyristoyl-rac-glycero-3-O-(N(alpha)-acetyl-L-arginine) hydrochloride (1414RAc) with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) on 0.1 M sodium chloride solutions. 1414RAc is a novel monocationic surfactant that has potential applications as an antimicrobial agent, is biodegradable, and shows a toxicity activity smaller than that of other commercial cationic surfactants. DPPC phospholipid was used as a model membrane component. The dynamic surface tension of 1414RAc/DPPC aqueous dispersions injected into the saline subphase was followed by tensiometry. The layer formation for the mixtures is always accelerated with respect to DPPC, and surprisingly, the surface tension reduction is faster and reaches lower surface tension values at surfactant concentration below its critical micellar concentration (cmc). Interfacial dilational rheology properties of mixed films spread on the air/water interface were determined by the dynamic oscillation method using a Langmuir trough. The effect of surfactant mole fraction on the rheological parameters of 1414RAc/DPPC mixed monolayers was studied at a relative amplitude of area deformation of 5% and a frequency of 50 mHz. The monolayer viscoelasticity shows a nonideal mixing behavior with predominance of the surfactant properties. This nonideal behavior has been attributed to the prevalence of electrostatic interactions.

  11. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer

    NASA Technical Reports Server (NTRS)

    Celic, Alan; Zilliac, Gregory G.

    1998-01-01

    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  12. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    SciTech Connect

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics Model (PF-SPH) and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the accuracy of the model under static and dynamic conditions. Finally, to demonstrate the capabilities and robustness of the model we use it to simulate flow of three fluids in a porous material.

  13. The surface crack problem in an orthotropic plate under bending and tension

    NASA Technical Reports Server (NTRS)

    Wu, Bing-Hua; Erdogan, F.

    1987-01-01

    The elasticity problem for an infinite orthotropic flat plate containing a series of through and part through cracks and subjected to bending and tension loads is considered. The problem is formulated by using Reissner's plate bending theory and considering three-dimensional material orthotropy. The Line-spring model developed by Rice and Levy is used to formulate the surface crack problem in which a total of nine material constants were used. The effects of material orthotropy on the stress intensity factors was determined, the interaction between two asymmetrically arranged collinear cracks was investigated, and extensive numerical results regarding the stress intensity factors are provided. The problem is reduced to a system of singular integral equations which is solved by using the Gauss-Chebyshev quadrature formulas. The calculated results show that the material orthotropy does have a significant effect on the stress intensity factor.

  14. The surface crack problem in an orthotropic plate under bending and tension

    NASA Technical Reports Server (NTRS)

    Wu, B. H.; Erdogan, F.

    1986-01-01

    The elasticity problem for an infinite orthotropic flat plate containing a series of through and part-through cracks and subjected to bending and tension loads is considered. The problem is formulated by using Reissner's plate bending theory and considering three dimensional materials orthotropy. The Line-spring model developed by Rice and Levy is used to formulate the surface crack problem in which a total of nine material constants has been used. The main purpose of this study is to determine the effect of material orthotropy on the stress intensity factors, to investigate the interaction between two asymmetrically arranged collinear cracks, and to provide extensive numerical results regarding the stress intensity factors. The problem is reduced to a system of singular integral equations which is solved by using the Gauss-Chebyshev quadrature formulas. The calculated results show that the material orthotropy does have a significant effect on the stress intensity factor.

  15. Adipic and malonic acid aqueous solutions: surface tensions and saturation vapor pressures.

    PubMed

    Riipinen, Ilona; Koponen, Ismo K; Frank, Göran P; Hyvärinen, Antti-Pekka; Vanhanen, Joonas; Lihavainen, Heikki; Lehtinen, Kari E J; Bilde, Merete; Kulmala, Markku

    2007-12-20

    The surface tension of adipic aqueous solutions was measured as a function of temperature (T=278-313 K) and adipic acid mole fraction (X=0.000-0.003) using the Wilhelmy plate method. A parametrization fitted to these data is presented. The evaporation rates of binary water-malonic and water-adipic acid droplets were measured with a TDMA technique at different temperatures (T=293-300 K) and relative humidities (58-80%), and the saturation vapor pressures of subcooled liquid malonic and adipic acids were derived from the data using a binary evaporation model. The temperature dependence of the vapor pressures was obtained as least-squares fits to the derived vapor pressures: ln(Psat,l) (Pa)=220.2389-22634.96/T (K)-26.66767 ln T (K) for malonic acid and ln(Psat,l) (Pa)=140.6704-18230.97/T (K)-15.48011 ln T (K) for adipic acid.

  16. High-Temperature Liquid Metal Infusion Considering Surface Tension-Viscosity Dissipation

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Harris, Christopher K.; Bronson, Arturo; Shantha-Kumar, Sanjay; Medina, Arturo

    2016-02-01

    In considering the significant effect of the surface tension-viscosity dissipation driving the fluid flow within a capillary, high-temperature liquid metal infusion was analyzed for titanium, yttrium, hafnium, and zirconium penetrating into a packed bed. A model of the dissipation considers the momentum balance within the capillary to determine the rate of infusion, which is compared with the Semlak-Rhines model developed for liquid metal penetration into a packed bed assumed as a bundle of tubes mimicking the porosity of a packed bed. For liquid Ti, the penetration rate was calculated from 0.2 µs to 1 ms and rose to a maximum of 7 m/s at approximately 1 µs; after which, the rate decreased to 0.7 m/s at 1 ms. Beyond 10 µs, the decreasing trend of the rate of penetration determined by the model of dissipation compared favorably with the Semlak-Rhines equation.

  17. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.

  18. Investigation of surface tension driven convection as a feasibility study for a micro-gravity experiment

    NASA Technical Reports Server (NTRS)

    Koschmieder, E. L.

    1988-01-01

    The work performed for the feasibility study of a microgravity surface tension driven convection experiment was reviewed. An experimental investigation of the onset of convection in shallow fluid layers heated uniformly from below and cooled from above by an air layer was made. Results are discussed in relation to the formation of Benard cells. The onset of Rayleigh-Benard convection in thin fluid layers heated uniformly from below were studied experimentally. It was found that in thin fluid layers the onset of Rayleigh-Benard convection is preceded by subcritical convective motions. Secondly, it was found that the onset of Rayleigh-Benard convection in non-Boussinesq fluid layers takes place in the form of hexagonal cells at Rayleigh numbers larger than the critical Rayleigh number R sub C = 1708 which determines the onset of convection in Boussinesq fluid layers.

  19. Recommended Correlations for the Surface Tension of Aliphatic, Carboxylic, and Polyfunctional Organic Acids

    NASA Astrophysics Data System (ADS)

    Mulero, A.; Cachadiña, I.; Sanjuán, E. L.

    2016-09-01

    In previous papers, we have proposed specific correlations to reproduce the surface tension values for several sets of fluids and for wide ranges of temperatures. In this paper, we focus our attention on organic fatty (aliphatic, carboxylic, and polyfunctional) acids. We have taken into account the available data and values in the DIPPR and DETHERM databases and also Wohlfarth and Wohlfarth's (1997) book. In some cases we have also considered new data published elsewhere. All the data and values have been carefully filtered and subsequently fitted with the use of the model currently implemented in NIST's REFPROP program, calculating two or four adjustable coefficients for each fluid. As a result, we propose recommended correlations for 99 acids, providing mean absolute percentage deviations below 1.6% in all cases.

  20. Effects of polymer stiffness on surface tension and pressure in confinement

    NASA Astrophysics Data System (ADS)

    Milchev, Andrey

    2015-08-01

    We study the effect of chain rigidity on the behavior of semiflexible polymers in the vicinity of flat walls in a slit, and of surfactants at the liquid-liquid interface between immiscible liquids. Using molecular dynamics simulations, it is demonstrated that the impact of bending angle forces is particularly strong within the depletion layer at the phase boundary whereas at distance Re away from the interface, where Re is the mean distance between the ends of a semiflexible chain, the contribution of these non-local triplet interactions to pressure tensor virtually disappears. The present study also demonstrates that growing stiffness of the macromolecules leads to an increase in surface tension and total pressure.

  1. A discontinuous Galerkin front tracking method for two-phase flows with surface tension

    SciTech Connect

    Nguyen, V.-T.; Peraire, J.; Cheong, K.B.; Persson, P.-O.

    2008-12-28

    A Discontinuous Galerkin method for solving hyperbolic systems of conservation laws involving interfaces is presented. The interfaces are represented by a collection of element boundaries and their position is updated using an arbitrary Lagrangian-Eulerian method. The motion of the interfaces and the numerical fluxes are obtained by solving a Riemann problem. As the interface is propagated, a simple and effective remeshing technique based on distance functions regenerates the grid to preserve its quality. Compared to other interface capturing techniques, the proposed approach avoids smearing of the jumps across the interface which leads to an improvement in accuracy. Numerical results are presented for several typical two-dimensional interface problems, including flows with surface tension.

  2. Dynamic Nucleation of Supercooled Melts and Measurement of the Surface Tension and Viscosity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Ohsaka, K.

    1999-01-01

    We investigate the phenomenon of acoustic pressure-induced nucleation by using a novel approach involving the large amplitude resonant radial oscillations and collapse of a single bubble intentionally injected into a supercooled liquid. Using a combination of previously developed and proven techniques, the bubble is suspended in a fluid host by an ultrasonic field which supplies both the levitation capability as well as the forcing of the radial oscillations. We observe the effects of an increase in pressure (due to bubble collapse) in a region no larger than 100 microns within the supercooled melt to rigorously probe the hypothesis of pressure-induced nucleation of the solid phase. The use of single bubbles operating in narrow temporal and spatial scales will allow the direct and unambiguous correlation between the origin and location of the generation of the disturbance and the location and timing of the nucleation event. In a companion research effort, we are developing novel techniques for the non-contact measurements of the surface tension and viscosity of highly viscous supercooled liquids. Currently used non-invasive methods of surface tension measurement for the case of undercooled liquids generally rely of the quantitative determination of the resonance frequencies of drop shape oscillations, of the dynamics of surface capillary waves, or of the velocity of streaming flows. These methods become quickly ineffective when the liquid viscosity rises to a significant value. An alternate and accurate method which would be applicable to liquids of significant viscosity is therefore needed. We plan to develop such a capability by measuring the equilibrium shape of levitated undercooled melt droplets as they undergo solid-body rotation. The experimental measurement of the characteristic point of transition (bifurcation point) between axisymmetric and two-lobed shapes will be used to calculate the surface tension of the liquid. Such an approach has already been

  3. Non-Newtonian Fluids Spreading with Surface Tension Effect: 3D Numerical Analysis Using FEM and Experimental Study

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Kieweg, Sarah

    2010-11-01

    Gravity-driven thin film flow down an incline is studied for optimal design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. We develop a 3D FEM model using non-Newtonian mechanics to model the flow of gels in response to gravity, surface tension and shear-thinning. Constant volume setup is applied within the lubrication approximation scope. The lengthwise profiles of the 3D model agree with our previous 2D finite difference model, while the transverse contact line patterns of the 3D model are compared to the experiments. With incorporation of surface tension, capillary ridges are observed at the leading front in both 2D and 3D models. Previously published studies show that capillary ridge can amplify the fingering instabilities in transverse direction. Sensitivity studies (2D & 3D) and experiments are carried out to describe the influence of surface tension and shear-thinning on capillary ridge and fingering instabilities.

  4. Laplacian drop shapes and effect of random perturbations on accuracy of surface tension measurement for different drop constellations.

    PubMed

    Saad, Sameh M I; Neumann, A Wilhelm

    2015-08-01

    Theoretical drop shapes are calculated for three drop constellations: pendant drops, constrained sessile drops, and unconstrained sessile drops. Based on total Gaussian curvature, shape parameter and critical shape parameter are discussed as a function of different drop sizes and surface tensions. The shape parameter is linked to physical parameters for every drop constellation. The as yet unavailable detailed dimensional analysis for the unconstrained sessile drop is presented. Results show that the unconstrained sessile drop shape depends on a dimensionless volume term and the contact angle. Random perturbations are introduced and the accuracy of surface tension measurement is assessed for precise and perturbed profiles of the three drop constellations. It is concluded that pendant drops are the best method for accurate surface tension measurement, followed by constrained sessile drops. The unconstrained sessile drops come last because they tend to be more spherical at low and moderate contact angles. Of course, unconstrained sessile drops are the only option if contact angles are to be measured.

  5. The effect of the partial pressure of water vapor on the surface tension of the liquid water-air interface.

    PubMed

    Pérez-Díaz, José L; Álvarez-Valenzuela, Marco A; García-Prada, Juan C

    2012-09-01

    Precise measurements of the surface tension of water in air vs. humidity at 5, 10, 15, and 20 °C are shown. For constant temperature, surface tension decreases linearly for increasing humidity in air. These experimental data are in good agreement with a simple model based on Newton's laws here proposed. It is assumed that evaporating molecules of water are ejected from liquid to gas with a mean normal component of the speed of "ejection" greater than zero. A high humidity in the air reduces the net flow of evaporating water molecules lowering the effective surface tension on the drop. Therefore, just steam in air acts as an effective surfactant for the water-air interface. It can partially substitute chemical surfactants helping to reduce their environmental impact.

  6. Surface tension of room temperature ionic liquids measured by dynamic light scattering.

    PubMed

    Osada, R; Hoshino, T; Okada, K; Ohmasa, Y; Yao, M

    2009-05-14

    Using dynamic light scattering techniques, we obtained the surface tension sigma, surface excess entropy S(sigma), surface excess enthalpy H(sigma), and viscosity eta for the following seven room temperature ionic liquids in a wide temperature range from 30 to around 140 degrees C: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide, N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium hexafluorophosphate, and 1-octyl-3-methyl imidazolium hexafluorophosphate. We have found that sigma increases systematically with decreasing the anion size and the alkyl side chain length. On the other hand, S(sigma) and eta increase with decreasing the anion size but decrease with decreasing the alkyl chain length. H(sigma) seems to decrease with increasing the anion size, but it has no clear dependence on the alkyl chain length. We discuss the bulk and surface properties, referring to the Coulomb interactions and van der Waals interactions.

  7. Surface tension of room temperature ionic liquids measured by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Osada, R.; Hoshino, T.; Okada, K.; Ohmasa, Y.; Yao, M.

    2009-05-01

    Using dynamic light scattering techniques, we obtained the surface tension σ, surface excess entropy S(σ), surface excess enthalpy H(σ), and viscosity η for the following seven room temperature ionic liquids in a wide temperature range from 30 to around 140 °C: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide, N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium hexafluorophosphate, and 1-octyl-3-methyl imidazolium hexafluorophosphate. We have found that σ increases systematically with decreasing the anion size and the alkyl side chain length. On the other hand, S(σ) and η increase with decreasing the anion size but decrease with decreasing the alkyl chain length. H(σ) seems to decrease with increasing the anion size, but it has no clear dependence on the alkyl chain length. We discuss the bulk and surface properties, referring to the Coulomb interactions and van der Waals interactions.

  8. Surface tension of liquid Al-Cu and wetting at the Cu/Sapphire solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Schmitz, J.; Brillo, J.; Egry, I.

    2014-02-01

    For the study of the interaction of a liquid alloy with differently oriented single crystalline sapphire surfaces precise surface tension data of the liquid are fundamental. We measured the surface tension of liquid Al-Cu contactlessly on electromagnetically levitated samples using the oscillating drop technique. Data were obtained for samples covering the entire range of composition and in a broad temperature range. The surface tensions can be described as linear functions of temperature with negative slopes. Moreover, they decrease monotonically with an increase of aluminium concentration. The observed behaviour with respect to both temperature and concentration is in agreement with a thermodynamic model calculation using the regular solution approximation. Surface tensions were used to calculate interfacial energies from the contact angles of liquid Cu droplets, deposited on the C(0001), A(11-20), R(1-102) surfaces of an α-Al2O3 substrate. The contact angles were measured by means of the sessile drop method at 1380 K. In the Cu/α-Al2O3 system, no anisotropy is evident neither for the contact angles nor for the interfacial energies of different surfaces. The work of adhesion of this system is isotropic, too.

  9. Development of a low resource RNA extraction cassette based on surface tension valves

    PubMed Central

    Bordelon, Hali; Adams, Nicholas M.; Klemm, Amy S.; Russ, Patricia K.; Williams, John V.; Talbot, H. Keipp; Wright, David W.; Haselton, Frederick R.

    2011-01-01

    Nucleic acid-based diagnostics are highly sensitive and specific, but are easily disrupted by the presence of interferents in biological samples. In a laboratory or hospital setting, the influence of these interferents can be minimized using an RNA or DNA extraction procedure prior to analysis. However, in low resource settings, limited access to specialized instrumentation and trained personnel presents challenges that impede sample preparation. We have developed a self-contained nucleic acid extraction cassette suitable for operation in a low resource setting. This simple design contains processing solutions preloaded within a continuous length of 1.6 mm inner diameter Tygon tubing. Processing solutions are separated by air gaps and held in place during processing by the surface tension forces at the liquid-air interface, viz. surface tension valves. Nucleic acids preferentially adsorbed to silica-coated magnetic particles are separated from sample interferents by using an external magnet to transfer the nucleic acid biomarker through successive solutions to precipitate, wash and elute in the final cassette solution. The efficiency of the extraction cassette was evaluated using quantitative reverse transcriptase PCR (qRT-PCR) following extraction of respiratory syncytial virus (RSV) RNA. RNA was recovered from TE buffer or from lysates of RSV infected HEp-2 cells with 55 and 33% efficiency, respectively, of the Qiagen RNeasy kit. Recovery of RSV RNA from RSV infected HEp-2 cells was similar at 30% of the RNeasy kit. An overall limit of detection after extraction was determined to be nearly identical (97.5%) to a laboratory-based commercially available kit. These results indicate that this extraction cassette design has the potential to be an effective sample preparation device suitable for use in a low resource setting. PMID:21604768

  10. Effect of hydration of sugar groups on adsorption of Quillaja bark saponin at air/water and Si/water interfaces.

    PubMed

    Wojciechowski, Kamil; Orczyk, Marta; Marcinkowski, Kuba; Kobiela, Tomasz; Trapp, Marcus; Gutberlet, Thomas; Geue, Thomas

    2014-05-01

    Adsorption of a natural glycoside surfactant Quillaja bark saponin ("QBS", Sigma Aldrich 84510) was studied at the air/water and Si/water interfaces using a combination of surface pressure (SP), surface dilatational rheology, neutron reflectivity (NR), Infra-Red Attenuated Total Reflection Spectroscopy (IR ATR) and Quartz Crystal Microbalance (QCM). The adsorbed layers formed at the air/water interface are predominantly elastic, with the dilatational surface storage modulus reaching the maximum value of E'=184 mN/m. The NR results point to a strong hydration of the adsorbed layers (about 65% hydration, corresponding to about 60 molecules of water per one QBS molecule), most likely related to the presence of multiple sugar groups constituting the glycone part of the QBS molecules. With a layer thickness of 19 Å, the adsorbed amount obtained from NR seems largely underestimated in comparison to the value obtained from the surface tension isotherm. While this high extent of hydration does not prevent formation of dense and highly elastic layers at the air-water surface, QBS adsorption at the Si/water interface is much weaker. The adsorption isotherm of QBS on Si obtained from the QCM study reflects much lower affinity of highly hydrated and negatively charged saponin molecules to the Si/water interface. We postulate that at the air/water interface, QBS adsorbs through the triterpene aglycone moiety. In contrast, weak hydrogen bonding between the glycone part and the surface silanol groups of Si is responsible for QBS adsorption on more polar Si/water interface.

  11. Local pressure components and surface tension of spherical interfaces. Thermodynamic versus mechanical definitions. I. A mesoscale modeling of droplets

    NASA Astrophysics Data System (ADS)

    Ghoufi, Aziz; Malfreyt, Patrice

    2011-09-01

    We report mesoscale simulations of spherical drops to investigate the surface tension and mechanical properties. The Monte Carlo simulations are performed with the multibody potential commonly used in the many-body dissipative particle dynamics simulations. We establish here the calculation of the local normal and transverse components of the pressure tensor via the perturbation volume within the thermodynamic route. The different profiles of these components are compared to those calculated using the mechanical approach. To complete the mesoscale modeling of drops, we investigate the curvature dependence of the surface tension in order to calculate the Tolman's length, which is found to be negative.

  12. Effect of two hydrocarbon and one fluorocarbon surfactant mixtures on the surface tension and wettability of polymers.

    PubMed

    Szymczyk, Katarzyna; González-Martín, Maria Luisa; Bruque, Jose Morales; Jańczuk, Bronisław

    2014-03-01

    The advancing contact angle of water, formamide and diiodomethane on polytetrafluoroethylene (PTFE) and polymethyl methacrylate (PMMA) surfaces covered with the film of ternary mixtures of surfactants including p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethyleneglycols), Triton X-100 (TX100) and Triton X-165 (TX165) and the fluorocarbon surfactants, Zonyl FSN-100 (FSN100) or Zonyl FSO-100 (FSO100) was measured. The obtained results were used for the surface tension of PTFE and PMMA covered with this film determination from the Young equation on the basis of van Oss et al. and Neumann et al. approaches to the interfacial tension. The surface tension of PTFE and PMMA was also determined using the Neumann et al. equation and the contact angle values for the aqueous solutions of the above mentioned ternary surfactants mixtures which were taken from the literature. As follows from our calculations mainly the presence of the fluorocarbon surfactant in the mixture considerably changes the surface properties of PTFE and PMMA causing that in contrast to hydrocarbon surfactants and their mixtures there is no linear dependence between adhesion and surface tension in the whole range of concentration of the ternary mixtures of surfactants including the fluorocarbon one. The behavior of fluorocarbon surfactants at the polymer-air and polymer-water interfaces is quite different from those of hydrocarbons. In the case of fluorocarbon surfactants not only adsorption but also sorption can occur on the polymer surface.

  13. Surfactant-Induced Flow in Unsaturated Porous Media: Implications for Air-Water Interfacial Area Determination

    NASA Astrophysics Data System (ADS)

    Costanza-Robinson, M. S.; Zheng, Z.; Estabrook, B.; Henry, E. J.; Littlefield, M. H.

    2011-12-01

    Air-water interfacial area (AI) in porous media is an important factor governing equilibrium contaminant retention, as well as the kinetics of interphase mass transfer. Interfacial-partitioning tracer (IPT) tests are a common technique for measuring AI at a given moisture saturation (SW), where AI is calculated based on the ratio of arrival times of a surfactant and a non-reactive tracer. At surfactant concentrations often used, the aqueous surface tension of the interfacial tracer solution is ~30% lower than that of the resident porewater in the system, creating transient surface tension gradients during the IPT measurement. Because surface tension gradients create capillary pressure gradients, surfactant-induced unsaturated flow may occur during IPT tests, a process that would violate fundamental assumptions of constant SW, of steady-state flow, and of nonreactive and surfactant tracers experiencing the same transport conditions. To examine the occurrence and magnitude of surfactant-induced flow, we conducted IPT tests for unsaturated systems at ~84% initial SW using surfactant input concentrations that bracket concentrations commonly used. Despite constant boundary conditions (constant inlet flux and outlet pressure), the introduction of the surfactant solution induced considerable transience in column effluent flowrate and SW. Real-time system mass measurements revealed drainage of 20-40% SW, with the amount of drainage and the maximum rate of drainage proportional to the influent surfactant concentration, as would be expected. Because AI is inversely related to SW, the use of higher surfactant concentrations should yield larger AI estimates. Measured AI values, however, showed no clear relationship to surfactant concentration or the time-averaged SW of the system. These findings cast doubt on the reliability of IPT for AI determination.

  14. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    NASA Technical Reports Server (NTRS)

    Allen, P. A.; Wells, D. N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  15. Role of surface tension and roughness on the wettability of Er:YAG laser irradiated dentin: In vitro study

    PubMed Central

    Brulat, Nathalie; Rocca, Jean-Paul; Darque-Ceretti, Evelyne

    2013-01-01

    Introduction: The aim of this “in vitro” study was to evaluate the role of surface tension and surface roughness in the wettability, considered essential for a good adhesion, comparing Er:YAG laser - to bur-prepared dentin. Materials and Methods: Dentin surfaces of third human molars were Er:YAG laser- and bur-prepared to evaluate the effects of surface tension and roughness on wettability and interferometric analysis was used to compare the roughness of the two groups surfaces, after gold-coating them. Results: In bur-prepared samples the time taken for the water drop to spread out was approximately the same with or without metallization while, in the Er:YAG laser-prepared surfaces the spreading-out time was less than 10 seconds but longer after metallization i.e. nearly two minutes. Large differences in wettability measurements were observed because the water drop was almost immediately absorbed on the Er:YAG laser-prepared surface. The wettability test demonstrated that the porous and hydrophilic properties of Er:YAG laser-prepared surfaces are higher than bur-prepared surfaces. Conclusion: Surface tension, surface morphology and porosity had different effects on the spreading time of a water drop on both Er:YAG laser- and bur-prepared surfaces. And, while surface tension does not seem to influence the results, roughness appears to be the main parameter involved in water drop spreading, this being an indication, by the clinical point of view, to the choice of Er:YAG laser parameters in conservative dentistry. PMID:24204092

  16. Calculation of the surface tension and pressure components from a non-exponential perturbation method of the thermodynamic route

    NASA Astrophysics Data System (ADS)

    Ghoufi, A.; Malfreyt, P.

    2012-01-01

    Surface tension is probably the most important interfacial property and a large number of techniques have been devoted to its calculation. Usually, this calculation is carried out using mechanical or thermodynamic definitions. The mechanical route uses an arbitrary choice to affect the contribution of the pairwise force. To overcome this arbitrariness, a thermodynamic route based on the area perturbation (test-area (TA) method) has been developed for the calculation of surface tension. The volume perturbation (VP) method provides an original route to compute the components of the pressure tensor. These two routes are developed from the perturbation theory leading to working expressions using exponential averages of energy. The use of exponential averages makes the calculation strongly dependent on the occurrence of low values of ΔU. Additionally, the decomposition of the energy to obtain local surface tension is nontrivial. From the explicit derivation of the partition function the exponential average is avoided providing an interesting alternative to TA, VP, and mechanical methods. To make a consistent comparison, we study the profiles of the surface tension along the direction normal to the surface for the different definitions and techniques in the cases of liquid-vapor interfaces of acids gases, binary, and apolar systems.

  17. Cleaning verification by air/water impingement

    NASA Technical Reports Server (NTRS)

    Jones, Lisa L.; Littlefield, Maria D.; Melton, Gregory S.; Caimi, Raoul E. B.; Thaxton, Eric A.

    1995-01-01

    This paper will discuss how the Kennedy Space Center intends to perform precision cleaning verification by Air/Water Impingement in lieu of chlorofluorocarbon-113 gravimetric nonvolatile residue analysis (NVR). Test results will be given that demonstrate the effectiveness of the Air/Water system. A brief discussion of the Total Carbon method via the use of a high temperature combustion analyzer will also be given. The necessary equipment for impingement will be shown along with other possible applications of this technology.

  18. Effect of surface tension and surfactant administration on Eustachian tube mechanics.

    PubMed

    Ghadiali, Samir N; Banks, Julie; Swarts, J Douglas

    2002-09-01

    Development of otitis media has been related to abnormal Eustachian tube (ET) mechanics. ET is a collapsible tube that is periodically opened to regulate middle ear pressure and to clear middle ear fluid into the nasopharynx. The ability to perform these physiological functions depends on several mechanical properties, including the ET's opening pressure (P(open)), compliance (ETC), and hysteresis (eta). In this study, a previously developed modified force-response protocol was used to determine ET mechanical properties after experimental manipulation of the mucosal surface condition. Specifically, these properties were measured in the right ear of six cynomologous monkeys under baseline conditions after "washing out" the normal ET mucous layer and after instillation of a pulmonary surfactant, Infasurf. Removal of the normal mucosa did not significantly alter P(open) but did result in a decrease in ETC and eta (P < 0.05). Treatment of the mucosa with Infasurf was effective in reducing P(open) and increasing both ETC and eta to baseline values (P < 0.05). These results indicate that the mucosa-air surface tension can affect the overall ETC and eta properties of the ET. In addition, this study indicates that surfactant therapy may only be beneficial in patients with rigid or inelastic ETs (large P(open) and low ETC and eta).

  19. Convective Instability of a Gravity Modulated Fluid Layer with Surface Tension Variation

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee

    1998-01-01

    Gravity modulation of an unbounded fluid layer with surface tension variations along its free surface is investigated. In parameter space of (wavenumber, Marangoni number) modulation has a destabilizing effect on the unmodulated neutral stability curve for large Prandtl number, Pr, and small modulation frequency, Omega, while a stabilizing effect is observed for small Pr and large Omega. As Omega yields infinity, the modulated neutral stability curves approach the unmodulated neutral stability curve. At certain values of Pr and L2 multiple minima are observed and the neutral stability curves become highly distorted. Closed regions of subharmonic instability are also observed. Alternating regions of synchronous and subharmonic instability separated by very thin stable regions are observed in (1/Omega,g(sub 1)) space for the singly diffusive cases. Quasiperiodic behavior in addition to the synchronous and subharmonic responses, are observed for the case of a double diffusive fluid layer. Minimum acceleration amplitudes were observed to closely correspond with a subharmonic response, Lambda(sub im) = Omega/2 .

  20. Selective, Spontaneous One-Way Oil-Transport Fabrics and Their Novel Use for Gauging Liquid Surface Tension.

    PubMed

    Wang, Hongxia; Zhou, Hua; Yang, Weidong; Zhao, Yan; Fang, Jian; Lin, Tong

    2015-10-21

    Thin porous materials that can spontaneously transport oil fluids just in a single direction have great potential for making energy-saving functional membranes. However, there is little data for the preparation and functionalities of this smart material. Here, we report a novel method to prepare one-way oil-transport fabrics and their application in detecting liquid surface tension. This functional fabric was prepared by a two-step coating process to apply flowerlike ZnO nanorods, fluorinated decyl polyhedral oligomeric silsesquioxanes, and hydrolyzed fluorinated alkylsilane on a fabric substrate. Upon one-sided UV irradiation, the coated fabric shows a one-way transport feature that allows oil fluid transport automatically from the unirradiated side to the UV-irradiated surface, but it stops fluid transport in the opposite direction. The fabric still maintains high superhydrophobicity after UV treatment. The one-way fluid transport takes place only for the oil fluids with a specific surface tension value, and the fluid selectivity is dependent on the UV treatment time. Changing the UV irradiation time from 6 to 30 h broadened the one-way transport for fluids with surface tension from around 22.3 mN/m to a range of 22.3-56.7 mN/m. We further proved that this selective one-way oil transport can be used to estimate the surface tension of a liquid simply by observing its transport feature on a series of fabrics with different one-way oil-transport selectivities. To our knowledge, this is the first example to use one-way fluid-transport materials for testing the liquid surface tension. It may open up further theoretical studies and the development of novel fluid sensors.

  1. Surface tension and its temperature coefficient of molten tin determined with the sessile drop method at different oxygen partial pressures.

    PubMed

    Yuan, Zhang Fu; Mukai, Kusuhiro; Takagi, Katsuhiko; Ohtaka, Masahiko; Huang, Wen Lai; Liu, Qiu Sheng

    2002-10-15

    The surface tension of molten tin has been determined by the sessile drop method at temperatures ranging from 523 to 1033 K and in the oxygen partial pressure (P(O(2))) range from 2.85 x 10(-19) to 8.56 x 10(-6) MPa, and its dependence on temperature and oxygen partial pressure has been analyzed. At P(O(2))=2.85 x 10(-19) and 1.06 x 10(-15) MPa, the surface tension decreases linearly with the increase of temperature and its temperature coefficients are -0.151 and -0.094 mN m(-1) K(-1), respectively. However, at high P(O(2)) (3.17 x 10(-10), 8.56 x 10(-6) MPa), the surface tension increases with the temperature near the melting point (505 K) and decreases above 723 K. The surface tension decrease with increasing P(O(2)) is much larger near the melting point than at temperatures above 823 K. The contact angle between the molten tin and the alumina substrate is 158-173 degrees, and the wettability is poor.

  2. A novel methodology to study effects of the electric field on shape and surface tension of drops in microgravity

    NASA Astrophysics Data System (ADS)

    Bateni, A.; Susnar, S. S.; Amirfazli, A.; Neumann, A. W.

    The behavior of liquid drops and bubbles in an electric field is of importance both for improving existing and developing new technologies on the ground and in space. Examples are electrostatic spraying, ink jet printing, electro wetting, physical and chemical separations and alloy research in space. Of particular interest is the effect of electric fields on shape and surface tension of drops and bubbles. Because of mathematical limitations as well as for practical reasons we have been developing a tool for studying these two quantities under microgravity conditions. The new methodology, called Axisymmetric Drop Shape Analysis - Electric Field (ADSA- EF), generates numerical drop profiles in the electric field, for a given surface tension. Then, it calculates the surface tension by matching the theoretical profiles with the shape of the experimental drops. The new methodology predicts the shape of conducting drops in the electric field with high accuracy. Preliminary ground-based experiments suggest that the surface tension of liquids is changed by one or two percent in the electric field. The magnitude of this change depends on the polarity of the liquid. More definitive results for drops as well as the effect of the polarity of the electric field will be presented at the conference. However, ultimate validation requires experimental work under reduced and/or microgravity conditions. Finally, under such conditions, because of the absence of convection, the developed methodology can be a valuable tool to study electric field driven adsorption and diffusion in two component liquids.

  3. Determination of Surface Tension of Surfactant Solutions through Capillary Rise Measurements: An Image-Processing Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Huck-Iriart, Cristia´n; De-Candia, Ariel; Rodriguez, Javier; Rinaldi, Carlos

    2016-01-01

    In this work, we described an image processing procedure for the measurement of surface tension of the air-liquid interface using isothermal capillary action. The experiment, designed for an undergraduate course, is based on the analysis of a series of solutions with diverse surfactant concentrations at different ionic strengths. The objective of…

  4. Influence of initial substratum surface tension on marine micro- and macro-fouling in the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Becker, Klaus; Siriratanachai, Sittiphun; Hormchong, Twee

    1998-02-01

    The density of five major groups of fouling organisms (bacteria, diatoms, choanoflagellates, ciliates, macroorganisms) on seven artificial substrata with surface tensions between 19.0 and 64.5 mN m-1 was studied in the Gulf of Thailand. Two series of test panels of the different substrata were immersed into the sea between 3 hours and 64 days (macrofauna 128 days). The results show that surface tension has a limited impact on the density of the organisms. Only bacteria settled continuously in significantly lower numbers on materials within the minimum bioadhesive range (20 25 mN m-1) than on other substrata. Significant differences between the substrata may disappear after long exposure, as in series 2 after 16 days. For diatoms and protozoa, a colonisation pattern similar to that of bacteria with a minimum of 20 25 mN m-1 was detected after several exposure intervals. However, it was never recorded in more than 3 exposure intervals in a row. The colonisation pattern of macroorganisms could not be attributed to substratum surface tension. An index, called “colonisation degree” is introduced to give a general impression of the density of organisms on the materials tested. The colonisation degree did not show any significant difference at any exposure interval. The present results clearly suggest that substratum surface tension is easily overshadowed by other factors in colonisation processes under natural conditions. *** DIRECT SUPPORT *** A03B6037 00003

  5. Rhamnolipids elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium.

    PubMed

    Jiang, Lifang; Shen, Chong; Long, Xuwei; Zhang, Guoliang; Meng, Qin

    2014-12-01

    Biosurfactant rhamnolipids have been claimed to show biological activities of inhibiting the proliferation of cancer cells. In this study, the cytotoxicity of rhamnolipids was examined on four cancer cells (HepG2, Caco-2, Hela, MCF-7 cells) and two normal cells (HK-2 cell, primary hepatocyte). Interestingly, both cancer cells and normal cells exhibited similar sensitivities to the addition of rhamnolipids in culture medium, and the cytotoxicity was largely attenuated by the presence of fetal bovine serum (FBS) in culture medium. In correlation of the mono-/di-rhamnolipid cytotoxicity with the surface tension of culture medium, it was found that rhamnolipids triggered cytotoxicity whenever the surface tension of culture medium decreased below 41 mN/m irrespective of the FBS content in culture medium, cell line, or rhamnolipid congener. Similarly, each chemical surfactant (Tween-80, sodium dodecyl sulfate, and sodium dodecyl benzene sulfonate) could cause cytotoxicity on HepG2 cells whenever its addition made the surface tension under 41 mN/m in culture medium with or without the presence of FBS. It seems that rhamnolipids, like chemical surfactants, exhibited cytotoxicity by reducing the surface tension of culture medium rather than by changing its specific molecular structure, which had no selection on tumor cells. This study could offer helps to correct the misleading biological activity of rhamnolipids and to avoid the possible large wastes of time and expenses on developing the applications in antitumor drugs.

  6. Measurement of surface tension in an atmosphere with controlled oxygen partial pressure under microgravity using a parabolic flight

    NASA Astrophysics Data System (ADS)

    Hibiya, Taketoshi; Watanabe, Masahito; Ozawa, Shumpei; Adachi, Masayoshi; Takenaga, Noriaki; Aoyagai, Tomowo; Mizuno, Akitoshi; Higuchi, Kensuke

    Use of a levitation technique is an elegant way to determine thermophysical properties of high temperature melts, because this containerless technique can avoid contamination from a container and assures measurement in a wide temperature range including superheated and undercooled conditions. In particular, electromagnetic levitation is suitable for electrically conductive materials, such as molten metals, alloys and semiconductors. For surface tension measurement, the Rayleigh equation can be applicable only under microgravity condition [1]. However, when this technique is applied on earth, the l = 2 mode frequency is split into five frequencies, because a droplet is deformed from a spherical shape into an egg shape due to gravitational force and the Lorentz force. Surface tension must be calculated taking account of correction term [2]. Therefore, measurement under microgravity is required to minimize uncertainty. Furthermore, surface tension is sensitive to oxygen partial pressure of an ambient atmosphere. However, there has been less report on surface tension measurement under microgravity in an atmosphere with controlled oxygen partial pressure. We are going to measure surface tension of high temperature metallic melts under microgravity using a parabolic flight of a jet aircraft, the Gulf Stream II, operated by Diamond Air Service in Japan. In September of 2007, through parabolic flight experiments we confirmed that droplets of Cu and Ag were successfully levitated using a newly designed coil under the 1G and 10-2G conditions. Droplets were also assured to be levitated in the pull-up period (1.5G); we can melt samples before entering microgravity condition, so that we can use 20 second microgravity only for measurement. On earth, surface tension of molten silicon was successfully measured using electromagnetic levitation in an ambient atmosphere with various oxygen partial pressures; surface tension of molten silicon showed a marked dependence of oxygen

  7. Studies on the interaction between nanodiamond and human hemoglobin by surface tension measurement and spectroscopy methods.

    PubMed

    Pishkar, Leila; Taheri, Saba; Makarem, Somayeh; Alizadeh Zeinabad, Hojjat; Rahimi, Arash; Saboury, Ali Akbar; Falahati, Mojtaba

    2017-02-01

    In this study, a novel method to probe molecular interactions and binding of human hemoglobin (Hb) with nanodiamond (ND) was introduced based on the surface tension measurement. This method complements conventional techniques, which are basically done by zeta potential and dynamic light scattering (DLS) measurements, near and far circular dichroism (CD) spectroscopy, intrinsic and extrinsic fluorescence spectroscopy. Addition of ND to Hb solution increased the surface tension value of Hb-ND complex relative to those of Hb and ND molecules. The zeta potential values reveled that Hb and ND provide identical charge distribution at pH 7.5. DLS measurements demonstrated that Hb, ND, and ND-Hb complex have hydrodynamic radiuses of 98.37 ± 4.57, 122.07 ± 7.88 nm and 62.27 ± 3.70 at pH of 7.5 respectively. Far and near UV-CD results indicated the loss of α-helix structure and conformational changes of Hb, respectively. Intrinsic fluorescence data demonstrated that the fluorescence quenching of Hb by ND was the result of the static quenching. The hydrophobic interaction plays a pivotal role in the interaction of ND with Hb. Fluorescence intensity changes over time revealed conformational change of Hb continues after the mixing of the components (Hb-ND) till 15 min, which is indicative of the denaturation of the Hb relative to the protein control. Extrinsic fluorescence data showed a considerable enhancement of the ANS fluorescence intensity of Hb-ND system relative to the Hb till 60 nM of ND, likely persuaded by greater exposure of nonpolar residues of Hb hydrophobic pocket. The remarkable decrease in Tm value of Hb in Hb-ND complex exhibits interaction of Hb with ND conducts to conformational changes of Hb. This study offers consequential discrimination into the interaction of ND with proteins, which may be of significance for further appeal of these nanoparticles in biotechnology prosecution.

  8. Synchronous Measuring Techniques in Parallel to MRE: Study of Pressure, Pre-Tension, and Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Brinker, Spencer Thomas

    The contents of this dissertation include investigations in Magnetic Resonance Elastography (MRE) using a preclinical 9.4 Tesla small animal Magnetic Resonance Imaging (MRI) system along with synthetic materials that mimic the mechanical properties of soft human tissue. MRE is used for studying the mechanical behavior of soft tissue particularly applicable to medical applications. Wave motion induced by a mechanical driver is measured with MRI to acquire internal displacement fields over time and space within a material media. Complex shear modulus of the media is calculated from the response of mechanical wave transmission through the material. Changes in soft tissue stiffness is associated with disease progression and thus, is why assessing tissue mechanical properties with MRE has powerful diagnostic potential due to the noninvasive procedure of MRI. The experiments performed in this dissertation used elastic phantoms and specimens to observe the influence of pre-stress on MRE derived mechanical properties while additional mechanical measurements from other related material testing methods were synchronously collected alongside MRI scanning. An organ simulating phantom was used to explore changes in MRE stiffness in response to gas and liquid cyclic pressure loading. MRE stiffness increased with pressure and hysteresis was observed in cyclic pressure loading. The results suggest MRE is applicable to pressure related disease assessment. In addition, an interconnected porosity pressure phantom was constructed for future porous media investigations. A custom system was also built to demonstrate concurrent tensile testing during MRE for investigating homogeneous soft material media undergoing pre-tension. Stiffness increased with uniaxial tensile stress and strain. The tension and stiffness relationship explored can be related to the stress analysis of voluntary muscle. The results also offer prospective experimental strategies for community wide standards on MRE

  9. The influence of chemical composition of the slags on the surface tension used in the continuous casting of steel

    NASA Astrophysics Data System (ADS)

    Gheorghiu, Csaba Attila; Ardelean, Erika; Heput, Teodor

    2016-06-01

    An important factor that can influence the surface quality of the continuous cast is the lubrication slag used in the crystallizer. The paper introduces the multiple 2nd degree correlations between the slags surface tension (dependent parameter) and its major oxides (independent parameters). The graphic correlations allow the determination of the variation limits for the independent parameters so as to range the values of the dependent parameters within a given domain.

  10. Tension headache

    MedlinePlus

    ... headache; Muscle contraction headache; Headache - benign; Headache - tension; Chronic headaches - tension; Rebound headaches - tension ... headaches can occur when you also have a migraine. Tension headaches are not associated with brain diseases.

  11. Range of validity of drop shape techniques for surface tension measurement.

    PubMed

    Saad, Sameh M I; Policova, Zdenka; Acosta, Edgar J; Neumann, A Wilhelm

    2010-09-07

    Drop shape techniques are widely used for surface tension measurement. As the shape becomes close to spherical, the performance of drop shape techniques deteriorates. A quantitative criterion called shape parameter was previously introduced to quantify the meaning of "well-deformed" drops and "close to spherical" drops. In this paper, a modified definition of the shape parameter that does not depend on the radius of curvature at the drop apex is proposed. Such definition is applicable to different constellations of pendant and sessile drops/bubbles. Dimensional analysis is used to describe similarity in constrained sessile drop shapes and to express the problem using appropriate dimensionless groups. The proposed shape parameter is found to depend only on two dimensionless groups: the dimensionless volume (drop volume normalized by the cube of the holder radius) and the Bond number (using the drop holder's radius as the length scale). A critical shape parameter (minimum value of the shape parameter that guarantees a specified accuracy) is shown to depend only on Bond number. A set of experiments were performed with pure liquids to illustrate the change of the critical shape parameter with the Bond number.

  12. The self-interaction of a fluid interface, the wavevector dependent surface tension and wedge filling.

    PubMed

    Parry, Andrew O; Rascón, Carlos

    2011-01-12

    We argue that whenever an interface, separating bulk fluid phases, adopts a non-planar configuration (induced by a confining geometry or thermal fluctuations, say), the energy cost of it will contain a non-local self-interaction term. For systems with short-ranged forces and Ising symmetry, we determine the self-interaction by integrating out bulk-like degrees of freedom from a more microscopic Landau-Ginzburg-Wilson model. The self-interaction can be written in a simple diagrammatic form involving integrals over effective two-body forces acting at the interface and consistently accounts for a number of known features of the microscopic model, including the wavevector dependence of the surface tension describing the fluctuations of a near planar interface. When applied to wedge filling transitions, the self-interaction describes the attraction between the wetting films on either side of the wedge. We show that, for sufficiently acute wedges, this can alter the order of the filling phase transition.

  13. Theory of melt polyelectrolyte blends and block copolymers: Phase behavior, surface tension, and microphase periodicity

    SciTech Connect

    Sing, Charles E.; Zwanikken, Jos W.; Olvera de la Cruz, Monica

    2015-01-21

    Polymer mixtures such as blends or block copolymers are of great interest in energy applications and functional materials, and often, one or more of these species contain charges. The traditional fashion in which such materials are studied uses Self-Consistent Field Theory (SCFT) methods that incorporate electrostatics using Poisson-Boltzmann (PB) theory. We adapt a new and rigorous approach that does not rely on the mean-field assumptions inherent in the PB theory and instead uses Liquid State (LS) integral equation theory to articulate charge correlations that are completely neglected in PB. We use this theory to calculate phase diagrams for both blends and block copolyelectrolytes using SCFT-LS and demonstrate how their phase behavior is highly dependent on chain length, charge fraction, charge size, and the strength of Coulombic interactions. Beyond providing phase behavior of blends and block copolyelectrolytes, we can use this theory to investigate the interfacial properties such as surface tension and block copolyelectrolyte lamellar spacing. Lamellar spacing provides a way to directly compare the SCFT-LS theory to the results of experiments. SCFT-LS will provide conceptual and mathematical clarification of the role of charge correlations in these systems and aid in the design of materials based on charge polymers.

  14. Theory of melt polyelectrolyte blends and block copolymers: phase behavior, surface tension, and microphase periodicity.

    PubMed

    Sing, Charles E; Zwanikken, Jos W; Olvera de la Cruz, Monica

    2015-01-21

    Polymer mixtures such as blends or block copolymers are of great interest in energy applications and functional materials, and often, one or more of these species contain charges. The traditional fashion in which such materials are studied uses Self-Consistent Field Theory (SCFT) methods that incorporate electrostatics using Poisson-Boltzmann (PB) theory. We adapt a new and rigorous approach that does not rely on the mean-field assumptions inherent in the PB theory and instead uses Liquid State (LS) integral equation theory to articulate charge correlations that are completely neglected in PB. We use this theory to calculate phase diagrams for both blends and block copolyelectrolytes using SCFT-LS and demonstrate how their phase behavior is highly dependent on chain length, charge fraction, charge size, and the strength of Coulombic interactions. Beyond providing phase behavior of blends and block copolyelectrolytes, we can use this theory to investigate the interfacial properties such as surface tension and block copolyelectrolyte lamellar spacing. Lamellar spacing provides a way to directly compare the SCFT-LS theory to the results of experiments. SCFT-LS will provide conceptual and mathematical clarification of the role of charge correlations in these systems and aid in the design of materials based on charge polymers.

  15. Stabilization of lysozyme by benzyl alcohol: surface tension and thermodynamic parameters.

    PubMed

    Goyal, Monu Kumari; Roy, Ipsita; Amin, Aeshna; Banerjee, Uttam Chand; Bansal, Arvind Kumar

    2010-10-01

    The aim of the study was to understand the effect of benzyl alcohol on biological activity, aggregation behavior, denaturant and heat-induced unfolding of lysozyme. Compatibility studies of lysozyme carried out with a number of anti-microbial preservatives, indicated benzyl alcohol to be the best suppressor of protein aggregation against heat stress. The effect of this preservative was checked at various pH values ranging from 4.0 to 9.0. In spite of reducing the thermal denaturation temperature (T(m)) at all pH values, benzyl alcohol had a stabilizing effect on lysozyme in terms of retaining the biological activity when the enzyme was incubated at 75 degrees C. The reduction in T(m) with increasing benzyl alcohol concentration was correlated with decreasing surface tension of surrounding medium. A detailed thermodynamic study of lysozyme in the presence of benzyl alcohol was carried out at pH 6.2. Change in Gibb's free energy of thermal unfolding at 25 degrees C was found to remain constant in the presence of benzyl alcohol, indicating no interaction of benzyl alcohol with the native protein at room temperature. Both the enthalpy and entropy change at mid point of thermal unfolding were found to increase in the presence of benzyl alcohol indicating the stabilization of partially unfolded state.

  16. New procedure to measure simultaneously the surface tension and contact angle.

    PubMed

    Champmartin, S; Ambari, A; Le Pommelec, J Y

    2016-05-01

    This paper proposes a new procedure to simultaneously measure the static contact angle and the surface tension of a liquid using a spherical geometry. Unlike the other existing methods, the knowledge of one of both previous parameters and the displacement of the sphere are not mandatory. The technique is based on the measurement of two simple physical quantities: the height of the meniscus formed on a sphere at the very contact with a liquid bath and the resulting vertical force exerted on this object at equilibrium. The meniscus height, whose exact value requires the numerical resolution of the Laplace equation, is often estimated with an approximate 2D model, valid only for very large spheres compared to the capillary length. We develop instead another simplified solution of the Young-Laplace equation based on the work of Ferguson for the meniscus on a cylinder and adapted for the spherical shape. This alternative model, which is less restrictive in terms of the sphere size, is successfully compared to numerical solutions of the complete Young-Laplace equation. It appears to be accurate for sphere radii larger than only two capillary lengths. Finally the feasibility of the method is experimentally tested and validated for three common liquids and two "small" steel spheres.

  17. HIV Viral RNA Extraction in Wax Immiscible Filtration Assisted by Surface Tension (IFAST) Devices

    PubMed Central

    Berry, Scott M.; LaVanway, Alex J.; Pezzi, Hannah M.; Guckenberger, David J.; Anderson, Meghan A.; Loeb, Jennifer M.; Beebe, David J.

    2015-01-01

    The monitoring of viral load is critical for proper management of antiretroviral therapy for HIV-positive patients. Unfortunately, in the developing world, significant economic and geographical barriers exist, limiting access to this test. The complexity of current viral load assays makes them expensive and their access limited to advanced facilities. We attempted to address these limitations by replacing conventional RNA extraction, one of the essential processes in viral load quantitation, with a simplified technique known as immiscible filtration assisted by surface tension (IFAST). Furthermore, these devices were produced via the embossing of wax, enabling local populations to produce and dispose of their own devices with minimal training or infrastructure, potentially reducing the total assay cost. In addition, IFAST can be used to reduce cold chain dependence during transportation. Viral RNA extracted from raw samples stored at 37°C for 1 week exhibited nearly complete degradation. However, IFAST-purified RNA could be stored at 37°C for 1 week without significant loss. These data suggest that RNA isolated at the point of care (eg, in a rural clinic) via IFAST could be shipped to a central laboratory for quantitative RT-PCR without a cold chain. Using this technology, we have demonstrated accurate and repeatable measurements of viral load on samples with as low as 50 copies per milliliter of sample. PMID:24613822

  18. Influence of the local morphology on the surface tension of injection molded polypropylene

    NASA Astrophysics Data System (ADS)

    Gomes, M.; Pontes, A. J.; Viana, J. C.

    2014-05-01

    In this work, we investigate the development of the morphology of an injection molding polypropylene under the local thermomechanical environment imposed during processing, and its effect on the contact angle and, hence, on the surface tension of the moldings. Melt and mold temperatures were varied in two levels. The local thermomechanical environment was characterized by mold filling computational simulations that allow the calculation of thermomechanical variables (e.g., local temperatures, shear stresses) and indices (related to the local morphology development). In order to investigate the structural hierarchy variations of the moldings in the thickness direction, samples from skin to core were used. The molecular orientation and degree of crystallinity were determined as function of the thickness, as well as the contact angle. The variations of the degree of crystallinity were assessed by differential scanning calorimetry. The level of molecular orientation was evaluated by birefringence measurements. The contact angles were measured in deionized water by sessile drop (needle in) method at room temperature, to determine the wettability of the samples. The contact angles were found to vary along the molding thickness in the skin, transition and core layers. These variations are related to the local morphologies developed. Results suggest that water contact angle increases with the level of molecular orientation and for finer microstructures.

  19. A transferable force field to predict phase equilibria and surface tension of ethers and glycol ethers.

    PubMed

    Ferrando, Nicolas; Lachet, Véronique; Pérez-Pellitero, Javier; Mackie, Allan D; Malfreyt, Patrice; Boutin, Anne

    2011-09-15

    We propose a new transferable force field to simulate phase equilibrium and interfacial properties of systems involving ethers and glycol ethers. On the basis of the anisotropic united-atom force field, only one new group is introduced: the ether oxygen atom. The optimized Lennard-Jones (LJ) parameters of this atom are identical whatever the molecule simulated (linear ether, branched ether, cyclic ether, aromatic ether, diether, or glycol ether). Accurate predictions are achieved for pure compound saturated properties, critical properties, and surface tensions of the liquid-vapor interface, as well as for pressure-composition binary mixture diagrams. Multifunctional molecules (1,2-dimethoxyethane, 2-methoxyethanol, diethylene glycol) have also been studied using a recently proposed methodology for the calculation of the intramolecular electrostatic energy avoiding the use of additional empirical parameters. This new force field appears transferable for a wide variety of molecules and properties. It is furthermore worth noticing that binary mixtures have been simulated without introducing empirical binary parameters, highlighting also the transferability to mixtures. Hence, this new force field gives future opportunities to simulate complex systems of industrial interest involving molecules with ether functions.

  20. Computation of symmetric, time-periodic solutions of the vortex sheet with surface tension

    PubMed Central

    Ambrose, David M.; Wilkening, Jon

    2010-01-01

    A numerical method is introduced for the computation of time-periodic vortex sheets with surface tension separating two immiscible, irrotational, two-dimensional ideal fluids of equal density. The approach is based on minimizing a nonlinear functional of the initial conditions and supposed period that is positive unless the solution is periodic, in which case it is zero. An adjoint-based optimal control technique is used to efficiently compute the gradient of this functional. Special care is required to handle singular integrals in the adjoint formulation. Starting with a solution of the linearized problem about the flat rest state, a family of smooth, symmetric breathers is found that, at quarter-period time intervals, alternately pass through a flat state of maximal kinetic energy, and a rest state in which all the energy is stored as potential energy in the interface. In some cases, the interface overturns before returning to the initial, flat configuration. It is found that the bifurcation diagram describing these solutions contains several disjoint curves separated by near-bifurcation events. PMID:20133691

  1. New procedure to measure simultaneously the surface tension and contact angle

    NASA Astrophysics Data System (ADS)

    Champmartin, S.; Ambari, A.; Le Pommelec, J. Y.

    2016-05-01

    This paper proposes a new procedure to simultaneously measure the static contact angle and the surface tension of a liquid using a spherical geometry. Unlike the other existing methods, the knowledge of one of both previous parameters and the displacement of the sphere are not mandatory. The technique is based on the measurement of two simple physical quantities: the height of the meniscus formed on a sphere at the very contact with a liquid bath and the resulting vertical force exerted on this object at equilibrium. The meniscus height, whose exact value requires the numerical resolution of the Laplace equation, is often estimated with an approximate 2D model, valid only for very large spheres compared to the capillary length. We develop instead another simplified solution of the Young-Laplace equation based on the work of Ferguson for the meniscus on a cylinder and adapted for the spherical shape. This alternative model, which is less restrictive in terms of the sphere size, is successfully compared to numerical solutions of the complete Young-Laplace equation. It appears to be accurate for sphere radii larger than only two capillary lengths. Finally the feasibility of the method is experimentally tested and validated for three common liquids and two "small" steel spheres.

  2. Purification of cell subpopulations via immiscible filtration assisted by surface tension (IFAST).

    PubMed

    Berry, Scott M; Strotman, Lindsay N; Kueck, Jessica D; Alarid, Elaine T; Beebe, David J

    2011-12-01

    The selective isolation of a sub-population of cells from a larger, mixed population is a critical preparatory process to many biomedical assays. Here, we present a new cell isolation platform with a unique set of advantages over existing devices. Our technology, termed Immiscible Filtration Assisted by Surface Tension, exploits physical phenomena associated with the microscale to establish fluidic barriers composed of immiscible liquids. By attaching magnetically-responsive particles to a target cell population via immunocapture, we can selectively transport this population across the immiscible barrier and into a separate aqueous solution. The high interfacial energy associated with the immiscible phase / aqueous phase boundaries prevents unwanted cells or other contaminants from inadvertently crossing the immiscible phase. We have demonstrated, using fluorescent particles, stromal cells, and whole blood as "background", that we can successfully isolate ~70% of a target breast cancer cell population with an average purity of >80%. Increased purity was obtained by coupling two immiscible barriers in series, a modification that only slightly increases operational complexity. Furthermore, several samples can be processed in parallel batches in a near-instantaneous manner without the requirement of any washing, which can cause dilution (negative selection) or significant uncontrolled loss (positive selection) of target cells. Finally, cells were observed to remain viable and proliferative following traverse through the immiscible phase, indicating that this process is suitable for a variety of downstream assays, including those requiring intact living cells.

  3. Particle image velocimetry for the surface tension driven convection experiment using a particle displacement tracking technique

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Pline, Alexander D.

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.

  4. A study of surface tension driven segregation in monotectic alloy systems

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry; Andrews, Rosalia N.; Gowens, Terrell F.

    1988-01-01

    The compatibilities of various monotectic alloy systems with several different crucible materials were evaluated. The study was carried out using small candidate alloy samples of compositions that produced fifty volume percent of each liquid phase at the monotectic temperature. Compatibility was based on the evaluation of the wetting tendency of the two immiscible phases with the crucible material in a one-g solidified sample. Three types of wetting phenomena were observed during the evaluation. Type 1 indicates an alloy-crucible combination where the L2 phase preferentially wets the crucible material. Since L2 is usually the minority phase in desirable alloys, this material combination would be difficult to process and is therefore considered incompatible. Type 2 behavior indicates an alloy-crucible combination where the L1 phase preferentially wets the crucible material. This type of combination is considered compatible since surface tension effects should aid in processing the alloy to a useful form. Type 3 indicates any combination that leads to major reactions between the alloy and crucible material, gas entrapment, or separation of the metal from the crucible wall. Additional compatibility evaluations would have to be carried out on combinations of this category. The five alloy systems studied included aluminum-bismuth, copper-lead, aluminum-indium, aluminum-lead and cadmium-gallium. The systems were combined with crucibles of alumina, boron nitride, mullite, quartz, silicon carbide and zirconia.

  5. Particle image velocimetry for the Surface Tension Driven Convection Experiment using a particle displacement tracking technique

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Pline, Alexander D.

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.

  6. Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry.

    PubMed

    Svitova, T F; Wetherbee, M J; Radke, C J

    2003-05-01

    Dynamic interfacial tensiometry, gauged by axisymmetric drop shape analysis of static drops or bubbles, provides useful information on surfactant adsorption kinetics. However, the traditional pendant-drop methodology is not readily amenable to the study of desorption kinetics. Thus, the question of sorption reversibility is difficult to assess by this technique. We extend classical pendant/sessile drop dynamic tensiometry by immersing a sessile bubble in a continuously mixed optical cell. Ideal-mixed conditions are established by stirring and by constant flow through the cell. Aqueous surface-active-agent solutions are either supplied to the cell (loading) or removed from the cell by flushing with water (washout), thereby allowing study of both adsorption and desorption kinetics. Well-mixed conditions and elimination of any mass transfer resistance permit direct identification of sorption kinetic barriers to and from the external aqueous phase with time constants longer than the optical-cell residence time. The monodisperse nonionic surfactant ethoxy dodecyl alcohol (C(12)E(5)), along with cationic cetyltrimethyl ammonium bromide (CTAB) in the presence of added salt, adsorbs and desorbs instantaneously at the air/water interface. In these cases, the experimentally observed dynamic-tension curves follow the local-equilibrium model precisely for both loading and washout. Accordingly, these surfactants below their critical micelle concentrations (CMC) exhibit no detectable sorption-activation barriers on time scales of order a min. However, the sorption dynamics of dilute CTAB in the absence of electrolyte is markedly different from that in the presence of KBr. Here CTAB desorption occurs at local equilibrium, but the adsorption rate is kinetically limited, most likely due to an electrostatic barrier arising as the charged surfactant accumulates at the interface. The commercial, polydisperse nonionic surfactant ethoxy nonylphenol (NP9) loads in good agreement with

  7. Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion

    PubMed Central

    Wu (吴右), You; Kharge, Angana Banerjee

    2014-01-01

    With proteinaceous-liquid flooding of discrete alveoli, a model of the edema pattern in the acute respiratory distress syndrome, lung inflation over expands aerated alveoli adjacent to flooded alveoli. Theoretical considerations suggest that the overexpansion may be proportional to surface tension, T. Yet recent evidence indicates proteinaceous edema liquid may not elevate T. Thus whether the overexpansion is injurious is not known. Here, working in the isolated, perfused rat lung, we quantify fluorescence movement from the vasculature to the alveolar liquid phase as a measure of overdistension injury to the alveolar-capillary barrier. We label the perfusate with fluorescence; micropuncture a surface alveolus and instill a controlled volume of nonfluorescent liquid to obtain a micropunctured-but-aerated region (control group) or a region with discrete alveolar flooding; image the region at a constant transpulmonary pressure of 5 cmH2O; apply five ventilation cycles with a positive end-expiratory pressure of 0–20 cmH2O and tidal volume of 6 or 12 ml/kg; return the lung to a constant transpulmonary pressure of 5 cmH2O; and image for an additional 10 min. In aerated areas, ventilation is not injurious. With discrete alveolar flooding, all ventilation protocols cause sustained injury. Greater positive end-expiratory pressure or tidal volume increases injury. Furthermore, we determine T and find injury increases with T. Inclusion of either plasma proteins or Survanta in the flooding liquid does not alter T or injury. Inclusion of 2.7–10% albumin and 1% Survanta together, however, lowers T and injury. Contrary to expectation, albumin inclusion in our model facilitates exogenous surfactant activity. PMID:25080924

  8. Effect of surface tension on a liquid-jet produced by the collapse of a laser-induced bubble against a rigid boundary

    NASA Astrophysics Data System (ADS)

    Liu, Xiu Mei; He, Jie; Lu, Jian; Ni, Xiao Wu

    2009-02-01

    The effect of surface tension on the behavior of a liquid-jet is investigated experimentally by means of a fiber-coupled optical beam deflection (OBD) technique. It is found that a target under water is impacted in turn by a laser-plasma ablation force and by a high-speed liquid-jet impulse induced by bubble collapse in the vicinity of a rigid boundary. The liquid-jet impact is found to be the main damage mechanism in cavitation erosion. Furthermore, the liquid-jet increases monotonously with surface tension, so cavitation erosion rises sharply with increasing surface tension. Surface tension also reduces bubble collapse duration. From the experimental results and the modified Rayleigh theory, the maximum bubble radius is obtained and it is found to reduce with increasing surface tension.

  9. Surface Tension Gradient Driven Spreading on Aqueous Mucin Solutions: A Possible Route to Enhanced Pulmonary Drug Delivery

    PubMed Central

    Koch, Kevin; Dew, Beautia; Corcoran, Timothy E.; Przybycien, Todd M.; Tilton, Robert D.; Garoff, Stephen

    2011-01-01

    Surface tension gradient driven, or “Marangoni,” flow can be used to move exogenous fluid, either surfactant dispersions or drug carrying formulations, through the lung. In this paper, we investigate the spreading of aqueous solutions of water-soluble surfactants over entangled, aqueous mucin solutions that mimic the airway surface liquid of the lung. We measure the movement of the formulation by incorporating dyes into the formulation while we measure surface flows of the mucin solution subphase using tracer particles. Surface tension forces and/or Marangoni stresses initiate a convective spreading flow over this rheologically complex subphase. As expected, when the concentration of surfactant is reduced until its surface tension is above that of the mucin solution, the convective spreading does not occur. The convective spreading front moves ahead of the drop containing the formulation. Convective spreading ends with the solution confined to a well-defined static area which must be governed by a surface tension balance. Further motion of the spread solution progresses by much slower diffusive processes. Spreading behaviors are qualitatively similar for formulations based on anionic, cationic, or nonionic surfactants, containing either hydrophilic or hydrophobic dyes, on mucin as well as on other entangled aqueous polymer solution subphases. This independence of qualitative spreading behaviors from the chemistry of the surfactant and subphase indicates that there is little chemical interaction between the formulation and the subphase during the spreading process. The spreading and final solution distributions are controlled by capillary and hydrodynamic phenomena and not by specific chemical interactions among the components of the system. It is suggested that capillary forces and Marangoni flows driven by soluble surfactants may thereby enhance the uniformity of drug delivery to diseased lungs. PMID:21250745

  10. Topography-based surface tension gradients to facilitate water droplet movement on laser-etched copper substrates.

    PubMed

    Sommers, A D; Brest, T J; Eid, K F

    2013-09-24

    This paper describes a method for creating a topography-based gradient on a metallic surface to help mitigate problems associated with condensate retention. The gradient was designed to promote water droplet migration toward a specified region on the surface which would serve as the primary conduit for drainage using only the roughness of the surface to facilitate the movement of the droplets. In this work, parallel microchannels having a fixed land width but variable spacing were etched into copper substrates to create a surface tension gradient along the surface of the copper. The surfaces were fabricated using a 355 nm Nd:YVO4 laser system and then characterized using spray testing techniques and water droplet (2-10 μL) injection via microsyringe. The distances that individual droplets traveled on the gradient surface were also measured using a goniometer and CCD camera and were found to be between 0.5 and 1.5 mm for surfaces in a horizontal orientation. Droplet movement was spontaneous and did not require the use of chemical coatings. The theoretical design and construction of surface tension gradients were also explored in this work by calculating the minimum gradient needed for droplet movement on a horizontal surface using Wenzel's model of wetting. The results of this study suggest that microstructural patterning could be used to help reduce condensate retention on metallic fins such as those used in heat exchangers in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) applications.

  11. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    NASA Technical Reports Server (NTRS)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  12. Numerical Modeling of Flow Dynamics in The Aluminum Smelting Process: Comparison Between Air-Water and CO2-Cryolite Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Zhibin; Feng, Yuqing; Schwarz, M. Philip; Witt, Peter J.; Wang, Zhaowen; Cooksey, Mark

    2016-12-01

    Air-water models have been widely applied as substitutes for CO2-cryolite systems in the study of the complex bubble dynamics and bubble-driven flow that occurs in the molten electrolyte phase in the aluminum electrolytic process, but the detailed difference between the two systems has not been studied. This paper makes a numerical comparison between the bubble dynamics for the two systems. Simulations of both single bubble and continuous bubbling were conducted using a three-dimensional computational fluid dynamics (3D CFD) modeling approach with a volume of fluid (VOF) method to capture the phase interfaces. In the single bubble simulations, it was found that bubbles sliding under an anode in a CO2-cryolite system have a smaller bubble thickness and a higher sliding velocity than those in the air-water system for bubbles of the same volume. Dimensionless analysis and numerical simulation show that contact angle is the dominant factor producing these differences; the effects of kinematic viscosity, surface tension, and density are very small. In the continuous bubbling simulations, the continuous stream of air bubbles detaches from the anode sidewall after a period of climbing, just as it does in the single bubble simulation, but bubbles have less tendency to migrate away from the wall. Quasi-stable state flow characteristics, i.e., time-averaged bath flow pattern, turbulence kinetic energy, turbulence dissipation rate, and gas volume fraction, show a remarkable agreement between the two systems in terms of distribution and magnitude. From the current numerical comparisons, it is believed that the air-water model is a close substitutive model for studying bubble-driven bath flow in aluminum smelting processes. However, because of the difference in bubble morphologies between the two systems, and also the reactive generation and growth of bubbles in the real system, there will likely be some differences in bubble coverage of the anode in the anode-cathode gap.

  13. Numerical Modeling of Flow Dynamics in The Aluminum Smelting Process: Comparison Between Air-Water and CO2-Cryolite Systems

    NASA Astrophysics Data System (ADS)

    Zhao, Zhibin; Feng, Yuqing; Schwarz, M. Philip; Witt, Peter J.; Wang, Zhaowen; Cooksey, Mark

    2017-04-01

    Air-water models have been widely applied as substitutes for CO2-cryolite systems in the study of the complex bubble dynamics and bubble-driven flow that occurs in the molten electrolyte phase in the aluminum electrolytic process, but the detailed difference between the two systems has not been studied. This paper makes a numerical comparison between the bubble dynamics for the two systems. Simulations of both single bubble and continuous bubbling were conducted using a three-dimensional computational fluid dynamics (3D CFD) modeling approach with a volume of fluid (VOF) method to capture the phase interfaces. In the single bubble simulations, it was found that bubbles sliding under an anode in a CO2-cryolite system have a smaller bubble thickness and a higher sliding velocity than those in the air-water system for bubbles of the same volume. Dimensionless analysis and numerical simulation show that contact angle is the dominant factor producing these differences; the effects of kinematic viscosity, surface tension, and density are very small. In the continuous bubbling simulations, the continuous stream of air bubbles detaches from the anode sidewall after a period of climbing, just as it does in the single bubble simulation, but bubbles have less tendency to migrate away from the wall. Quasi-stable state flow characteristics, i.e., time-averaged bath flow pattern, turbulence kinetic energy, turbulence dissipation rate, and gas volume fraction, show a remarkable agreement between the two systems in terms of distribution and magnitude. From the current numerical comparisons, it is believed that the air-water model is a close substitutive model for studying bubble-driven bath flow in aluminum smelting processes. However, because of the difference in bubble morphologies between the two systems, and also the reactive generation and growth of bubbles in the real system, there will likely be some differences in bubble coverage of the anode in the anode-cathode gap.

  14. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces without use of apex coordinates.

    PubMed

    Cabezas, M Guadalupe; Bateni, Arash; Montanero, José M; Neumann, A Wilhelm

    2006-11-21

    Drop shape techniques, such as axisymmetric drop shape analysis, are widely used to measure surface properties, as they are accurate and reliable. Nevertheless, they are not applicable in experimental studies dealing with fluid configurations that do not present an apex. A new methodology is presented for measuring interfacial properties of liquids, such as surface tension and contact angles, by analyzing the shape of an axisymmetric liquid-fluid interface without use of apex coordinates. The theoretical shape of the interface is generated numerically as a function of surface tension and some geometrical parameters at the starting point of the interface, e.g., contact angle and radius of the interface. Then, the numerical shape is fitted to the experimental profile, taking the interfacial properties as adjustable parameters. The best fit identifies the true values of surface tension and contact angle. Comparison between the experimental and the theoretical profiles is performed using the theoretical image fitting analysis (TIFA) strategy. The new method, TIFA-axisymmetric interfaces (TIFA-AI), is applicable to any axisymmetric experimental configuration (with or without apex). The versatility and accuracy of TIFA-AI is shown by considering various configurations: liquid bridges, sessile and pendant drops, and liquid lenses.

  15. Verification and Validation of Numerical Models for Air/Water Flow on Coastal and Navigation Fluid-Structure Interaction Applications

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M.; Dimakopoulos, A.; DeLataillade, T.

    2015-12-01

    Performance analysis and optimization of coastal and navigation structures is becoming feasible due to recent improvements in numerical methods for multiphase flows and the steady increase in capacity and availability of high performance computing resources. Now that the concept of fully three-dimensional air/water flow modelling for real world engineering analysis is achieving acceptance by the wider engineering community, it is critical to expand careful comparative studies on verification,validation, benchmarking, and uncertainty quantification for the variety of competing numerical methods that are continuing to evolve. Furthermore, uncertainty still remains about the relevance of secondary processes such as surface tension, air compressibility, air entrainment, and solid phase (structure) modelling so that questions about continuum mechanical theory and mathematical analysis of multiphase flow are still required. Two of the most popular and practical numerical approaches for large-scale engineering analysis are the Volume-Of-Fluid (VOF) and Level Set (LS) approaches. In this work we will present a publically available verification and validation test set for air-water-structure interaction problems as well as computational and physical model results including a hybrid VOF-LS method, traditional VOF methods, and Smoothed Particle Hydrodynamics (SPH) results. The test set repository and test problem formats will also be presented in order to facilitate future comparative studies and reproduction of scientific results.

  16. The critical indices of the quark gluon bags with surface tension model with tricritical endpoint

    NASA Astrophysics Data System (ADS)

    Ivanytskyi, A. I.

    2012-04-01

    The critical indices α', β, γ' and δ of the quark gluon bags with surface tension model with the tricritical endpoint are calculated as functions of the usual parameters of this model and two newly introduces parameters (indices) in order to perform a thorough comparison with the critical exponents of other models. It is shown that for the newly introduced indices χ=0 and ξT⩽1 there is a branch of solutions for which the critical exponents of the present model and the statistical multifragmentation model coincide, otherwise these models have different critical exponents. The critical exponents α', β, γ' and δ of ordinary liquids and 3-dimensional Ising model are reproduced by several sets of the model parameters, but the resulting range of the Fisher exponent τ is rather narrow and lies between 20/11 and 2. The scaling relations for the found critical exponents are verified and it is demonstrated that for the standard definition of the index α' the Fisher and Griffiths scaling inequalities are not fulfilled for some values of the model parameters, whereas the Liberman scaling inequality is always obeyed. It is also shown that the specially defined index αs' recovers the scaling relations. A thorough analysis of the critical exponents obeying the scaling relations along with the condition αs'>-β is performed. The found solutions enable us to reproduce the critical exponents of the 3-dimensional O(4) spin model and to show that for this case the exponent τ falls almost in the same range of values as for the ordinary liquids.

  17. Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface.

    PubMed

    Levitas, Valery I; Javanbakht, Mahdi

    2010-10-15

    The Ginzburg-Landau theory for multivariant martensitic phase transformations is advanced in three directions: the potential is developed that introduces the surface tension at interfaces; a mixed term in gradient energy is introduced to control the martensite-martensite interface energy independent of that for austenite-martensite; and a noncontradictory expression for variable surface energy is suggested. The problems of surface-induced pretransformation, barrierless multivariant nucleation, and the growth of an embryo in a nanosize sample are solved to elucidate the effect of the above contributions. The obtained results represent an advanced model for coherent interface.

  18. Surface tension of natural silicate melts from 1,200-1,500 C and implications for melt structure

    NASA Technical Reports Server (NTRS)

    Walker, D.; Mullins, O., Jr.

    1981-01-01

    The surface tension between silicate liquid and gas is measured for four lava compositions (limburgite to andesite) from 1,200 to 1,500 C. It is noted that the magnitude of surface tension (gamma) is in the range 350-370 dynes/cm. Variations found in gamma as a function of liquid composition are small and have no obvious relation to liquid composition. Gamma is also found to vary little with furnace atmosphere - air, Ar, CO2, H2, CO and their mixtures. It is found that a relaxation time of hours to days, depending on temperature, is required before reproducible results can be obtained from originally crystalline starting material. The reproducible temperature dependence of gamma for complex silicate liquid solution is found to be small, positive, and a relatively simple function of liquid composition.

  19. Wetting Angles and Surface Tension of Ge(1-x)Si(x) Melts on Different Substrate Materials

    NASA Technical Reports Server (NTRS)

    Croell, A.; Kaiser, N.; Szofran, F. R.; Cobb, S. D.; Volz, M. P.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The wetting angles and the surface tension of Ge(1-x)Si(x) melts (0.02 less than x less than 0.13) have been measured on various substrate materials using the sessile drop technique. Fused quartz, sapphire, SiC, glassy carbon, pBN, AIN, and Si3N4 have been used as substrates. The highest and most stable wetting angles were found for pBN substrates with 164 +/- 8 deg., either under forming gas with an additional carbon getter in the system or under active vacuum. The surface tension measurements resulted in a value of +2.2 x 10(exp -3) N/m.at%Si for the concentration dependence delta(gamma)/(delta)C. For the composition range measured, the temperature dependence (delt)gamma/(delta)T showed values similar to those of pure Ge, on average -0.07 x 10(exp -3) N/mK.

  20. Growth of a Gas Bubble in a Supersaturated Liquid Under the Effect of Variant Cases of Surface Tension

    NASA Astrophysics Data System (ADS)

    Mohammadein, S. A.; Mohamed, K. G.

    In this paper, the growth of a gas bubble in a supersaturated liquid is discussed for a constant and variable cases of surface tension effect. The mathematical model is solved analytically by using the method of Plesset and Zwick18 after modified it. The growth process is affected by: diffusion coefficient D, Jacob number Ja, surface tension σ, adjustment factor b and void fraction ϕ0. The famous formula of Plesset and Zwick is produced as a special case of the results at some values of the adjustment factors. Moreover, for some values of the adjustment factors, good approximation is obtained when a comparison between our results and the result that produced by Hashemi et al., 9 who solved the problem with the method of combining variables.

  1. Phase diagram and surface tension of the hard-core attractive Yukawa model of variable range: Monte Carlo simulations.

    PubMed

    Duda, Yurko; Romero-Martínez, Ascención; Orea, Pedro

    2007-06-14

    The liquid-vapor phase diagram and surface tension for hard-core Yukawa potential with 4

  2. Wetting and Interfacial Tension Dynamics of Oil-Nanofluids-Surface Minerals System

    NASA Astrophysics Data System (ADS)

    Bai, L.; Li, C.; Darnault, C. J. G.; Korte, C.; Ladner, D.; Daigle, H.

    2015-12-01

    Among the techniques used in enhanced oil recovery (EOR), chemical injection involves the injection of surfactants to increase the oil mobility and decrease the interfacial tension (IFT). With the nanotechnology revolution, the use of nanoparticles has shown unique opportunities in petroleum engineering due to their physico-chemical properties. Our research examines the potential application of nanoparticles as a means of EOR by studying the influence of silicon oxide nanoparticles on the wettability and IFT of oil-nanofluids-surface systems. Batch studies were conducted to assess the stability of the nanoparticle suspensions of different concentrations (0, 0.001, 0.005, 0.01, 0.05 and 0.1 wt. %) in different reservoir conditions with and without the addition of surfactants (i.e. 5% brine, and Tween 20 at 0.5 and 2 cmc). Testing of oil-nanofluids and oil-nanofluids-minerals interactions was performed using crude oils from West Texas (light, API 40), Prudhoe Bay (medium, API 28), and Lloydminster (heavy, API 20). The dynamic behavior of IFT was measured using a pendant drop method. Results for 5% brine-nanoparticle systems indicated that 0.001 and 0.01 wt.% of nanoparticles contributed to a significant decrease of IFT for West Texas and Prudhoe Bay oils, while the highest decrease of IFT for Lloydminster was reported with 0.1 wt.% nanoparticles. IFT decrease was also enhanced by surfactant, and the addition of nanoparticles at 0.001 wt.% to surfactant resulted in significant decrease of IFT in most of the tested oil-nanofluid systems. The sessile drop method was used to measure the dynamic behavior of the contact angle of these oil droplets on minerals surface made of thin sections from Berea and Boise sandstone cores through a wetting test. Different nanofluid and surfactant concentrations were tested for the optimization of changes in wettability, which is a critical phase in assessing the behavior of nanofluids for optimal EOR with the selected crude oils.

  3. Cell-to-Cell Heterogeneity in Cortical Tension Specifies Curvature of Contact Surfaces in Caenorhabditis elegans Embryos

    PubMed Central

    Fujita, Masashi; Onami, Shuichi

    2012-01-01

    In the two-cell stage embryos of Caenorhabditis elegans, the contact surface of the two blastomeres forms a curve that bulges from the AB blastomere to the P1 blastomere. This curve is a consequence of the high intracellular hydrostatic pressure of AB compared with that of P1. However, the higher pressure in AB is intriguing because AB has a larger volume than P1. In soap bubbles, which are a widely used model of cell shape, a larger bubble has lower pressure than a smaller bubble. Here, we reveal that the higher pressure in AB is mediated by its higher cortical tension. The cell fusion experiments confirmed that the curvature of the contact surface is related to the pressure difference between the cells. Chemical and genetic interferences showed that the pressure difference is mediated by actomyosin. Fluorescence imaging indicated that non-muscle myosin is enriched in the AB cortex. The cell killing experiments provided evidence that AB but not P1 is responsible for the pressure difference. Computer simulation clarified that the cell-to-cell heterogeneity of cortical tensions is indispensable for explaining the pressure difference. This study demonstrates that heterogeneity in surface tension results in significant deviations of cell behavior compared to simple soap bubble models, and thus must be taken into consideration in understanding cell shape within embryos. PMID:22253922

  4. Thermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature.

    PubMed

    Karapetsas, George; Sahu, Kirti Chandra; Sefiane, Khellil; Matar, Omar K

    2014-04-22

    We study the thermocapillary-driven spreading of a droplet on a nonuniformly heated substrate for fluids associated with a non-monotonic dependence of the surface tension on temperature. We use lubrication theory to derive an evolution equation for the interface that accounts for capillarity and thermocapillarity. The contact line singularity is relieved by using a slip model and a Cox-Voinov relation; the latter features equilibrium contact angles that vary depending on the substrate wettability, which, in turn, is linked to the local temperature. We simulate the spreading of droplets of fluids whose surface tension-temperature curves exhibit a turning point. For cases wherein these turning points correspond to minima, and when these minima are located within the droplet, then thermocapillary stresses drive rapid spreading away from the minima. This gives rise to a significant acceleration of the spreading whose characteristics resemble those associated with the "superspreading" of droplets on hydrophobic substrates. No such behavior is observed for cases in which the turning point corresponds to a surface tension maximum.

  5. Quantitative analysis of surface tension of liquid nano-film with thickness: Two stage stability mechanism, molecular dynamics and thermodynamics approach

    NASA Astrophysics Data System (ADS)

    Peng, Tiefeng; Li, Qibin; Chen, Jie; Gao, Xuechao

    2016-11-01

    The effects of thickness on surface tension of aqueous nano-films under the same lateral size were studied by molecular dynamics (MD) simulations. The surface tension was found to decrease with decreasing thickness when film thickness is below 1.5 nm. Between 4 and 1.5 nm, the trend is for the surface tension to decrease but this is not as significant as between 1.5 and 1.2 nm. For the surface tension of salt nano-films, with low temperatures resulting in monotonous decreasing with thickness, while high temperature (e.g. 479 K) exhibited a first increase then decrease for surface tension with thickness. Filippini et al. (2014) suggested that surface tension is constant with the thickness as long as the sheet remains in one piece, also the decrease observed and as proposed by Werth et al. (2013) is not due to a confinement effect on Lennard-Jones systems. However, in this study for aqueous nano-films, a two stage mechanism was proposed to interpret this effect, for which the stability was classified according to thickness range and validated by disjoining pressure. The results are important in describing the role of surface tension in determining the behaviour of disjoining pressure.

  6. Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO3 with different polar surface tension

    NASA Astrophysics Data System (ADS)

    Su, Jun; Zhang, Jun

    2016-12-01

    In this work, three types of coupling agents: isopropyl trioleic titanate (NDZ105), vinyltriethoxysilane (SG-Si151), 3-aminopropyltriethoxysilane (KH550) were applied to modify the surface tension of Barium titanate (BaTiO3) particles. The Fourier transform infrared (FT-IR) spectra confirm the chemical adherence of coupling agents to the particle surface. The long hydrocarbon chains in NDZ105 can cover the particle surface and reduce the polar surface tension of BaTiO3 from 37.53 mJ/m2 to 7.51 mJ/m2, turning it from hydrophilic to oleophilic properties. The short and non-polar vinyl groups in SG-Si151 does not influence the surface tension of BaTiO3, but make BaTiO3 have both hydrophilic and oleophilic properties. The polar amino in KH550 can keep BaTiO3 still with hydrophilic properties. It is found that SG-Si151 modified BaTiO3 has the lowest interaction with HDPE matrix, lowering the storage modulus of HDPE composites to the greatest extent. As for mechanical properties, the polar amino groups in KH550 on BaTiO3 surface can improve the adhesion of BaTiO3 with HDPE matrix, which increases the elongation at break of HDPE composites to the greatest extent. In terms of electrical properties, the polar amino groups on surface of BaTiO3 can boost the dielectric properties of HDPE/BaTiO3 composites and decrease the volume resistivity of HDPE/BaTiO3 composites. The aim of this study is to investigate how functional groups affect the rheological, mechanical and electrical properties of HDPE composites and to select a coupling agent to produce HDPE/BaTiO3 composites with low dielectric loss, high dielectric constant and elongation at break.

  7. The influence of electric fields and surface tension on Kelvin-Helmholtz instability in two-dimensional jets

    NASA Astrophysics Data System (ADS)

    Grandison, Scott; Papageorgiou, Demetrios T.; vanden-Broeck, Jean-Marc

    2012-02-01

    We consider nonlinear aspects of the flow of an inviscid two-dimensional jet into a second immiscible fluid of different density and unbounded extent. Velocity jumps are supported at the interface, and the flow is susceptible to the Kelvin-Helmholtz instability. We investigate theoretically the effects of horizontal electric fields and surface tension on the nonlinear evolution of the jet. This is accomplished by developing a long-wave matched asymptotic analysis that incorporates the influence of the outer regions on the dynamics of the jet. The result is a coupled system of long-wave nonlinear, nonlocal evolution equations governing the interfacial amplitude and corresponding horizontal velocity, for symmetric interfacial deformations. The theory allows for amplitudes that scale with the undisturbed jet thickness and is therefore capable of predicting singular events such as jet pinching. In the absence of surface tension, a sufficiently strong electric field completely stabilizes (linearly) the Kelvin-Helmholtz instability at all wavelengths by the introduction of a dispersive regularization of a nonlocal origin. The dispersion relation has the same functional form as the destabilizing Kelvin-Helmholtz terms, but is of a different sign. If the electric field is weak or absent, then surface tension is included to regularize Kelvin-Helmholtz instability and to provide a well-posed nonlinear problem. We address the nonlinear problems numerically using spectral methods and establish two distinct dynamical behaviors. In cases where the linear theory predicts dispersive regularization (whether surface tension is present or not), then relatively large initial conditions induce a nonlinear flow that is oscillatory in time (in fact quasi-periodic) with a basic oscillation predicted well by linear theory and a second nonlinearly induced lower frequency that is responsible for quasi-periodic modulations of the spatio-temporal dynamics. If the parameters are chosen so that

  8. Molecular dynamics study of the molecular weight dependence of surface tensions of normal alkanes and methyl methacrylate oligomers.

    PubMed

    Li, Chunli; Choi, Phillip

    2006-04-06

    Surface tensions (gamma) of normal alkanes and methyl methacrylate (MMA) oligomers at various molecular weights in the low molecular weight range were computed using a newly proposed molecular dynamics (MD) simulation strategy which was developed based on the definition of gamma = ( partial differential U/ partial differential sigma)n,V,S. The MD simulations, even with the use of a generic force field, reproduced the experimentally observed molecular weight dependence of gamma (i.e., gamma proportional Mn(-2/3), where Mn is the number-average molecular weight) for both series of oligomers. Analysis of the data reveals that solvent accessible surface area, one of the key input variables used for the calculation of gamma, exhibits an Mn(2/3) (rather than Mn(1)) dependence. The reason for such dependence is that solvent accessible surface area formed by the chainlike small molecules depends, to a larger extent, on their orientations rather than their size. However, this is not the case for high molecular weight molecules as solvent accessible surface area of such surfaces are determined by the orientations of their segments which are determined by the conformations of the molecules. This may explain why surface tension of polymers experimentally exhibits an Mn(-1) dependence. It is inferred that the corresponding molecular weight dependence of the entropy changes associated with molecules in the low and high molecular weight ranges would be different.

  9. Influence of breathing route on upper airway lining liquid surface tension in humans

    PubMed Central

    Verma, Manisha; Seto-Poon, Margaret; Wheatley, John R; Amis, Terence C; Kirkness, Jason P

    2006-01-01

    We have recently demonstrated that the severity of sleep-disordered breathing in obstructive sleep apnoea hypopnoea syndrome (OSAHS) can be reduced by lowering the surface tension (γ) of the upper airway lining liquid (UAL). Morning xerostomia (related to oral breathing during sleep) is reported by most OSAHS patients. In the present study we examine relationships between breathing route, oral mucosal ‘wetness’ and the γ of UAL. We studied eight healthy subjects (age, 25 ± 5 years [mean ± s.d.]; body-mass index, 23 ± 2 kg m−2) during a 120 min challenge of both nasal-only breathing (mouth taped) and oral-only breathing (nose clip), each on a separate day (randomized). Both oral mucosal ‘wetness’ (5 s contact gravimetric absorbent paper strip method) and the γ (‘pull-off’ force technique) of 0.2 μl samples of UAL obtained from the posterior pharyngeal wall were measured at 15 min intervals (mouth tape removed and replaced as required). Upper airway mucosal ‘wetness’ increased during 120 min of nasal breathing from 4.0 ± 0.4 (mean ± s.e.m.) to 5.3 ± 0.3 μl (5 s)−1 but decreased from 4.5 ± 0.4 to 0.1 ± 0.2 μl (5 s)−1 with oral breathing (both P < 0.001, repeated-measures ANOVA, Tukey's multiple comparison test, post hoc test). Concurrently, the γ of UAL decreased from 59.3 ± 2.2 to 51.8 ± 0.98 mN m−1 with nasal breathing but increased from 64.4 ± 2.7 to 77.4 ± 1.1 mN m−1 with oral breathing (P < 0.001). For the group and all conditions studied, γ of UAL values strongly correlated with upper airway mucosal ‘wetness’ (correlation coefficient, r2=−0.34, P < 0.001; linear regression). We conclude that oral breathing increases and nasal breathing decreases the γ of UAL in healthy subjects during wakefulness. We speculate that nasal breathing in OSAHS patients during sleep may promote a low γ of UAL that may contribute to reducing the severity of sleep-disordered breathing. PMID:16690717

  10. Effect of surface tension on self-termination in Au tip fabrication for tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chaunchaiyakul, Songpol; Yano, Takeshi; Krukowski, Pawel; Kuwahara, Yuji

    2016-09-01

    The effect of surface tension on the fabrication of Au tips was investigated. When using a 12 M HCl aqueous solution, the etching process did not consistently self-terminate after the lower part of the wire dropped, resulting in the poor reproducibility of the tip sharpness. However, using an ethanolic solution of 12 mol/l HCl, a self-terminating etching process was always observed, resulting in the improved reproducibility of sharp tips. We attribute this to the reduced surface compared to that of aqueous HCl. The obtained tips were used in tip-enhanced Raman spectroscopy experiments, in which significant signal enhancement was observed.

  11. Surface Tension and Viscosity of SCN and SCN-acetone Alloys at Melting Points and Higher Temperatures Using Surface Light Scattering Spectrometer

    NASA Technical Reports Server (NTRS)

    Tin, Padetha; deGroh, Henry C., III.

    2003-01-01

    Succinonitrile has been and is being used extensively in NASA's Microgravity Materials Science and Fluid Physics programs and as well as in several ground-based and microgravity studies including the Isothermal Dendritic Growth Experiment (IDGE). Succinonitrile (SCN) is useful as a model for the study of metal solidification, although it is an organic material, it has a BCC crystal structure and solidifies dendriticly like a metal. It is also transparent and has a low melting point (58.08 C). Previous measurements of succinonitrile (SCN) and alloys of succinonitrile and acetone surface tensions are extremely limited. Using the Surface Light Scattering technique we have determined non invasively, the surface tension and viscosity of SCN and SCN-Acetone Alloys at different temperatures. This relatively new and unique technique has several advantages over the classical methods such as, it is non invasive, has good accuracy and measures the surface tension and viscosity simultaneously. The accuracy of interfacial energy values obtained from this technique is better than 2% and viscosity about 10 %. Succinonitrile and succinonitrile-acetone alloys are well-established model materials with several essential physical properties accurately known - except the liquid/vapor surface tension at different elevated temperatures. We will be presenting the experimentally determined liquid/vapor surface energy and liquid viscosity of succinonitrile and succinonitrile-acetone alloys in the temperature range from their melting point to around 100 C using this non-invasive technique. We will also discuss about the measurement technique and new developments of the Surface Light Scattering Spectrometer.

  12. Calculation of the surface tension of cyclic and aromatic hydrocarbons from Monte Carlo simulations using an anisotropic united atom model (AUA).

    PubMed

    Biscay, F; Ghoufi, A; Lachet, V; Malfreyt, P

    2009-08-07

    We report the calculation of the surface tension of cycloalkanes and aromatics by direct two-phase MC simulations using an anisotropic united atom model (AUA). In the case of aromatics, the polar version of the AUA-4 (AUA 9-sites) model is used. A comparison with the nonpolar models is carried out on the surface tension of benzene. The surface tension is calculated from different routes: the mechanical route using the Irving and Kirkwood (IK) and Kirkwood-Buff (KB) expressions; the thermodynamic route by using the test-area (TA) method. The different operational expressions of these definitions are presented with those of their long range corrections. The AUA potential allows to reproduce very well the dependence of the surface tension with respect to the temperature for cyclopentane, cyclohexane, benzene and toluene.

  13. Amyloid fibril formation at a uniformly sheared air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Hirsa, Amir

    2013-11-01

    Amyloid fibril formation is a process by which protein molecules in solution form nuclei and aggregate into fibrils. Amyloid fibrils have long been associated with several common diseases such as Parkinson's disease and Alzheimer's. More recently, fibril protein deposition has been implicated in uncommon disorders leading to the failure of various organs including the kidneys, heart, and liver. Fibrillization can also play a detrimental role in biotherapeutic production. Results from previous studies show that a hydrophobic interface, such air/water, can accelerate fibrillization. Studies also show that agitation accelerates fibrillization. When attempting to elucidate fundamental mechanisms of fibrillization and distinguish the effects of interfaces and flow, it can be helpful to experiment with uniformly sheared interfaces. A new Taylor-Couette device is introduced for in situ, real-time high resolution microscopy. With a sub-millimeter annular gap, surface tension acts as the channel floor, permitting a stable meniscus to be placed arbitrarily close to a microscope to study amyloid fibril formation over long periods.

  14. Effect of surface tension, viscosity, and process conditions on polymer morphology deposited at the liquid-vapor interface.

    PubMed

    Haller, Patrick D; Bradley, Laura C; Gupta, Malancha

    2013-09-17

    We have observed that the vapor-phase deposition of polymers onto liquid substrates can result in the formation of polymer films or particles at the liquid-vapor interface. In this study, we demonstrate the relationship between the polymer morphology at the liquid-vapor interface and the surface tension interaction between the liquid and polymer, the liquid viscosity, the deposition rate, and the deposition time. We show that the thermodynamically stable morphology is determined by the surface tension interaction between the liquid and the polymer. Stable polymer films form when it is energetically favorable for the polymer to spread over the surface of the liquid, whereas polymer particles form when it is energetically favorable for the polymer to aggregate. For systems that do not strongly favor spreading or aggregation, we observe that the initial morphology depends on the deposition rate. Particles form at low deposition rates, whereas unstable films form at high deposition rates. We also observe a transition from particle formation to unstable film formation when we increase the viscosity of the liquid or increase the deposition time. Our results provide a fundamental understanding about polymer growth at the liquid-vapor interface and can offer insight into the growth of other materials on liquid surfaces. The ability to systematically tune morphology can enable the production of particles for applications in photonics, electronics, and drug delivery and films for applications in sensing and separations.

  15. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: The effect of anisotropic surface tension on the morphological stability of planar interface during directional solidification

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Wen; Lan, Man; Yuan, Lin; Wang, Yu-Yan; Wang, Zi-Dong; Xu, Jian-Jun

    2009-04-01

    This paper considers the effect of the anisotropic surface tension on the morphological stability of the planar interface during directional solidification. When the expression exhibiting the four-fold symmetry is included, the modified absolute stability criterion is obtained by employing the multi-variable expansion method. The linear stability analysis reveals that for the given temperature gradient, as the anisotropic surface tension parameter increases, the stability zone tends to decrease.

  16. Molecular dynamics simulations of the liquid surface of the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide: structure and surface tension.

    PubMed

    Sanmartín Pensado, Alfonso; Malfreyt, Patrice; Pádua, Agílio A H

    2009-11-05

    Molecular dynamics simulations of the liquid-vacuum interface of the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide were performed with an all-atom force field. Structural properties of the interface, such as orientational ordering and density profiles, were calculated. The hexyl side chain of the cation is likely to protrude outward from the surface layer. There is a region with enhanced density from that of the bulk where the cation preferably slants with the imidazolium ring tending to be perpendicular to the interface. The surface tensions are calculated using mechanical and thermodynamic definitions via profiles along the direction normal to the interface. We also discuss the different contributions to the surface tension due to the repulsion-dispersion and electrostatic interactions. The use of local pressure profiles provides an explanation to the systematic problems encountered by several researchers to obtain accurate values of the surface tension at low temperature. Even when macroscopically the system looks in equilibrium, locally this is not accomplished.

  17. Prediction of the temperature dependence of the surface tension of SO2, N2, O2, and Ar by Monte Carlo molecular simulations.

    PubMed

    Neyt, Jean-Claude; Wender, Aurélie; Lachet, Véronique; Malfreyt, Patrice

    2011-08-04

    We report Monte Carlo simulations of the liquid-vapor interface of SO(2), O(2), N(2), and Ar to reproduce the dependence of the surface tension with the temperature. Whereas the coexisting densities, critical temperature, density, and pressure are very well reproduced by the two-phase simulations showing the same accuracy as the calculations performed using the Gibbs ensemble Monte Carlo technique (GEMC), the performance of the prediction of the variation of the surface tension with the temperature depends on the magnitude of the electrostatic and repulsive-dispersive interactions. The surface tension of SO(2) is very well reproduced, whereas the prediction of this property is less satisfactory for O(2) and N(2), for which the average intermolecular electrostatic interactions are several orders smaller than the dispersion interactions. For argon, we observe significant deviations from experiments. The representation of the surface tension of argon in reduced units shows that our calculations are in line with the existing surface tensions of the Lennard-Jones fluid in the literature. This underlines the difficulty of reproducing the temperature dependence of the surface tension of argon with interactions only modeled by the Lennard-Jones pair potential.

  18. Butler-Sugimoto monomolecular bilayer interface model: the effect of oxygen on the surface tension of a liquid metal and its wetting of a ceramic.

    PubMed

    Yen, Pei-Shan; Datta, Ravindra

    2014-07-15

    The influence of oxygen on liquid-gas surface tension of molten metals has been well-investigated experimentally and modeled theoretically via the Szyszkowski equation, derivable from the Butler molecular monolayer interface model. However, there is no corresponding model describing the experimentally observed profound effect of oxygen partial pressure on solid-liquid surface tension as well as on contact angle of molten metals on ceramic substrates. Here, we utilize the Butler-Sugimoto thermodynamic approach based on a monomolecular bilayer interface model to investigate the effect of oxygen partial pressure on liquid-gas as well as solid-liquid surface tension of molten Cu/Al2O3 and molten Ag/Al2O3 systems. It is shown that both liquid-gas and solid-liquid surface tension are a strong function of oxygen activity in the melt, which, in turn, depends on gas-phase oxygen partial pressure, in conformity with experiments. The change in solid-liquid surface tension and wetting is also greatly affected by the change in liquid-gas surface tension. This improved understanding is of practical significance in many applications.

  19. Studies on monolayers. Part 1. Surface tension and absorption spectroscopic measurements of monolayers of surface-active azo and stilbene dyes

    SciTech Connect

    Heesemann, J.

    1980-03-26

    In order to develop new molecules as function components of monolayer assemblies, a series of 9 surface-active azo and stilbene compounds are synthesized. Their monolayer properties at the air-water interface are studied by surface pressure-surface area measurements and spectroscopic techniques. The results show that small changes in the molecular structure of the surfactants (such as, length of the fatty acid chain and type of the chromphore) have an immense influence on the monolayer properties. For monolayers of compounds I and III-VIII, van der Walls-like isotherms are obtained, which show a liquid expanded state, a phase transition region, and a condensed state. From monolayer absorbance spectra it is found that in the liquid expanded state at 100 to 110 sq angstroms/molecule the chromphores lie flatly on the water surface, forming monomers. The phase transition region of the isotherms can be assigned to a change of orientation of the chromophore axis (horizontal to vertical) and an aggregation process of the chromophores (monomers to H aggregates). 20 references.

  20. The impact of four ethylene oxide-propylene oxide block copolymers on the surface tension of dispersions of soils and minerals in water

    NASA Astrophysics Data System (ADS)

    Hagenhoff, Kerstin; Dong, Jingfeng; Chowdhry, Babur; Torres, Luis; Leharne, Stephen

    A comprehensive series of aqueous solutions of four ethylene oxide-propylene oxide-ethylene oxide block copolymers (EPE) of varying concentrations have been prepared. The EPE molecules are amphiphilic with the P blocks providing the hydrophobic segment of the molecules and the E blocks providing the hydrophilic parts. The surface tension of these solutions has been measured and compared with the surface tension of dispersions of soils (a clay soil and a sandy soil) and minerals (quartz-silica sand, bentonite and kaolinite) in the same aqueous solutions. It is observed that all the block copolymers reduce the surface tension of water; the extent to which it is reduced is determined by the surface activity of the EPE block copolymer, which in turn is related to the balance between the sizes of the P and E blocks. It is further observed that the in the presence of soil the surface tension increases as a result of block copolymer adsorption to the soil/water interface. The extent of adsorption appears to be related to the texture of the soil - the clay soil used in this investigation adsorbs more block copolymer than the sandy soil. In the presence of the mineral phases the surface tension reductions are variable. With bentonite the EPE block copolymers are completely adsorbed at low EPE concentrations as shown by surface tension values that are the same as those measured for pure water. Adsorption to kaolinite is limited and once the adsorption sites have been filled the surface tension of the aqueous phase is approaches the surface tension of the same solution without the presence of bentonite. On the other hand the silica sand is a poor adsorbent. Adsorption to the mineral phases is also dependent upon the relative hydrophobicity of the block copolymer. The more hydrophobic (as inferred by the critical micelle concentration) the copolymer the less readily it is adsorbed by the mineral phases. Thus relatively hydrophobic EPE block copolymers produce a relatively

  1. [Study of the surface tear tension and evaluation of its importance for the retinal physiology and pathology in contact correction and in adaptation to soft contact lenses].

    PubMed

    Cherepnin, A I; Smoliakova, G P; Sorokin, E L

    2003-01-01

    The surface lachrymal-fluid (LF) tension was investigated by teardrop dissection in 115 patients with myopia before they were prescribed soft contact lenses (SCL). Such tension was found to be of clinical importance for the development of SCL adaptation disorders. A longer adaptation period in patients with myopia was associated with a low surface LF tension. A high surface LF tension concurrent with the teardrop dissection mode of the destruction type was typical of the pathological nature of SCL adaptation (12.1% of patients). The obtained data are needed to detect timely the risk of dysadaptation disorders and corneal complications before SCL prescription for the purpose of undertaking the pathogenetically substantiated medication to prevent such complications.

  2. An apparatus with a horizontal capillary tube intended for measurement of the surface tension of supercooled liquids

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Hošek, Jan; Hykl, Jiří; Hrubý, Jan

    2015-05-01

    New experimental apparatus for measurement of the surface tension of liquids under the metastable supercooled state has been designed and assembled in the study. The measuring technique is similar to the method employed by P.T. Hacker [NACA TN 2510] in 1951. A short liquid thread of the liquid sample was sucked inside a horizontal capillary tube partly placed in a temperature-controlled glass chamber. One end of the capillary tube was connected to a setup with inert gas which allowed for precise tuning of the gas overpressure in order of hundreds of Pa. The open end of the capillary tube was precisely grinded and polished before the measurement in order to assure planarity and perpendicularity of the outer surface. The liquid meniscus at the open end was illuminated by a laser beam and observed by a digital camera. Application of an increasing overpressure of the inert gas at the inner meniscus of the liquid thread caused variation of the outer meniscus such that it gradually changed from concave to flat and subsequently convex shape. The surface tension at the temperature of the inner meniscus could be evaluated from the overpressure corresponding to exactly planar outer meniscus. Detailed description of the new setup together with results of the preliminary tests is provided in the study.

  3. Front-surface fluorometry with fura-2 and effects of nitroglycerin on cytosolic calcium concentrations and on tension in the coronary artery of the pig.

    PubMed Central

    Abe, S.; Kanaide, H.; Nakamura, M.

    1990-01-01

    1. By use of front-surface fluorometry and fura-2-loaded strips of the coronary artery of the pig, the effects of nitroglycerin (NG) on cytosolic Ca2+ concentrations ([Ca2+]i) and on tension development were measured simultaneously. 2. Both high K+ depolarization and histamine increased [Ca2+]i and tension in a concentration-dependent manner. However, the tension development in relation to the [Ca2+]i increase ([Ca2+]i-tension relation) observed with histamine was much greater than that observed with K+ depolarization. 3. NG reduced in a concentration-dependent manner both [Ca2+]i and tension, irrespective of whether the vascular strips were in a resting state or during exposure to high K+ or to histamine stimulation. However, the extent of reduction in tension (relaxation) was greater than that expected from the reduction in [Ca2+]i based on the [Ca2+]i-tension relationship observed with K(+)-depolarization. 4. In the absence of extracellular Ca2+, NG depleted stored Ca2+ and also inhibited Ca2+ release from histamine-sensitive stores, but had no effect on the caffeine-sensitive stores. NG inhibited the caffeine-induced tension development with no change in [Ca2+]i. 5. We suggest that NG relaxes the coronary artery of the pig by reducing [Ca2+]i and also by directly controlling contractile elements through second messengers not related to changes in [Ca2+]i. PMID:2127551

  4. Surface tension of dilute alcohol-aqueous binary fluids: n-Butanol/water, n-Pentanol/water, and n-Hexanol/water solutions

    NASA Astrophysics Data System (ADS)

    Cheng, Kuok Kong; Park, Chanwoo

    2017-01-01

    Surface tension of pure fluids, inherently decreasing with regard to temperature, creates a thermo-capillary-driven (Marangoni) flow moving away from a hot surface. It has been known that few high-carbon alcohol-aqueous solutions exhibit an opposite behavior of the surface tension increasing with regard to temperature, such that the Marangoni flow moves towards the hot surface (self-rewetting effect). We report the surface tensions of three dilute aqueous solutions of n-Butanol, n-Pentanol and n-Hexanol as self-rewetting fluids measured for ranges of alcohol concentration (within solubility limits) and fluid temperatures (25-85 °C). A maximum bubble pressure method using a leak-tight setup was used to measure the surface tension without evaporation losses of volatile components. It was found from this study that the aqueous solutions with higher-carbon alcohols exhibit a weak self-rewetting behavior, such that the surface tensions remain constant or slightly increases above about 60 °C. These results greatly differ from the previously reported results showing a strong self-rewetting behavior, which is attributed to the measurement errors associated with the evaporation losses of test fluids during open-system experiments.

  5. Bubble contraction in free-boundary Hele-Shaw flow with surface tension and kinetic undercooling regularisation

    NASA Astrophysics Data System (ADS)

    Dallaston, Michael; McCue, Scott

    2012-11-01

    When an inviscid bubble expands into a viscous fluid in a Hele-Shaw cell, the bubble boundary is unstable, in general forming long fingers (the Saffman-Taylor instability). In order to make the problem well-posed, a regularising boundary effect must be included. The most widely studied of these are surface tension, which penalises high curvatures, and kinetic undercooling, which penalises high velocities. Both these effects act as a stabilising influence on the free boundary. Less attention has been paid to the case of contracting bubbles, which shrink to a single point (or points) in finite time. In this case, the two effects are in competition, as surface tension stabilises the boundary, while kinetic undercooling destabilises it. This leads to bifurcation behaviour in the asymptotic (near-extinction) shape of the bubble as the relative strengths of the two effects are varied. In particular, there is a critical range of parameter values for which both circular and slit-type bubbles are stable, with a third (unstable) oval-type shape also present. We discuss some numerical and analytic techniques for solving the full free boundary problem and for exploring this interesting extinction behaviour.

  6. Fluidic assisted thin-film device heterogeneous integration: Surface tension as driving force and magnetic as guiding force

    NASA Astrophysics Data System (ADS)

    Xiao, Jing; Ray Chaudhuri, Ritesh; Seo, Sang-Woo

    2015-10-01

    This paper demonstrates a fluidic assisted heterogeneous integration of optical thin-film device using surface tension as driving force and magnetic field as guiding force. Thin-film devices can be auto-aligned and integrated using surface tension onto their predesigned locations on a host substrate due to minimization of interfacial energy. By inserting a layer of nickel (Ni) into device metallization step, magnetic force was employed to increase mobility and contact probability of thin-film devices to their binding sites on the host substrate. A thin-film gallium arsenide (GaAs) inverted Metal-Semiconductor-Metal (MSM) photodetector (PD) has been successfully integrated onto a silicon host substrate with the proposed integration approach. The influence of the nickel layer to the PD performance was also investigated. Due to the self-assembly capability and thin-film format of the device, the proposed method has potential for wafer-scale implementation and is compatible with the matured silicon-based CMOS technology. This is a critical step towards a scalable manufacturing process to create advanced photonic/optoelectronic systems that are low-cost, compact, high performance, and complex in multi-material functionality.

  7. Buoyancy-driven detachment of a wall-bound pendant drop: interface shape at pinchoff and nonequilibrium surface tension.

    PubMed

    Lamorgese, A; Mauri, R

    2015-09-01

    We present numerical results from phase-field simulations of the buoyancy-driven detachment of an isolated, wall-bound pendant emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. Our theoretical approach follows a diffuse-interface model for partially miscible binary mixtures which has been extended to include the influence of static contact angles other than 90^{∘}, based on a Hermite interpolation formulation of the Cahn boundary condition as first proposed by Jacqmin [J. Fluid Mech. 402, 57 (2000)JFLSA70022-112010.1017/S0022112099006874]. In a previous work, this model has been successfully employed for simulating triphase contact line problems in stable emulsions with nearly immiscible components, and, in particular, applied to the determination of critical Bond numbers for buoyancy-driven detachment as a function of static contact angle. Herein, the shapes of interfaces at pinchoff are investigated as a function of static contact angle and distance to the critical condition. Furthermore, we show numerical results on the nonequilibrium surface tension that help to explain the discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart based on a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we show the influence of static contact angle and distance to the critical condition on the temporal evolution of the minimum neck radius in the necking regime of drop detachment.

  8. A balanced-force finite-element method for surface-tension-driven interfacial flows using interface-capturing approaches

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Gomes, Jefferson; Pain, Christopher; Matar, Omar

    2013-11-01

    Interfacial flows with surface tension are often found in industrial and practical engineering applications, including bubbles, droplets, liquid film and jets. Accurate modelling of such flows is challenging due to their highly complex dynamics, which often involve changes of interfacial topology. We present a balanced-force finite-element method with adaptive unstructured meshes for interfacial flows. The method uses a mixed control-volume and finite element formulation, which ensures the surface tension forces, and the resulting pressure gradients, are exactly balanced, minimising the spurious velocities often found in numerical simulations of such flows. A volume-of-fluid-type method is employed for interface capturing based on a compressive control-volume advection method, and second-order finite element methods. A distance function is reconstructed from the volume fraction on the unstructured meshes, which provides accurate estimation of the curvature. Numerical examples of an equilibrium drop and dynamics of bubbles (droplets) are presented to demonstrate the capability of this method.

  9. Conditions necessary for capillary hysteresis in porous media: Tests of grain-size and surface tension influences

    SciTech Connect

    Tokunaga, Tetsu K.; Olson, Keith R.; Wan, Jiamin

    2004-03-12

    Hysteresis in the relation between water saturation and matric potential is generally regarded as a basic aspect of unsaturated porous media. However, the nature of an upper length scale limit for saturation hysteresis has not been previously addressed. Since hysteresis depends on whether or not capillary rise occurs at the grain scale, this criterion was used to predict required combinations of grain size, surface tension, fluid-fluid density differences, and acceleration in monodisperse systems. The Haines number (Ha), composed of the aforementioned variables, is proposed as a dimensionless number useful for separating hysteretic (Ha < 15) versus nonhysteretic (Ha > 15) behavior. Vanishing of hysteresis was predicted to occur for grain sizes greater than 10.4 +- 0.5 mm, for water-air systems under the acceleration of ordinary gravity, based on Miller-Miller scaling and Haines' original model for hysteresis. Disappearance of hysteresis was tested through measurements of drainage and wetting curves of sands and gravels and occurs between grain sizes of 10 and 14 mm (standard conditions). The influence of surface tension was tested through measurements of moisture retention in 7 mm gravel, without and with a surfactant (sodium dodecylbenzenesulfonate (SDBS)). The ordinary water system (Ha = 7) exhibited hysteresis, while the SDBS system (Ha = 18) did not. The experiments completed in this study indicate that hysteresis in moisture retention relations has an upper limit at Ha = 16 +- 2 and show that hysteresis is not a fundamental feature of unsaturated porous media.

  10. The surface tension of a solid at the solid-vacuum interface, an evaluation from adsorption and wall potential calculations.

    PubMed

    Jakubov, Tim S; Mainwaring, David E

    2007-03-15

    A method for the evaluation of quantities that are experimentally inaccessible such as the surface tension at the solid-vacuum interface and the superficial tension of the fluid in contact with the solid is presented. The approach is based on consideration of an equilibrium of a fluid in solid capillary wherein a balance between surface and capillary forces has been replaced by conceptual alternative interfacial and centrifugal forces. This approach involves the simultaneous numerical solution one the special forms of the Gibbs equation for solid-fluid interface and a generalized Kelvin equation derived earlier. The latter equation takes into account interactions between the solid thick cylindrical wall and confined fluid, this body-body interaction potential has been primarily calculated using the Lennard-Jones (6-12) expression for the atom-atom pair potentials and expressed by hypergeometrical functions having good convergences. All numerical calculations shown here have been performed for the model graphite-argon system at 90 K. Finally, an analysis of the accuracy of the proposed method is considered.

  11. Survismeter--type I and II for surface tension, viscosity measurements of liquids for academic, and research and development studies.

    PubMed

    Singh, Man

    2006-06-30

    For centuries surface tension (gamma) and viscosity (eta) data have been measured with individual instruments consuming much time and materials. Thus the two different types of survismeters have been designed and made of borosil glass material for surface tension and viscosity data to rationalize frictional and cohesive forces, respectively. Friccohesity (sigma (sm(-1), second per meter)) is derived from Fric of frictional and cohesity of cohesive forces of the liquid respectively, and denoted by rational coefficient a eta/gamma (sigma). The values of the friccohesity are correlated to the dipole moment of liquids and their plot gives a standard calibration curve along with an equation of the curve with definite values of the coefficients, the friccohesity values are put on the calibration curve to retrieve the dipole moment values. Here, the sigma values for each of dimethylformamide, dimethylsulfoxide and acetronitrile solvents along with their 0.05, 0.10 and 0.20 mol kg(-1) aqueous solutions, respectively, were determined at 293.15K and plotted against their dipole moment values for standard calibration curve. The range of the dipole moment values for calibration curve is pre-decided and the sigma values for homogenous solutions of compositions below their saturation point can be measured with +/-1 x 10(-5)sm(-1).

  12. Surface tension and the Mori-Tanaka theory of non-dilute soft composite solids

    NASA Astrophysics Data System (ADS)

    Mancarella, Francesco; Style, Robert W.; Wettlaufer, John S.

    2016-05-01

    Eshelby's theory is the foundation of composite mechanics, allowing calculation of the effective elastic moduli of composites from a knowledge of their microstructure. However, it ignores interfacial stress and only applies to very dilute composites-i.e. where any inclusions are widely spaced apart. Here, within the framework of the Mori-Tanaka multiphase approximation scheme, we extend Eshelby's theory to treat a composite with interfacial stress in the non-dilute limit. In particular, we calculate the elastic moduli of composites comprised of a compliant, elastic solid hosting a non-dilute distribution of identical liquid droplets. The composite stiffness depends strongly on the ratio of the droplet size, R, to an elastocapillary lengthscale, L. Interfacial tension substantially impacts the effective elastic moduli of the composite when R / L ≲100 . When R<3L/2 (R=3L/2) liquid inclusions stiffen (cloak the far-field signature of) the solid.

  13. Competition between line tension and curvature stabilizes modulated phase patterns on the surface of giant unilamellar vesicles: A simulation study

    NASA Astrophysics Data System (ADS)

    Amazon, Jonathan J.; Goh, Shih Lin; Feigenson, Gerald W.

    2013-02-01

    When prepared in the liquid-liquid coexistence region, the four-component lipid system distearoyl-phospha-tidylcholine-dioleoyl-phosphatidylcholine-palmitoyl,oleoyl-phosphatidylcholine-cholesterol (DSPC-DOPC-POPC-Cholesterol), with certain ratios of DOPC and POPC, shows striking modulated phase patterns on the surface of giant unilamellar vesicles (GUVs). In this simulation study, we show that the morphology of these patterns can be explained by the competition of line tension (which tends to favor large round domains) and curvature, as specified by the Helfrich energy functional. In this study we use a Monte-Carlo simulation on the surface of a GUV to determine the equilibrium shape and phase morphology. We find that the patterns arising from these competing interactions very closely approximate those observed, that the patterned morphologies represent thermodynamically stable configurations, and that the geometric nature of these patterns is closely tied to the relative and absolute values of the model parameters.

  14. Surface tension and disjoining pressure of free-standing smectic films above the bulk smectic-A-isotropic transition temperature

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.; Śliwa, Izabela

    2014-03-01

    We have carried out a numerical study of both the structural and thermodynamic properties of free-standing smectic films for the case of enhanced pair interaction in the bounding layers. Calculations, based upon the extended McMillan's mean-field theory with anisotropic forces, show that the layer-thinning transitions are characterized by abrupt drops to lower values, both for a disjoining pressure and a fluctuation-induced long-range interaction between the smectic film surfaces, and then continues to increase with a larger positive slope. Reasonable agreement between the theoretically predicted and the experimentally obtained data on the surface tension of the partially fluorinated 5-n-alkyl-2-(4-n-(perfluoroalkyl-metheleneoxy)phenyl) film has been obtained.

  15. Effect of particle shape on capillary forces acting on particles at the air-water interface.

    PubMed

    Chatterjee, Nirmalya; Flury, Markus

    2013-06-25

    The capillary forces exerted by moving air-water interfaces can dislodge particles from stationary surfaces. The magnitude of the capillary forces depends on particle shape, orientation, and surface properties, such as contact angle and roughness. The objective was to quantify, both experimentally and theoretically, capillary force variations as an air-water interface moves over the particles. We measured capillary forces as a function of position, i.e., force-position curves, on particles of different shape by using force tensiometry. The particles (5 mm nominal size) were made of polyacrylate and were fabricated using a 3D printer. Experimental measurements were compared with theoretical calculations. We found that force-position curves could be classified into in three categories according to particle shapes: (1) curves for particles with round cross sections, such as spheroidal particles, (2) curves for particles with fixed cross sections, such cylindrical or cubical particles, and (3) curves for particles with tapering cross sections, such as prismatic or tetrahedral particles. Spheroidal particles showed a continuously varying capillary force. Cylindrical or cubical particles showed pronounced pinning of the air-water interface line at edges. The pinning led to an increased capillary force, which was relaxed when the interface snapped off from the edges. Particles with tapering cross section did not show pinning and showed reduced capillary forces as the air-water interface line perimeter and displacement cross section continuously decrease when the air-water interface moved over the particles.

  16. Stress-intensity factors for circumferential surface cracks in pipes and rods under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1985-01-01

    The purpose of this paper is to present stress-intensity factors for a wide range of nearly semi-elliptical surface cracks in pipes and rods. The configurations were subjected to either remote tension or bending loads. For pipes, the ratio of crack depth to crack length (a/c) ranged from 0.6 to 1; the ratio of crack depth to wall thickness (a/t) ranged from 0.2 to 0.8; and the ratio of internal radius to wall thickness (R/t) ranged from 1 to 10. For rods, the ratio of crack depth to crack length also ranged from 0.6 to 1; and the ratio of crack depth to rod diameter (a/D) ranged from 0.05 to 0.35. These particular crack configurations were chosen to cover the range of crack shapes (a/c) that have been observed in experiments conducted on pipes and rods under tension and bending fatigue loads. The stress-intensity factors were calculated by a three-dimensional finite-element method. The finite-element models employed singularity elements along the crack front and linear-strain elements elsewhere. The models had about 6500 degrees of freedom. The stress-intensity factors were evaluated using a nodal-force method.

  17. Method and apparatus for determining surface tension or if a surfactant will keep a narrow passageway open

    SciTech Connect

    Enhorning, G.

    1990-11-20

    A method for determining surface tension or if a surface will keep a narrow passageway open. It comprises: providing elongated passageway defining means, the passageway having first and second end portions and an intermediate necked-down portion including a relatively narrow center a tapered first and second sections to either side of the relatively narrow center, the first and second tapered sections being adjacent to the first and second end portions, respectively, and one of the first and second end portions being open to atmosphere, and the other end portion not being open to atmosphere; installing a small quantity of the fluid whose surface tension is to be determined within the necked-down portion to form a column fluid; treating and progressively increasing a pressure different between the gases in the first and second end portions by either slowly introducing additional gas under pressure into the other end portion or by slowly withdrawing gas from the other end portion to cause the column of fluid to be slowly forced along the necked-down portion until the first meniscus passes the relatively narrow center. The first meniscus rupturing after it passes the relatively narrow center to open up the column of fluid to permit the gas pressure within the first and second end portions to substantially instantaneously equalize; continuing to either slowly introduced additional gas under pressure into the other end portion or to slowly withdraw gas from the other end portion for a significant period of time after the first meniscus ruptures; and recording the pressure within the other end portion.

  18. Effects of chain unsaturation on the equation of state for lipid monolayers at the air-water interface.

    PubMed Central

    Feng, S S; MacDonald, R C

    1995-01-01

    An equation of state for lipid monolayers at the air-water interface is presented, which takes into account the effects of the conformation and the number and position of double bonds of the hydrocarbon chains. The total Hamiltonian of the monolayer is assumed to consist of three terms. Two of them are calculated exactly within the limitations of the formulation. These are the two-dimensional entropy of mixing of the lipid and water molecules at the surface and the conformational entropy of the chains using a model available from the literature. These two terms give rise to positive surface pressure. The third term, which includes all energies that are not amenable to calculation, was obtained as the difference between the sum of the two calculated terms and experimental data and is found to represent an approximately area-independent tension. The effects of chain unsaturation on the equation of state were modeled in the present theory in two ways; the chain bend caused by cis double bonds increases the minimal molecular area, and the double bond linkage on a chain decreases the degrees of freedom of the chain. Calculations revealed that the former is highly significant whereas the latter is negligible. The deduced equation of state reproduces experimental data with appropriate values for three parameters, which represent the collapse area, the overlap of adjacent chains, and the combined effects of the intra- and intermolecular interactions other than the surface mixing entropy and the chain conformational energy. PMID:8527660

  19. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2015-12-29

    Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects.

  20. The wetting characteristics and surface tension of some Ni-based alloys on yttria, hafnia, alumina, and zirconia substrates

    NASA Technical Reports Server (NTRS)

    Kanetkar, C. S.; Kacar, A. S.; Stefanescu, D. M.

    1988-01-01

    The surface tension and wetting characteristics of four commercial Ni-based alloys (UD718, Waspaloy, UD720, and UD520), pure Ni, and three special alloys (Ni-20 percent Cr, Ni-20 percent Cr-1 percent Al, and Ni-20 percent Cr-4 percent Al) on various ceramic substrates (including alumina, zirconia, hafnia, and yttria) were investigated using sessile drop experiments. Most of the systems studied exhibited a nonwetting behavior. Wetting improved with holding time at a given temperature to the point that some systems, such as Ni-20Cr on alumina, Ni-20Cr-4Al on alumina and on yttria, became marginally wetting. Wetting characteristics were apparently related to constitutional undercooling, which in turn could be affected by the metal dissolving some of the substrate during measurements.

  1. Evaluation of the pressure tensor and surface tension for molecular fluids with discontinuous potentials using the volume perturbation method.

    PubMed

    Jiménez-Serratos, Guadalupe; Vega, Carlos; Gil-Villegas, Alejandro

    2012-11-28

    In this article we apply the volume-perturbation method to systems of particles interacting via discontinuous potentials. We have found that an accurate Monte Carlo simulation protocol can be used in order to study properties of very general non-spherical systems with discontinuous potentials, such as chain molecules and spherocylinders with square-well interactions, and chain molecules with square-well and square-shoulder interactions. From the simulation results obtained for these systems we verify that: (1) the method reproduces the pressure as used in NPT simulations; (2) discontinuous infinite repulsive interactions give asymmetric contributions to the pressure when compression and expansion movements are used; however for finite interactions these contributions are symmetric; and (3) the pressure contributions preserve the additivity of the potential interactions. Density profiles and surface tension for subcritical conditions are accurately predicted.

  2. Separation efficiency in a whirlpool surface tension separator, separating faeces and toilet paper for nutrient recovery--pilot-scale study.

    PubMed

    Vinnerås, B

    2004-01-01

    The main proportion of the plant nutrients in waste from society can be recycled in two unpolluted fractions if the urine and the faeces are collected separately. By using urine-diverting toilets combined with a whirlpool surface tension faecal separator, it is possible to achieve this. If the separator is installed correctly, with a gradual bend to minimise disintegration of the particles, it is possible to collect approximately 92% nitrogen, 86% phosphorus and 76% potassium of the content excreted in the faeces in a small separated fraction that only contains 10% of the flushwater used. The faecal separation is a robust system with no moving parts, which is not significantly affected by the flushwater volume, and almost no water is separated to the separated solids if neither toilet paper nor faeces are flushed.

  3. Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb

    NASA Technical Reports Server (NTRS)

    Wang, Yazhen; Regel, Liya L.; Wilcox, William R.

    2000-01-01

    We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.

  4. Optical fiber nanoprobe preparation for near-field optical microscopy by chemical etching under surface tension and capillary action.

    PubMed

    Mondal, Samir K; Mitra, Anupam; Singh, Nahar; Sarkar, S N; Kapur, Pawan

    2009-10-26

    We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (approximately 4 microm), large cone angle (approximately 38 degrees ), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.

  5. Improvements, testing and development of the ADM-τ sub-grid surface tension model for two-phase LES

    NASA Astrophysics Data System (ADS)

    Aniszewski, Wojciech

    2016-12-01

    In this paper, a specific subgrid term occurring in Large Eddy Simulation (LES) of two-phase flows is investigated. This and other subgrid terms are presented, we subsequently elaborate on the existing models for those and re-formulate the ADM-τ model for sub-grid surface tension previously published by these authors. This paper presents a substantial, conceptual simplification over the original model version, accompanied by a decrease in its computational cost. At the same time, it addresses the issues the original model version faced, e.g. introduces non-isotropic applicability criteria based on resolved interface's principal curvature radii. Additionally, this paper introduces more throughout testing of the ADM-τ, in both simple and complex flows.

  6. Determining the association constant and adsorption properties of ion pairs in water by fitting surface tension data.

    PubMed

    Pradines, Vincent; Lavabre, Dominique; Micheau, Jean-Claude; Pimienta, Véronique

    2005-11-22

    Association constants and adsorption parameters of tetraalkylammoniumdodecyl sulfate (TAADS) ion pairs in water were determined. We have analyzed water/air surface tension measurements obtained for mixtures of sodium dodecyl sulfate (SDS) and tetraalkylammonium bromide of increasing chain lengths (TMAB, TEAB, TPAB, and TBAB). To reproduce the experimental isotherms, we coupled the association equilibrium of the ion pairs to the equations proposed by Fainerman and co-workers to model the adsorption of binary mixtures of surfactants (SDS and TAADS) with different molar areas at a nonideal surface layer. The parameters found showed that the model is not convenient to describe the effect of the addition of TMAB but a clear coherency was obtained for the three longer compounds. Ranging from TEADS to TBADS increasing hydrophobic interactions give rise to a higher associability but to a lower surface activity. Self-interactions coefficients extracted by the fitting procedure confirmed the importance of attractive interactions between the ion pairs. The calculated surface coverage showed that in every case the compound mainly adsorbed at the interface was the ion pair. For TBADS strong attractive interactions result in a phase transition at very low concentration.

  7. Sulforhodamine B interacts with albumin to lower surface tension and protect against ventilation injury of flooded alveoli.

    PubMed

    Kharge, Angana Banerjee; Wu, You; Perlman, Carrie E

    2015-02-01

    In the acute respiratory distress syndrome, alveolar flooding by proteinaceous edema liquid impairs gas exchange. Mechanical ventilation is used as a supportive therapy. In regions of the edematous lung, alveolar flooding is heterogeneous, and stress is concentrated in aerated alveoli. Ventilation exacerbates stress concentrations and injuriously overexpands aerated alveoli. Injury degree is proportional to surface tension, T. Lowering T directly lessens injury. Furthermore, as heterogeneous flooding causes the stress concentrations, promoting equitable liquid distribution between alveoli should, indirectly, lessen injury. We present a new theoretical analysis suggesting that liquid is trapped in discrete alveoli by a pressure barrier that is proportional to T. Experimentally, we identify two rhodamine dyes, sulforhodamine B and rhodamine WT, as surface active in albumin solution and investigate whether the dyes lessen ventilation injury. In the isolated rat lung, we micropuncture a surface alveolus, instill albumin solution, and obtain an area with heterogeneous alveolar flooding. We demonstrate that rhodamine dye addition lowers T, reduces ventilation-induced injury, and facilitates liquid escape from flooded alveoli. In vitro we show that rhodamine dye is directly surface active in albumin solution. We identify sulforhodamine B as a potential new therapeutic agent for the treatment of the acute respiratory distress syndrome.

  8. Interaction of Charged Colloidal Particles at the Air-Water Interface.

    PubMed

    Girotto, Matheus; Dos Santos, Alexandre P; Levin, Yan

    2016-07-07

    We study, using Monte Carlo simulations, the interaction between charged colloidal particles confined to the air-water interface. The dependence of force on ionic strength and counterion valence is explored. For 1:1 electrolyte, we find that the electrostatic interaction at the interface is very close to the one observed in the bulk. On the other hand, for salts with multivalent counterions, an interface produces an enhanced attraction between like charged colloids. Finally, we explore the effect of induced surface charge at the air-water interface on the interaction between colloidal particles.

  9. Simultaneous decay of contact-angle and surface-tension during the rehydration of air-dried root mucilage

    NASA Astrophysics Data System (ADS)

    Arye, Gilboa; Chen, Fengxian

    2016-04-01

    Plants can extract or exude water and solutes at their root surface. Among the root exudates, the mucilage exhibits a surfactant like properties - depressing the surface-tension (ST, mN/m) at the water-air interface. The amphipathic nature of some of the mucilage molecules (e.g. lipids) is thought to be the reason for its surfactant like behavior. As the rhizosphere dries out, re-orientation and/or re-configuration of amphipathic molecules at the solid-air interface, may impart hydrophobic nature to the rhizosphere. Our current knowledge on the ST of natural and/or model root mucilage is based on measurements of the equilibrium ST. However, adsorption of amphipathic molecules at the water-air interface is not reached instantaneously. The hydrophobic nature of the rhizosphere was deduced from the initial advancing CA, commonly calculated from the first few milliseconds up to few seconds (depending on the method employed). We hypothesized that during the rehydration of the root mucilage; both quantities are dynamic. Processes such as water absorbance and dissolution, may vary the interfacial tensions as a function of time. Consequently, simultaneous reduction of both CA and ST as a function of time can be expected. The main objective of this study was to characterize and quantify the extent, persistency and dynamic of the CA and ST during rehydration of air-dried root mucilage. The study was involved with measurements of dynamic and equilibrium ST using the pedant drop or Wilhelmy plate method, respectively. Glass slides were coated with naturally occurring or model root mucilage and the CA of a sessile drop was measured optically, as a function of time. The results were analyzed based on the Young-Dupré and Young-Laplace equations, from which the simultaneous decay of CA and ST was deduced. The implication for the wettability and water flow in the rhizosphere will be discussed.

  10. Simulation of Two-Fluid Flows by the Least-Squares Finite Element Method Using a Continuum Surface Tension Model

    NASA Technical Reports Server (NTRS)

    Wu, Jie; Yu, Sheng-Tao; Jiang, Bo-nan

    1996-01-01

    In this paper a numerical procedure for simulating two-fluid flows is presented. This procedure is based on the Volume of Fluid (VOF) method proposed by Hirt and Nichols and the continuum surface force (CSF) model developed by Brackbill, et al. In the VOF method fluids of different properties are identified through the use of a continuous field variable (color function). The color function assigns a unique constant (color) to each fluid. The interfaces between different fluids are distinct due to sharp gradients of the color function. The evolution of the interfaces is captured by solving the convective equation of the color function. The CSF model is used as a means to treat surface tension effect at the interfaces. Here a modified version of the CSF model, proposed by Jacqmin, is used to calculate the tension force. In the modified version, the force term is obtained by calculating the divergence of a stress tensor defined by the gradient of the color function. In its analytical form, this stress formulation is equivalent to the original CSF model. Numerically, however, the use of the stress formulation has some advantages over the original CSF model, as it bypasses the difficulty in approximating the curvatures of the interfaces. The least-squares finite element method (LSFEM) is used to discretize the governing equation systems. The LSFEM has proven to be effective in solving incompressible Navier-Stokes equations and pure convection equations, making it an ideal candidate for the present applications. The LSFEM handles all the equations in a unified manner without any additional special treatment such as upwinding or artificial dissipation. Various bench mark tests have been carried out for both two dimensional planar and axisymmetric flows, including a dam breaking, oscillating and stationary bubbles and a conical liquid sheet in a pressure swirl atomizer.

  11. Precipitation and surface adsorption of metal complexes during electropolishing. Theory and characterization with X-ray nanotomography and surface tension isotherms.

    PubMed

    Nave, Maryana I; Chen-Wiegart, Yu-chen Karen; Wang, Jun; Kornev, Konstantin G

    2015-09-21

    Electropolishing of metals often leads to supersaturation conditions resulting in precipitation of complex compounds. The solubility diagrams and Gibbs adsorption isotherms of the electropolishing products are thus very important to understand the thermodynamic mechanism of precipitation of reaction products. Electropolishing of tungsten wires in aqueous solutions of potassium hydroxide is used as an example illustrating the different thermodynamic scenarios of electropolishing. Electropolishing products are able to form highly viscous films immiscible with the surrounding electrolyte or porous shells adhered to the wire surface. Using X-ray nanotomography, we discovered a gel-like phase formed at the tungsten surface during electropolishing. The results of these studies suggest that the electropolishing products can form a rich library of compounds. The surface tension of the electrolyte depends on the metal oxide ions and alkali-metal complexes.

  12. Physicochemical Study of Viral Nanoparticles at the Air/Water Interface.

    PubMed

    Torres-Salgado, Jose F; Comas-Garcia, Mauricio; Villagrana-Escareño, Maria V; Durán-Meza, Ana L; Ruiz-García, Jaime; Cadena-Nava, Ruben D

    2016-07-07

    The assembly of most single-stranded RNA (ssRNA) viruses into icosahedral nucleocapsids is a spontaneous process driven by protein-protein and RNA-protein interactions. The precise nature of these interactions results in the assembly of extremely monodisperse and structurally indistinguishable nucleocapsids. In this work, by using a ssRNA plant virus (cowpea chlorotic mottle virus [CCMV]) as a charged nanoparticle we show that the diffusion of these nanoparticles from the bulk solution to the air/water interface is an irreversible adsorption process. By using the Langmuir technique, we measured the diffusion and adsorption of viral nucleocapsids at the air/water interface at different pH conditions. The pH changes, and therefore in the net surface charge of the virions, have a great influence in the diffusion rate from the bulk solution to the air/water interface. Moreover, assembly of mesoscopic and microscopic viral aggregates at this interface depends on the net surface charge of the virions and the surface pressure. By using Brewster's angle microscopy we characterized these structures at the interface. Most common structures observed were clusters of virions and soap-frothlike micron-size structures. Furthermore, the CCMV films were compressed to form monolayers and multilayers from moderate to high surface pressures, respectively. After transferring the films from the air/water interface onto mica by using the Langmuir-Blodgett technique, their morphology was characterized by atomic force microscopy. These viral monolayers showed closed-packing nano- and microscopic arrangements.

  13. Type the title of your paper here Effect of the focused light from the xenon arc lamp on the surface tension of the molten enamel

    NASA Astrophysics Data System (ADS)

    Aleutdinov, A. D.; Ghyngazov, S. A.; Mylnikova, T. S.; Aleutdinov, K. A.

    2016-02-01

    The effect of exposure to the focused light from the xenon arc lamp on the surface tension of molten enamels was studied with a designed light beam setup as compared to that observed in conventional heating in a resistance furnace. The objects under investigation were enamels No. 261, UES-200 and UES-300. The power density of the light beam was varied in the range of (30-80) W/cm2. When exposed to light, the surface tension is shown to be an order of magnitude lower than that obtained in conventional furnace heating.

  14. Does colloid shape affect detachment of colloids by a moving air-water interface?

    PubMed

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L; Davis, Howard P

    2013-05-14

    Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An air bubble was introduced into the channel and passed through, thereby generating a receding followed by an advancing air-water interface. The detachment of colloids by the air-water interfaces was visualized with a confocal microscope, quantified by image analysis, and analyzed statistically to determine significant differences. For all colloid shapes, the advancing air-water interface caused pronounced colloid detachment (>63%), whereas the receding interface was ineffective in colloid detachment (<1.5%). Among the different colloid shapes, the barrels were most readily removed (94%) by the advancing interface, followed by the spheres and oblong disks (80%) and the rods (63%). Colloid detachment was significantly affected by colloid shape. The presence of an edge, as it occurs in a barrel-shaped colloid, promoted colloid detachment because the air-water interface is being pinned at the edge of the colloid. This suggests that the magnitude of colloid mobilization and transport in porous media is underestimated for edged particles and overestimated for rodlike particles when a sphere is used as a model colloid.

  15. Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometry.

    PubMed

    Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre

    2011-12-29

    We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates.

  16. Infrared surface temperature measurements for the surface tension driven convection experiment. M.S. Thesis - Case Western Reserve Univ., Aug. 1988

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.

    1989-01-01

    In support of the Surface Tension Driven Convection Experiment (STDCE), a planned space transportation system (STS) flight experiment, a commercially available infrared thermal imaging system is used to quantify the imposed thermal signature along the free surface. The system was tested and calibrated for the STDCE with ground-based equivalents of the STDCE hardware. Before using the system, consideration was given to the radiation characteristics of the target (silicone oil). Absorption coefficients were calculated to understand the surface depth as seen by the imager and the penetration depth of the surface heater (CO2 laser). The performance and operational specifications for the imager and image processing system are described in detail to provide an understanding of the equipment. Measurements made with the system were compared to thermocouple measurements and a calculated surface temperature distribution. This comparison showed that in certain regions the IR imager measurements were within 5 percent of the overall temperature difference across the free surface. In other regions the measurements were within + or - 10 percent of the overall temperature gradient across the free surface. The effective emissivity of silicone oil for these experimental conditions was also determined. Measurement errors and their possible solutions are discussed.

  17. Charge dependent condensation of macro-ions at air-water interfaces

    NASA Astrophysics Data System (ADS)

    Bera, Mrinal; Antonio, Mark

    2015-03-01

    Ordering of ions at and near air-water interfaces is a century old problem for researchers and has implications on a host of physical, chemical and biological processes. The dynamic nature of water surface and the surface fluctuations created by thermally excited capillary waves have always limited measurement of near surface ionic-distributions. We demonstrate that this limitation can be overcome by using macro-ions of sizes larger than the capillary wave roughness ~3Å. Our attempts to measure distributions of inorganic macro-ions in the form of Keggin heteropolyanions (HPAs) of sizes ~10Å have unraveled novel charge-dependent condensation of macro-ions beneath air-water interfaces. Our results demonstrate that HPAs with -3 charges condense readily beneath air-water interfaces. This is in contrast to the absence of surface preference for HPAs with -4 charges. The similarity of HPA-HPA separations near air-water interfaces and in bulk crystal structures suggests the presence of the planar Zundel ions (H5O2+), which interact with HPAs and the water surface to facilitate the charge dependent condensation beneath the air-water interfaces.This work and the use of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility at Argonne National Laboratory, is based upon work supported by the U.S. DOE, Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences, under contract No DE-AC02-06CH11357.

  18. The Influence of Melt Composition and Dissolved Water on the Melt-Vapor Surface Tension of Dacite and Rhyolite Magma

    NASA Astrophysics Data System (ADS)

    Mangan, M.; Sisson, T.

    2004-12-01

    Melt-vapor surface tension (σ ) is a poorly known quantity, yet it plays a critical role in many volcanic processes. In this study, we provide new data for σ of hydrous natural dacite and rhyolite melt at 200 MPa, 800-1055° C, and 4.8-7.7 wt% H2O using results from high temperature and pressure decompression experiments (this study; Mangan and Sisson, 2000; Mourtada-Bonnefoi and Laporte, 2002; 2004) and classical nucleation theory. The solutions give values for σ that vary inversely with dissolved H2O by 0.025 (± 0.009) J/m2 per wt% H2O. Combining our results with data from hydrous haplogranite and rhyodacite (Epel'baum et al., 1973; Bagdassarov et al., 2000) reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). At constant H2O content, σ increases by 0.70 (± 0.53) J/m2 per tenth increment increase in the melt felsic index (FI = Na2O+K2O/Na2O+K2O+CaO) from FI ˜ 0.75 (dacite) to FI ˜ 1.0 (haplogranite). To understand these results, we consider the thermodynamic definition of σ , i.e., the work per unit surface area to create an interface between two phases. It can be expressed as: σ dA = ω dissociation - ω interaction. The ω dissociation term is the work done to dissociate molecules from the bulk melt for incorporation in a diffuse, lower density interfacial zone only a few molecular layers thick. In contrast, the work of interaction, ω interaction, is work made available as a result of across-interface attractions between gas and melt molecules. Increasing the concentration of dissolved H2O and other network modifiers (e.g., Ca, Fe, and Mg) influence the balance of work terms as (1) the ω dissociation declines due to lowered cohesion of the disrupted melt structure, and (2) the ω interaction increases because enhanced molecular diversity supports more numerous and varied interfacial zone attractions. The net effect of decreased ω dissociation and increased

  19. Surfactant-induced flow compromises determination of air-water interfacial areas by surfactant miscible-displacement.

    PubMed

    Costanza-Robinson, Molly S; Henry, Eric J

    2017-03-01

    Surfactant miscible-displacement (SMD) column experiments are used to measure air-water interfacial area (AI) in unsaturated porous media, a property that influences solute transport and phase-partitioning. The conventional SMD experiment results in surface tension gradients that can cause water redistribution and/or net drainage of water from the system ("surfactant-induced flow"), violating theoretical foundations of the method. Nevertheless, the SMD technique is still used, and some suggest that experimental observations of surfactant-induced flow represent an artifact of improper control of boundary conditions. In this work, we used numerical modeling, for which boundary conditions can be perfectly controlled, to evaluate this suggestion. We also examined the magnitude of surfactant-induced flow and its impact on AI measurement during multiple SMD flow scenarios. Simulations of the conventional SMD experiment showed substantial surfactant-induced flow and consequent drainage of water from the column (e.g., from 75% to 55% SW) and increases in actual AI of up to 43%. Neither horizontal column orientation nor alternative boundary conditions resolved surfactant-induced flow issues. Even for simulated flow scenarios that avoided surfactant-induced drainage of the column, substantial surfactant-induced internal water redistribution occurred and was sufficient to alter surfactant transport, resulting in up to 23% overestimation of AI. Depending on the specific simulated flow scenario and data analysis assumptions used, estimated AI varied by nearly 40% and deviated up to 36% from the system's initial AI. We recommend methods for AI determination that avoid generation of surface-tension gradients and urge caution when relying on absolute AI values measured via SMD.

  20. Basic surface properties of Aedes albopictus cells: effect of Mayaro virus infection on electrostatic charge and surface tension.

    PubMed

    Mezêncio, J M; Costa e Silva Filho, F; Rebello, M A

    1997-01-01

    Aedes albopictus cells possess a negative cell surface charge of -12.7 mV with an isoelectrophoretic point (IEP) located between pH 3.0 and 4.0. Infection with Mayaro virus rendered the surface of A. albopictus cells less negative reaching a zeta-potential value of -9.7 mV after 100 h of infection. Concomitantly, the IEP of the infected cells were also altered from 3.0-4.0 to 4.0-5.0. Furthermore, the contact angle measurements clearly showed qualitative alterations in the cell surface of infected cells.

  1. Exact Solution to Stationary Onset of Convection Due to Surface Tension Variation in a Multicomponent Fluid Layer With Interfacial Deformation

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; McCaughan, Frances E.

    1998-01-01

    Stationary onset of convection due to surface tension variation in an unbounded multicomponent fluid layer is considered. Surface deformation is included and general flux boundary conditions are imposed on the stratifying agencies (temperature/composition) disturbance equations. Exact solutions are obtained to the general N-component problem for both finite and infinitesimal wavenumbers. Long wavelength instability may coexist with a finite wavelength instability for certain sets of parameter values, often referred to as frontier points. For an impermeable/insulated upper boundary and a permeable/conductive lower boundary, frontier boundaries are computed in the space of Bond number, Bo, versus Crispation number, Cr, over the range 5 x 10(exp -7) less than or equal to Bo less than or equal to 1. The loci of frontier points in (Bo, Cr) space for different values of N, diffusivity ratios, and, Marangoni numbers, collapsed to a single curve in (Bo, D(dimensional variable)Cr) space, where D(dimensional variable) is a Marangoni number weighted diffusivity ratio.

  2. An aspect of denture base retention: direct measurement of force due to surface tension.

    PubMed

    Murray, M D; Darvell, B W

    1991-01-01

    A fixed-volume drop of liquid between a pair of parallel surfaces has been a common model for the denture-mucosa system. The reported one-term equation for the model, the derivation of which is suspect, implies that the acting force is inversely proportional to the square of the separation. Direct measurement of the force, however, showed that a better approximation is given by a two-term equation, with force varying as the inverse of the separation. The need for rigorous theoretical derivation is thereby emphasized. The experimental data suggest that a maximum retention force might occur for denture bases at separations of about 15 microns.

  3. All-printed flexible organic transistors enabled by surface tension-guided blade coating.

    PubMed

    Pierre, Adrien; Sadeghi, Mahsa; Payne, Marcia M; Facchetti, Antonio; Anthony, John E; Arias, Ana Claudia

    2014-08-27

    A combination of surface energy-guided blade coating and inkjet printing is used to fabricate an all-printed high performance, high yield, and low variability organic thin film transistor (OTFT) array on a plastic substrate. Functional inks and printing processes were optimized to yield self-assembled homogenous thin films in every layer of the OTFT stack. Specifically, we investigated the effect of capillary number, semiconductor ink composition (small molecule-polymer ratio), and additive high boiling point solvent concentrations on film fidelity, pattern design, device performance and yields.

  4. A Multipurpose Apparatus to Measure Viscosity and Surface Tension of Solutions: The Measurement of the Molecular Cross-Sectional Area of N-Proposal

    ERIC Educational Resources Information Center

    Xin Zhang; Shouxin Liu; Booxin Li; Na An; Fan Zhang

    2004-01-01

    A multipurpose apparatus that can be used to measure the viscosity of solution by the Ostwald method and the surface tension of solution by the drop-weight method or by the capillary-rise method is developed. The apparatus is convenient for in-situ preparation of solutions of different concentrations and avoids the error that frothing of the…

  5. Curvature effects on the surface thickness and tension at the free interface of 4He systems

    NASA Astrophysics Data System (ADS)

    Szybisz, Leszek; Urrutia, Ignacio

    2003-08-01

    The thickness W and the surface energy σA at the free interface of superfluid 4He are studied. Results of calculations carried out using density functionals for cylindrical and spherical systems are presented in a unified way, including a comparison with the behavior of planar slabs. It is found that for large species W is independent of the geometry. The obtained values of W are compared with prior theoretical results and experimental data. Experimental data favor results evaluated by adopting finite range approaches. The behavior of σA and WσA exhibits overshoots similar to that found previously for the central density, and the trend of these observables towards their asymptotic values is examined.

  6. Long-Wavelength Rupturing Instability in Surface-Tension-Driven Benard Convection

    NASA Technical Reports Server (NTRS)

    Swift, J. B.; Hook, Stephen J. Van; Becerril, Ricardo; McCormick, W. D.; Swinney, H. L.; Schatz, Michael F.

    1999-01-01

    A liquid layer with a free upper surface and heated from below is subject to thermocapillary-induced convective instabilities. We use very thin liquid layers (0.01 cm) to significantly reduce buoyancy effects and simulate Marangoni convection in microgravity. We observe thermocapillary-driven convection in two qualitatively different modes, short-wavelength Benard hexagonal convection cells and a long-wavelength interfacial rupturing mode. We focus on the long-wavelength mode and present experimental observations and theoretical analyses of the long-wavelength instability. Depending on the depths and thermal conductivities of the liquid and the gas above it, the interface can rupture downwards and form a dry spot or rupture upwards and form a high spot. Linear stability theory gives good agreement to the experimental measurements of onset as long as sidewall effects are taken into account. Nonlinear theory correctly predicts the subcritical nature of the bifurcation and the selection between the dry spot and high spots.

  7. Consequences of Anisotropic Permeability and Surface Tension for Magmatic Segregation in Deforming Mantle Rock

    NASA Astrophysics Data System (ADS)

    Taylor-West, J.; Katz, R. F.

    2014-12-01

    The mechanics of partially molten regions of the mantle are not well understood--in part due to the inaccessibility of these regions to observation. However it is widely agreed that experiments performed on synthetic mantle rocks [e.g KZK10] act as a reasonable test of theoretical models of magma dynamics. One robust feature of experiments on partially molten mantle rocks deformed under strain is the emergence of high-porosity bands at an angle of between 15° and 20° to the shear plane. A number of theoretical approaches have been made to reproduce the formation of these low angle bands in models. The most recent approaches, for example by Takei and Katz [TK13], have involved the inclusion of anisotropic viscosity in diffusion creep arising from the grain-scale redistribution of melt as formulated in a theoretical model by Takei and Holtzman [TH09]. It is reasonable to assume that this melt-preferred orientation (MPO) that leads to anisotropy in viscosity may also lead to anisotropy in permeability. However, the effect of anisotropic permeability remains unexplored. We investigate its impact on the dynamics of partially molten rock, and specifically on its role in low-angle band formation in deformation under simple shear. We work with the continuum model of two-phase-flow as formulated by McKenzie [M84] with the addition of anisotropic permeability. There are some apparent inconsistencies in this model. Firstly, the model predicts continued segregation of melt into bands of 100% porosity, while experiments report maximum porosities in the region of 30%. Secondly, linear stability analyses find maximal growth-rates for porosity perturbations that vary on arbitrarily small length-scales. We study how the inclusion of surface forces into the model could regulate these effects. REFERENCES: KZK10 = King, Zimmerman, & Kohlstedt (2010), J Pet, 10.1093/petrology/egp062. TK13 = Takei & Katz (2013), JFM, 10.1017/jfm.2013.482. TH09 = Takei & Holtzman (2009a), JGR, 10

  8. Surface force at the nano-scale: observation of non-monotonic surface tension and disjoining pressure.

    PubMed

    Peng, Tiefeng; Firouzi, Mahshid; Li, Qibin; Peng, Kang

    2015-08-28

    Nano bubbles and films are important in theory and various applications, such as the specific ion effect of bubble coalescence, flotation and porous medium seepage; these rely greatly on the fundamental aspects of extended-DLVO surface forces. However, the origin and validation of the non-DLVO forces are still obscure, especially at the nano scale (1-5 nm). Herein, we report the first determination of the disjoining pressures of aqueous electrolyte nano-films using molecular dynamics (MD) simulations. Our results showed that adding salt does not lead to a decrease in the disjoining pressure. On the contrary, higher concentrations results in greater disjoining pressures. In addition, the temperature was found to significantly change the pattern of the disjoining pressure isotherm. These results aid the understanding of a number of underlying mechanisms, involving nano solid-liquid-gas surfaces.

  9. Impact of biogenic amine molecular weight and structure on surfactant adsorption at the air-water interface.

    PubMed

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun

    2016-02-01

    The oligoamines, such as ethylenediamine to pentaethylenetetramine, and the aliphatic biogenic amines, such as putrescine, spermidine and spermine, strongly interact with anionic surfactants, such as sodium dodecylsulfate, SDS. It has been shown that this results in pronounced surfactant adsorption at the air-water interface and the transition from monolayer to multilayer adsorption which depends upon solution pH and oligoamine structure. In the neutron reflectivity, NR, and surface tension, ST, results presented here the role of the oligoamine structure on the adsorption of SDS is investigated more fully using a range of different biogenic amines. The effect of the extent of the intra-molecular spacing between amine groups on the adsorption has been extended by comparing results for cadavarine with putrescine and ethylenediamine. The impact of more complex biogenic amine structures on the adsorption has been investigated with the aromatic phenethylamine, and the heterocyclic amines histamine and melamine. The results provide an important insight into how surfactant adsorption at interfaces can be manipulated by the addition of biogenic amines, and into the role of solution pH and oligoamine structure in modifying the interaction between the surfactant and oligoamine. The results impact greatly upon potential applications and in understanding some of the important biological functions of biogenic amines.

  10. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface.

    PubMed

    Wang, Zhenhui; Liu, Yanming; Tao, Peng; Shen, Qingchen; Yi, Nan; Zhang, Fangyu; Liu, Quanlong; Song, Chengyi; Zhang, Di; Shang, Wen; Deng, Tao

    2014-08-27

    Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer.

  11. Lennard-Jones Lattice Summation in Bilayer Simulations Has Critical Effects on Surface Tension and Lipid Properties.

    PubMed

    Wennberg, Christian L; Murtola, Teemu; Hess, Berk; Lindahl, Erik

    2013-08-13

    The accuracy of electrostatic interactions in molecular dynamics advanced tremendously with the introduction of particle-mesh Ewald (PME) summation almost 20 years ago. Lattice summation electrostatics is now the de facto standard for most types of biomolecular simulations, and in particular, for lipid bilayers, it has been a critical improvement due to the large charges typically present in zwitterionic lipid headgroups. In contrast, Lennard-Jones interactions have continued to be handled with increasingly longer cutoffs, partly because few alternatives have been available despite significant difficulties in tuning cutoffs and parameters to reproduce lipid properties. Here, we present a new Lennard-Jones PME implementation applied to lipid bilayers. We confirm that long-range contributions are well approximated by dispersion corrections in simple systems such as pentadecane (which makes parameters transferable), but for inhomogeneous and anisotropic systems such as lipid bilayers there are large effects on surface tension, resulting in up to 5.5% deviations in area per lipid and order parameters-far larger than many differences for which reparameterization has been attempted. We further propose an approximation for combination rules in reciprocal space that significantly reduces the computational cost of Lennard-Jones PME and makes accurate treatment of all nonbonded interactions competitive with simulations employing long cutoffs. These results could potentially have broad impact on important applications such as membrane proteins and free energy calculations.

  12. Effects of elasticity and surface tension on the spreading dynamics of a thin film under the influence of intermolecular forces

    NASA Astrophysics Data System (ADS)

    Young, Yuan-Nan; Stone, Howard

    2016-11-01

    The spreading dynamics of a thin layer of viscous Newtonian fluid between an elastic sheet and a wetting solid substrate is examined using the lubrication theory. On the wetting substrate an ultra thin film (precursor film) develops as a result of the intermolecular force between the fluid and the wetting solid substrate. Such a precursor film prevents the stress singularity associated with a moving contact line. Following the methodology by, the effects of elasticity on the macroscopic contact line structure in the quasistatic limit are elucidated by an ordinary differential equation derived from an analysis of the energy and its dissipation. Similar to the case of a regular fluid interface with surface tension (capillary spreading), the elasto-capillary thin film profile also consists of a core at the center, an ultra thin film in the far field, and a contact line region where the core film profile connects smoothly to the precursor film. For capillary spreading, the precursor film transitions monotonically to the core film. Due to the interfacial elasticity, a spatial oscillation of film height in the contact line region is found. In addition, it is found that elasticity causes the sliding motion of the thin film: the contact angle close to zero as

  13. Characterization of BSA unfolding and aggregation using a single-capillary viscometer and dynamic surface tension detector.

    PubMed

    Bramanti, Emilia; Ferrari, Carlo; Angeli, Valeria; Onor, Massimo; Synovec, Robert E

    2011-10-15

    A dynamic surface tension detector (DSTD) has been equipped with an additional pressure sensor for simultaneous viscosity measurements, as a detector for flow injection analysis. The viscosity measurement is based on a single capillary viscometer (SCV) placed in parallel configuration with the DSTD. The viscometer in the optimized conditions consists of a PEEK capillary (i.d.=0.25 mm, L=75 cm) kept at constant temperature using a thermostatic bath, which leads on the two sides to the two arms of a differential piezoelectric pressure transducer with a range of 0-35 psi. The DSTD, described previously, measures the changing pressure across the liquid/air interface of 2 μL drops repeatedly forming at the end of a capillary. SCV performance has been evaluated by measuring dynamic viscosity of water/glycerol mixtures analysed in flow injection and comparing the results with the values reported in the literature. The detection limits of SCV and DSTD, calculated as 3σ of the blank, were 0.012 cP and 0.6 dyn cm(-1), respectively. The FI-SCV-DSTD system has been applied to the study of temperature-induced denaturation/aggregation process in bovine serum albumin (BSA). The results have been supported and discussed with respect to BSA conformational analysis performed using Fourier Transform infrared spectroscopy.

  14. Air-water interfacial areas in unsaturated soils: Evaluation of interfacial domains

    NASA Astrophysics Data System (ADS)

    Costanza-Robinson, Molly S.; Brusseau, Mark L.

    2002-10-01

    A gas-phase miscible-displacement method, using decane as an interfacial tracer, was used to measure air-water interfacial areas for a sand with water contents ranging from ˜2% to 20%. The expected trend of decreasing interfacial areas with increasing water contents was observed. The maximum estimated interfacial area of 19,500 cm-1 appears reasonable given it is smaller than the measured surface area of the porous medium (60,888 cm-1). Comparison of the experimental data presented herein with literature data provided further insight into the characterization of the air-water interface in unsaturated porous media. Specifically, comparison of interfacial areas measured using gas-phase versus aqueous-phase methods indicates that the gas-phase method generally yields larger interfacial areas than the aqueous-phase methods, even when accounting for differences in water content and physical properties of the porous media. The observations are consistent with proposed differences in interfacial accessibility of the aqueous- and gas-phase tracers. Evaluation of the data in light of functional interfacial domains, described herein, yields the hypothesis that aqueous interfacial tracers measure primarily air-water interfaces formed by "capillary water," while gas-phase tracers measure air-water interfaces formed by both capillary and surface-adsorbed (film) water. The gas- and aqueous-phase methods may each provide interfacial area information that is more relevant to specific problems of interest. For example, gas-phase interfacial area measurements may be most relevant to contaminant transport in unsaturated systems, where retention at the air-water interface may be significant. Conversely, the aqueous-phase methods may yield information with direct bearing on multiphase flow processes that are dominated by capillary-phase behavior.

  15. Fugacity gradients of hydrophobic organics across the air-water interface measured with a novel passive sampler.

    PubMed

    Wu, Chen-Chou; Yao, Yao; Bao, Lian-Jun; Wu, Feng-Chang; Wong, Charles S; Tao, Shu; Zeng, Eddy Y

    2016-11-01

    Mass transfer of hydrophobic organic contaminants (HOCs) across the air-water interface is an important geochemical process controlling the fate and transport of HOCs at the regional and global scales. However, few studies have characterized concentration or fugacity profiles of HOCs near both sides of the air-water interface, which is the driving force for the inter-compartmental mass transfer of HOCs. Herein, we introduce a novel passive sampling device which is capable of measuring concentration (and therefore fugacity) gradients of HOCs across the air-water interface. Laboratory studies indicated that the escaping fugacity values of polycyclic aromatic hydrocarbons (PAHs) from water to air were negatively correlated to their volatilization half-lives. Results for field deployment were consistent between the passive sampler and an active method, i.e., a combination of grab sampling and liquid-liquid extraction. In general, the fugacity profiles of detected PAHs were indicative of an accumulation mechanism in the surface microlayer of the study regions (Haizhu Lake and Hailing Bay of Guangdong Province, China), while p,p'-DDD tended to volatilize from water to the atmosphere in Hailing Bay. Furthermore, the fugacity profiles of the target analytes increased towards the air-water interface, reflecting the complexity of environmental behavior of the target analytes near the air-water interface. Overall, the passive sampling device provides a novel means to better characterize the air-water diffusive transfer of HOCs, facilitating the understanding of the global cycling of HOCs.

  16. Effects of flow on insulin fibril formation at an air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2009-11-01

    The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.

  17. The use of surface tension to predict the formation of 2D arrays of latex spheres formed via the Langmuir-Blodgett-like technique.

    PubMed

    Marquez, Maricel; Grady, Brian P

    2004-12-07

    Highly ordered hexagonal arrays of latex spheres on highly ordered pyrolytic graphite (HOPG) have been prepared from a Langmuir-Blodgett-like (LB-like) technique using both polymers and surfactants as spreading agents. The role of spreading agent concentration in forming a well-ordered, stable monolayer at the air-liquid interface was studied by means of atomic force microscopy, scanning electron microscopy, optical microscopy, and surface tension measurements for three different systems: a nonionic surfactant, octylphenoxy poly(ethyleneoxy)ethanol (Igepal CO 630); an anionic surfactant, sodium dodecyl sulfate; and a low-molecular-weight, water-soluble polymer, polyacrylamide. For both the anionic surfactant and the water soluble polymer, a correlation was found between a unique feature in surface tension measurements of the latex-spreading agent mixture and the concentrations at which hexagonal arrays of latex spheres form on the surface of HOPG. For the nonionic surfactant, no ordered structures were found on HOPG for any surfactant concentration, consistent with no appearance of the unique feature in surface tension measurements. These results show that a tensiometer can be used to determine the conditions under which well-ordered latex films have the possibility of forming on a substrate using the LB-like technique; however, other factors, such as pulling speed and surface chemistry, play a role as well.

  18. The wetting of steel, DLC coatings, ceramics and polymers with oils and water: The importance and correlations of surface energy, surface tension, contact angle and spreading

    NASA Astrophysics Data System (ADS)

    Kalin, M.; Polajnar, M.

    2014-02-01

    The importance of wetting is becoming increasingly obvious and its control is inevitable in many engineering applications, including tribology and interface nanotechnology. However, the relations between the key parameters affecting surface-liquid wetting behaviour under realistic conditions are not very well understood, especially for typical engineering materials and lubricants (oils), often leading to exceptions and contradictions, which impede their use in engineering models and theories, and so the possible optimisation of the interfaces of engineering systems. In this paper we present the correlations between the contact angle, the spreading, the surface tension and the surface energy of fourteen frequently used engineering materials belonging to four different classes of materials (steel, DLC coatings, ceramics, and polymers) wetted with four different liquids: three oils (a non-polar synthetic oil of two different viscosities and a polar natural-based oil) and water. The results represent systematically and consistently obtained data about the wetting-relevant parameters of the selected materials and lubricants and numerous correlations between them. However, the most striking result suggests that the spreading parameter correlates very linearly with the surface energy for all the materials and liquids studied, in both the adhesion-wetting and spreading-wetting regimes. The experimentally determined spreading vs. surface energy correlation functions that appear generally valid for a broad range of properties of the materials and oils can thus be applied as an engineering tool to tailor and design the required/desired wetting performance and nature of the solid-liquid interfaces. The spreading parameter SP - in contrast to the contact angle - was found to be a reliable and relevant parameter for describing the wetting of oils with selected engineering materials.

  19. Carboxymethylated lignins with low surface tension toward low viscosity and highly stable emulsions of crude bitumen and refined oils.

    PubMed

    Li, Shuai; Ogunkoya, Dolanimi; Fang, Tiegang; Willoughby, Julie; Rojas, Orlando J

    2016-11-15

    Kraft and organosolv lignins were subjected to carboxymethylation to produce fractions that were soluble in water, displayed a minimum surface tension as low as 34mN/m (25°C) and a critical aggregation concentration of ∼1.5wt%. The carboxymethylated lignins (CML), which were characterized in terms of their degree of substitution ((31)P NMR), elemental composition, and molecular weight (GPC), were found suitable in the formulation of emulsions with bitumens of ultra-high viscosity, such as those from the Canadian oil sands. Remarkably, the interfacial features of the CML enabled fuel emulsions that were synthesized in a very broad range of internal phase content (30-70%). Cryo-replica transmission electron microscopy, which was used here the first time to assess the morphology of the lignin-based emulsions, revealed the droplets of the emulsion stabilized with the modified lignin. The observed drop size (diameters<2μm) was confirmed by light scattering, which revealed a normal size distribution. Such characteristics led to stable emulsified systems that are amenable for a wide range of applications. Emulsification with CML afforded bitumen emulsions with very high colloidal stability (no change was noted for over one month) and with a strong shear thinning behavior. Both features indicate excellent prospects for storage, transport and spraying, which are relevant in operations for power generation, which also take advantage of the high heating value of the emulsion components. The ability of CML to stabilize emulsions and to contribute in their combustion was tested with light fuels (kerosene, diesel, and jet fuel) after formulation of high internal phase systems (70% oil) that enabled operation of a fuel engine. A significant finding is that under certain conditions and compared to the respective pure fuel, combustion of the O/W emulsions stabilized by CML presented lower NOx and CO emissions and maintained a relatively high combustion efficiency. The results

  20. Surface tension of binary mixtures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids: experimental measurements and soft-SAFT modeling.

    PubMed

    Oliveira, M B; Domínguez-Pérez, M; Freire, M G; Llovell, F; Cabeza, O; Lopes-da-Silva, J A; Vega, L F; Coutinho, J A P

    2012-10-11

    Ionic liquids have attracted a large amount of interest in the past few years. One approach to better understand their peculiar nature and characteristics is through the analysis of their surface properties. Some research has provided novel information on the organization of pure ionic liquids at the vapor-liquid interface; yet, a systematic study on the surface properties of mixtures of ionic liquids and their organization at the surface has not previously been carried out in the literature. This work reports, for the first time, a comprehensive analysis of the surface organization of mixtures of ionic liquids constituted by 1-alkyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, [C(n)mim][NTf(2)]. The surface tension of mixtures composed of [C(4)mim][NTf(2)] + [C(n)mim][NTf(2)] (n = 1, 2, 5, 6, 8, and 10) was experimentally determined, at 298.2 K and atmospheric pressure, in the whole composition range. From the experimental data, the surface tension deviations and the relative Gibbs adsorption isotherms were estimated showing how the surface composition of an ionic liquid mixture differs from that of the liquid bulk and that the surface is enriched by the ionic liquid with the longest alkyl chain length. Finally, the soft-SAFT equation of state coupled with the density gradient theory (DGT) was used, for the first time, to successfully reproduce the surface tension experimental data of binary mixtures of ionic liquids using a molecular-based approach. In addition, the DGT was used to compute the density profiles of the two components across the interface, confirming the experimental results for the components distribution at the bulk and at the vapor-liquid interface.

  1. Morphological variation of stimuli-responsive polypeptide at air-water interface

    NASA Astrophysics Data System (ADS)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho

    2016-12-01

    The morphological variation of stimuli-responsive polypeptide molecules at the air-water interface as a function of temperature and compression was described. The surface pressure-area (π-A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir-Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air-water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π-A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air-water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  2. Stress intensity factors for large aspect ratio surface and corner cracks at a semi-circular notch in a tension specimen

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1991-01-01

    Stress intensity factor solutions for semielliptic surface and quarter-elliptic corner cracks emanating from a semicircular notch in a tension specimen are presented. A three-dimensional finite-element analysis in conjunction with the equivalent domain integral was used to calculate stress intensity factors (SIF). SIF solutions for surface or corner crack (crack length to depth ratio of 2) at a notch are presented for a wide range of crack sizes and notch radii. Results showed that the SIF are larger for larger crack lengths and for larger notch radii. The SIF are nearly constant all along the crack front for deep surface cracks and for all corner cracks analysed.

  3. Flame Spreading Across Liquid Fuels at Sub-Flash Point Temperatures: Measurements and Techniques (The Fuel Surface Tension, Vapor Pressure, Flash Point, Viscosity and Flame Spread Rate)

    DTIC Science & Technology

    1970-07-01

    Properties of n-Decene Sources: 1. API Technical Data Book-Petroleum Re f:Lning, American Petroleum Institute , 1966 2. Other sources (as noted) Formula: Ci1... American Petroleum Institute (1966). Absolute Viscosity of the Liquid: See Figure 5 Surface Tension (with air): See Figure 4 Specific Beat of the...using a procedure outlined on page 7-155 of the AP1 Technical Data Book-Petroleum Refining, American Petroleum Institute (1966). Thermal Conductivity

  4. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  5. Rheology and microrheology of materials at the air-water interface

    NASA Astrophysics Data System (ADS)

    Walder, Robert Benjamin

    2008-10-01

    The study of materials at the air-water interface is an important area of research in soft condensed matter physics. Films at the air-water interface have been a system of interest to physics, chemistry and biology for the last 20 years. The unique properties of these surface films provide ideal models for 2-d films, surface chemistry and provide a platform for creating 2 dimensional analogue materials to cellular membranes. Measurements of the surface rheology of cross-linked F-actin networks associated with a lipid monolayer at the air-water interface of a Langmuir monolayer have been performed. The rheological measurements are made using a Couette cell. These data demonstrate that the network has a finite elastic modulus that grows as a function of the cross-linking concentration. We also note that under steady-state flow the system behaves as a power law fluid in which the effective viscosity decreases with imposed shear. A Langmuir monolayer trough that is equipped for simultaneous microrheology and standard rheology measurements has been constructed. The central elements are the trough itself with a full range of optical tools accessing the air-water interface from below the trough and a portable knife-edge torsion pendulum that can access the interface from above. The ability to simultaneously measure the mechanical response of Langmuir monolayers on very different length scales is an important step for our understanding of the mechanical response of two-dimensional viscoelastic networks. The optical tweezer microrheometer is used to study the micromechanical properties of Langmuir monolayers. Microrheology measurements are made a variety of surface pressures that correspond to different ordered phases of the monolayer. The complex shear modulus shows an order of magnitude increase for the liquid condensed phase of DPPC compared to the liquid expanded phase.

  6. Nanomechanical properties of lipid bilayer: Asymmetric modulation of lateral pressure and surface tension due to protein insertion in one leaflet of a bilayer

    NASA Astrophysics Data System (ADS)

    Maftouni, Negin; Amininasab, Mehriar; Ejtehadi, Mohammad Reza; Kowsari, Farshad; Dastvan, Reza

    2013-02-01

    The lipid membranes of living cells form an integral part of biological systems, and the mechanical properties of these membranes play an important role in biophysical investigations. One interesting problem to be evaluated is the effect of protein insertion in one leaflet of a bilayer on the physical properties of lipid membrane. In the present study, an all atom (fine-grained) molecular dynamics simulation is used to investigate the binding of cytotoxin A3 (CTX A3), a cytotoxin from snake venom, to a phosphatidylcholine lipid bilayer. Then, a 5-microsecond coarse-grained molecular dynamics simulation is carried out to compute the pressure tensor, lateral pressure, surface tension, and first moment of lateral pressure in each monolayer. Our simulations reveal that the insertion of CTX A3 into one monolayer results in an asymmetrical change in the lateral pressure and corresponding spatial distribution of surface tension of the individual bilayer leaflets. The relative variation in the surface tension of the two monolayers as a result of a change in the contribution of the various intermolecular forces may potentially be expressed morphologically.

  7. Cationic Gemini surfactant at the air/water interface.

    PubMed

    Qibin, Chen; Xiaodong, Liang; Shaolei, Wang; Shouhong, Xu; Honglai, Liu; Ying, Hu

    2007-10-15

    The surface properties and structures of a cationic Gemini surfactant with a rigid spacer, p-xylyl-bis(dimethyloctadecylammonium bromide) ([C(18)H(37)(CH(3))(2)N(+)CH(2)C(6)H(4)CH(2)N(+)(CH(3))(2)C(18)H(37)],2Br(-), abbreviated as 18-Ar-18,2Br(-1)), at the air/water interface were investigated. It is found that the surface pressure-molecular area isotherms observed at different temperatures do not exhibit a plateau region but display an unusual "kink" before collapse. The range of the corresponding minimum compressibility and maximum compressibility modulus indicates that the monolayer is in the liquid-expanded state. The monolayers were transferred onto mica and quartz plates by the Langmuir-Blodgett (LB) technique. The structures of monolayers at various surface pressures were studied by atomic force microscopy (AFM) and UV-vis spectroscopy, respectively. AFM measurements show that at lower surface pressures, unlike the structures of complex or hybrid films formed by Gemini amphiphiles with DNA, dye, or inorganic materials or the Langmuir film formed by the nonionic Gemini surfactant, in this case network-like labyrinthine interconnected ridges are formed. The formation of the structures can be interpreted in terms of the spinodal decomposition mechanism. With the increase of the surface pressure up to 35 mN/m, surface micelles dispersed in the network-like ridges gradually appear which might be caused by both the spinodal decomposition and dewetting. The UV-vis adsorption shows that over the whole range of surface pressures, the molecules form a J-aggregate in LB films, which implies that the spacers construct a pi-pi aromatic stacking. This pi-pi interaction between spacers and the van der Waals interaction between hydrophobic chains lead to the formation of both networks and micelles. The labyrinthine interconnected ridges are formed first because of the rapid evaporation of solvent during the spreading processes; with increasing surface pressure, some of the

  8. Cable tensioned membrane solar collector module with variable tension control

    DOEpatents

    Murphy, Lawrence M.

    1985-01-01

    Disclosed is a solar collector comprising a membrane for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members, which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  9. Cable tensioned membrane solar collector module with variable tension control

    DOEpatents

    Murphy, L.M.

    1984-01-09

    Disclosed is a solar collector comprising a membrane member for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  10. Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface.

    PubMed

    Engin, Ozge; Sayar, Mehmet

    2012-02-23

    Peptide oligomers play an essential role as model compounds for identifying key motifs in protein structure formation and protein aggregation. Here, we present our results, based on extensive molecular dynamics simulations, on adsorption, folding, and pack