Science.gov

Sample records for air-window absorption source

  1. Resonant power absorption in helicon plasma sources

    SciTech Connect

    Chen Guangye; Arefiev, Alexey V.; Bengtson, Roger D.; Breizman, Boris N.; Lee, Charles A.; Raja, Laxminarayan L.

    2006-12-15

    Helicon discharges produce plasmas with a density gradient across the confining magnetic field. Such plasmas can create a radial potential well for nonaxisymmetric whistlers, allowing radially localized helicon (RLH) waves. This work presents new evidence that RLH waves play a significant role in helicon plasma sources. An experimentally measured plasma density profile in an argon helicon discharge is used to calculate the rf field structure. The calculations are performed using a two-dimensional field solver under the assumption that the density profile is axisymmetric. It is found that RLH waves with an azimuthal wave number m=1 form a standing wave structure in the axial direction and that the frequency of the RLH eigenmode is close to the driving frequency of the rf antenna. The calculated resonant power absorption, associated with the RLH eigenmode, accounts for most of the rf power deposited into the plasma in the experiment.

  2. Resonant power absorption in helicon plasma sources

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Arefiev, Alexey V.; Bengtson, Roger D.; Breizman, Boris N.; Lee, Charles A.; Raja, Laxminarayan L.

    2006-12-01

    Helicon discharges produce plasmas with a density gradient across the confining magnetic field. Such plasmas can create a radial potential well for nonaxisymmetric whistlers, allowing radially localized helicon (RLH) waves. This work presents new evidence that RLH waves play a significant role in helicon plasma sources. An experimentally measured plasma density profile in an argon helicon discharge is used to calculate the rf field structure. The calculations are performed using a two-dimensional field solver under the assumption that the density profile is axisymmetric. It is found that RLH waves with an azimuthal wave number m =1 form a standing wave structure in the axial direction and that the frequency of the RLH eigenmode is close to the driving frequency of the rf antenna. The calculated resonant power absorption, associated with the RLH eigenmode, accounts for most of the rf power deposited into the plasma in the experiment.

  3. Light absorption by biomass burning source emissions

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Engling, Guenter; Moosmüller, Hans; Arnott, W. Patrick; Chen, L.-W. Antony; Wold, Cyle E.; Hao, Wei Min; He, Ke-bin

    2016-02-01

    Black carbon (BC) aerosol has relatively short atmospheric lifetimes yet plays a unique and important role in the Earth's climate system, making it an important short-term climate mitigation target. Globally, biomass burning is the largest source of BC emissions into the atmosphere. This study investigated the mass absorption efficiency (MAE) of biomass burning BC generated by controlled combustion of various wildland fuels during the Fire Laboratory at Missoula Experiments (FLAME). MAE values derived from a photoacoustic spectrometer (∼7.8 m2/g at a wavelength of 532 nm) were in good agreement with those suggested for uncoated BC when the emission ratios of organic carbon (OC) to elemental carbon (EC) were extremely low (i.e., below 0.3). With the increase of OC/EC, two distinct types of biomass smoke were identified. For the first type, MAE exhibited a positive dependence on OC/EC, while the overestimation of the light absorption coefficient (babs) by a filter-based method was less significant and could be estimated by a nearly constant correction factor. For the second type, MAE was biased low and correlated negatively with OC/EC, while the overestimation of babs by the filter-based method was much more significant and showed an apparent OC/EC dependence. This study suggests that BC emission factors determined by the commonly used thermal-optical methods might be sustantially overestimated for some types of biomass burning emissions. Our results also indicate that biomass burning emissions may include some liquid-like organics that can significantly bias filter-based babs measurements.

  4. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan; Kliner, Dahv A. V.; Sommers, Ricky; Goers, Uta-Barbara; Armstrong, Karla M.

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  5. Multi-photon absorption limits to heralded single photon sources

    PubMed Central

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  6. Line shape of 57Co sources exhibiting self absorption

    NASA Astrophysics Data System (ADS)

    Spiering, H.; Ksenofontov, V.; Leupold, O.; Kusz, J.; Deák, L.; Németh, Z.; Bogdán, C.; Bottyán, L.; Nagy, D. L.

    2016-12-01

    The effect of selfabsorption in Mössbauer sources is studied in detail. Spectra were measured using an old 57 C o/ R h source of 74 M B q activity with an original activity of ca. 3.7 G B q and a 0.15 G B q 57 C o/ α - F e source magnetized by an in-plane magnetic field of 0.2 T. The 57 C o/ α - F e source of a thickness of 25 μ was used both from the active and the inactive side giving cause to very different selfabsorption effects. The absorber was a single crystal of ferrous ammonium sulphate hexahydrate (FAS). Its absorption properties were taken over from a detailed study (Bull et al., Hyperfine Interact. 94(1-3), 1; Spiering et al. 2). FAS (space group P21/c) crystallizes as flat plates containing the (overline {2}01) plane. The γ-direction was orthogonal to the crystal plate. The 57 C o atoms of the 57 C o/ R h source were assumed to be homogeneously distributed over a 6 μ thick Rh foil and to follow a one dimensional diffusion profile in the 25 μ Fe-foil. The diffusion length was fitted to 10 μ. The theory follows the Blume-Kistner equations for forward scattering (Blume and Kistner, Phys. Rev. 171, 417, 3) by integrating over the source sampled up to 128 layers.

  7. Identification of Gas Phase PAHs in Absorption Towards Protostellar Sources

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The infrared emission bands (also known as the UIR bands.) have recently been observed in absorption at 3.25 micrometers in the ices surrounding a few proto-stellar objects at 11.2 micrometers in MonR2, and at 6.2 micrometers towards two sources near the galactic center. The UIR bands have been observed in emission for many years, but identifying these bands has proven to be both difficult and contentious as no one has yet found a single material that provides a good match to the features. However, most investigators agree that some form of carbon-based material with aromatic bonds is the most likely candidate, and many arguments favor free molecules (polycyclic aromatic hydrocarbons, PAHs) as the carriers of at least the narrow emission bands. Since the emission arises not from a single molecule but from a family of molecules, identifying which PAHs are contributing to the infrared emission bands is difficult. The identification is further complicated by the fact that the emission at short wavelengths is dominated by small molecules while at long wavelengths it is dominated by large molecules. Thus, for example, the emission at 3.3 micrometers is from a different mix of molecules than those which produce the 11.2 micrometer band. To complicate matters further, the molecular mix includes both neutral and ionic species. In absorption, the same mixture of molecules contributes at all wavelengths and the molecules should be neutral, potentially simplifying comparisons with lab data. Also, absorption strengths measured in the lab are directly applicable to interstellar absorption bands without the need to model an emission spectrum of an unknown mixture of ionized and neutral PAHs. In this paper we show that a mixture of argon matrix isolated PAH molecules can reproduce the 3.25 micrometers absorption band seen in the ISO SWS spectra of four embedded Infrared sources, S140 IRS1, AFGL 2591, Elias 29, and AFGL 989. In section 2 we describe the ISO SWS data analysis and

  8. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    PubMed Central

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-01-01

    Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models. PMID:26419204

  9. New detections of Galactic molecular absorption systems toward ALMA calibrator sources

    NASA Astrophysics Data System (ADS)

    Ando, Ryo; Kohno, Kotaro; Tamura, Yoichi; Izumi, Takuma; Umehata, Hideki; Nagai, Hiroshi

    2016-02-01

    We report on Atacama Large Millimeter/submillimeter Array (ALMA) detections of molecular absorption lines in Bands 3, 6, and 7 toward four radio-loud quasars, which were observed as the bandpass and complex gain calibrators. The absorption systems, three of which are newly detected, are found to be Galactic origin. Moreover, HCO absorption lines toward two objects are detected, which almost doubles the number of HCO absorption samples in the Galactic diffuse medium. In addition, high HCO-to-H13CO+ column density ratios are found, suggesting that the interstellar media (ISM) observed toward the two calibrators are in photodissociation regions, which observationally illustrates the chemistry of diffuse ISM driven by ultraviolet (UV) radiation. These results demonstrate that calibrators in the ALMA Archive are potential sources for the quest for new absorption systems and for detailed investigation of the nature of the ISM.

  10. High bandwidth absorption spectroscopy with a dispersed supercontinuum source.

    PubMed

    Hult, Johan; Watt, Rosalynne S; Kaminski, Clemens F

    2007-09-01

    An optical gas sensor is presented, making use of a dispersed supercontinuum source, capable of acquiring broad bandwidth spectra at ultrahigh wavelength sweep and repetition rates. Wavelength sweeps from 1100 nm to 1700 nm can be performed in 800 ns at a spectral resolution of 40 pm. This is comparable to line-widths of molecular spectra at atmospheric pressure. Quantitative measurements are presented of CH(4) employing 80 nm wide sweeps over the P- Q- and R-branches of the 2nu(3) transition near 1665 nm, at rates exceeding 100 kHz. The effective acquisition rate is determined by the amount of averaging required, and the effect of this averaging on observed precision is investigated. PMID:19547496

  11. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    SciTech Connect

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.

  12. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    DOE PAGESBeta

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; et al

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less

  13. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    PubMed

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant. PMID:19650504

  14. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  15. The effect of radial inhomogeneity on the collisional power absorption in helicon plasma sources

    NASA Astrophysics Data System (ADS)

    Soltani, B.; Habibi, M.; Zakeri-khatir, H.

    2016-02-01

    The paper reports on the effects of plasma radial inhomogeneity on the power absorption in a helicon plasma source, which are computationally investigated by the CST Microwave Studio code. RF (13.56 MHz) power deposition was studied using three designs of antennas, namely, the Nagoya type-III, the fractional helix, and the single loop. Argon was used as the plasma working gas at the operating pressure of 15 mTorr. We have focused on the collisional power absorption utilizing WKB approximation to describe the plasma inhomogeneity. The obtained results show that the radial inhomogeneity has different effects on the power absorption at the low and the high magnetic fields. It is found that at low magnetic fields (i.e., B 0 = 0.01 T ) , there is a specific density ( n c ) ranging from 5 × 10 18 m - 3 to 1 × 10 19 m - 3 , before and after which the radial inhomogeneity decreases and increases the absorbed power, respectively. On the other hand, at high magnetic fields (i.e., B 0 = 0.1 T ), the inhomogeneity has no regular effect on the power absorption in various plasma densities. In addition, for a given plasma density (e.g., n = 10 18 m - 3 ), as the magnetic field increases, the radial inhomogeneity effect on the power absorption would decrease for the Nagoya type-III and the fractional helix designs. However, for the single loop antenna design, this effect is negligible.

  16. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    NASA Astrophysics Data System (ADS)

    Olson, Michael R.; Victoria Garcia, Mercedes; Robinson, Michael A.; Van Rooy, Paul; Dietenberger, Mark A.; Bergin, Michael; Schauer, James Jay

    2015-07-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings. Filter-based absorption measurements were corrected and compared to photoacoustic absorption results. BC absorption was segregated from the total light extinction to estimate the BrC absorption from individual sources. Results were compared to elemental carbon (EC)/organic carbon (OC) concentrations to determine composition's impact on light absorption. Multiple-wavelength absorption coefficients, Angstrom exponent (6.9 to <1.0), mass absorption cross section (MAC), and Delta C (97 µg m-3 to ~0 µg m-3) were highly variable. Sources such as incense and peat emissions showed ultraviolet wavelength (370 nm) BrC absorption over 175 and 80 times (respectively) the BC absorption but only 21 and 11 times (respectively) at 520 nm wavelength. The bulk EC MACEC, λ (average at 520 nm = 9.0 ± 3.7 m2 g-1; with OC fraction <0.85 = ~7.5 m2 g-1) and the BrC OC mass absorption cross sections (MACBrC,OC,λ) were calculated; at 370 nm ultraviolet wavelengths; the MACBrC,OC,λ ranged from 0.8 m2 g-1 to 2.29 m2 g-1 (lowest peat, highest kerosene), while at 520 nm wavelength MACBrC,OC,λ ranged from 0.07 m2 g-1 to 0.37 m2 g-1 (lowest peat, highest kerosene/incense mixture). These MAC results show that OC content can be an important contributor to light absorption when present in significant quantities (>0.9 OC/TC), source emissions have variable absorption spectra, and nonbiomass combustion sources can be significant contributors to BrC.

  17. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  18. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  19. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGESBeta

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  20. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  1. Numerical calculations of spectral turnover and synchrotron self-absorption in CSS and GPS radio sources

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.

    2016-06-01

    The dependence of the turnover frequency on the linear size is presented for a sample of Giga-hertz Peaked Spectrum and Compact Steep Spectrum radio sources derived from complete samples. The dependence of the luminosity of the emission at the peak frequency with the linear size and the peak frequency is also presented for the galaxies in the sample. The luminosity of the smaller sources evolve strongly with the linear size. Optical depth effects have been included to the 3D model for the radio source of Kaiser to study the spectral turnover. Using this model, the observed trend can be explained by synchrotron self-absorption. The observed trend in the peak-frequency-linear-size plane is not affected by the luminosity evolution of the sources.

  2. Cavity Enhanced Absorption Spectroscopy with a red LED source for NOx trace analysis

    NASA Astrophysics Data System (ADS)

    Ventrillard Courtillot, I.; Sciamma O'Brien, E.; Méjean, G.; Romanini, D.

    2009-04-01

    This study presents a high sensitivity absorption system using a red LED source emitting at 625 nm and a small CCD spectrometer as detector [1]. This system is based on IBB-CEAS (Incoherent Broad Band Cavity Enhanced Absorption Spectroscopy). The expected application is the measurement of NO2 and NO3 in urban concentration (ppbv and ppmv levels). The IBB-CEAS was firstly developed with arc lamps and then with LED. Systems based on this technique are easy to use, highly sensitive, compact and robust. They also are inexpensive. Existent techniques to measure NO2 and NO3 are generally slow or not sensitive enough and need frequently calibrations (chemical luminescent) or are characterized by a low spatial resolution (Long Path Differential Optical Absorption Spectroscopy). Previous works based on diodes lasers emitting around 410 nm and coupled with High Finess Cavity proved a highest sensibility than ppbv and a time measurement of 0.1 s [2]. This sensibility is necessary for measurements in unpolluted environment but a more expensive and more complex system is needed. NO2 is chosen for testing as it is stable and available in calibrated diluted samples. An excellent agreement in the range from 610 nm to 630 nm was gotten between an absorption spectrum obtained by IBB-CEAS and a spectrum calculated using a reference NO2 absorption cross section by Voigt et al [3] (after convolution with a 2.05-nm FWHM Gaussian simulating our spectrometer response function). The reflectivity of the mirrors was determined with a commercial spectrophotometer and was used to deduce the absorption spectrum of NO2 from the transmission spectrum of the cavity. We obtained by estimating the sensitivity of our setup from the noise in a baseline measurement of absorption, (standard deviation = 2E-10 cm-1). This corresponds (under atmospheric conditions) to a sensitivity about 0.5 ppbv. NO3 cross-section absorption is 600 times higher than the NO2 (at 623 nm), so a detection limit of 1 pptv is

  3. Study of interstellar molecular clouds using formaldehyde absorption toward extragalactic radio sources

    SciTech Connect

    Araya, E. D.; Andreev, N.; Dieter-Conklin, N.; Goss, W. M.

    2014-04-01

    We present new Very Large Array 6 cm H{sub 2}CO observations toward four extragalactic radio continuum sources (B0212+735, 3C 111, NRAO 150, and BL Lac) to explore the structure of foreground Galactic clouds as revealed by absorption variability. This project adds a new epoch in the monitoring observations of the sources reported by Marscher and collaborators in the mid-1990s. Our new observations confirm the monotonic increase in H{sub 2}CO absorption strength toward NRAO 150. We do not detect significant variability of our 2009 spectra with respect to the 1994 spectra of 3C111, B0212+735, and BL Lac; however, we find significant variability of the 3C111 2009 spectrum with respect to archive observations conducted in 1991 and 1992. Our analysis supports that changes in absorption lines could be caused by chemical and/or geometrical gradients in the foreground clouds and not necessarily by small-scale (∼10 AU) high-density molecular clumps within the clouds.

  4. Multielement continuum-source atomic-absorption spectrometry with an echelle-spectrometer/image-dissector system.

    PubMed

    Masters, R; Hsiech, C; Pardue, H L

    1989-01-01

    The continued development of the echelle-spectrometer/image-dissector system for multielement determination by continuum-source atomic-absorption spectrometry is presented. Modifications of the instruments include the use of a 20-groove/mm echelle grating blazed at 76 degrees , and the removal of the magnetic shield from the image dissector. The spectral range is from 300 to 430 nm and the observed resolution is better than 0.005 nm at 400 nm. Calibration curves are linear up to an absorbance of 0.2, and absorption sensitivities are up to 4-fold better than with the previous design. Fundamental characteristics of the detector limit the application of the instrument to sequential single-element quantifications with the electrothermal atomizer, and to sequential multielement quantification with the flame atomizer. The further development of the instrument for simultaneous multielement qualification is discussed. PMID:18964682

  5. Effect of bile diversion on satiety and fat absorption from liquid and solid dietary sources

    SciTech Connect

    Doty, J.E.; Gu, Y.G.; Meyer, J.H.

    1988-12-01

    In previous studies, liquid fat has been used to determine the effect of bile diversion on fat absorption. Since protein digests, in addition to bile salts, are capable of solubilizing lipids, we hypothesized that fat incorporated in the protein-rich matrix of solid food would be less sensitive to bile diversion than fat ingested as an oil or liquid. Using (3H)glycerol triether as a nonabsorbable fat recovery marker, we determined how much (14C)triolein was absorbed from solid (chicken liver) and liquid (margarine) dietary sources. After a standard liquid/solid meal with either the chicken liver or margarine labeled, midintestinal chyme was collected for 6 hr, extracted, and counted for 14C and 3H activity. Zero, eighty, or one hundred percent of endogenous bile was diverted. Fat absorption from both chicken liver and margarine was nearly complete by midintestine with 0% diversion and was little affected by diversion of 80% of bile. Complete biliary diversion significantly decreased fat absorption from margarine (87.9 +/- 4.4 to 37.2 +/- 9.2%, P less than 0.05) but reduced (14C)triolein absorption from chicken liver less consistently and insignificantly (78.8 +/- 6.9 to 43.9 +/- 10.6%). These data indicate that fat absorption is not solely dependent on bile and support the hypothesis that fat ingested in a cellular matrix is less dependent on bile than liquid fat. Using these same animals but with the midintestinal cannulas plugged to expose the distal intestine to unabsorbed luminal nutrients, we also demonstrated that bile diversion of an initial meal reduced food consumption at a meal offered 3 hr later.

  6. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega (sub 0) <= 0.02 decrease) than in previous work and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  7. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies Among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia

    2004-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  8. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  9. Estimation of boron isotope ratios using high resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Wiltsche, Helmar; Prattes, Karl; Zischka, Michael; Knapp, Günter

    2009-04-01

    In the production of 10B enriched steels, the production-recycling process needs to be closely monitored for inadvertent mix-up of materials with different B isotope levels. A quick and simple method for the estimation of boron isotope ratios in high alloyed steels using high resolution continuum source flame AAS (HR-CS-FAAS) was developed. On the 208.9 nm B line the wavelength of the peak absorption of 10B and 11B differs by 2.5 pm. The wavelength of the peak absorption of boron was determined by fitting a Gauss function through spectra simultaneously recorded by HR-CS-FAAS. It was shown that a linear correlation between the wavelength of the peak absorption and the isotope ratio exists and that this correlation is independent of the total boron concentration. Internal spectroscopic standards were used to compensate for monochromator drift and monochromator resolution changes. Accuracy and precision of the analyzed samples were thereby increased by a factor of up to 1.3. Three steel reference materials and one boric acid CRM, each certified for the boron isotope ratio were used to validate the procedure.

  10. Microplasmas as vacuum ultraviolet source for Cl-atom density measurements by resonance absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Virginie; Bauville, Gérard; Sadeghi, Nader; Puech, Vincent

    2011-11-01

    A micro-hollow cathode discharge was used to generate radiation on the chlorine atom resonance lines. Such radiation could be used to measure, by resonance absorption spectroscopy, the density of chlorine atoms in either ground state (3p5 2P3/2) or in the fine structure metastable state (3p5 2P1/2), which is located at 882.35 cm-1. Among the nine analysed lines in the 132-142 nm spectral region, only those at 137.953 and 139.653 nm, which are strong enough and are not affected by the self-absorption, can be used for the resonance absorption diagnostic of the ground state and the metastable state, respectively. The best operating conditions of the lamp source are 0.5% of Cl2 in argon at 150 mbar and 4 mA discharge current. The measured 800 ± 30 K gas temperature of the microplasma, indicates that under these specific conditions, these two lines are dominantly Doppler broadened. So their profile is Gaussian shaped with full widths at half maximum of (4.7 ± 0.1) × 10-4 nm.

  11. Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source.

    PubMed

    Sych, Yaroslav; Engelbrecht, Rainer; Schmauss, Bernhard; Kozlov, Dimitrii; Seeger, Thomas; Leipertz, Alfred

    2010-10-25

    A Q-switched laser based system for broadband absorption spectroscopy in the range of 1390-1740 nm (7200-5750 cm(-1)) has been developed and tested. In the spectrometer the 1064 nm light of a 25 kHz repetition-rate micro-chip Nd:YAG laser is directed into a photonic crystal fiber to produce a short (about 2 ns) pulse of radiation in a wide spectral range. This radiation is passed through a 25 km long dispersive single-mode fiber in order to spread the respective wavelengths over a time interval of about 140 ns at the fiber output. This fast swept-wavelength light source allows to record gas absorption spectra by temporally-resolved detection of the transmitted light power. The realized spectral resolution is about 2 cm(-1). Examples of spectra recorded in a cell with CO(2):CH(4):N(2) gas mixtures are presented. An algorithm employed for the evaluation of molar concentrations of different species from the spectra with non-overlapping absorption bands of mixture components is described. The uncertainties of the concentration values retrieved at different acquisition times due to the required averaging are evaluated. As an example, spectra with a signal-to-noise ratio large enough to provide species concentrations with a relative error of 5% can be obtained in real time at a millisecond time scale. Potentials and limitations of this technique are discussed. PMID:21164614

  12. Quantification Of Cesium In Negative Hydrogen Ion Sources By Laser Absorption Spectroscopy

    SciTech Connect

    Fantz, U.; Wimmer, Ch.

    2011-09-26

    The use of cesium in negative hydrogen ion sources and the resulting cesium dynamics caused by the evaporation and redistribution in the vacuum and plasma phase makes a reliable and on-line monitoring of the cesium amount in the source highly desirable. For that purpose, a robust and compact laser absorption setup suitable for the ion source environment has been developed utilizing the Cs D{sub 2} resonance line at 852.1 nm. First measurements are taken in a small laboratory plasma chamber with cesium evaporation. A detection limit of {approx_equal}5x10{sup 13} m{sup -3} at a typical path length of 15 cm has been obtained with a dynamic range of more than three orders of magnitude, limited by line saturation at high densities. For on-line monitoring an automatic data analysis is established achieving a temporal resolution of 100 ms. The setup has then been applied to the ITER prototype ion sources developed at IPP. It is been shown that the method is well suited for routine measurements revealing a new insight into the cesium dynamics during source operation and cesium conditioning.

  13. Measurement of Gas Temperature in Negative Hydrogen Ion Source by Wavelength-Modulated Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishiyama, S.; Sasaki, K.; Nakano, H.; Goto, M.; Kisaki, M.; Tsumori, K.; NIFS-NBI Team

    2014-10-01

    Measurement of the energy distribution of hydrogen atom is important and essential to understand the production mechanism of its negative ion (H-) in cesium-seeded negative ion sources. In this work, we evaluated the temperature of atomic hydrogen in the large-scale arc-discharge negative hydrogen ion source in NIFS by wavelength-modulated laser absorption spectroscopy. The laser beam was passed through the adjacent region to the grid electrode for extracting negative ions. The frequency of the laser was scanned slowly over the whole range of the Doppler width (100 GHz in 1s). A sinusoidal frequency modulation at 600 Hz with a width of 30 GHz was superposed onto the slow modulation. The transmitted laser was detected using a photodiode, and its second harmonic component of the sinusoidal modulation was amplified using a lock-in amplifier. The obtained spectrum was in good agreement with an expected spectrum of the Doppler-broadened Balmer- α line. The estimated temperature of atomic hydrogen was approximately 3000 K. The absorption increased with the arc-discharge power, while the temperature was roughly independent of the power. This work is supported by the NIFS Collaboration Research Program NIFS13KLER021.

  14. VUV Absorption Spectroscopy of a Penning Surface - Negative Hydrogen Ion Source

    NASA Astrophysics Data System (ADS)

    Pitcher, Eric John

    The demand for energetic, high-current H ^- beams is ever-growing. Because H ^- is efficiently neutralized at high energies, these beams are ideally suited to applications where energetic neutral beams of particles are required to propagate across magnetic fields. Prime examples are neutral-beam heating of magnetic fusion plasmas and directed-energy weapons for ballistic missile defense. Such applications place demanding requirements on sources of H^ - ions, particularly with respect to the parameters of beam current, brightness, quiescence, reliability, and duty-factor. A class of sources that holds great promise for meeting these stringent requirements is the surface-plasma source (SPS), and in particular, the Penning type of SPS. It has long been conjectured that atomic hydrogen plays an important role in both H^- formation and transport in these sources. Understanding the interdependence of atomic hydrogen properties and those of H^ -, and how this relationship might be exploited to improve source performance is the motivation for this research. An overview of SPS's is presented. Previous measurements on the discharge are reviewed. Absorption spectroscopy, the diagnostic technique used to gather all of the data presented here, is discussed. Techniques that may potentially be used to measure the properties of H^ - in the discharge are discussed. The two absorption spectrometers used in this experiment are described. Measurements of ground-state atomic hydrogen density and temperature in a Penning SPS are presented. These measurements are the first of this kind for this type of discharge. An upper limit on the H^- density in the extraction region of the source is measured by the application of a novel diagnostic technique: the hydrogen atom density following H^- photodetachment by a Nd:YAG beam is measured and compared to the equilibrium atomic density. A simple model is derived that describes the dependence of the atomic temperature on the externally

  15. Mass absorption efficiency of elemental carbon for source samples from residential biomass and coal combustions

    NASA Astrophysics Data System (ADS)

    Shen, Guofeng; Chen, Yuanchen; Wei, Siye; Fu, Xiaofang; Zhu, Ying; Tao, Shu

    2013-11-01

    Optical properties of particulate matter are of growing concern due to their complex effects on atmospheric visibility and local/regional climate change. In this study, mass absorption efficiency (MAE) of elemental carbon (EC) was measured for source emission samples obtained from the residential combustions of solid fuels using a thermal-optical carbon analyzer. For source samples from residential wood, crop straw, biomass pellet and coal combustions, MAE of EC measured at 650 nm, were 3.1 (2.4-3.7 as 95% Confidence Interval), 6.6 (5.5-7.6), 9.5 (6.7-12), and 7.9 (4.8-11) m2 g-1, respectively. MAE of EC for source sample from the wood combustion was significantly lower than those for the other fuels, and MAE of EC for coal briquette appeared to be different from that of raw chunk. MAE values of the investigated source emission samples were found to correlate with OC/EC ratio, and a significantly positive correlation was found between MAE and particle-bound polycyclic aromatic hydrocarbons (pPAHs), though pPAHs contributed a relatively small fraction of OC.

  16. Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements.

    PubMed

    Kern, Christoph; Trick, Sebastian; Rippel, Bernhard; Platt, Ulrich

    2006-03-20

    We present what is to our knowledge the first use of light-emitting diodes (LEDs) as light sources for long-path differential optical absorption spectroscopy (LP-DOAS) measurements of trace gases in the open atmosphere. Modern LEDs represent a potentially advantageous alternative to thermal light sources, in particular to xenon arc lamps, which are the most common active DOAS light sources. The radiative properties of a variety of LEDs were characterized, and parameters such as spectral shape, spectral range, spectral stability, and ways in which they can be influenced by environmental factors were analyzed. The spectra of several LEDs were found to contain Fabry-Perot etalon-induced spectral structures that interfered with the DOAS evaluation, in particular when a constant temperature was not maintained. It was shown that LEDs can be used successfully as light sources in active DOAS experiments that measure NO2 and NO3 near 450 and 630 nm, respectively. Average detection limits of 0.3 parts in 10(9) and 16 parts in 10(12) respectively, were obtained by use of a 6 km light path in the open atmosphere. PMID:16579579

  17. Studying Absorption Line Feature in the Relativistic Jet Source GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    The galactic superluminal source GRS 1915+105 is among the most interesting objects in our Galaxy. It is subject to erratic accretion instabilities with energization of relativistic jets producing X-ray, optical and radio emission. This source was observed by ASCA on Sept. 27, 1994, April 20, 1995, October 23, 1996 and April 25, 1997 as part of a long timescale investigation. We detected strong variability of the source, and in particular the existence of burst/dip structure in October 1996 and April 1997. Clear evidence of transient absorption features at 6.7, 7.0 and 8.0 keV was obtained for the first time in September 1994 and April 1995. Given the phenomenology of plasmoid energization and ejection, these transient spectral features might be produced by material entrained in the radio jets or in other high-velocity outflows. Our contribution to the interpretation is to incorporate these observations into a overall theoretical picture for GRS 1915+105 also taking into account other observations by XTE and BSAX. The emerging picture is complex. The central source is subject to (most likely) super-Eddington instabilities mediated by magnetic field build-up, reconnection and dissipation in the form of blobs that eventually leads to the formation of transient spectral features from the surrounding of the plasmoid emitting region. A comprehensive theoretical investigation is in progress.

  18. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  19. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    NASA Astrophysics Data System (ADS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; da Silva, Alessandra Furtado; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson José

    2005-06-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 °C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 °C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1.

  20. Measuring sound absorption properties of porous materials using a calibrated volume velocity source

    NASA Astrophysics Data System (ADS)

    Arenas, Jorge P.; Darmendrail, Luis

    2013-10-01

    Measurement of acoustic properties of sound-absorbing materials has been the source of much investigation that has produced practical measuring methods. In particular, the measurement of the normal incidence sound absorption coefficient is commonly done using a well-known configuration of a tube carrying a plane wave. The sound-absorbing coefficient is calculated from the surface impedance measured on a sample of material. Therefore, a direct measurement of the impedance requires knowing the ratio between the sound pressure and the volume velocity. However, the measurement of volume velocity is not straightforward in practice and many methods have been proposed including complex transducers, laser vibrometry, accelerometers and calibrated volume velocity sources. In this paper, a device to directly measure the acoustic impedance of a sample of sound-absorbing material is presented. The device uses an internal microphone in a small cavity sealed by a loudspeaker and a second microphone mounted in front of this source. The calibration process of the device and the limitations of the method are also discussed and measurement examples are presented. The accuracy of the device was assessed by direct comparison with the standardized method. The proposed measurement method was tested successfully with various types of commercial acoustic porous materials.

  1. Elemental biological imaging by differential absorption with a laser-produced x-ray source

    NASA Astrophysics Data System (ADS)

    Tillman, C.; Mercer, I.; Svanberg, S.; Herrlin, K.

    1996-01-01

    We demonstrate the novel application of hard x rays emitted by a laser-produced plasma for differential imaging of elements. An x-ray-emitting laser-produced plasma, obtained by the focusing of radiation from a 10-Hz terawatt laser, is used for biological imaging. The x-ray source can be arranged to yield characteristic x-ray emission lines with photon energies that bridge the K absorption edge of a chosen atomic species. One can obtain element-specific radiographs by recording transillumination images for different target materials on digital image plates and by subsequently subtracting or dividing the images. Successful phantom and experimental animal imaging are performed utilizing tantalum and gadolinium as target materials for the terawatt laser and gadolinium as the imaged contrast agent.

  2. Shortwave absorption by water vapor and clouds as a source of equability in warm climates

    NASA Astrophysics Data System (ADS)

    Rondanelli, R. F.; Huber, M.; Shaffer, G.

    2014-12-01

    During warm climates as those experienced during the Early Eocene, water vapor content is expected to locally increase at about 6%/K as warmer temperatures allow for larger values of water vapor saturation, and near surface relative humidity is bound to remain relatively constant. This increase in water vapor results in larger clear sky water vapor absorption near the Equator that decreases towards the poles providing a more equable distribution of shortwave radiation at the surface. Additionally, clouds in mid-latitudes are expected to shift polewards, increasing cloudiness in regions that receive less shortwave radiation and decreasing cloudiness in regions that receive more, again acting as a source of equability for climate. We quantify these two effects using atmospheric GCM simulations run under Eocene boundary conditions for 2, 4, 8, 16 and 32 times present concentrations of CO2. We attempt to isolate the effect of the surface radiation distribution on the surface temperature gradient using a simple energy balance model.

  3. Urban Airborne Lead: X-Ray Absorption Spectroscopy Establishes Soil as Dominant Source

    PubMed Central

    Pingitore, Nicholas E.; Clague, Juan W.; Amaya, Maria A.; Maciejewska, Beata; Reynoso, Jesús J.

    2009-01-01

    Background Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008) US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds) of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. Methodology/Principal Findings We used synchrotron-based XAFS (x-ray absorption fine structure) to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. Conclusions/Significance Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings. PMID:19340295

  4. Radiation absorption in different kinds of tissue analysis: ex vivo study with supercontinuum laser source

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Merigo, Elisabetta; Selleri, Stefano; Cucinotta, Annamaria

    2016-03-01

    With the introduction of more and more new wavelengths, one of the main problems of medical laser users was centered on the study of laser-tissue interactions with the aim of determining the ideal wavelength for their treatments. The aim of this ex vivo study was to determine, by means of the utilization of a supercontinuum source, the amount of transmitted energy of different wavelengths in different organ samples obtained by Sprague Dawley rats. Supercontinuum light is generated by exploiting high optical non-linearity in a material and it combines the broadband attributes of a lamp with the spatial coherence and high brightness of laser. Even if the single transmission measurement does not allow us to separate out the respective contribution of scattering and absorption, it gives us an evaluation of the wavelengths not interacting with the tissue. In this way, being possible to determine what of the laser wavelengths are not useful or active in the different kinds of tissue, physicians may choose the proper device for his clinical treatments.

  5. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China

    NASA Astrophysics Data System (ADS)

    Kirillova, E. N.; Andersson, A.; Han, J.; Lee, M.; Gustafsson, Ö.

    2014-02-01

    High loadings of anthropogenic carbonaceous aerosols in Chinese air influence the air quality for over one billion people and impact the regional climate. A large fraction (17-80%) of this aerosol carbon is water-soluble, promoting cloud formation and thus climate cooling. Recent findings, however, suggest that water-soluble carbonaceous aerosols also absorb sunlight, bringing additional direct and indirect climate warming effects, yet the extent and nature of light absorption by this water-soluble "brown carbon" and its relation to sources is poorly understood. Here, we combine source estimates constrained by dual carbon isotopes with light-absorption measurements of water-soluble organic carbon (WSOC) for a March 2011 campaign at the Korea Climate Observatory at Gosan (KCOG), a receptor station in SE Yellow Sea for the outflow from northern China. The mass absorption cross section at 365 nm (MAC365) of WSOC for air masses from N. China were in general higher (0.8-1.1 m2 g-1), than from other source regions (0.3-0.8 m2 g-1). However, this effect corresponds to only 2-10% of the radiative forcing caused by light absorption by elemental carbon. Radiocarbon constraints show that the WSOC in Chinese outflow had significantly higher fraction fossil sources (30-50%) compared to previous findings in S. Asia, N. America and Europe. Stable carbon (δ13C) measurements were consistent with aging during long-range air mass transport for this large fraction of carbonaceous aerosols.

  6. Detection of 21 Centimeter H I Absorption at z=0.78 in a Survey of Radio Continuum Sources

    NASA Astrophysics Data System (ADS)

    Darling, Jeremy; Giovanelli, Riccardo; Haynes, Martha P.; Bolatto, Alberto D.; Bower, Geoffrey C.

    2004-10-01

    We report the detection of a deep broad H I 21 cm absorption system at z=0.78 toward the radio source [HB89] 2351+456 (4C +45.51) at z=1.992. The H I absorption was identified in a blind spectral line survey conducted at the Green Bank Telescope spanning 0.63sources. The H I column density is NHI=2.35×1019(Ts/f) cm-2, where Ts is the spin temperature and f is the continuum covering factor of the absorbing gas. For Ts/f>8.5 K, this system is by definition a damped Lyα absorption system (NHI>=2×1020 cm-2). The line is unusually broad, with an FWHM of 53 km s-1 and a full span of 163 km s-1, suggesting a physically extended H I gas structure. Radio surveys identify damped Lyα systems in a manner that bypasses many of the selection effects present in optical/UV surveys, including dust extinction and the atmospheric cutoff for z<1.65. The smooth broad profile of this H I 21 cm absorption system is similar to the z=0.89 H I absorption toward PKS 1830-211, which suggests that the absorber toward [HB89] 2351+456 is also a gravitational lens and a molecular absorption system. However, very long baseline interferometry and Hubble Space Telescope observations show little evidence for gravitational lensing, and BIMA millimeter observations show no HCO+ (1-->2) or HCN (1-->2) absorption down to τ=0.15 (3 σ) in 5 km s-1 channels. Although this radio damped Lyα selection technique would include dusty, molecule-rich systems, [HB89] 2351+456 appears to be a ``vanilla'' H I 21 cm absorber.

  7. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source

    SciTech Connect

    Osborne, G. C.; Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Ouart, N. D.

    2012-10-15

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature ({approx}10-40 eV) plasmas than emission spectra ({approx}350-500 eV).

  8. 4.6 micron absorption features due to solid phase CO and cyano group molecules toward compact infrared sources

    NASA Technical Reports Server (NTRS)

    Lacy, J. H.; Baas, F.; Allamandola, L. J.; Van De Bult, C. E. P.; Persson, S. E.; Mcgregor, P. J.; Lonsdale, C. J.; Geballe, T. R.

    1984-01-01

    Spectra obtained at a resolving power of 840, for seven protostellar sources in the region of the 4.67-micron fundamental vibrational band of CO, indicate that the deep absorption feature in W33A near 4.61 microns consists of three features which are seen in other sources, but with varying relative strength. UV-irradiation laboratory experiments with 'dirty ice' temperature cycling allow the identification of two of the features cited with solid CO and CO complexed to other molecules. Cyano group-containing molecules have a lower vapor pressure than CO, and can therefore survive in much warmer environments. The formation and location of the CO- and CN-bearing grain mantles and sources of UV irradiation in cold molecular clouds are discussed. Plausible UV light sources can produce the observed cyano group features, but only under conditions in which local heat sources do not cause evaporation of the CO molecules prior to their photoprocessing.

  9. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1). PMID:27345208

  10. Ingestion, enzymatic digestion and absorption of particles derived from different vegetal sources by the cockle Cerastoderma edule

    NASA Astrophysics Data System (ADS)

    Arambalza, U.; Urrutia, M. B.; Navarro, E.; Ibarrola, I.

    2010-10-01

    Ingestion, enzymatic digestion and absorption of particulate detrital matter derived from six different vegetal sources by the common cockle Cerastoderma edule was analyzed in a series of seasonal experiments performed in March, May and October 2005. Two green macroalgae: Ulva lactuca and Enteromorpha sp; two vascular plants: Spartina maritima and Juncus maritimus, the red macroalgae Gracilaria gracilis; and the microalgae Isochrysis galbana were used in experiments. Detrital matter was elaborated by freeze-drying, grinding and sieving (< 63 μm) vegetal tissues. Mono-specific detrital diets of similar organic content (≈ 60-70%) were elaborated by mixing detritus with ashed silt. We measured i) the biochemical composition of different detritus, ii) physiological components of the absorptive balance (i.e. clearance, ingestion, rejection and absorption rate and absorption efficiency), iii) the capability of the digestive gland to hydrolyze carbohydrates from different detritus (digestibility), as well as iv) glandular cellulase and xylanase activities. Detritus type, season and the interaction detritus-season exerted significant effects upon all the physiological components of absorptive balance. Effects were light at the pre-absorptive level, however, huge variations associated to absorption efficiency promoted large significant differences in absorption rates (AR) of different kind of detritus: irrespective of season, highest values corresponded to cockles fed the green macroalgae ( Ulva and Enteromorpha) and lowest to those fed the vascular plant Juncus maritimus. Recorded significant differences in enzymatic digestibility among detritus were found to explain ≈ 40% of differences recorded in AR, and the following regression could be fitted: AR = 0.232 (± 0.032) * Digestibility + 0,072 (± 0.015); r 2 = 0.415; F = 51.036; p < 0.001. Digestibility of Ulva and Enteromorpha was found to be significantly correlated with cellulase activity in the digestive gland

  11. H216O absorption spectrum between 22250 and 22800 cm-1: Fourier transform spectroscopy with bright light source

    NASA Astrophysics Data System (ADS)

    Serduykov, V. I.; Sinitsa, L. N.; Vasil'chenko, S. S.; Bykov, A. D.; Kruglova, T. V.; Polovtseva, E. R.; Scherbakov, A. P.

    2014-11-01

    Measurements of water vapor absorption spectra in the visible spectral region near 0.44 mkm are performed using FTspectrometer IFS-125M and Light-emitting diode (LED) as source of radiation. Water vapor spectrum has been obtained by averaging over 17136 scans recorded at 34,8 m optical path length, temperature 24 ± 1 C and pressure of sample 24,8 mBar. Due to strong emission of LED source it was possible to achieve signal-to-noise ratio about 104 and to record weak lines with intensities of 6 10-27 cm/molecule. Comparisons with results of early works are made.

  12. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri; Hlongwane, Miranda; Heitmann, Uwe; Florek, Stefan

    2012-05-01

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 μg·L- 1 using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed.

  13. Advances in Methane Isotope Measurements via Direct Absorption Spectroscopy with Applications to Oil and Gas Source Characterization

    NASA Astrophysics Data System (ADS)

    Yacovitch, T. I.; Herndon, S. C.; Roscioli, J. R.; Petron, G.; Shorter, J. H.; Jervis, D.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Kolb, C. E., Jr.

    2015-12-01

    Instrumental developments in the measurement of multiple isotopes of methane (12CH4, 13CH4 and 12CH3D) are presented. A first generation 8-micron instrument quantifies 12CH4 and 13CH4 at a 1-second rate via tunable infrared direct absorption spectroscopy (TILDAS). A second generation instrument uses two 3-micron intraband cascade lasers in an Aerodyne dual laser chassis for simultaneous measurement of 12CH4, 13CH4 and 12CH3D. Sensitivity and noise performance improvements are examined. The isotopic signature of methane provides valuable information for emission source identification of this greenhouse gas. A first generation spectrometer has been deployed in the field on a mobile laboratory along with a sophisticated 4-tank calibration system. Calibrations are done on an agressive schedule, allowing for the correction of measured isotope ratios to an absolute isotope scale. Distinct isotopic signatures are found for a number of emission sources in the Denver-Julesburg Basin: oil and gas gathering stations, compressor stations and processing plants; a municipal landfill, and dairy/cattle operations. The isotopic signatures are compared with measured ethane/methane ratios. These direct absorption measurements have larger uncertainties than samples measured via gas chromatography-mass spectrometry, but have several advantages over canister sampling methods: individual sources of short duration are easier to isolate; calibrated isotope ratio results are available immediately; replicate measurements on a single source are easily performed; and the number of sources sampled is not limited by canister availability and processing time.

  14. Sources of hot electrons in laser-plasma interaction with emphasis on Raman and turbulence absorption

    SciTech Connect

    Estabrook, K.; Kruer, W.L.; Phillion, D.W.; Turner, R.E.; Campbell, E.M.

    1982-04-06

    Heating targets with high power lasers results in a sizable fraction of the absorbed energy going into electrons of temperature much greater than thermal which can pre-heat the pellet core and accelerate fast ion blowoff which results in poor momentum transfer and hence poor compression efficiency. The present emphasis is to build lasers of higher frequency, ..omega../sub 0/, which at the same W/cm/sup 2/ results in more absorption into cooler electrons. Two physical reasons are that the laser can propagate to a higher electron density, n, infinity..omega../sub 0//sup 2/ resulting in more collisional inverse bremsstrahlung absorption proportional to n, and because the hot temperatures from some plasma absorption processes increase as the oscillatory velocity of an electron in the laser electric field v/sub 0//c = eE/(m/sub e/..omega../sub 0/). The heated electron temperatures from other plasma processes (Raman for example approx.(m/sub e//2)v/sup 2//sub phase/ and the higher laser frequency helps by increasing the competing collisional absorption and decreasing the Raman gain.

  15. Spatially resolved micro-absorption spectroscopy with a broadband source and confocal detection

    NASA Astrophysics Data System (ADS)

    Arora, Silki; Mauser, Jennifer; Chakrabarti, Debopam; Schulte, Alfons

    2015-11-01

    We present a novel approach to measure optical absorption spectra with spatial resolution at the micron scale. The setup combines a continuous white light excitation beam in transmission geometry with a confocal microscope. The spatial resolution is found to be better than 1.4 μm in the lateral and 3.6 μm in the axial direction. Employing multichannel detection the absorption spectrum of hemoglobin in a single red blood cell is measured on the timescale of seconds. Through measurements of the transmitted intensity in solutions in nanoliter quantities we establish that the absorbance varies linearly with concentration. Our setup enables the investigation of spatial variations in the optical density of small samples on the micron scale and can be applied to the study of biological assemblies at the single cell level, in optical diagnostics, and in micro-fluidics.

  16. Airborne Laser Absorption Spectrometer Measurements of CO2 Column Mixing Ratios: Source and Sink Detection in the Atmospheric Environment

    NASA Astrophysics Data System (ADS)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2016-06-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. The four most recent flight campaigns were on the NASA DC-8 research aircraft, in support of the NASA ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission formulation studies. This instrument operates in the 2.05-μm spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the CO2LAS signal processing, data analysis, and the calibration/validation methodology. Results from flights in various U.S. locations during the past three years include observed mid-day CO2 drawdown in the Midwest, also cases of point-source and regional plume detection that enable the calculation of emission rates.

  17. Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy.

    PubMed

    Kliner, D A; Koplow, J P; Goldberg, L

    1997-09-15

    Tunable, narrow-bandwidth (<200-MHz), ~215-nm radiation was produced by frequency quadrupling the ~860-nm output of a high-power, pulsed GaAlAs tapered amplifier seeded by an external-cavity diode laser. Pulsing the amplifier increased the 860 nm?215 nm conversion efficiency by 2 orders of magnitude with respect to cw operation. Detection of nitric oxide and sulfur dioxide by high-resolution absorption spectroscopy was demonstrated. PMID:18188256

  18. [New methodic approach to hygienic evaluation of electromagnetic energy absorption in near-field zone of irradiation source].

    PubMed

    Perov, S Yu; Bogachova, E V; Belaya, O V

    2015-01-01

    Nowadays, essential objective of hygienic evaluation of electromagnetic energy absorption of mobile radio-frequency devices is specification of new approach with consideration of russian and international regulation principles. This approach enables to ealuate correctly users' actual exposure conditions and consider energy absorption by human in near-field zone of the irradiation source. The work is aimed to study applicability of hypothesis on possible relations between magnetic part of electromagnetic field and specific absorbed capacity. This hypothesis is considered a basis for designing a new methodic approach to hygienic evaluation of individual mobile communication devices in near-field zone of the source. Analysis of the data obtained demonstrates that visible difference between suggested and classic methods decreases with higher frequency. Every studied source in its near-field zone can be characterized by optimal conditions for the suggested method usage with error less than 2 dB. The study results on relations between decreasing electromagnetic energy and specific absorbed capacity value make possible further improvement of methods controlling electromagnetic field levels in assessment of personal mobile radio communication devices. PMID:26470479

  19. FORTRAN source listing for simulating three-dimensional convergent beam patterns with absorption by the Bloch wave method.

    PubMed

    Zuo, J M; Gjonnes, K; Spence, J C

    1989-05-01

    The FORTRAN source code is given for a computer program that calculates the two-dimensional intensity distribution in convergent-beam transmission electron microdiffraction (CBED) patterns from perfect crystals. The program uses the eigenvalue or Bloch-wave method. It allows three-dimensional dynamical diffraction, and so includes all higher-order Laue zone effects without approximation. No symmetry reduction is included. The program accepts noncentrosymmetric or centrosymmetric crystal structures and allows absorption corrections to be included. It uses the "EISPACK" subroutines for the diagonalisation of a general complex matrix. Up to 100 CBED disks may be included. The code is also available via "Bitnet." PMID:2754499

  20. UV absorption technique for monitoring mobile source NO emissions. Final report, 1 October 1992-30 September 1993

    SciTech Connect

    Howard, R.P.; Phillips, W.J.

    1993-11-01

    Ultraviolet (UV) absorption techniques developed and used by the Arnold Engineering Development Center (AEDC) for measurements of nitric oxide (NO) in exhaust flows of turbine and liquid-propellant rocket engines have been adapted for measurements of NO in the exhausts of automobiles. Measurements were performed across a roadway with a 10-percent mixture of NO being released into the exhaust stream of a small truck traveling at speeds ranging from 6 to 30 mph. Emission factors for these simulated exhausts ranged from 0.92 to 23.05 gm/mi. Nitric oxide was detected in measurements using NO-resonance lamp radiation passed twice across the roadway for emission factors as low as 1.78 gm/mi. Nitric oxide absorption was not detected on exhaust measurements of automobiles traveling (coasting) at constant speeds. Nitric oxide was detected at measurable levels on automobiles forced to stop and then accelerate through the measurement station. Mobile source emissions, Nitric oxide, NO, Automobile exhaust, UV absorption.

  1. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources.

    PubMed

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mírian L A F; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (μCT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray μCT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumbá (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based μCT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies. PMID:26306692

  2. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    SciTech Connect

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  3. Insulin Absorption from Lipodystrophic Areas: A (Neglected) Source of Trouble for Insulin Therapy?

    PubMed Central

    Heinemann, Lutz

    2010-01-01

    The experienced clinical diabetologist first checks the skin at the area where the patient usually injects his insulin when he sees widely fluctuating blood glucose levels in the diary of the patient. He knows that insulin absorption from skin with lipodystrophic changes is irregular. However, our scientific knowledge about why this is the case is very limited. Most probably, the number of blood vessels near the insulin depot in the subcutaneous tissue varies depending on the nature of the lipodystrophic changes, or the structural changes in this tissue hamper the diffusion of insulin. Not only is our knowledge about the number of patients who exhibit such changes very limited, but also our understanding why such changes show up in certain patients and not in others is minimal. More practically important, we also have few quantitative studies investigating the impact of this diabetes-related complication on insulin absorption/insulin action; however, it is not difficult to run such studies in practice. Nevertheless, it is impressive to see how often metabolic control improves considerably once the patients apply the insulin into other skin areas. PMID:20513344

  4. Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources

    SciTech Connect

    Otsuka, Takamitsu; Higashiguchi, Takeshi; Yugami, Noboru; Yatagai, Toyohiko; Kilbane, Deirdre; Dunne, Padraig; O'Sullivan, Gerry; Jiang, Weihua; Endo, Akira

    2010-12-06

    We have investigated the dependence of the spectral behavior and conversion efficiencies of rare-earth plasma extreme ultraviolet sources with peak emission at 6.7 nm on laser wavelength and the initial target density. The maximum conversion efficiency was 1.3% at a laser intensity of 1.6x10{sup 12} W/cm{sup 2} at an operating wavelength of 1064 nm, when self-absorption was reduced by use of a low initial density target. Moreover, the lower-density results in a narrower spectrum and therefore improved spectral purity. It is shown to be important to use a low initial density target and/or to produce low electron density plasmas for efficient extreme ultraviolet sources when using high-Z targets.

  5. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    SciTech Connect

    Nakano, H. Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-04-08

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure.

  6. kspectrum: an open-source code for high-resolution molecular absorption spectra production

    NASA Astrophysics Data System (ADS)

    Eymet, V.; Coustet, C.; Piaud, B.

    2016-01-01

    We present the kspectrum, scientific code that produces high-resolution synthetic absorption spectra from public molecular transition parameters databases. This code was originally required by the atmospheric and astrophysics communities, and its evolution is now driven by new scientific projects among the user community. Since it was designed without any optimization that would be specific to any particular application field, its use could also be extended to other domains. kspectrum produces spectral data that can subsequently be used either for high-resolution radiative transfer simulations, or for producing statistic spectral model parameters using additional tools. This is a open project that aims at providing an up-to-date tool that takes advantage of modern computational hardware and recent parallelization libraries. It is currently provided by Méso-Star (http://www.meso-star.com) under the CeCILL license, and benefits from regular updates and improvements.

  7. High-resolution continuum source electrothermal atomic absorption spectrometry — An analytical and diagnostic tool for trace analysis

    NASA Astrophysics Data System (ADS)

    Welz, Bernhard; Borges, Daniel L. G.; Lepri, Fábio G.; Vale, Maria Goreti R.; Heitmann, Uwe

    2007-09-01

    The literature about applications of high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) with electrothermal atomization is reviewed. The historic development of HR-CS AAS is briefly summarized and the main advantages of this technique, mainly the 'visibility' of the spectral environment around the analytical line at high resolution and the unequaled simultaneous background correction are discussed. Simultaneous multielement CS AAS has been realized only in a very limited number of cases. The direct analysis of solid samples appears to have gained a lot from the special features of HR-CS AAS, and the examples from the literature suggest that calibration can be carried out against aqueous standards. Low-temperature losses of nickel and vanadyl porphyrins could be detected and avoided in the analysis of crude oil due to the superior background correction system. The visibility of the spectral environment around the analytical line revealed that the absorbance signal measured for phosphorus at the 213.6 nm non-resonance line without a modifier is mostly due to the PO molecule, and not to atomic phosphorus. The future possibility to apply high-resolution continuum source molecular absorption for the determination of non-metals is discussed.

  8. Laser-Induced Surface Damage of Optical Materials: Absorption Sources, Initiation, Growth, adn Mitigation

    SciTech Connect

    Papernov, S.; Schmid, A.W.

    2009-04-07

    Susceptibility to laser damage of optical-material surfaces originates from the nature of the surface as a transitional structure between optical-material bulk and its surroundings. As such, it requires technological processing to satisfy figure and roughness requirements and is also permanently subjected to environmental exposure. Consequently, enhanced absorption caused by mechanical structural damage or incorporation and sorption of microscale absorbing defects, even layers of organic materials, is always characteristic for optical-material surfaces. In this review physics of interaction of pulsed-laser radiation with surface imperfections for different types of optical materials (metals, semiconductors, dielectrics, etc.), mechanisms of damage initiation, damage morphology, and damage-site growth under repetitive pulse irradiation are discussed. Consideration is also given here to the surface treatments leading to the reduction of damage initiation sites, such as laser cleaning and conditioning, removal of the surface layers affected by the grinding/polishing process, and mitigation of the damage growth at already formed damage sites.

  9. X-Ray Absorption Toward the Einstein Ring Source PKS 1830-211

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Nair, Sunita

    1997-01-01

    PKS 1830-211 is an unusually radio-loud gravitationally lensed quasar. In the radio spectrum, the system appears as two compact, dominant features surrounded by relatively extended radio emission that forms an Einstein ring. As the line of sight to it passes close to our Galactic center, PKS 1830-211 has not been detected in wave bands other than the radio and X-ray so far. Here we present X-ray data of PKS 1830-211 observed with ROSAT Position Sensitive Proportional Counter. The X-ray spectrum shows that absorption in excess of the Galactic contribution is highly likely, which at the redshift of the lensing galaxy (z(sub t)=0.886) corresponds to N(sub H)=3.5((sup 0.6)(sub -0.5))x10(exp 22) atoms sq cm. The effective optical extinction is large, A(sub V)(observed) is greater than or approximately 5.8. When corrected for this additional extinction, the two-point optical to X-ray slope alpha(sub ox) of PKS 1830-211 lies just within the observed range of quasars. It is argued here that both compact images must be covered by the X-ray absorber(s) that we infer to be the lensing galaxy (galaxies). The dust-to-gas ratio along the line of sight within the lensing galaxy is likely to be somewhat larger than for our Galaxy.

  10. Fast outflows in broad absorption line quasars and their connection with CSS/GPS sources

    NASA Astrophysics Data System (ADS)

    Bruni , G.; Mack, K.-H.; Montenegro-Montes, F. M.; Brienza, M.; González-Serrano, J. I.

    2016-02-01

    Broad absorption line quasars are among the objects presenting the fastest outflows. The launching mechanism itself is not completely understood. Models in which they could be launched from the accretion disk, and then curved and accelerated by the effect of the radiation pressure, have been presented. We conducted an extensive observational campaign, from radio to optical band, to collect information about their nature and test the models present in the literature, the main dichotomy being between a young scenario and an orientation one. We found a variety of possible orientations, morphologies, and radio ages, not converging to a particular explanation for the BAL phenomenon. From our latest observations in the m- and mm-band, we obtained an indication of a lower dust abundance with respect to normal quasars, thus suggesting a possible feedback process on the host galaxy. Also, in the low-frequency regime we confirmed the presence of CSS components, sometime in conjunction with a GPS one already detected at higher frequencies. Following this, about 70 % of our sample turns out to be in a GPS or CSS+GPS phase. We conclude that fast outflows, responsible for the BAL features, can be more easily present among objects going through a restarting or just-started radio phase, where radiation pressure can substantially contribute to their acceleration.

  11. Hybrid solar receiver as a source of high-temperature medium for an absorption chiller supply

    NASA Astrophysics Data System (ADS)

    Przenzak, Estera; Filipowicz, Mariusz

    2016-03-01

    This article discusses the problems related with the cold production, i.e. energy efficiency of the process. The idea of solar cooling systems has been presented as the solution of the problem of big electricity demand. The paper discusses the principle of the operation of absorption chillers. Disadvantages and advantages of the solar cooling systems were discussed. The installation for manufacturing high-temperature heat based on solar collectors and concentrator of solar radiation constructed in AGH in Cracow has been presented. This installation is a first stage of projected, complete solar cooling system. The special attention is paid to the dedicated solar high-temperature heat receiver as a most important element of the system. The achieved values of temperature, power and efficiency depending on the working medium flow has been presented and discussed. The intensity of solar radiation during the measurements has been taken into account. Two versions of heat receiver were investigated: non-insulated and insulated with mineral wool. The obtained efficiency of the heat receiver (less than 30%) is not satisfactory but possibility of improvements exist.

  12. Cavity Enhanced Absorption Spectroscopy Using a Broadband Prism Cavity and a Supercontinuum Source

    NASA Astrophysics Data System (ADS)

    Johnston, Paul S.; Lehmann, Kevin K.

    2009-06-01

    The multiplex advantage of current cavity enhanced spectrometers is limited by the high reflectivity bandwidth of the mirrors used to construct the high finesse cavity. Previously, we reported the design and construction of a new spectrometer that circumvents this limitation by utilizing Brewster^{,}s angle prism retroreflectors. The prisms, made from fused silica and combined with a supercontinuum source generated by pumping a highly nonlinear photonic crystal fiber, yields a spectral window ranging from 500 nm to 1750 nm. Recent progress in the instruments development will be discussed, including work on modeling the prism cavity losses, alternative prism material for use in the UV and mid-IR spectral regions, and a new high power supercontinuum source based on mode-locked picosecond laser.

  13. Spectral aspects of the determination of Si in organic and aqueous solutions using high-resolution continuum source or line source flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Pilarczyk, Janusz; Gościniak, Łukasz

    2016-06-01

    High-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) was applied to reveal and investigate spectral interference in the determination of Si. An intensive structured background was observed in the analysis of both aqueous and xylene solutions containing S compounds. This background was attributed to absorption by the CS molecule formed in the N2O-C2H2 flame. The lines of the CS spectrum at least partially overlap all five of the most sensitive Si lines investigated. The 251.611 nm Si line was demonstrated to be the most advantageous. The intensity of the structured background caused by the CS molecule significantly depends on the chemical form of S in the solution and is the highest for the most-volatile CS2. The presence of O atoms in an initial S molecule can diminish the formation of CS. To overcome this S effect, various modes of baseline fitting and background correction were evaluated, including iterative background correction (IBC) and utilization of correction pixels (WRC). These modes were used either independently or in conjunction with least squares background correction (LSBC). The IBC + LSBC mode can correct the extremely strong interference caused by CS2 at an S concentration of 5% w:w in the investigated solution. However, the efficiency of this mode depends on the similarity of the processed spectra and the correction spectra in terms of intensity and in additional effects, such as a sloping baseline. In the vicinity of the Si line, three lines of V were recorded. These lines are well-separated in the HR-CS FAAS spectrum, but they could be a potential source of overcorrection when using line source flame atomic absorption spectrometry (LS FAAS). The expected signal for the 251.625 nm Fe line was not registered at 200 mg L- 1 Fe concentration in the solution, probably due to the diminished population of Fe atoms in the high-temperature flame used. The observations made using HR-CS FAAS helped to establish a "safe" level

  14. Cavity Enhanced Absorption Spectroscopy using a Prism Cavity and Supercontinuum Source

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin K.; Johnston, Paul S.

    2010-03-01

    The multiplex advantage of current cavity enhanced spectrometers is limited by the limited high reflectivity bandwidth of the dielectric mirrors used to construct the high finesse cavity. We report on our development of a spectrometer that uses Brewster's angle retroreflectors that is excited with supercontinuum radiation generated by a 1.06 μm pumped photonic crystal fiber, which covers the 500-1800 nm spectral range. Recent progress will be discussed including modeling of the prism cavity losses, alternative prism materials for use in the UV and mid-IR, and a new higher power source pumped by a mode-locked laser.

  15. Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Nakadi, Flávio V.; Rosa, Lilian R.; da Veiga, Márcia A. M. S.

    2013-10-01

    We propose a procedure for the determination of sulfur in coal slurries by high resolution continuum source electrothermal molecular absorption spectrometry. The slurry, whose concentration is 1 mg mL- 1, was prepared by mixing 50 mg of the sample with 5% v/v nitric acid and 0.04% m/v Triton X-100 and was homogenized manually. It sustained good stability. The determination was performed via CS molecular absorption at 257.592 nm, and the optimized vaporization temperature was 2500 °C. The accuracy of the method was ensured by analysis of certified reference materials SRM 1632b (trace elements in coal) and SRM 1633b (coal fly ash) from the National Institute of Standards and Technology, using external calibration with aqueous standards prepared in the same medium and used as slurry. We achieved good agreement with the certified reference materials within 95% confidence interval, LOD of 0.01% w/w, and RSD of 6%, which confirms the potential of the proposed method.

  16. Relating Aerosol Absorption due to Soot, Organic Carbon, and Dust to Emission Sources Determined from In-situ Chemical Measurements

    SciTech Connect

    Cazorla, Alberto; Bahadur, R.; Suski, Kaitlyn; Cahill, John F.; Chand, Duli; Schmid, Beat; Ramanathan, V.; Prather, Kimberly

    2013-09-17

    Estimating the aerosol contribution to the global or regional radiative forcing can take advantage of the relationship between the spectral aerosol optical properties and the size and chemical composition of aerosol. Long term global optical measurements from observational networks or satellites can be used in such studies, and using in-situ chemical mixing state measurements can help us to constrain the limitations of such an estimation. In this study, the Absorption Ångström Exponent (AAE) and the Scattering Ångström Exponent (SAE) are used to develop a new methodology for deducing chemical speciation based on wavelength dependence of the optical properties. In addition, in-situ optical properties and single particle chemical composition measured during three aircraft field campaigns are combined in order to validate the methodology for the estimation of aerosol composition using spectral optical properties. Results indicate a dominance of mixed types in the classification leading to an underestimation of the primary sources, however secondary sources are better classified. The distinction between carbonaceous aerosols from fossil fuel and biomass burning origins is not clear. On the other hand, the knowledge of the aerosol sources in California from chemical studies help to identify other misclassification such as the dust contribution.

  17. Note: Construction of x-ray scattering and x-ray absorption fine structure beamline at the Pohang Light Source

    SciTech Connect

    Lee, Ik-Jae; Yu, Chung-Jong; Yun, Young-Duck; Lee, Chae-Soon; Seo, In Deuk; Kim, Hyo-Yun; Lee, Woul-Woo; Chae, Keun Hwa

    2010-02-15

    A new hard x-ray beamline, 10B KIST-PAL beamline (BL10B), has been designed and constructed at the Pohang Light Source (PLS) in Korea. The beamline, operated by Pohang Accelerator Laboratory-Korean Institute of Science and Technology consortium, is dedicated to x-ray scattering (XRS) and x-ray absorption fine structure (XAFS) experiments. X rays with photon energies from 4.0 to 16.0 keV are delivered to the experimental station passing a collimating mirror, a fixed-exit double-crystal Si(111) monochromator, and a toroidal mirror. Basic experimental equipments for XAFS measurement, a high resolution diffractometry, an image plate detector system, and a hot stage have been prepared for the station. From our initial commissioning and performance testing of the beamline, it is observed that BL10B beamline can perform XRS and XAFS measurements successfully.

  18. Compact supercontinuum sources based on tellurite suspended core fibers for absorption spectroscopy beyond 2 μm

    NASA Astrophysics Data System (ADS)

    Strutynski, Clément; Picot-Clémente, Jérémy; Désévédavy, Frédéric; Jules, Jean-Charles; Gadret, Grégory; Kibler, Bertrand; Smektala, Frédéric

    2016-07-01

    We present the experimental development of two compact supercontinuum laser sources based on tellurite suspended core fibers with and without tapering post-processing. The pumping scheme makes use of commercially-available nJ-level femtosecond and picosecond fiber lasers at 1.56 and 2.06 μm respectively. The resulting spectral broadening that occurs in a few tens-of-centimeters of tellurite fiber allows coverage of the convenient molecular fingerprint region between 2 and 3 μm. It is then exploited in a proof-of-principle experiment for methane spectroscopy measurements in the mid-infrared by means of the supercontinuum absorption spectroscopy technique. Experimental results are in fairly good agreement with both numerical simulations of supercontinuum generation and spectroscopic predictions of the HITRAN database.

  19. Investigation of artifacts caused by deuterium background correction in the determination of phosphorus by electrothermal atomization using high-resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fábio G.; Borges, Daniel L. G.; Welz, Bernhard; Silva, Márcia M.; Heitmann, Uwe

    2008-02-01

    The artifacts created in the measurement of phosphorus at the 213.6-nm non-resonance line by electrothermal atomic absorption spectrometry using line source atomic absorption spectrometry (LS AAS) and deuterium lamp background correction (D 2 BC) have been investigated using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). The absorbance signals and the analytical curves obtained by LS AAS without and with D 2 BC, and with HR-CS AAS without and with automatic correction for continuous background absorption, and also with least-squares background correction for molecular absorption with rotational fine structure were compared. The molecular absorption due to the suboxide PO that exhibits pronounced fine structure could not be corrected by the D 2 BC system, causing significant overcorrection. Among the investigated chemical modifiers, NaF, La, Pd and Pd + Ca, the Pd modifier resulted in the best agreement of the results obtained with LS AAS and HR-CS AAS. However, a 15% to 100% higher sensitivity, expressed as slope of the analytical curve, was obtained for LS AAS compared to HR-CS AAS, depending on the modifier. Although no final proof could be found, the most likely explanation is that this artifact is caused by a yet unidentified phosphorus species that causes a spectrally continuous absorption, which is corrected without problems by HR-CS AAS, but which is not recognized and corrected by the D 2 BC system of LS AAS.

  20. First measurements of a carbon dioxide plume from an industrial source using a ground based mobile differential absorption lidar.

    PubMed

    Robinson, R A; Gardiner, T D; Innocenti, F; Finlayson, A; Woods, P T; Few, J F M

    2014-08-01

    The emission of carbon dioxide (CO2) from industrial sources is one of the main anthropogenic contributors to the greenhouse effect. Direct remote sensing of CO2 emissions using optical methods offers the potential for the identification and quantification of CO2 emissions. We report the development and demonstration of a ground based mobile differential absorption lidar (DIAL) able to measure the mass emission rate of CO2 in the plume from a power station. To our knowledge DIAL has not previously been successfully applied to the measurement of emission plumes of CO2 from industrial sources. A significant challenge in observing industrial CO2 emission plumes is the ability to discriminate and observe localised concentrations of CO2 above the locally observed background level. The objectives of the study were to modify our existing mobile infrared DIAL system to enable CO2 measurements and to demonstrate the system at a power plant to assess the feasibility of the technique for the identification and quantification of CO2 emissions. The results of this preliminary study showed very good agreement with the expected emissions calculated by the site. The detection limit obtained from the measurements, however, requires further improvement to provide quantification of smaller emitters of CO2, for example for the detection of fugitive emissions. This study has shown that in principle, remote optical sensing technology will have the potential to provide useful direct data on CO2 mass emission rates. PMID:24933364

  1. The spectral variability of the GHZ-Peaked spectrum radio source PKS 1718-649 and a comparison of absorption models

    SciTech Connect

    Tingay, S. J.; Macquart, J.-P.; Wayth, R. B.; Trott, C. M.; Emrich, D.; Collier, J. D.; Wong, G. F.; Rees, G.; Stevens, J.; Carretti, E.; Callingham, J. R.; Gaensler, B. M.; McKinley, B.; Briggs, F.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Goeke, R.; and others

    2015-02-01

    Using the new wideband capabilities of the ATCA, we obtain spectra for PKS 1718-649, a well-known gigahertz-peaked spectrum radio source. The observations, between approximately 1 and 10 GHz over 3 epochs spanning approximately 21 months, reveal variability both above the spectral peak at ∼3 GHz and below the peak. The combination of the low- and high-frequency variability cannot be easily explained using a single absorption mechanism, such as free–free absorption or synchrotron self-absorption. We find that the PKS 1718-649 spectrum and its variability are best explained by variations in the free–free optical depth on our line of sight to the radio source at low frequencies (below the spectral peak) and the adiabatic expansion of the radio source itself at high frequencies (above the spectral peak). The optical depth variations are found to be plausible when X-ray continuum absorption variability seen in samples of active galactic nuclei is considered. We find that the cause of the peaked spectrum in PKS 1718-649 is most likely due to free–free absorption. In agreement with previous studies, we find that the spectrum at each epoch of observation is best fit by a free–free absorption model characterized by a power-law distribution of free–free absorbing clouds. This agreement is extended to frequencies below the 1 GHz lower limit of the ATCA by considering new observations with Parkes at 725 MHz and 199 MHz observations with the newly operational Murchison Widefield Array. These lower frequency observations argue against families of absorption models (both free–free and synchrotron self-absorption) that are based on simple homogenous structures.

  2. A Giant Metrewave Radio Telescope search for associated H I 21 cm absorption in high-redshift flat-spectrum sources

    NASA Astrophysics Data System (ADS)

    Aditya, J. N. H. S.; Kanekar, Nissim; Kurapati, Sushma

    2016-02-01

    We report results from a Giant Metrewave Radio Telescope search for `associated' redshifted H I 21 cm absorption from 24 active galactic nuclei (AGNs), at 1.1 < z < 3.6, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. 22 out of 23 sources with usable data showed no evidence of absorption, with typical 3σ optical depth detection limits of ≈0.01 at a velocity resolution of ≈30 km s-1. A single tentative absorption detection was obtained at z ≈ 3.530 towards TXS 0604+728. If confirmed, this would be the highest redshift at which H I 21 cm absorption has ever been detected. Including 29 CJF sources with searches for redshifted H I 21 cm absorption in the literature, mostly at z < 1, we construct a sample of 52 uniformly selected flat-spectrum sources. A Peto-Prentice two-sample test for censored data finds (at ≈3σ significance) that the strength of H I 21 cm absorption is weaker in the high-z sample than in the low-z sample; this is the first statistically significant evidence for redshift evolution in the strength of H I 21 cm absorption in a uniformly selected AGN sample. However, the two-sample test also finds that the H I 21 cm absorption strength is higher in AGNs with low ultraviolet or radio luminosities, at ≈3.4σ significance. The fact that the higher luminosity AGNs of the sample typically lie at high redshifts implies that it is currently not possible to break the degeneracy between AGN luminosity and redshift evolution as the primary cause of the low H I 21 cm opacities in high-redshift, high-luminosity AGNs.

  3. Absorption at 11 μm in the interstellar medium and embedded sources: evidence for crystalline silicates

    NASA Astrophysics Data System (ADS)

    Wright, Christopher M.; Do Duy, Tho; Lawson, Warrick

    2016-04-01

    An absorption feature is occasionally reported around 11 μm in astronomical spectra, including those of forming stars. Candidate carriers include water ice, polycyclic aromatic hydrocarbons, silicon carbide, crystalline silicates or even carbonates. All are known constituents of cosmic dust in one or more types of environments, though not necessarily together. In this paper, we present new ground-based 8-13 μm spectra of one evolved star, several embedded young stellar objects and a background source lying behind a large column of the interstellar medium (ISM) towards the Galactic Centre. Our observations, obtained at a spectral resolution of ˜100, are compared with previous lower resolution data, as well as data obtained with the Infrared Space Observatory (ISO) on these and other targets. By presenting a subset of a larger sample, our aim is to establish the reality of the feature and subsequently speculate on its carrier. All evidence points towards crystalline silicate. For instance, the 11 μm band profile is well matched with the emissivity of crystalline olivine. Furthermore, the apparent association of the absorption feature with a sharp polarization signature in the spectrum of two previously reported cases suggests a carrier with a relatively high band strength compared to amorphous silicates. If true, this would either set back the evolutionary stage in which silicates are crystallized, either to the embedded phase or even before within the ISM, or else the silicates ejected from the outflows of evolved stars retain some of their crystalline identity during their long residence in the ISM.

  4. Fast sequential determination of antimony and lead in pewter alloys using high-resolution continuum source flame atomic absorption spectrometry.

    PubMed

    Dessuy, Morgana B; de Jesus, Robson M; Brandao, Geovani C; Ferreira, Sergio L C; Vale, Maria Goreti R; Welz, Bernhard

    2013-01-01

    A simple method has been developed to determine antimony and lead in pewter alloy cups produced in Brazil, using fast sequential determination by high-resolution continuum source flame atomic absorption spectrometry. The samples were dissolved in HCl and H(2)O(2), employing a cold finger system in order to avoid analyte losses. The main resonance line of lead at 217.001 nm and a secondary line of antimony at 212.739 nm were used. The limits of detection for lead and antimony were 0.02 and 5.7 mg L(-1), respectively. The trueness of the method was established by recovery tests and comparing the results obtained by the proposed method with those obtained by inductively coupled plasma optical emission spectrometry. The results were compared using a student's t-test and there was no significant difference at a 95% confidence interval. With the developed methods, it was possible to determine accurately antimony and lead in pewter samples. The lead concentration found in the analysed samples was around 1 mg g(-1), which means that they are not lead free; however, the content was below the maximum allowed level of 5 mg g(-1). The antimony content, which was found to be between 40 and 46 mg g(-1), is actually of greater concern, as antimony is known to be potentially toxic already at very low concentrations, although there is no legislation yet for this element. PMID:23046152

  5. Monitoring of Pd in airborne particulates by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Atilgan, Semin; Akman, Suleyman; Baysal, Asli; Bakircioglu, Yasemin; Szigeti, Tamás; Óvári, Mihály; Záray, Gyula

    2012-04-01

    An analytical method has been developed for determination of palladium in PM2.5 fractions of urban airborne particulate matter by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry. For the optimization of the experimental conditions, a road dust certified reference material (BCR-723) was used. The influence of pyrolysis and atomization temperatures, the amount of sample introduced into the graphite furnace and the addition of acids, surfactants and modifiers on the analytical signal of Pd were investigated. The limit of detection, calculated based on three times the standard deviations of analytical signals obtained during the atomization of 10 blank filter pieces, was 0.07 pg/m3. Since the amount of solid certified reference material introduced into the graphite furnace was about 50-2000 times lower than those required in order to obtain the certified value, the precision was relatively poor. This analytical method was applied for investigation of urban airborne particulate matter collected onto quartz fiber filters by high-volume aerosol samplers in the city center of Istanbul (Turkey) and Budapest (Hungary). The measured Pd concentrations changed in the range of 0.22-0.64 and 0.25-0.86 pg/m3 in Istanbul and Budapest, respectively.

  6. [Determination of aluminum in wheat flour food by microwave digestion-high resolution continuum source graphite furnace atomic absorption spectrometry].

    PubMed

    Ren, Ting; Zhao, Li-jiao; Zhong, Ru-gang

    2011-12-01

    The contents of aluminum (Al) in four kinds of wheat flour food (noodle, dumpling wrapper, twisted cruller and soda biscuit) were determined by high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) combined with microwave digestion. The samples were completely digested by the mixture of HNO3 and H2O2 in closed polytetrafluoroethylene (PTFE) vessels. The conditions for microwave digestion, pyrolysis temperature and atomization temperature were optimized. The optimum experimental conditions were determined as follows. The microwave digestion was performed with HNO3/H2O2 7:1 (volume ratio), microwave power 1000 W and 190 degrees C for 40 minutes. The optimum pyrolysis temperature was 1350 degrees C and the optimum atomization temperature was 2400 degrees C. Magnesium nitrate solution with the concentration of 1 g x L(-1) was used as the matrix modifier. The correlation coefficient for the standard curve was 0.9999, the relative standard deviation (RSD) was from 1.7% to 2.4%, and the recovery for the samples was from 98.16% to 102.67%. The assay method for the determination of Al in wheat flour food established in this study has referential importance for the constituent of the correlated food standards. PMID:22295801

  7. Investigation of lead contents in lipsticks by solid sampling high resolution continuum source electrothermal atomic absorption spectrometry.

    PubMed

    Gunduz, Sema; Akman, Suleyman

    2013-02-01

    In this study, the lead contents of different kinds of lipsticks were determined by solid sampling high resolution continuum source electrothermal atomic absorption spectrometry (SS-HR-CS ET AAS) and the results were compared with those obtained after microwave-assisted acid digestion of the samples. The experimental parameters for solid sampling such as the maximum amount of sample on the platforms of solid autosampler, graphite furnace program were optimized. Samples were directly loaded on the platforms of solid autosampler between 0.25 and 2.0mg and lead was determined applying 800 °C for pyrolysis and 2100 °C for atomization. Under optimized conditions, interference-free determination could be performed using aqueous standards. The LOD and the characteristic mass were 21.3 and 12.6 pg, respectively. The lead in the same lipstick samples was determined after microwave-assisted acid digestion and compared with those found by solid sampling. Mostly, there was no significant difference between the lead concentrations found by the two techniques. The lead in 25 lipstick samples with different properties were 0.11-4.48 ng mg(-1) which were not significantly different from those (<0.026-7.19 ng mg(-1)) reported by FDA for around 400 samples. PMID:23099440

  8. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry.

    PubMed

    Feichtmeier, Nadine S; Leopold, Kerstin

    2014-06-01

    In this work, we present a fast and simple approach for detection of silver nanoparticles (AgNPs) in biological material (parsley) by solid sampling high-resolution-continuum source atomic absorption spectrometry (HR-CS AAS). A novel evaluation strategy was developed in order to distinguish AgNPs from ionic silver and for sizing of AgNPs. For this purpose, atomisation delay was introduced as significant indication of AgNPs, whereas atomisation rates allow distinction of 20-, 60-, and 80-nm AgNPs. Atomisation delays were found to be higher for samples containing silver ions than for samples containing silver nanoparticles. A maximum difference in atomisation delay normalised by the sample weight of 6.27 ± 0.96 s mg(-1) was obtained after optimisation of the furnace program of the AAS. For this purpose, a multivariate experimental design was used varying atomisation temperature, atomisation heating rate and pyrolysis temperature. Atomisation rates were calculated as the slope of the first inflection point of the absorbance signals and correlated with the size of the AgNPs in the biological sample. Hence, solid sampling HR-CS AAS was proved to be a promising tool for identifying and distinguishing silver nanoparticles from ionic silver directly in solid biological samples. PMID:24292434

  9. Serum hepcidin is significantly associated with iron absorption from food and supplemental sources in healthy young woman

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hepcidin is a key regulator of iron homeostasis, but to date no studies have examined the effect of hepcidin on iron absorption in humans. Our objective was to assess relations between both serum hepcidin and serum prohepcidin with nonheme-iron absorption in the presence and absence of food with the...

  10. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. PMID:26592606

  11. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy.

    PubMed

    Stockett, Mark H; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-05-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion. PMID:27250388

  12. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Stockett, Mark H.; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-05-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  13. Local structure and speciation of platinum in fresh and road-aged North American sourced vehicle emissions catalysts: an X-ray absorption spectroscopic study.

    PubMed

    Ash, Peter W; Boyd, David A; Hyde, Timothy I; Keating, Jonathan L; Randlshofer, Gabriele; Rothenbacher, Klaus; Sankar, Gopinathan; Schauer, James J; Shafer, Martin M; Toner, Brandy M

    2014-04-01

    Given emerging concerns about the bioavailability and toxicity of anthropogenic platinum compounds emitted into the environment from sources including vehicle emission catalysts (VEC), the platinum species present in selected North American sourced fresh and road-aged VEC were determined by Pt and Cl X-ray absorption spectroscopy. Detailed analysis of the Extended X-ray Absorption Fine Structure at the Pt L3 and L2 edges of the solid phase catalysts revealed mainly oxidic species in the fresh catalysts and metallic components dominant in the road-aged catalysts. In addition, some bimetallic components (Pt-Ni, Pt-Pd, Pt-Rh) were observed in the road-aged catalysts from supporting Ni-, Pd-, and Rh-K edge XAS studies. These detailed analyses allow for the significant conclusion that this study did not find any evidence for the presence of chloroplatinate species in the investigated solid phase of a Three Way Catalyst or Diesel Oxidation Catalysts. PMID:24568168

  14. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6-4.3%), repeatability (4-9%), reproducibility (9-11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as straightforward

  15. Development of vacuum ultraviolet absorption spectroscopy system for wide measurement range of number density using a dual-tube inductively coupled plasma light source

    SciTech Connect

    Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki

    2012-12-15

    A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude.

  16. Development of vacuum ultraviolet absorption spectroscopy system for wide measurement range of number density using a dual-tube inductively coupled plasma light source

    NASA Astrophysics Data System (ADS)

    Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki

    2012-12-01

    A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude.

  17. Sources, composition and absorption Ångström exponent of light-absorbing organic components in aerosol extracts from the Los Angeles Basin.

    PubMed

    Zhang, Xiaolu; Lin, Ying-Hsuan; Surratt, Jason D; Weber, Rodney J

    2013-04-16

    We investigate the sources, chemical composition, and spectral properties of light-absorbing organic aerosol extracts (i.e., brown carbon, or BrC) in the Los Angeles (LA) Basin during the CalNex-2010 field campaign. Light absorption of PM2.5 water-soluble components at 365 nm (Abs365), used as a proxy for water-soluble BrC, was well correlated with water-soluble organic carbon (WSOC) (r(2) = 0.55-0.65), indicating secondary organic aerosol (SOA) formation from anthropogenic emissions was the major source of water-soluble BrC in this region. Normalizing Abs365 to WSOC mass yielded an average solution mass absorption efficiency (MAE365) of 0.71 m(2) g(-1) C. Detailed chemical speciation of filter extracts identified eight nitro-aromatic compounds that were correlated with Abs365. These compounds accounted for ∼4% of the overall water-soluble BrC absorption. Methanol-extracted BrC in LA was approximately 3 and 21 times higher than water-soluble BrC at 365 and 532 nm, respectively, and had a MAE365 of 1.58 m(2) g(-1) C (Abs365 normalized to organic carbon mass). The water-insoluble BrC was strongly correlated with ambient elemental carbon concentration, suggesting similar sources. Absorption Ångström exponent (Å(a)) (fitted between 300 and 600 nm wavelengths) was 3.2 (±1.2) for the PILS water-soluble BrC measurement, compared to 4.8 (±0.5) and 7.6 (±0.5) for methanol- and water-soluble BrC from filter extracts, respectively. These results show that fine particle BrC was prevalent in the LA basin during CalNex, yet many of its properties and potential impacts remain unknown. PMID:23506531

  18. Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Mao Dong; Becker-Ross, Helmut; Okruss, Michael; Geisler, Sebastian; Florek, Stefan; Richter, Silke; Meckelburg, Angela

    Aiming for a round-robin test, a new method for the direct determination of fluorine in niobium oxide has been developed. It is based on the use of high-resolution molecular absorption spectra of calcium mono-fluoride (CaF) generated in the graphite tube, combined with the slurry sampling technique. The absorption measurement was performed at the 606.44 nm CaF rotational line. By using graphite tubes with zirconium carbide (ZrC) modified platform, the molecular absorption sensitivity of CaF has been improved by a factor of 20, and no additional chemical modifier was necessary. Generally, non-spectral interferences were observed in the presence of HCl, H2SO4, and H3PO4. For HCl, additional spectral interference occurred due to an overlap of the absorption spectra of CaF and CaCl. However, due to the absence of these mentioned substances in the current material, such interferences do not exist for this application. The characteristic mass found for the CaF 606.44 nm line was 0.1 ng; the limit of detection was 5 mg fluorine per kg solid sample (3σ criterion). The results obtained by the method were within the range of certified values. Comparing to the classical method such as the pyrohydrolysis-photometric method, the developed new method showed clear advantages regarding sensitivity and specificity. The time requirement for one sample analysis was strongly shortened from several hours to only some minutes.

  19. Investigation of SO3 absorption line for in situ gas detection inside combustion plants using a 4-μm-band laser source.

    PubMed

    Tokura, A; Tadanaga, O; Nishimiya, T; Muta, K; Kamiyama, N; Yonemura, M; Fujii, S; Tsumura, Y; Abe, M; Takenouchi, H; Kenmotsu, K; Sakai, Y

    2016-09-01

    We have investigated 4-μm-band SO3 absorption lines for in situSO3 detection using a mid-infrared laser source based on difference frequency generation in a quasi-phase-matched LiNbO3 waveguide. In the wavelength range of 4.09400-4.10600 μm, there were strong SO3 absorption lines. The maximum absorption coefficient at a concentration of 170 ppmv was estimated to be about 3.2×10-5  cm-1 at a gas temperature of 190°C. In coexistence with H2O, the reduction of the SO3 absorption peak height was observed, which was caused by sulfuric acid formation. We discuss a method of using an SO3 equilibrium curve to derive the total SO3 molecule concentration. PMID:27607263

  20. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    PubMed Central

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  1. Direct determination of total sulfur in wine using a continuum-source atomic-absorption spectrometer and an air-acetylene flame.

    PubMed

    Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Heitmann, Uwe; Okruss, Michael

    2005-08-01

    Determination of sulfur in wine is an important analytical task, particularly with regard to food safety legislation, wine trade, and oenology. Hitherto existing methods for sulfur determination all have specific drawbacks, for example high cost and time consumption, poor precision or selectivity, or matrix effects. In this paper a new method, with low running costs, is introduced for direct, reliable, rapid, and accurate determination of the total sulfur content of wine samples. The method is based on measurement of the molecular absorption of carbon monosulfide (CS) in an ordinary air-acetylene flame by using a high-resolution continuum-source atomic-absorption spectrometer including a novel high-intensity short-arc xenon lamp. First results for total sulfur concentrations in different wine samples were compared with data from comparative ICP-MS measurements. Very good agreement within a few percent was obtained. PMID:15999269

  2. Determination of macro- and micronutrients in plant leaves by high-resolution continuum source flame atomic absorption spectrometry combining instrumental and sample preparation strategies

    NASA Astrophysics Data System (ADS)

    Oliveira, Silvana R.; Gomes Neto, José A.; Nóbrega, Joaquim A.; Jones, Bradley T.

    2010-04-01

    A method for determination of B, Ca, Cu, Fe, K, Mg, Mn, Mo, P, S and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) is proposed. This method is based on special features of HR-CS-AAS, such as side pixel registration, wavelength integrated absorbance, and molecular absorption bands, for determining macro- and micronutrients in foliar analysis without requiring several different strategies for sample preparation and adjustment of the analytes concentration ranges. Plant samples were analyzed and results for certified materials were in agreement at a 95% confidence level (paired t-test) with reference values. Recoveries of analytes added to plant digests varied within the 82-112% interval. Relative standard deviations ( n = 12) were lower than or equal to 5.7% for all analytes in all concentration ranges.

  3. High resolution absorption spectroscopy of exploding wire plasmas using an x-pinch x-ray source and spherically bent crystal

    SciTech Connect

    Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Hansen, S. B.

    2011-06-15

    We present here the use of absorption spectroscopy of the continuum radiation from x-pinch-produced point x-ray sources as a diagnostic to investigate the properties of aluminum plasmas created by pulsed power machines. This technique is being developed to determine the charge state, temperature, and density as a function of time and space under conditions that are inaccessible to x-ray emission spectroscopic diagnostics. The apparatus and its characterization are described, and the spectrometer dispersion, magnification, and resolution are calculated and compared with experimental results. Spectral resolution of about 5000 and spatial resolution of about 20 {mu}m are demonstrated. This spectral resolution is the highest available to date in an absorption experiment. The beneficial properties of the x-pinch x-ray source as the backlighter for this diagnostic are the small source size (<5 {mu}m), smooth continuum radiation, and short pulse duration (<0.1 ns). Results from a closely spaced (1 mm) exploding wire pair are shown and the general features are discussed.

  4. Mass absorption efficiency of light absorbing organic aerosols from source region of paddy-residue burning emissions in the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Rastogi, N.; Sarin, M. M.; Singh, A.; Singh, D.

    2016-01-01

    The mass absorption efficiency (MAE) of light absorbing water-soluble organics, representing a significant fraction of brown carbon (BrC), has been studied in fine mode aerosols (PM2.5) from a source region (Patiala: 30.2 °N, 76.3 °E) of biomass burning emissions (BBEs) in the Indo-Gangetic Plain (IGP). The mass absorption coefficient of BrC at 365 nm (babs-365), assessed from absorption spectra of aqueous extracts, exhibits significant linear relationship with water-soluble organic carbon (WSOC) for day (R2 = 0.37) and night time (R2 = 0.77) samples; and slope of regression lines provides a measure of MAE of BrC (daytime: ˜0.75 m2 g-1 and night time: 1.13 m2 g-1). A close similarity in the temporal variability of babs-365 (for BrC) and K+ in all samples suggests their common source from BBEs. The babs-365 of BrC follows a power law (babs-λ ≈ λ-α; where α = angstrom exponent) and averages around 5.2 ± 2.0 M m-1 (where M = 10-6). A significant decrease in the MAE of BrC from the source region (this study) to the downwind oceanic region (over Bay of Bengal, Srinivas and Sarin, 2013) could be attributed to relative increase in the contribution of non-absorbing WSOC and/or photo-bleaching of BrC during long-range atmospheric transport. The atmospheric radiative forcing due to BrC over the study site accounts for ˜40% of that from elemental carbon (EC).

  5. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 micron. [absorption line profiles of nitrogen oxide and black body emission from Moon and Mars

    NASA Technical Reports Server (NTRS)

    Mumma, M.; Kostiuk, T.; Cohen, S.; Buhl, D.; Vonthuna, P. C.

    1974-01-01

    The first infrared heterodyne spectrometer using tuneable semiconductor (PbSe) diode lasers has been constructed and was used near 8.5 micron to measure absorption line profiles of N2O in the laboratory and black body emission from the Moon and from Mars. Spectral information was recorded over a 200 MHz bandwidth using an 8-channel filter bank. The resolution was 25 MHz and the minimum detectable (black body) power was 1 x 10 to the minus 16th power watts for 8 minutes of integration. The results demonstrate the usefulness of heterodyne spectroscopy for the study of remote and local sources in the infrared.

  6. Determination of sulfur in bovine serum albumin and L-cysteine using high-resolution continuum source molecular absorption spectrometry of the CS molecule

    NASA Astrophysics Data System (ADS)

    Andrade-Carpente, Eva; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2016-08-01

    In this study, the content of sulfur in bovine serum albumin and L-cysteine was determined using high-resolution continuum source molecular absorption spectrometry of the CS molecule, generated in a reducing air-acetylene flame. Flame conditions (height above the burner, measurement time) were optimized using a 3.0% (v/v) sulfuric acid solution. A microwave lab station (Ethos Plus MW) was used for the digestion of both compounds. During the digestion step, sulfur was converted to sulfate previous to the determination. Good repeatability (4-10%) and analytical recovery (91-106%) was obtained.

  7. A highly sensitive method for in vitro testing of fluorinated drug candidates using high-resolution continuum source molecular absorption spectrometry (HR-CS MAS).

    PubMed

    Würtenberger, Irene; Gust, Ronald

    2014-05-01

    We report here the development, optimization, and evaluation of a highly sensitive method for the determination of fluorine in biological matrices employing highresolution continuum source molecular absorption spectrometry (HR-CS MAS), suitable for pharmacological testing of fluorine-containing drug candidates. For this purpose, the most important parameters were studied in detail and subsequently optimized using a multivariate approach based on experimental design methodology. We developed a new approach employing a graphite tube lined with tantalum foil, thereby significantly enhancing sensitivity, while interferences from phosphorus monoxide (PO) molecular absorption due to the complex phosphate-rich matrix were completely eliminated. The limit of detection and the characteristic mass were 5.79 and 6.08 pg F, respectively. In order to evaluate the accuracy of the procedure, a recovery test was performed using spiked samples from three bioassays (i.e., DNA binding, protein binding, and cellular uptake) and the recovery rates ranged from 97.4 to 106.4%. The proposed method is applicable for preclinical in vitro testing of fluorinated drug molecules and thereby establishes HR-CS atomic absorption spectrometry instrumentation as a universal tool in medicinal chemistry. PMID:24760395

  8. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    SciTech Connect

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.; Campillay, Abdo; Contreras, Carlos; Simon, Joshua D.; Burns, Christopher R.; Persson, Sven E.; Thompson, I. B.; Freedman, Wendy L.; Cox, Nick L. J.; Foley, Ryan J.; Karakas, Amanda I.; Patat, F.; Sternberg, A.; Williams, R. E.; Gal-Yam, A.; Leonard, D. C.; Stritzinger, Maximilian; Folatelli, Gastón; and others

    2013-12-10

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.

  9. Following interfacial kinetics in real time using broadband evanescent wave cavity-enhanced absorption spectroscopy: a comparison of light-emitting diodes and supercontinuum sources.

    PubMed

    van der Sneppen, Lineke; Hancock, Gus; Kaminski, Clemens; Laurila, Toni; Mackenzie, Stuart R; Neil, Simon R T; Peverall, Robert; Ritchie, Grant A D; Schnippering, Mathias; Unwin, Patrick R

    2010-01-01

    A white light-emitting diode (LED) with emission between 420 and 700 nm and a supercontinuum (SC) source with emission between 450 and 2500 nm have been compared for use in evanescent wave broadband cavity-enhanced absorption spectroscopy (EW-BB-CEAS). The method is calibrated using a dye with known absorbance. While the LED is more economic as an excitation source, the SC source is superior both in terms of baseline noise (noise equivalent absorbances lower than 10(-5) compared to 10(-4) absorbance units (a.u.)) and accuracy of the measurement; these baseline noise levels are comparable to evanescent wave cavity ringdown spectroscopy (EW-CRDS) studies while the accessible spectral region of EW-BB-CEAS is much larger (420-750 nm in this study, compared to several tens of nanometres for EW-CRDS). The improvements afforded by the use of an SC source in combination with a high sensitivity detector are demonstrated in the broadband detection of electrogenerated Ir(IV) complexes in a thin-layer electrochemical cell arrangement. Excellent signal to noise is achieved with 10 micros signal accumulation times at a repetition rate of 600 Hz, easily fast enough to follow, in real time, solution kinetics and interfacial processes. PMID:20024193

  10. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  11. THE 3-5 {mu}m SPECTRUM OF NGC 1068 AT HIGH ANGULAR RESOLUTION: DISTRIBUTION OF EMISSION AND ABSORPTION FEATURES ACROSS THE NUCLEAR CONTINUUM SOURCE

    SciTech Connect

    Geballe, T. R.; Mason, R. E.; Rodriguez-Ardila, A.; Axon, D. J.

    2009-08-20

    We report moderate resolution 3-5 {mu}m spectroscopy of the nucleus of NGC 1068 obtained at 0.''3 (20 pc) resolution with the spectrograph slit aligned approximately along the ionization cones of the active galactic nucleus. The deconvolved full width at half-maximum of the nuclear continuum source in this direction is 0.''3. Four coronal lines of widely different excitations were detected; the intensity of each peaks near radio knot C, approximately 0.''3 north of the infrared continuum peak, where the radio jet changes direction. Together with the broadened line profiles observed near that location, this suggests that shock ionization is the dominant excitation mechanism of the coronal lines. The depth of the 3.4 {mu}m hydrocarbon absorption is maximum at and just south of the continuum peak, similar to the 10 {mu}m silicate absorption. That and the similar and rapid variations of the optical depths of both features across the nucleus suggest that substantial portions of both arise in a dusty environment just in front of the continuum source(s). A new and tighter limit is set on the column density of CO. Although clumpy models of the dust screen might explain the shallowness of the silicate feature, the presence of the 3.4 {mu}m feature and the absence of CO are strongly reminiscent of Galactic diffuse cloud environments and a consistent explanation for them and the observed silicate feature is found if all three phenomena occur in such an environment, existing as close as 10 pc to the central engine.

  12. Optimization of fluorine determination via the molecular absorption of gallium mono-fluoride in a graphite furnace using a high-resolution continuum source spectrometer

    NASA Astrophysics Data System (ADS)

    Gleisner, Heike; Welz, Bernhard; Einax, Jürgen W.

    2010-09-01

    The determination of fluorine using the molecular absorption of gallium mono-fluoride (GaF) at the 211.248 nm rotational line has been optimized using a commercially available high-resolution continuum source atomic absorption spectrometer with a transversely heated graphite tube furnace. The electron excitation spectrum of GaF was generated by adding 500 μg Ga per injection into the graphite tube as molecule forming reagent. Best results were obtained by applying Zr as a permanent modifier and a mixed Pd/Zr modifier, thermally pretreated before each sample injection together with the Ga reagent at 1100 °C. The use of sodium acetate and Ru(III) nitrosyl nitrate as additional modifiers injected together with the sample further improved the performance. This way a maximum pyrolysis temperature of 550 °C could be used, and the optimum molecule forming temperature was 1550 °C. Several drinking water samples, a mineral water sample, and two certified reference materials were analyzed using the standard calibration technique; the absence of potential matrix effects was verified by measuring different dilutions and spiking with known fluorine mass. The results were in good agreement with the certified values and those measured by ion selective electrode; the recovery rate for the spiking experiments was between 97% and 106%. The results show that there was no matrix influence for that kind of samples containing relatively high concentrations of Ca, Mg and chloride, which are known to cause interference in GaF molecule absorption. The limit of detection and the characteristic mass of the method were 5.2 and 7.4 pg F, respectively, and were both about a factor of two better than recently published values.

  13. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-11-15

    This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from

  14. The December, 1931 absorption experiments by Irene and Fredrick Joliot-Curie using Po Be, PoB and PoLi sources to study penetrating radiation

    NASA Astrophysics Data System (ADS)

    Shafroth, Stephen

    2005-03-01

    The December, 1931 absorption experiments by Irene and Fredrick Joliot-Curie using Po Be, PoB and PoLi sources to study penetrating radiation S.M. Shafroth, Physics and Astronomy Department, University of North Carolina at Chapel Hill 27599-3255, mailto:shafroth@physics.unc.edushafroth@physics.unc.edu The experimental arrangement including the Hoffman electroscope radiation detector and samples of the raw data are shown.^1 The emitted neutrons were interpreted as very high energy penetrating gammas. The exponential decay of detected radiation with thicknesses of Pb from 1.5- 5 cm are shown. I. Curie concludes, based on current knowledge of absorption coefficients vs gamma energy, that the gamma energy from PoBe was 15-20 MeV. However cloud chamber experiments had shown that the ``penetrating radiation'' could eject protons from paraffin with energies of 4.5 and 2 MeV in the case of Be and B respectively. If the ejection mechanism were the Compton effect, the gamma energies had to be 50 and 35 MeV respectively. Finally they conclude that the discrepancy in gamma energies could be ``due to the uncertainties.'' 1. Comptes Rendus de l'Academie des Sciences, S'eance du 28 Decembre 1931

  15. Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry.

    PubMed

    Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann

    2014-09-01

    In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%. PMID:24964383

  16. Use of High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS) for Sequential Multi-Element Determination of Metals in Seawater and Wastewater Samples

    NASA Astrophysics Data System (ADS)

    Peña-Vázquez, E.; Barciela-Alonso, M. C.; Pita-Calvo, C.; Domínguez-González, R.; Bermejo-Barrera, P.

    2015-09-01

    The objective of this work is to develop a method for the determination of metals in saline matrices using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Module SFS 6 for sample injection was used in the manual mode, and flame operating conditions were selected. The main absorption lines were used for all the elements, and the number of selected analytical pixels were 5 (CP±2) for Cd, Cu, Fe, Ni, Pb and Zn, and 3 pixels for Mn (CP±1). Samples were acidified (0.5% (v/v) nitric acid), and the standard addition method was used for the sequential determination of the analytes in diluted samples (1:2). The method showed good precision (RSD(%) < 4%, except for Pb (6.5%)) and good recoveries. Accuracy was checked after the analysis of an SPS-WW2 wastewater reference material diluted with synthetic seawater (dilution 1:2), showing a good agreement between certified and experimental results.

  17. Errarum: Detection of Absorption-Line Features in the X-Ray Spectra of the Galactic Superluminal Source GRO J1655-40

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Inoue, H.; Tanaka, Y.; Ebisawa, K.; Nagase, F.; Kotani, T.; Gehrels, N.

    1998-06-01

    In the paper ``Detection of Absorption-Line Features in the X-Ray Spectra of the Galactic Superluminal Source GRO J1655-40'' by Y. Ueda, H. Inoue, Y. Tanaka, K. Ebisawa, F. Nagase, T. Kotani, and N. Gehrels (ApJ, 492, 782 [1998]), there is an error in the curve of growth for the Kα absorption line (Fig. 4). The revised version of Figure 4 given here replaces Figure 4 in the paper. Several numbers derived from the figure should be corrected accordingly, but the conclusion of the paper is not affected. In the third paragraph of the discussion section (page 786), the iron column density of the plasma should be 1019-1020 cm-2, which corresponds to a hydrogen column density of 3 × 1023-3 × 1024 cm-2. The final limit on the hydrogen column density of the line-absorbing plasma should be changed to 3 × 1023 cm-2 < NH < 1024 cm-2.

  18. Method development for the determination of bromine in coal using high-resolution continuum source graphite furnace molecular absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Pereira, Éderson R.; Castilho, Ivan N. B.; Welz, Bernhard; Gois, Jefferson S.; Borges, Daniel L. G.; Carasek, Eduardo; de Andrade, Jailson B.

    2014-06-01

    This work reports a simple approach for Br determination in coal using direct solid sample analysis in a graphite tube furnace and high-resolution continuum source molecular absorption spectrometry. The molecular absorbance of the calcium mono-bromide (CaBr) molecule has been measured using the rotational line at 625.315 nm. Different chemical modifiers (zirconium, ruthenium, palladium and a mixture of palladium and magnesium nitrates) have been evaluated in order to increase the sensitivity of the CaBr absorption, and Zr showed the best overall performance. The pyrolysis and vaporization temperatures were 800 °C and 2200 °C, respectively. Accuracy and precision of the method have been evaluated using certified coal reference materials (BCR 181, BCR 182, NIST 1630a, and NIST 1632b) with good agreement (between 98 and 103%) with the informed values for Br. The detection limit was around 4 ng Br, which corresponds to about 1.5 μg g- 1 Br in coal, based on a sample mass of 3 mg. In addition, the results were in agreement with those obtained using electrothermal vaporization inductively coupled plasma mass spectrometry, based on a Student t-test at a 95% confidence level. A mechanism for the formation of the CaBr molecule is proposed, which might be considered for other diatomic molecules as well.

  19. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    NASA Astrophysics Data System (ADS)

    Reininger, Charlotte; Woodfield, Kellie; Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M.; Farnsworth, Paul B.

    2014-10-01

    The absolute number densities of helium atoms in the 2s 3S1 metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 1012 cm- 3 and 0.011 × 1012 cm- 3, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 1012 cm- 3 and 0.97 × 1012 cm- 3 were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges.

  20. Sulfur species in source rock bitumen before and after hydrous pyrolysis determined by X-ray absorption near-edge structure

    USGS Publications Warehouse

    Bolin, Trudy B.; Birdwell, Justin E.; Lewan, Michael; Hill, Ronald J.; Grayson, Michael B.; Mitra-Kirtley, Sudipa; Bake, Kyle D.; Craddock, Paul R.; Abdallah, Wael; Pomerantz, Andrew E.

    2016-01-01

    The sulfur speciation of source rock bitumen (chloroform-extractable organic matter in sedimentary rocks) was examined using sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy for a suite of 11 source rocks from around the world. Sulfur speciation was determined for both the native bitumen in thermally immature rocks and the bitumen produced by thermal maturation of kerogen via hydrous pyrolysis (360 °C for 72 h) and retained within the rock matrix. In this study, the immature bitumens had higher sulfur concentrations than those extracted from samples after hydrous pyrolysis. In addition, dramatic and systematic evolution of the bitumen sulfur moiety distributions following artificial thermal maturation was observed consistently for all samples. Specifically, sulfoxide sulfur (sulfur double bonded to oxygen) is abundant in all immature bitumen samples but decreases substantially following hydrous pyrolysis. The loss in sulfoxide sulfur is associated with a relative increase in the fraction of thiophene sulfur (sulfur bonded to aromatic carbon) to the extent that thiophene is the dominant sulfur form in all post-pyrolysis bitumen samples. This suggests that sulfur moiety distributions might be used for estimating thermal maturity in source rocks based on the character of the extractable organic matter.

  1. Application of High Resolution-Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS): determination of trace elements in tea and tisanes.

    PubMed

    Paz-Rodríguez, Beatriz; Domínguez-González, María Raquel; Aboal-Somoza, Manuel; Bermejo-Barrera, Pilar

    2015-03-01

    A new application of HR-CS FAAS (High Resolution-Continuum Source Flame Atomic Absorption Spectrometry) has been developed for the determination of several trace elements (Ca, Co, Cu, Fe, Mn, Ni, Na and Zn) in infusions made from tea, rooibos and tea with seaweed samples. The proposed methods are fast, inexpensive and show good performances: the mean analytical recovery was approximately 100%. The mean limit of detection was 29.4 μg/l, and the mean limit of quantification was 98.0 μg/l (both limits refer to the brewed samples). Due to the matrix effect observed, the standard addition method had to be applied. Preliminary classification (based on metal contents) using chemometric techniques such as PCA (Principal Component Analysis) and CA (Cluster Analysis), was successful for infusions made from rooibos and tea with seaweed, but inconclusive for black and green teas. PMID:25306375

  2. Channeling of high-power radio waves under conditions of strong anomalous absorption in the presence of an averaged electron heating source

    SciTech Connect

    Vas'kov, V. V.; Ryabova, N. A.

    2010-02-15

    Strong anomalous absorption of a high-power radio wave by small-scale plasma inhomogeneities in the Earth's ionosphere can lead to the formation of self-consistent channels (solitons) in which the wave propagates along the magnetic field, but has a soliton-like intensity distribution across the field. The structure of a cylindrical soliton as a function of the wave intensity at the soliton axis is analyzed. Averaged density perturbations leading to wave focusing were calculated using the model proposed earlier by Vas'kov and Gurevich (Geomagn. Aeron. 16, 1112 (1976)), in which an averaged electron heating source was used. It is shown that, under conditions of strong electron recombination, the radii of individual solitons do not exceed 650 m.

  3. Investigation of spectral interferences in the determination of lead in fertilizers and limestone samples using high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Borges, Aline R.; Becker, Emilene M.; François, Luciane L.; de Jesus, Alexandre; Vale, Maria Goreti R.; Welz, Bernhard; Dessuy, Morgana B.; de Andrade, Jailson B.

    2014-11-01

    In the present work, spectral interferences on the determination of lead in fertilizer and limestone samples were investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry at the main analytical lines: 217.001 and 283.306 nm. For these investigations, samples were introduced into the furnace as slurry together with a mixture of Pd and Mg as chemical modifier. Spectral interferences were observed for some samples at both analytical lines. In order to verify whether a wet digestion procedure would avoid these interferences, a reference method for wet digestion of fertilizers was employed as an alternative sample preparation procedure. However, the same interferences were also observed in the digested samples. In order to identify and eliminate the fine-structured background using a least-squares background correction, reference spectra were generated using the combination of different species. The use of the latter technique allowed the elimination of spectral interferences for most of the investigated samples, making possible the determination of lead in fertilizer and limestone samples free of interferences. The best results were found using a reference spectrum of NH4H2PO4 at 217.001 nm, and a mixture of H2SO4 + Ca and HNO3 + Ca at the 283.306 nm line. The accuracy of the method was evaluated using a certified reference material “Trace Elements in Multi-Nutrient Fertilizer”. Similar results were obtained using line source graphite furnace atomic absorption spectrometry with Zeeman-effect background correction, indicating that the latter technique was also capable to correct the spectral interferences, at least in part.

  4. Artificial neural networks for retrieving absorption and reduced scattering spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation

    PubMed Central

    Chen, Yu-Wen; Chen, Chien-Chih; Huang, Po-Jung; Tseng, Sheng-Hao

    2016-01-01

    Diffuse reflectance spectroscopy (DRS) based on the frequency-domain (FD) technique has been employed to investigate the optical properties of deep tissues such as breast and brain using source to detector separation up to 40 mm. Due to the modeling and system limitations, efficient and precise determination of turbid sample optical properties from the FD diffuse reflectance acquired at a source-detector separation (SDS) of around 1 mm has not been demonstrated. In this study, we revealed that at SDS of 1 mm, acquiring FD diffuse reflectance at multiple frequencies is necessary for alleviating the influence of inevitable measurement uncertainty on the optical property recovery accuracy. Furthermore, we developed artificial neural networks (ANNs) trained by Monte Carlo simulation generated databases that were capable of efficiently determining FD reflectance at multiple frequencies. The ANNs could work in conjunction with a least-square optimization algorithm to rapidly (within 1 second), accurately (within 10%) quantify the sample optical properties from FD reflectance measured at SDS of 1 mm. In addition, we demonstrated that incorporating the steady-state apparatus into the FD DRS system with 1 mm SDS would enable obtaining broadband absorption and reduced scattering spectra of turbid samples in the wavelength range from 650 to 1000 nm. PMID:27446671

  5. Limitation of the Use of the Absorption Angstrom Exponent for Source Apportionment of Equivalent Black Carbon: a Case Study from the North West Indo-Gangetic Plain.

    PubMed

    Garg, Saryu; Chandra, Boggarapu Praphulla; Sinha, Vinayak; Sarda-Esteve, Roland; Gros, Valerie; Sinha, Baerbel

    2016-01-19

    Angstrom exponent measurements of equivalent black carbon (BCeq) have recently been introduced as a novel tool to apportion the contribution of biomass burning sources to the BCeq mass. The BCeq is the mass of ideal BC with defined optical properties that, upon deposition on the aethalometer filter tape, would cause equal optical attenuation of light to the actual PM2.5 aerosol deposited. The BCeq mass hence is identical to the mass of the total light-absorbing carbon deposited on the filter tape. Here, we use simultaneously collected data from a seven-wavelength aethalometer and a high-sensitivity proton-transfer reaction mass spectrometer installed at a suburban site in Mohali (Punjab), India, to identify a number of biomass combustion plumes. The identified types of biomass combustion include paddy- and wheat-residue burning, leaf litter, and garbage burning. Traffic plumes were selected for comparison. We find that the combustion efficiency, rather than the fuel used, determines αabs, and consequently, the αabs can be ∼1 for flaming biomass combustion and >1 for older vehicles that operate with poorly optimized engines. Thus, the absorption angstrom exponent is not representative of the fuel used and, therefore, cannot be used as a generic tracer to constrain source contributions. PMID:26655249

  6. Determination of chlorine in food samples via the AlCl molecule using high-resolution continuum source molecular absorption spectrometry in a graphite furnace

    NASA Astrophysics Data System (ADS)

    Fechetia, Miriam; Tognon, André Luiz; da Veiga, Márcia A. M. S.

    2012-05-01

    Determination of chlorine using the molecular absorption of aluminum mono-chloride (AlCl) at the 261.418 nm wavelength was accomplished by high-resolution continuum source molecular absorption spectrometry using a transversely heated graphite tube furnace with an integrated platform. For the analysis, 10 μL of the sample followed by 10 μL of a solution containing Al-Ag-Sr modifier, (1 g L- 1 each), were directly injected onto the platform. A spectral interference due to the use of Al-Ag-Sr as mixed modifier was easily corrected by the least-squares algorithm present in the spectrometer software. The pyrolysis and vaporization temperatures were 500 °C and 2200 °C, respectively. To evaluate the feasibility of a simple procedure for the determination of chlorine in food samples present in our daily lives, two different digestion methods were applied, namely (A) an acid digestion method using HNO3 only at room temperature, and (B) a digestion method with Ag, HNO3 and H2O2, where chlorine is precipitated as a low-solubility salt (AgCl), which is then dissolved with ammonia solution. The experimental results obtained with method B were in good agreement with the certified values and demonstrated that the proposed method is more accurate than method A. This is because the formation of silver chloride prevented analyte losses by volatilization. The limit of detection (LOD, 3σ/s) for Cl in methods A and B was 18 μg g- 1 and 9 μg g- 1, respectively, 1.7 and 3.3 times lower compared to published work using inductively coupled plasma optical emission spectrometry, and absolute LODs were 2.4 and 1.2 ng, respectively.

  7. Fast sequential multi-element determination of major and minor elements in environmental samples and drinking waters by high-resolution continuum source flame atomic absorption spectrometry.

    PubMed

    Gómez-Nieto, Beatriz; Gismera, Ma Jesús; Sevilla, Ma Teresa; Procopio, Jesús R

    2015-01-01

    The fast sequential multi-element determination of 11 elements present at different concentration levels in environmental samples and drinking waters has been investigated using high-resolution continuum source flame atomic absorption spectrometry. The main lines for Cu (324.754 nm), Zn (213.857 nm), Cd (228.802 nm), Ni (232.003 nm) and Pb (217.001 nm), main and secondary absorption lines for Mn (279.482 and 279.827 nm), Fe (248.327, 248.514 and 302.064 nm) and Ca (422.673 and 239.856 nm), secondary lines with different sensitivities for Na (589.592 and 330.237 nm) and K (769.897 and 404.414 nm) and a secondary line for Mg (202.582 nm) have been chosen to perform the analysis. A flow injection system has been used for sample introduction so sample consumption has been reduced up to less than 1 mL per element, measured in triplicate. Furthermore, the use of multiplets for Fe and the side pixel registration approach for Mg have been studied in order to reduce sensitivity and extend the linear working range. The figures of merit have been calculated and the proposed method was applied to determine these elements in a pine needles reference material (SRM 1575a), drinking and natural waters and soil extracts. Recoveries of analytes added at different concentration levels to water samples and extracts of soils were within 88-115% interval. In this way, the fast sequential multi-element determination of major and minor elements can be carried out, in triplicate, with successful results without requiring additional dilutions of samples or several different strategies for sample preparation using about 8-9 mL of sample. PMID:25479863

  8. Photochemical parameters of atmospheric source gases: accurate determination of OH reaction rate constants over atmospheric temperatures, UV and IR absorption spectra

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Khamaganov, V. G.; Martynova, L. E.; Kurylo, M. J.

    2012-12-01

    The emissions of halogenated (Cl, Br containing) organics of both natural and anthropogenic origin contribute to the balance of and changes in the stratospheric ozone concentration. The associated chemical cycles are initiated by the photochemical decomposition of the portion of source gases that reaches the stratosphere. Reactions with hydroxyl radicals and photolysis are the main processes dictating the compound lifetime in the troposphere and release of active halogen in the stratosphere for a majority of halogen source gases. Therefore, the accuracy of photochemical data is of primary importance for the purpose of comprehensive atmospheric modeling and for simplified kinetic estimations of global impacts on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP). The sources of critically evaluated photochemical data for atmospheric modeling, NASA/JPL Publications and IUPAC Publications, recommend uncertainties within 10%-60% for the majority of OH reaction rate constants with only a few cases where uncertainties lie at the low end of this range. These uncertainties can be somewhat conservative because evaluations are based on the data from various laboratories obtained during the last few decades. Nevertheless, even the authors of the original experimental works rarely estimate the total combined uncertainties of the published OH reaction rate constants to be less than ca. 10%. Thus, uncertainties in the photochemical properties of potential and current atmospheric trace gases obtained under controlled laboratory conditions still may constitute a major source of uncertainty in estimating the compound's environmental impact. One of the purposes of the presentation is to illustrate the potential for obtaining accurate laboratory measurements of the OH reaction rate constant over the temperature range of atmospheric interest. A detailed inventory of accountable sources of

  9. Photobleaching Response of Different Sources of Chromophoric Dissolved Organic Matter Exposed to Natural Solar Radiation Using Absorption and Excitation–Emission Matrix Spectra

    PubMed Central

    Zhang, Yunlin; Liu, Xiaohan; Osburn, Christopher L.; Wang, Mingzhu; Qin, Boqiang; Zhou, Yongqiang

    2013-01-01

    CDOM biogeochemical cycle is driven by several physical and biological processes such as river input, biogeneration and photobleaching that act as primary sinks and sources of CDOM. Watershed-derived allochthonous (WDA) and phytoplankton-derived autochthonous (PDA) CDOM were exposed to 9 days of natural solar radiation to assess the photobleaching response of different CDOM sources, using absorption and fluorescence (excitation-emission matrix) spectroscopy. Our results showed a marked decrease in total dissolved nitrogen (TDN) concentration under natural sunlight exposure for both WDA and PDA CDOM, indicating photoproduction of ammonium from TDN. In contrast, photobleaching caused a marked increase in total dissolved phosphorus (TDP) concentration for both WDA and PDA CDOM. Thus TDN∶TDP ratios decreased significantly both for WDA and PDA CDOM, which partially explained the seasonal dynamic of TDN∶TDP ratio in Lake Taihu. Photobleaching rate of CDOM absorption a(254), was 0.032 m/MJ for WDA CDOM and 0.051 m/MJ for PDA CDOM from days 0–9, indicating that phototransformations were initially more rapid for the newly produced CDOM from phytoplankton than for the river CDOM. Extrapolation of these values to the field indicated that 3.9%–5.1% CDOM at the water surface was photobleached and mineralized every day in summer in Lake Taihu. Photobleaching caused the increase of spectral slope, spectral slope ratio and molecular size, indicating the CDOM mean molecular weight decrease which was favorable to further microbial degradation of mineralization. Three fluorescent components were validated in parallel factor analysis models calculated separately for WDA and PDA CDOM. Our study suggests that the humic-like fluorescence materials could be rapidly and easily photobleached for WDA and PDA CDOM, but the protein-like fluorescence materials was not photobleached and even increased from the transformation of the humic-like fluorescence substance to the protein

  10. Determination of sulfur in crude oil using high-resolution continuum source molecular absorption spectrometry of the SnS molecule in a graphite furnace.

    PubMed

    Cadorim, Heloisa R; Pereira, Éderson R; Carasek, Eduardo; Welz, Bernhard; de Andrade, Jailson B

    2016-01-01

    An analytical method for the determination of sulfur, as the tin mono-sulfide (SnS) molecule, in crude oil using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The molecular absorbance of the SnS has been measured using the wavelength at 271.624 nm and the crude oil samples were prepared as micro-emulsions due to their high viscosity. Several chemical modifiers (Ir, Pd, Ru, Zr) were tested and palladium was chosen, because it exhibited the best performance. The heating program was optimized by comparing the pyrolysis and vaporization curves obtained for an aqueous sulfur standard and a micro-emulsion of a crude oil certified reference material (CRM). The optimum pyrolysis and vaporization temperatures were found to be 600 and 2000°C, respectively. The limit of detection and the characteristic mass using micro-emulsion analysis of crude oil samples were 5.8 and 13.3 ng S. Accuracy and precision of the method has been evaluated using two crude oil CRM (NIST 2721 and NIST 2722), showing good agreement with the informed or certified values. PMID:26695253

  11. Multivariate optimization of ultrasound-assisted extraction for determination of Cu, Fe, Ni and Zn in vegetable oils by high-resolution continuum source atomic absorption spectrometry.

    PubMed

    Trindade, Alex S N; Dantas, Alailson F; Lima, Daniel C; Ferreira, Sérgio L C; Teixeira, Leonardo S G

    2015-10-15

    An assisted liquid-liquid extraction of copper, iron, nickel and zinc from vegetable oil samples with subsequent determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) was optimized by applying a full factorial design in two levels and the response surface methodology, Box-Behnken. The effects of the acid concentration and the amplitude, cycle and time of sonication on the extraction of the analytes, as well as their interactions, were assessed. In the selected condition (sonication amplitude = 66%, sonication time = 79 s, sonication cycle = 74%), using 0.5 mol L(-1) HCl as the extractant, the limits of quantification were 0.14, 0.20, 0.21 and 0.04 μg g(-1) for Cu, Fe, Ni and Zn, respectively, with R.S.D. ranging from 1.4% to 3.6%. The proposed method was applied for the determination of the analytes in soybean, canola and sunflower oils. PMID:25952852

  12. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. PMID:26838392

  13. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    NASA Astrophysics Data System (ADS)

    Huber, Charles S.; Vale, Maria Goreti R.; Welz, Bernhard; Andrade, Jailson B.; Dessuy, Morgana B.

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg- 1 and 4.7 mg kg- 1, respectively.

  14. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    SciTech Connect

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mächler, Jean-Pierre; Jordan, Inga; Wörner, Hans Jakob; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto; Bokhoven, Jeroen A. van

    2013-07-15

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  15. Direct determination of bromine in plastic materials by means of solid sampling high-resolution continuum source graphite furnace molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Flórez, M. R.; Resano, M.

    2013-10-01

    This work investigates the potential of high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers, which could be interesting in view of the current regulations restricting the use of organobrominated compounds. The method developed is based on the addition of Ca (300 μg) and Pd (30 μg) to favor the formation of CaBr, which is monitored at the main molecular “lines” (rotational spectra) found in the vicinity of 625.315 nm. It was found that accurate results could be obtained for all the samples investigated (polyethylene, polypropylene and acrylonitrile butadiene styrene certified reference materials) using any of the lines studied and constructing the calibration curve with aqueous standards. Furthermore, the combined use of the main four CaBr lines available in the spectral area simultaneously monitored permits to easily expand the linear range up to 2000 ng, provides a limit of detection of 1.8 ng (1.8 μg g- 1 for a mass of 1 mg) and further improves precision to values between 3-7% RSD. Overall, the method proposed seems suited for the fast and simple control of these types of samples (approximately 10 min for sample are required), circumventing the traditional problems associated with sample digestion (e.g., losses of volatile compounds), and providing sufficient sensitivity to easily comply with regulations.

  16. A simple and fast method for assessment of the nitrogen-phosphorus-potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Bechlin, Marcos André; Fortunato, Felipe Manfroi; da Silva, Ricardo Moutinho; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta

    2014-11-01

    The determination of N, P, and K in fertilizers by high-resolution continuum source flame atomic and molecular absorption spectrometry is proposed. Under optimized conditions, measurements of the diatomic molecules NO and PO at 215.360 and 247.620 nm, respectively, and K using the wing of the alternative line at 404.722 nm allowed calibration curves to be constructed in the ranges 500-5000 mg L- 1 N (r = 0.9994), 100-2000 mg L- 1 P (r = 0.9946), and 100-2500 mg L- 1 K (r = 0.9995). Commercial fertilizers were analyzed by the proposed method and the concentrations of N, P, and K were found to be in agreement with those obtained by Kjeldahl, spectrophotometric, and flame atomic emission spectrometry methods, respectively, at a 95% confidence level (paired t-test). A phosphate rock certified reference material (CRM) was analyzed and the results for P and K were in agreement with the reference values. Recoveries from spiked CRM were in the ranges 97-105% (NO3--N), 95-103% (NH4+-N), 93-103% (urea-N), 99-108% (P), and 99-102% (K). The relative standard deviations (n = 12) for N, P, and K were 6, 4, and 2%, respectively.

  17. Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation.

    PubMed

    Nunes, Luana S; Barbosa, José T P; Fernandes, Andréa P; Lemos, Valfredo A; Santos, Walter N L Dos; Korn, Maria Graças A; Teixeira, Leonardo S G

    2011-07-15

    The aim of this work was to evaluate the microemulsification as sample preparation procedure for determination of Cu, Fe, Ni and Zn in vegetable oils samples by High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS). Microemulsions were prepared by mixing samples with propan-1-ol and aqueous acid solution, which allowed the use of inorganic aqueous standards for the calibration. To a sample mass of 0.5g, 100μL of hydrochloric acid and propan-1-ol were added and the resulting mixture diluted to a final volume of 10mL. The sample was manually shaken resulting in a visually homogeneous system. The main lines were selected for all studied metals and the detection limits (3σ, n=10) were 0.12, 0.62, 0.58 and 0.12mgkg(-1) for Cu, Fe, Ni and Zn, respectively. The relative standard deviation (RSD) ranged from 5% to 11 % in samples spiked with 0.25 and 1.5μgmL(-1) of each metal, respectively. Recoveries varied from 89% to 102%. The proposed method was applied to the determination of Cu, Fe, Ni and Zn in soybean, olive and sunflower oils. PMID:23140735

  18. Determination of macro and trace elements in multivitamin dietary supplements by high-resolution continuum source graphite furnace atomic absorption spectrometry with slurry sampling.

    PubMed

    Krawczyk, Magdalena

    2014-01-01

    In this research, three different commercially available multivitamin dietary supplements were analyzed by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) with slurry sampling. The concentrations of Cr, Cu, Fe, Mn, and Se were determined and compared to the amounts stated by producers. The safety of multivitamin dietary supplements depends on various factors including the manufacturing process and the purity and origins of the raw ingredients. For this reason, this research determined concentrations of several toxic elements (As, Cd, and Pb). Microwave-assisted high pressure Teflon bomb digestion was used to determine total amounts of elements in samples. Samples were prepared as slurries at a concentration of 0.1% (m/v) for macro elements (Cr, Cu, Fe, Mn, and Se) and at a concentration of % (m/v) for trace elements (As, Cd, and Pb) in acidic media (3M HNO3). The influence of acid concentration, Triton X-100 addition, sonication time, and sonication power on absorbance was investigated. The accuracy of this method was validated by analyses of NRCC LUTS-1 (Lobster hepatopancreas), NRCC DORM-1 (Dogfish Muscle), NRCC DOLT-2 (Dogfish Liver), NBS SRM 1570 (Spinach Leaves) and NBS SRM 1573 (Tomato Leaves) certified reference materials. The measured elements contents in these reference materials (except NRCC DOLT-2) were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. PMID:24176741

  19. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    NASA Astrophysics Data System (ADS)

    Virgilio, Alex; Nóbrega, Joaquim A.; Rêgo, Jardes F.; Neto, José A. Gomes

    2012-12-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 °C and 2400 °C, respectively. Slopes of calibration curves (50-750 pg Cr, R2 > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3-17.7 μg g- 1 Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 ± 2.1 μg g- 1 Cr. The limit of detection was 3.3 ng g- 1 Cr.

  20. Determination of sulfur in coal using direct solid sampling and high-resolution continuum source molecular absorption spectrometry of the CS molecule in a graphite furnace.

    PubMed

    Mior, Renata; Morés, Silvane; Welz, Bernhard; Carasek, Eduardo; de Andrade, Jailson B

    2013-03-15

    An analytical method has been developed for the determination of sulfur in coal using direct solid sample analysis in a graphite tube furnace and high-resolution continuum source molecular absorption spectrometry (HR-CS GF MAS). The molecular absorbance of the carbon monosulfide molecule (CS), which is formed in the vaporization stage, has been measured using the rotational line at 258.033 nm. Several chemical modifiers were tested and Ru, applied as permanent modifier was chosen, because it exhibited the best performance. The optimum pyrolysis and vaporization temperatures were found to be 500 °C and 2200 °C, respectively. Aqueous standard solutions prepared from l-cysteine were used for calibration, as the linear regression obtained for this standard was not significantly different from that for a certified coal reference material (CRM) according to a Student t-test. The results obtained for sulfur in three coal CRM and six additional samples also showed no significant difference for the two calibration techniques according to the same statistical test. The sulfur concentration in the coal samples was found between 3.5 mg g(-1) and 33.7 mg g(-1) with a typical repeatability around 10%. The limit of detection for the direct analysis of solid coal samples was better than 0.1 μg S. PMID:23598139

  1. Solid sampling determination of lithium and sodium additives in microsamples of yttrium oxyorthosilicate by high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Laczai, Nikoletta; Kovács, László; Péter, Ágnes; Bencs, László

    2016-03-01

    Solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS-HR-CS-GFAAS) methods were developed and studied for the fast and sensitive quantitation of Li and Na additives in microsamples of cerium-doped yttrium oxyorthosilicate (Y2SiO5:Ce) scintillator materials. The methods were optimized for solid samples by studying a set of GFAAS conditions (i.e., the sample mass, sensitivity of the analytical lines, and graphite furnace heating programs). Powdered samples in the mass range of 0.099-0.422 mg were dispensed onto graphite sample insertion boats, weighed and analyzed. Pyrolysis and atomization temperatures were optimized by the use of single-element standard solutions of Li and Na (acidified with 0.144 mol/L HNO3) at the Li I 610.353 nm and Na I 285.3013 nm analytical lines. For calibration purposes, the method of standard addition with Li and Na solutions was applied. The correlation coefficients (R values) of the calibration graphs were not worse than 0.9678. The limit of detection for oxyorthosilicate samples was 20 μg/g and 80 μg/g for Li and Na, respectively. The alkaline content of the solid samples were found to be in the range of 0.89 and 8.4 mg/g, respectively. The accuracy of the results was verified by means of analyzing certified reference samples, using methods of standard (solution) addition calibration.

  2. Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range.

    PubMed

    Bernardi, Paolo; Cavagnaro, Marta; Pisa, Stefano; Piuzzi, Emanuele

    2003-03-01

    The exposure of a subject in the far field of radiofrequency sources operating in the 10-900-MHz range has been studied. The electromagnetic field inside an anatomical heterogeneous model of the human body has been computed by using the finite-difference time-domain method; the corresponding temperature increase has been evaluated through an explicit finite-difference formulation of the bio-heat equation. The thermal model used, which takes into account the thermoregulatory system of the human body, has been validated through a comparison with experimental data. The results show that the peak specific absorption rate (SAR) as averaged over 10 g has about a 25-fold increase in the trunk and a 50-fold increase in the limbs with respect to the whole body averaged SAR (SARWB). The peak SAR as averaged over 1 g, instead, has a 30- to 60-fold increase in the trunk, and up to 135-fold increase in the ankles, with respect to SARWB. With reference to temperature increases, at the body resonance frequency of 40 MHz, for the ICNIRP incident power density maximum permissible value, a temperature increase of about 0.7 degrees C is obtained in the ankles muscle. The presence of the thermoregulatory system strongly limits temperature elevations, particularly in the body core. PMID:12669986

  3. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  4. Simultaneous determination of iron and nickel in fluoropolymers by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Soares, Bruno M; Santos, Rafael F; Bolzan, Rodrigo C; Muller, Edson I; Primel, Ednei G; Duarte, Fabio A

    2016-11-01

    This paper reports the development of a method of simultaneous determination of iron and nickel in fluoropolymers by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with direct solid sampling. In order to carry out simultaneous measurements, both the main resonance line of nickel (232.003nm) and the adjacent secondary line of iron (232.036nm) were monitored in the same spectral window. The proposed method was optimized with a perfluoroalkoxy (PFA) sample and was applied to the determination of iron and nickel in fluorinated ethylene propylene (FEP) and modified polytetrafluoroethylene (PTFE-TFM) samples. Pyrolysis and atomization temperatures, as well as the use of Pd and H2 (during pyrolysis) as chemical modifiers, were carefully investigated. Compromise temperatures for pyrolysis and atomization of both analytes were achieved at 800 and 2300°C, respectively, using only 0.5Lmin(-1) H2 as chemical modifier during pyrolysis. Calibration curves were performed with aqueous standards by using a single solution which contained both analytes. Limits of detection were 221 and 9.6ngg(-1) for iron and nickel, respectively. Analyte concentrations in all samples ranged from 3.53 to 12.4µgg(-1) for iron and from 37 to 78ngg(-1) for nickel, with relative standard deviation less than 19%. Accuracy was evaluated by comparing these results with those obtained by inductively coupled plasma mass spectrometry after sample digestion by microwave-induced combustion and no significant statistical difference was observed. PMID:27591638

  5. Spectrometer system using a modular echelle spectrograph and a laser-driven continuum source for simultaneous multi-element determination by graphite furnace absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Geisler, Sebastian; Okruss, Michael; Becker-Ross, Helmut; Huang, Mao Dong; Esser, Norbert; Florek, Stefan

    2015-05-01

    A multi-element absorption spectrometer system has been developed based on a laser-driven xenon continuum source and a modular simultaneous echelle spectrograph (MOSES), which is characterized by a minimized number of optical components resulting in high optical throughput, high transmittance and high image quality. The main feature of the new optical design is the multifunction usage of a Littrow prism, which is attached on a rotation stage. It operates as an order-sorter for the echelle grating in a double-pass mode, as a fine positioning device moving the echelle spectrum on the detector, and as a forwarder to address different optical components, e.g., echelle gratings, in the setup. Using different prisms, which are mounted back to back on the rotation stage, a multitude of different spectroscopic modes like broad-range panorama observations, specific UV-VIS and NIR studies or high resolution zoom investigations of variable spectral channels can be realized. In the UV panorama mode applied in this work, MOSES has simultaneously detectable wavelength coverage from 193 nm to 390 nm with a spectral resolution λ/Δλ of 55,000 (3-pixel criterion). In the zoom mode the latter can be further increased by a factor of about two for a selectable section of the full wavelength range. The applicability and the analytical performance of the system were tested by simultaneous element determination in a graphite furnace, using eight different elements. Compared to an instrument operating in the optimized single line mode, the achieved analytical sensitivity using the panorama mode was typically a factor of two lower. Using the zoom mode for selected elements, comparable sensitivities were obtained. The results confirm the influence of the different spectral resolutions.

  6. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    PubMed

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. PMID:26452789

  7. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.; Teixeira, Leonardo S. G.

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box-Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L- 1 HNO3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg- 1. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method.

  8. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  9. On the possibilities of high-resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple atomic lines

    NASA Astrophysics Data System (ADS)

    Resano, M.; Rello, L.; Flórez, M.; Belarra, M. A.

    2011-05-01

    This paper explores the potential of commercially available high-resolution continuum source graphite furnace atomic absorption spectrometry instrumentation for the simultaneous or sequential monitoring of various atomic lines, in an attempt to highlight the analytical advantages that can be derived from this strategy. In particular, it is demonstrated how i) the monitoring of multiplets may allow for the simple expansion of the linear range, as shown for the measurement of Ni using the triplet located in the vicinity of 234.6 nm; ii) the use of a suitable internal standard may permit improving the precision and help in correcting for matrix-effects, as proved for the monitoring of Ni in different biological samples; iii) direct and multi-element analysis of solid samples may be feasible on some occasions, either by monitoring various atomic lines that are sufficiently close (truly simultaneous monitoring, as demonstrated in the determination of Co, Fe and Ni in NIST 1566a Oyster tissue) or, alternatively, by opting for a selective and sequential atomization of the elements of interest during every single replicate. Determination of Cd and Ni in BCR 679 White cabbage is attempted using both approaches, which permits confirming that both methods can offer very similar and satisfactory results. However, it is important to stress that the second approach provides more flexibility, since analysis is no longer limited to those elements that show very close atomic lines (closer than 0.3 nm in the ultraviolet region) with a sensitivity ratio similar to the concentration ratio of the analytes in the samples investigated.

  10. A dried urine spot test to simultaneously monitor Mo and Ti levels using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Rello, L.; Lapeña, A. C.; Aramendía, M.; Belarra, M. A.; Resano, M.

    2013-03-01

    Home-based collection protocols for clinical specimens are actively pursued as a means of improving life quality of patients that require frequent controls, such as patients with metallic prosthesis, for whom monitoring the evolution of Mo and Ti in biological fluids may play a decisive role to detect prosthesis mal-functioning. The collection of biological fluids on clinical filter papers provides a simple way to implement these protocols. This work explores the potential of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous and direct determination of Mo and Ti in urine, after its deposition onto clinical filter paper, giving rise to a dried urine spot. The approach used for depositing the sample was found crucial to develop a quantitative method, since the filter paper acts as a chromatographic support and produces a differential distribution of the target analytes. Furthermore, the high spreading of urine onto a filter paper results in a small amount of urine per surface unit, and thus, ultimately, in lack of sensitivity. In order to circumvent these problems, the use of an alternative approach based on the use of pre-cut 17 × 19 mm filter paper pieces onto which larger amounts of sample (500 μL) can be retained by single deposition was proposed and evaluated. In this way, an approximately 12-fold increase in sensitivity and a more homogeneous distribution of the target analytes were obtained, permitting the development of a quantification strategy based on the use of matrix-matched urine samples of known analyte concentrations, which were subjected to the same procedure as the samples. Accuracy of this method, which provides LODs of 1.5 μg L- 1 for Mo and 6.5 μg L- 1 for Ti, was demonstrated after analysis of urine reference materials. Overall, the performance of the method developed is promising, being likely suitable for determination of other analytes in dried urine spots.

  11. Simultaneous determination of cadmium, iron and tin in canned foods using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Leao, Danilo J; Junior, Mario M S; Brandao, Geovani C; Ferreira, Sergio L C

    2016-06-01

    A method was established to simultaneously determine cadmium, iron and tin in canned-food samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). The quantification step has been performed using the primary line (228.802nm) for cadmium and the adjacent secondary lines (228.725nm and 228.668nm) for iron and tin, respectively. The selected chemical modifier was an acid solution that contained a mixture of 0.1% (w/v) Pd and 0.05% (w/v) Mg. The absorbance signals were measured based on the peak area using 3 pixels for cadmium and 5 pixels for iron and tin. Under these conditions, cadmium, iron and tin have been determined in canned-food samples using the external calibration technique based on aqueous standards, where the limits of quantification were 2.10ngg(-1) for cadmium, 1.95mgkg(-1) for iron and 3.00mgkg(-1) for tin, and the characteristic masses were 1.0pg for cadmium, 0.9ng for iron and 1.1ng for tin. The precision was evaluated using two solutions of each metal ion, and the results, which were expressed as the relative standard deviation (RSD%), were 3.4-6.8%. The method accuracy for cadmium and iron was confirmed by analyzing a certified reference material of apple leaves (NIST 1515), which was supplied by NIST. However, for tin, the accuracy was confirmed by comparing the results of the proposed method and another analytical technique (inductively coupled plasma optical emission spectrometry). The proposed procedure was applied to determine cadmium, iron and tin in canned samples of peeled tomato and sardine. Eleven samples were analyzed, and the analyte concentrations were 3.57-62.9ngg(-1), 2.68-31.48mgkg(-1) and 4.06-122.0mgkg(-1) for cadmium, iron and tin, respectively. In all analyzed samples, the cadmium and tin contents were lower than the permissible maximum levels for these metals in canned foods in the Brazilian legislation. PMID:27130088

  12. Development of a simple method for the determination of nitrite and nitrate in groundwater by high-resolution continuum source electrothermal molecular absorption spectrometry.

    PubMed

    Brandao, Geovani C; Matos, Geraldo D; Pereira, Raimundo N; Ferreira, Sergio L C

    2014-01-01

    In this work, it was developed a method for the determination of nitrite and nitrate in groundwater by high-resolution continuum source electrothermal molecular absorption spectrometry of NO produced by thermal decomposition of nitrate in a graphite furnace. The NO line at 215.360 nm was used for all analytical measurements and the signal obtained by integrated absorbance of three pixels. A volume of 20 μL of standard solution or groundwater sample was injected into graphite furnace and 5 μL of a 1% (m/v) Ca solution was co-injected as chemical modifier. The pyrolisis and vaporization temperatures established were of 150 and 1300°C, respectively. Under these conditions, it was observed a difference of thermal stability among the two nitrogen species in the presence of hydrochloric acid co-injected. While that the nitrite signal was totally suppressed, nitrate signal remained nearly stable. This way, nitrogen can be quantified only as nitrate. The addition of hydrogen peroxide provided the oxidation of nitrite to nitrate, which allowed the total quantification of the species and nitrite obtained by difference. A volume of 5 μL of 0.3% (v/v) hydrochloric acid was co-injected for the elimination of nitrite, whereas that hydrogen peroxide in the concentration of 0.75% (v/v) was added to samples or standards for the oxidation of nitrite to nitrate. Analytical curve was established using standard solution of nitrate. The method described has limits of detection and quantification of 0.10 and 0.33 μg mL(-1) of nitrogen, respectively. The precision, estimated as relative standard deviation (RSD), was of 7.5 and 3.8% (n=10) for groundwater samples containing nitrate-N concentrations of 1.9 and 15.2 μg mL(-1), respectively. The proposed method was applied to the analysis of 10 groundwater samples and the results were compared with those obtained by ion chromatography method. In all samples analyzed, the concentration of nitrite-N was always below of the limit of

  13. Marine sediments monitoring studies for trace elements with the application of fast temperature programs and solid sampling high resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Orani, Anna Maria; Han, Eunmi; Mandjukov, Petko; Vassileva, Emilia

    2015-01-01

    Analytical procedure for the determination of As, Cd, Cu, Ni, Co and Cr in marine sediment samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS AAS) and direct solid sample analysis has been developed. The application of fast programs in combination with direct solid sampling allows to eliminate the drying and pretreatment steps, however makes impossible the use of liquid standards for calibration. Iridium treated platforms were applied throughout the present study. Calibration technique based on the use of solid certified reference materials (marine sediments) similar to the nature of the analyzed sample and statistics of regression analysis were applied to the real sediment samples. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signals. The ISO-17025 requirements and Eurachem guidelines were followed in the validation of the proposed analytical procedure. Accordingly, blanks, selectivity, calibration, linearity, working range, trueness, repeatability reproducibility, limits of detection and quantification and expanded uncertainty (k = 2) for all investigated elements were assessed. Two different approaches for the estimation of measurement uncertainty were applied and obtained results compared. The major contributors to the combined uncertainty of the analyte mass fraction were found to be the homogeneity of the samples and the microbalance precision. The influence of sample particle sizes on the total combined uncertainty was also evaluated. Traceability to SI system of units of the obtained by the proposed analytical procedure results was demonstrated. Additionally, validation of the methodology developed was effectuated by the comparison of the obtained results with independent method e.g. ICP-MS with external calibration. The use of solid sampling HR CS AAS for the determination of trace elements in marine sediment matrix gives significant advantages

  14. Determination of trace and minor elements in alloys by atomic-absorption spectroscopy using an induction-heated graphite-well furnace as atom source-II.

    PubMed

    Ashy, M A; Headridge, J B; Sowerbutts, A

    1974-06-01

    Results are presented for the atomic-absorption spectrophotometric determination of zinc in aluminium and aluminium-silicon alloys, and aluminium, antimony and tin in steels, by means of solid samples dropped into an induction-heated graphite-well furnace to produce the atomic vapour. PMID:18961510

  15. Percutaneous absorption from soil.

    PubMed

    Andersen, Rosa Marie; Coman, Garrett; Blickenstaff, Nicholas R; Maibach, Howard I

    2014-01-01

    Abstract Some natural sites, as a result of contaminants emitted into the air and subsequently deposited in soil or accidental industrial release, have high levels of organic and non-organic chemicals in soil. In occupational and recreation settings, these could be potential sources of percutaneous exposure to humans. When investigating percutaneous absorption from soil - in vitro or vivo - soil load, particle size, layering, soil "age" time, along with the methods of performing the experiment and analyzing the results must be taken into consideration. Skin absorption from soil is generally reduced compared with uptake from water/acetone. However, the absorption of some compounds, e.g., pentachlorophenol, chlorodane and PCB 1254, are similar. Lipophilic compounds like dichlorodiphenyltrichloroethane, benzo[A]pyrene, and metals have the tendency to form reservoirs in skin. Thus, one should take caution in interpreting results directly from in vitro studies for risk assessment; in vivo validations are often required for the most relevant risk assessment. PMID:25205703

  16. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil

    PubMed Central

    2013-01-01

    Background The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. Results The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94–106% in atomic absorption and 97–103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6–5.2% in atomic absorption, similar with that of 1.9–6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference

  17. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    SciTech Connect

    Ombaba, J.M.

    1992-01-01

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (mytilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienylmanganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were considered. The evaluation of a computer-aided optimization program, Drylab GC, using spearmint oil and Environmental Protection Agency (EPA) standard mixture as probes is discussed. The program is used for separation optimization and prediction of gas chromatographic parameters. The program produces a relative resolution map (RRM) which guides the analyst in selecting the most favorable temperature programming rate for the separation.

  18. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  19. Beam tracking approach for single–shot retrieval of absorption, refraction, and dark-field signals with laboratory  x-ray sources

    SciTech Connect

    Vittoria, Fabio A. Diemoz, Paul C.; Olivo, Alessandro; Kallon, Gibril K. N.; Basta, Dario; Endrizzi, Marco; Robinson, Ian K.

    2015-06-01

    We present the translation of the beam tracking approach for x-ray phase-contrast and dark-field imaging, recently demonstrated using synchrotron radiation, to a laboratory setup. A single absorbing mask is used before the sample, and a local Gaussian interpolation of the beam at the detector is used to extract absorption, refraction, and dark–field signals from a single exposure of the sample. Multiple exposures can be acquired when high resolution is needed, as shown here. A theoretical analysis of the effect of polychromaticity on the retrieved signals, and of the artifacts this might cause when existing retrieval methods are used, is also discussed.

  20. Study of the Effect of the Pulse Width of the Excitation Source on the Two-Photon Absorption and Two-Photon Circular Dichroism Spectra of Biaryl Derivatives.

    PubMed

    Vesga, Yuly; Hernandez, Florencio E

    2016-09-01

    Herein we report on the expanded theoretical calculations and the experimental measurements of the two-photon absorption (TPA) and two-photon circular dichroism (TPCD) spectra of a series of optically active biaryl derivatives (R-BINOL, R-VANOL, and R-VAPOL) using femtosecond pulses. The comparative analysis of the experimental TPCD spectra obtained with our tunable amplified femtosecond system with those previously measured in our group on the same series of compounds in the picosecond regime reveals a decrease in the amplitude of the signal and an improvement in matching with the theory in the former. These results can be explained based on the negligible contribution of excited state absorption (ESA) using femtosecond pulses compared to the picosecond regime. We show how ESA affects both the strength of the signal and the shape of the TPA and TPCD spectra. TPA and TPCD spectra were obtained using the double L-scan technique over a broad spectral range (450-750 nm) using 90 fs pulses at 50 Hz repetition rate produced by an amplified femtosecond system. The theoretical calculations were performed using modern analytical response theory within the time-dependent density functional theory (TD-DFT) approach using CAM-B3LYP and 6-311++G(d,p) basis sets. PMID:27525702

  1. Spectrometric analysis of process etching solutions of the photovoltaic industry--determination of HNO3, HF, and H2SiF6 using high-resolution continuum source absorption spectrometry of diatomic molecules and atoms.

    PubMed

    Bücker, Stefan; Acker, Jörg

    2012-05-30

    The surface of raw multicrystalline silicon wafers is treated with HF-HNO(3) mixtures in order to remove the saw damage and to obtain a well-like structured surface of low reflectivity, the so-called texture. The industrial production of solar cells requires a consistent level of texturization for tens of thousands of wafers. Therefore, knowing the actual composition of the etch bath is a key element in process control in order to maintain a certain etch rate through replenishment of the consumed acids. The present paper describes a novel approach to quantify nitric acid (HNO(3)), hydrofluoric acid (HF), and hexafluosilicic acid (H(2)SiF(6)) using a high-resolution continuum source graphite furnace absorption spectrometer. The concentrations of Si (via Si atom absorption at the wavelength 251.611 nm, m(0),(Si)=130 pg), of nitrate (via molecular absorption of NO at the wavelength 214.803 nm, [Formula: see text] ), and of total fluoride (via molecular absorption of AlF at the wavelength 227.46 nm, m(0,F)=13 pg) were measured against aqueous standard solutions. The concentrations of H(2)SiF(6) and HNO(3) are directly obtained from the measurements. The HF concentration is calculated from the difference between the total fluoride content, and the amount of fluoride bound as H(2)SiF(6). H(2)SiF(6) and HNO(3) can be determined with a relative uncertainty of less than 5% and recoveries of 97-103% and 96-105%, respectively. With regards to HF, acceptable results in terms of recovery and uncertainty are obtained for HF concentrations that are typical for the photovoltaic industry. The presented procedure has the unique advantage that the concentration of both, acids and metal impurities in etch solutions, can be routinely determined by a single analytical instrument. PMID:22608457

  2. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  3. Do Atoms Really "Emit" Absorption Lines?

    ERIC Educational Resources Information Center

    Brecher, Kenneth

    1991-01-01

    Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)

  4. The HI absorption "Zoo"

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.

    2015-03-01

    We present an analysis of the H I 21 cm absorption in a sample of 101 flux-selected radio AGN (S1.4 GHz> 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). We detect H I absorption in 32 objects (30% of the sample). In a previous paper, we performed a spectral stacking analysis on the radio sources, while here we characterize the absorption spectra of the individual detections using the recently presented busy function. The H I absorption spectra show a broad variety of widths, shapes, and kinematical properties. The full width half maximum (FWHM) of the busy function fits of the detected H I lines lies in the range 32 km s-1absorption (FW20) lies in the range 63 km s-1 200 km s-1). We study the kinematical and radio source properties of each group, with the goal of identifying different morphological structures of H I. Narrow lines mostly lie at the systemic velocity and are likely produced by regularly rotating H I disks or gas clouds. More H I disks can be present among galaxies with lines of intermediate widths; however, the H I in these sources is more unsettled. We study the asymmetry parameter and blueshift/redshift distribution of the lines as a function of their width. We find a trend for which narrow profiles are also symmetric, while broad lines are the most asymmetric. Among the broadest lines, more lines appear blueshifted than redshifted, similarly to what was found by previous studies. Interestingly, symmetric broad lines are absent from the sample. We argue that if a profile is broad, it is also asymmetric and shifted relative to the systemic velocity because it is tracing unsettled H I gas. In particular, besides three of the broadest (up to FW20 = 825 km s-1

  5. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 1

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1973-01-01

    An extensive set of ground-based measurements of the diurnal variation of medium frequency radio wave adsorption and virtual height is analyzed in terms of current understanding of the D- and lower E-region ion production and loss process. When this is done a gross discrepancy arises, the source of which is not known.

  6. The aurora as a source of planetary-scale waves in the middle atmosphere. [atmospheric turbulence caused by auroral energy absorption

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Straus, J. M.

    1974-01-01

    Photographs of global scale auroral forms taken by scanning radiometers onboard weather satellites in 1972 show that auroral bands exhibit well organized wave motion with typical zonal wave number of 5 or so. The scale size of these waves is in agreement with that of well organized neutral wind fields in the 150- to 200-km region during the geomagnetic storm of May 27, 1967. Further, the horizontal scale size revealed by these observations are in agreement with that of high altitude traveling ionospheric disturbances. It is conjectured that the geomagnetic storm is a source of planetary and synoptic scale neutral atmospheric waves in the middle atmosphere. Although there is, at present, no observation of substorm related waves of this scale size at mesospheric and stratospheric altitudes, the possible existence of a new source of waves of the proper scale size to trigger instabilities in middle atmospheric circulation systems may be significant in the study of lower atmospheric response to geomagnetic activity.

  7. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  8. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, Michael E.; Bien, Fritz; Bernstein, Lawrence S.

    1986-01-01

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined.

  9. Metabolic fate (absorption, β-oxidation and deposition) of long-chain n-3 fatty acids is affected by sex and by the oil source (krill oil or fish oil) in the rat.

    PubMed

    Ghasemifard, Samaneh; Hermon, Karen; Turchini, Giovanni M; Sinclair, Andrew J

    2015-09-14

    The effects of krill oil as an alternative source of n-3 long-chain PUFA have been investigated recently. There are conflicting results from the few available studies comparing fish oil and krill oil. The aim of this study was to compare the bioavailability and metabolic fate (absorption, β-oxidation and tissue deposition) of n-3 fatty acids originating from krill oil (phospholipid-rich) or fish oil (TAG-rich) in rats of both sexes using the whole-body fatty acid balance method. Sprague-Dawley rats (thirty-six male, thirty-six female) were randomly assigned to be fed either a krill oil diet (EPA+DHA+DPA=1·38 mg/g of diet) or a fish oil diet (EPA+DHA+DPA=1·61 mg/g of diet) to constant ration for 6 weeks. The faeces, whole body and individual tissues were analysed for fatty acid content. Absorption of fatty acids was significantly greater in female rats and was only minimally affected by the oil type. It was estimated that most of EPA (>90 %) and more than half of DHA (>60 %) were β-oxidised in both diet groups. Most of the DPA was β-oxidised (57 and 67 % for female and male rats, respectively) in the fish oil group; however, for the krill oil group, the majority of DPA was deposited (82-83 %). There was a significantly greater deposition of DPA and DHA in rats fed krill oil compared with those fed fish oil, not due to a difference in bioavailability (absorption) but rather due to a difference in metabolic fate (anabolism v. catabolism). PMID:26234617

  10. A portable x-ray source with a nanostructured Pt-coated silicon field emission cathode for absorption imaging of low-Z materials

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Swanwick, Michael E.; Fomani, Arash A.; Velásquez-García, Luis Fernando

    2015-06-01

    We report the design, fabrication, and characterization of a portable x-ray generator for imaging of low-atomic number materials such as biological soft tissue. The system uses a self-aligned, gated, Pt-coated silicon field emitter cathode with two arrays of 62 500 nano-sharp tips arranged in a square grid with 10 μm emitter pitch, and a natural convection-cooled reflection anode composed of a Cu bar coated with a thin Mo film. Characterization of the field emitter array demonstrated continuous emission of 1 mA electron current (16 mA cm  -  2) with  >95% current transmission at a 150 V gate-emitter bias voltage for over 20 h with no degradation. The emission of the x-ray source was characterized across a range of anode bias voltages to maximize the fraction of photons from the characteristic K-shell peaks of the Mo film to produce a quasi-monochromatic photon beam, which enables capturing high-contrast images of low-atomic number materials. The x-ray source operating at the optimum anode bias voltage, i.e. 35 kV, was used to image ex vivo and nonorganic samples in x-ray fluoroscopic mode while varying the tube current; the images resolve feature sizes as small as ~160 µm.

  11. The rediscovery of absorption chillers

    SciTech Connect

    Katzel, J.

    1992-04-23

    Absorption chillers are back - and for two very good reasons: they are environmentally sound and, in many cases, economically attractive. One factor fueling this resurgence is the outlook for natural gas, the energy source of most absorption systems. Deregulation has spurred exploration, and forecasts indicate an abundant supply and relatively low prices through 2050. Threats of global warming and depletion of the ozone layer also are forces driving the absorption chiller market. Being a good corporate citizen today means minimizing or eliminating the use of chlorofluorocarbons (CFCs), the basis of many refrigerants used in mechanical chillers. Even as chemical and chiller manufacturers alike work to develop substitute refrigerants, the perfect alternative has yet to be found. Absorption units are free of these problems, a benefit that appeals to many people.

  12. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    PubMed

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. PMID:26992542

  13. Use of radiation sources with mercury isotopes for real-time highly sensitive and selective benzene determination in air and natural gas by differential absorption spectrometry with the direct Zeeman effect.

    PubMed

    Revalde, Gita; Sholupov, Sergey; Ganeev, Alexander; Pogarev, Sergey; Ryzhov, Vladimir; Skudra, Atis

    2015-08-01

    A new analytical portable system is proposed for the direct determination of benzene vapor in the ambient air and natural gas, using differential absorption spectrometry with the direct Zeeman effect and innovative radiation sources: capillary mercury lamps with different isotopic compositions ((196)Hg, (198)Hg, (202)Hg, (204)Hg, and natural isotopic mixture). Resonance emission of mercury at a wavelength of 254 nm is used as probing radiation. The differential cross section of benzene absorption in dependence on wavelength is determined by scanning of magnetic field. It is found that the sensitivity of benzene detection is enhanced three times using lamp with the mercury isotope (204)Hg in comparison with lamp, filled with the natural isotopic mixture. It is experimentally demonstrated that, when benzene content is measured at the Occupational Exposure Limit (3.2 mg/m(3) for benzene) level, the interference from SO2, NO2, O3, H2S and toluene can be neglected if concentration of these gases does not exceed corresponding Occupational Exposure Limits. To exclude the mercury effect, filters that absorb mercury and let benzene pass in the gas duct are proposed. Basing on the results of our study, a portable spectrometer is designed with a multipath cell of 960 cm total path length and detection limit 0.5 mg/m(3) at 1 s averaging and 0.1 mg/m(3) at 30 s averaging. The applications of the designed spectrometer to measuring the benzene concentration in the atmospheric air from a moving vehicle and in natural gas are exemplified. PMID:26320799

  14. Absorption heat pumps

    NASA Astrophysics Data System (ADS)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  15. Differential optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S. (Inventor)

    1978-01-01

    A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.

  16. Analysis of frequency dependent pump light absorption

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Matthias; Pflaum, Christoph

    2011-03-01

    Simulations have to accurately model thermal lensing in order to help improving resonator design of diode pumped solid state lasers. To this end, a precise description of the pump light absorption is an important prerequisite. In this paper, we discuss the frequency dependency of the pump light absorption in the laser crystal and its influence on the simulated laser performance. The results show that the pump light absorption has to include the spectral overlap of the emitting pump source and the absorbing laser material. This information can either be used for a fully frequency dependent absorption model or, at least in the shown examples, to compute an effective value for an exponential Beer-Lambert law of absorption. This is particularly significant at pump wavelengths coinciding with a peak of absorption. Consequences for laser stability and performance are analyzed for different pump wavelengths in a Nd:YAG laser.

  17. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  18. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    PubMed

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  19. D-xylose absorption

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  20. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Resano, Martín; Flórez, María del Rosario; Queralt, Ignasi; Marguí, Eva

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH4F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g- 1 (Pd), 8.3 μg g- 1 (Pt) and 9.3 μg g- 1 (Rh) for catalysts, which decreased to 0.08 μg g- 1 (Pd), 0.15 μg g- 1 (Pt) and 0.10 μg g- 1 (Rh) for pharmaceuticals.

  1. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Y.

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  2. Coherent Absorption of N00N States.

    PubMed

    Roger, Thomas; Restuccia, Sara; Lyons, Ashley; Giovannini, Daniel; Romero, Jacquiline; Jeffers, John; Padgett, Miles; Faccio, Daniele

    2016-07-01

    Recent results in deeply subwavelength thickness films demonstrate coherent control and logical gate operations with both classical and single-photon light sources. However, quantum processing and devices typically involve more than one photon and nontrivial input quantum states. Here we experimentally investigate two-photon N00N state coherent absorption in a multilayer graphene film. Depending on the N00N state input phase, it is possible to selectively choose between single- or two-photon absorption of the input state in the graphene film. These results demonstrate that coherent absorption in the quantum regime exhibits unique features, opening up applications in multiphoton spectroscopy and imaging. PMID:27447505

  3. Coherent Absorption of N00N States

    NASA Astrophysics Data System (ADS)

    Roger, Thomas; Restuccia, Sara; Lyons, Ashley; Giovannini, Daniel; Romero, Jacquiline; Jeffers, John; Padgett, Miles; Faccio, Daniele

    2016-07-01

    Recent results in deeply subwavelength thickness films demonstrate coherent control and logical gate operations with both classical and single-photon light sources. However, quantum processing and devices typically involve more than one photon and nontrivial input quantum states. Here we experimentally investigate two-photon N00N state coherent absorption in a multilayer graphene film. Depending on the N00N state input phase, it is possible to selectively choose between single- or two-photon absorption of the input state in the graphene film. These results demonstrate that coherent absorption in the quantum regime exhibits unique features, opening up applications in multiphoton spectroscopy and imaging.

  4. Atmospheric Solar Heating in Minor Absorption Bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1998-01-01

    Solar radiation is the primary source of energy driving atmospheric and oceanic circulations. Concerned with the huge computing time required for computing radiative transfer in weather and climate models, solar heating in minor absorption bands has often been neglected. The individual contributions of these minor bands to the atmospheric heating is small, but collectively they are not negligible. The solar heating in minor bands includes the absorption due to water vapor in the photosynthetically active radiation (PAR) spectral region from 14284/cm to 25000/cm, the ozone absorption and Rayleigh scattering in the near infrared, as well as the O2 and CO2 absorption in a number of weak bands. Detailed high spectral- and angular-resolution calculations show that the total effect of these minor absorption is to enhance the atmospheric solar heating by approximately 10%. Depending upon the strength of the absorption and the overlapping among gaseous absorption, different approaches are applied to parameterize these minor absorption. The parameterizations are accurate and require little extra time for computing radiative fluxes. They have been efficiently implemented in the various atmospheric models at NASA/Goddard Space Flight Center, including cloud ensemble, mesoscale, and climate models.

  5. Separation and preconcentration of platinum-group metals from spent autocatalysts solutions using a hetero-polymeric S, N-containing sorbent and determination by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Eskina, Vasilina V; Dalnova, Olga A; Filatova, Daria G; Baranovskaya, Vasilisa B; Karpov, Yuri A

    2016-10-01

    This paper describes the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for determination of Pt, Pd and Rh after separation and concentration by original in-house developed heterochain polymer S, N-containing sorbent. The methods of sample preparation of spent ceramic-based autocatalysts were considered, two of which were used: autoclave decomposition in mixture of acids HCl:HNO3 (3:1) and high-temperature melting with K2S2O7. Both methods anyway limit the direct determination of analytes by HR CS GFAAS. Using the first method it is an incomplete digestion of spent autocatalysts samples, since the precipitate is Si, and the rhodium metal dissolves with difficulty and partially passes into solution. In contrast to the first method, the second method allow to completely transfer analytes into solution, however, the background signal produced by the chemical composition of the flux, overlaps the analytical zone. It was found, that Pt, Pd and Rh contained in the spent ceramic automotive catalysts could be effectively separated and concentrated by heterochain polymer S, N-containing sorbent, which has high sorption capacity, selectivity and resistant to dilute acids. The chosen HR CS GFAAS analysis conditions enable us to determine Pt, Pd and Rh with good metrological characteristics. The concentrations of Pt, Pd and Rh in two samples of automobile exhaust catalysts were found in range of 0.00015-0.00050; 0.170-0.189; 0.0180-0.0210wt%, respectively. The relative standard deviation obtained by HR CS GFAAS was not more than 5%. Limits of detection by HR CS GFAAS achieved were 6.2·10(-6)wt% for Pt, 1.8·10(-6)wt% for Pd, and 3.4·10(-6)wt% for Rh. Limits of determination achieved by HR CS GFAAS were 1.1·10(-5)wt% for Pt, 6.9·10(-5)wt% for Pd, and 8.3·10(-5)wt% for Rh. To control the accuracy of PGM in sorption concentrates by HR CS GFAAS method, it was appropriate to conduct an inter-method comparative experiment. The

  6. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  7. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  8. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-06-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  9. Percutaneous absorption of drugs.

    PubMed

    Wester, R C; Maibach, H I

    1992-10-01

    The skin is an evolutionary masterpiece of living tissue which is the final control unit for determining the local and systemic availability of any drug which must pass into and through it. In vivo in humans, many factors will affect the absorption of drugs. These include individual biological variation and may be influenced by race. The skin site of the body will also influence percutaneous absorption. Generally, those body parts exposed to the open environment (and to cosmetics, drugs and hazardous toxic substances) are most affected. Treating patients may involve single daily drug treatment or multiple daily administration. Finally, the body will be washed (normal daily process or when there is concern about skin decontamination) and this will influence percutaneous absorption. The vehicle of a drug will affect release of drug to skin. On skin, the interrelationships of this form of administration involve drug concentration, surface area exposed, frequency and time of exposure. These interrelationships determine percutaneous absorption. Accounting for all the drug administered is desirable in controlled studies. The bioavailability of the drug then is assessed in relationship to its efficacy and toxicity in drug development. There are methods, both quantitative and qualitative, in vitro and in vivo, for studying percutaneous absorption of drugs. Animal models are substituted for humans to determine percutaneous absorption. Each of these methods thus becomes a factor in determining percutaneous absorption because they predict absorption in humans. The relevance of these predictions to humans in vivo is of intense research interest. The most relevant determination of percutaneous absorption of a drug in humans is when the drug in its approved formulation is applied in vivo to humans in the intended clinical situation. Deviation from this scenario involves the introduction of variables which may alter percutaneous absorption. PMID:1296607

  10. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  11. Performance Analysis of Solution Transportation Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Kiani, Behdad; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    Thermally activated advanced absorption cycles are considered promising candidates to replace CFCs, HCFCs and HFCs for residential and commercial applications. In such absorption systems, it is desirable to utilize the waste heat from industries for heating and cooling applications in commercial and residential sectors. For this purpose, it is necessary to transport energy over some distance because the waste heat source and demand are generally located apart from each other. Transportation of steam, hot water or chilled water requires high construction costs for insulation. There is an efficient method of energy transportation using absorption system called “ Solution Transportation Absorption System (STA)”. The solution is transported at an ambient temperature so that tube-insulations not required. This paper shows the simulation of the abovementioned system and the optimal result, using mathematical optimization. The optimum system with industry‧s waste heat utilization is obtained. At the end, the effect on the pollution emission and energy conservation is obtained.

  12. The ALFALFA HI Absorption Pilot Project

    NASA Astrophysics Data System (ADS)

    Macdonald, Erin; Darling, J.; ALFALFA Team

    2009-01-01

    We present the results of a pilot project to search for HI 21 cm absorption in the Arecibo Legacy Fast Arecibo L-Band Feed Array (ALFALFA) Survey. This project is the first to conduct a "blind" wide-area search for HI absorption in the local universe. The search covered 517.0 deg2 spanning 10.9h < α < 14.95h and +7.7o < δ < +16.3o. The ALFALFA survey covers -650 km s-1 < cz < 17,500 km s-1, for a Δz = 0.054 along each line of sight (11% of the cz span is lost to radio frequency interference and Galactic HI emission). There are 243 sources toward which all damped Lyα systems (N(HI) > 2x1020 cm-2) could be detected, and 3282 sources toward which N(HI) > 2x1021 cm-2 columns could be detected (assuming 100 K spin temperature, 30 km s-1 line width, and unity filling factor). We performed Green Bank Telescope follow-up observations of 13 possible absorption lines and the 250 strong sources (> 220 mJy) in our survey region. One previously known intrinsic HI absorption line in UGC 6081 was re-detected, but no additional lines were identified in the survey region. Nevertheless, this pilot project demonstrates the value and feasibility of large-area absorption line searches commensal with emission line surveys. An absorption line search of the entire 7000 deg2 ALFALFA Survey is a worthwhile undertaking, not only to identify HI absorption systems in the local universe, but to measure the fraction of HI gas not accounted for by emission line surveys. ALFALFA is a legacy survey at the Arecibo Observatory supported by NAIC and NSF.

  13. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  14. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  15. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  16. Dipeptide absorption in man

    PubMed Central

    Hellier, M. D.; Holdsworth, C. D.; McColl, I.; Perrett, D.

    1972-01-01

    A quantitative perfusion method has been used to study intestinal absorption of two dipeptides—glycyl-glycine and glycyl-l-alanine—in normal subjects. In each case, the constituent amino acids were absorbed faster when presented as dipeptides than as free amino acids, suggesting intact dipeptide transport. During absorption constituent amino acids were measured within the lumen and it is suggested that these represent amino acids which have diffused back to the lumen after absorption as dipeptide. Portal blood analyses during absorption of a third dipeptide, glycyl-l-lysine, have shown that this dipeptide, known to be transported intact from the intestinal lumen, is hydrolysed to its constitutent amino acids before it reaches portal venous blood. PMID:4652039

  17. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  18. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  19. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  20. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  1. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  2. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew; Wilks, Scott; Tabak, Max; Libby, Stephen; Baring, Matthew

    2014-10-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top relativistic particle accelerators, ultrafast charged particle imaging systems and fast ignition inertial confinement fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. In this presentation, using a relativistic Rankine-Hugoniot-like analysis, we show how to derive the theoretical maximum and minimum of f. These boundaries constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. Close agreement is shown with several dozens of published experimental data points and simulation results, helping to confirm the theory. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  3. Lyman-α Absorption from Heliotail ENAs

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Izmodenov, Vladislav V.

    2010-12-01

    The energetic neutral atoms (ENAs) that the Interstellar Boundary Explorer (IBEX) is currently studying are messengers from the termination shock and beyond. Ultraviolet spectra from the Hubble Space Telescope (HST) provide another way to study these ENAs, which are capable of producing detectable absorption signatures in HST Lyman-α spectra of nearby stars. This broad, shallow absorption is only observed within 20° of the downwind direction. Only the lengthy downwind lines of sight through the long heliotail build up enough column density of ENAs to yield detectable absorption. The absorption therefore represents the first real observational detection of the heliotail. We try to connect ENA fluxes observed by IBEX with the Lyman-α absorption observed by HST. In the downwind direction, IBEX observes ENA fluxes that increase towards lower energies, at least to 0.2 keV, but consistency with the HST measurements seems to require that the ENA fluxes at least flatten if not decrease below 0.2 keV. The ``ribbon'' of ENAs detected by IBEX is not detected in Lyman-α absorption, which may be a problem for any explanation of the ribbon that proposes a source beyond our heliosphere.

  4. Multiplasmon Absorption in Graphene

    NASA Astrophysics Data System (ADS)

    Jablan, Marinko; Chang, Darrick E.

    2015-06-01

    We show that graphene possesses a strong nonlinear optical response in the form of multiplasmon absorption, with exciting implications in classical and quantum nonlinear optics. Specifically, we predict that graphene nanoribbons can be used as saturable absorbers with low saturation intensity in the far-infrared and terahertz spectrum. Moreover, we predict that two-plasmon absorption and extreme localization of plasmon fields in graphene nanodisks can lead to a plasmon blockade effect, in which a single quantized plasmon strongly suppresses the possibility of exciting a second plasmon.

  5. Chaotic Systems with Absorption

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions Dq obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D1 in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results.

  6. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  7. REMOTE SENSING OF OZONE USING AN INFRARED DIFFERENTIAL ABSORPTION SYSTEM

    EPA Science Inventory

    A prototype airborne downlooking infrared differential absorption system using CO2 TEA (transverse excited atmospheric) lasers is described. The system uses two wavelengths and topographic reflection to measure the integrated column concentration of ozone between the laser source...

  8. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  9. Total absorption Cherenkov spectrometers

    NASA Astrophysics Data System (ADS)

    Malinovski, E. I.

    2015-05-01

    A short review of 50 years of work done with Cherenkov detectors in laboratories at the Lebedev Physical Institute is presented. The report considers some issues concerning the use of Cherenkov total absorption counters based on lead glass and heavy crystals in accelerator experiments.

  10. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  11. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  12. ZINC ABSORPTION BY INFANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc is a vital mineral in human nutrition, and rare cases of overt zinc deficiency are well described in term and preterm infants. A variety of methods have been developed to assess zinc absorption, retention, and balance in humans, either using mass (metabolic) balance or stable isotope-based METH...

  13. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  14. Absorption and fluorescence spectroscopy on a smartphone

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Rutledge, Peter J.; Jamalipour, Abbas

    2015-07-01

    A self-powered smartphone-based field-portable "dual" spectrometer has been developed for both absorption and fluorescence measurements. The smartphone's existing flash LED has sufficient optical irradiance to undertake absorption measurements within a 3D-printed case containing a low cost nano-imprinted polymer diffraction grating. A UV (λex ~ 370 nm) and VIS (λex ~ 450 nm) LED are wired into the circuit of the flash LED to provide an excitation source for fluorescence measurements. Using a customized app on the smartphone, measurements of absorption and fluorescence spectra are demonstrated using pH-sensitive and Zn2+-responsive probes. Detection over a 300 nm span with 0.42 nm/pixel spectral resolution is demonstrated. Despite the low cost and small size of the portable spectrometer, the results compare well with bench top instruments.

  15. Imaging of highly turbid media by the absorption method

    NASA Astrophysics Data System (ADS)

    Contini, Daniele; Liszka, Heather; Sassaroli, Angelo; Zaccanti, Giovanni

    1996-05-01

    The results of a study on imaging that is based on the absorption method are presented. This method is based on attenuation measurements carried out in the presence of a sufficiently high absorption coefficient by the use of a continuous-wave source. The benefit of absorption on image quality comes from the strong attenuation of photons traveling along long trajectories. When the absorption coefficient is increased, the received energy decreases, but the mean path length of received photons decreases. The effect of increasing the absorption coefficient is similar to that of decreasing the gating time when the time-gating technique is used. Experimental results showed that the spatial resolution obtained with the absorption technique is similar to that obtained with the time-gating technique. method, spatial resolution, turbid media.

  16. Simulating a 4-effect absorption chiller

    SciTech Connect

    Grossman, G.; Zaltash, A.; Adcock, P.W.; DeVault, R.C.

    1995-06-01

    Absorption chillers are heat-operated refrigeration machines that operate on one of the earliest known principles of refrigeration. Current absorption chillers typically use either steam or a gas-fired burner as the energy source. All current gas-fired absorption cooling systems are based on the well known single-effect or double-effect cycles. To further improve utilization of the high temperature heat available from natural gas, a variety of triple-effect cycles have been proposed and are being developed that are capable of substantial performance improvement over equivalent double-effect cycles. This article describes a study that investigated the possibility of even further improving utilization of the high temperature heat available from natural gas combustion. During the study, performance simulation was conducted for a 4-effect lithium bromide/water cycle. From an environmental perspective, absorption chillers provide several benefits. They use absorption pairs (such as lithium bromide/water) as the working fluids, rather than chlorofluorocarbons or hydrochlorofluorocarbons, which contribute to ozone depletion and global warming.

  17. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  18. Chaotic systems with absorption.

    PubMed

    Altmann, Eduardo G; Portela, Jefferson S E; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions D(q) obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D(1) in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results. PMID:24138240

  19. Pathways of iron absorption.

    PubMed

    Conrad, Marcel E; Umbreit, Jay N

    2002-01-01

    Iron is vital for all living organisms but excess iron can be lethal because it facilitates free radical formation. Thus iron absorption is carefully regulated to maintain an equilibrium between absorption and body loss of iron. In countries where meat is a significant part of the diet, most body iron is derived from dietary heme because heme binds few of the dietary chelators that bind inorganic iron. Uptake of heme into enterocytes occurs as a metalloporphyrin in an endosomal process. Intracellular iron is released from heme by heme oxygenase to enter plasma as inorganic iron. Ferric iron is absorbed via a beta(3) integrin and mobilferrin pathway (IMP) which is unshared with other nutritional metals. Ferrous iron uptake is facilitated by a DMT-1 pathway which is shared with manganese. In the iron deficient gut, large quantities of both mobilferrin and DMT-1 are found in goblet cells and intraluminal mucins suggesting that they are secreted with mucin into the intestinal lumen to bind iron to facilitate uptake by the cells. In the cytoplasm, IMP and DMT associate in a large protein complex called paraferritin which serves as a ferrireductase. Paraferritin solublizes iron binding proteins and reduces iron to make iron available for production of iron containing proteins such as heme. Iron uptake by intestinal absorptive cells is regulated by the iron concentration within the cell. Except in hemochromatosis it remains in equilibrium with total body stores via transferrin receptors on the basolateral membrane of absorptive cells. Increased intracellular iron either up-regulates or satiates iron binding proteins on regulatory proteins to alter their location in the intestinal mucosa. PMID:12547224

  20. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  1. New developments in micro-X-ray diffraction and X-ray absorption spectroscopy for high-pressure research at 16-BM-D at the Advanced Photon Source

    SciTech Connect

    Park, Changyong Popov, Dmitry; Ikuta, Daijo; Lin, Chuanlong; Kenney-Benson, Curtis; Rod, Eric; Bommannavar, Arunkumar; Shen, Guoyin

    2015-07-15

    The monochromator and focusing mirrors of the 16-BM-D beamline, which is dedicated to high-pressure research with micro-X-ray diffraction (micro-XRD) and X-ray absorption near edge structure (XANES) (6-45 keV) spectroscopy, have been recently upgraded. Monochromatic X-rays are selected by a Si (111) double-crystal monochromator operated in an artificial channel-cut mode and focused to 5 μm × 5 μm (FWHM) by table-top Kirkpatrick-Baez type mirrors located near the sample stage. The typical X-ray flux is ∼5 × 10{sup 8} photons/s at 30 keV. The instrumental resolution, Δq/q{sub max}, reaches to 2 × 10{sup −3} and is tunable through adjustments of the detector distance and X-ray energy. The setup is stable and reproducible, which allows versatile application to various types of experiments including resistive heating and cryogenic cooling as well as ambient temperature compression. Transmission XANES is readily combined with micro-XRD utilizing the fixed-exit feature of the monochromator, which allows combined XRD-XANES measurements at a given sample condition.

  2. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  3. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  4. Scattering with absorptive interaction

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Stingl, M.; Weiguny, A.

    1982-07-01

    The S matrix for a wide class of complex and nonlocal potentials is studied, with special attention given to the motion of singularities in the complex k plane as a function of the imaginary coupling strength. Modifications of Levinson's theorem are obtained and discussed. Analytic approximations to the S matrix in the vicinity of narrow resonances are exhibited and compared to numerical results of resonating-group calculations. The problem of defining resonances in the case of complex interactions is discussed, making contact with the usual analysis of scattering in terms of Argand diagrams. NUCLEAR REACTIONS Scattering theory, S matrix for absorptive potentials.

  5. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  6. Enhanced Water Vapor Absorption within Tropospheric Clouds: A Partial Explanation for Anomalous Absorption

    NASA Technical Reports Server (NTRS)

    Crisp, David; Zuffada, Cinzia

    1996-01-01

    Comparisons between solar flux measurements and predictions obtained from theoretical radiative transfer models indicate that most of these models underestimate the globally averaged solar energy absorbed by cloudy atmospheres by up to 25Wm&sup-2;.The origin of this anomalous absorption has not yet been established, but it has been attributed to a variety of sources including oversimplified or missing physical processes in the existing models, uncertainties in the input data, and even measurement errors. We used a sophisticated atmospheric radiative transfer model to provide improved constraints on the physical processes that contribute to the absorption of solar radiation by Earth's atmosphere. The results are described herein.

  7. Thermodynamic performances of [mmim]DMP/Methanol absorption refrigeration

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Liang, Shiqiang; Guo, Yongxian; Cheng, Keyong; Gui, Xiaohong; Tang, Dawei

    2012-12-01

    In order to study the theoretical cycle characteristic of [mmim]DMP (1-methyl-3-methylimidazolium dimethylphosphate) /methanol absorption refrigeration, the modified UNIFAC group contribution model and the Wilson model are established through correlating the experimental vapor pressure data of [mmim]DMP/methanol at T=280˜370 K and methanol mole fraction x= 0.529˜0.965. Thermodynamic performances of absorption refrigeration utilizing [mmim]DMP/methanol, LiBr/H2O and H2O/NH3 are investigated and compared with each other under the same operating conditions. From the results, some conclusions are obtained as follows: 1) the circulation ratio of the [mmim]DMP /methanol absorption refrigeration is higher than that of the LiBr/H2O absorption refrigeration, but still can be acceptable and tolerable. 2) The COP of the [mmim]DMP/methanol absorption refrigeration is smaller than that of the LiBr/H2O absorption refrigeration, while it is higher than that of the H2O/NH3 absorption refrigeration under most operating conditions. 3) The [mmim]DMP/methanol absorption refrigeration are still available with high COP when the heat source temperature is too high to drive LiBr/H2O absorption refrigeration.

  8. Extreme Variability in a Broad Absorption Line Quasar

    NASA Astrophysics Data System (ADS)

    Stern, Daniel; Graham, Matthew; Arav, Nahum; Djorgovski, Stanislav G.; Chamberlain, Carter; Barth, Aaron J.; Donalek, Ciro; Drake, Andrew J.; Glikman, Eilat; Jun, Hyunsung David; Mahabal, Ashish A.; Steidel, Charles C.

    2016-01-01

    We report on extreme spectral variability seen in a broad absorption line quasar over the past decade, initially identified from the Catalina Real-time Transient Survey (CRTS). Photometrically, the source had a visual magnitude of V = 17.3 between 2002 and 2008. Then, over the following 5 years, the source slowly brightened by approximately one magnitude, to V = 16.2. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line (Fe-LoBAL) quasar with extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. Absorption systems separated by several 1000 km/s in velocity show coordinated changes in the depths of their troughs, correlated with the flux changes. Therefore, we interpret the variability in the absorption troughs to be due to changes in photoionization, rather than due to motion of material into our line of sight. This source highlights the sort of rare transition objects that astronomy will now be finding through dedicated time domain surveys.

  9. Relation of large-scale coronal X-ray structure and cosmic rays. I - Sources of solar wind streams as defined by X-ray emission and H-alpha absorption features

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.; Nolte, J. T.; Sullivan, J. D.; Lazarus, A. J.; Mcintosh, P. S.; Gold, R. E.; Roelof, E. C.

    1975-01-01

    The large-scale structure of the corona and the interplanetary medium during Carrington rotations 1601-1607 is discussed relative to recurrent high-speed solar wind streams and their coronal sources. Only streams A, C, D, and F recur on more than one rotation. Streams A and D are associated with coronal holes, while C and F originate in the high corona (20-50 solar radii) over faint X-ray emissions. The association of the streams with holes is confirmed by earlier findings that there are no large equatorial holes without an associated high-speed stream and that the area of the equatorial region of coronal holes is highly correlated with the maximum velocity observed in the associated stream near 1 AU.

  10. Cloud absorption radiometer

    NASA Technical Reports Server (NTRS)

    Strange, M. G.

    1988-01-01

    The Cloud Absorption Radiometer (CAR) was developed to measure spectrally how light is scattered by clouds and to determine the single scattering albedo, important to meteorology and climate studies, with unprecedented accuracy. This measurement is based on ratios of downwelling to upwelling radiation within clouds, and so is not strongly dependent upon absolute radiometric calibration of the instrument. The CAR has a 5-inch aperture and 1 degree IFOV, and spatially scans in a plane orthogonal to the flight vector from the zenith to nadir at 1.7 revolutions per second. Incoming light is measured in 13 spectral bands, using silicon, germanium, and indium-antimonide detectors. Data from each channel is digitally recorded in flight with 10-bit (0.1 percent) resolution. The instrument incorporates several novel features. These features are briefly detailed.

  11. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  12. The absorption of polymeric composites

    NASA Astrophysics Data System (ADS)

    Řídký, R.; Popovič, M.; Rolc, S.; Drdlová, M.; Krátký, J.

    2016-06-01

    An absorption capacity of soft, viscoelastic materials at high strain rates is important for wide range of practical applications. Nowadays there are many variants of numerical models suitable for this kind of analysis. The main difficulty is in selection of the most realistic numerical model and a correct setup of many unknown material constants. Cooperation between theoretical simulations and real testing is next crucial point in the investigation process. Standard open source material database offer material properties valid for strain rates less than 250 s-1. There are experiments suitable for analysis of material properties with strain rates close to 2000 s-1. The high strain-rate characteristics of a specific porous blast energy absorbing material measured by modified Split Hopkinson Pressure Bar apparatus is presented in this study. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. One of the possible solution leads to complex and frequency depended Young modulus of testing bars material. This testing technique was applied to materials composed of porous glass/ceramic filler and polymeric binder, with density of 125 - 300 kg/m3 and particle size in range of 50 µm - 2 mm. The achieved material model was verified in practical application of sandwich structure includes polymeric composites under a blast test.

  13. Percutaneous absorption in preterm infants.

    PubMed

    West, D P; Halket, J M; Harvey, D R; Hadgraft, J; Solomon, L M; Harper, J I

    1987-11-01

    The skin of preterm infants varies considerably in its level of maturity. To understand skin absorption in premature infants better, we report a technique for the assessment of percutaneous absorption at various gestational and postnatal ages using stable, isotope-labeled (13C6) benzoic acid. Our results indicate that in the preterm infant, this method detects enhanced skin absorption in the first postnatal days, which declines over three weeks to that expected of a full-term infant. This approach also indicates an inverse relationship between gestational age and skin absorption, as well as postnatal age and skin absorption. The reported technique is a safe and noninvasive method using a model skin penetrant for the study of percutaneous absorption in preterm infants from which basic data may be derived to add to our understanding of skin barrier function. PMID:3422856

  14. Development of solar driven absorption air conditioners and heat pumps

    NASA Astrophysics Data System (ADS)

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  15. Relativistic Effects Around Black Holes: Smearing Absorption Edges

    NASA Technical Reports Server (NTRS)

    Zhang, X. L.; Feng, Y. X.; Zhang, S. N.; Yao, Y.

    2002-01-01

    Broad iron absorption structures have been observed in the X-ray spectra of both AGNs and black hole X-ray binaries (BHXBs). A correctly modeled absorption structure can reveal the physical condition of the source, help to determine the continuum spectra and thus help to estimate other spectral lifes more accurately. The absorption structures are usually thought to be caused by the reflection of X-rays by the accretion disks around the central black holes, and the broadening can be a ttributed to the ionization states of the disk and relativistic effects.

  16. LIII subshell absorption jump ratio and jump factor of tantalum

    NASA Astrophysics Data System (ADS)

    Cengiz, Erhan; Dogan, Muhammet; Koksal, Oguz Kagan

    2013-04-01

    The LIII subshell absorption jump ratio and jump factor of tantalum have been calculated for the first time by the mass attenuation coefficients determined using narrow transmission geometry, primary source (241Am annular radioisotope source) and secondary source targets (Ni, Cu, Zn, Ga, As, Tb, Ho, Er, Tm, Yb, Cu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi). The obtained results have been compared with theoretical values. They are in good agreement with each other.

  17. Optical Absorption in Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Bell, Florian Gene

    An infrared absorption cell has been developed which is suitable for high temperature liquids which have absorptions in the range .1-10('3) cm('-1). The cell is constructed by clamping a gasket between two flat optical windows. This unique design allows the use of any optical windows chemically compatible with the liquid. The long -wavelength limit of the measurements is therefore limited only by the choice of the optical windows. The thickness of the cell can easily be set during assembly, and can be varied from 50 (mu)m to .5 cm. Measurements of the optical absorption edge were performed on the liquid alloy Se(,1-x)Tl(,x) for x = 0, .001, .002, .003, .005, .007, and .009, from the melting point up to 475(DEGREES)C. The absorption was found to be exponential in the photon energy over the experimental range from 0.3 eV to 1.2 eV. The absorption increased linearly with concentration according to the empirical relation (alpha)(,T)(h(nu)) = (alpha)(,1) + (alpha)(,2)x, and the absorption (alpha)(,1) was interpreted as the absorption in the absence of T1. (alpha)(,1) also agreed with the measured absorption in 100% Se at corresponding temperatures and energies. The excess absorption defined by (DELTA)(alpha) = (alpha)(,T)(h(nu))-(alpha)(,1) was interpreted as the absorption associated with Tl and was found to be thermally activated with an activation energy E(,t) = 0.5 eV. The exponential edge is explained as absorption on atoms immersed in strong electric fields surrounding ions. The strong fields give rise to an absorption tail similar to the Franz-Keldysh effect. A simple calculation is performed which is based on the Dow-Redfield theory of absorption in an electric field with excitonic effects included. The excess absorption at low photon energies is proportional to the square of the concentration of ions, which are proposed to exist in the liquid according to the relation C(,i) (PROPORTIONAL) x(' 1/2)(.)e('-E)t('/kT), which is the origin of the thermal activation

  18. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  19. Development of Updated ABsorption SIMulation Software (ABSIM)

    SciTech Connect

    Yang, Zhiyao; Tang, Xin; Qu, Ming; Abdelaziz, Omar; Gluesenkamp, Kyle R

    2014-01-01

    ABsorption SIMulation, ABSIM, was developed for the simulation of absorption systems by The Oak Ridge National Laboratory during 1980s and 1990s. ABSIM provides a platform for users to investigate various cycle configurations and working fluids, to calculate their operating parameters, to predict their performance, and to compare them with each other on a uniform basis. ABSIM is indeed a very useful and accurate tool for researchers to investigate various absorption systems. However, it has not been well maintained: it is incompatible with recent operating systems; the interface needs improved user-friendliness, and the system needs better parameter setting and debugging tools to help achieve convergence. Therefore, it is highly needed to update and improve ABSIM. The paper presents recent efforts to improve ABSIM s compatibility with current operating systems, user interface, and analysis capabilities. The paper details the features and functions of the newly updated ABSIM software. The new ABSIM still uses the previously validated calculation engine of the old ABSIM. The new graphic user interfaces (GUI) were developed in Qt, which is an open source license GUI software based on C++. XML was used as the database for data storage in the new ABSIM. The new ABSIM has been designed to be easily learned and used. It has enhanced editing and construction functions, plus enhanced analysis features including parametric tables, plotting, property plots, and master panels for debugging. A single effect water/LiBr absorption system is used as a case study in this paper to illustrate the features, capabilities, and functions of the new ABSIM. This case study was actually an example system available in the old ABSIM. The new version of ABSIM will be continuously developed to include additional subroutines for the components in liquid desiccant systems. The new ABSIM will be available to public for free. The ultimate goal of the new ABSIM is to allow it to become a simulation

  20. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipid has long been recognized as an important dietary component. Dietary lipid (fat) is a critical source of metabolic energy and a substrate for the synthesis of metabolically active compounds (essential fatty acids), and serves as a carrier for other nutrients such as the fat-soluble vitamins A, ...

  1. Carbohydrate digestion and absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of simple and complex carbohydrates are present in human diets. Food carbohydrates include the sugars, starches, and fibers found mainly in fruits, vegetables, grains, and milk products. Small amounts of digestible carbohydrates come from non-plant sources (e.g., trehalose in insects and...

  2. Towards higher stability of resonant absorption measurements in pulsed plasmas

    NASA Astrophysics Data System (ADS)

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  3. Towards higher stability of resonant absorption measurements in pulsed plasmas

    SciTech Connect

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-15

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called “dynamic source triggering,” between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  4. Towards higher stability of resonant absorption measurements in pulsed plasmas.

    PubMed

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source. PMID:26724013

  5. Intestinal folate absorption

    PubMed Central

    Strum, Williamson; Nixon, Peter F.; Bertino, Joseph B.; Binder, Henry J.

    1971-01-01

    Intestinal absorption of the monoglutamate form of the principal dietary and circulating folate compound, 5-methyltetrahydrofolic acid (5-MTHF), was studied in the rat utilizing a synthetic highly purified radiolabeled diastereoisomer. Chromatography confirmed that the compound was not altered after transfer from the mucosa to the serosa. Accumulation against a concentration gradient was not observed in duodenal, jejunal, or ileal segments at 5-MTHF concentration from 0.5 to 500 nmoles/liter. Unidirectional transmural flux determination also did not indicate a significant net flux. Mucosal to serosal transfer of 5-MTHF was similar in all segments of the intestine and increased in a linear fashion with increased initial mucosal concentrations. Further, no alteration in 5-MTHF transfer was found when studied in the presence of metabolic inhibitors or folate compounds. These results indicate that 5-MTHF is not absorbed by the rat small intestine by a carrier-mediated system and suggest that 5-MTHF transfer most likely represents diffusion. Images PMID:5564397

  6. Solar Absorption in Cloudy Atmospheres

    NASA Technical Reports Server (NTRS)

    Harshvardhan; Ridgway, William; Ramaswamy, V.; Freidenreich, S. M.; Batey, Michael

    1996-01-01

    The theoretical computations used to compute spectral absorption of solar radiation are discussed. Radiative properties relevant to the cloud absorption problem are presented and placed in the context of radiative forcing. Implications for future measuring programs and the effect of horizontal inhomogeneities are discussed.

  7. Atlas of Infrared Absorption Lines

    NASA Technical Reports Server (NTRS)

    Park, J. H.

    1977-01-01

    This atlas of infrared absorption line contains absorption line parameters (line strength vs. wavenumber) from 500 to 7000 cm(exp-1) for 15 gases: H2O, CO2, O3, N2O, CO, CH4, O2, SO2, NO, NO2, NH3, HCl, HF, HNO3 and CH3Cl.

  8. Hot tube atomic absorption spectrochemistry.

    PubMed

    Woodriff, R; Stone, R W

    1968-07-01

    A small, commercially available atomic absorption instrument is used with a heated graphite tube for the atomic absorption analysis of liquid and solid silver samples. Operating conditions of the furnace are described and a sensitivity of about 5 ng of silver is reported. PMID:20068797

  9. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  10. Atmospheric absorption of sound - Update

    NASA Technical Reports Server (NTRS)

    Bass, H. E.; Sutherland, L. C.; Zuckerwar, A. J.

    1990-01-01

    Best current expressions for the vibrational relaxation times of oxygen and nitrogen in the atmosphere are used to compute total absorption. The resulting graphs of total absorption as a function of frequency for different humidities should be used in lieu of the graph published earlier by Evans et al (1972).

  11. Optical absorption of silicon nanowires

    SciTech Connect

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stievenard, D.; Leveque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2012-08-01

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  12. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  13. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  14. Gas-absorption process

    DOEpatents

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  15. Absorption spectrometer balloon flight and iodine investigations

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A high altitude balloon flight experiment to determine the technical feasibility of employing absorption spectroscopy to measure SO2 and NO2 gases in the earth's atmosphere from above the atmospheric ozone layer is discussed. In addition to the balloon experiment the contract includes a ground-based survey of natural I emissions from geological sources and studies of the feasibility of mapping I2 from spacecraft. This report is divided into three major sections as follows: (1) the planning engineering and execution of the balloon experiment, (2) data reduction and analysis of the balloon data, and (3) the results of the I2 phase of the contract.

  16. Breaking temporal symmetries for emission and absorption

    NASA Astrophysics Data System (ADS)

    Hadad, Yakir; Soric, Jason C.; Alu, Andrea

    2016-03-01

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff's law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω,θ)=a(ω,θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies.

  17. Breaking temporal symmetries for emission and absorption.

    PubMed

    Hadad, Yakir; Soric, Jason C; Alu, Andrea

    2016-03-29

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff's law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω, θ)=a(ω, θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies. PMID:26984502

  18. KINEMATIC DISTANCE ASSIGNMENTS WITH H I ABSORPTION

    SciTech Connect

    Jones, Courtney; Dickey, John M.

    2012-07-01

    Using H I absorption spectra from the International Galactic Plane Survey, a new method is implemented to resolve the kinematic distance ambiguity for 75 H II regions with known systemic velocities from radio recombination lines. A further 40 kinematic distance determinations are made for H II region candidates without known systemic velocities through an investigation of the presence of H I absorption around the terminal velocity. New kinematic distance determinations can be used to further constrain spiral arm parameters and the location and extent of other structures in the Milky Way disk. H I absorption toward continuum sources beyond the solar circle is also investigated. Follow-up studies of H I at higher resolution than the 1' to 2' of existing Galactic Plane Surveys will provide kinematic distances to many more H II regions on the far side of the Galactic center. On the basis of the velocity channel summation technique developed in this paper, a much larger sample of H II regions will be analyzed in a future paper to remove the near-far distance ambiguity.

  19. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  20. Percutaneous absorption of Octopirox.

    PubMed

    Black, J G; Kamat, V B

    1988-01-01

    containing 1% Octopirox is 29,400, so that the possibility of systemic effects due to absorption through the skin is remote. PMID:3345970

  1. Fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn for foliar diagnosis using high-resolution continuum source flame atomic absorption spectrometry: Feasibility of secondary lines, side pixel registration and least-squares background correction

    NASA Astrophysics Data System (ADS)

    de Oliveira, Silvana Ruella; Raposo, Jorge Luiz, Jr.; Gomes Neto, José Anchieta

    2009-06-01

    The fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry is proposed. For this, the main lines for Cu (324.754 nm), Fe (248.327 nm), Mn (279.482 nm) and Zn (213.857 nm) were selected, and the secondary lines for Ca (239.856 nm), Mg (202.582 nm) and K (404.414 nm) were evaluated. The side pixel registration approach was studied to reduce sensitivity and extend the linear working range for Mg by measuring at wings (202.576 nm; 202.577 nm; 202.578 nm; 202.580 nm; 202.585 nm; 202.586 nm; 202.587 nm; 202.588 nm) of the secondary line. The interference caused by NO bands on Zn at 213.857 nm was removed using the least-squares background correction. Using the main lines for Cu, Fe, Mn and Zn, secondary lines for Ca and K, and line wing at 202.588 nm for Mg, and 5 mL min - 1 sample flow-rate, calibration curves in the 0.1-0.5 mg L - 1 Cu, 0.5-4.0 mg L - 1 Fe, 0.5-4.0 mg L - 1 Mn, 0.2-1.0 mg L - 1 Zn, 10.0-100.0 mg L - 1 Ca, 5.0-40.0 mg L - 1 Mg and 50.0-250.0 mg L - 1 K ranges were consistently obtained. Accuracy and precision were evaluated after analysis of five plant standard reference materials. Results were in agreement at a 95% confidence level (paired t-test) with certified values. The proposed method was applied to digests of sugar-cane leaves and results were close to those obtained by line-source flame atomic absorption spectrometry. Recoveries of Ca, Mg, K, Cu, Fe, Mn and Zn in the 89-103%, 84-107%, 87-103%, 85-105%, 92-106%, 91-114%, 96-114% intervals, respectively, were obtained. The limits of detection were 0.6 mg L - 1 Ca, 0.4 mg L - 1 Mg, 0.4 mg L - 1 K, 7.7 µg L - 1 Cu, 7.7 µg L - 1 Fe, 1.5 µg L - 1 Mn and 5.9 µg L - 1 Zn.

  2. Resonant Absorption of Bessel Beams

    NASA Astrophysics Data System (ADS)

    Fan, J.; Parra, E.; Milchberg, H. M.

    1999-11-01

    We report the first observation of enhanced laser-plasma optical absorption in a subcritical density plasma resulting from spatial resonances, here in the laser breakdown of a gas with a Bessel beam. The enhancement in absorption is directly correlated to enhancements both in confinement of laser radiation to the plasma and in its heating. Under certain conditions, azimuthal asymmetry in the laser beam is essential for efficient gas breakdown. Simulations of this absorption consistently explain the experimental observations. This work is supported by the National Science Foundation (PHY-9515509) and the US Department of Energy (DEF G0297 ER 41039).

  3. Collision--induced absorption in dense atmospheres of cool stars

    SciTech Connect

    Borysow, Aleksandra; Joergensen, Uffe Graae

    1999-04-01

    In the atmosphere of the Sun the major interaction between the matter and the radiation is through light absorption by ions (predominantly the negative ion of hydrogen atoms), neutral atoms and a small amount of polar molecules. The majority of stars in the universe are, however, cooler and denser than our Sun, and for a large fraction of these, the above absorption processes are very weak. Here, collision-induced absorption (CIA) becomes the dominant opacity source. The radiation is absorbed during very short mutual passages ('collisions') of two non-polar molecules (and/or atoms), while their electric charge distributions are temporarily distorted which gives rise to a transient dipole moment. We present here a review of the present-day knowledge about the impact of collision-induced absorption processes on the structure and the spectrum of such stars.

  4. Ultraviolet absorption spectrum of gaseous HOCl

    SciTech Connect

    Mishalanie, E.A; Rutkowski, C.J.; Hutte, R.S.; Birks, J.W.

    1986-10-23

    The UV absorption spectrum of gaseous HOCl was investigated in the wavelength region 240 to 390 nm by using a dynamic HOCl source. Substantial quantities of HOCl were produced compared to two species (Cl/sub 2/O, ClO/sub 2/) that are spectral interferences in the wavelength region of interest. Thirteen experimental absorption spectra were analyzed by the statistical method of factor analysis. This analysis revealed that two major components were contributing to the total absorbance in each spectrum and that these two components accounted for 99.97% of all variance in the data. Mass spectra were simultaneously recorded with the absorption spectra by a quadrupole mass spectrometer that was calibrated for HOCl, Cl/sub 2/, Cl/sub 2/O, ClO/sub 2/, and other species. The two components in the absorption spectra were identified as Cl/sub 2/ and HOCl containing trace levels of ClO/sub 2/. The isolated Cl/sub 2/ and HOCl/ClO/sub 2/ spectral curves were obtained from a spectral-isolation factor analysis and quantified by using the Cl/sub 2/ spectrum as an internal standard. Atmospheric photolysis constants averaged over 24 h were calculated as a function of altitude from these cross sections and those currently recommended for atmospheric modeling. The calculated j values from the cross sections generated in this work predict a shorter photolysis lifetime for HOCl above 28 km. This results in a 6 to 19% decrease in the predicted HOCl diurnal average concentration in the altitude region 28 to 34 km, respectively, compared to the concentrations predicted by the currently recommended cross sections.

  5. Study on the elemental mercury absorption cross section based on differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Haiming; Yao, Penghui

    2015-08-01

    With the method of ultraviolet absorption spectrum, the exact absorption cross-section with the light source of the low-pressure mercury lamp was determined, during which the optimum wavelength for mercury concentrations inversion was 253.69 nm, the highest detection limit was 0.177 μg/cm3, and the lowest detection limit was 0.034 μg/cm3. Furthermore, based on the differential optical absorption spectroscopy(DOAS), the relationship between the integral parameters (IP) and the concentration as well as the signal-noise ration (SNR) under the conditions of gas flow was determined and the lowest detection limit was figured out to be 0.03524 μg/cm3, providing a method of DOAS to de-noise through the comparison between the mercury concentration values produced by DOAS and that produced by the wavelet de-noising method (db5). It turned out that the differential optical absorption spectroscopy had a strong anti-interference ability, while the wavelet de-noising method was not suitable for measuring the trace concentration change.

  6. Weibel instability due to inverse bremsstrahlung absorption

    SciTech Connect

    Bendib, A.; Bendib, K.,; Bendib, A.; Bendib, K.; Sid, A.,; Bendib, K.,

    1997-06-01

    A new Weibel source due to the inverse bremsstrahlung absorption is presented. It has been shown that in homogeneous plasmas, this mechanism may drive strong collisionless Weibel modes with growth rates of order of {gamma}{approximately}10{sup 11}s{sup {minus}1} and negligible group velocities. In the laser-produced plasmas, for short laser wavelengths ({lambda}{sub L}{lt}1{mu}m) and high laser fluxes (I{gt}10{sup 14}W/cm{sup 2}), this Weibel source is most efficient as the ones due to the heat flux and the plasma expansion. The useful scaling law of the convective e-foldings, with respect to the laser and the plasma parameters, is also derived. {copyright} {ital 1997} {ital The American Physical Society}

  7. Absorption type water chiller fired directly by waste heat

    NASA Astrophysics Data System (ADS)

    Sauer, K. L.; Kalwar, K.

    1982-08-01

    The direct use of waste heat as heating element in a water chiller of the absorption type was studied. The chilled water is used as cooling element in the industrial process, producing the waste heat or for conditioning the workplace or further located places. The heat source is gaseous or liquid. The cooling capacity is in the range from 10 to 120 kW. After reviewing the different absorption systems, LiBr/H20 proved to be the most suitable. The process retained for experimenting was the manufacturing of synthetic materials polymer industry and was tested in two different factories. It is proved that the use of absorption type water chillers is practicable with an efficiency of 10% to 25% of the waste heat energy, but that the existing chillers need extensive conversion for obtaining economical operation when using a low temperature heating source.

  8. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis. PMID:25239063

  9. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    SciTech Connect

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  10. Nebular Hydrogen Absorption in the Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Ishibashi, K.; Davidson, K.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    Space Telescope Imaging Spectrograph (STIS) observations of Eta Carinae and immediate ejecta reveal narrow Balmer absorption lines in addition to the nebular-scattered broad P-Cygni absorptions. The narrow absorption correlates with apparent disk structure that separates the two Homunculus lobes. We trace these features about half way up the Northern lobe until the scattered stellar Balmer line doppler-shifts redward beyond the nebular absorption feature. Three-dimensional data cubes, made by mapping the Homunculus at Balmer alpha and Balmer beta with the 52 x 0.1 arcsecond aperture and about 5000 spectral resolving power, demonstrate that the absorption feature changes slowly in velocity with nebular position. We have monitored the stellar Balmer alpha line profile of the central source over the past four years. The equivalent width of the nebular absorption feature changes considerably between observations. The changes do not correlate with measured brightness of Eta Carinae. Likely clumps of neutral hydrogen with a scale size comparable to the stellar disk diameter are passing through the intervening light path on the timescales less than several months. The excitation mechanism involves Lyman alpha radiation (possibly the Lyman series plus Lyman continuum) and collisions leading to populating the 2S metastable state. Before the electron can jump to the ground state by two photon emission (lifetime about 1/8 second), a stellar Balmer photon is absorbed and the electron shifts to an NP level. We see the absorption feature in higher Balmer lines, and but not in Paschen lines. Indeed we see narrow nebular Paschen emission lines. At present, we do not completely understand the details of the absorption. Better understanding should lead to improved insight of the unique conditions around Eta Carinae that leads to these absorptions.

  11. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  12. Photoelectron and X-ray Absorption Spectroscopy Of Pu

    SciTech Connect

    Tobin, J; Chung, B; Schulze, R; Farr, J; Shuh, D

    2003-11-12

    We have performed Photoelectron Spectroscopy and X-Ray Absorption Spectroscopy upon highly radioactive samples of Plutonium at the Advanced Light Source in Berkeley, CA, USA. First results from alpha and delta Plutonium are reported as well as plans for future studies of actinide studies.

  13. Absorption of Beta Particles in Different Materials: An Undergraduate Experiment

    ERIC Educational Resources Information Center

    La Rocca, Paola; Riggi, Francesco

    2009-01-01

    The absorption of beta rays from a radioactive source in different materials was investigated by the use of a simple setup based on a Geiger counter and a set of absorber sheets. The number of electrons traversing the material was measured as a function of its thickness. Detailed GEANT simulations were carried out to reproduce the obtained…

  14. Regulation of heme iron absorption by young children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heme iron is an important source of dietary iron for children. Little is known of its absorption as only radio-isotopically labeled heme iron has been available to date. We have recently developed a method of intrinsically labeling bovine heme iron in vivo with the stable isotope iron-58. Our object...

  15. Analysis of the Solar Radiation Impact on Cooling Performance of the Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Fedorčák, Pavol; Košičanová, Danica; Nagy, Richard; Mlynár, Peter

    2014-11-01

    Absorption cooling at low power is a new technology which has not yet been applied to current conditioning elements. This paper analyzes the various elements of solar absorption cooling. Individual states were simulated in which working conditions were set for the capability of solar absorption cooling to balance heat loads in the room. The research is based on an experimental device (absorption units with a performance of 10kW) developed at the STU in Bratislava (currently inputs and outputs of cold sources are being measured). Outputs in this paper are processed so that they connect the entire scheme of the solar absorption cooling system (i.e. the relationship between the solar systems hot and cold storage and the absorption unit). To determine the size of the storage required, calculated cooling for summer months is considered by the ramp rate of the absorption unit and required flow rate of the collectors.

  16. Absorption of different lead compounds

    PubMed Central

    Barltrop, D.; Meek, F.

    1975-01-01

    A rapid method for the determination of relative absorption of dietary lead by rats is described. The influence of age, weight and dose rate has been determined and using standard conditions the tissue lead content of blood, kidney and femur are significantly correlated with each other and are a function of ingested lead. Eight lead compounds were evaluated using this technique and the findings related to lead acetate as a reference compound. Of the inorganic preparations studied, lead carbonate (basic) and metallic lead showed a twelve-fold difference in absorption, with the remaining compounds giving intermediate values. The absorption of lead from four organic compounds was determined from diets containing 7·5% corn oil added to the standard diet. Lead tallate was absorbed to the same degree as lead acetate, but lesser absorptions resulted from lead octoate, naphthenate and alsynate. The addition of corn oil to a final concentration of 7·5% of the diet enhanced the absorption of lead acetate. PMID:1208290

  17. Non-heme iron as ferrous sulfate does not interact with heme iron absorption in humans.

    PubMed

    Gaitán, Diego; Olivares, Manuel; Lönnerdal, Bo; Brito, Alex; Pizarro, Fernando

    2012-12-01

    The absorption of heme iron has been described as distinctly different from that of non-heme iron. Moreover, whether heme and non-heme iron compete for absorption has not been well established. Our objective was to investigate the potential competition between heme and non-heme iron as ferrous sulfate for absorption, when both iron forms are ingested on an empty stomach. Twenty-six healthy nonpregnant women were selected to participate in two iron absorption studies using iron radioactive tracers. We obtained the dose-response curve for absorption of 0.5, 10, 20, and 50 mg heme iron doses, as concentrated red blood cells. Then, we evaluated the absorption of the same doses, but additionally we added non-heme iron, as ferrous sulfate, at constant heme/non-heme iron molar ratio (1:1). Finally, we compare the two curves by a two-way ANOVA. Iron sources were administered on an empty stomach. One factor analysis showed that heme iron absorption was diminished just by increasing total heme iron (P < 0.0001). The addition of non-heme iron as ferrous sulfate did not have any effect on heme iron absorption (P = NS). We reported evidence that heme and non-heme iron as ferrous sulfate does not compete for absorption. The mechanism behind the absorption of these iron sources is not clear. PMID:22935997

  18. SPECIFIC ABSORPTION RATE DISTRIBUTIONS IN A HETEROGENEOUS MODEL OF THE HUMAN BODY AT RADIOFREQUENCIES

    EPA Science Inventory

    The electric field distribution of the rate of energy absorption referred to as the specific absorption rate (SAR) in a biological body is a complex function of several exposure parameters such as frequency, intensity of the incident field, polarization, source to object configur...

  19. Thermodynamic derivatives of infrared absorptance

    NASA Technical Reports Server (NTRS)

    Broersma, S.; Walls, W. L.

    1974-01-01

    Calculation of the concentration, pressure, and temperature dependence of the spectral absorptance of a vibrational absorption band. A smooth thermodynamic dependence was found for wavelength intervals where the average absorptance is less than 0.65. Individual rotational lines, whose parameters are often well known, were used as bases in the calculation of medium resolution spectra. Two modes of calculation were combined: well-separated rotational lines plus interaction terms, or strongly overlapping lines that were represented by a compound line of similar shape plus corrections. The 1.9- and 6.3-micron bands of H2O and the 4.3-micron band of CO2 were examined in detail and compared with experiment.

  20. Absorption properties of identical atoms

    SciTech Connect

    Sancho, Pedro

    2013-09-15

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions.

  1. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  2. Solar powered absorption air conditioning

    NASA Astrophysics Data System (ADS)

    Vardon, J. M.

    1980-04-01

    Artificial means of providing or removing heat from the building are discussed along with the problem of the appropriate building design and construction for a suitable heat climate inside the building. The use of a lithium bromide-water absorption chiller, powered by a hot water store heated by an array of stationary flat collectors, is analyzed. An iterative method of predicting the cooling output from a LiBr-water absorption refrigeration plant having variable heat input is described and a model allowing investigation of the performance of a solar collector and thermal storage system is developed.

  3. Periodic microwave absorption in superconductors

    SciTech Connect

    Martinek, J.; Stankowski, J. )

    1994-08-01

    A model explaining the presence of a periodic train of microwave absorption lines in the magnetic modulated microwave absorption (MMMA) spectra of high- and low-temperature superconductors is proposed. The model assumes the occurrence of regular superconducting current loops, closed by Josephson junctions, in these materials. The system of such loops is considered within the basic model of the rf superconducting quantum interference device taking into account the effect of thermal fluctuations. The magnetic-field and temperature dependencies of the MMMA obtained on the basis of the proposed model are in qualitative agreement with experimental data.

  4. Absorption-heat-pump system

    DOEpatents

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  5. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  6. AFGL atmospheric absorption line parameters compilation - 1982 edition

    NASA Technical Reports Server (NTRS)

    Rothman, L. S.; Gamache, R. R.; Barbe, A.; Goldman, A.; Gillis, J. R.; Brown, L. R.; Toth, R. A.; Flaud, J.-M.; Camy-Peyret, C.

    1983-01-01

    The latest edition of the AFGL atmospheric absorption line parameters compilation for the seven most active infrared terrestrial absorbers is described. Major modifications to the atlas for this edition include updating of water-vapor parameters from 0 to 4300 per cm, improvements to line positions for carbon dioxide, substantial modifications to the ozone bands in the middle to far infrared, and improvements to the 7- and 2.3-micron bands of methane. The atlas now contains about 181,000 rotation and vibration-rotation transitions between 0 and 17,900 per cm. The sources of the absorption parameters are summarized.

  7. Characterization of multiple light sources

    NASA Astrophysics Data System (ADS)

    Casas, Jessica Marie

    The integrating cavity absorption meter (ICAM) is an instrument that utilizes the absorption of water to detect alien substances in the water. The ICAM was first proposed by Elterman in 1970 and has since been enhanced by other scientists such as Kirk, Leathers, Fry, Musser, and Gray. While others have investigated the structure of the ICAM, little research has been published regarding the most efficient light source. This thesis compares the power consumption, spectral stability, and output intensity of three different light sources to determine which should be used in the ICAM to further develop its capabilities.

  8. Recoilless Nuclear Resonance Absorption of Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Mössbauer, Rudolf L.

    It is a high distinction to be permitted to address you on the subject of recoilless nuclear resonance absorption of gamma radiation. The methods used in this special branch of experimental physics have recently found acceptance in many areas of science. I take the liberty to confine myself essentially to the work which I was able to carry out in the years 1955-1958 at the Max Planck Institute in Heidelberg, and which finally led to establishment of the field of recoilless nuclear resonance absorption. Many investigators shared in the preparations of the basis for the research we are concerned with in this lecture. As early as the middle of the last century Stokes observed, in the case of fluorite, the phenomenon now known as fluorescence - namely, that solids, liquids, and gases under certain conditions partially absorb incident electromagnetic radiation which immediately is reradiated. A special case is the so-called resonance fluorescence, a phenomenon in which the re-emitted and the incident radiation both are of the same wavelength. The resonance fluorescence of the yellow D lines of sodium in sodium vapour is a particularly notable and exhaustively studied example. In this optical type of resonance fluorescence, light sources are used in which the atoms undergo transitions from excited states to their ground states (Fig. 1.1). The light quanta emitted in these transitions (A → B) are used to initiate the inverse process of resonance absorption in the atoms of an absorber which are identical with the radiating atoms. The atoms of the absorber undergo a transition here from the ground state (B) to the excited state (A), from which they again return to the ground state, after a certain time delay, by emission of fluorescent light.

  9. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  10. Absorption Measure Distribution in Mrk 509

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Różańska, A.; Sobolewska, M.; Czerny, B.

    2015-12-01

    In this paper we model the observed absorption measure distribution (AMD) in Mrk 509, which spans three orders of magnitude in ionization level with a single-zone absorber in pressure equilibrium. AMD is usually constructed from observations of narrow absorption lines in radio-quiet active galaxies with warm absorbers. We study the properties of the warm absorber in Mrk 509 using recently published broadband spectral energy distribution observed with different instruments. This spectrum is an input in radiative transfer computations with full photoionization treatment using the titan code. We show that the simplest way to fully reproduce the shape of AMD is to assume that the warm absorber is a single zone under constant total pressure. With this assumption, we found theoretical AMD that matches the observed AMD determined on the basis of the 600 ks reflection grating spectrometer XMM-Newton spectrum of Mrk 509. The softness of the source spectrum and the important role of the free-free emission breaks the usual degeneracy in the ionization state calculations, and the explicit dependence of the depths of AMD dips on density open a new path to the density diagnostic for the warm absorber. In Mrk 509, the implied density is of the order of 108 cm-3.

  11. Ultraviolet and Light Absorption Spectrometry.

    ERIC Educational Resources Information Center

    Hargis, L. G.; Howell, J. A.

    1984-01-01

    Reviews developments in ultraviolet and light absorption spectrometry from December 1981 through November 1983, focusing on the chemistry involved in developing suitable reagents, absorbing systems, and methods of determination, and on physical aspects of the procedures. Includes lists of spectrophotometric methods for metals, non-metals, and…

  12. Slow light and saturable absorption

    NASA Astrophysics Data System (ADS)

    Selden, A. C.

    2009-06-01

    Quantitative analysis of slow light experiments utilising coherent population oscillation (CPO) in a range of saturably absorbing media, including ruby and alexandrite, Er3+:Y2SiO5, bacteriorhodopsin, semiconductor quantum devices and erbium-doped optical fibres, shows that the observations may be more simply interpreted as saturable absorption phenomena. A basic two-level model of a saturable absorber displays all the effects normally associated with slow light, namely phase shift and modulation gain of the transmitted signal, hole burning in the modulation frequency spectrum and power broadening of the spectral hole, each arising from the finite response time of the non-linear absorption. Only where hole-burning in the optical spectrum is observed (using independent pump and probe beams), or pulse delays exceeding the limits set by saturable absorption are obtained, can reasonable confidence be placed in the observation of slow light in such experiments. Superluminal (“fast light”) phenomena in media with reverse saturable absorption (RSA) may be similarly explained.

  13. Migrant labor absorption in Malaysia.

    PubMed

    Nayagam, J

    1992-01-01

    The use of migrant workers to ease labor shortages caused by rapid industrialization in Malaysia during the twentieth century is examined. "This paper will focus on: (1) the extent, composition and distribution of migrant workers; (2) the labor shortage and absorption of migrant workers; and (3) the role of migrant workers in the government's economic restructuring process." PMID:12285766

  14. Role of Spatial Chirp in High Harmonic Extreme Ultraviolet (XUV) Absorption Spectroscopy of Thin Films

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Fu

    XUV light from high harmonic generation is an emerging new tool for studying ultrafast dynamics. Such sources have intrinsic ``spatial chirp'' that can cause significant periodic artifacts in absorption spectra of inhomogeneous samples. We show that a uniform thin-film morphology is required in order to obtain harmonic-structure free absorption spectra, especially for organometallic complexes that have strong non-resonant absorption features from the organic ligands. Demonstration of several static absorption spectra of different organometallic complexes and perovskite materials reveals elemental, oxidation state, and band structure specificity in agreement with theoretical results.

  15. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  16. Performance bound for quantum absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Adesso, Gerardo; Alonso, Daniel

    2013-04-01

    An implementation of quantum absorption chillers with three qubits has been recently proposed that is ideally able to reach the Carnot performance regime. Here we study the working efficiency of such self-contained refrigerators, adopting a consistent treatment of dissipation effects. We demonstrate that the coefficient of performance at maximum cooling power is upper bounded by 3/4 of the Carnot performance. The result is independent of the details of the system and the equilibrium temperatures of the external baths. We provide design prescriptions that saturate the bound in the limit of a large difference between the operating temperatures. Our study suggests that delocalized dissipation, which must be taken into account for a proper modeling of the machine-baths interaction, is a fundamental source of irreversibility which prevents the refrigerator from approaching the Carnot performance arbitrarily closely in practice. The potential role of quantum correlations in the operation of these machines is also investigated.

  17. Vapor absorption refrigeration in road transport vehicles

    SciTech Connect

    Horuz, I.

    1999-08-01

    This study includes an experimental investigation into the use of vapor absorption refrigeration (VAR) systems in road transport vehicles using the waste heat in the exhaust gases of the main propulsion unit as the energy source. This would provide an alternative to the conventional vapor compression refrigeration system and its associated internal combustion engine. The performance of a VAR system fired by natural gas is compared with that of the same system driven by engine exhaust gases. This showed that the exhaust-gas-driven system produced the same performance characteristics as the gas-fired system. It also suggested that, with careful design, inserting the VAR system generator into the main engine exhaust system need not impair the performance of the vehicle propulsion unit. A comparison of the capital and running costs of the conventional and proposed alternative system is made. Suggestions are also made regarding operation of the VAR system during off-road/slow running conditions.

  18. Anisotropic Absorption of Pure Spin Currents

    NASA Astrophysics Data System (ADS)

    Baker, A. A.; Figueroa, A. I.; Love, C. J.; Cavill, S. A.; Hesjedal, T.; van der Laan, G.

    2016-01-01

    Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α , in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co50 Fe50 layer leads to an anisotropic α in a polycrystalline Ni81 Fe19 layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices.

  19. Anisotropic Absorption of Pure Spin Currents.

    PubMed

    Baker, A A; Figueroa, A I; Love, C J; Cavill, S A; Hesjedal, T; van der Laan, G

    2016-01-29

    Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α, in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co_{50}Fe_{50} layer leads to an anisotropic α in a polycrystalline Ni_{81}Fe_{19} layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices. PMID:26871353

  20. Cycle Simulation of HotWater Fired Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Esaki, Shuji; Iramina, Kazuyasu; Kobayashi, Takahiro; Ohnou, Masayuki; Kaneko, Toshiyuki; Soga, Takashi

    The design limits were examined to determine the lowest temperature for hot water that can be used as a heat source to drive a hot water fired absorption chiller. Advantage was taken of the fact that the cycle calculation method using the minimum temperature difference is quite effective. This minimum temperature difference was the lower of the two temperature differences used to get the logarithmic mean temperature difference that need to design the evaporator, absorber, condenser and generator in an absorption refrigerator. This report proposes a new solution algorithm employing this minimum temperature difference to make a cycle simulation of the hot water fired absorption chiller. It shows the lowest usable temperature for hot water and makes clear the chilled water and cooling water temperature conditions that can provide the lowest temperature.

  1. Absorption-reduced waveguide structure for efficient terahertz generation

    SciTech Connect

    Pálfalvi, L.; Fülöp, J. A.; Hebling, J.

    2015-12-07

    An absorption-reduced planar waveguide structure is proposed for increasing the efficiency of terahertz (THz) pulse generation by optical rectification of femtosecond laser pulses with tilted-pulse-front in highly nonlinear materials with large absorption coefficient. The structure functions as waveguide both for the optical pump and the generated THz radiation. Most of the THz power propagates inside the cladding with low THz absorption, thereby reducing losses and leading to the enhancement of the THz generation efficiency by up to more than one order of magnitude, as compared with a bulk medium. Such a source can be suitable for highly efficient THz pulse generation pumped by low-energy (nJ-μJ) pulses at high (MHz) repetition rates delivered by compact fiber lasers.

  2. Absorption-reduced waveguide structure for efficient terahertz generation

    NASA Astrophysics Data System (ADS)

    Pálfalvi, L.; Fülöp, J. A.; Hebling, J.

    2015-12-01

    An absorption-reduced planar waveguide structure is proposed for increasing the efficiency of terahertz (THz) pulse generation by optical rectification of femtosecond laser pulses with tilted-pulse-front in highly nonlinear materials with large absorption coefficient. The structure functions as waveguide both for the optical pump and the generated THz radiation. Most of the THz power propagates inside the cladding with low THz absorption, thereby reducing losses and leading to the enhancement of the THz generation efficiency by up to more than one order of magnitude, as compared with a bulk medium. Such a source can be suitable for highly efficient THz pulse generation pumped by low-energy (nJ-μJ) pulses at high (MHz) repetition rates delivered by compact fiber lasers.

  3. Soft X-ray Absorption Edges in LMXBs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The XMM observation of LMC X-2 is part of our program to study X-ray absorption in the interstellar medium (ISM). This program includes a variety of bright X-ray binaries in the Galaxy as well as the Magellanic Clouds (LMC and SMC). LMC X-2 is located near the heart of the LMC. Its very soft X-ray spectrum is used to determine abundance and ionization fractions of neutral and lowly ionized oxygen of the ISM in the LMC. The RGS spectrum so far allowed us to determine the O-edge value to be for atomic O, the EW of O-I in the ls-2p resonance absorption line, and the same for O-II. The current study is still ongoing in conjunction with other low absorption sources like Sco X-1 and the recently observed X-ray binary 4U 1957+11.

  4. Distinct difference in absorption pattern in pigs of betaine provided as a supplement or present naturally in cereal dietary fiber.

    PubMed

    Hedemann, Mette Skou; Theil, Peter Kappel; Lærke, Helle Nygaard; Bach Knudsen, Knud Erik

    2015-03-18

    The net absorption of betaine and choline was determined for 4 h after the first meal of the day in three experiments with porto-arterial catheterized pigs in which betaine was added as a supplement to a low-betaine diet (n=4 pigs) and compared to the net absorption of betaine and choline from high-fiber breads differing in amount and source of dietary fiber (two experiments, n=6 pigs each). Plasma betaine peaked after 30 min when betaine was fed as a supplement, whereas it peaked after 120-180 min when high-fiber breads were fed. Plasma betaine showed no diet×time interaction after feeding with high-fiber breads, indicating that the absorption kinetic did not differ between fiber sources. The net absorption of choline was not affected by the experimental diets. In conclusion, betaine in cereal sources has to be liberated from the matrix prior to absorption, causing delayed absorption. PMID:25716171

  5. 44th Annual Anomalous Absorption Conference

    SciTech Connect

    Beg, Farhat

    2014-03-03

    Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I. Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded

  6. Inferring the distances of fast radio bursts through associated 21-cm absorption

    NASA Astrophysics Data System (ADS)

    Margalit, Ben; Loeb, Abraham

    2016-07-01

    The distances of fast radio burst (FRB) sources are currently unknown. We show that the 21-cm absorption line of hydrogen can be used to infer the redshifts of FRB sources, and determine whether they are Galactic or extragalactic. We calculate a probability of ˜10 per cent for the host galaxy of an FRB to exhibit a 21-cm absorption feature of equivalent width ≳10 km s-1. Arecibo, along with several future radio observatories, should be capable of detecting such associated 21-cm absorption signals for strong bursts of ≳several Jy peak flux densities.

  7. Dynamic absorption coefficients of CAR and non-CAR resists at EUV

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-03-01

    The dynamic absorption coefficients of several CAR and non-CAR EUV photoresists are measured experimentally using a specifically developed setup in transmission mode at the XIL beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called Chemical Sensitivity to account for all the post-absorption chemical reaction ongoing in the resist, which is also predicts a quantitative clearing volume, and respectively clearing radius, due to the photon absorption in the resist. These parameters may help in deeper insight into the underlying mechanisms of EUV concept of clearing volume and clearing radius are then defined and quantitatively calculated.

  8. Absorption of biliary cobalamin in baboons following total gastrectomy

    SciTech Connect

    Green, R.; Jacobsen, D.W.; Van Tonder, S.V.; Kew, M.C.; Metz, J.

    1982-11-01

    Absorption of radiolabeled cobalamin in baboons was assessed by whole body counting. Retention of biliary cobalamin and an aqueous solution of cyanocobalamin was measured in normal baboons and in baboons after total gastrectomy by using /sup 57/Co-labeled biliary cobalamin and /sup 58/C0-cyanocobalamin, with and without baboon gastric juice containing intrinsic factor. Radiolabeled biliary cobalamin was obtained by intravenous injection of /sup 57/Co-cyanocobalamin in baboons and collection of bile through a cannula placed in the common bile duct. Cobalamin absorption was not completely abolished by gastrectomy and biliary cobalamin was better retained than cyanocobalamin; intrinsic factor enhanced absorption of both forms. After gastrectomy there was steady depletion of liver and serum cobalamin levels, which ceased after a new equilibrium was reached between a progressively diminishing cobalamin loss and the impaired but significant residual level of absorption. These studies in the nonhuman primate provide further information concerning the enterohepatic circulation of cobalamin and suggest that the form of cobalamin in bile may be more readily absorbed than is cyanocobalamin or that bile itself may have an enhancing effect on cobalamin absorption. The data also suggest that physiologically significant amounts of cobalamin may be absorbed in the absence of a gastric source of intrinsic factor.

  9. Increasing efficiency in intermediate band solar cells with overlapping absorptions

    NASA Astrophysics Data System (ADS)

    Krishna, Akshay; Krich, Jacob J.

    2016-07-01

    Intermediate band (IB) materials are promising candidates for realizing high efficiency solar cells. In IB photovoltaics, photons are absorbed in one of three possible electronic transitions—valence to conduction band, valence to intermediate band, or intermediate to conduction band. With fully concentrated sunlight, when the band gaps have been chosen appropriately, the highest efficiency IB solar cells require that these three absorptions be non-overlapping, so absorbed photons of fixed energy contribute to only one transition. The realistic case of overlapping absorptions, where the transitions compete for photons, is generally considered to be a source of loss. We show that overlapping absorptions can in fact lead to significant improvements in IB solar cell efficiencies, especially for IB that are near the middle of the band gap. At low to moderate concentration, the highest efficiency requires overlapping absorptions. We use the detailed-balance method and indicate how much overlap of the absorptions is required to achieve efficiency improvements, comparing with some known cases. These results substantially broaden the set of materials that can be suitable for high-efficiency IB solar cells.

  10. In vivo studies of biotin absorption in distal rat intestine

    SciTech Connect

    Bowman, B.B.; Rosenberg, I.H.

    1986-03-01

    The authors have extended their previous studies of biotin absorption in rat proximal jejunum (PJ) to examine biotin absorptive capacity of rat ileum (I) and proximal colon (PC) using in vivo intestinal loop technique. Intestinal loops (2.5 cm) were filled with 0.3 ml of solution containing (/sup 3/H)-biotin and (/sup 14/C)-inulin in phosphate buffer, pH 6.5. Biotin absorption was determined on the basis of luminal biotin disappearance after correction for inulin recovery and averaged (pmol/loop-10 min; X +/- SEM). In related experiments, 5-cm loops of PJ, distal I (DI), or PC were filled with 0.5 ml of solution of similar composition (1.0 ..mu..M biotin). The abdominal cavity was closed and the rats were allowed to recover from anesthesia, then sacrificed 3 hr after injection. Biotin absorption averaged 96.2% (PJ), 93.2% (DI), and 25.8% (PC) of the dose administered. These differences were reflected in the radioactive biotin content of plasma and intestinal loop, kidney, and liver. These data demonstrate significant biotin absorption in rat DI and PC, as required if the intestinal microflora are to be considered as a source of biotin for the host.

  11. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  12. Water-lithium bromide double-effect absorption cooling analysis

    NASA Astrophysics Data System (ADS)

    Vliet, G. C.; Lawson, M. B.; Lithgow, R. A.

    1980-12-01

    A numerical model was developed for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine and was used to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The variables considered include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicates that the distribution of heat exchanger area among the various (seven) heat exchange components is a very important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy.

  13. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    SciTech Connect

    Barenboim, Gabriela; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21} - 10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time-evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the lineshape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  14. The Intestinal Absorption of Folates

    PubMed Central

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I. David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  15. The intestinal absorption of folates.

    PubMed

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  16. Maximum entropy and drug absorption.

    PubMed

    Charter, M K; Gull, S F

    1991-10-01

    The application of maximum entropy to the calculation of drug absorption rates was introduced in an earlier paper. Here it is developed further, and the whole procedure is presented as a problem in scientific inference to be solved using Bayes' theorem. Blood samples do not need to be taken at equally spaced intervals, and no smoothing, interpolation, extrapolation, or other preprocessing of the data is necessary. The resulting input rate estimates are smooth and physiologically realistic, even with noisy data, and their accuracy is quantified. Derived quantities such as the proportion of the dose absorbed, and the mean and median absorption times, are also obtained, together with their error estimates. There are no arbitrarily valued parameters in the analysis, and no specific functional form, such as an exponential or polynomial, is assumed for the input rate functions. PMID:1783989

  17. Optical absorption in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Zhang, Fan; Niu, Qian

    2013-03-01

    We use a low energy effective model to analyze the optical responses of trilayer graphene samples. We first show that optical absorption of the ABA-stacked trilayer has strong dependence on both the Fermi energy and optical frequency, which is in sharp contrast to that of ABC-stacked trilayer graphene. Secondly, we are able to determine the possible existence of trigonal warping effects in the bandstructure of ABC-stacked trilayer graphene by a divergence in the absorption spectra at around 10 meV. In addition, we can partially distinguish the vairious broken symmetry states driven by electron-electron interactions in ABC-stacked trilayer graphene. In particular, the quantum anomalous Hall (QAH) state is sensitive to the polarization of the incident light, giving a way to detect its possible existence.

  18. Photodetector with enhanced light absorption

    DOEpatents

    Kane, James

    1985-01-01

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  19. Absorption properties of identical atoms

    NASA Astrophysics Data System (ADS)

    Sancho, Pedro

    2013-09-01

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas.

  20. Geometrical interpretation of optical absorption

    SciTech Connect

    Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L.; Montesinos-Amilibia, J. M.

    2011-08-15

    We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.

  1. Multiphonon infrared absorption in silicon

    NASA Astrophysics Data System (ADS)

    Pradhan, M. M.; Garg, R. K.; Arora, M.

    1987-01-01

    Investigations have been carried out on silicon crystals, grown by float zone (FZ) and Czochralski (CZ) methods, of infrared absorption bands using a Fourier transform infrared spectrophotometer. Multiphonon bands are identified in the light of recent theoretical calculations based on the total energy of silicon crystal lattice. Theoretical results of Ihm et al. (1) and Yin and Cohen (2,3) are found to be in good agreement with the experimental observations of multiphonon infrared bands.

  2. GAX absorption cycle design process

    SciTech Connect

    Priedeman, D.K.; Christensen, R.N.

    1999-07-01

    This paper presents an absorption system design process that relies on computer simulations that are validated by experimental findings. An ammonia-water absorption heat pump cycle at 3 refrigeration tons (RT) and chillers at 3.3 RT and 5 RT (10.5 kW, 11.6 kW, and 17.6 kW) were initially modeled and then built and tested. The experimental results were used to calibrate both the cycle simulation and the component simulations, yielding computer design routines that could accurately predict component and cycle performance. Each system was a generator-absorber heat exchange (GAX) cycle, and all were sized for residential and light commercial use, where very little absorption equipment is currently used. The specific findings of the 5 RT (17.6 kW) chiller are presented. Modeling incorporated a heat loss from the gas-fired generator and pressure drops in both the evaporator and absorber. Simulation results and experimental findings agreed closely and validated the modeling method and simulation software.

  3. Purge needs in absorption chillers

    SciTech Connect

    Murray, J.G. )

    1993-10-01

    Absorption chillers are regaining a significant share of large tonnage chiller sales, such as they had 20 years ago. Gas-fired chillers are now available that have a base energy (ultimate fuel usage) consumption rate per ton comparable to that in electric units. Effective purging in an absorption chiller is an absolute necessity to achieve the low chilled water temperature needed for dehumidification and to fully benefit from the energy savings offered by double-effect cycles. Although the purge system is usually not shown on the typical cycle schematic, its proper functioning is a key requirement for satisfactory machine operation. This article discusses the effect of noncondensible (N/C) gases on the absorption cooling process and the basics of purge systems. In addition, the article discusses the rationale for the important design step of selecting the location of the N/C probe, and discusses purge systems applicable to the direct-fired, double-effect machines now entering the marketplace.

  4. Formaldehyde absorption toward W51

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Smoot, G. F.; Bennett, C. L.; Petuchowski, S. J.

    1989-01-01

    Formaldehyde (H2CO) absorption toward the H II region complex W51A (G49.5 - 0.4) in the 6 cm and 2 cm wavelength rotational transitions has been measured with angular resolution of about 0.15 pc. The continuum H II region shows a large, previously undetected shell structure 5.5 pc along the major axis. The absorption, converted to optical depth, shows a higher degree of clumping throughout the map than previous maps at lower resolution; in particular, two narrow regions of enhanced opacity are observed. The absorption in the velocity range 64-67 km/s LSR extends over most of the region, with an observed velocity gradient of 5.2 km/s pc. The opacity structure largely parallels the velocity structure, with a ridge of enhanced opacity to the north of the highest velocity feature. The S/N of the maps allows accurate modeling of the spectral profiles. Nine distinct clumps in the foreground clouds have been identified and parametrized, and column densities for the 1(11) and 2(12) rotational levels of orthoformaldehyde have been derived.

  5. High-efficiency gas heat pump air-conditioner equipped with absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Imai, Yosuke; Ohashi, Toshinori; Okamoto, Hiroaki; Hihara, Eiji; Kawakami, Ryuichiro

    On conventional gas heat pump(GHP), waste heat from gas engine that uses as driving source is emitted into outside. So from the standpoint of efficient use of waste heat, it is assumed that waste heat from gas engine is used as driving source of absorption chiller, and high temperature condensate refrigerant in GHP is subcooled to middle temperature by cold source from absorption cycle, and as a result, GHP makes more efficiency. However, in equipping GHP with absorption cycle, downsizing and high-efficiency of absorption cycle is required. In this study, air-cooled subcooled adiabatic absorber is focused and physical phenomenon in it is analyzed, and finally one perception of the optimized designing is shown.

  6. Absorption and adsorption chillers applied to air conditioning systems

    NASA Astrophysics Data System (ADS)

    Kuczyńska, Agnieszka; Szaflik, Władysław

    2010-07-01

    This work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperature Tdes = 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling water Tc = 25 °C and temperature in evaporator Tevap = 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.

  7. Absorption Spectroscopy in Homogeneous and Micellar Solutions.

    ERIC Educational Resources Information Center

    Shah, S. Sadiq; Henscheid, Leonard G.

    1983-01-01

    Describes an experiment which has helped physical chemistry students learn principles of absorption spectroscopy, the effect of solvent polarity on absorption spectra, and some micellar chemistry. Background information and experimental procedures are provided. (JN)

  8. Absorption of Low-Loss Optical Materials Measured at 1064 nm by a Position-Modulated Collinear Photothermal Detection Technique

    NASA Astrophysics Data System (ADS)

    Loriette, Vincent; Boccara, Claude

    2003-02-01

    A collinear photothermal detection bench is described that makes use of a position-modulated heating source instead of the classic power-modulated source. This new modulation scheme increases by almost a factor 2 the sensitivity of a standard mirage bench. This bench is then used to measure the absorption coefficient of OH-free synthetic fused silica at 1064 nm in the parts per 106 range, which, combined with spectrophotometric measurements, confirms that the dominant absorption source is the OH content.

  9. Absorption, Creativity, Peak Experiences, Empathy, and Psychoticism.

    ERIC Educational Resources Information Center

    Mathes, Eugene W.; And Others

    Tellegen and Atkinson suggested that the trait of absorption may play a part in meditative skill, creativity, capacity for peak experiences, and empathy. Although the absorption-meditative skill relationship has been confirmed, other predictions have not been tested. Tellegen and Atkinson's Absorption Scale was completed by undergraduates in four…

  10. ADAPTATION IN ZINC ABSORPTION FROM WHOLE DIETS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited evidence suggests that humans increase zinc (Zn) absorption in response to low Zn intake. Aim: To assess human Zn absorption from whole diets varying in Zn content, and short-term adaptation to meet apparent Zn requirements. Method: Using 65Zn and whole body counting, Zn absorption by 83 hea...

  11. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    PubMed

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of

  12. Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong

    2015-04-01

    Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205

  13. Effects of Galactic absorption on soft X-ray surveys

    NASA Technical Reports Server (NTRS)

    Zamorani, G.; Gioia, I. M.; Maccacaro, T.; Wolter, A.

    1988-01-01

    A bias in the spectral distribution of X-ray sources detected in X-ray surveys is discussed which is due to the combination of the intrinsic characteristics of X-ray telescopes and the effects of low-energy photoelectric absorption within the Galaxy. A statistical method for obtaining information on the average spectrum of X-ray sources detected in well-defined surveys is presented. This method can be applied to surveys performed with X-ray telescopes working at relatively soft X-ray energies, such as Einstein, Exosat, and Rosat.

  14. A method for monitoring nuclear absorption coefficients of aviation fuels

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Shen, Chih-Ping

    1989-01-01

    A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

  15. Digestion and Absorption of Carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrates are the major dietary sources of energy for humans. While most dietary carbohydrates are derived from multiple botanical sources, lactose and trehalose are the only animal-derived carbohydrates. Digestion of starch, the carbohydrate most abundantly consumed by humans, depends on the c...

  16. Advanced regenerative absorption refrigeration cycles

    DOEpatents

    Dao, Kim

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  17. COMBUSTION AREA SOURCES: DATA SOURCES

    EPA Science Inventory

    The report identifies, documents, and evaluates data sources for stationary area source emissions, including solid waste and agricultural burning. Area source emissions of particulate matter, sulfur dioxide, oxides of nitrogen, reactive volatile organic compounds, and carbon mon...

  18. COMBUSTION AREA SOURCES: DATA SOURCES

    EPA Science Inventory

    The report identifies, documents, and evaluates data sources for stationary area source emissions, including solid waste and agricultural burning. rea source emissions of particulate matter, sulfur dioxide, oxides of nitrogen, reactive volatile organic compounds, and carbon monox...

  19. Carbon Dioxide Absorption Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  20. NEUTRON ABSORPTION AND SHIELDING DEVICE

    DOEpatents

    Axelrad, I.R.

    1960-06-21

    A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.

  1. Save by absorption heat pumping

    SciTech Connect

    Davidson, W.F.; Campagne, W.V.L.

    1987-12-01

    The author compares absorption heat pumping (AHP) to mechanical vapor compressor (MVC) heat pumping. The moving part of the AHP is a pump easy to maintain and inexpensive to spare. The mechanical component of the MVC is a vapor compressor which requires more maintenance and is cost-prohibitive to spare. Also, in the MVC system, a purified product stream is heat pumped in an open compressor, thus risking product contamination. In the AHP system, the cold and hot utilities are heat pumped. Therefore, product integrity with an AHP system is well protected as in a conventional fractionation column.

  2. Visible absorption spectrum of liquid ethylene

    PubMed Central

    Nelson, Edward T.; Patel, C. Kumar N.

    1981-01-01

    The visible absorption spectrum of liquid ethylene at ≈ 108 K from 5500 Å to 7200 Å was measured by using a pulsed tunable dye laser, immersed-transducer, gated-detection opto-acoustic spectroscopy technique. The absorption features show the strongest band with an absorption coefficient of ≈2 × 10-2 cm-1 and the weakest band with an absorption coefficient of ≈1 × 10-4 cm-1. Proposed assignments of the observed absorption peaks involve combinations of overtones of local and normal modes of vibration of ethylene. PMID:16592978

  3. [Influencing factors in measuring absorption coefficient of suspended particulate matters].

    PubMed

    Yu, Xiao-long; Shen, Fang; Zhang, Jin-fang

    2013-05-01

    Absorption coefficient of suspended particulate matters in natural water is one of the key parameters in ocean color remote sensing. In order to study the influencing factors that affect the measurement, a series of experiments were designed to measure samples using transmittance method (T method), transmittance-reflectance method (T-R method) and absorptance method (A method). The results shows that absorption coefficient measured by the A method has a much lower error compared to the T method and T-R method due to influencing factors,such as filter-to-filter variations, water content of the filter, and homogeneity of filter load and so on. Another factor influence absorption coefficient is path-length amplification induced by multiple scattering inside the filter. To determine the path-length amplification, the true absorption was measured by AC-s (WetLabs). The linear fitting result shows that the mean path-length amplification is much higher for the A method than that of the T-R method and the T method (4.01 versus 2.20 and 2.32), and the corresponding correlation coefficient are 0.90, 0.87 and 0.80. For the A method and the T-R method, higher correlation coefficients are calculated when using polynomial fitting, and the value are 0.95 and 0.94. Analysis of the mean relative error caused by different influencing factors indicates that path-length amplification is the largest error source in measuring the absorption coefficient. PMID:23914523

  4. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  5. Percutaneous absorption of selenium sulfide

    SciTech Connect

    Farley, J.; Skelly, E.M.; Weber, C.B.

    1986-01-01

    The purpose of this study was to determine selenium levels in the urine of Tinea patients before and after overnight application of a 2.5% selenium sulfide lotion. Selenium was measured by atomic absorption spectroscopy (AAS). Hydride generation and carbon rod atomization were studied. It was concluded from this study that selenium is absorbed through intact skin. Selenium is then excreted, at least partially, in urine, for at least a week following treatment. The data show that absorption and excretion of selenium vary on an individual basis. Selenium levels in urine following a single application of selenium sulfide lotion do not indicate that toxic amounts of selenium are being absorbed. Repeated treatments with SeS/sub 2/ result in selenium concentrations in urine which are significantly higher than normal. Significant matrix effects are observed in the carbon rod atomization of urine samples for selenium determinations, even in the presence of a matrix modifier such as nickel. The method of standard additions is required to obtain accurate results in the direct determination of selenium in urine by carbon rod AAS.

  6. Iron Absorption in Drosophila melanogaster

    PubMed Central

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  7. Iron absorption in Drosophila melanogaster.

    PubMed

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-05-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  8. Formaldehyde Absorption toward W51

    SciTech Connect

    Kogut, A.; Smoot, G.F.; Bennett, C.L.; Petuchowski, S.J.

    1988-04-01

    We have measured formaldehyde (H{sub 2}CO) absorption toward the HII region complex W51A (G49.5-0.4) in the 6 cm and 2 cm wavelength rotational transitions with angular resolution of approximately 4 inch. The continuum HII region shows a large, previously undetected shell structure 5.5 pc along the major axis. We observe no H{sub 2}CO emission in regions of low continuum intensity. The absorption, converted to optical depth, shows a higher degree of clumping than previous maps at lower resolution. The good S/N of the maps allows accurate estimation of the complicated line profiles, showing some of the absorbing clouds to be quite patchy. We list the properties of the opacity spectra for a number of positions both in the clumps and in the more diffuse regions of the absorbing clouds, and derive column densities for the 1{sub 11} and 2{sub 12} rotational levels of ortho-formaldehyde.

  9. On-road measurement of black carbon mass, absorption, and single-scattering albedo

    EPA Science Inventory

    Absorption and scattering of solar radiation by aerosols emitted from combustion sources can affect the earth’s radiative balance and may potentially affect local and regional climate. Optical properties of aerosols emitted from mobile sources have not been thoroughly characteri...

  10. DISCOVERY OF THE TRANSITION OF A MINI-BROAD ABSORPTION LINE INTO A BROAD ABSORPTION LINE IN THE SDSS QUASAR J115122.14+020426.3

    SciTech Connect

    Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane; Hamann, Fred; Murphy, Michael T.; Nestor, Daniel

    2013-09-20

    We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broad absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.

  11. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption.

    PubMed

    Leforestier, C; Tipping, R H; Ma, Q

    2010-04-28

    We investigated the magnitude and temperature dependence (T dependence) of the dimer absorption in the region of 0-600 cm(-1) and the collision-induced absorption (CIA) in the region of 0-1150 cm(-1). Together with our previous study of the self water-vapor continuum contributions resulting from far-wing line shapes of the allowed H(2)O lines in the infrared window between 800 and 1150 cm(-1), we find that the three mechanisms have completely different T dependence behaviors. The dimer absorption has the strongest negative T dependence and the continuum absorption from far wings of the allowed lines has a moderately strong negative one. Meanwhile, the CIA exhibits a mild T dependence. In addition, their T dependence patterns are quite different. The T dependence of the far-wing theory varies significantly as the frequency of interest omega varies. For CIA, in general, its T dependence is mildly negative, but becomes slightly positive in the window region between the H(2)O bands. In contrast, the T dependence of the dimer absorption varies slightly as omega varies. In the microwave and submillimeter region, its T dependence becomes uniform. Concerning the relative importance for each of these three mechanisms, we find that in the infrared widow, the far-wing contributions are the dominant source of the self-continuum. Within the band, its contributions are definitely responsible for the measured continuum data. But, it is impossible to draw quantitatively conclusions on its relative importance unless one is able to improve the accuracy of the local line calculations significantly. On the other hand, within the pure rotational band, the dimer absorptions are a minor contributor to the self-continuum measurements, and its role becomes more important in the microwave and submillimeter regions. Finally, based on our study we conclude that contributions to the self-continuum from CIA in the frequency region of 0-1150 cm(-1) are negligible. PMID:20441270

  12. UV nebular absorption in Eta Car and Weigelt D

    NASA Astrophysics Data System (ADS)

    Nielsen, K. E.; Vieira, G. L.; Gull, T. R.; Lindler, D. J.; Eta Car HST Treasury Team

    2003-12-01

    The high angular and high spectral resolution of the HST/STIS MAMA echelle mode, provide an unique means to distinguish the physical structures surrounding Eta Car. Observations are parts of the HST treasury program (K. Davidson P.I.) for monitoring variations over Eta Car's spectroscopic minimum. Nebular emission is present above and below the stellar spectrum which is about 0.03'' wide. We have extracted the nebular part of the central source spectrum and compared it with the spectrum of Weigelt D, located approximately 0.2'' Northwest of the central source. The spectra show significant similarities and our conclusions are two-fold. First, the radiation from the Wiegelt blobs give an unwanted contribution to the spectrum of the central source, which emphasizes the importance of using an extracted spectrum in a spectral analysis. Second, the Weigelt blobs have so far been assumed to produce a pure emission line spectrum. However, this comparison shows the presence of similar absorption structures previously observed in the spectrum of the central star (Gull et al., 2003, submitted ApJL). Two velocity structures at approximately -50 and -500 km/s, respectively, have been observed in the Weigelt D spectrum. We present identifications of the absorption structures to supplement the emission line work performed by T. Zethson (2000, PhD Thesis) and provide additional information regarding the geometry of the inner parts of the Eta Car nebula. The -50 km/s velocity component is similar to the absorption structure at -146 km/s observed in the spectrum of the central object. If these velocity systems are related, this implies that the absorption component is located close to the central parts of the nebular system.

  13. UV-visible absorption cross sections of nitrous acid

    NASA Astrophysics Data System (ADS)

    Stutz, J.; Kim, E. S.; Platt, U.; Bruno, P.; Perrino, C.; Febo, A.

    2000-06-01

    Nitrous acid, HONO, is a source of OH radicals in the polluted atmosphere. Although the atmospheric chemistry of HONO is qualitatively understood, not much quantitative information exists. The magnitude of the OH production by HONO photolysis depends on the spectrum of its absorption cross sections; therefore the knowledge of σ'HONO(λ) is essential. The spectrum of the differential cross sections σ'HONO(λ) is needed to detect HONO in the atmosphere by differential optical absorption spectroscopy (DOAS). Here we present measurements of the HONO UV-visible absorption cross sections with a spectral resolution better than 0.1 nm and a high signal-to-noise ratio. The maximum value of the absorption cross sections is σHONO (354 nm) = (5.19±0.26) × 10-19 cm2 and agrees well with literature data. Nevertheless, calculations based on data from this work and on literature data reveal that an uncertainty of ˜15% remains for the HONO photolysis rates. The new σHONO(λ) has been employed in DOAS measurements in Milan, Italy.

  14. Enhancing THz Absorption using Thin-Film Multilayer Stacks

    NASA Astrophysics Data System (ADS)

    Grbovic, Dragoslav; Bolakis, Christos; Karunasiri, Gamani

    2010-03-01

    Terahertz imaging has seen significant proliferation in recent years. This band of electromagnetic spectrum has been underutilized for a long time due to the lack of sufficiently powerful sources and sensitive detectors. Because of virtually harmless effects on living tissue, terahertz (THz) radiation is attractive for various applications, ranging from non-invasive medical diagnostics to detection of concealed weapons. Our work focuses on identifying materials, or more specifically a stack of thin-films with increased absorption in the band of interest. In this work, we demonstrate a method that combines finite element modeling, thin-film deposition and experimental characterization to create highly-absorptive multi-layer stacks. Finite element modeling is used to simulate the absorption of a combination of thin dielectric and metallic films. Metals are deposited using e-beam evaporation and dielectric films using plasma enhanced chemical vapor deposition (PECVD). The simulated and measured THz absorption characteristics of the composite thin-film multilayer stacts will be presented.

  15. Search for correlated UV and x ray absorption of NGC 3516

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Halpern, Jules P.; Kolman, Michiel

    1991-01-01

    NGC 3516, a low-luminosity Seyfert galaxy, is one of a small fraction of Seyfert galaxies that exhibit broad absorption in a resonance line. In order to determine whether the UV and x ray absorption in NGC 3516 are related, 5 IUE observations were obtained, quasi-simultaneously with 4 Ginga observations. The results are presented and discussed. The following subject areas are covered: short-term UV variability; emission lines; galactic absorption lines; the C IV, N V, and Si IV absorption features; lower limit on the carbon column density; estimate of the distance from the absorber to the continuum source; variability in the continuum and absorption; a comparison with BAL QSO's; and the x ray-UV connection.

  16. Interstellar MG II Absorption Lines from Low-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bowen, David V.; Blades, J. Chris; Pettini, Max

    1995-08-01

    population as the higher redshift absorbers, although the sample is too small to permit a definitive analysis. There is some evidence for a sharp cutoff in equivalent width as p' increases, suggesting that low-redshift galaxies may be sharply bounded beyond ˜30 h-1 kpc. The luminosities of most of the absorbers in our program are such that the source sight lines pass through the predicted (Holmberg) optical radii of the galaxies. Hence the region between the optical radius and the gas radius of the z > 0.2 Mg II absorbers, ≍10 kpc to 30 h-1 kpc, remains unexplored at low redshift. Although our data do not enable us to determine whether the outer regions of galaxy disks are responsible for Mg II absorption systems, we note that 21 cm measurements currently available show that H I disks of the brightest spiral galaxies are already close to the sizes of higher redshift Mg II absorbers. We have found a correlation between the absolute blue magnitude of spiral galaxies and their H I radii measured at the N(H I) = 1019 and 1020 cm-2 level, and there is evidence that the correlation tends to that of the intermediate-redshift Mg II absorbing galaxies at lower N(H I) limits. Hence the outer regions of galaxy disks may well have sufficient column densities to produce Mg II absorption lines.

  17. Multistage quantum absorption heat pumps

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N -2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  18. Multistage quantum absorption heat pumps.

    PubMed

    Correa, Luis A

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration. PMID:24827213

  19. Quantum-enhanced absorption refrigerators

    PubMed Central

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  20. Energy absorption by polymer crazing

    NASA Technical Reports Server (NTRS)

    Pang, S. S.; Zhang, Z. D.; Chern, S. S.; Hsiao, C. C.

    1983-01-01

    During the past thirty years, a tremendous amount of research was done on the development of crazing in polymers. The phenomenon of crazing was recognized as an unusual deformation behavior associated with a process of molecular orientation in a solid to resist failure. The craze absorbs a fairly large amount of energy during the crazing process. When a craze does occur the surrounding bulk material is usually stretched to several hundred percent of its original dimension and creates a new phase. The total energy absorbed by a craze during the crazing process in creep was calculated analytically with the help of some experimental measurements. A comparison of the energy absorption by the new phase and that by the original bulk uncrazed medium is made.

  1. Transient simulation of absorption machines

    NASA Astrophysics Data System (ADS)

    Anand, D. K.; Allen, R. W.; Kumar, B.

    A model for a water-cooled Lithium-Bromide/water absorption chiller is presented. Its transient response both during the start-up phase and during the shut-off period is predicted. The simulation model incorporates such influencing factors as the thermodynamic properties of the working fluid, the absorbent, the heat-transfer configuration of different components of the chiller and related physical data. The time constants of different components are controlled by a set of key parameters that have been identified. The results show a variable but at times significant amount of time delay before the chiller capacity gets close to its steady-state value. The model is intended to provide an insight into the mechanism of build-up to steady-state performance. By recognizing the significant factors contributing to transient degradation, steps can be taken to reduce such degradation.

  2. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  3. Graphene intracavity spaser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Nechepurenko, I. A.; Dorofeenko, A. V.

    2016-09-01

    We propose an intracavity plasmon absorption spectroscopy method based on graphene active plasmonics. It is shown that the plasmonic cavity contribution to the sensitivity is proportional to the quality factor Q of the graphene plasmonic cavity and reaches two orders of magnitude. The addition of gain medium into the cavity increases the sensitivity of method. Maximum sensitivity is reached in the vicinity of the plasmon generation threshold. The gain contribution to the sensitivity is proportional to Q1/2. The giant amplification of sensitivity in the graphene plasmon generator is associated with a huge path length, limited only by the decoherence processes. An analytical estimation of the sensitivity to loss caused by analyzed particles (molecules, nanoparticles, etc.) normalized by the single pass plasmon scheme is derived. Usage of graphene nanoflakes as plasmonic cavity allows a high spatial resolution to be reached, in addition to high sensitivity.

  4. Computer programs for absorption spectrophotometry.

    PubMed

    Jones, R N

    1969-03-01

    Brief descriptions are given of twenty-two modular computer programs for performing the basic numerical computations of absorption spectrophotometry. The programs, written in Fortran IV for card input and output, are available from the National Research Council of Canada. The input and output formats are standardized to permit easy interfacing to yield more complex data processing systems. Though these programs were developed for ir spectrophotometry, they are readily modified for use with digitized visual and uv spectrophotometers. The operations covered include ordinate and abscissal unit and scale interconversions, ordinate addition and subtraction, location of band maxima and minima, smoothing and differentiation, slit function convolution and deconvolution, band profile analysis and asymmetry quantification, Fourier transformation to time correlation curves, multiple overlapping band separation in terms of Cauchy (Lorentz), Gauss, Cauchy-Gauss product, and Cauchy-Gauss sum functions and cell path length determination from fringe spacing analysis. PMID:20072266

  5. Neutron scattering and absorption properties

    SciTech Connect

    Holden, N.E.

    1993-12-01

    The Table in this report presents an evaluated set of values for the experimental quantities, which characterize the properties for scattering and absorption of neutrons. The neutron cross section is given for room temperature neutrons, 20.43{degree}C, corresponds to a thermal neutron energy of 0.0253 electron volts (eV) or a neutron velocity of 2200 meters/second. The neutron resonance integral is defined over the energy range from 0.5 eV to 0.1 {times} 10{sup 6} eV, or 0.1 MeV. A list of the major references used is given below. The literature cutoff data is October 1993. Uncertainties are given in parentheses. Parentheses with two or more numbers indicate values to the excited states(s) and to the ground state of the product nucleus.

  6. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  7. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  8. HI Absorption in Merger Remnants

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.

    2012-01-01

    It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.

  9. Quantum-enhanced absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-02-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators.

  10. Quantum-enhanced absorption refrigerators.

    PubMed

    Correa, Luis A; Palao, José P; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  11. Olefin recovery via chemical absorption

    SciTech Connect

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  12. Large reverse saturable absorption under weak continuous incoherent light

    NASA Astrophysics Data System (ADS)

    Hirata, Shuzo; Totani, Kenro; Yamashita, Takashi; Adachi, Chihaya; Vacha, Martin

    2014-10-01

    In materials showing reverse saturable absorption (RSA), the optical absorbance increases as the power of the light incident on them increases. To date, RSA has only been observed when very intense light sources, such as short-pulse lasers, are used. Here, we show that hydroxyl steroidal matrices embedding properly designed aromatic molecules as acceptors and transition-metal complexes as donors exhibit high RSA on exposure to weak incoherent light at room temperature and in air. Accumulation by photosensitization of long-lived room-temperature triplet excitons in acceptors with a large triplet-triplet absorption coefficient allows a nonlinear increase in absorbance also under low-power irradiation conditions. As a consequence, continuous exposure to weak light significantly decreases the transmittance of thin films fabricated with these compounds. These optical limiting properties may be used to protect eyes and light sensors from exposure to intense radiation generated by incoherent sources and for other light-absorption applications that have not been realized with conventional RSA materials.

  13. Permeation absorption sampler with multiple detection

    DOEpatents

    Zaromb, Solomon

    1990-01-01

    A system for detecting analytes in air or aqueous systems includes a permeation absorption preconcentrator sampler for the analytes and analyte detectors. The preconcentrator has an inner fluid-permeable container into which a charge of analyte-sorbing liquid is intermittently injected, and a fluid-impermeable outer container. The sample is passed through the outer container and around the inner container for trapping and preconcentrating the analyte in the sorbing liquid. The analyte can be detected photometrically by injecting with the sorbing material a reagent which reacts with the analyte to produce a characteristic color or fluorescence which is detected by illuminating the contents of the inner container with a light source and measuring the absorbed or emitted light, or by producing a characteristic chemiluminescence which can be detected by a suitable light sensor. The analyte can also be detected amperometrically. Multiple inner containers may be provided into which a plurality of sorbing liquids are respectively introduced for simultaneously detecting different analytes. Baffles may be provided in the outer container. A calibration technique is disclosed.

  14. Ultraviolet-Absorption Spectroscopic Biofilm Monitor

    NASA Technical Reports Server (NTRS)

    Micheels, Ronald H.

    2004-01-01

    An ultraviolet-absorption spectrometer system has been developed as a prototype instrument to be used in continuous, real-time monitoring to detect the growth of biofilms. Such monitoring is desirable because biofilms are often harmful. For example, biofilms in potable-water and hydroponic systems act as both sources of pathogenic bacteria that resist biocides and as a mechanism for deterioration (including corrosion) of pipes. Biofilms formed from several types of hazardous bacteria can thrive in both plant-growth solutions and low-nutrient media like distilled water. Biofilms can also form in condensate tanks in air-conditioning systems and in industrial heat exchangers. At present, bacteria in potable-water and plant-growth systems aboard the space shuttle (and previously on the Mir space station) are monitored by culture-plate counting, which entails an incubation period of 24 to 48 hours for each sample. At present, there are no commercially available instruments for continuous monitoring of biofilms in terrestrial or spaceborne settings.

  15. Infrared absorption modeling of VOx microbolometer

    NASA Astrophysics Data System (ADS)

    Aggoun, Mehdi; Jiang, Jianliang; Khan, M. K.

    2015-08-01

    The absorption model plays an important role in the design of the microbolometer structure regarding the determination of the optimum thickness of the structure layers. Moreover, the infrared absorption depends on the wavelength of the radiation and the material properties. In this paper, we presented an Infrared absorption model with absorption coefficient of 96% at maximum absorption wavelength of 9.89μm which is very close to the expected value 10μm. This model was established by using MATLAB so that the simulation of the infrared absorption of the VOx microbolometer could be accomplished. In order to confirm the role of this modeling in the design of the device structure, comparison with other structures is also studied in this paper.

  16. Shock tube measurements of the optical absorption of triatomic carbon, C3

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1977-01-01

    The spectral absorption of C3 has been measured in a shock tube using a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3300-4300 K and 0.36 to 2.13 atmospheres, respectively. The results showed appreciable absorption from C3 for the wavelength range 300 to 540 nanometers. The computed electronic oscillator strength varied from 0.12 to 0.06 as a function of temperature.

  17. Selection Sources.

    ERIC Educational Resources Information Center

    Kerby, Ramona

    2002-01-01

    Discusses library collection development by school library media specialists and describes selection sources for new books and materials; retrospective selection sources for materials published in preceding years; and an acquisition source. Provides an overview of the selection process and includes 10 suggestions for selection. (LRW)

  18. Nonpoint Sources.

    ERIC Educational Resources Information Center

    Browne, F. X.

    1978-01-01

    Presented a literature review of nonpoint source effects on water quality and pollution covering: (1) water quality effects; (2) watershed studies; (3) nonpoint source models; and nonpoint source controls. A list of 122 references published in 1976 and 1977 is also presented. (HM)

  19. Adopting steam-driven absorption cooling

    SciTech Connect

    Rose, D.T.; Perez-Blanco, H.; Ryan, W.A.

    1995-10-01

    Proper installation, water quality, and maintenance are essential to operating a cost-effective absorption system. Concerns about energy efficiency and the use of chlorofluorocarbons have led to the greater use of absorption machines for cooling applications. These machines, which reclaim condenser or exhaust-gas heat, are used in the most advanced cogeneration systems. Although absorption technology has a long history--with mixed success--its versatility has only recently begun to payoff.

  20. Conditions and drugs interfering with thyroxine absorption.

    PubMed

    Liwanpo, Llanyee; Hershman, Jerome M

    2009-12-01

    Food, dietary fibre and espresso coffee interfere with the absorption of levothyroxine. Malabsorptive disorders reported to affect the absorption of levothyroxine include coeliac disease, inflammatory bowel disease, lactose intolerance as well as Helicobacter pylori (H. pylori) infection and atrophic gastritis. Many commonly used drugs, such as bile acid sequestrants, ferrous sulphate, sucralfate, calcium carbonate, aluminium-containing antacids, phosphate binders, raloxifene and proton-pump inhibitors, have also been shown to interfere with the absorption of levothyroxine. PMID:19942153

  1. Temperature-dependent high resolution absorption cross sections of propane

    NASA Astrophysics Data System (ADS)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  2. Operating data on a novel absorption refrigeration cycle. Progress report

    SciTech Connect

    McCluskey, R.J.

    1993-12-23

    This report describes the modifications and repairs made to the 200 ton absorption refrigeration pilot plant since April 1992, when Clarkson University assumed responsibility for it. Current operating problems and the performance of the plant, achieved to date, are detailed. Performance has been limited by small air leaks into the absorption section of the plant and by plugging in a heat exchanger which has limited the flow of purified glycol to the absorber. Nonetheless, the plant has been operated for periods of over eight hours with sustained cooling loads of 40 tons. Chilled water has been produced at a temperature as low as 38 degrees Fahrenheit. The principal leak sources have been pinpointed. Plans are described for achieving plant operation at designed levels.

  3. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy.

    PubMed

    Bartula, Renata J; Ghandhi, Jaal B; Sanders, Scott T; Mierkiewicz, Edwin J; Roesler, Fred L; Harlander, John M

    2007-12-20

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span approximately 308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of approximately 2x10(-7) m(2) rad(2)) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines. PMID:18091974

  4. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartula, Renata J.; Ghandhi, Jaal B.; Sanders, Scott T.; Mierkiewicz, Edwin J.; Roesler, Fred L.; Harlander, John M.

    2007-12-01

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span ~308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of ~2×10-7 m2 rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

  5. Lead absorption in cows: biological indicators of ambient lead exposure

    SciTech Connect

    Karacic, V.; Prpic-Majic, D.; Skender, L.

    1984-03-01

    In order to determine actual lead exposure from residual amounts of lead in the environmental soil following the introduction of effective engineering emission controls in a lead smeltery, the absorption of lead in cows grazing in the vicinity was investigated. Four groups of cows were examined: two groups of cows exposed to different ambient lead concentration, compared with two normal groups of cows. In each cow aminolevulinic acid dehydratase (ALAD), erythrocyte protoporphyrin (EP) and blood lead (Pb-B) were determined, two years prior to and four years after the technical sanitation of the lead emission source. The results demonstrated normalization of ALAD, EP and Pb-B after the technical sanitation. In spite of normalization, biological indicators ALAD and Pb-B determined four years after the technical sanitation showed increased lead absorption in comparison with the results of the control group. This indirectly indicates lead contamination of the environment from residual amounts of lead in the soil.

  6. Determining neutrino absorption spectra at ultra-high energies

    SciTech Connect

    Scholten, O; Van Vliet, A R E-mail: A.R.van.Vliet@student.rug.nl

    2008-06-15

    A very efficient method for measuring the flux of ultra-high energy (UHE) neutrinos is through the detection of radio waves which are emitted by the particle shower in the lunar regolith. The highest acceptance is reached for radio waves in the frequency band of 100-200 MHz which can be measured with modern radio telescopes. In this work we investigate the sensitivity of this detection method to structures in the UHE neutrino spectrum caused by their absorption on the low energy relic anti-neutrino background through the Z boson resonance. The position of the absorption peak is sensitive to the neutrino mass and the redshift of the source. A new generation of low frequency digital radio telescopes will provide excellent detection capabilities for measuring these radio pulses, thus making our consideration here very timely.

  7. Multi-wavelength differential absorption measurements of chemical species

    NASA Astrophysics Data System (ADS)

    Brown, David M.

    The probability of accurate detection and quantification of airborne species is enhanced when several optical wavelengths are used to measure the differential absorption of molecular spectral features. Characterization of minor atmospheric constituents, biological hazards, and chemical plumes containing multiple species is difficult when using current approaches because of weak signatures and the use of a limited number of wavelengths used for identification. Current broadband systems such as Differential Optical Absorption Spectroscopy (DOAS) have either limitations for long-range propagation, or require transmitter power levels that are unsafe for operation in urban environments. Passive hyperspectral imaging systems that utilize absorption of solar scatter at visible and infrared wavelengths, or use absorption of background thermal emission, have been employed routinely for detection of airborne chemical species. Passive approaches have operational limitations at various ranges, or under adverse atmospheric conditions because the source intensity and spectrum is often an unknown variable. The work presented here describes a measurement approach that uses a known source of a low transmitted power level for an active system, while retaining the benefits of broadband and extremely long-path absorption operations. An optimized passive imaging system also is described that operates in the 3 to 4 mum window of the mid-infrared. Such active and passive instruments can be configured to optimize the detection of several hydrocarbon gases, as well as many other species of interest. Measurements have provided the incentive to develop algorithms for the calculations of atmospheric species concentrations using multiple wavelengths. These algorithms are used to prepare simulations and make comparisons with experimental results from absorption data of a supercontinuum laser source. The MODTRAN model is used in preparing the simulations, and also in developing additional

  8. High ionisation absorption in low mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Bianchi, S.; Muñoz-Darias, T.; De, K.; Fender, R.; Merloni, A.

    2016-05-01

    The advent of the new generation of X-ray telescopes yielded a significant step forward in our understanding of ionised absorption generated in the accretion discs of X-ray binaries. It has become evident that these relatively weak and narrow absorption features, sporadically present in the X-ray spectra of some systems, are actually the signature of equatorial outflows, which might carry away more matter than that being accreted. Therefore, they play a major role in the accretion phenomenon. These outflows (or ionised atmospheres) are ubiquitous during the softer states but absent during the power-law dominated, hard states, suggesting a strong link with the state of the inner accretion disc, presence of the radio-jet and the properties of the central source. Here, we discuss the current understanding of this field.

  9. LED-Absorption-QEPAS Sensor for Biogas Plants

    PubMed Central

    Köhring, Michael; Böttger, Stefan; Willer, Ulrike; Schade, Wolfgang

    2015-01-01

    A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors. PMID:26007746

  10. An iron absorption model of gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.; Kargatis, Vincent E.

    1994-01-01

    Most gamma-ray bursts (GRBs) exhibit deficits of X-rays below approximately 200 keV. Here we consider a spectral model in which the burst source is shielded by an optically thick layer of circumburster material (CBM) rich in iron-group elements whose photoelectric absorption opacity exceeds the Thomson opacity below approximately 120 keV. For power-law distributions of absorption depths along the lines of sight the absorbed spectrum can indeed mimic the typial GRB spectrum. This model predicts that (a) the spectrum should evolve monotonically from hard to soft during each energy release, which is observed in most bursts, especially in fast rise exponential decay bursts; (b) Fe spectral features near 7 keV may be present in some bursts; and (c) the ratio of burst distances to the CBM and to Earth should be approximately 10(exp -11) if the spectral evolution is purely due to Fe stripping by the photons.

  11. Nutrient absorption and intestinal adaptation with ageing.

    PubMed

    Woudstra, Trudy; Thomson, Alan B R

    2002-02-01

    Malabsorption of carbohydrates, lipids, amino acids, minerals and vitamins has been described in the elderly. The ability of the intestine to adapt may be impaired in the elderly and this may lead to further malnutrition. Dietary manipulation may prove to be useful to enhance the needed intestinal absorption with ageing. There is an age-associated increase in the prevalence of dyslipidaemia as well as diabetes. These conditions may benefit from nutritional intervention targeted at reducing the absorption of some nutrients. With the continued characterization of the proteins involved in sterol and fatty acid absorption, therapeutic interventions to modify absorption may become available in the future. PMID:11977925

  12. Influence of laser radiation on induced absorption spectra of pure quartz glass optical fibers

    NASA Astrophysics Data System (ADS)

    Dianov, Y. M.; Karpechev, V. N.; Korniyenko, L. S.; Rybaltovskiy, A. O.; Chernov, P. V.

    1986-01-01

    The influence of laser radiation on radiation color centers and their associated induced absorption in the spectra of irradiated glass optical fibers is investigated. The glass fiber specimens employed had 40 to 50 micron diameter cores made of day pure quartz glass. The optical fibers were 6 to 20 meters long, produced by chemical precipitation from the gaseous phase and clad with reflecting borosilicate glass. Spectral measurements of the induced absorption in the ultraviolet region were made using an FEU-71 photodetector and a sounding radiation source. The stimulated laser emission power in the cross section of the optical fiber was measured by a photodiode; the absorption spectra were recorded by the fragment method. Eight different types of color centers were isolated whose bands cover practically the entire observed absorption spectra. The connection found between color centers and a 340 nm absorption band, and color center with absorption in the infrared band, indicate that absorption in the ultraviolet band can have a significant influence on the amount of induced absorption in the infrared band.

  13. Interstellar Silicate Dust Grain Properties in Distant Galaxies Probed by Quasar Absorption Systems

    NASA Astrophysics Data System (ADS)

    Aller, Monique C.; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam

    2015-01-01

    Dust grains are a fundamental component of the interstellar medium, and significantly impact many of the physical processes driving galaxy evolution, including star formation, and the heating, cooling and ionization of interstellar material. Using the absorption features produced by dust in the spectra of luminous background quasars, it is possible to study the properties of extragalactic interstellar dust grains. We will present results from an ongoing program utilizing existing Spitzer Space Telescope infrared quasar spectra to probe silicate dust grain properties in z<1.4 quasar absorption systems. In combination with complementary ground-based data on associated gas-phase metal absorption lines, we explore connections between the interstellar dust and gas in the quasar absorption systems. Our project yields clear detections of the 10 micron silicate dust absorption feature in the studied systems, as well as detections of the 18 micron silicate dust absorption feature in sources with adequate spectral coverage. Based on measured variations in the breath, peak wavelength, and substructure of the 10 micron absorption features, there appear to be differences in the silicate dust grain properties from system-to-system. We also show indications of trends between the gas-phase metal properties, such as metallicity and gas velocity spread, with the silicate dust grain absorption properties. Support for this work is provided by NASA through an award issued by JPL/Caltech and through NASA grant NNX14AG74G, and from National Science Foundation grants AST-0908890 and AST-1108830 to the University of South Carolina.

  14. Impact of Nonabsorbing Anthropogenic Aerosols on Clear-Sky Atmospheric Absorption

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, John H.; Kinne, Stefan; Feichter,Johann; Boucher, Olivier

    2006-01-01

    Absorption of solar radiation by atmospheric aerosol has become recognized as important in regional and global climate. Nonabsorbing, hydrophilic aerosols, such as sulfate, potentially affect atmospheric absorption in opposing ways: first, decreasing absorption through aging initially hydrophobic black carbon (BC) to a hydrophilic state, enhancing its removal by wet scavenging, and consequently decreasing BC lifetime and abundance, and second, increasing absorption through enhancement of the BC absorption efficiency by internal mixing as well as through increasing the amount of diffuse solar radiation in the atmosphere. On the basis of General Circulation Model studies with an embedded microphysical aerosol module we systematically demonstrate the significance of these mechanisms both on the global and regional scales. In remote transport regions, the first mechanism prevails, reducing atmospheric absorption, whereas in the vicinity of source regions, despite enhanced wet scavenging, absorption is enhanced owing to the prevalence of the second mechanisms. Our findings imply that the sulfur to BC emission ratio plays a key role in aerosol absorption.

  15. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  16. Nonpoint sources

    SciTech Connect

    Selzer, L.

    1994-12-31

    Nonpoint source pollution remains the most pervasive water quality issue faced today. Unlike pollution from point sources, nonpoint source pollution is diffuse both in terms of its origin and the manner in which it enters ground and surface waters. It results from a great variety of human activities that take place over a wide geographic area perhaps many hundreds or even thousands of acres. And unlike pollutants from point sources--which enter the environment at well-defined locations and in relatively even, continuous discharges--pollutants from nonpoint sources usually find their way into surface and ground waters in sudden surges associated with rainfall, thunderstorms, or snowmelt. The author discusses some of the most significant sources of nonpoint source pollution.

  17. Absorption Optics of Aqueous Foams

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Ranjini; Gittings, Alex; Durian, D. J.

    2002-11-01

    Aqueous foams are composed of gas bubbles packed together in a small volume of soapy water. The large number of gas-liquid interfaces in foams results in very strong scattering of light, which explains the opaque nature of conventional aqueous foams such as shaving foams and mousse. For dry foams, the interfaces can take the following three forms: the soap films where two bubbles meet, the triangular plateau borders where three soap films meet and the vertices where four plateau borders meet. Previous experiments have shown that most of the scattering occurs from the plateau borders 2,3 and the transport mean free path of light (l*), the bubble radius (R) and the liquid fraction of foam (epsilon) is related through the relation l*=R/(epsilon0.5). To understand the reflection and scattering of light at the gas-bubble interfaces, we study the absorption of photons in the liquid network as a function of the foam absorptivity. We do this to confirm if the time spent by the photons in the liquid phase is proportional to the liquid fraction of the foam. Our results indicate that for a specific range of liquid fractions (0.05 is less than e is less than 0.1), the photons seem to get trapped in the liquid network. This result is independent of the absorptivity of the foam and leads us to conclude that under appropriate conditions, an aqueous foam behaves very much like an optical fiber network. Aqueous foam is generated in the lab by the method of turbulent mixing of N2 gas with a jet of alpha-olefin-sulfonate (AOS) solution. The foam has been made absorbing by dissolving small quantities of rhodamine dye (R = 0.005 g/l, R = 0.01 g/l and R = 0.0124 g/l) in the AOS solution. The transmission of photons through the foams of liquid fractions 0.0297 is less than e is less than 0.35 has been studied using Diffuse Transmission Spectroscopy (DTS). For each liquid fraction, the transport mean free path l* (the length over which the photon travels before it gets completely

  18. Long-path supercontinuum absorption spectroscopy for measurement of atmospheric constituents.

    PubMed

    Brown, David M; Shi, Kebin; Liu, Zhiwen; Philbrick, C R

    2008-06-01

    A supercontinuum source has been proposed as a new tool for measurement of minor species concentrations on long paths through the atmosphere. The present work describes results from recent experiments that demonstrate the potential for Differential Absorption Spectroscopy (DAS) and Spectral Pattern Recognition Differential Absorption Lidar (SPR-DIAL) measurements utilizing a supercontinuum source. As an initial example of this measurement approach, the results include the quantification of water vapor concentration through indoor and outdoor path absorption measurements using a collimated supercontinuum source. Experimental spectra are compared with equivalent simulations from MODTRAN??? versions 4 and 5 to examine the water vapor band between 1300 and 1500 nm to demonstrate the feasibility of the approach. PMID:18545560

  19. Dust Modeling of Si K Absorption in Galactic Bulge LMXBs with Chandra

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.

    2016-04-01

    The Galactic Bulge hosts a large number of bright and highly absorbed low-mass X-ray binaries (LMXBs). Column densitiesbetween 1022 cm-2 and 5x1023 cm-2 offer the opportunity and contrast to study the Si K edge structure with very high spectral resolution. Recent models predict that the total extinction in X-ray spectra not only involves X-ray absorption from gas and dust along the line of sight, but also significant contributions from dust scattering. A survey with the Chandra HETG of about a dozen LMXBs yields a rich variety of spectral features, showing that the Si K edge structure is highly complex and variable, from source to source and with time for a given source. We find substructure from neutral atomic silicon, silicate dust absorption and scattering from the interstellar medium (ISM), and superimposed ionized absorption signatures from the circumstellar environment of the LMXBs.

  20. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  1. Transient simulation of absorption machines

    SciTech Connect

    Anand, D.K.; Allen, R.W.; Kumar, B.

    1982-08-01

    This paper presents a model for a water-cooled Lithium-Bromide/water absorption chiller and predicts its transient response both during the start-up phase and during the shutoff period. The simulation model incorporates such influencing factors as the thermodynamic properties of the working fluid, the absorbent, the heat-transfer configuration of different components of the chiller and related physical data. The time constants of different components are controlled by a set of key parameters that have been identified in this study. The results show a variable but at times significant amount of time delay before the chiller capacity gets close to its steadystate value. The model is intended to provide an insight into the mechanism of build-up to steady-state performance. By recognizing the significant factors contributing to transient degradation, steps can be taken to reduce such degradation. The evaluation of the residual capacity in the shut-off period will yield more realistic estimates of chiller COP for a chiller satisfying dynamic space cooling load.

  2. Transient simulation of absorption machines

    NASA Astrophysics Data System (ADS)

    Anand, D. K.; Allen, R. W.; Kumar, B.

    1982-08-01

    This paper presents a model for a water-cooled Lithium-Bromide/water absorption chiller and predicts its transient response both during the start-up phase and during the shutoff period. The simulation model incorporates such influencing factors as the thermodynamic properties of the working fluid, the absorbent, the heat-transfer configuration of different components of the chiller and related physical data. The time constants of different components are controlled by a set of key parameters that have been identified in this study. The results show a variable but at times significant amount of time delay before the chiller capacity gets close to its steady-state value. The model is intended to provide an insight into the mechanism of build-up to steady-state performance. By recognizing the significant factors contributing to transient degradation, steps can be taken to reduce such degradation. The evaluation of the residual capacity in the shut-off period will yield more realistic estimates of chiller COP for a chiller satisfying dynamic space cooling load.

  3. Fluid absorption solar energy receiver

    NASA Technical Reports Server (NTRS)

    Bair, Edward J.

    1993-01-01

    A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.

  4. Gastrointestinal absorption of metallic mercury.

    PubMed

    Sandborgh-Englund, Gunilla; Einarsson, Curt; Sandström, Magnus; Ekstrand, Jan

    2004-09-01

    The absorption of mercury from the gastrointestinal systems of 7 subjects, of whom none had any amalgam fillings, was examined in this study. The authors obtained quantitative information about mercury concentration in plasma and duodenal fluid after the gastrointestinal systems of the subjects were exposed to liquid elemental mercury enclosed in rubber balloons (i.e., approximately 20 g of mercury), using a standard procedure followed for the sampling of bile. Plasma samples were collected prior to exposure, as well as up to 10 d following exposure, and duodenal fluid was collected 1 h, 2 h, 4 h, and 6 h during the intubation process. The authors studied the kinetics of dissolution in vitro by leaching elemental liquid mercury and mercuric chloride. The results of this study supported the hypothesis that metallic mercury is oxidized in the gastrointestinal tract. In addition, the authors determined that duodenal intubation, while using liquid metallic mercury in rubber bags, resulted in the diffusion of minor amounts of atomic elemental mercury through the rubber walls. The absorbed amount of mercury that reached the central circulation was comparable to a daily dose of mercury from dental amalgam in the amalgam-bearing population. PMID:16381485

  5. Light absorption in distorted graphene

    NASA Astrophysics Data System (ADS)

    Hernández-Ortiz, Saúl; Valenzuela, David; Raya, Alfredo; Sánchez-Madrigal, Saúl

    2016-04-01

    We model the low energy dynamics of graphene in the continuum in terms of a version of reduced quantum electrodynamics (QED) restricting fermions to a (2 + 1)-dimensional brane, while photons remain within the (3 + 1)-dimensional bulk. For charge carriers, besides the Dirac mass gap, we consider a Haldane mass term which is induced by parametrizing an effective parity 𝒫 and time-reversal 𝒯 symmetry breaking that occurs on the brane when distortions of the honeycomb array are such that the equivalence between sublattices is lost. We make use of the relativistic Kubo formula and carry out an explicit calculation of the transverse conductivity. As expected, the filling factor is a half (in natural units) for each fermion species. Furthermore, assuming that a sample of this material is radiated perpendicularly with polarized monochromatic light of frequency ω, from the modified Maxwell’s equations we address the problem of light absorption in graphene in terms of the said conductivity. We observe that light penetrating the sample changes its angle of polarization solely by effect of the induced mass, in analogy to the Faraday effect but in absence of magnetic fields. This effect might be relevant for the development of optic filters based on mechanical stretching of graphene flakes.

  6. Some aspects of cosmic synchrotron sources

    NASA Technical Reports Server (NTRS)

    Epstein, R. I.

    1973-01-01

    Synchrotron emission is considered from individual particles which have small pitch angles and the general properties of synchrotron sources which mainly contain such particles, as well as the emissivities and degrees of circular polarization for specific source distributions. The limitation of synchrotron source models for optical pulsars and compact extragalactic objects are discussed, and it is shown that several existing models for the pulsar NP 0532 are inconsistent with the measured time variations and polarizations of the optical emission. Discussion is made also of whether the low frequency falloffs in the extragalactic objects PKS 2134 + 004, OQ 208, and NGC 1068 is due to emission from particles with small pitch angles or absorption by a thermal plasma or synchrotron self-absorption. It is concluded that the absorption interpretations cannot account for the turnover in the spectrum of PKS 2134 + 004. Measurements of polarization, angular structure, and X-ray flux are also described.

  7. Controllable photon source

    NASA Astrophysics Data System (ADS)

    Oszetzky, Dániel; Nagy, Attila; Czitrovszky, Aladár

    2006-10-01

    We have developed our pervious experimental setup using correlated photon pairs (to the calibration of photo detectors) to realize a controllable photon source. For the generation of such photon pairs we use the non-linear process of parametric down conversion. When a photon of the pump beam is incident to a nonlinear crystal with phase matching condition, a pair of photons (signal and idler) is created at the same time with certain probability. We detect the photons in the signal beam with a single photon counting module (SPCM), while delaying those in the idler beam. Recently we have developed a fast electronic unit to control an optical shutter (a Pockels cell) placed to the optical output of the idler beam. When we detect a signal photon with the controlling electronic unit we are also able to open or close the fast optical shutter. Thus we can control which idler photons can propagate through the Pockels cell. So with this photon source we are able to program the number of photons in a certain time window. This controllable photon source that is able to generate a known number of photons with specified wavelength, direction, and polarization could be useful for applications in high-accuracy optical characterisation of photometric devices at the ultra-low intensities. This light source can also serve as a standard in testing of optical image intensifiers, night vision devices, and in the accurate measurement of spectral distribution of transmission and absorption in optical materials.

  8. Predicting Moisture Absorption in Composite Materials

    NASA Technical Reports Server (NTRS)

    Haines, J. R.

    1984-01-01

    Heat transport programs adaptable for absorption analysis. Lightweight sandwich panel specimen used for comparison of water absorption measurements with program predictions. In program model, moisture -- like heat in heat-transport problem moves through variety of materials and structures along complex paths.

  9. High-Absorptance Radiative Heat Sink

    NASA Technical Reports Server (NTRS)

    Cafferty, T.

    1983-01-01

    Absorptance of black-painted open-cell aluminum honeycomb improved by cutting honeycomb at angle or bias rather than straight across. This ensures honeycomb cavities escapes. At each reflection radiation attenuated by absorption. Applications include space-background simulators, space radiators, solar absorbers, and passive coolers for terrestrial use.

  10. Cosmic ray variations during PCA type absorption

    NASA Technical Reports Server (NTRS)

    Kozin, I. D.

    1972-01-01

    It is shown based on data on the cosmic-ray neutron component, ionospheric soundings, and measurements of cosmic radio-emission absorption at Vostok station (Antarctica) that the ionization of the lower ionosphere increases during low intensity of Forbush-type cosmic rays. This is manifested in increased absorption and the appearance of strong sporadic layers in the E-region.

  11. The electronic absorption edge of petroleum

    SciTech Connect

    Mullins, O.C.; Mitra-Kirtley, S.; Zhu, Yifu

    1992-09-01

    The electronic absorption spectra of more than 20 crude oils and asphaltenes are examined. The spectral location of the electronic absorption edge varies over a wide range, from the near-infrared for heavy oils and asphaltenes to the near-UV for gas condensates. The functional form of the electronic absorption edge for all crude oils (measured) is characteristic of the {open_quotes}Urbach tail,{close_quotes} a phenomenology which describes electronic absorption edges in wide-ranging materials. The crude oils all show similar Urbach widths, which are significantly larger than those generally found for various materials but are similar to those previously reported for asphaltenes. Monotonically increasing absorption at higher photon energy continues for all crude oils until the spectral region is reached where single-ring aromatics dominate absorption. However, the rate of increasing absorption at higher energies moderates, thereby deviating from the Urbach behavior. Fluorescence emission spectra exhibit small red shifts from the excitation wavelength and small fluorescence peak widths in the Urbach regions of different crude oils, but show large red shifts and large peak widths in spectral regions which deviate from the Urbach behavior. This observation implies that the Urbach spectral region is dominated by lowest-energy electronic absorption of corresponding chromophores. Thus, the Urbach tail gives a direct measure of the population distribution of chromophores in crude oils. Implied population distributions are consistent with thermally activated growth of large chromophores from small ones. 12 refs., 8 figs.

  12. Iron absorption from intrinsically-labeled lentils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low iron (Fe) absorption from important staple foods may contribute to Fe deficiency in developing countries. To date, there are few studies examining the Fe bioavailability of pulse crops as commonly prepared and consumed by humans. The objectives of this study were to characterize the Fe absorpt...

  13. Photoelectric absorption cross sections with variable abundances

    NASA Technical Reports Server (NTRS)

    Balucinska-Church, Monika; Mccammon, Dan

    1992-01-01

    Polynomial fit coefficients have been obtained for the energy dependences of the photoelectric absorption cross sections of 17 astrophysically important elements. These results allow the calculation of X-ray absorption in the energy range 0.03-10 keV in material with noncosmic abundances.

  14. On the absorption of alendronate in rats.

    PubMed

    Lin, J H; Chen, I W; deLuna, F A

    1994-12-01

    Alendronate is an antiosteolytic agent under investigation for the treatment of a number of bone disorders. Since the compound is a zwitterion with five pKa values and is completely ionized in the intestine at the physiological pH, absorption is poor; less than 1% of an oral dose is available systemically in rats. In the present studies, absorption was found to be predominantly in the upper part of the small intestine. Administration of buffered solutions of alendronate (pH 2-11) did not improve absorption. Whereas food markedly impaired the absorption of alendronate, EDTA enhanced absorption in a dose-dependent manner. Pretreatment of rats with ulcerogenic agents, mepirizole, acetylsalicylic acid, or indomethacin, resulted in a 3-7-fold increase in the oral absorption of alendronate. The absorption of phenol red, added as an indicator of intestinal tissue damage, was also increased in rats with experimental peptic ulcers. The enhanced absorption of alendronate observed in rats with experimental peptic ulcers was attributed to the alteration of the integrity of the intestinal membrane. PMID:7891304

  15. A Low-Cost Quantitative Absorption Spectrophotometer

    ERIC Educational Resources Information Center

    Albert, Daniel R.; Todt, Michael A.; Davis, H. Floyd

    2012-01-01

    In an effort to make absorption spectrophotometry available to high school chemistry and physics classes, we have designed an inexpensive visible light absorption spectrophotometer. The spectrophotometer was constructed using LEGO blocks, a light emitting diode, optical elements (including a lens), a slide-mounted diffraction grating, and a…

  16. VAPID: Voigt Absorption-Profile [Interstellar] Dabbler

    NASA Astrophysics Data System (ADS)

    Howarth, Ian D.

    2015-06-01

    VAPID (Voigt Absorption Profile [Interstellar] Dabbler) models interstellar absorption lines. It predicts profiles and optimizes model parameters by least-squares fitting to observed spectra. VAPID allows cloud parameters to be optimized with respect to several different data set simultaneously; those data sets may include observations of different transitions of a given species, and may have different S/N ratios and resolutions.

  17. Absorption of ozone by porous particles

    SciTech Connect

    Afanas'ev, V.P.; Dorofeev, S.B.; Sinitsyn, V.I.; Smirnov, B.M.

    1981-11-01

    The absorption of ozone by porous zeolite, silica gel, and activated carbon particles has been studied experimentally. It was shown that in addition to absorption, dissociation of ozone on the surface plays an important and sometimes decisive role. The results obtained were used to analyze the nature of ball lightning.

  18. Low absorptance porcelain-on-aluminum coating

    NASA Technical Reports Server (NTRS)

    Leggett, H.

    1979-01-01

    Porcelain thermal-control coating for aluminum sheet and foil has solar absorptance of 0.22. Specially formulated coating absorptance is highly stable, changing only 0.03 after 1,000 hours of exposure to simulated sunlight and can be applied by standard commercial methods.

  19. NICKEL ABSORPTION AND KINETICS IN HUMAN VOLUNTEERS

    EPA Science Inventory

    Mathematical modelling was performed of the kinetics of nickel absorption, distribution and elimination in healthy human volunteers, who ingested NiS04 in drinking water or added food. ickel was analyzed by electrothermal atomic absorption spectrophotometry in serum, urine, and f...

  20. Ultra high energy neutrinos: absorption, thermal effects and signatures

    SciTech Connect

    Lunardini, Cecilia; Sabancilar, Eray; Yang, Lili E-mail: Eray.Sabancilar@asu.edu

    2013-08-01

    We study absorption of ultra high energy neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the background on the resonant annihilation channel. For a hierarchical neutrino mass spectrum (with at least one neutrino with mass below ∼ 10{sup −2} eV), thermal effects are important for ultra high energy neutrino sources at z∼>16. The neutrino transmission probability shows no more than two separate suppression dips since the two lightest mass eigenstates contribute as a single species when thermal effects are included. Results are applied to a number of models of ultra high energy neutrino emission. Suppression effects are strong for sources that extend beyond z ∼ 10, which can be realized for certain top down scenarios, such as superheavy dark matter decays, cosmic strings and cosmic necklaces. For these, a broad suppression valley should affect the neutrino spectrum at least in the energy interval 10{sup 12}−10{sup 13} GeV — which therefore is disfavored for ultra high energy neutrino searches — with only a mild dependence on the neutrino mass spectrum and hierarchy. The observation of absorption effects would indicate a population of sources beyond z ∼ 10, and favor top-down mechanisms; it would also be an interesting probe of the physics of the relic neutrino background in the unexplored redshift interval z ∼ 10–100.

  1. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  2. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  3. Single-molecule imaging by optical absorption

    NASA Astrophysics Data System (ADS)

    Celebrano, Michele; Kukura, Philipp; Renn, Alois; Sandoghdar, Vahid

    2011-02-01

    To date, optical studies of single molecules at room temperature have relied on the use of materials with high fluorescence quantum yield combined with efficient spectral rejection of background light. To extend single-molecule studies to a much larger pallet of substances that absorb but do not fluoresce, scientists have explored the photothermal effect, interferometry, direct attenuation and stimulated emission. Indeed, very recently, three groups have succeeded in achieving single-molecule sensitivity in absorption. Here, we apply modulation-free transmission measurements known from absorption spectrometers to image single molecules under ambient conditions both in the emissive and strongly quenched states. We arrive at quantitative values for the absorption cross-section of single molecules at different wavelengths and thereby set the ground for single-molecule absorption spectroscopy. Our work has important implications for research ranging from absorption and infrared spectroscopy to sensing of unlabelled proteins at the single-molecule level.

  4. Absorption of carbonyl sulfide in aqueous methyldiethanolamine

    SciTech Connect

    Al-Ghawas, H.A.; Ruiz-Ibanez, G.; Sandall, O.C. )

    1988-01-01

    The absorption of carbonyl sulfide in aqueous methyldiethanolamine (MDEA) was studied over a range of temperatures and MDEA concentrations. MDEA is commonly used for selective absorption of hydrogen sulfide in the presence of carbon dioxide. However, sulfur in the form of COS may also be present and it is necessary that estimates of absorption rates of this compound be made. The objective of this study is to determine the physiochemical properties needed to predict COS absorption rates in aqueous MDEA. Free gas solubility and the diffusivity of COS in MDEA solutions were measured over the temperature range 15 to 40{sup 0}C for MDEA concentrations up to 30 weight per cent using the nitrous oxide analogy method. Solubilities were measured volumetrically in an equilibrium cell and diffusivities were measured using a laminar liquid jet absorber. The kinetics of the reaction between COS and MDEA were studied by measuring absorption rates in a single wetted-sphere absorber.

  5. Creating semiconductor metafilms with designer absorption spectra

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  6. Creating semiconductor metafilms with designer absorption spectra.

    PubMed

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  7. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  8. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  9. Effects of Varied Dietary Lipid Sources Tested in Tilapia Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary lipids are an important source of highly digestible energy and are the only source of essential fatty acids required for normal growth and development. They are also carriers and assist in the absorption of fat-soluble nutrients, such as sterols and vitamins A, D, E and K, serve as a source ...

  10. SPECTRAL RELATIVE ABSORPTION DIFFERENCE METHOD

    SciTech Connect

    Salaymeh, S.

    2010-06-17

    When analyzing field data, the uncertainty in the background continuum emission produces the majority of error in the final gamma-source analysis. The background emission typically dominates an observed spectrum in terms of counts and is highly variable spatially and temporally. The majority of the spectral shape of the background continuum is produced by combinations of cosmic rays, {sup 40}K, {sup 235}U, and {sup 220}Rn, and the continuum is similar in shape to the 15%-20% level for most field observations. However, the goal of spectroscopy analysis is to pick up subtle peaks (<%5) upon this large background. Because the continuum is falling off as energy increases, peak detection algorithms must first define the background surrounding the peak. This definition is difficult when the range of background shapes is considered. The full spectral template matching algorithms are heavily weighted to solving for the background continuum as it produces significant counts over much of the energy range. The most appropriate background mitigation technique is to take a separate background observation without the source of interest. But, it is frequently not possible to record a background observation in the exact location before (or after) a source has been detected. Thus, one uses approximate backgrounds that rely on spatially nearby locations or similar environments. Since the error in many field observations is dominated by the background, a technique that is less sensitive to the background would be quite beneficial. We report the result of an initial investigation into a novel observation scheme for gamma-emission detection in high background environments. Employing low resolution, NaI, detectors, we examine the different between the direct emission and the 'spectral-shadow' that the gamma emission produces when passed through a thin absorber. For this detection scheme to be competitive, it is required to count and analyze individual gamma-events. We describe the

  11. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  12. Characteristics of Single/Double-Effect Combination Absorption Refrigerator

    NASA Astrophysics Data System (ADS)

    Kimijima, Shinji; Waragai, Shisei; Uekusa, Tsuneo; Nakao, Masaki; Kawai, Sunao

    In recent years, co-generation system with fuel cell occupies the attention of the world from a standpoint of the environmental protection and the effective utilization of the energy. Since the waste heat of phosphoric acid fuel cell is recovered in two forms of steam (0.6 [MPa]) and hot water (65∼90 [°C]), this type of absorption refrigerator is driven by two heat sources. In this paper, we inquire the result of the experiment intented for this absorption refrigerator the standard cooling capacity of which is 35[kW]. It is recognized that there is a mutual intervention when the supply condition of steam pressure is changed. Also the effects of hot water temperature, cooling water temperature and chilled water temperature for the performance of this absorption refrigerator is clarified. As a result, the effectiveness of using steam and hot water simultaneously in year-round operation is shown. Furthermore, it is clarified that the utilization of the low boiling temperature medium as the heat transfer medium for air-conditioner is effective.

  13. Russian roulette efficiency in Monte Carlo resonant absorption calculations

    PubMed

    Ghassoun; Jehouani

    2000-10-01

    The resonant absorption calculation in media containing heavy resonant nuclei is one of the most difficult problems treated in reactor physics. Deterministic techniques need many approximations to solve this kind of problem. On the other hand, the Monte Carlo method is a reliable mathematical tool for evaluating the neutron resonance escape probability. But it suffers from large statistical deviations of results and long computation times. In order to overcome this problem, we have used the Splitting and Russian Roulette technique coupled separately to the survival biasing and to the importance sampling for the energy parameter. These techniques have been used to calculate the neutron resonance absorption in infinite homogenous media containing hydrogen and uranium characterized by the dilution (ratio of the concentrations of hydrogen to uranium). The punctual neutron source energy is taken at Es = 2 MeV and Es = 676.45 eV, whereas the energy cut-off is fixed at Ec = 2.768 eV. The results show a large reduction of computation time and statistical deviation, without altering the mean resonance escape probability compared to the usual analog simulation. The Splitting and Russian Roulette coupled to the survival biasing method is found to be the best methods for studying the neutron resonant absorption, particularly for high energies. A comparison is done between the Monte Carlo and deterministic methods based on the numerical solution of the neutron slowing down equations by the iterative method results for several dilutions. PMID:11003535

  14. ECH propagation and absorption experiments at 140 GHz in MTX

    SciTech Connect

    Fenstermacher, M.E.; Allen, S.L.; Casper, T.A.; Foote, J.H.; Hooper, E.B.; Johnston, S.; Lasnier, C.J.; Makowski, M.M.; Marinak, M.; Meyer, W.H.; Moller, J.M.; Rice, B.W.; Stallard, B.W.; Thomassen, K.I.; Wood, R.D. ); Oasa, K.; Ogawa, T.; Sakamoto, K. )

    1991-08-01

    Single pass absorption experiments using fundamental, O-mode ECH waves have been performed in the Microwave Tokamak Experiment (MTX) and found to be consistent with linear absorption theory, as predicted for the ECH source which is a 140 GHz, 400 kW CW gyrotron. These experiments provide the basis for comparison with future Free Electron Laser (FEL) experiments in which the absorption is predicted to be in the non-linear regime for P{sub FEL} {ge} 1 GW. The gyrotron power is coupled into a quasi-optical transmission line to the tokamak by a Vlasov antenna. The input power is measured by calorimeters located just outside the injection port and on the vacuum wall opposite the port. For plasma shots, the total transmitted power and its profile are measured. Temporal analysis of the thermistor signals compared with a heat diffusion model for the tiles gives the spatial profile of transmitted power. These measurements are compared with the stored energy increase by diamagnetism measurements, 3-D vacuum fields calculations and ray-tracing calculations of the transmitted power. 5 refs., 4 figs.

  15. 40 CFR 427.106 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wastewater pollutants into a publicly owned treatment works must comply with 40 CFR part 403. In addition... GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Vapor Absorption Subcategory §...

  16. 40 CFR 427.106 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wastewater pollutants into a publicly owned treatment works must comply with 40 CFR part 403. In addition... GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Vapor Absorption Subcategory §...

  17. Characterization of the X-ray absorption in the Galactic ISM

    NASA Astrophysics Data System (ADS)

    Gatuzz, E.; García, J.; Kallman, T.; Mendoza, C.

    2016-06-01

    The physical conditions of the Galactic interstellar medium (ISM) can be studied in detail through the high-resolution X-ray spectroscopy provided by the grating instruments in both Chandra and XMM-Newton. Using an X-ray source, which acts as a lamp, one can analyze the absorption features that are imprinted in the spectra by the gas located between the observer and the X-ray source, which offers the opportunity to study physical properties of the ISM such as ionization degree, column densities, and elemental abundances. We present a detailed analysis of the H, O, Ne, and Fe absorption in the X-ray spectra of 24 bright galactic sources obtained with the Chandra and XMM-Newton observatories. Implementing our new absorption model ISMabs, we have measured column densities, ionization fractions, and abundances for H, O, Ne, and Fe in the direction of each source. We find that the column densities tend to increase with source distance and decrease with galactic latitude, while the ionization fractions and abundances are mostly constant along every line of sight. Finally, we found that molecules and grains are not a major contributor to the absorption features in the O K-edge wavelength region.

  18. Absorption chillers: Technology for the future

    SciTech Connect

    Garland, P.W.; Garland, R.W.

    1997-12-31

    In an era of heightened awareness of energy efficiency and the associated environmental impacts, many industries worldwide are exploring ``environmentally friendly`` technologies that provide equivalent or improved performance while reducing or eliminating harmful side-effects. The refrigeration and air-conditioning industry, due to its reliance on CFCs and HCFCs, has invested in research in alternatives to the industry standard vapor compression machines. One alternative technology with great promise is chemical absorption. Absorption chillers offer comparable refrigeration output with reduced SO{sub 2}, CO{sub 2}, and NO{sub x} emissions. Absorption chillers do not use CFCs or HCFCs, refrigerants that contribute to ozone depletion and global warming. Additionally, gas-fired absorption chillers can save significant amounts in energy costs when used in combination with a vapor compression chiller in a hybrid system. The hybrid system can take advantage of the comparatively low price of natural gas (per unit ton) and rely on the high performance of vapor compression when electricity prices are lower. The purpose of this article is to provide an introduction for those new to absorption technology as well as a discussion of selected high efficiency cycles, a discussion on the technology of coupling absorption with vapor compression systems to form a hybrid system, and the environmental impacts of absorption.

  19. Direct Measurements of Brown Carbon Absorption in A Wide Range of Biomass Burning Plumes

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Pokhrel, R. P.; Beamesderfer, E.; Lack, D.; Langridge, J.; Wagner, N. L.

    2014-12-01

    Biomass burning represents one of the largest global sources of absorbing aerosol. Despite the importance of biomass burning emissions on the Earth's radiative balance, there remains significant uncertainty about the optical properties of emitted particles. Of particular interest is the impact of lensing on black carbon absorption and the impact of brown carbon. This presentation describes results from the Fire Lab at Missoula Experiment-4 (FLAME-4), which occurred in October 2012. Multi-channel photoacoustic (PAS) and Cavity Ringdown (CRDS) spectrometers were used to measure absorption, extinction, and absorption enhancement of aerosol particles produced from a wide range of globally relevant biomass fuels. Measurements were made at 405, 532, and 660 nm with duplicate channels at 405 and 660 measuring denuded particles, allowing for direct observation of the enhancement of absorption by black carbon particles caused by clear and brown organic coatings. Fuels were chosen based on their contribution to global wildfire emissions and a wide range of fuels will be discussed including some of the first optical measurements of Indonesian peat. The SSA and absorption angstrom exponent (AAE) of different biomass fuels will be explored and the relative importance of black and brown carbon emitted from different biomass fuels will be assessed, demonstrating that for certain fuels absorption from brown carbon is as important, or even more important than absorption from black carbon.

  20. Observations of aerosol light scattering, absorption, and particle morphology changes as a function of relative humidity

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Lewis, K.; Paredes-Miranda, G.; Winter, S.; Day, D.; Chakrabarty, R.; Moosmuller, H.; Jimenez, J. L.; Ulbrich, I.; Huffman, A.; Onasch, T.; Trimborn, A.; Kreidenweis, S.; Carrico, C.; Wold, C.; Lincoln, E.; Freeborn, P.; Hao, W.; McMeeking, G.

    2006-12-01

    A very interesting case of smoke aerosol with very low single scattering albedo, yet very large hygroscopic growth for scattering is presented. Several samples of chamise (Adenostoma fasciculatum), a common and often dominant species in California chaparral, were recently burned at the USFS Fire Science Laboratory in Missoula Montana, and aerosol optics and chemistry were observed, along with humidity-dependent light scattering, absorption, and particle morphology. Photoacoustic measurements of light absorption by two instruments at 870 nm, one on the dry channel, one on the humidified channel, showed strong reduction of aerosol light absorption with RH above 65 percent, and yet a strong increase in light scattering was observed both at 870 nm and 550 nm with nephelometers. Multispectral measurements of aerosol light absorption indicated an Angstrom coefficient for absorption near unity for the aerosols from chamise combustion. It is argued that the hygroscopic growth of scattering is due to uptake of water by the sulfur bearing aerosol. Furthermore, the reduction of aerosol light absorption is argued to be due to the collapse of chain aggregate aerosol as the RH increases wherein the interior of aerosol does no longer contribute to absorption. Implications for biomass burning in general are that humidity processing of aerosols from this source and others like it tends to substantially increase its single scattering albedo, probably in a non-reversible manner. The chemical pathway to hygroscopicity will be addressed.

  1. Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient

    NASA Astrophysics Data System (ADS)

    Hirasawa, T.; Ishihara, M.; Tsujita, K.; Hirota, K.; Irisawa, K.; Kitagaki, M.; Fujita, M.; Kikuchi, M.

    2012-02-01

    In photo-acoustic (PA) imaging, valuable medical applications based on optical absorption spectrum such as contrast agent imaging and blood oxygen saturation measurement have been investigated. In these applications, there is an essential requirement to determine optical absorption coefficients accurately. In present, PA signal intensities have been commonly used to determine optical absorption coefficients. This method achieves practical accuracy by combining with radiative transfer analysis. However, time consumption of radiative transfer analysis and effects of signal generation efficiencies were problems of this method. In this research, we propose a new method to determine optical absorption coefficients using continuous wavelet transform (CWT). We used CWT to estimate instantaneous frequencies of PA signals which reflects optical absorption distribution. We validated the effectiveness of CWT in determination of optical absorption coefficients through an experiment. In the experiment, planar shaped samples were illuminated to generate PA signal. The PA signal was measured by our fabricated PA probe in which an optical fiber and a ring shaped P(VDFTrFE) ultrasound sensor were coaxially aligned. Optical properties of samples were adjusted by changing the concentration of dye solution. Tunable Ti:Sapphire laser (690 - 1000 nm) was used as illumination source. As a result, we confirmed strong correlation between optical absorption coefficients of samples and the instantaneous frequency of PA signal obtained by CWT. Advantages of this method were less interference of light transfer and signal generation efficiency.

  2. Automatic Locking of Laser Frequency to an Absorption Peak

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.

    2006-01-01

    An electronic system adjusts the frequency of a tunable laser, eventually locking the frequency to a peak in the optical absorption spectrum of a gas (or of a Fabry-Perot cavity that has an absorption peak like that of a gas). This system was developed to enable precise locking of the frequency of a laser used in differential absorption LIDAR measurements of trace atmospheric gases. This system also has great commercial potential as a prototype of means for precise control of frequencies of lasers in future dense wavelength-division-multiplexing optical communications systems. The operation of this system is completely automatic: Unlike in the operation of some prior laser-frequency-locking systems, there is ordinarily no need for a human operator to adjust the frequency manually to an initial value close enough to the peak to enable automatic locking to take over. Instead, this system also automatically performs the initial adjustment. The system (see Figure 1) is based on a concept of (1) initially modulating the laser frequency to sweep it through a spectral range that includes the desired absorption peak, (2) determining the derivative of the absorption peak with respect to the laser frequency for use as an error signal, (3) identifying the desired frequency [at the very top (which is also the middle) of the peak] as the frequency where the derivative goes to zero, and (4) thereafter keeping the frequency within a locking range and adjusting the frequency as needed to keep the derivative (the error signal) as close as possible to zero. More specifically, the system utilizes the fact that in addition to a zero crossing at the top of the absorption peak, the error signal also closely approximates a straight line in the vicinity of the zero crossing (see Figure 2). This vicinity is the locking range because the linearity of the error signal in this range makes it useful as a source of feedback for a proportional + integral + derivative control scheme that

  3. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  4. On the statistics of quasar absorption lines

    NASA Astrophysics Data System (ADS)

    Zuiderwijk, E. J.

    1984-12-01

    The distribution of absorption lines in 13 quasar spectra is analyzed and shown to be fully consistent with the hypothesis of randomly, but not uniformly, distributed absorption features. The analysis by Libby et al. (1984), in which it is claimed that the number of wavelength coincidences among absorption lines in different quasar spectra (as measured in the rest frame of the quasars) is much larger than expected, implying absorbers in the quasars themselves, is totally invalid. Instead, the number of these coincidences is fully commensurate with the expected one on the assumption of randomness.

  5. Strong terahertz absorption using thin metamaterial structures

    SciTech Connect

    Alves, Fabio; Kearney, Brian; Grbovic, Dragoslav; Lavrik, Nickolay V; Karunasiri, Gamani

    2012-01-01

    Metamaterial absorbers with nearly 100% absorption in the terahertz (THz) spectral band have been designed and fabricated using a periodic array of aluminum (Al) squares and an Al ground plane separated by a thin silicon dioxide (SiO{sub 2}) dielectric film. The entire structure is less than 1.6 mm thick making it suitable for the fabrication of microbolometers or bi-material sensors for THz imaging. Films with different dielectric layer thicknesses exhibited resonant absorption at 4.1, 4.2, and 4.5 THz with strengths of 98%, 95%, and 88%, respectively. The measured absorption spectra are in good agreement with simulations using finite element modeling.

  6. Coherent perfect absorption in chiral metamaterials.

    PubMed

    Ye, Yuqian; Hay, Darrick; Shi, Zhimin

    2016-07-15

    We study the coherent perfect absorption (CPA) of a chiral structure and derive analytically the CPA condition for transversely isotropic chiral structures in circular polarization bases. The coherent absorption of such a chiral system is generally polarization dependent and can be tuned by the relative phase between the coherent input beams. To demonstrate our theoretical predictions, a chiral metamaterial absorber operating in the terahertz frequency range is optimized. We numerically demonstrate that a coherent absorption of 99.5% can be achieved. Moreover, we show that an optimized CPA chiral structure can be used as an interferometric control of polarization state of the output beams with constant output intensity. PMID:27420535

  7. Total absorption by degenerate critical coupling

    SciTech Connect

    Piper, Jessica R. Liu, Victor; Fan, Shanhui

    2014-06-23

    We consider a mirror-symmetric resonator with two ports. We show that, when excited from a single port, complete absorption can be achieved through critical coupling to degenerate resonances with opposite symmetry. Moreover, any time two resonances with opposite symmetry are degenerate in frequency and absorption is always significantly enhanced. In contrast, when two resonances with the same symmetry are nearly degenerate, there is no absorption enhancement. We numerically demonstrate these effects using a graphene monolayer on top of a photonic crystal slab, illuminated from a single side in the near-infrared.

  8. Selective coherent perfect absorption in metamaterials

    SciTech Connect

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng; Shi, Jinhui

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  9. United States Department of Energy large commercial absorption chiller development program

    SciTech Connect

    Garland, P.W.; DeVault, R.C.; Zaltash, A.

    1998-11-01

    The US Department of Energy (DOE) is working with partners from the gas cooling industry to improve energy efficiency and US competitiveness by using advanced absorption technologies that eliminate the use of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), refrigerants that contribute to ozone depletion and global warming. Absorption cooling uses natural gas as the heat source, which produces much lower NO{sub x} emissions than oil- or coal-generated electricity. Gas-fired chillers also have the advantage of helping reduce peak electrical usage during summer months. To assist industry in developing advanced absorption cooling technologies, DOE sponsors the Large Commercial Chiller Development Program. The goal of the program is to improve chiller cooling efficiency by 30--50% compared with the best currently available absorption systems.

  10. VizieR Online Data Catalog: High galactic latitude HI absorption survey (Mohan+, 2004)

    NASA Astrophysics Data System (ADS)

    Mohan, R.; Dwarakanath, K. S.; Srinivasan, G.

    2006-06-01

    We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|b|>15{deg}) Galactic latitudes. The Declination coverage of the present survey is DE~-45{deg}. With a mean rms optical depth of ~0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results. (2 data files).

  11. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-04-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disk. This is consistent with the uniformity of spin temperature measured across the Galactic disk. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in disks of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of <ν _{_TO}>≈ 5× 108 Hz, compared to <ν _{_TO}>≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  12. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    PubMed

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring. PMID:27410280

  13. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-07-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disc. This is consistent with the uniformity of spin temperature measured across the Galactic disc. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in discs of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of < ν _{_TO}rangle ≈ 5× 108 Hz, compared to < ν _{_TO}rangle ≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  14. Light Source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Research on food growth for long duration spacecraft has resulted in a light source for growing plants indoors known as Qbeam, a solid state light source consisting of a control unit and lamp. The light source, manufactured by Quantum Devices, Inc., is not very hot, although it generates high intensity radiation. When Ron Ignatius, an industrial partner of WCSAR, realized that terrestrial plant research lighting was not energy efficient enough for space use, he and WCSAR began to experiment with light emitting diodes. A line of LED products was developed, and QDI was formed to market the technology. An LED-based cancer treatment device is currently under development.

  15. Absorption of Sunlight by Water Vapor in Cloudy Conditions: A Partial Explanation for the Cloud Absorption Anomaly

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    1997-01-01

    The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 W/sq m. The origin of this anomalous absorption is not yet known, but it has been attributed to a variety of sources including oversimplified or missing physical processes in these models, uncertainties in the input data, and even measurement errors. Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere. We found that the amount of sunlight absorbed by a cloudy atmosphere is inversely proportional to the solar zenith angle and the cloud top height, and directly proportional to the cloud optical depth and the water vapor concentration within the clouds. Atmospheres with saturated, optically-thick, low clouds absorbed about 12 W/sq m more than clear atmospheres. This accounts for about 1/2 to 1/3 of the anomalous ab- sorption. Atmospheres with optically thick middle and high clouds usually absorb less than clear atmospheres. Because water vapor is concentrated within and below the cloud tops, this absorber is most effective at small solar zenith angles. An additional absorber that is distributed at or above the cloud tops is needed to produce the amplitude and zenith angle dependence of the observed anomalous absorption.

  16. Ultraviolet absorption cross sections of Cl sub 2 O sub 2 between 210 and 410 nm

    SciTech Connect

    Burkholder, J.B.; Orlando, J.J.; Howard, C.J. Univ. of Colorado, Boulder )

    1990-01-25

    The ultraviolet and infrared absorption cross sections of Cl{sub 2}O{sub 2} have been measured. The transient Cl{sub 2}O{sub 2} molecule was produced by using the gas-phase reaction ClO + ClO + M {yields} Cl{sub 2}O{sub 2} + M. Three independent ClO radical source reactions were used in this study: Cl + O{sub 3}, Cl + Cl{sub 2}O, and Cl + OClO. The Cl{sub 2}O{sub 2} UV absorption spectrum was recorded over the range 200-450 nm with a diode array spectrometer over the temperature range 205-250 K. The Cl{sub 2}O{sub 2} infrared absorption spectrum was recorded with a high-resolution Fourier transform spectrometer over the range 500-2,000 cm{sup {minus}1}. Both spectrometers were optically coupled to a fast flow multipass absorption cell. The UV absorption spectrum of Cl{sub 2}O{sub 2} is a structureless continuum with a peak at 245 nm. The measurable absorption extends out to 410 nm. The UV absorption cross section at the peak of the spectrum, 245 nm, was measured to be (6.5{sub {minus}0.5}{sup +0.8}) {times} 10{sup {minus}18} cm{sup 2}. Infrared absorption features centered at 560, 653, and 750 cm{sup {minus}1} have been assigned to the Cl{sub 2}O{sub 2} molecule. The present results are compared with other reported UV and IR measurements and the sources of discrepancies are discussed. The role of Cl{sub 2}O{sub 2} in atmospheric chemistry and in particular the Antarctic ozone hole are discussed.

  17. NEUTRON SOURCES

    DOEpatents

    Richmond, J.L.; Wells, C.E.

    1963-01-15

    A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

  18. Triple-effect absorption chiller cycles

    SciTech Connect

    DeVault, R.C.; Grossman, G.

    1992-06-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the ``triple effect.`` A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  19. Triple-effect absorption chiller cycles

    SciTech Connect

    DeVault, R.C. ); Grossman, G. )

    1992-01-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the triple effect.'' A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  20. Absorption chillers: Part of the solution

    SciTech Connect

    Occhionero, A.J. ); Hughes, P.J. ); Reid, E.A. )

    1991-01-01

    Acid rain, ozone depletion, global warming, and implementation economics are considered as they relate to the advisability of expanding the application of absorption chillers. Introductory and background information are provided to put the discussion in the proper context. Then all four issues are discussed separately as they relate to absorption chillers. Acid rain and ozone depletion concerns, and implementation economics, are found to support the expanded use of absorption chillers. The global warming concern is found to be more of a gray area, but the areas of benefit correspond well with the conditions of greatest economic advantage. All things considered, absorption chillers are believed to be part of the environmental and economic solution. It is further believed that integrated resource planning (IRP) processes that consider electric and gas technologies on an equal footing would come to the same conclusion for many regions of the United States. 9 refs., 3 tabs.

  1. Narrow Absorption Components in Be Star Winds

    NASA Technical Reports Server (NTRS)

    Grady, C. A.

    1985-01-01

    The stars omega Ori (B2 IIIe), 66 Oph (B2 IVe), and 59 Cyg (B1.5 IVe) are discussed. The extent to which the narrow absorption components in these Be stars differs from narrow components in the O stars and gamma Cas is explored. Any models or mechanisms for the formation of narrow absorption features in the UV resonance lines of Be star spectra must account for the presence of multiple narrow absorption features which are variable in number, radial velocity, and strength. Models predicting a high and low density structure to the stellar wind caused by instabilities in a flow driven by radiation pressure or by variable mass loss may be more successful in describing the behavior of winds in early Be stars. These models appear to be capable of producing single absorption components in the velocity range observed for O stars and very early Be stars.

  2. Electromagnetically induced absorption via incoherent collisions

    SciTech Connect

    Yang Xihua; Sheng Jiteng; Xiao Min

    2011-10-15

    We conduct theoretical studies on electromagnetically induced absorption via incoherent collisions in an inhomogeneously broadened ladder-type three-level system with the density-matrix approach. The effects of the collision-induced coherence decay rates as well as the probe laser field intensity on the probe field absorption are examined. It is shown that with the increase of the collisional decay rates in a moderate range, a narrow dip due to electromagnetically induced transparency superimposed on the Doppler-broadened absorption background can be turned into a narrow peak under the conditions that the probe field intensity is not very weak as compared to the pump field, which results from the enhancement of constructive interference and suppression of destructive interference between one-photon and multiphoton transition pathways. The physical origin of the collision-assisted electromagnetically induced absorption is analyzed with a power-series solution of the density-matrix equations.

  3. Induced Transparency and Absorption in Coupled Microresonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok

    2004-01-01

    We review the conditions for the occurrence of coherence phenomena in passive coupled optical microresonators. We derive the effective steady-state response and determine conditions for induced transparency and absorption in these systems.

  4. Absorption enhancement in graphene photonic crystal structures.

    PubMed

    Khaleque, Abdul; Hattori, Haroldo T

    2016-04-10

    Graphene, a single layer of carbon atoms arranged in a honeycomb lattice, is attracting significant interest because of its potential applications in electronic and optoelectronic devices. Although graphene exhibits almost uniform absorption within a large wavelength range, its interaction with light is weak. In this paper, the enhancement of the optical absorption in graphene photonic crystal structures is studied: the structure is modified by introducing scatterers and mirrors. It is shown that the absorption of the graphene photonic crystal structure can be enhanced about four times (nearly 40%) with respect to initial reference absorption of 9.8%. The study can be a useful tool for investigating graphene physics in different optical settings. PMID:27139857

  5. Absorption cross section of canonical acoustic holes

    SciTech Connect

    Crispino, Luis C. B.; Oliveira, Ednilton S.; Matsas, George E. A.

    2007-11-15

    We compute numerically the absorption cross section of a canonical acoustic hole for sound waves with arbitrary frequencies. Our outputs are in full agreement with the expected low- and high-frequency limits.

  6. Impedance Characteristics of the Plasma Absorption Probe

    NASA Astrophysics Data System (ADS)

    Yamazawa, Yohei

    2009-10-01

    The plasma absorption probe (PAP) is a diagnostics for determination of spatially resolved electron density.footnotetextH. Kokura, et al., Jpn. J. Appl. Phys. 38 5262 (1999). PAP has attracted considerable interest because of its applicability in a reactive plasma. The simple structure of the probe allows us a robust measurement while the mechanism of the absorption is complicated and there are still some uncertainty.footnotetextM. Lapke, et al., Appl. Phys. Lett. 90, 121502 (2007) In this study, we focus on the frequency characteristics of the impedance instead of the absorption spectrum. An electromagnetic field simulation reveals that there is only one parallel resonance in the impedance characteristics even in a case there are many peaks in absorption spectrum. Thus, the impedance characteristics provide a clue to understanding the mechanism.

  7. Multiphoton absorption in amyloid protein fibres

    NASA Astrophysics Data System (ADS)

    Hanczyc, Piotr; Samoc, Marek; Norden, Bengt

    2013-12-01

    Fibrillization of peptides leads to the formation of amyloid fibres, which, when in large aggregates, are responsible for diseases such as Alzheimer's and Parkinson's. Here, we show that amyloids have strong nonlinear optical absorption, which is not present in native non-fibrillized protein. Z-scan and pump-probe experiments indicate that insulin and lysozyme β-amyloids, as well as α-synuclein fibres, exhibit either two-photon, three-photon or higher multiphoton absorption processes, depending on the wavelength of light. We propose that the enhanced multiphoton absorption is due to a cooperative mechanism involving through-space dipolar coupling between excited states of aromatic amino acids densely packed in the fibrous structures. This finding will provide the opportunity to develop nonlinear optical techniques to detect and study amyloid structures and also suggests that new protein-based materials with sizable multiphoton absorption could be designed for specific applications in nanotechnology, photonics and optoelectronics.

  8. Absorption refrigeration machine driven by solar heat

    NASA Astrophysics Data System (ADS)

    Keizer, C.; Liem, S. H.

    1980-04-01

    A mathematical model of a single and a two stage solar absorption refrigeration system is developed in which data of collectors and weather data can be implicated. The influence of the generator, the absorber efficiencies, and the cooling temperature on the coefficient of performance (COP) of a single and two stage absorption refrigeration process are investigated. For low generator temperatures the absorber efficiency has more influence on COP than the generator efficiency. Only spectral selective double window and high performance collectors can be used for air cooled solar absorption refrigeration systems at an evaporator temperature of -5 C. It is concluded that a water cooled solar absorption refrigeration system in combination with a solar tapwater installation for household use can be achieved with 6 to 8 square meters high performance collector area.

  9. High energy X-ray phase and dark-field imaging using a random absorption mask

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  10. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  11. Seasonal Solar Thermal Absorption Energy Storage Development.

    PubMed

    Daguenet-Frick, Xavier; Gantenbein, Paul; Rommel, Mathias; Fumey, Benjamin; Weber, Robert; Gooneseker, Kanishka; Williamson, Tommy

    2015-01-01

    This article describes a thermochemical seasonal storage with emphasis on the development of a reaction zone for an absorption/desorption unit. The heat and mass exchanges are modelled and the design of a suitable reaction zone is explained. A tube bundle concept is retained for the heat and mass exchangers and the units are manufactured and commissioned. Furthermore, experimental results of both absorption and desorption processes are presented and the exchanged power is compared to the results of the simulations. PMID:26842331

  12. Percutaneous absorption in diseased skin: an overview.

    PubMed

    Chiang, Audris; Tudela, Emilie; Maibach, Howard I

    2012-08-01

    The stratum corneum's (SC) functions include protection from external hazardous environments, prevention of water loss and regulation of body temperature. While intact skin absorption studies are abundant, studies on compromised skin permeability are less common, although products are often used to treat affected skin. We reviewed literature on percutaneous absorption through abnormal skin models. Tape stripping is used to disrupt water barrier function. Studies demonstrated that physicochemical properties influence the stripping effect: water-soluble drugs are more affected. Abrasion did not affect absorption as much. Freezing is commonly used to preserve skin. It does not seem to modify water absorption, but still increases the penetration of compounds. Comparatively, heating the skin consistently increased percutaneous absorption. Removing SC lipids may increase percutaneous absorption of drugs. Many organic solvents are employed to delipidize. Delipidization with chloroform-methanol increased hydrophilic compound permeability, but not lipophilic. Acetone pre-treatment enhanced hydrophilic compound penetration. More data is needed to determine influence on highly lipophilic compound penetration. Sodium lauryl sulfate (SLS) induces irritant dermatitis and is frequently used as a model. Studies revealed that SLS increases hydrophilic compound absorption, but not lipophilic. However, skin irritation with other chemicals increases lipophilic penetration as much as hydrophilic. Animal studies show that UV exposure increases percutaneous absorption whereas human studies do not. Human studies show increased penetration in psoriatic and atopic dermatitis skin. The data summarized here begin to characterize flux alteration associated with damaged skin. Understanding the degree of alteration requires interpretation of involved conditions and the enlarging of our database to a more complete physicochemical spectrum. PMID:22912973

  13. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  14. The economics of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    Analytic procedure evaluates cost of combining absorption-cycle chiller with solar-energy system in residential or commercial application. Procedure assumes that solar-energy system already exists to heat building and that cooling system must be added. Decision is whether to cool building with conventional vapor-compression-cycle chiller or to use solar-energy system to provide heat input to absorption chiller.

  15. First Detection of HCO+ Absorption in the Magellanic System

    NASA Astrophysics Data System (ADS)

    Murray, Claire E.; Stanimir´, Snežana; McClure-Griffiths, N. M.; Putman, M. E.; Liszt, H. S.; Wong, Tony; Richter, P.; Dawson, J. R.; Dickey, John M.; Lindner, Robert R.; Babler, Brian L.; Allison, J. R.

    2015-07-01

    We present the first detection of HCO+ absorption in the Magellanic System. Using the ATCA, we observed nine extragalactic radio continuum sources behind the Magellanic System and detected HCO+ absorption toward one source located behind the leading edge of the Magellanic Bridge. The detection is located at an LSR velocity of v=214.0+/- 0.4 {km} {{{s}}}-1, with an FWHM of {{Δ }}v=4.5+/- 1.0 {km} {{{s}}}-1, and an optical depth of τ ({{HCO}}+)=0.10+/- 0.02. Although there is abundant neutral hydrogen (H i) surrounding the sight line in position-velocity space, at the exact location of the absorber the H i column density is low, \\lt {10}20 {{cm}}-2, and there is little evidence for dust or CO emission from Planck observations. While the origin and survival of molecules in such a diffuse environment remain unclear, dynamical events such as H i flows and cloud collisions in this interacting system likely play an important role.

  16. High Performance Drying System Using Absorption Temperature Amplifier

    NASA Astrophysics Data System (ADS)

    Nishimura, Nobuya; Nomura, Tomohiro; Yabushita, Akihiro; Kashiwagi, Takao

    A computer simulation has been developed on transient drying process in order to predict the dynamic thermal performance of a new superheated steam drying system using an absorption type temperature amplifier as a steam superheater. A feature of this drying system is that one can reuse the exhausted superheated stream conventionally discharged from the dryer as a driving heat source for the generator in this heat pump. But in the transient drying process, the evaporation of moisture sharply decreases. Accordingly, it is hardly expected to reuse an exhausted superheated steam as heating source for the generator. 80 the effects of this exhausted superheated steam and of changes in hot water and the cooling water temperatures were mainly investigated checking whether this drying system can be driven directly by the low level energy of sun or waste heat. Furthermore, the system performances of this drying system were evaluated on a qualitative-basis by using the exergy efficiency. The results show that, under the transient drying conditions, the temperature boost of superheated steam is possible at a high temperature and thus the absorption type temperature amplifier can be an effective steam superheater system.

  17. Detection of palladium by cold atom solution atomic absorption.

    PubMed

    Molloy, John L; Holcombe, James A

    2006-09-15

    One of the largest obstacles in miniaturizing traditional atomic spectroscopic sources is the need for a thermal/electrical source for free atom production. A single article in the literature has demonstrated atomic absorption detection of Ag, Cu, and Pd in solution at room temperature for atoms in the gas phase, which may ultimately permit miniaturization. Unfortunately, several laboratories have found that reproducing the phenomenon has been difficult. Without a sound fundamental explanation of the processes leading to the signal, one must conclude that it can be done, but some unsuspected and unknown design/methodological nuances are responsible for only a single reported success. Gas phase atoms could exist at room temperature "in solution" if the atoms were trapped in very small bubbles. In the current study, submicrometer-sized bubbles were created in a flow-through cell during the mixing of an alcohol-water solution containing a reducing agent with water containing the analyte. A repeatable atomic absorption signal was produced. Replacement of ethanol with 1-propanol and use of a surfactant increased the signal. Limits of detection of approximately 100 ppb in Pd were achieved, and it is estimated that approximately 0.4% of the Pd initially added is contained within the bubbles as gaseous atoms. The paper discusses the fundamental processes needed to achieve a repeatable signal. PMID:16970344

  18. Oxygen, neon, and iron X-ray absorption in the local interstellar medium

    NASA Astrophysics Data System (ADS)

    Gatuzz, Efraín; García, Javier A.; Kallman, Timothy R.; Mendoza, Claudio

    2016-04-01

    Aims: We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods: By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results: We have determined the absorbing material distribution as a function of source distance and galactic latitude-longitude. Conclusions: Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  19. Geometric absorption of electromagnetic angular momentum

    NASA Astrophysics Data System (ADS)

    Konz, C.; Benford, Gregory

    2003-10-01

    Circularly polarized electromagnetic fields carry both energy and angular momentum. We investigate the conditions under which a circularly polarized wave field transfers angular momentum to a perfectly conducting macroscopic object, using exact electromagnetic wave theory in a steady-state calculation. We find that axisymmetric perfect conductors cannot absorb or radiate angular momentum when illuminated. However, any asymmetry allows absorption. A rigorous, steady-state solution of the boundary value problem for the reflection from a perfectly conducting infinite wedge shows that waves convey angular momentum at the edges of asymmetries. Conductors can also radiate angular momentum, so their geometric absorption coefficient for angular momentum can be negative. Such absorption or radiation depends solely on the specific geometry of the conductor. The geometric absorption coefficient can be as high as 0.8, and the coefficient for radiation can be -0.4, larger than typical material absorption coefficients. We apply the results to recent experiments which spun roof-shaped aluminum sheets with polarized microwave beams. Applications of geometric, instead of material, absorption can be quite varied. Though experiments testing these ideas will be simpler at microwavelengths, the ideas work for optical ones as well.

  20. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  1. Spectral Absorption Properties of Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.

    2007-01-01

    We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.

  2. Gamma ray astronomy. [source mechanisms review

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D.

    1974-01-01

    The various source mechanisms for celestial gamma rays are reviewed. The gamma-ray data are examined as a source of information about the processes and source locations for the production of charged particle cosmic rays, galactic structure, explosive nucleosynthesis in supernovae, regions of confinement for cosmic rays, regions where matter-antimatter annihilation occurs, and the general condition in cosmological space both in the past and present. Topics include gamma rays from pi mesons by nuclear interactions, nuclear and supernovae lines, diffuse emission and discrete sources, interstellar absorption and detection of gamma rays, and others. A brief view of the available gamma-ray detection systems and techniques is presented.

  3. Resonant absorption and not-so-resonant absorption in short, intense laser irradiated plasma

    SciTech Connect

    Ge, Z. Y.; Zhuo, H. B.; Ma, Y. Y.; Yang, X. H.; Yu, T. P.; Zou, D. B.; Yin, Y.; Shao, F. Q.; Yu, W.; Luan, S. X.; Zhou, C. T.; Institute of Applied Physics and Computational Mathematics, Beijing 100088 ; Peng, X. J.

    2013-07-15

    An analytical model for laser-plasma interaction during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. Both the resonant absorption and not-so-resonant absorption are self-consistently included. Different from the previous theoretical works, the physics of resonant absorption is found to be valid in more general conditions as the steepening of the electron density profile is considered. Even for a relativistic intensity laser, resonant absorption can still exist under certain plasma scale length. For shorter plasma scale length or higher laser intensity, the not-so-resonant absorption tends to be dominant, since the electron density is steepened to a critical level by the ponderomotive force. The laser energy absorption rates for both mechanisms are discussed in detail, and the difference and transition between these two mechanisms are presented.

  4. Brute force absorption contrast microtomography

    NASA Astrophysics Data System (ADS)

    Davis, Graham R.; Mills, David

    2014-09-01

    In laboratory X-ray microtomography (XMT) systems, the signal-to-noise ratio (SNR) is typically determined by the X-ray exposure due to the low flux associated with microfocus X-ray tubes. As the exposure time is increased, the SNR improves up to a point where other sources of variability dominate, such as differences in the sensitivities of adjacent X-ray detector elements. Linear time-delay integration (TDI) readout averages out detector sensitivities on the critical horizontal direction and equiangular TDI also averages out the X-ray field. This allows the SNR to be increased further with increasing exposure. This has been used in dentistry to great effect, allowing subtle variations in dentine mineralisation to be visualised in 3 dimensions. It has also been used to detect ink in ancient parchments that are too damaged to physically unroll. If sufficient contrast between the ink and parchment exists, it is possible to virtually unroll the tomographic image of the scroll in order that the text can be read. Following on from this work, a feasibility test was carried out to determine if it might be possible to recover images from decaying film reels. A successful attempt was made to re-create a short film sequence from a rolled length of 16mm film using XMT. However, the "brute force" method of scaling this up to allow an entire film reel to be imaged presents a significant challenge.

  5. Near-infrared spectrum of ZrF by intracavity laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Harms, Jack C.; O'Brien, Leah C.; Ni, Ann; Mahkdoom, Bilal; O'Brien, James J.

    2015-04-01

    The (1, 1) band of the CΩ = 3/2 - X2Δ3/2 transition of ZrF has been recorded at high resolution using intracavity laser absorption spectroscopy. The ZrF molecules were produced using a Zr-lined copper hollow cathode sputter source with a trace amount of SF6 as a fluoride source. Molecular constants from the analysis are presented and compared with previous work.

  6. Capturing Transient Electronic and Molecular Structures in Liquids by Picosecond X-Ray Absorption Spectroscopy

    SciTech Connect

    Gawelda, W.; Pham, V. T.; El Nahhas, A.; Kaiser, M.; Zaushitsyn, Y.; Bressler, C.; Chergui, M.; Johnson, S. L.; Grolimund, D.; Abela, R.; Hauser, A.

    2007-02-02

    We describe an advanced setup for time-resolved x-ray absorption fine structure (XAFS) Spectroscopy with picosecond temporal resolution. It combines an intense femtosecond laser source synchronized to the x-ray pulses delivered into the microXAS beamline of the Swiss Light Source (SLS). The setup is applied to measure the short-lived high-spin geometric structure of photoexcited aqueous Fe(bpy)3 at room temperature.

  7. Social Networks, Social Media and Absorptive Capacity in Regional Small and Medium Enterprises (SMES) in Australia

    ERIC Educational Resources Information Center

    Bosua, Rachelle; Evans, Nina; Sawyer, Janet

    2013-01-01

    Small and Medium Enterprises (SMEs) are major sources of prosperity and employment and are viewed as critical to regional development in Australia. A key factor to foster productivity and growth in SMEs is their ability to identify, acquire, transform and exploit external knowledge. This ability, referred to as the "absorptive capacity…

  8. Protein intake and calcium absorption – Potential role of the calcium sensor receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary protein induces calcium excretion but the source of this calcium is unclear. Evidence from short-term studies indicates that protein promotes bone resorption, but many epidemiologic studies do not corroborate this. Evidence is also mixed on weather protein promotes calcium absorption. Stud...

  9. Absorption of Anthocyanins from Berries: Metabolic Products and Influence of Glycoside

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanins (ACNs) are unique among the flavonoids in that they are absorbed as the intact glycoside. Berries are rich sources of anthocyanins; differences among the berries in aglycone as well as in sugar moieties provide opportunities to study factors that influence absorption/metabolism. The rel...

  10. Water-related absorption in fibrous diamonds

    NASA Astrophysics Data System (ADS)

    Zedgenizov, D. A.; Shiryaev, A. A.; Kagi, H.; Navon, O.

    2003-04-01

    Cubic and coated diamonds from several localities (Brasil, Canada, Yakutia) were investigated using spectroscopic techniques. Special emphasis was put on investigation of water-related features of transmission Infra-red and Raman spectra. Presence of molecular water is inferred from broad absorption bands in IR at 3420 and 1640 cm-1. These bands were observed in many of the investigated samples. It is likely that molecular water is present in microinclusions in liquid state, since no clear indications of solid H_2O (ice VI-VII, Kagi et al., 2000) were found. Comparison of absorption by HOH and OH vibrations shows that diamonds can be separated into two principal groups: those containing liquid water (direct proportionality of OH and HOH absorption) and those with stronger absorption by OH group. Fraction of diamonds in every group depends on their provenance. There might be positive correlation between internal pressure in microinclusions (determined using quartz barometer, Navon et al., 1988) and affiliation with diamonds containing liquid water. In many cases absorption by HOH vibration is considerably lower than absorption by hydroxyl (OH) group. This may be explained if OH groups are partially present in mineral and/or melt inclusions. This hypothesis is supported by following fact: in diamonds with strong absorption by silicates and other minerals shape and position of the OH band differs from that in diamonds with low absorption by minerals. Moreover, in Raman spectra of individual inclusions sometimes the broad band at 3100 cm-1 is observed. This band is OH-related. In some samples water distribution is not homogeneous. Central part of the diamond usually contains more water than outer parts, but this is not a general rule for all the samples. Water absorption usually correlated with absorption of other components (carbonates, silicates and others). At that fibrous diamonds with relatively high content of silicates are characterized by molecular water. OH

  11. Optical absorption components of light-modulated absorption spectrum of CdS

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Long, E. R.

    1975-01-01

    The amplitude and decay coefficient of light-induced modulation of absorption (LIMA) was measured as a function of wavelength from 535 to 850 nm for single-crystal CdS. The decay coefficient exhibited a discontinuous resonance at 710 nm which was due to the overlap and cancellation of two opposing absorption changes. A method was developed to separate these opposing absorption changes using the measured decay coefficients. The discrete-level-to-band energy for one absorption change was found to be 1.64 eV. An improved model was developed which contains two associated levels in the band gap separated by 0.32 eV.

  12. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  13. ION SOURCE

    DOEpatents

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  14. Crowd Sourcing.

    PubMed

    Baum, Neil

    2016-01-01

    The Internet has contributed new words and slang to our daily vernacular. A few terms, such as tweeting, texting, sexting, blogging, and googling, have become common in most vocabularies and in many languages, and are now included in the dictionary. A new buzzword making the rounds in industry is crowd sourcing, which involves outsourcing an activity, task, or problem by sending it to people or groups outside a business or a practice. Crowd sourcing allows doctors and practices to tap the wisdom of many instead of relying only on the few members of their close-knit group. This article defines "crowd sourcing," offers examples, and explains how to get started with this approach that can increase your ability to finish a task or solve problems that you don't have the time or expertise to accomplish. PMID:27039640

  15. Absorption of low-loss optical materials measured at 1064 nm by a position-modulated collinear photothermal detection technique.

    PubMed

    Loriette, Vincent; Boccara, Claude

    2003-02-01

    A collinear photothermal detection bench is described that makes use of a position-modulated heating source instead of the classic power-modulated source. This new modulation scheme increases by almost a factor 2 the sensitivity of a standard mirage bench. This bench is then used to measure the absorption coefficient of OH-free synthetic fused silica at 1064 nm in the parts per 10(6) range, which, combined with spectrophotometric measurements, confirms that the dominant absorption source is the OH content. PMID:12564484

  16. Intergalactic Helium Absorption toward High-Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Fardal, Mark A.; Shull, J. Michael

    1995-01-01

    The recent Hubble Space Telescope (HST) observations of the z(q) = 3.286 quasar Q0302-003 (Jakobsen et at. 1994) and the z(q) = 3.185 quasar Q1935-67 by Tytler (1995) show absorption edges at the redshifted wavelength of He II 304 A. A key goal is to distinguish between contributions from discrete Ly-alpha forest clouds and a smoothly distributed intergalactic medium (IGM). We model the contributions from each of these sources of He II absorption, including the distribution of line Doppler widths and column densities, the 'He II proximity effect' from the quasar, and a self-consistent derivation of the He II opacity of the universe as a function of the spectrum of ionizing sources, with the assumption that both the clouds and the IGM are photoionized. The He II edge can be fully accounted for by He II line blanketing for reasonable distributions of line widths and column densities in the Ly-alpha forest, provided that the ionizing sources have spectral index alpha(s) greater than 1.5, and any He II proximity effect is neglected. Even with some contribution from a diffuse IGM, it is difficult to account for the edge observed by Jakobsen et al. (1994) with a 'hard' source spectrum (alpha(s) less than 1.3). The proximity effect modifies the relative contributions of the clouds and IGM to tau(He II) near the quasar (z approx. less than z(q)) and markedly increases the amount of He II absorption required. This implies, for example, that to account for the He II edge with line blanketing alone, the minimum spectral index alpha(s) must be increased from 1.5 to 1.9. We demonstrate the need for higher resolution observations that characterize the change in transmission as z approaches z(q) and resolve line-free gaps in the continuum. We set limits on the density of the diffuse IGM and suggest that the IGM and Ly-alpha clouds are likely to be a significant repository for dark baryons.

  17. NEUTRON SOURCE

    DOEpatents

    Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

    1959-01-13

    A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

  18. RADIATION SOURCES

    DOEpatents

    Brucer, M.H.

    1958-04-15

    A novel long-lived source of gamma radiation especially suitable for calibration purposes is described. The source of gamma radiation is denoted mock iodine131, which comprises a naixture of barium-133 and cesium-137. The barium and cesium are present in a barium-cesium ratio of approximately 5.7/1 to 14/1, uniformly dispersed in an ion exchange resin and a filter surrounding the resin comprised of a material of atomic number below approximately 51, and substantially 0.7 to 0.9 millimeter thick.

  19. Artificial Impedance Surfaces and Wire Media for Absorption and Cloaking

    NASA Astrophysics Data System (ADS)

    Padooru, Yashwanth Reddy

    The main objective of this dissertation is to investigate the ability of utilizing artificial impedance surfaces and wire media for absorption and cloaking applications. The dissertation includes two parts which focus on the electromagnetic wave propagation in absorbers formed by stacked metasurfaces and structured wire media, and electromagnetic wave interaction with the cylindrical cloaking structures. In the first part, we propose a variety of physical systems that show multiband and wideband absorption properties in the microwave regime. For the multiband absorbers, we propose a simple analytical model to study the absorption properties. Further, using the same circuit model, the physical mechanisms of the observed behavior is clearly explained in terms of the open/coupled Fabry-Pérot resonators. To design wideband absorbers, we first analyze a single-layer wire medium loaded with an arbitrary material (a thin copper patch with finite bulk conductivity and a graphene patch characterized by its complex surface conductivity) at one end and a ground plane at the other. Based on the properties of the single-layer structure (which acts as a narrowband absorber), we next propose a novel multilayered mushroom structure with thin resistive patches at the wire-medium junctions for wideband absorption. To characterize the wideband properties, here, we derive new additional boundary conditions and solve the scattering problem using an analytical model developed particularly for the problem at hand. We also show a methodology to design these absorbers and explain the wideband absorption mechanisms. The second part focuses on the application of various metasurfaces for cloaking dielectric and conducting cylinders for plane-wave incidence and for line sources in close proximity. The cloaking mechanism is based on a mantle cloaking technique, wherein the scattered field produced by the object is cancelled by the cloak. The purpose of this work is to design the mantle cloaks

  20. Inversion of instantaneous equivalent absorption coefficient and its application

    SciTech Connect

    Weihua, W. )

    1992-01-01

    Absorption coefficient is an important parameter for reservoir description. The major troubles in extracting absorption coefficient from seismic data are amplitude and waveform distortions; they greatly restrict the inversion which is based on reflection amplitude variation or reflection frequency variation. This paper presents a new method which avoids amplitude and uses waveform variation gradient in wave propagation to make the inversion of absorption coefficient. Apparent absorption coefficient and pseudo absorption coefficient are adopted so as to remove the influence which the waveform distortion due to thin bed tuning brings to absorption coefficient extraction. The final instantaneous equivalent absorption coefficient, a true absorption coefficient which reflects real absorptive character of a seismic medium, can be obtained by subtracting the pseudo absorption coefficient (inversely calculated using maximum entropy) from the apparent absorption coefficient the authors have calculated.