Science.gov

Sample records for airbag landing system

  1. Photogrammetric Measurements of CEV Airbag Landing Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Burner, Alpheus W.; Berry, Felecia C.; Dismond, Harriett R.; Cate, Kenneth H.

    2008-01-01

    High-speed photogrammetric measurements are being used to assess the impact dynamics of the Orion Crew Exploration Vehicle (CEV) for ground landing contingency upon return to earth. Test articles representative of the Orion capsule are dropped at the NASA Langley Landing and Impact Research (LandIR) Facility onto a sand/clay mixture representative of a dry lakebed from elevations as high as 62 feet (18.9 meters). Two different types of test articles have been evaluated: (1) half-scale metal shell models utilized to establish baseline impact dynamics and soil characterization, and (2) geometric full-scale drop models with shock-absorbing airbags which are being evaluated for their ability to cushion the impact of the Orion CEV with the earth s surface. This paper describes the application of the photogrammetric measurement technique and provides drop model trajectory and impact data that indicate the performance of the photogrammetric measurement system.

  2. A Summary of the Development of a Nominal Land Landing Airbag Impact Attenuation System for the Orion Crew Module

    NASA Technical Reports Server (NTRS)

    Tutt, Ben; Gill, Susannah; Wilson, Aaron; Johnson, Keith

    2009-01-01

    Airborne Systems North America (formally Irvin Aerospace Inc) has developed an Airbag Landing System for the Orion Crew Module of the Crew Exploration Vehicle. This work is in support of the NASA Langley Research Center Landing System Advanced Development Project. Orion is part of the Constellation Program to send human explorers back to the moon, and then onwards to Mars and other destinations in the Solar System. A component of the Vision for Space Exploration, Orion is being developed to also enable access to space following the retirement of the Space Shuttle in the next decade. This paper documents the development of a conceptual design, fabrication of prototype assemblies, component level testing and two generations of airbag landing system testing. The airbag system has been designed and analyzed using the transient dynamic finite element code LS-DYNA(RegisteredTradeMark). The landing system consists of six airbag assemblies; each assembly comprising a primary impact venting airbag and a non-venting anti-bottoming airbag. The anti-bottoming airbag provides ground clearance following the initial impact attenuation sequence. Incorporated into each primary impact airbag is an active vent that allows the entrapped gas to exit the control volume. The size of the vent is tailored to control the flow-rate of the exiting gas. An internal shaping structure is utilized to control the shape of the primary or main airbags prior to ground impact; this significantly improves stroke efficiency and performance.

  3. Mars Pathfinder airbag impact attenuation system

    SciTech Connect

    Waye, D.E.; Cole, J.K.; Rivellini, T.P.

    1995-04-01

    The Mars Pathfinder spacecraft, scheduled for launch in November 1996, is designed to validate a low cost Entry, Descent, and Landing system and to perform scientific surface operations. The Jet Propulsion Laboratory and Sandia National Laboratories teamed to design, fabricate, test and validate a prototype 0.38 scale model of an airbag impact attenuation system. A computer code was developed to predict the performance of the airbag system. A test program in Sandia`s High Altitude Chamber was performed to validate the code and demonstrate the feasibility of the airbag concept and design. In addition, freefall tests were performed at representative velocities to demonstrate the structural integrity of the airbag system design. The feasibility program demonstrated that the airbag impact attenuation design will protect the lander upon impact with the Martian surface.

  4. Mars Pathfinder Airbag Impact Attenuation System

    NASA Technical Reports Server (NTRS)

    Waye, Donald; Cole, J. Kenneth; Rivellini, Tommaso P.

    1995-01-01

    The Mars Pathfinder spacecraft, scheduled for launch in December 1996, is designed to validate a low cost Entry, Descent, and Landing system and to perform scientific surface operations. The Jet Propulsion Laboratory and Sandia National Laboratories teamed to design, fabricate, test and validate a prototype 0.38 scale model of an airbag impact attenuation system. A computer code was developed to predict the performance of the airbag system. A test program in Sandia's High Altitude Chamber was performed to validate the code and demonstrate the feasibility of the airbag concept and design. In addition, freefall tests were performed at representative velocities to demonstrate the structural integrity of the airbag system design. The feasibility program demonstrated that the airbag impact attenuation design will protect the lander upon impact with the Martian surface.

  5. Airbag-Systeme

    NASA Astrophysics Data System (ADS)

    Kramer, Florian

    Heutige Pkw sind zum Schutz der Insassen bei Frontalkollisionen zu etwa 90 % fahrerseitig und zu ca. 70 % auf der Beifahrerseite mit Airbags ausgestattet, während die Seiten-Airbags zum Schutz des Kopfes und des Thorax von Insassen bei Seitenkollisionen nur mit ungefähr 40 bis 50% vertreten sind [1]. Weitere Schutzmaßnahmen wie Fuß- und Fond-Airbags befinden sich im Entwicklungsstadium, ihr Einsatz in der Serie ist umstritten und wird sich, wenn überhaupt, nur in Einzelfällen durchsetzen. In Bild C3-1 sind Airbags dargestellt, die heute serienmäßig in Pkw anzutreffen sind.

  6. Airbag vent valve and system

    NASA Technical Reports Server (NTRS)

    Peterson, Leslie D. (Inventor); Zimmermann, Richard E. (Inventor)

    2001-01-01

    An energy absorbing airbag system includes one or more vent valve assemblies for controlling the release of airbag inflation gases to maintain inflation gas pressure within an airbag at a substantially constant pressure during a ride-down of an energy absorbing event. Each vent valve assembly includes a cantilever spring that is flat in an unstressed condition and that has a free end portion. The cantilever spring is secured to an exterior surface of the airbag housing and flexed to cause the second free end portion of the cantilever spring to be pressed, with a preset force, against a vent port or a closure covering the vent port to seal the vent port until inflation gas pressure within the airbag reaches a preselected value determined by the preset force whereupon the free end portion of the cantilever spring is lifted from the vent port by the inflation gases within the airbag to vent the inflation gases from within the airbag. The resilience of the cantilever spring maintains a substantially constant pressure within the airbag during a ride-down portion of an energy absorbing event by causing the cantilever spring to vent gases through the vent port whenever the pressure of the inflation gases reaches the preselected value and by causing the cantilever spring to close the vent port whenever the pressure of the inflation gases falls below the preselected value.

  7. Analysis-test correlation of airbag impact for Mars landing

    SciTech Connect

    Salama, M.; Davis, G.; Kuo, C.P.

    1994-12-31

    The NASA Mars Pathfinder mission is intended to demonstrate key low cost technologies for use in future science missions to Mars. Among these technologies is the landing system. Upon entering in Martian atmosphere at about 7000 m/sec., the spacecraft will deploy a series of breaking devices (parachute and solid rockets) to slow down its speed to less than 20 m/sec. as it impacts with the Martian ground. To cushion science instruments form the landing impact, an airbag system is inflated to surround the lander approximately five seconds before impact. After multiple bounces, the lander/airbags comes to rest, the airbags are deflated and retracted, and the lander opens up its petals to allow a microrover to begin exploration. Of interest here, is the final landing phase. Specifically, this paper will focus on the methodology used to simulate the nonlinear dynamics of lander/airbags landing impact, and how this simulation correlates with initial tests.

  8. Airbag Landing Impact Performance Optimization for the Orion Crew Module

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; McKinney, John; Corliss, James M.

    2008-01-01

    This report will discuss the use of advanced simulation techniques to optimize the performance of the proposed Orion Crew Module airbag landing system design. The Boeing Company and the National Aeronautic and Space Administration s Langley Research Center collaborated in the analysis of the proposed airbag landing system for the next generation space shuttle replacement, the Orion spacecraft. Using LS-DYNA to simulate the Crew Module landing impacts, two main objectives were established and achieved: the investigation of potential methods of optimizing the airbag performance in order to reduce rebound on the anti-bottoming bags, lower overall landing loads, and increase overall Crew Module stability; and the determination of the Crew Module stability and load boundaries using the optimized airbag design, based on the potential Crew Module landing pitch angles and ground slopes in both the center of gravity forward and aft configurations. This paper describes the optimization and stability and load boundary studies and presents a summary of the results obtained and key lessons learned from this analysis.

  9. Airbag system and method for facilitating emergency egress from an aircraft

    NASA Technical Reports Server (NTRS)

    Rawdon, Blaine K. (Inventor); Hawley, Arthur V. (Inventor)

    2002-01-01

    An airbag system for elevating the fuselage of an aircraft off a landing surface a sufficient degree to allow for emergency egress of passengers and crew through ventral emergency exit doors. An airbag assembly made up of a plurality of independent airbags is disposed within the aircraft. When activated, the airbag system deploys the airbags external of the aircraft that elevate the fuselage of the aircraft a sufficient degree to allow for utilizing the ventral emergency exit doors on the fuselage to enable evacuating the passengers and crew. An activation mechanism is connected to the inflation.devices associated with each of the airbags. The activation mechanism generates an electrical signal which activates the inflation devices, which in turn fill the airbags with a compressed fluid, thus expanding the airbags and lifting the fuselage. A crew member initiates the activation of the airbag system through one or more switches.

  10. Feasibility Study of an Airbag-Based Crew Impact Attenuation System for the Orion MPCV

    NASA Technical Reports Server (NTRS)

    Do, Sydney; deWeck, Olivier

    2011-01-01

    Airbag-based methods for crew impact attenuation have been highlighted as a potential lightweight means of enabling safe land-landings for the Orion Multi-Purpose Crew Vehicle, and the next generation of ballistic shaped spacecraft. To investigate the performance feasibility of this concept during a nominal 7.62m/s Orion landing, a full-scale personal airbag system 24% lighter than the Orion baseline has been developed, and subjected to 38 drop tests on land. Through this effort, the system has demonstrated the ability to maintain the risk of injury to an occupant during a 7.85m/s, 0 deg. impact angle land-landing to within the NASA specified limit of 0.5%. In accomplishing this, the airbag-based crew impact attenuation concept has been proven to be feasible. Moreover, the obtained test results suggest that by implementing anti-bottoming airbags to prevent direct contact between the system and the landing surface, the system performance during landings with 0 deg impact angles can be further improved, by at least a factor of two. Additionally, a series of drop tests from the nominal Orion impact angle of 30 deg indicated that severe injury risk levels would be sustained beyond impact velocities of 5m/s. This is a result of the differential stroking of the airbags within the system causing a shearing effect between the occupant seat structure and the spacecraft floor, removing significant stroke from the airbags.

  11. The Results of Dynamic Data Acquisition During Mars Pathfinder Prototype Airbag Drop Testing

    NASA Technical Reports Server (NTRS)

    Davis, Gregory L.

    1996-01-01

    The Mars Pathfinder mission, scheduled for launch in December 1996, will use an airbag system to safely deliver a lander to the Martian surface.The airbag landing system has undergone a comprehensive test program during its evolution from initial design phase to final qualification and acceptance testing. This paper outlines the test approach used in the airbag development program, describes the data acquisition system used to obtain and evaluate airbag performance data, and presents test results.

  12. Airbag Seams Leave Trails

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbag seams left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.

  13. Airbag Impressions in Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbags left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.

  14. Dynamic Analysis of a Mechanical Airbag System Sensor

    NASA Astrophysics Data System (ADS)

    Pai, N. G.; Tetzlaff, S. A.; Hess, D. P.

    1998-10-01

    All-mechanical sensors for automotive airbag systems offer a compact and low cost yet highly reliable alternative to electrical sensors. In this paper, a non-linear dynamic model is presented that was used to improve the hammer-blow immunity of an all-mechanical ball-in-tube sensor without jeopardizing its endurance performance. Hammer-blows are impacts from within an automobile to the steering wheel or inflator shell that can occur during system installation or from aggressive driving. Sensor endurance is measured by the stability of calibration after being subjected to a sustained vibration environment. Numerical simulations of the model have elucidated the dynamics and mechanisms of operation of such sensors. Experimental hammer-blow tests and endurance tests, as well as simulations of these tests, have been performed. It is found that hammer-blow immunity can be improved without compromising endurance performance when a ball-seat spring is introduced with at least a 2·0 mm allowable deflection. Results which show the effect of varying the spring stiffness, allowable deflection, and pre-load are presented.

  15. Tracks 'Seam' Like Airbags

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Bearing a striking resemblance to a cluster of paper lanterns, these inflated airbags show a pattern of seams exactly like those left in the martian soil by the Mars Exploration Rover Opportunity during landing at Meridiani Planum, Mars. This image was taken during airbag testing at NASA's Plum Brook Station, located about 50 miles west of Cleveland in Sandusky, Ohio and operated by NASA's Glenn Research Center.

  16. Overpressure and noise due to multiple airbag systems in a passenger car

    NASA Astrophysics Data System (ADS)

    Hickling, Robert; Henning, Peter J.; Newton, Gary, Jr.

    2002-11-01

    Multiple airbag systems in passenger cars can generate overpressure and noise that may be hazardous to human hearing. Overpressure is compression of the air inside a closed compartment caused by deployment of the bags. Noise results from the action of the gas inflating the bags. SAE J247 provides a standard for measuring the combination of overpressure and noise in a passenger compartment. A special microphone has recently been developed that meets this standard, which operates down to a fraction of a hertz. Details of the microphone are given. Little appears to have been published on the overpressure and noise of modern multiple airbag systems, but early results [R. Hickling, ''The noise of the automotive safety air cushion,'' Noise Control Eng., May-June, 110-121 (1976)] provide a basic understanding of the phenomenon. Spectral data shows that peak overpressure occurs at about 2 to 3 Hz. A significant reduction in overpressure and noise can be achieved with an aspirating airbag, originally developed at General Motors, whose outer structure is inflated with gas from the inflator, and whose inner structure draws in air from the passenger compartment through one-way cloth valves. Tests have shown that such bags function well when impacted.

  17. Airbag Tracks on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The circular shapes seen on the martian surface in these images are 'footprints' left by the Mars Exploration Rover Opportunity's airbags during landing as the spacecraft gently rolled to a stop. Opportunity landed at approximately 9:05 p.m. PST on Saturday, Jan. 24, 2004, Earth-received time. The circular region of the flower-like feature on the right is about the size of a basketball. Scientists are studying the prints for more clues about the makeup of martian soil. The images were taken at Meridiani Planum, Mars, by the panoramic camera on the Mars Exploration Rover Opportunity.

  18. Airbag Trail Dubbed 'Magic Carpet'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for Airbag Trail Dubbed 'Magic Carpet' (QTVR)

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Magic Carpet Close-upMagic Carpet Close-up HD

    This section of the first color image from the Mars Exploration Rover Spirit has been further processed to produce a sharper look at a trail left by the one of rover's airbags. The drag mark was made after the rover landed and its airbags were deflated and retracted. Scientists have dubbed the region the 'Magic Carpet' after a crumpled portion of the soil that appears to have been peeled away (lower left side of the drag mark). Rocks were also dragged by the airbags, leaving impressions and 'bow waves' in the soil. The mission team plans to drive the rover over to this site to look for additional clues about the composition of the martian soil. This image was taken by Spirit's panoramic camera.

    This extreme close-up image (see insets above) highlights the martian feature that scientists have named 'Magic Carpet' because of its resemblance to a crumpled carpet fold. Scientists think the soil here may have detached from its underlying layer, possibly due to interaction with the Mars Exploration Rover Spirit's airbag after landing. This image was taken on Mars by the rover's panoramic camera.

  19. Reducing risks to children in vehicles with passenger airbags.

    PubMed

    Graham, J D; Goldie, S J; Segui-Gomez, M; Thompson, K M; Nelson, T; Glass, R; Simpson, A; Woerner, L G

    1998-07-01

    This review examines the risk that passenger airbags pose for children and discusses behavioral and technologic measures aimed at protecting children from airbag deployment. Although airbags reduce fatal crash injuries among adult drivers and passengers, this safety technology increases mortality risk among children younger than age 12. The magnitude of the risk is multiplied when children are unrestrained or restrained improperly. As new vehicles are resold to buyers who tend to be less safety-conscious than new car owners, the number of children endangered by passenger airbag deployment may increase. For vehicles already in the fleet, strong measures are required to secure children in the rear seat and increase the proper use of appropriate restraint systems through police enforcement of laws. One promising strategy is to amend child passenger safety laws to require that parents secure children in the rear seats. For future vehicles, a mandatory performance standard should be adopted that suppresses airbag deployment automatically if a child is located in the front passenger seat. Other promising improvements in airbag design also are discussed. Major changes in passenger airbag design must be evaluated in a broad analytical framework that considers the welfare of adults as well as children. PMID:9651455

  20. Lateral impact injuries with side airbag deployments--a descriptive study.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Zhang, Jiangyue; Gennarelli, Thomas A

    2007-01-01

    The present study was designed to provide descriptive data on side impact injuries in vehicles equipped with side airbags using the United States National Automotive Sampling System (NASS). The database was queried with the constraint that all vehicles must adhere to the Federal Motor Vehicle Safety Standards FMVSS 214, injured occupants be in the front outboard seats with no rollovers or ejections, and side impacts airbags be deployed in lateral crashes. Out of the 7812 crashes in the 1997-2004 weighted NASS files, AIS > or = 2 level injuries occurred to 5071 occupants. There were 3828 cases of torso-only airbags, 955 cases of torso-head bag combination, and 288 inflatable tubular structure/curtain systems. Side airbags were not attributed to be the cause of head or chest injury to any occupant at this level of severity. The predominance of torso-only airbags followed by torso-head airbag combination reflected vehicle model years and changing technology. Head and chest injuries were coupled for the vast majority of occupants with injuries to more than one body region. Comparing literature data for side impacts without side airbag deployments, the presence of a side airbag decreased AIS=2 head, chest, and extremity injuries when examining raw data incidence rates. Although this is the first study to adopt strict inclusion-exclusion criteria for side crashes with side airbag deployments, future studies are needed to assess side airbag efficacy using datasets such as matched-pair occupants in side impacts. PMID:16911812

  1. Dynamic response of a collidant impacting a low pressure airbag

    NASA Astrophysics Data System (ADS)

    Dreher, Peter A.

    There are many uses of low pressure airbags, both military and commercial. Many of these applications have been hampered by inadequate and inaccurate modeling tools. This dissertation contains the derivation of a four degree-of-freedom system of differential equations from physical laws of mass and energy conservation, force equilibrium, and the Ideal Gas Law. Kinematic equations were derived to model a cylindrical airbag as a single control volume impacted by a parallelepiped collidant. An efficient numerical procedure was devised to solve the simplified system of equations in a manner amenable to discovering design trends. The largest public airbag experiment, both in scale and scope, was designed and built to collect data on low-pressure airbag responses, otherwise unavailable in the literature. The experimental results were compared to computational simulations to validate the simplified numerical model. Experimental response trends are presented that will aid airbag designers. The two objectives of using a low pressure airbag to demonstrate the feasibility to (1) accelerate a munition to 15 feet per second velocity from a bomb bay, and (2) decelerate humans hitting trucks below the human tolerance level of 50 G's, were both met.

  2. Investigation into the noise associated with airbag deployment: part III - sound pressure level and auditory risk as a function of inflatable device.

    PubMed

    Banglmaier, R F; Rouhana, S W

    2003-01-01

    Several criteria for assessing noise-induced hearing loss from automotive inflatable devices, such as airbags, were proposed in the past. However, their development was based on epidemiological studies of steady state noise and not impulsive noise. More recently, the US Army Research Laboratory (ARL) developed and validated a mathematical model of the ear, which may be used to assess noise induced hearing loss from impulsive noise sources. Previous studies have contributed to understanding the effects of impulse noise on occupants, but were performed on first generation frontal airbags and did not provide information on airbag and occupant safety systems in today's fleet of vehicles. This study presents the results of a parametric investigation of current inflatable devices across a variety of vehicles and considers the size and seating location of the occupant in vehicles of varying volume. In addition, the study considers advanced airbag technologies such as dual stage frontal airbags, side airbags, inflatable curtains, and seat belt pretensioners. PMID:12941213

  3. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Welch, Joseph V.; Hardy, Robin C.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). An important element of the air bag system design process is proper modeling of the proposed configuration to determine if the resulting performance meets requirements. Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations. The efforts presented here surround a second generation of the airbag design developed by ILC Dover, and is based on previous design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley's Landing and Impact Research (LandIR) facility. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, construct the simulations, and make comparisons to experimental data are discussed.

  4. Missile launch pad: an unusual consequence of airbag deployment.

    PubMed

    Ronnie, Davies; Emecheta, Ikechukwu E; Kevin, Hancock

    2011-02-17

    Vehicle airbags significantly reduce vehicle occupant injuries and fatalities in road accidents. However, a number of injuries are recognised as being directly attributable to airbag deployment. The majority of these are blunt injuries due to the high force of airbag deployment and include ocular injuries, burns, chest trauma and, rarely, fatalities. The authors describe a case of mixed blunt ocular and penetrating facial trauma as a result of airbag deployment.

  5. Patterns of injury associated with automobile airbag use.

    PubMed Central

    Mohamed, A. A.; Banerjee, A.

    1998-01-01

    The wide use of automobile airbags has undoubtedly reduced the mortality and the incidence of serious injuries from motor vehicle accidents. However, automobile airbags appear to be associated with a variety of injuries including fatal injuries, ocular injuries, upper limb and chest injuries. Further improvements in airbag design together with education of the general public in their use should help reduce airbag-related injuries. PMID:9926118

  6. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Hardy, Robin C.; Willey, Cliff E.; Welch, Joseph V.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations, while meeting crew and vehicle safety requirements. The analyses and associated testing presented here surround a second generation of the airbag design developed by ILC Dover, building off of relevant first-generation design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley s Landing and Impact Research (LandIR) facility in Hampton, Virginia. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, develop the simulations, and make comparisons to experimental data are discussed.

  7. Aspects of the passenger airbag E.C.U. location

    NASA Astrophysics Data System (ADS)

    Soica, A.

    2016-08-01

    Road accidents represent the dark side of road traffic, their consequences leading to material damage and often to vehicle occupant fatalities. Passive safety systems offer a high level of protection to vehicle occupants; yet, depending on a number of constructive factors and not only, these systems can not always ensure a high survival rate. The costs of road traffic accidents are to be borne by the whole society, with high amounts of money required. In this paper we analyze how the collision is felt in various points on the vehicle, at a given time and how this may affect the proper functioning of the passive safety systems, especially the airbag system.

  8. Lifting and protecting residential structures from subsidence damage using airbags

    SciTech Connect

    Triplett, T.L.; Bennett, R.M.

    1998-12-31

    Conventional practice in protecting residential structures from subsidence damage concentrates on saving the superstructure. The foundation is sacrificed, even though it represents the structural component with the greatest replacement cost. In this study, airbags were used to lift a 20 ft x 30 ft structure to test their ability to protect both the foundation and superstructure from ground settlement. Two contiguous sides of the test foundation were unreinforced, and the other two contiguous sides incorporated footing and wall reinforcement. The airbags successfully lifted the structure without causing damage, even on the unreinforced sides. This paper gives a procedure for determining airbag spacing, and describes installation and operation techniques of the airbags. The paper then focuses on the performance of the airbags in lifting the structure, and shows that airbags can preserve existing foundations during subsidence movements.

  9. An investigation of improved airbag performance by vent control and gas injection

    NASA Astrophysics Data System (ADS)

    Lee, Calvin; Rosato, Nick; Lai, Francis

    Airbags are currently being investigated as an impact energy absorber for U.S. Army airdrop. Simple airbags with constant vent areas have been found to be unsatisfactory in yielding high G forces. In this paper, a method of controlling the vent area and a method of injecting gas into the airbag during its compression stroke to improve airbag performance are presented. Theoretical analysis of complex airbags using these two methods show that they provide lower G forces than simple airbags. Vertical drop tests of a vent-control airbag confirm this result. Gas-injection airbags are currently being tested.

  10. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  11. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace the Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  12. Global Land Information System

    USGS Publications Warehouse

    ,

    1999-01-01

    The Global Land Information System (GLIS) is a World Wide Web-based query tool developed by the U.S. Geological Survey (USGS) to provide data and information about the Earth's land surface. Examples of holdings available through the GLIS include cartographic data, topographic data, soils data, aerial photographs, and satellite images from various agencies and cooperators located around the world. Both hard copy and digital data collections are represented in the GLIS, and preview images are available for millions of the products in the system.

  13. On the Application of a Response Surface Technique to Analyze Roll-over Stability of Capsules with Airbags Using LS-Dyna

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.

    2008-01-01

    As NASA moves towards developing technologies needed to implement its new Exploration program, studies conducted for Apollo in the 1960's to understand the rollover stability of capsules landing are being revisited. Although rigid body kinematics analyses of the roll-over behavior of capsules on impact provided critical insight to the Apollo problem, extensive ground test programs were also used. For the new Orion spacecraft being developed to implement today's Exploration program, new air-bag designs have improved sufficiently for NASA to consider their use to mitigate landing loads to ensure crew safety and to enable re-usability of the capsule. Simple kinematics models provide only limited understanding of the behavior of these air bag systems, and more sophisticated tools must be used. In particular, NASA and its contractors are using the LS-Dyna nonlinear simulation code for impact response predictions of the full Orion vehicle with air bags by leveraging the extensive air bag prediction work previously done by the automotive industry. However, even in today's computational environment, these analyses are still high-dimensional, time consuming, and computationally intensive. To alleviate the computational burden, this paper presents an approach that uses deterministic sampling techniques and an adaptive response surface method to not only use existing LS-Dyna solutions but also to interpolate from LS-Dyna solutions to predict the stability boundaries for a capsule on airbags. Results for the stability boundary in terms of impact velocities, capsule attitude, impact plane orientation, and impact surface friction are discussed.

  14. The blue ribbon panel on depowered and advanced airbags - status report on airbag performance.

    PubMed

    Ferguson, Susan A; Schneider, Lawrence; Segui-Gomez, Maria; Arbogast, Kristy; Augenstein, Jeffrey; Digges, Kennerly H

    2003-01-01

    In February 2000, a group of highway safety organizations sent a letter to the Secretary of the U.S. Department of Transportation expressing concern about a possible return to the 30-mph rigid barrier test using unbelted dummies previously required by Federal Motor Vehicle Safety Standard (FMVSS) 208. The letter asked the National Highway Traffic Safety Administration (NHTSA) to expedite data collection of the real-world crash experience of airbag-equipped vehicles certified to the 30-mph sled test using unbelted dummies because of suggestions that depowered airbags may not provide the same level of protection, particularly to larger, unbelted occupants. For the same reason, the letter also recommended that the auto industry commit funding for additional data collection and to establish a panel of experts to evaluate the data. In response, the Alliance of Automobile Manufacturers (Alliance) committed to funding a 3-year program to be managed by an independent third party. A panel of experts consisting of representatives from thehighway safety research community, the National Transportation Safety Board, academia, medical institutions, and the insurance industry was established as the Blue Ribbon Panel (BRP) for Evaluation of Depowered and Advanced Airbags and met for the first time in February 2001. The BRP also includes representatives from NHTSA and the automobile industry who participate as observers. The BRP held its first public meeting in April 2003 to provide an update of its activities and to summarize the real-world evidence on the performance of depowered airbags. This AAAM session will provide a brief summary of the public meeting.

  15. The blue ribbon panel on depowered and advanced airbags - status report on airbag performance.

    PubMed

    Ferguson, Susan A; Schneider, Lawrence; Segui-Gomez, Maria; Arbogast, Kristy; Augenstein, Jeffrey; Digges, Kennerly H

    2003-01-01

    In February 2000, a group of highway safety organizations sent a letter to the Secretary of the U.S. Department of Transportation expressing concern about a possible return to the 30-mph rigid barrier test using unbelted dummies previously required by Federal Motor Vehicle Safety Standard (FMVSS) 208. The letter asked the National Highway Traffic Safety Administration (NHTSA) to expedite data collection of the real-world crash experience of airbag-equipped vehicles certified to the 30-mph sled test using unbelted dummies because of suggestions that depowered airbags may not provide the same level of protection, particularly to larger, unbelted occupants. For the same reason, the letter also recommended that the auto industry commit funding for additional data collection and to establish a panel of experts to evaluate the data. In response, the Alliance of Automobile Manufacturers (Alliance) committed to funding a 3-year program to be managed by an independent third party. A panel of experts consisting of representatives from thehighway safety research community, the National Transportation Safety Board, academia, medical institutions, and the insurance industry was established as the Blue Ribbon Panel (BRP) for Evaluation of Depowered and Advanced Airbags and met for the first time in February 2001. The BRP also includes representatives from NHTSA and the automobile industry who participate as observers. The BRP held its first public meeting in April 2003 to provide an update of its activities and to summarize the real-world evidence on the performance of depowered airbags. This AAAM session will provide a brief summary of the public meeting. PMID:12941215

  16. A Case of Severe Airbag Related Ocular Alkali Injury

    PubMed Central

    Wong, William; Affeldt, John C

    2012-01-01

    While airbags have saved many lives and are clearly beneficial overall, sodium hydroxide (NaOH) powder produced by the inflation reaction can cause significant alkali ocular injury if not irrigated promptly. Here we report a case of severe airbag related ocular alkali injury as a way to bring attention to the need for prompt ocular irrigation following motor vehicle accidents (MVA) with airbag deployment. A 47-year-old man was involved in a MVA with airbag deployment in a rural setting. Attention was paid to several other life-threatening traumatic injuries, however, ocular irrigation was not performed until some 6–7 hours after the MVA. Over the course of 6 months, airbag related alkali injury caused severe limbal ischemia, conjunctivalization of the cornea, corneal epithelial defects, cicatricial scarring, haze, and corneal/limbal vascularization despite amniotic membrane graft. Awareness of the importance of ocular irrigation following airbag deployment must be raised both in the ophthalmology and emergency medicine communities. PMID:22900239

  17. Investigation into the Noise Associated with Airbag Deployment: Part III – Sound Pressure Level and Auditory Risk as a Function of Inflatable Device

    PubMed Central

    Banglmaier, R.F.; Rouhana, S.W.

    2003-01-01

    Several criteria for assessing noise-induced hearing loss from automotive inflatable devices, such as airbags, were proposed in the past. However, their development was based on epidemiological studies of steady state noise and not impulsive noise. More recently, the US Army Research Laboratory (ARL) developed and validated a mathematical model of the ear, which may be used to assess noise induced hearing loss from impulsive noise sources. Previous studies have contributed to understanding the effects of impulse noise on occupants, but were performed on first generation frontal airbags and did not provide information on airbag and occupant safety systems in today’s fleet of vehicles. This study presents the results of a parametric investigation of current inflatable devices across a variety of vehicles and considers the size and seating location of the occupant in vehicles of varying volume. In addition, the study considers advanced airbag technologies such as dual stage frontal airbags, side airbags, inflatable curtains, and seat belt pretensioners. PMID:12941213

  18. Airbag lung: an unusual case of sarcoid-like granulomatous lung disease after a rollover motor vehicle accident.

    PubMed

    Waring, Thomas P; Hegde, Poornima; Foley, Raymond J

    2014-05-01

    Sarcoid-like granulomatous lung disease (SLGLD) is a condition associated with the formation of noncaseating, nonnecrotizing granulomas. The final by-product of airbag deployment is alkaline silicates or glass. Silicates trapped and sequestered in the lung parenchyma are a potential mediator for immune system activation and development of sarcoid-like granulomatous lung disease.

  19. Door velocity and occupant distance affect lateral thoracic injury mitigation with side airbag.

    PubMed

    Hallman, Jason J; Yoganandan, Narayan; Pintar, Frank A

    2011-05-01

    The relationship between thoracic injury risk and parameters of door velocity and occupant distance was delineated in blunt lateral impact with side airbag deployment. A sled impact model was exercised with the validated MADYMO fiftieth percentile facet occupant model and a generalized finite element torso side airbag. Impact velocity was incremented from 4.0 to 9.0m/s; occupant-airbag distance (at time of airbag activation) was incremented from 2.0 to 24.0 cm; simulations without airbag were also examined. Using compression, deflection rate, and the Viscous Criterion, airbag performance was characterized with respect to occupant injury risk at three points of interest: occupant distance of most protection, distance of greatest injury risk, and the newly defined critical distance. The occupant distance which demonstrated the most airbag protection, i.e., lowest injury risk, increased with increasing impact velocity. Greatest injury risk resulted when the occupant was nearest the airbag regardless of impact velocity. The critical distance was defined as the farthest distance at which airbag deployment exacerbated injury risk. This critical distance only varied considering chest compression, between 3 and 10 cm from the airbag, but did not vary when the Viscous Criterion was evaluated. At impact velocities less than or equal to 6m/s, the most protective occupant location was within 2 cm of the critical distance at which the airbag became harmful. Therefore, injury mitigation with torso airbag may be more difficult to achieve at lower ΔV.

  20. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  1. Global Land Information System (GLIS)

    USGS Publications Warehouse

    ,

    1992-01-01

    The Global Land Information System (GLIS) is an interactive computer system developed by the U.S. Geological Survey (USGS) for scientists seeking sources of information about the Earth's land surfaces. GLIS contains "metadata," that is, descriptive information about data sets. Through GLIS, scientists can evaluate data sets, determine their availability, and place online requests for products. GLIS is more, however, than a mere list of products. It offers online samples of earth science data that may be ordered through the system.

  2. Airbag mediated death of a two-year-old child wearing a shoulder/lap belt.

    PubMed

    Cooper, J T; Balding, L E; Jordan, F B

    1998-09-01

    Airbag injuries have resulted in the deaths of several infants and small children, and such deaths are generally associated with rearward-facing infant seats or unrestrained children in front passenger seats of cars equipped with airbags. An airbag can also cause death in a small child wearing a shoulder/lap belt, however, as this case report illustrates. A two-year-old female was involved in a low-speed collision while riding in the front passenger seat of a dual-airbag-equipped automobile. Secondary impact with the airbag caused catastrophic occipitoatlantoaxial disarticulation with traumatic spinal cord separation, thermal injury and abrasions of the right forearm and distinctive patterned abrasions of the face. The possibility of airbag injury should be considered in all low-speed traffic fatalities, and the confirmatory injuries sought at postmortem examination.

  3. Landing gear energy absorption system

    NASA Technical Reports Server (NTRS)

    Hansen, Christopher P. (Inventor)

    1994-01-01

    A landing pad system is described for absorbing horizontal and vertical impact forces upon engagement with a landing surface where circumferentially arranged landing struts respectively have a clevis which receives a slidable rod member and where the upper portion of a slidable rod member is coupled to the clevis by friction washers which are force fit onto the rod member to provide for controlled constant force energy absorption when the rod member moves relative to the clevis. The lower end of the friction rod is pivotally attached by a ball and socket to a support plate where the support plate is arranged to slide in a transverse direction relative to a housing which contains an energy absorption material for absorbing energy in a transverse direction.

  4. Microwave landing system autoland system analysis

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Craven, B. K.

    1991-01-01

    The objective was to investigate the ability of present day aircraft equipped with automatic flight control systems to fly advanced Microwave Landing Systems (MLS) approaches. The tactical approach used to achieve this objective included reviewing the design and autoland operation of the MD-80 aircraft, simulating the MLS approaches using a batch computer program, and assessing the performance of the autoland system from computer generated data. The results showed changes were required to present Instrument Landing System (ILS) procedures to accommodate the new MLS curved paths. It was also shown that in some cases, changes to the digital flight guidance systems would be required so that an autoland could be performed.

  5. Planetary entry, descent, and landing technologies

    NASA Astrophysics Data System (ADS)

    Pichkhadze, K.; Vorontsov, V.; Polyakov, A.; Ivankov, A.; Taalas, P.; Pellinen, R.; Harri, A.-M.; Linkin, V.

    2003-04-01

    Martian meteorological lander (MML) is intended for landing on the Martian surface in order to monitor the atmosphere at landing point for one Martian year. MMLs shall become the basic elements of a global network of meteorological mini-landers, observing the dynamics of changes of the atmospheric parameters on the Red Planet. The MML main scientific tasks are as follows: (1) Study of vertical structure of the Martian atmosphere throughout the MML descent; (2) On-surface meteorological observations for one Martian year. One of the essential factors influencing the lander's design is its entry, descent, and landing (EDL) sequence. During Phase A of the MML development, five different options for the lander's design were carefully analyzed. All of these options ensure the accomplishment of the above-mentioned scientific tasks with high effectiveness. CONCEPT A (conventional approach): Two lander options (with a parachute system + airbag and an inflatable airbrake + airbag) were analyzed. They are similar in terms of fulfilling braking phases and completely analogous in landing by means of airbags. CONCEPT B (innovative approach): Three lander options were analyzed. The distinguishing feature is the presence of inflatable braking units (IBU) in their configurations. SELECTED OPTION (innovative approach): Incorporating a unique design approach and modern technologies, the selected option of the lander represents a combination of the options analyzed in the framework of Concept B study. Currently, the selected lander option undergoes systems testing (Phase D1). Several MMLs can be delivered to Mars in frameworks of various missions as primary or piggybacking payload: (1) USA-led "Mars Scout" (2007); (2) France-led "NetLander" (2007/2009); (3) Russia-led "Mars-Deimos-Phobos sample return" (2007); (4) Independent mission (currently under preliminary study); etc.

  6. Testing Microwave Landing Systems With Satellite Navigation

    NASA Technical Reports Server (NTRS)

    Kiriazes, John J.

    1990-01-01

    Less time and equipment needed to perform tests. Satellite-based Global Positioning System (GPS) measures accuracy of microwave scanning-beam landing system (MSBLS) at airports used to support Shuttle landings. Provides time and three-dimensional information on position and velocity with unprecedented accuracy. Useful for testing other electronic navigation aids like LORAN, TACAN and microwave landing systems (MLS).

  7. Land system change and food security: towards multi-scale land system solutions☆

    PubMed Central

    Verburg, Peter H; Mertz, Ole; Erb, Karl-Heinz; Haberl, Helmut; Wu, Wenbin

    2013-01-01

    Land system changes are central to the food security challenge. Land system science can contribute to sustainable solutions by an integrated analysis of land availability and the assessment of the tradeoffs associated with agricultural expansion and land use intensification. A land system perspective requires local studies of production systems to be contextualised in a regional and global context, while global assessments should be confronted with local realities. Understanding of land governance structures will help to support the development of land use policies and tenure systems that assist in designing more sustainable ways of intensification. Novel land systems should be designed that are adapted to the local context and framed within the global socio-ecological system. Such land systems should explicitly account for the role of land governance as a primary driver of land system change and food production. PMID:24143158

  8. Land cover change or land-use intensification: simulating land system change with a global-scale land change model.

    PubMed

    van Asselen, Sanneke; Verburg, Peter H

    2013-12-01

    Land-use change is both a cause and consequence of many biophysical and socioeconomic changes. The CLUMondo model provides an innovative approach for global land-use change modeling to support integrated assessments. Demands for goods and services are, in the model, supplied by a variety of land systems that are characterized by their land cover mosaic, the agricultural management intensity, and livestock. Land system changes are simulated by the model, driven by regional demand for goods and influenced by local factors that either constrain or promote land system conversion. A characteristic of the new model is the endogenous simulation of intensification of agricultural management versus expansion of arable land, and urban versus rural settlements expansion based on land availability in the neighborhood of the location. Model results for the OECD Environmental Outlook scenario show that allocation of increased agricultural production by either management intensification or area expansion varies both among and within world regions, providing useful insight into the land sparing versus land sharing debate. The land system approach allows the inclusion of different types of demand for goods and services from the land system as a driving factor of land system change. Simulation results are compared to observed changes over the 1970-2000 period and projections of other global and regional land change models.

  9. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  10. Strain Gage Loads Calibration Testing with Airbag Support for the Gulfstream III SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Miller, Eric J.; Hudson, Larry D.; Holguin, Andrew C.; Neufeld, David C.; Haraguchi, Ronnie

    2015-01-01

    This paper describes the design and conduct of the strain-gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three airbags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead-weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 lb. Twenty-six load cases were applied with the aircraft resting on its landing gear, and 16 load cases were performed with the aircraft supported by the nose gear and three airbags around the center of gravity. Maximum wing tip deflection reached 17 inches. An assortment of 2, 3, 4, and 5 strain-gage load equations were derived and evaluated against independent check cases. The better load equations had root mean square errors less than 1 percent. Test techniques and lessons learned are discussed.

  11. Land mobile satellite system requirements

    NASA Technical Reports Server (NTRS)

    Kiesling, J. D.

    1983-01-01

    A Land Mobile Satellite System (LMSS) provides voice, data and related communications services to moving vehicles and persons. Communications between the mobiles and satellite are in the 806-890 MHz band. The satellite translates these signals to a ""fixed services band'' such as 14/12 GHz band (Ku-band), and communicates in this band with fixed terminals called gateways. The gateways are located at convenient places such as telephone switches (which provide entry into the national telephone system), dispatcher headquarters, computer centers, etc. Communications are therefore principally mobile to fixed. A third communications link, also at Ku-band, is needed between the satellite and a single fixed ground station. This link provides satellite command, telemetry and ranging and also provides a network control function. The latter, through a common signalling system, receives requests and assigns channel slots, and otherwise controls, monitors and polices the network and collects billing information.

  12. Land mobile satellite system requirements

    NASA Astrophysics Data System (ADS)

    Kiesling, J. D.

    1983-05-01

    A Land Mobile Satellite System (LMSS) provides voice, data and related communications services to moving vehicles and persons. Communications between the mobiles and satellite are in the 806-890 MHz band. The satellite translates these signals to a ""fixed services band'' such as 14/12 GHz band (Ku-band), and communicates in this band with fixed terminals called gateways. The gateways are located at convenient places such as telephone switches (which provide entry into the national telephone system), dispatcher headquarters, computer centers, etc. Communications are therefore principally mobile to fixed. A third communications link, also at Ku-band, is needed between the satellite and a single fixed ground station. This link provides satellite command, telemetry and ranging and also provides a network control function. The latter, through a common signalling system, receives requests and assigns channel slots, and otherwise controls, monitors and polices the network and collects billing information.

  13. LDAS Land Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Mocko, David; Beaudoing, Hiroko Kato

    2014-01-01

    The land-surface component of the hydrological cycle is fundamental to the overall functioning of the atmospheric and climate processes. The characterization of the spatial and temporal variability of water and energy cycles is critical to improve our understanding of the land-surface-atmosphere interaction and the impact of land-surface processes on climate extremes. Because the accurate knowledge of these processes and their variability is important for climate predictions, most Numerical Weather Prediction (NWP) centers have incorporated land-surface schemes in their models. However, errors in the NWP forcing accumulate in the surface and energy stores, leading to incorrect surface water and energy partitioning and related processes.

  14. Airbags to Martian Landers: Analyses at Sandia National Laboratories

    SciTech Connect

    Gwinn, K.W.

    1994-03-01

    A new direction for the national laboratories is to assist US business with research and development, primarily through cooperative research and development agreements (CRADAs). Technology transfer to the private sector has been very successful as over 200 CRADAs are in place at Sandia. Because of these cooperative efforts, technology has evolved into some new areas not commonly associated with the former mission of the national laboratories. An example of this is the analysis of fabric structures. Explicit analyses and expertise in constructing parachutes led to the development of a next generation automobile airbag; which led to the construction, testing, and analysis of the Jet Propulsion Laboratory Mars Environmental Survey Lander; and finally led to the development of CAD based custom garment designs using 3D scanned images of the human body. The structural analysis of these fabric structures is described as well as a more traditional example Sandia with the test/analysis correlation of the impact of a weapon container.

  15. Seatbelt versus seatbelt and airbag injuries in a single motor vehicle crash

    PubMed Central

    Afifi, Ibrahim; El-Menyar, Ayman; Al-Thani, Hassan; Peralta, Ruben

    2015-01-01

    Seatbelt restraints are important for occupant safety which substantially reduces morbidity and mortality in severe motor vehicle crashes (MVC). Though, it has been established that the air bag and seatbelt use reduce injury severity and mortality but still there is limited information on the pattern of injury by restraint type. Herein, we presented two case reports which describe the injury pattern of two patients (both were restrained but only driver had airbag) involved in a single MVC. Both of them had severe traumatic injuries, however, the restrained passenger without airbag, sustained more severe injuries of intestine, kidney and spinal cord. In addition to seatbelt, airbag provides considerable protection against severe blunt abdominal trauma. Therefore, installation of airbags especially for front seat passenger is imperative for minimizing the risk of significant traumatic injuries. PMID:25810964

  16. The Mars Exploration Rovers Entry Descent and Landing and the Use of Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam; Desai, Prasun; Lee, Wayne; Bruno, Robin

    2003-01-01

    The Mars Exploration Rovers (MER) project, the next United States mission to the surface of Mars, uses aerodynamic decelerators in during its entry, descent and landing (EDL) phase. These two identical missions (MER-A and MER-B), which deliver NASA s largest mobile science suite to date to the surface of Mars, employ hypersonic entry with an ablative energy dissipating aeroshell, a supersonic/subsonic disk-gap-band parachute and an airbag landing system within EDL. This paper gives an overview of the MER EDL system and speaks to some of the challenges faced by the various aerodynamic decelerators.

  17. Entry Descent and Landing Systems for small planetary missions: parametric comparison of parachutes and inflatable systems for the proposed Vanguard Mars mission

    NASA Astrophysics Data System (ADS)

    Allouis, E.; Ellery, A.; Welch, C. S.

    2003-11-01

    Here the feasibility of a post-Beagle2 robotic Mars mission of modest size, mass and cost with a high scientific return is assessed. Based on a triad of robotics comprising a lander, a rover and three penetrating moles, the mission is astrobiology focussed, but also provides a platform for technology demonstration. The study is investigating two Entry, Descent and Landing Systems (EDLS) for the 120kg - mission based on the conventional heatshield/parachute duo and on the use of inflatable technologies as demonstrated by the IRDT/IRDT2 projects. Moreover, to make use of existing aerodynamic databases, both EDLS are considered with two geometries: the Mars Pathfinder (MPF) and Huygens/Beagle2 (B2) configurations. A versatile EDL model has been developed to provide a preliminary sizing for the different EDL systems such as heatshield, parachute, and inflatables for small to medium planetary missions. With a landed mass of 65 kg, a preliminary mass is derived for each system of the mission to provide a terminal velocity compatible with the use of airbags. On both conventional and inflatable options, the MPF configuration performs slightly better mass-wise since its cone half-angle is flatter at 70 degrees. Overall, the Inflatable Braking Device (IBD) option performs better than the conventional one and would provide in this particular case a decrease in mass of the EDLS of about 15-18% that can be redistributed to the payload.

  18. Entry descent and landing systems for small planetary missions: Parametric comparison of parachutes and inflatable systems for the proposed Vanguard Mars mission

    NASA Astrophysics Data System (ADS)

    Allouis, E.; Ellery, A.; Welch, C. S.

    2006-10-01

    Here, the feasibility of a post-Beagle2 robotic Mars mission of modest size, mass and cost with a high scientific return is assessed. Based on a triad of robotics comprising a lander, a rover and three penetrating moles, the mission is astrobiology focussed, but also provides a platform for technology demonstration. The study is investigating two Entry, Descent and Landing Systems (EDLS) for the 120 kg—mission based on the conventional heatshield/parachute duo and on the use of inflatable technologies as demonstrated by the IRDT/IRDT2 projects. Moreover, to make use of existing aerodynamic databases, both EDLS are considered with two geometries: the Mars pathfinder (MPF) and Huygens/Beagle2 (B2) configurations. A versatile EDL model has been developed to provide a preliminary sizing for the different EDL systems such as heatshield, parachute, and inflatables for small to medium planetary missions. With a landed mass of 65 kg, a preliminary mass is derived for each system of the mission to provide a terminal velocity compatible with the use of airbags. On both conventional and inflatable options, the MPF configuration performs slightly better mass-wise since its cone half-angle is flatter at 70. Overall, the inflatable braking device (IBD) option performs better than the conventional one and would provide in this particular case a decrease in mass of the EDLS of about 15 18% that can be redistributed to the payload.

  19. Airbag accelerometer with a simple switched-capacitor readout ASIC

    NASA Astrophysics Data System (ADS)

    Tsugai, Masahiro; Hirata, Yoshiaki; Tanimoto, Koji; Usami, Teruo; Araki, Toru; Otani, Hiroshi

    1997-09-01

    A bulk micromachined capacitive accelerometer for airbag applications based on (110) silicon anisotropic KOH etching is presented. The sensor is a two-chip accelerometer that consists of a glass-silicon-glass stacked sense element and an interface ASIC containing an impedance converter for capacitance detection, an EPROM and DACs for digital trimming, and a self-test feature for diagnosis. A simple switched-capacitor readout circuit with DC offset error cancellation scheme is proposed as the impedance converter. The dependence of narrow gap etching, surface roughness, and uniformity of the groove depth on the KOH concentration are also investigated for the fabrication of the device, and it is shown that the etch rate of the plane intrinsically controls the depth of the narrow gap with a KOH concentration of over 30 wt. percent, and smooth surface and uniformity of groove depth are obtained at 40 wt. percent KOH. The nonlinearity of the output is about 1.5 percent FS. The temperature coefficient of sensitivity and the off-axis sensitivity are 150 ppm/degree C and 2 percent respectively. The dimensions of the sensor are 10.3 X 10.3 X 3 mm.

  20. Portable-Beacon Landing System for Helicopters

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Clary, George R.; Chisholm, John P.; Macdonald, Stanley L.

    1987-01-01

    Prototype beacon landing system (BLS) allows helicopters to make precise landings in all weather. BLS easily added to existing helicopter avionic equipment and readily deployed at remote sites. Small and light, system employs X-band radar and digital processing. Variety of beams pulsed sequentially by ground station after initial interrogation by weather radar of approaching helicopter. Airborne microprocessor processes pulses to determine glide slope, course deviation, and range.

  1. Future Landing Capabilities of the Mars 2020 Entry, Descent, and Landing System

    NASA Astrophysics Data System (ADS)

    Kipp, K. A.; Hines, E. K.; Chen, A.

    2014-06-01

    This study examines landing site elevation capability as a function of landing season, for a future mission using the heritage MSL/Mars 2020 EDL system. Results are presented for a 1200kg landed mass with different parachute technology assumptions.

  2. Land system architecture: Using land systems to adapt and mitigate global environmental change

    SciTech Connect

    Turner, B.L.; Janetos, Anthony C.; Verbug, Peter H.; Murray, Alan T.

    2013-04-01

    Land systems (mosaics of land use and cover) are human environment systems, the changes in which drive and respond to local to global environmental changes, climate to macro-economy (Foley et al., 2005). Changes in land systems have been the principal proximate cause in the loss of habitats and biota globally, long contributed to atmospheric greenhouse gases, and hypothesized to have triggered climate changes in the early Holocene (Ruddiman, 2003). Land use, foremost agriculture, is the largest source of biologically active nitrogen to the atmosphere, critical to sources and sinks of carbon, and a major component in the hydrologic cycle (e.g., Bouwman et al., 2011). Changes in land systems also affect regional climate (Feddema et al., 2005; Pielke, 2005), ecosystem functions, and the array of ecosystem services they provide. Land systems, therefore, are a central feature of how humankind manages its relationship with nature-intended or not, or whether this relationship proceeds sustainably or not.

  3. 43 CFR 3101.5 - National Wildlife Refuge System lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false National Wildlife Refuge System lands. 3101.5 Section 3101.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Leases § 3101.5 National Wildlife Refuge System lands....

  4. 43 CFR 3101.5 - National Wildlife Refuge System lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false National Wildlife Refuge System lands. 3101.5 Section 3101.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Leases § 3101.5 National Wildlife Refuge System lands....

  5. 43 CFR 3101.5 - National Wildlife Refuge System lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false National Wildlife Refuge System lands. 3101.5 Section 3101.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Leases § 3101.5 National Wildlife Refuge System lands....

  6. 43 CFR 3101.5 - National Wildlife Refuge System lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false National Wildlife Refuge System lands. 3101.5 Section 3101.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF... Leases § 3101.5 National Wildlife Refuge System lands....

  7. Investigating occupant safety through simulating the interaction between side curtain airbag deployment and an out-of-position occupant.

    PubMed

    Potula, S R; Solanki, K N; Oglesby, D L; Tschopp, M A; Bhatia, M A

    2012-11-01

    The objective of this research is to elucidate the effect of side curtain airbag deployment on occupant injuries and safety when the occupant is either in-position or out-of-position (OOP). We used side impact vehicle collision simulations with a 1996 Dodge Neon model, which was further modified to include a side curtain airbag, a seatbelt, and a 50th percentile Hybrid III dummy. The airbag used in the study was inflated using both the uniform pressure (UP) and smooth particle hydrodynamics (SPH) methods. In-position and OOP simulations were performed to assess and establish guidelines for airbag aggressivity thresholds and occupant position versus risk of injury. Three different OOP scenarios (OOP1, OOP2, OOP3) were initially setup following the work of Lund (2003), then modified such that the dummy's head was closer to the airbag, increasing the chance of injury caused by the airbag. The resultant head acceleration as a function of time for in-position and OOP simulations shows that both UP and SPH methods produce similar peak accelerations in cases where the airbag is fully inflated prior to impact. In all cases, the head peak accelerations and the head injury criteria for simulations with an airbag were significantly lower when compared with the no airbag case, which would typically indicate that the use of an airbag results in improved occupant protection during side impact. However, in the case of OOP2 and OOP3, the neck flexion forces actually increase significantly when compared with the no airbag case. This finding indicates that the HIC and neck flexion forces criterion are in conflict and that there may be a tradeoff in terms of occupant injury/safety with a side curtain airbag that is strongly correlated to the occupant position. Consequently, this study shows that safety devices result in a significant effect on occupant injury/safety when the occupant is in OOP conditions. Moreover, in some cases, simulation results show that the side curtain airbag

  8. Estimating Evapotranspiration with Land Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, C. D.; Kumar, S. V.; Mocko, D. M.; Tian, Y.

    2011-01-01

    Advancements in both land surface models (LSM) and land surface data assimilation, especially over the last decade, have substantially advanced the ability of land data assimilation systems (LDAS) to estimate evapotranspiration (ET). This article provides a historical perspective on international LSM intercomparison efforts and the development of LDAS systems, both of which have improved LSM ET skill. In addition, an assessment of ET estimates for current LDAS systems is provided along with current research that demonstrates improvement in LSM ET estimates due to assimilating satellite-based soil moisture products. Using the Ensemble Kalman Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval Model (LPRM) soil moisture products into the Noah LSM Version 3.2 with the North American LDAS phase 2 (NLDAS-2) forcing to mimic the NLDAS-2 configuration. Through comparisons with two global reference ET products, one based on interpolated flux tower data and one from a new satellite ET algorithm, over the NLDAS2 domain, we demonstrate improvement in ET estimates only when assimilating the LPRM soil moisture product.

  9. Apollo experience report: Earth landing system

    NASA Technical Reports Server (NTRS)

    West, R. B.

    1973-01-01

    A brief discussion of the development of the Apollo earth landing system and a functional description of the system are presented in this report. The more significant problems that were encountered during the program, the solutions, and, in general, the knowledge that was gained are discussed in detail. Two appendixes presenting a detailed description of the various system components and a summary of the development and the qualification test programs are included.

  10. Satellite systems for land mobile communications

    NASA Astrophysics Data System (ADS)

    Iida, T.

    1980-03-01

    Two satellite systems for land mobile communications are proposed: an independent system accommodating 400,000 mobile radios in the 8 GHz band, and a system designed to complement an existing terrestrial mobile radio network using the 900 MHz band and accommodating 50,000 mobile radios. The independent system makes use of a 2000 kg satellite and a multibeam 8.7 m dish antenna. The complementary system has a smaller satellite (800 kg) and a 14.5 m dish antenna. The costs of the two systems are analyzed and compared.

  11. Spectroradiometric considerations for advanced land observing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1986-01-01

    Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.

  12. Need for airbag and seatbelt to reduce orbital injuries from steering wheel knob.

    PubMed

    Hwang, Kun; Kim, Joo Ho

    2014-11-01

    The aims of this study are to report a blowout fracture of the orbital floor and medial wall caused by being struck by a steering wheel knob of an automobile and to discuss the use of airbags and seatbelts as a preventive measure for orbital injuries. A 58-year-old man was struck in the left eye by a steering wheel. His car hit a telephone pole, and he had a frontal collision injury. In this frontal impact, his left eye was hit by a Brodie knob attached to the steering wheel. At the time of injury, the speed of the car was about 65 km/h. He was not wearing a seatbelt, and the airbag had not deployed. Swelling and ecchymosis were observed at the left periorbital area, and he had diplopia on a left-side gaze. A CT revealed fractures in the medial and inferior wall of the left orbit. Entrapped soft tissues were reduced, and the medial wall and floor were reconstructed with a resorbable sheet. His diplopia disappeared 12 days after surgery. To prevent the injury from the steering wheel knob, an airbag should be installed in any vehicle, which has a steering wheel knob. Legislation mandating the use of airbags as well as seatbelts in vehicles with attached steering wheel knobs should be made.

  13. A land mobile satellite data system

    NASA Astrophysics Data System (ADS)

    Kent, John D. B.

    The Telesat Mobile Incorporated (TMI) Mobile Data System (MDS) was developed to apply satellite technology to the transportation industry's requirement for a fleet management system. It will provide two-way messaging and automatic position reporting capabilities between dispatch centers and customers' fleets of trucks. The design was based on the Inmarsat L-Band space segment with system link parameters and margins adjusted to meet the land mobile satellite channel characteristics. The system interfaces with the Teleglobe Des Laurentides earth station at Weir, Quebec. The signaling protocols were derived from the Inmarsat Standard C packet signalling system with unique trucking requirements incorporated where necessary.

  14. A land mobile satellite data system

    NASA Technical Reports Server (NTRS)

    Kent, John D. B.

    1990-01-01

    The Telesat Mobile Incorporated (TMI) Mobile Data System (MDS) was developed to apply satellite technology to the transportation industry's requirement for a fleet management system. It will provide two-way messaging and automatic position reporting capabilities between dispatch centers and customers' fleets of trucks. The design was based on the Inmarsat L-Band space segment with system link parameters and margins adjusted to meet the land mobile satellite channel characteristics. The system interfaces with the Teleglobe Des Laurentides earth station at Weir, Quebec. The signaling protocols were derived from the Inmarsat Standard C packet signalling system with unique trucking requirements incorporated where necessary.

  15. Development of a portable precision landing system

    NASA Technical Reports Server (NTRS)

    Davis, T. J.; Clary, G. R.; Macdonald, S. L.

    1986-01-01

    A portable, tactical approach guidance (PTAG) system, based on a novel, X-band, precision approach concept, was developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. The system is based on state-of-the-art X-band technology and digital processing techniques. The PTAG airborne hardware consists of an X-band receiver and a small microprocessor installed in conjunction with the aircraft instrument landing system (ILS) receiver. The microprocessor analyzes the X-band, PTAG pulses and outputs ILS compatible localizer and glide slope signals. The ground stations are inexpensive, portable units, each weighing less than 85 lb, including battery, that can be quickly deployed at a landing site. Results from the flight test program show that PTAG has a significant potential for providing tactical aircraft with low cost, portable, precision instrument approach capability.

  16. The Sand Land Soil System and Society

    NASA Astrophysics Data System (ADS)

    Mahjoory, R. A.

    Worldwide arid soils such as Latterites from African Savannas to the Xeralfs and Xererts of the Mediterranean Basin Ortents and Orthids of Asian Deserts are uniquely different in their strategic roles for utilizing the land in places where a delicate balance between annual climatic cycles and general trends toward desertification predominate Arid lands cover 1 3 of global land surface and contain irreplaceable natural resources with potential productivity of meeting the demands of more than two billion people and serving as sources and sinks of atmospheric CO2 to combat global warming The soil system in these arid areas are being degraded underutilized and kept in a stage of obliviousness due to inadequate public literacy and most importantly in-sufficient scientific evaluations based on pedology and soil taxonomy standards Implementation of food security projects and sustainable development programs on randomly selected sites and assessment of land degradation worldwide by powerful computers and satellite imagery techniques without field work and identification of Representative Soil Units are data producing and grant attracting but counter productive We live in a world in which there is an order out there and things are precisely measured and categorized for efficient utilization Why not the soils mainly in arid areas How we could generalize the world of soils under our feet by concept of soils are the same Expansion of educational programs quantification of multiple ecosystems within the arid regions through detailed and correlated

  17. Video guidance, landing, and imaging systems

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Knickerbocker, R. L.; Tietz, J. C.; Grant, C.; Rice, R. B.; Moog, R. D.

    1975-01-01

    The adaptive potential of video guidance technology for earth orbital and interplanetary missions was explored. The application of video acquisition, pointing, tracking, and navigation technology was considered to three primary missions: planetary landing, earth resources satellite, and spacecraft rendezvous and docking. It was found that an imaging system can be mechanized to provide a spacecraft or satellite with a considerable amount of adaptability with respect to its environment. It also provides a level of autonomy essential to many future missions and enhances their data gathering ability. The feasibility of an autonomous video guidance system capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was successfully demonstrated in the laboratory. The techniques developed for acquisition, pointing, and tracking show promise for recognizing and tracking coastlines, rivers, and other constituents of interest. Routines were written and checked for rendezvous, docking, and station-keeping functions.

  18. Sensor system for comet approach and landing

    NASA Astrophysics Data System (ADS)

    Bonsignori, Roberto; Maresi, Luca

    1991-07-01

    This paper describes the overall configuration and performance of a comet approach and landing system (CALS), a space-borne sensor package for navigation toward a low-gravity celestial body in an interplanetary environment. The sensor system is aimed at satisfying the requirements of the Rosetta/CNSR (comet nucleus sample return) mission, whose objective is to land on a cometary surface and to retrieve samples that will be analyzed on the ground after Earth re-entry. Several constraints at the mission and spacecraft level make the configuration of a suitable sensor package a quite complex problem. The baseline system includes the following sensors, all mounted on a high-precision gimballed platform: (1) high-resolution camera, for detection of the comet at large distance and mapping at medium/short distance for ground-assisted landing site selection; (2) wide-angle camera with data processing equipment (star and target tracker), able to track simultaneously the irregular comet image and the surrounding stars for autonomous navigation; (3) laser topographic mapper for autonomous topography-assisted navigation in the final descent phase; (4) multitask radar altimeter for the on-board measurement of range, attitude, 3-axis velocity and surface roughness, with a microwave sounder section for the determination of subsurface structure and composition.

  19. Boeing CST-100 Mock-Up Undergoes Airbag Stabilization Test

    NASA Video Gallery

    The Boeing Company's mock-up CST-100 spacecraft was put through water landing development tests Oct. 1-5, 2012, at Bigelow Aerospace's headquarters outside of Las Vegas. Engineers with Bigelow have...

  20. 77 FR 44144 - National Forest System Land Management Planning; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... Forest Service 36 CFR Part 219 RIN 0596-AD02 National Forest System Land Management Planning; Correction...) published a National Forest System land management planning rule in the Federal Register, on April 9, 2012..., Subpart A--National Forest System Land Management Planning (36 CFR part 219, subpart A). One...

  1. Satellite systems requirements for land mobile communications

    NASA Technical Reports Server (NTRS)

    Horstein, M.

    1983-01-01

    The system design objective is to provide a satellite link through a gateway station, connecting mobile users in areas not served by a terrestrial cellular system to the switched telephone network (STN). The proposed frequency allocation comprises a pair of 10-MHz bands in the 806-890 MHz range specified by the 1979 World Administrative Radio Conference (WARC) for land-mobile satellite service (LMSS). The satellite design is constrained by projected STS capability with an upper stage of the wide-body Centaur or Integral Propulsion System (IPS) type. For the latter (a TRW design), the payload is limited to approximately 10,400 lb. The design is to be based on 1990's technology, with initial operating capability scheduled for 1995. The satellite should be designed for a 7-year life. Mobile-unit compatibility with cellular system specifications is desirable, if consistent with other system requirements.

  2. A new digital land mobile satellite system

    NASA Technical Reports Server (NTRS)

    Schneider, Philip

    1990-01-01

    A description is given of the different digital services planned to be carried over existing and planned mobile satellite systems. These systems are then compared with analog services in terms of bandwidth and power efficiency. This comparison provides the rationale for the establishment of a digital land mobile satellite service (DLMSS) to use frequencies that are currently available but not yet assigned to a domestic mobile satellite system in the United States. The focus here is on the expected advantages of digital transmission techniques in accommodating additional mobile satellite systems in this portion of the spectrum, and how such techniques can fully satisfy voice, data and facsimile mobile communications requirements in a cost effective manner. A description is given of the system architecture of the DMLSS service proposed by the Geostar Messaging Corporation (GMC) and the market potential of DLMSS.

  3. Industrial use of land observation satellite systems

    NASA Technical Reports Server (NTRS)

    Henderson, F. B., III

    1984-01-01

    The principal industrial users of land observation satellite systems are the geological industries; oil/gas, mining, and engineering/environmental companies. The primary system used is LANDSAT/MSS. Currently, use is also being made of the limited amounts of SKYLAB photography, SEASAT and SIR-A radar, and the new LANDSAT/TM data available. Although considered experimental, LANDSAT data is now used operationally by several hundred exploration and engineering companies worldwide as a vastly improved geological mapping tool to help direct more expensive geophysical and drilling phases, leading to more efficient decision-making and results. Future needs include global LANDSAT/TM; higher spatial resolution; stereo and radar; improved data handling, processing distribution and archiving systems, and integrated geographical information systems (GIS). For a promising future, governments must provide overall continuity (government and/or private sector) of such systems, insure continued government R and D, and commit to operating internationally under the civil Open Skies policy.

  4. Experimental land observing data system feasibility study

    NASA Technical Reports Server (NTRS)

    Buckley, J. L.; Kraiman, H.

    1982-01-01

    An end-to-end data system to support a Shuttle-based Multispectral Linear Array (MLA) mission in the mid-1980's was defined. The experimental Land Observing System (ELOS) is discussed. A ground system that exploits extensive assets from the LANDSAT-D Program to effectively meet the objectives of the ELOS Mission was defined. The goal of 10 meter pixel precision, the variety of data acquisition capabilities, and the use of Shuttle are key to the mission requirements, Ground mission management functions are met through the use of GSFC's Multi-Satellite Operations Control Center (MSOCC). The MLA Image Generation Facility (MIGF) combines major hardware elements from the Applications Development Data System (ADDS) facility and LANDSAT Assessment System (LAS) with a special purpose MLA interface unit. LANDSAT-D image processing techniques, adapted to MLA characteristics, form the basis for the use of existing software and the definition of new software required.

  5. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H., Jr. (Inventor)

    1994-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (VR) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.

  6. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)

    1996-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.

  7. 75 FR 41886 - Public Land Order No. 7744; Withdrawal of National Forest System Land for Inyan Kara Area; WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Bureau of Land Management Public Land Order No. 7744; Withdrawal of National Forest System Land for Inyan... order withdraws 1,278.09 acres of National Forest System land from location and entry under the United... made of National Forest System land, to protect the Inyan Kara area of the Black Hills National......

  8. Overview of the land analysis system (LAS)

    USGS Publications Warehouse

    Quirk, Bruce K.; Olseson, Lyndon R.

    1987-01-01

    The Land Analysis System (LAS) is a fully integrated digital analysis system designed to support remote sensing, image processing, and geographic information systems research. LAS is being developed through a cooperative effort between the National Aeronautics and Space Administration Goddard Space Flight Center and the U. S. Geological Survey Earth Resources Observation Systems (EROS) Data Center. LAS has over 275 analysis modules capable to performing input and output, radiometric correction, geometric registration, signal processing, logical operations, data transformation, classification, spatial analysis, nominal filtering, conversion between raster and vector data types, and display manipulation of image and ancillary data. LAS is currently implant using the Transportable Applications Executive (TAE). While TAE was designed primarily to be transportable, it still provides the necessary components for a standard user interface, terminal handling, input and output services, display management, and intersystem communications. With TAE the analyst uses the same interface to the processing modules regardless of the host computer or operating system. LAS was originally implemented at EROS on a Digital Equipment Corporation computer system under the Virtual Memorial System operating system with DeAnza displays and is presently being converted to run on a Gould Power Node and Sun workstation under the Berkeley System Distribution UNIX operating system.

  9. Mars Science Laboratory Entry, Descent and Landing System Overview

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tomasso P.; Chen, Allen

    2013-01-01

    The Mars Science Laboratory project recently places the Curiosity rove on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent and landing capabilities has been extended over the previous state of the art. This paper will present an overview to the MSL entry, descent and landing system design and preliminary flight performance results.

  10. Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags

    PubMed Central

    Nelson, Todd G.; Zimmerman, Trent K.; Fernelius, Janette D.; Magleby, Spencer P.; Howell, Larry L.

    2016-01-01

    Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the ‘flasher’ and the ‘inverted-cone fold’, for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver’s side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes. PMID:27703707

  11. Data model for the collaboration between land administration systems and agricultural land parcel identification systems.

    PubMed

    Inan, Halil Ibrahim; Sagris, Valentina; Devos, Wim; Milenov, Pavel; van Oosterom, Peter; Zevenbergen, Jaap

    2010-12-01

    The Common Agricultural Policy (CAP) of the European Union (EU) has dramatically changed after 1992, and from then on the CAP focused on the management of direct income subsidies instead of production-based subsidies. For this focus, Member States (MS) are expected to establish Integrated Administration and Control System (IACS), including a Land Parcel Identification System (LPIS) as the spatial part of IACS. Different MS have chosen different solutions for their LPIS. Currently, some MS based their IACS/LPIS on data from their Land Administration Systems (LAS), and many others use purpose built special systems for their IACS/LPIS. The issue with these different IACS/LPIS is that they do not have standardized structures; rather, each represents a unique design in each MS, both in the case of LAS based or special systems. In this study, we aim at designing a core data model for those IACS/LPIS based on LAS. For this purpose, we make use of the ongoing standardization initiatives for LAS (Land Administration Domain Model: LADM) and IACS/LPIS (LPIS Core Model: LCM). The data model we propose in this study implies the collaboration between LADM and LCM and includes some extensions. Some basic issues with the collaboration model are discussed within this study: registration of farmers, land use rights and farming limitations, geometry/topology, temporal data management etc. For further explanation of the model structure, sample instance level diagrams illustrating some typical situations are also included.

  12. Preliminary study of a possible automatic landing system

    NASA Technical Reports Server (NTRS)

    Sherman, W. L.; Winfrey, S. W.

    1974-01-01

    Navigation and control laws for a possible automatic landing system have been investigated. The system makes use of data from an inertial table and either an airborne or ground radar to generate signals that guide the airplane to a landing. All landing maneuvers take place within a zone that extends 6000 m out from the touchdown point, 4000 m on each side of the runway center line, and 540 m high. The results show that the system can adequately control the airplane on steep, curved decelerating approaches to a landing that takes place with small errors from the desired landing point and desired airplane attitude. The system studied would interface well with the scanning beam microwave landing system (MLS). The use of this system with the MLS makes it possible to incorporate an independent landing monitor.

  13. Evolutionary direction of land-atmosphere system

    NASA Astrophysics Data System (ADS)

    Paik, Kyungrock

    2015-04-01

    Natural landscape is always subject to dynamic change, leaving characteristic patterns at various time scales. Noticeable patterns, ranging from meandering to fractal characteristics of river networks, have been investigated with physical modeling, mathematical modeling, and other manners. One revolutionary idea to foster holistic understanding of landscape evolution is the optimality concept. There have been several optimality hypotheses proposed for different types of landforms. However, none of them seems fully verified (Paik, 2012). It has been argued that lack of feedbacks between different processes into account is critical limitation of present optimality hypotheses (Paik and Kumar, 2010). In this regards, this study presents how optimality context to be formulated for a clear case where strong feedbacks are exchanged during co-evolution, i.e. land-atmosphere system. While most landscape evolution models, either physical, numerical, or optimality-based, assume simple spatio-temporal variability in climate forcing (e.g., rainfall), climatic field evolves together with landscape in reality. For example, orographic precipitation is enhanced as tectonic uplift continues. Accordingly, landscape and atmosphere are closely linked and we should look at them as a single system, rather than separated individuals. In this presentation, limitation of existing optimality hypotheses will be demonstrated with examples of coupled evolution of land-atmosphere system. Fundamental implications for general optimality concept for evolutionary direction of the coupled system will be discussed. Keywords: Optimal channel network; Landscape evolution; Orographic rainfall References Paik, K. and P. Kumar (2010) Optimality approaches to describe characteristic fluvial patterns on landscapes. Philosophical Transactions of the Royal Society B-Biological Sciences, Vol.365, No.1545, pp.1387-1395, DOI: 10.1098/rstb.2009.0303. Paik, K. (2012) Search for the optimality signature of river

  14. Airplane Takeoff-and-Landing Performance Monitoring System

    NASA Technical Reports Server (NTRS)

    Middleton, David B.; Person, Lee H., Jr.; Srivatsan, Raghavachari

    1988-01-01

    Airplane Takeoff-and-Landing Performance Monitoring System (TOPMS) designed to increase safety during takeoffs and landings of aircraft. Provides pilots with graphic information crucial to decision to continue or reject takeoff. If rejected or landing in progress, provides crucial information relative to where airplane can be brought to stop.

  15. Crew procedures for microwave landing system operations

    NASA Technical Reports Server (NTRS)

    Summers, Leland G.

    1987-01-01

    The objective of this study was to identify crew procedures involved in Microwave Landing System (MLS) operations and to obtain a preliminary assessment of crew workload. The crew procedures were identified for three different complements of airborne equipment coupled to an autopilot. Using these three equipment complements, crew tasks were identified for MLS approaches and precision departures and compared to an ILS approach and a normal departure. Workload comparisons between the approaches and departures were made by using a task-timeline analysis program that obtained workload indexes, i.e., the radio of time required to complete the tasks to the time available. The results showed an increase in workload for the MLS scenario for one of the equipment complements. However, even this workload was within the capacity of two crew members.

  16. Land System Science: between global challenges and local realities.

    PubMed

    Verburg, Peter H; Erb, Karl-Heinz; Mertz, Ole; Espindola, Giovana

    2013-10-01

    This issue of Current Opinion in Environmental Sustainability provides an overview of recent advances in Land System Science while at the same time setting the research agenda for the Land System Science community. Land System Science is not just representing land system changes as either a driver or a consequence of global environmental change. Land systems also offer solutions to global change through adaptation and mitigation and can play a key role in achieving a sustainable future earth. The special issue assembles 14 articles that entail different perspectives on land systems and their dynamics, synthesizing current knowledge, highlighting currently under-researched topics, exploring scientific frontiers and suggesting ways ahead, integrating a plethora of scientific disciplines. PMID:24851141

  17. High Resolution Land Surface Modeling with the next generation Land Data Assimilation Systems

    NASA Astrophysics Data System (ADS)

    Kumar, S. V.; Eylander, J.; Peters-Lidard, C.

    2005-12-01

    Knowledge of land surface processes is important to many real-world applications such as agricultural production, water resources management, and flood predication. The Air Force Weather Agency (AFWA) has provided the USDA and other customers global soil moisture and temperature data for the past 30 years using the agrometeorological data assimilation model (now called AGRMET), merging atmospheric data. Further, accurate initialization of land surface conditions has been shown to greatly influence and improve weather forecast model and seasonal-to-interannual climate predictions. The AFWA AGRMET model exploits real time precipitation observations and analyses, global forecast model and satellite data to generate global estimates of soil moisture, soil temperature and other land surface states at 48km spatial resolution. However, to truly address the land surface initialization and climate prediction problem, and to mitigate the errors introduced by the differences in spatial scales of models, representations of land surface conditions need to be developed at the same fine scales such as that of cloud resolving models. NASA's Goddard Space Flight Center has developed an offline land data assimilation system known as the Land Information System (LIS) capable of modeling land atmosphere interactions at spatial resolutions as fine as 1km. LIS provides a software architecture that integrates the use of the state of the art land surface models, data assimilation techniques, and high performance computing and data management tools. LIS also employs many high resolution surface parameters such as the NASA Earth Observing System (EOS)-era products. In this study we describe the development of a next generation high resolution land surface modeling and data assimilation system, combining the capabilities of LIS and AGRMET. We investigate the influence of high resolution land surface data and observations on the land surface conditions by comparing with the operational AGRMET

  18. A Land Surface Data Assimilation Framework Using the Land Information System: Description and Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Land Information System (LIS) is a hydrologic modeling framework that integrates various community land surface models, ground and satellite-based observations, and high performance computing and data management tools to enable assessment and prediction of hydrologic conditions at various spatia...

  19. Entry, Descent and Landing Systems Analysis Study: Phase 1 Report

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Komar, David R.; Munk, Michelle M.; Samareh, Jamshid A.; Powell, Richard W.; Shidner, Jeremy D.; Stanley, Douglas O.; Wilhite, Alan W.; Kinney, David J.; McGuire, M. Kathleen; Arnold, James O.; Howard, Austin R.; Sostaric, Ronald R.; Studak, Joseph W.; Zumwalt, Carlie H.; Llama, Eduardo G.; Casoliva, Jordi; Ivanov, Mark C.; Clark, Ian; Sengupta, Anita

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and human-scale missions. This paper summarizes the motivation, approach and top-level results from Year 1 of the study, which focused on landing 10-50 mt on Mars, but also included a trade study of the best advanced parachute design for increasing the landed payloads within the EDL architecture of the Mars Science Laboratory (MSL) mission

  20. Do Increasingly Globalized Land Systems Promote or Undermine Sustainability?

    NASA Astrophysics Data System (ADS)

    Munroe, D. K.

    2015-12-01

    Scholars are now studying land systems in a global context using such concepts as "telecoupling." Research to date has recognized that local land systems may be undermined by globalization, and local people displaced. The land change community emphasizes the ways in which local people make decisions about natural resources given the opportunities and constraints that globalization presents. This talk will present a summary of current land systems science research in agribusiness, global trade and financial institutions, highlighting key ways in which sustainability measures can capture the effects of these actors and activities.

  1. Policy implications in developing a land use management information systems

    NASA Technical Reports Server (NTRS)

    Landini, A. J.

    1975-01-01

    The current land use map for the city of Los Angeles was developed by the guesstimation process and provides single stage information for each level in the critical geographical hierarchy for land use planning management. Processing and incorporation of LANDSAT data in the land use information system requires special funding; however, computergraphic maps are able to provide a viable information system for city planning and management.

  2. Analysis of particles produced during airbag deployment by scanning electron microscopy with energy dispersive x-ray spectroscopy and their deposition on surrounding surfaces: a mid-research summary

    NASA Astrophysics Data System (ADS)

    Wyatt, J. Matney

    2011-06-01

    Airbags can be encountered in forensic work when investigating a car crash and are typically constructed with primerlike material to begin the deployment apparatus. The mechanisms of airbag deployment can produce particles ideal for scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS) analysis. A recent study published by Berk studied airbags with vents and showed that it is possible for particles generated from the deployment of these airbags to deposit on surfaces in the vehicle as the airbags deflate.1 Another paper published by Berk reported particles similar in morphology and composition to primer gunshot residue (GSR) are produced by side impact airbags.2 This paper's aim will be to show mid-point results of a study still in progress in which non-vented airbags were analyzed to determine if they exhibited the same particle depositing features as their vented airbag counterparts. Further investigation in this study is being performed to find more airbags which produce primer gunshot residue-like particles containing lead, barium, and antimony from airbag deployment. To date, the study has resulted in (1) non-vented airbags exhibiting deposition of particles suitable for SEM/EDS analysis and (2) no gunshot residue-like particles being detected from the airbag residues studied thus far.

  3. Comparing Driver Frontal Mortality in Vehicles with Redesigned and Older-Design Front Airbags

    PubMed Central

    Braver, Elisa R.; Kyrychenko, Sergey Y.; Ferguson, Susan A.

    2004-01-01

    In 1997, the National Highway Traffic Safety Administration amended its requirements for frontal crash performance under Federal Motor Vehicle Safety Standard 208 to temporarily allow 30 mph (48 kph) sled tests with unbelted dummies as an alternative to 30 mph head-on rigid-barrier vehicle tests. This change permitted automakers to reduce airbag inflation forces so that they would be less likely to injure occupants who are close to airbags when they first deploy. Most vehicle models were sled-certified starting in model year 1998. Airbag-related deaths have decreased since 1997; however, controversy persists about whether reduced inflation forces might be decreasing protection for some occupants in high-severity frontal crashes. To examine the effects of the regulatory changes, this study computed rate ratios (RR) and 95 percent confidence intervals (95% CI) for passenger vehicle driver deaths per vehicle registration during 2000–02 at principal impact points of 12 o’clock for 1998–99 model year vehicles relative to 1997 models. Passenger vehicles included in the study had both driver and passenger front airbags, had the same essential designs during the 1997–99 model years, and had been sled-certified for drivers throughout model years 1998 and 1999. An adjustment was made for the higher annual mileage of newer vehicles. Findings were that the effect of the regulatory change varied by vehicle type. For cars, sport utility vehicles, and minivans combined, there was an 11 percent decrease in fatality risk in frontal crashes after changing to sled certification (RR=0.89; 95% CI=0.82–0.96). Among pickups, however, estimated frontal fatality risk increased 35 percent (RR=1.35; 95% CI=1.12–1.62). For a broad range of frontal crashes (11, 12, and 1 o’clock combined), the results indicated a modest net benefit of the regulatory change across all vehicle types and driver characteristics. However, the contrary finding for pickups needs to be researched further

  4. Land use survey using remote sensing and geographical information systems

    NASA Astrophysics Data System (ADS)

    Suga, Yuzo

    1992-07-01

    A hybrid system which integrates Remote Sensing (RS) data and Geographical Information Systems (GIS) information, has been developed for land use survey in Hiroshima city. The system consists of three interrelated subsystems, i.e., a personal computer, a minicomputer and an engineering workstation: The system can handle an image data base consisting of satellite digital images such as Landsat TM and Spot HRV data, a line map data base consisting of topography and land use zoning, and an updating land use information data base consisting of raster and vector data such as remote sensing data and digital mapping data. This paper describes the implementation of the integration of multiple sensors/multi-temporal remote sensing images with digital mapping data. The application of the system to a land use survey is discussed with respect to a method of extracting land use information based on remote sensing and geographical information systems.

  5. 76 FR 37826 - Public Land Order No. 7773; Emergency Withdrawal of Public and National Forest System Lands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ...,776 acres of public and National Forest System lands from location and entry under the 1872 Mining Law... National Forest System lands in Coconino and Mohave Counties. 2. The withdrawal made by this Order does not... Bureau of Land Management Public Land Order No. 7773; Emergency Withdrawal of Public and National...

  6. A land use and land cover classification system for use with remote sensor data

    USGS Publications Warehouse

    Anderson, James R.; Hardy, Ernest E.; Roach, John T.; Witmer, Richard E.

    1976-01-01

    The framework of a national land use and land cover classification system is presented for use with remote sensor data. The classification system has been developed to meet the needs of Federal and State agencies for an up-to-date overview of land use and land cover throughout the country on a basis that is uniform in categorization at the more generalized first and second levels and that will be receptive to data from satellite and aircraft remote sensors. The proposed system uses the features of existing widely used classification systems that are amenable to data derived from remote sensing sources. It is intentionally left open-ended so that Federal, regional, State, and local agencies can have flexibility in developing more detailed land use classifications at the third and fourth levels in order to meet their particular needs and at the same time remain compatible with each other and the national system. Revision of the land use classification system as presented in U.S. Geological Survey Circular 671 was undertaken in order to incorporate the results of extensive testing and review of the categorization and definitions.

  7. A Reusable Design for Precision Lunar Landing Systems

    NASA Technical Reports Server (NTRS)

    Fuhrman, Linda; Brand, Timothy; Fill, Tom; Norris, Lee; Paschall, Steve

    2005-01-01

    The top-level architecture to accomplish NASA's Vision for Space Exploration is to use Lunar missions and systems not just as an end in themselves, but also as testbeds for the more ambitious goals of Human Mars Exploration (HME). This approach means that Lunar missions and systems are most likely going to be targeted for (Lunar) polar missions, and also for long-duration (months) surface stays. This overacting theme creates basic top-level requirements for any next-generation lander system: 1) Long duration stays: a) Multiple landers in close proximity; b) Pinpoint landings for "surface rendezvous"; c) Autonomous landing of pre-positioned assets; and d) Autonomous Hazard Detection and Avoidance. 2) Polar and deep-crater landings (dark); 3) Common/extensible systems for Moon and Mars, crew and cargo. These requirements pose challenging technology and capability needs. Compare and contrast: 4) Apollo: a) 1 km landing accuracy; b) Lunar near-side (well imaged and direct-to-Earth com. possible); c) Lunar equatorial (landing trajectories offer best navigation support from Earth); d) Limited lighting conditions; e) Significant ground-in-the-loop operations; 5) Lunar Access: a) 10-100m landing precision; b) "Anywhere" access includes polar (potentially poor nav. support from Earth) and far side (poor gravity and imaging; no direct-to-Earth com); c) "Anytime" access includes any lighting condition (including dark); d) Full autonomous landing capability; e) Extensible design for tele-operation or operator-in-the-loop; and f) Minimal ground support to reduce operations costs. The Lunar Access program objectives, therefore, are to: a) Develop a baseline Lunar Precision Landing System (PLS) design to enable pinpoint "anywhere, anytime" landings; b) landing precision 10m-100m; c) Any LAT, LON; and d) Any lighting condition; This paper will characterize basic features of the next generation Lunar landing system, including trajectory types, sensor suite options and a reference

  8. Biomechanics of side impact: Injury criteria, aging occupants, and airbag technology

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.; Stemper, Brian D.; Gennarelli, Thomas A.; Weigelt, John A.

    2007-01-01

    This paper presents a survey of side impact trauma-related biomedical investigations with specific reference to certain aspects of epidemiology relating to the growing elderly population, improvements in technology such as side airbags geared toward occupant safety, and development of injury criteria. The first part is devoted to the involvement of the elderly by identifying variables contributing to injury including impact severity, human factors, and national and international field data. This is followed by a survey of various experimental models used in the development of injury criteria and tolerance limits. The effects of fragility of the elderly coupled with physiological changes (e.g., visual, musculoskeletal) that may lead to an abnormal seating position (termed out-of-position) especially for the driving population are discussed. Fundamental biomechanical parameters such as thoracic, abdominal and pelvic forces; upper and lower spinal and sacrum accelerations; and upper, middle and lower chest deflections under various initial impacting conditions are evaluated. Secondary variables such as the thoracic trauma index and pelvic acceleration (currently adopted in the United States Federal Motor Vehicle Safety Standards), peak chest deflection, and viscous criteria are also included in the survey. The importance of performing research studies with specific focus on out-of-position scenarios of the elderly and using the most commonly available torso side airbag as the initial contacting condition in lateral impacts for occupant injury assessment is emphasized. PMID:16527285

  9. Application of the global Land-Potential Knowledge System (LandPKS) mobile apps to land degradation, restoration and climate change adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Combatting land degradation, promoting restoration and adapting to climate change all require an understanding of land potential. A global Land-Potential Knowledge System (LandPKS) is being developed that will address many of these limitations using an open source approach designed to allow anyone w...

  10. Reorienting land degradation towards sustainable land management: linking sustainable livelihoods with ecosystem services in rangeland systems.

    PubMed

    Reed, M S; Stringer, L C; Dougill, A J; Perkins, J S; Atlhopheng, J R; Mulale, K; Favretto, N

    2015-03-15

    This paper identifies new ways of moving from land degradation towards sustainable land management through the development of economic mechanisms. It identifies new mechanisms to tackle land degradation based on retaining critical levels of natural capital whilst basing livelihoods on a wider range of ecosystem services. This is achieved through a case study analysis of the Kalahari rangelands in southwest Botswana. The paper first describes the socio-economic and ecological characteristics of the Kalahari rangelands and the types of land degradation taking place. It then focuses on bush encroachment as a way of exploring new economic instruments (e.g. Payments for Ecosystem Services) designed to enhance the flow of ecosystem services that support livelihoods in rangeland systems. It does this by evaluating the likely impacts of bush encroachment, one of the key forms of rangeland degradation, on a range of ecosystem services in three land tenure types (private fenced ranches, communal grazing areas and Wildlife Management Areas), before considering options for more sustainable land management in these systems. We argue that with adequate policy support, economic mechanisms could help reorient degraded rangelands towards more sustainable land management.

  11. Image interpretation for a multilevel land use classification system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The potential use is discussed of three remote sensors for developing a four level land use classification system. Three types of imagery for photointerpretation are presented: ERTS-1 satellite imagery, high altitude photography, and medium altitude photography. Suggestions are given as to which remote sensors and imagery scales may be most effectively employed to provide data on specific types of land use.

  12. Ground-Based Calibration Of A Microwave Landing System

    NASA Technical Reports Server (NTRS)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  13. Techniques of UAV system land use changes detection application

    NASA Astrophysics Data System (ADS)

    Zhang, Youying; Cui, Hongxia

    2011-02-01

    The unmanned aerial vehicle( UAV) was able to acquire remote sensing images with low cost, precise and high spatial resolution information needed by management of Land use at desired time. The aim of this paper was to present an overview of the ongoing research on the potential and techniques of low-altitude UAV system for land use applications. The development of crucial subsystems consisting of the UAV platforms, multiple camera system, camera calibration and photogrammetric production, was introduced together. A procedure of images acquisition and photogrammetric processing was proposed. To detect land use changes, methods based on DSMs and DLG were discussed and adopted in this paper. Finally, analysis of land use research based UAVs was realized on real flight experiments of two study areas. The results of this study show that UAVs can be used successfully for land use change detection.

  14. Land surface modeling and data assimilation with the Land Information System

    NASA Astrophysics Data System (ADS)

    Kumar, S. V.; Peters-Lidard, C. D.; Reichle, R.

    2008-05-01

    The Land Information System (LIS) is a high-resolution, high-performance, land surface modeling and data assimilation system to support a wide range of land surface research activities and applications. LIS integrates various community land surface models, ground and satellite-based observations, and high performance and data management tools to enable assessment and prediction of hydrologic conditions at various spatial and temporal scales of interest. The system has been demonstrated at high spatial resolutions (such as 1km) globally, with the use of scalable computing technologies. The ability of the system to operate at the same fine spatial scales of the atmospheric boundary layer and cloud models enables improved characterization of water and energy cycle processes. LIS has been coupled to the Weather Research and Forecasting (WRF) model, enabling a high-resolution land atmosphere system. Recently, the LIS framework has been enhanced by developing an interoperable extension for sequential data assimilation, thereby providing a comprehensive framework that can integrate data assimilation techniques, hydrologic models, observations and the required computing infrastructure. The capabilities are demonstrated using a suite of experiments that assimilate different sources of observational data into different land surface models to propagate observational information in space and time using assimilation algorithms of varying complexity. These experiments demonstrate the assimilation of various sources of hydrologic observations of soil moisture, snow and skin temperature using different sequential data assimilation algorithms into the land surface models operating in LIS. Several functional extensions to LIS, including an on-line, dynamic bias correction component, and generic support for parameter estimation are also being developed. The integrated use of these key modeling capabilities demonstrates the use of LIS framework as a valuable tool in the development

  15. Multi-Scale Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.

    2011-01-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite-and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected as a co-winner of NASA?s 2005 Software of the Year award.LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has e volved from two earlier efforts -- North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations.In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling

  16. Multi-Scale Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Kumar, Sujay V.; Santanello, Joseph A., Jr.; Reichle, Rolf H.

    2009-01-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov; Kumar et al., 2006; Peters- Lidard et al.,2007) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected ase co-winner of NASA's 2005 Software of the Year award. LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has evolved from two earlier efforts North American Land Data Assimilation System (NLDAS; Mitchell et al. 2004) and Global Land Data Assimilation System (GLDAS; Rodell al. 2004) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations. In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by

  17. 7. Northeast view interior, air traffic control and landing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Northeast view interior, air traffic control and landing system room 25 - Selfridge Field, Building No. 1050, Northwest corner of Doolittle Avenue & D Street; Harrison Township, Mount Clemens, Macomb County, MI

  18. Magneto-rheological (MR) damper for landing gear system

    NASA Astrophysics Data System (ADS)

    Khani, Mahboubeh

    2010-11-01

    Depending on the different sink speeds, angles of attack and masses; aircraft landing gears could face a wide range of impact conditions which may possibly cause structural damage or failure. Thus, in hard landing scenarios, the landing gear must absorb sufficient energy in order to minimize dynamic stress on the aircraft airframe. Semi-active control systems are the recent potential solutions to overcome these limitations. Among semi-active control strategies, those based on smart fluids such as magneto-rheological (MR) fluids have received recent attraction as their rheological properties can be continuously controlled using magnetic or electric field and they are not sensitive to the contaminants and the temperature variation and also require lower powers. This thesis focuses on modeling of a MR damper for landing gear system and analysis of semi-active controller to attenuate dynamic load and landing impact. First, passive landing gear of a Navy aircraft is modeled and the forces associated with the shock strut are formulated. The passive shock strut is then integrated with a MR valve to design MR shock strut. Here, MR shock strut is integrated with the landing gear system modeled as the 2DOF system and governing equations of motion are derived in order to simulate the dynamics of the system under different impact conditions. Subsequently the inverse model of the MR shock strut relating MR yield stress to the MR shock strut force and strut velocity is formulated. Using the developed governing equations and inverse model, a PID controller is formulated to reduce the acceleration of the system. Controlled performance of the simulated MR landing gear system is demonstrated and compared with that of passive system.

  19. 43 CFR 2650.4-6 - National wildlife refuge system lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false National wildlife refuge system lands... SELECTIONS Alaska Native Selections: Generally § 2650.4-6 National wildlife refuge system lands. (a) Every conveyance which includes lands within the national wildlife refuge system shall, as to such lands,...

  20. 43 CFR 2650.4-6 - National wildlife refuge system lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false National wildlife refuge system lands... SELECTIONS Alaska Native Selections: Generally § 2650.4-6 National wildlife refuge system lands. (a) Every conveyance which includes lands within the national wildlife refuge system shall, as to such lands,...

  1. 43 CFR 2650.4-6 - National wildlife refuge system lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false National wildlife refuge system lands... SELECTIONS Alaska Native Selections: Generally § 2650.4-6 National wildlife refuge system lands. (a) Every conveyance which includes lands within the national wildlife refuge system shall, as to such lands,...

  2. 43 CFR 2650.4-6 - National wildlife refuge system lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false National wildlife refuge system lands... SELECTIONS Alaska Native Selections: Generally § 2650.4-6 National wildlife refuge system lands. (a) Every conveyance which includes lands within the national wildlife refuge system shall, as to such lands,...

  3. A land surface data assimilation framework using the land information system: Description and applications

    NASA Astrophysics Data System (ADS)

    Kumar, Sujay V.; Reichle, Rolf H.; Peters-Lidard, Christa D.; Koster, Randal D.; Zhan, Xiwu; Crow, Wade T.; Eylander, John B.; Houser, Paul R.

    2008-11-01

    The Land Information System (LIS) is an established land surface modeling framework that integrates various community land surface models, ground measurements, satellite-based observations, high performance computing and data management tools. The use of advanced software engineering principles in LIS allows interoperability of individual system components and thus enables assessment and prediction of hydrologic conditions at various spatial and temporal scales. In this work, we describe a sequential data assimilation extension of LIS that incorporates multiple observational sources, land surface models and assimilation algorithms. These capabilities are demonstrated here in a suite of experiments that use the ensemble Kalman filter (EnKF) and assimilation through direct insertion. In a soil moisture experiment, we discuss the impact of differences in modeling approaches on assimilation performance. Provided careful choice of model error parameters, we find that two entirely different hydrological modeling approaches offer comparable assimilation results. In a snow assimilation experiment, we investigate the relative merits of assimilating different types of observations (snow cover area and snow water equivalent). The experiments show that data assimilation enhancements in LIS are uniquely suited to compare the assimilation of various data types into different land surface models within a single framework. The high performance infrastructure provides adequate support for efficient data assimilation integrations of high computational granularity.

  4. Determining Land System Sustainability through a Land Architecture Approach: Example of Southern Yucatán (Invited)

    NASA Astrophysics Data System (ADS)

    Turner, B. L., II

    2009-12-01

    Sustainable land systems involve an array of tradeoffs, not only among ecosystem services, but between those services and human outcomes. These tradeoffs are affected by the architecture of the land system—the kind, size, pattern, and distribution of land uses and covers. Working towards a model capable of handling a full array of ecosystem services and human outcomes, the concept of land architecture is illustrated through a simplified land system in the seasonal tropical forests of the southern Yucatán where sustainability is sought through the competing goals of forest conservation-preservation and agricultural development, both cultivation and ranching. Land architecture and tradeoff impacts are compared between two communities emphasizing, respectfully, forest conservation-preservation and agriculture. The role of spatial scale is also illustrated. Vulnerability and resilience assessments of land systems should be enhanced through a land architecture approach.

  5. Treatment of systematic errors in land data assimilation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data assimilation systems are generally designed to minimize the influence of random error on the estimation of system states. Yet, experience with land data assimilation systems has also revealed the presence of large systematic differences between model-derived and remotely-sensed estimates of lan...

  6. Ongoing Development of NASA's Global Land Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Kato, Hiroko; Zaitchik, Ben

    2008-01-01

    NASA's Global Land Data Assimilation System (GLDAS) produces global fields of land surface states (e.g., soil moisture and temperature) and fluxes (e.g., latent heat flux and runoff) by driving offline land surface models with observation-based inputs, using the Land Information System (LIS) software. Since production began in 2001, GLDAS has supported more than 100 scientific investigations and applications. Some examples are GEWEX and NASA Energy and Water Cycle Study (NEWS) global water and energy budget analyses, interpretations of hydrologic data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and forecast model initiation studies at NOAA and NASA. At the same time, the GLDAS team has continued improve results through the development of new modeling and data assimilation techniques. Here we describe several recent and ongoing innovations. These include global implementation of a runoff routing procedure, GRACE data assimilation, advanced snow cover assimilation, and irrigation modeling.

  7. Flight test evaluation of the E-systems Differential GPS category 3 automatic landing system

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.; Mcnally, B. David

    1995-01-01

    Test flights were conducted to evaluate the capability of Differential Global Positioning System (DGPS) to provide the accuracy and integrity required for International Civil Aviation Organization (ICAO) Category (CAT) III precision approach and landings. These test flights were part of a Federal Aviation Administration (FAA) program to evaluate the technical feasibility of using DGPS based technology for CAT III precision approach and landing applications. An IAI Westwind 1124 aircraft (N24RH) was equipped with DGPS receiving equipment and additional computing capability provided by E-Systems. The test flights were conducted at NASA Ames Research Center's Crows Landing Flight Facility, Crows Landing, California. The flight test evaluation was based on completing 100 approaches and landings. The navigation sensor error accuracy requirements were based on ICAO requirements for the Microwave Landing System (MLS). All of the approaches and landings were evaluated against ground truth reference data provided by a laser tracker. Analysis of these approaches and landings shows that the E-Systems DGPS system met the navigation sensor error requirements for a successful approach and landing 98 out of 100 approaches and landings, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan. In addition, the E-Systems DGPS system met the integrity requirements for a successful approach and landing or stationary trial for all 100 approaches and landings and all ten stationary trials, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan.

  8. HP3 on ExoMars - Cutting airbag cloths with the sharp tip of a mechanical mole

    NASA Astrophysics Data System (ADS)

    Krause, C.; Izzo, M.; Re, E.; Mehls, C.; Richter, L.; Coste, P.

    2009-04-01

    The HP3 - Heat Flow and Physical Properties Package - is planned to be one of the Humboldt lander-based instruments on the ESA ExoMars mission. HP3 will allow the measurement of the subsurface temperature gradient and physical as well as thermophysical properties of the subsurface regolith of Mars down to a depth of 5 meters. From these measurements, the planetary heat flux can be inferred. The HP³ instrument package consists of a mole trailing a package of thermal and electrical sensors into the regolith. Beside the payload elements Thermal Excitation and Measurement Suite and a Permittivity Probe the HP3 experiment includes sensors to detect the forward motion and the tilt of the HP3 payload compartment. The HP3 experiment will be integrated into the lander platform of the ExoMars mission. The original accommodation featured a deployment device or a robotic arm to place HP3 onto the soil outside the deflated lander airbags. To avoid adding such deployment devices, it was suggested that the HP3 mole should be capable of piercing the airbags under the lander. The ExoMars lander airbag is made of 4 Kevlar layers (2 abrasive and 2 bladders). A double fold of the airbag (a worst case) would represent a pile of 12 layers. An exploratory study has examined the possibility of piercing airbag cloths by adding sharp cutting blades on the tip of a penetrating mole. In the experimental setup representative layers were laid over a Mars soil simulant. Initial tests used a hammer-driven cutting tip and had moderate to poor results. More representative tests used a prototype of the HP3 mole and were fully successful: the default 4 layer configuration was pierced as well as the 12 layer configuration, the latter one within 3 hours and about 3000 mole strokes This improved behaviour is attributed to the use of representative test hardware where guidance and suppression of mole recoil were concerned. The presentation will provide an explanation of the technical requirements on

  9. Vancouver 2010 Winter Olympics Land Surface Forecast System

    NASA Astrophysics Data System (ADS)

    Bernier, N. B.; Belair, S.; Tong, L.; Abrahamowicz, M.; Mailhot, J.

    2009-04-01

    Environment Canada's land surface forecast system developed for the Vancouver 2010 Winter Olympics is presented together with an evaluation of its performance for winters 2007-2008 and 2008-2009. The motivation for this work is threefold: it is i) application driven for the 2010 Vancouver Olympics, ii) a testbed for the panCanadian operational land surface forecast model being developed, and iii) the precursor to the fully coupled land-surface model to come. The new high resolution (100m grid size), 2D, and novel imbedded point-based land surface forecast model used to predict hourly snow and surface temperature conditions at Olympic and Paralympic Competition Sites are described. The surface systems are driven by atmospheric forcing provided by the center's operational regional forecast model for the first 48 hours and by the operational global forecast model for hours 49 to 96. The forcing fields are corrected for elevation discrepancies over the rapidly changing and complex mountainous settings of the Vancouver Olympics that arise from resolution differences. Daily 96h land surface forecasts for 2 winters and snow depth and surface air temperature observations collected at several specially deployed competition sites are used to validate the land surface model. We show that the newly implemented surface forecast model refines and improves snow depth and surface temperature forecast issued by the operational weather forecast system throughout the forecast period.

  10. Biofuels, land and water : a systems approach to sustainability.

    SciTech Connect

    Gopalakrishnan, G.; Negri, M. C.; Wang, M.; Wu, M.; Snyder, S. W.; LaFreniere, L.

    2009-08-01

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  11. Biofuels, land, and water: a systems approach to sustainability.

    PubMed

    Gopalakrishnan, Gayathri; Negri, M Cristina; Wang, Michael; Wu, May; Snyder, Seth W; Lafreniere, Lorraine

    2009-08-01

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  12. The auto-tuned land data assimilation system (ATLAS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land data assimilation systems are tasked with the merging remotely-sensed soil moisture retrievals with information derived from a soil water balance model driven (principally) by observed rainfall. The performance of such systems is frequently degraded by the imprecise specification of parameters ...

  13. Helical automatic approaches of helicopters with microwave landing systems

    NASA Technical Reports Server (NTRS)

    Foster, J. D.; Mcgee, L. A.; Dugan, D. C.

    1982-01-01

    A program is under way to develop a data base for establishing navigation and guidance concepts for all-weather operation of rotorcraft. One of the objectives is to examine the feasibility of conducting simultaneous rotorcraft and conventional fixed-wing, noninterfering, landing operations in instrument meteorological conditions at airports equipped with microwave landing systems (MLSs) for fixed-wing traffic. An initial test program to investigate the feasibility of conducting automatic helical approaches was completed, using the MLS at Crows Landing near Ames. These tests were flown on board a UH-1H helicopter equipped with a digital automatic landing system. A total of 48 automatic approaches and landings were flown along a two-turn helical descent, tangent to the centerline of the MLS-equipped runway to determine helical light performance and to provide a data base for comparison with future flights for which the helical approach path will be located near the edge of the MLS coverage. In addition, 13 straight-in approaches were conducted. The performance with varying levels of state-estimation system sophistication was evaluated as part of the flight tests. The results indicate that helical approaches to MLS-equipped runways are feasible for rotorcraft and that the best position accuracy was obtained using the Kalman-filter state-estimation with inertial navigation systems sensors.

  14. Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling

    SciTech Connect

    Hibbard, Kathleen A.; Janetos, Anthony C.; Van Vuuren, Detlef; Pongratz, Julia; Rose, Steven K.; Betts, Richard; Herold, Martin; Feddema, Johannes J.

    2010-11-15

    This special issue has highlighted recent and innovative methods and results that integrate observations and AQ3 modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated Assessment modeling communities recognize the importance of an accurate representation of land use and land-cover change to understand and quantify the interactions and feedbacks with the climate and socio-economic systems, respectively. To date, cooperation between these communities has been limited. Based on common interests, this work discusses research priorities in representing land use and land-cover change for improved collaboration across modelling, observing and measurement communities. Major research topics in land use and land-cover change are those that help us better understand (1) the interaction of land use and land cover with the climate system (e.g. carbon cycle feedbacks), (2) the provision of goods and ecosystem services by terrestrial (natural and anthropogenic) land-cover types (e.g. food production), (3) land use and management decisions and (4) opportunities and limitations for managing climate change (for both mitigation and adaptation strategies).

  15. Biofidelity evaluation of WorldSID and ES-2re under side impact conditions with and without airbag.

    PubMed

    Kim, Taewung; Shaw, Greg; Lessley, David; Park, Gwansik; Crandall, Jeff; Svendsen, Andy; Whitcomb, Bryant; Ayyagari, Murthy; Mishra, Prashast; Markusic, Craig

    2016-05-01

    This study evaluated the biofidelity of the WorldSID and the ES-2re under whole-body side impact conditions with and without a side airbag using the biomechanical cadaveric response data generated from 4.3m/s whole-body side impact tests. Impact forces, spinal kinematics, and chest deflections were considered in the biofidelity evaluation. Average responses and response corridors of PMHS were created using a time-alignment technique to reduce variability of the PMHS responses while maintaining the sum of the time shifts to be zero for each response. Biofidelity of the two dummies was compared using a correlation and analysis (CORA) method. The WorldSID demonstrated better biofidelity than the ES-2re in terms of CORA ratings in the conditions with airbag (0.53 vs. 0.46) and without an airbag (0.57 vs. 0.49). Lastly, the kinematic analysis of the two dummies indicated an overly compliant shoulder response of the WorldSID and excessive forward rotation of the ES-2re relative to the PMHS. PMID:26943014

  16. LUMIS: A Land Use Management Information System for urban planning

    NASA Technical Reports Server (NTRS)

    Paul, C. K.

    1975-01-01

    The Land Use Management Information System (LUMIS) consists of a methodology of compiling land use maps by means of air photo interpretation techniques, digitizing these and other maps into machine-readable form, and numerically overlaying these various maps in two computer software routines to provide land use and natural resource data files referenced to the individual census block. The two computer routines are the Polygon Intersection Overlay System (PIOS) and an interactive graphics APL program. A block referenced file of land use, natural resources, geology, elevation, slope, and fault-line items has been created and supplied to the Los Angeles Department of City Planning for the City's portion of the Santa Monica Mountains. In addition, the interactive system contains one hundred and seventy-three socio-economic data items created by merging the Third Count U.S. Census Bureau tapes and the Los Angeles County Secured Assessor File. This data can be graphically displayed for each and every block, block group, or tract for six test tracts in Woodland Hills, California. Other benefits of LUMIS are the knowledge of air photo availability, flight pattern coverage and frequencies, and private photogrammetry companies flying Southern California, as well as a formal Delphi study of relevant land use informational needs in the Santa Monicas.

  17. Systemic change increases forecast uncertainty of land use change models

    NASA Astrophysics Data System (ADS)

    Verstegen, J. A.; Karssenberg, D.; van der Hilst, F.; Faaij, A.

    2013-12-01

    Cellular Automaton (CA) models of land use change are based on the assumption that the relationship between land use change and its explanatory processes is stationary. This means that model structure and parameterization are usually kept constant over time, ignoring potential systemic changes in this relationship resulting from societal changes, thereby overlooking a source of uncertainty. Evaluation of the stationarity of the relationship between land use and a set of spatial attributes has been done by others (e.g., Bakker and Veldkamp, 2012). These studies, however, use logistic regression, separate from the land use change model. Therefore, they do not gain information on how to implement the spatial attributes into the model. In addition, they often compare observations for only two points in time and do not check whether the change is statistically significant. To overcome these restrictions, we assimilate a time series of observations of real land use into a land use change CA (Verstegen et al., 2012), using a Bayesian data assimilation technique, the particle filter. The particle filter was used to update the prior knowledge about the parameterization and model structure, i.e. the selection and relative importance of the drivers of location of land use change. In a case study of sugar cane expansion in Brazil, optimal model structure and parameterization were determined for each point in time for which observations were available (all years from 2004 to 2012). A systemic change, i.e. a statistically significant deviation in model structure, was detected for the period 2006 to 2008. In this period the influence on the location of sugar cane expansion of the driver sugar cane in the neighborhood doubled, while the influence of slope and potential yield decreased by 75% and 25% respectively. Allowing these systemic changes to occur in our CA in the future (up to 2022) resulted in an increase in model forecast uncertainty by a factor two compared to the

  18. Lunar Navigation Determination System - LaNDS

    NASA Technical Reports Server (NTRS)

    Quinn, David; Talabac, Stephen

    2012-01-01

    A portable comprehensive navigational system has been developed that both robotic and human explorers can use to determine their location, attitude, and heading anywhere on the lunar surface independent of external infrastructure (needs no Lunar satellite network, line of sight to the Sun or Earth, etc.). The system combines robust processing power with an extensive topographical database to create a real-time atlas (GIS Geospatial Information System) that is able to autonomously control and monitor both single unmanned rovers and fleets of rovers, as well as science payload stations. The system includes provisions for teleoperation and tele-presence. The system accepts (but does not require) inputs from a wide range of sensors. A means was needed to establish a location when the search is taken deep in a crater (looking for water ice) and out of view of Earth or any other references. A star camera can be employed to determine the user's attitude in menial space and stellar map in body space. A local nadir reference (e.g., an accelerometer that orients the nadir vector in body space) can be used in conjunction with a digital ephemeris and gravity model of the Moon to isolate the latitude, longitude, and azimuth of the user on the surface. That information can be used in conjunction with a Lunar GIS and advanced navigation planning algorithms to aid astronauts (or other assets) to navigate on the Lunar surface.

  19. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Y.

    2014-12-01

    Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. It has also been suggested that LSP contribute to the abrupt jump in latitude of the East Asian monsoon as well as general circulation turning in some monsoon regions in its early stages. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. More comprehensive studies with multi-models are imperatively necessary.

  20. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; De Sales, Fernando; Lau, William; Boone, Arron; Mechoso, Carlos

    2015-04-01

    Yongkang Xue, F. De Sales, B. Lau, A. Boone, C. R. Mechoso Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass there. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. The LSP affects the monsoon evolution through different mechanisms at different scales. It affects the surface energy balance and energy partitioning in latent and sensible heat, the atmospheric heating rate, and general circulation. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation

  1. Multimedia Modeling System Response to Regional Land Management Change

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.

    2015-12-01

    A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of Research and Development. It is populated with linked or fully coupled models that address nutrient research questions such as, "How might future policy, climate or land cover change in the Mississippi River Basin affect Nitrogen and Phosphorous loadings to the Gulf of Mexico" or, "What are the management implications of regional-scale land management changes for the sustainability of air, land and water quality?" This second question requires explicit consideration of economic (e.g. sector prices) and societal (e.g. land management) factors. Metrics that illustrate biosphere-atmosphere interactions such as atmospheric PM2.5 concentrations, atmospheric N loading to surface water, soil organic N and N percolation to groundwater are calculated. An example application has been completed that is driven by a coupled agricultural and energy sector model scenario. The economic scenario assumes that by 2022 there is: 1) no detectable change in weather patterns relative to 2002; 2) a concentration of stover processing facilities in the Upper Midwest; 3) increasing offshore Pacific and Atlantic marine transportation; and 4) increasing corn, soybean and wheat production that meets future demand for food, feed and energy feedstocks. This production goal is reached without adding or removing agricultural land area whose extent is defined by the National Land Cover Dataset (NLCD) 2002v2011 classes 81 and 82. This goal does require, however, crop shifts and agricultural management changes. The multi-media system response over our U.S. 12km rectangular grid resolution analysis suggests that there are regions of potential environmental and health costs, as well as large areas that could experience unanticipated environmental and health

  2. Estimation of Land Surface States and Fluxes using a Land Surface Model Considering Different Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Chun, J. A.; Zaitchik, B. F.; Evans, J. P.; Beaudoing, H. K.

    2012-12-01

    Food security can be improved by increasing the extent of agricultural land or by increasing agricultural productivity, including through intensive management such as irrigation. The objectives of this study were to incorporate practical irrigation schemes into land surface models of the NASA Land Information System (LIS) and to apply the tool to estimate the impact of irrigation on land surface states and fluxes—including evapotranspiration, soil moisture, and runoff—in the Murray-Darling basin in Australia. Here we present results obtained using Noah Land Surface Model v3.2 within LIS without simulated irrigation (IR0) and with three irrigation simulation routines: flood irrigation (IR1), drip irrigation (IR2), and sprinkler irrigation (IR3). Moderate Resolution Imaging Spectrometer (MODIS) vegetation index was used to define crop growing seasons. Simulations were performed for a full year (July 2002 to June 2003) and evaluated against hydrologic flux estimates obtained in previous studies. Irrigation amounts during the growing season (August 2002 to March 2003) were simulated as 104.6, 24.6, and 188.1 GL for IR1, IR2, and IR3, respectively. These preliminary results showed water use efficiency from a drip irrigation scheme would be highest and lowest from a sprinkler irrigation scheme, with a highly optimized version of flood irrigation falling in between. Irrigation water contributed to a combination of increased evapotranspiration, runoff, and soil moisture storage in the irrigation simulations relative to IR0. Implications for water management applications and for further model development will be discussed.

  3. Jump-Landing Mechanics After Anterior Cruciate Ligament Reconstruction: A Landing Error Scoring System Study

    PubMed Central

    Bell, David Robert; Smith, Mason D.; Pennuto, Anthony P.; Stiffler, Mikel R.; Olson, Matthew E.

    2014-01-01

    Context: The Landing Error Scoring System (LESS) is a clinical evaluation of jump-landing mechanics and may provide useful information in assisting with return-to-sport decisions in patients after anterior cruciate ligament reconstruction (ACLR). However, it is currently unknown how patients with ACLR perform on the LESS compared with healthy controls. Objective: To determine if the total LESS score differed between individuals with ACLR and healthy controls and to determine the types of errors that differ between groups. Design: Cross-sectional study. Setting: Research laboratory. Patients or Other Participants: A total of 27 individuals with unilateral ACLR (age = 19.8 ± 1.8 years, height = 170 ± 5.5 cm, mass = 68.8 ± 11.9 kg) and 27 controls (age = 20.5 ± 1.7 years, height = 169 ± 8.4 cm, mass = 66.6 ± 9.0 kg) with no history of ACLR. Intervention(s): Each participant completed 3 trials of a standardized jump-landing task. Main Outcome Measure(s): Each jump landing was assessed for specific postures using standardized LESS criteria by a blinded evaluator. Individual LESS items were summed to create a total LESS score. The dominant limb was assessed in the control group, and the reconstructed limb was assessed in the ACLR group. Results: The ACLR group had higher LESS scores compared with controls (ACLR: 6.7 ± 2.1 errors, control: 5.6 ± 1.5 errors, P = .04). Additionally, the ACLR group was more likely to err when landing with lateral trunk flexion (Fisher exact test, P = .002). Conclusions: Individuals with ACLR had worse landing mechanics as measured by the LESS. Lateral trunk deviation may be related to quadriceps avoidance in the reconstructed limb or poor trunk neuromuscular control. The LESS is useful for evaluating landing errors in patients with ACLR and may help to identify areas of focus during rehabilitation and before return to sport. PMID:24905666

  4. Fish farming in land-based closed-containment systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'An International Summit on Fish Farming in Land-Based Closed-Containment Systems' was hosted by the Conservation Fund's Freshwater Institute, the Gordon and Betty Moore Foundation (GBMF), the Atlantic Salmon Federation (ASF), and Tides Canada (TC) at the National Conservation Training Center in She...

  5. Low cost airborne microwave landing system receiver, task 3

    NASA Technical Reports Server (NTRS)

    Hager, J. B.; Vancleave, J. R.

    1979-01-01

    Work performed on the low cost airborne Microwave Landing System (MLS) receiver is summarized. A detailed description of the prototype low cost MLS receiver is presented. This detail includes block diagrams, schematics, board assembly drawings, photographs of subassemblies, mechanical construction, parts lists, and microprocessor software. Test procedures are described and results are presented.

  6. Orion Landing and Recovery Systems Development - Government Contributions

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo A.

    2010-01-01

    This slide presentation reviews NASA's work in development of landing and recovery systems for the Orion space craft. It includes a review of the available tools and skills that assist in analyzing the aerodynamic decelerators. There is a description of the work that is being done on the Government Furnished Equipment (GFE) parachutes that will be used with the Orion Crew Exploration Vehicle (CEV)

  7. Land-mobile satellite communication system

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee (Inventor); Rafferty, William (Inventor); Dessouky, Khaled I. (Inventor); Wang, Charles C. (Inventor); Cheng, Unjeng (Inventor)

    1993-01-01

    A satellite communications system includes an orbiting communications satellite for relaying communications to and from a plurality of ground stations, and a network management center for making connections via the satellite between the ground stations in response to connection requests received via the satellite from the ground stations, the network management center being configured to provide both open-end service and closed-end service. The network management center of one embodiment is configured to provides both types of service according to a predefined channel access protocol that enables the ground stations to request the type of service desired. The channel access protocol may be configured to adaptively allocate channels to open-end service and closed-end service according to changes in the traffic pattern and include a free-access tree algorithm that coordinates collision resolution among the ground stations.

  8. Electro-optic precision approach and landing system

    NASA Astrophysics Data System (ADS)

    Salt, David

    1995-06-01

    The ASIST (Aircraft Ship Integrated Secure and Traverse) system is a second generation shipborne helicopter handling system developed by Indal Technologies Inc. (ITI). The first generation of the RAST (Recovery Assist, Securing and Traversing) system has established itself as the most successful shipborne helicopter handling system in the world, with more than 150 shipsets delivered or on order to naval forces sailing all the world's oceans. ASIST completed sea trials by July 31, 1992 and production units are in operation with the Chilean Navy. A significant feature of ASIST is the incorporation of a Helicopter Position Sensing Subsystem (HPSS) which is based on an automatic target detection technique developed at ITI. The HPSS will detect a laser beacon equipped helicopter within one second (usually 0.25 second) of it appearing in the field of view of the system cameras. The system then will track the helicopter and provide real time helicopter position relative to the landing area updated every 1/30 second until it is landed. A Rapid Securing Device (RSD) will also be driven by the position data to track the helicopter at low hover. Once the system has detected that the helicopter has landed on the deck, the RSD automatically approaches the helicopter and secures it. This occurs within two seconds. The RSD and traversing system are then used to align the helicopter with the deck tracks and manoeuvre it into a hanger, all without the need for manned intervention.

  9. Developing a Prototype ALHAT Human System Interface for Landing

    NASA Technical Reports Server (NTRS)

    Hirsh, Robert L.; Chua, Zarrin K.; Heino, Todd A.; Strahan, Al; Major, Laura; Duda, Kevin

    2011-01-01

    The goal of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is to safely execute a precision landing anytime/anywhere on the moon. This means the system must operate in any lighting conditions, operate in the presence of any thruster generated regolith clouds, and operate without the help of redeployed navigational aids or prepared landing site at the landing site. In order to reach this ambitious goal, computer aided technologies such as ALHAT will be needed in order to permit these landings to be done safely. Although there will be advanced autonomous capabilities onboard future landers, humans will still be involved (either onboard as astronauts or remotely from mission control) in any mission to the moon or other planetary body. Because many time critical decisions must be made quickly and effectively during the landing sequence, the Descent and Landing displays need to be designed to be as effective as possible at presenting the pertinent information to the operator, and allow the operators decisions to be implemented as quickly as possible. The ALHAT project has established the Human System Interface (HSI) team to lead in the development of these displays and to study the best way to provide operators enhanced situational awareness during landing activities. These displays are prototypes that were developed based on multiple design and feedback sessions with the astronaut office at NASA/ Johnson Space Center. By working with the astronauts in a series of plan/build/evaluate cycles, the HSI team has obtained astronaut feedback from the very beginning of the design process. In addition to developing prototype displays, the HSI team has also worked to provide realistic lunar terrain (and shading) to simulate a "out the window" view that can be adjusted to various lighting conditions (based on a desired date/time) to allow the same terrain to be viewed under varying lighting terrain. This capability will be critical to determining the

  10. Research on Decision-Making Support of Chineserural Land Tenure Information System

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Su, Hongyou

    Since 1949, the information of land tenure has a positive effect on defining the scope of collective land and state-owned land, implementing the system of cultivated land protection and land use control, designing general land use planning, etc. But as the economic and social development, the existing land tenure information is not appropriate anymore and results in many problems. The emphasis in the near future should be placed on establishing rural land tenure information system including cadastral management system, the uniform property registration system and cadastral management information system, defining the scope and content of various collective land ownership, securing peasants' land tenure rights, shortening the gap between urban and rural areas, all of which will guarantee the effective use of information of land tenure for the government's decision-making.

  11. A robust signalling system for land mobile satellite services

    NASA Technical Reports Server (NTRS)

    Irish, Dale; Shmith, Gary; Hart, Nick; Wines, Marie

    1989-01-01

    Presented here is a signalling system optimized to ensure expedient call set-up for satellite telephony services in a land mobile environment. In a land mobile environment, the satellite to mobile link is subject to impairments from multipath and shadowing phenomena, which result in signal amplitude and phase variations. Multipath, caused by signal scattering and reflections, results in sufficient link margin to compensate for these variations. Direct signal attenuation caused by shadowing due to buildings and vegetation may result in attenuation values in excess of 10 dB and commonly up to 20 dB. It is not practical to provide a link with sufficient margin to enable communication when the signal is blocked. When a moving vehicle passes these obstacles, the link will experience rapid changes in signal strength due to shadowing. Using statistical models of attenuation as a function of distance travelled, a communication strategy has been defined for the land mobile environment.

  12. Mars Science Laboratory Entry, Descent, and Landing System Overview

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; Burkhart, P. Dan; Chen, Allen; Comeaux, Keith A.; Guernsey, Carl S.; Kipp, Devin M.; Lorenzoni, Leila V.; Mendeck, Gavin F.; Powell, Richard W.; Rivellini, Tommaso P.; San Martin, A. Miguel; Sell, Steven W.; Prakash, Ravi; Way, David W.

    2010-01-01

    In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than prior missions to Mars, MSL will offer access to regions of Mars that have been previously unreachable. The MSL EDL sequence is a result of a more stringent requirement set than any of its predecessors. Notable among these requirements is landing a 900 kg rover in a landing ellipse much smaller than that of any previous Mars lander. In meeting these requirements, MSL is extending the limits of the EDL technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Thus, there are many design challenges that must be solved for the mission to be successful. Several pieces of the EDL design are technological firsts, such as guided entry and precision landing on another planet, as well as the entire Sky Crane maneuver. This paper discusses the MSL EDL architecture and discusses some of the challenges faced in delivering an unprecedented rover payload to the surface of Mars.

  13. The KamLAND Full-Volume Calibration System

    SciTech Connect

    KamLAND Collaboration; Berger, B. E.; Busenitz, J.; Classen, T.; Decowski, M. P.; Dwyer, D. A.; Elor, G.; Frank, A.; Freedman, S. J.; Fujikawa, B. K.; Galloway, M.; Gray, F.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Kadel, R.; Keefer, G.; Lendvai, C.; McKee, D.; O'Donnell, T.; Piepke, A.; Steiner, H. M.; Syversrud, D.; Wallig, J.; Winslow, L. A.; Ebihara, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Owada, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Tamae, K.; Yoshida, S.; Kozlov, A.; Murayama, H.; Grant, C.; Leonard, D. S.; Luk, K.-B.; Jillings, C.; Mauger, C.; McKeown, R. D.; Zhang, C.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Piquemal, F.; Ricol, J.-S.

    2009-03-05

    We have successfully built and operated a source deployment system for the KamLAND detector. This system was used to position radioactive sources throughout the delicate 1-kton liquid scintillator volume, while meeting stringent material cleanliness, material compatibility, and safety requirements. The calibration data obtained with this device were used to fully characterize detector position and energy reconstruction biases. As a result, the uncertainty in the size of the detector fiducial volume was reduced by a factor of two. Prior to calibration with this system, the fiducial volume was the largest source of systematic uncertainty in measuring the number of antineutrinos detected by KamLAND. This paper describes the design, operation and performance of this unique calibration system.

  14. Load-limiting landing gear footpad energy absorption system

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Tsai, Ted

    1994-01-01

    As a precursor to future manned missions to the moon, an inexpensive, unmanned vehicle that could carry small, scientific payloads to the lunar surface was studied by NASA. The vehicle, called the Common Lunar Lander, required extremely optimized structural systems to increase the potential payload mass. A lightweight energy-absorbing system (LAGFEAS), which also acts as a landing load-limiter was designed to help achieve this optimized structure. Since the versatile and easily tailored system is a load-limiter, it allowed for the structure to be designed independently of the ever-changing landing energy predictions. This paper describes the LAGFEAS system and preliminary verification testing performed at NASA's Johnson Space Center for the Common Lunar Lander program.

  15. Human Planetary Landing System (HPLS) Capability Roadmap NRC Progress Review

    NASA Technical Reports Server (NTRS)

    Manning, Rob; Schmitt, Harrison H.; Graves, Claude

    2005-01-01

    Capability Roadmap Team. Capability Description, Scope and Capability Breakdown Structure. Benefits of the HPLS. Roadmap Process and Approach. Current State-of-the-Art, Assumptions and Key Requirements. Top Level HPLS Roadmap. Capability Presentations by Leads. Mission Drivers Requirements. "AEDL" System Engineering. Communication & Navigation Systems. Hypersonic Systems. Super to Subsonic Decelerator Systems. Terminal Descent and Landing Systems. A Priori In-Situ Mars Observations. AEDL Analysis, Test and Validation Infrastructure. Capability Technical Challenges. Capability Connection Points to other Roadmaps/Crosswalks. Summary of Top Level Capability. Forward Work.

  16. Intersects between Land, Energy, Water and the Climate System

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Skaggs, R.; Wilson, T.

    2012-12-01

    Climate change affects water, and land resources, and with growing human activity, each of these sectors relies increasingly on the others for critical resources. Events such as drought across the South Central U.S. during 2011 demonstrate that climatic impacts within each of these sectors can cascade through interactions between sectors. Energy, water, and land resources are each vulnerable to impacts on either of the other two sectors. For example, energy systems inherently require land and water. Increased electricity demands to contend with climate change can impose additional burdens on overly subscribed water resources. Within this environment, energy systems compete for water with agriculture, human consumption, and other needs. In turn, climate driven changes in landscape attributes and land use affect water quality and availability as well as energy demands. Diminishing water quality and availability impose additional demands for energy to access and purify water, and for land to store and distribute water. In some situations, interactions between water, energy, and land resources make options for reducing greenhouse gas emissions vulnerable to climate change. Energy options such as solar power or biofuel use can reduce net greenhouse gas emissions as well as U.S. dependence on foreign resources. As a result, the U.S. is expanding renewable energy systems. Advanced technology such as carbon dioxide capture with biofuels may offer a means of removing CO2 from the atmosphere. But as with fossil fuels, renewable energy sources can impose significant demands for water and land. For example, solar power mayrequire significant land to site facilities and water for cooling or to produce steam. Raising crops to produce biofuels uses arable land and water that might otherwise be available for food production. Thus, warmer and drier climate can compromise these renewable energy resources, and drought can stress water supplies creating competition between energy

  17. Videometric terminal guidance method and system for UAV accurate landing

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang; Lei, Zhihui; Yu, Qifeng; Zhang, Hongliang; Shang, Yang; Du, Jing; Gui, Yang; Guo, Pengyu

    2012-06-01

    We present a videometric method and system to implement terminal guidance for Unmanned Aerial Vehicle(UAV) accurate landing. In the videometric system, two calibrated cameras attached to the ground are used, and a calibration method in which at least 5 control points are applied is developed to calibrate the inner and exterior parameters of the cameras. Cameras with 850nm spectral filter are used to recognize a 850nm LED target fixed on the UAV which can highlight itself in images with complicated background. NNLOG (normalized negative laplacian of gaussian) operator is developed for automatic target detection and tracking. Finally, 3-D position of the UAV with high accuracy can be calculated and transfered to control system to direct UAV accurate landing. The videometric system can work in the rate of 50Hz. Many real flight and static accuracy experiments demonstrate the correctness and veracity of the method proposed in this paper, and they also indicate the reliability and robustness of the system proposed in this paper. The static accuracy experiment results show that the deviation is less-than 10cm when target is far from the cameras and lessthan 2cm in 100m region. The real flight experiment results show that the deviation from DGPS is less-than 20cm. The system implement in this paper won the first prize in the AVIC Cup-International UAV Innovation Grand Prix, and it is the only one that achieved UAV accurate landing without GPS or DGPS.

  18. Simulation of airbag impact on eyes with different axial lengths after transsclerally fixated posterior chamber intraocular lens by using finite element analysis

    PubMed Central

    Huang, Jane; Uchio, Eiichi; Goto, Satoru

    2015-01-01

    Purpose To determine the biomechanical response of an impacting airbag on eyes with different axial lengths with transsclerally fixated posterior chamber intraocular lens (PC IOL). Materials and methods Simulations in a model human eye were performed with a computer using a finite element analysis program created by Nihon, ESI Group. The airbag was set to be deployed at five different velocities and to impact on eyes with three different axial lengths. These eyes were set to have transsclerally fixated PC IOL by a 10-0 polypropylene possessing a tensile force limit of 0.16 N according to the United States Pharmacopeia XXII. Results The corneoscleral opening was observed at a speed of 40 m/second or more in all model eyes. Eyes with the longest axial length of 25.85 mm had the greatest extent of deformity at any given impact velocity. The impact force exceeded the tensile force of 10-0 polypropylene at an impact velocity of 60 m/second in all eyes, causing breakage of the suture. Conclusion Eyes with transsclerally fixated PC IOL could rupture from airbag impact at high velocities. Eyes with long axial lengths experienced a greater deformity upon airbag impact due to a thinner eye wall. Further basic research on the biomechanical response for assessing eye injuries could help in developing a better airbag and in the further understanding of ocular traumas. PMID:25709387

  19. GPS-based certification for the microwave landing system

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Young, L. E.; Wu, S. C.; Thomas, J. B.

    1984-01-01

    An MLS (microwave landing system) certification system based on the Global Positioning System (GPS) is described. To determine the position history of the flight inspection aircraft during runway approach, signals from the GPS satellites, together with on-board radar altimetry, are used. It is shown that the aircraft position relative to a fixed point on the runway at threshold can be determined to about 30 cm vertically and 1 m horizontally. A requirement of the system is that the GPS receivers be placed on each flight inspection aircraft and at selected ground sites. The effects of different error sources on the determination of aircraft instantaneous position and its dynamics are analyzed.

  20. Study of USGS/NASA land use classification system. [compatibility of land use classification system with computer processing techniques employed for land use mapping from ERTS data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.; Faust, N. L.

    1974-01-01

    It is known from several previous investigations that many categories of land-use can be mapped via computer processing of Earth Resources Technology Satellite data. The results are presented of one such experiment using the USGS/NASA land-use classification system. Douglas County, Georgia, was chosen as the test site for this project. It was chosen primarily because of its recent rapid growth and future growth potential. Results of the investigation indicate an overall land-use mapping accuracy of 67% with higher accuracies in rural areas and lower accuracies in urban areas. It is estimated, however, that 95% of the State of Georgia could be mapped by these techniques with an accuracy of 80% to 90%.

  1. Pervasive transition of the Brazilian land-use system

    NASA Astrophysics Data System (ADS)

    Lapola, David M.; Martinelli, Luiz A.; Peres, Carlos A.; Ometto, Jean P. H. B.; Ferreira, Manuel E.; Nobre, Carlos A.; Aguiar, Ana Paula D.; Bustamante, Mercedes M. C.; Cardoso, Manoel F.; Costa, Marcos H.; Joly, Carlos A.; Leite, Christiane C.; Moutinho, Paulo; Sampaio, Gilvan; Strassburg, Bernardo B. N.; Vieira, Ima C. G.

    2014-01-01

    Agriculture, deforestation, greenhouse gas emissions and local/regional climate change have been closely intertwined in Brazil. Recent studies show that this relationship has been changing since the mid 2000s, with the burgeoning intensification and commoditization of Brazilian agriculture. On one hand, this accrues considerable environmental dividends including a pronounced reduction in deforestation (which is becoming decoupled from agricultural production), resulting in a decrease of ~40% in nationwide greenhouse gas emissions since 2005, and a potential cooling of the climate at the local scale. On the other hand, these changes in the land-use system further reinforce the long-established inequality in land ownership, contributing to rural-urban migration that ultimately fuels haphazard expansion of urban areas. We argue that strong enforcement of sector-oriented policies and solving long-standing land tenure problems, rather than simply waiting for market self-regulation, are key steps to buffer the detrimental effects of agricultural intensification at the forefront of a sustainable pathway for land use in Brazil.

  2. 76 FR 1629 - Public Land Order No. 7757; Withdrawal of National Forest System Land for the Big Ice Cave; Montana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... States mining laws for a period of 20 years on behalf of the United States Forest Service to protect the Big Ice Cave, its subterranean water supply, and Federal improvements. The land has been and will remain open to such forms of disposition as may by law be made of National Forest System land and...

  3. The Land Use and Land Cover Dichotomy: A Comparison of Two Land Classification Systems in Support of Urban Earth Science Applications

    NASA Technical Reports Server (NTRS)

    McAllister, William K.

    2003-01-01

    One is likely to read the terms 'land use' and 'land cover' in the same sentence, yet these concepts have different origins and different applications. Land cover is typically analyzed by earth scientists working with remotely sensed images. Land use is typically studied by urban planners who must prescribe solutions that could prevent future problems. This apparent dichotomy has led to different classification systems for land-based data. The works of earth scientists and urban planning practitioners are beginning to come together in the field of spatial analysis and in their common use of new spatial analysis technology. In this context, the technology can stimulate a common 'language' that allows a broader sharing of ideas. The increasing amount of land use and land cover change challenges the various efforts to classify in ways that are efficient, effective, and agreeable to all groups of users. If land cover and land uses can be identified by remote methods using aerial photography and satellites, then these ways are more efficient than field surveys of the same area. New technology, such as high-resolution satellite sensors, and new methods, such as more refined algorithms for image interpretation, are providing refined data to better identify the actual cover and apparent use of land, thus effectiveness is improved. However, the closer together and the more vertical the land uses are, the more difficult the task of identification is, and the greater is the need to supplement remotely sensed data with field study (in situ). Thus, a number of land classification methods were developed in order to organize the greatly expanding volume of data on land characteristics in ways useful to different groups. This paper distinguishes two land based classification systems, one developed primarily for remotely sensed data, and the other, a more comprehensive system requiring in situ collection methods. The intent is to look at how the two systems developed and how they

  4. A satellite system for land-mobile communications in Europe

    NASA Technical Reports Server (NTRS)

    Bartholome, P.; Rogard, R.

    1988-01-01

    There exists a great unsatisified demand for land mobile communications in Europe, particularly in sectors of business activity such as the road transport industry. This demand could best be satisfied by means of satellite-based private networks providing voice and data communications in a hub configuration. The potential market is estimated to encompass several hundred thousand road vehicles and the transmission capacity required would be several thousand channels. ESA is currently demonstrating the potential of satellite communications for this type of application, using a system called PRODAT. System studies are being performed with the aim of defining the architecture of a regional satellite system for Europe.

  5. The Land Analysis System (LAS) for multispectral image processing

    USGS Publications Warehouse

    Wharton, S. W.; Lu, Y. C.; Quirk, Bruce K.; Oleson, Lyndon R.; Newcomer, J. A.; Irani, Frederick M.

    1988-01-01

    The Land Analysis System (LAS) is an interactive software system available in the public domain for the analysis, display, and management of multispectral and other digital image data. LAS provides over 240 applications functions and utilities, a flexible user interface, complete online and hard-copy documentation, extensive image-data file management, reformatting, conversion utilities, and high-level device independent access to image display hardware. The authors summarize the capabilities of the current release of LAS (version 4.0) and discuss plans for future development. Particular emphasis is given to the issue of system portability and the importance of removing and/or isolating hardware and software dependencies.

  6. Airborne antenna polarization study for the microwave landing system

    NASA Technical Reports Server (NTRS)

    Gilreath, M. C.

    1976-01-01

    The feasibility of the microwave landing system (MLS) airborne antenna pattern coverage requirements are investigated for a large commercial aircraft using a single omnidirectional antenna. Omnidirectional antennas having vertical and horizontal polarizations were evaluated at several different station locations on a one-eleventh scale model Boeing 737 aircraft. The results obtained during this experimental program are presented which include principal plane antenna patterns and complete volumetric coverage plots.

  7. Models for estimating runway landing capacity with Microwave Landing System (MLS)

    NASA Technical Reports Server (NTRS)

    Tosic, V.; Horonjeff, R.

    1975-01-01

    A model is developed which is capable of computing the ultimate landing runway capacity, under ILS and MLS conditions, when aircraft population characteristics and air traffic control separation rules are given. This model can be applied in situations when only a horizontal separation between aircraft approaching a runway is allowed, as well as when both vertical and horizontal separations are possible. It is assumed that the system is free of errors, that is that aircraft arrive at specified points along the prescribed flight path precisely when the controllers intend for them to arrive at these points. Although in the real world there is no such thing as an error-free system, the assumption is adequate for a qualitative comparison of MLS with ILS. Results suggest that an increase in runway landing capacity, caused by introducing the MLS multiple approach paths, is to be expected only when an aircraft population consists of aircraft with significantly differing approach speeds and particularly in situations when vertical separation can be applied. Vertical separation can only be applied if one of the types of aircraft in the mix has a very steep descent angle.

  8. High Performance Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System at NASA/GSFC

    NASA Astrophysics Data System (ADS)

    Peters-Lidard, C. D.; Kumar, S. V.; Santanello, J. A.; Tian, Y.; Rodell, M.; Mocko, D.; Reichle, R.

    2008-12-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov; Kumar et al., 2006; Peters-Lidard et al., 2007) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. The LIS software was the co-winner of NASA's 2005 Software of the Year award. LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has evolved from two earlier efforts - North American Land Data Assimilation System (NLDAS; Mitchell et al. 2004) and Global Land Data Assimilation System (GLDAS; Rodell et al. 2004) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of these systems, now use specific configurations of the LIS software in their current implementations. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through 'plugins'. In addition to these capabilities, LIS has also been demonstrated for parameter estimation (Peters-Lidard et al., 2008; Santanello et al., 2007) and data assimilation (Kumar et al., 2008). Examples and case studies

  9. Flight Mechanics of the Entry, Descent and Landing of the ExoMars Mission

    NASA Technical Reports Server (NTRS)

    HayaRamos, Rodrigo; Boneti, Davide

    2007-01-01

    ExoMars is ESA's current mission to planet Mars. A high mobility rover and a fixed station will be deployed on the surface of Mars. This paper regards the flight mechanics of the Entry, Descent and Landing (EDL) phases used for the mission analysis and design of the Baseline and back-up scenarios of the mission. The EDL concept is based on a ballistic entry, followed by a descent under parachutes and inflatable devices (airbags) for landing. The mission analysis and design is driven by the flexibility in terms of landing site, arrival dates and the very stringent requirement in terms of landing accuracy. The challenging requirements currently imposed to the mission need innovative analysis and design techniques to support system design trade-offs to cope with the variability in entry conditions. The concept of the Global Entry Corridor has been conceived, designed, implemented and successfully validated as a key tool to provide a global picture of the mission capabilities in terms of landing site reachability.

  10. Unmanned Aircraft Systems for Monitoring Department of the Interior Lands

    NASA Astrophysics Data System (ADS)

    Hutt, M. E.; Quirk, B.

    2013-12-01

    Unmanned Aircraft Systems (UAS) technology is quickly evolving and will have a significant impact on Earth science research. The U.S. Geological Survey (USGS) is conducting an operational test and evaluation of UAS to see how this technology supports the mission of the Department of the Interior (DOI). Over the last 4 years, the USGS, working with many partners, has been actively conducting proof of concept UAS operations, which are designed to evaluate the potential of UAS technology to support the mandated DOI scientific, resource and land management missions. UAS technology is being made available to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Using small UAS (sUAS), the USGS is able to tailor solutions to meet project requirements by obtaining very high resolution video data, acquiring thermal imagery, detecting chemical plumes, and generating digital terrain models at a fraction of the cost of conventional surveying methods. UAS technology is providing a mechanism to collect timely remote sensing data at a low cost and at low risk over DOI lands that can be difficult to monitor and consequently enhances our ability to provide unbiased scientific information to better enable decision makers to make informed decisions. This presentation describes the UAS technology and infrastructure being employed, the application projects already accomplished, lessons learned and future of UAS within the DOI. We fully expect that by 2020 UAS will emerge as a primary platform for all DOI remote sensing applications. Much like the use of Internet technology, Geographic Information Systems (GIS) and Global Positioning Systems (GPS), UAS have the potential of enabling the DOI to be better stewards of the land.

  11. Sediment source attribution from multiple land use systems with CSIA

    NASA Astrophysics Data System (ADS)

    Alewell, C.; Birkholz, A.; Meusburger, K.; Schindler Wildhaber, Y.; Mabit, L.

    2015-08-01

    As sediment loads impact freshwater systems and infrastructure, their origin in complex landscape systems is of crucial importance for optimization of catchment management. We differentiated sediment source contribution to a lowland river in Central Switzerland in using compound specific stable isotopes analysis (CSIA). We found a clear distinction of sediment sources originating from forest and agricultural land use. We suggest to generally reduce uncertainty of sediment source attribution, in (i) aiming for approaches with least possible data complexity to reduce analytical effort as well as refraining from undetected source attribution and/or tracer degradation obscured by complex high data demanding modelling approaches, (ii) to use compound content (in our case long chain fatty acid (FA)) rather than soil organic matter content when converting isotopic signature to soil contribution and (iii) to restrict evaluation to the long-chain FAs (C22:0 to C30:0) not to introduce errors due to aquatic contributions from algae and microorganisms. Results showed unambiguously that during base flow agricultural land contributed up to 65 % of the suspended sediments, while forest was the dominant sediment source during high flow, which indicates that during base and high flow conditions connectivity of sediment source areas with the river change. Our findings are the first results highlighting significant differences in compound specific stable isotope (CSSI) signature and quantification of sediment sources from land uses dominated by C3 plant cultivation.

  12. Microwave landing system modeling with application to air traffic control

    NASA Technical Reports Server (NTRS)

    Poulose, M. M.

    1991-01-01

    Compared to the current instrument landing system, the microwave landing system (MLS), which is in the advanced stage of implementation, can potentially provide significant fuel and time savings as well as more flexibility in approach and landing functions. However, the expanded coverage and increased accuracy requirements of the MLS make it more susceptible to the features of the site in which it is located. An analytical approach is presented for evaluating the multipath effects of scatterers that are commonly found in airport environments. The approach combines a multiplane model with a ray-tracing technique and a formulation for estimating the electromagnetic fields caused by the antenna array in the presence of scatterers. The model is applied to several airport scenarios. The reduced computational burden enables the scattering effects on MLS position information to be evaluated in near real time. Evaluation in near real time would permit the incorporation of the modeling scheme into air traffic control automation; it would adaptively delineate zones of reduced accuracy within the MLS coverage volume, and help establish safe approach and takeoff trajectories in the presence of uneven terrain and other scatterers.

  13. Flight tests of IFR landing approach systems for helicopters

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Hegarty, D. M.; Peach, L. L.; Phillips, J. D.; Anderson, D. J.; Dugan, D. C.; Ross, V. L.

    1981-01-01

    Joint NASA/FAA helicopter flight tests were conducted to investigate airborne radar approaches (ARA) and microwave landing system (MLS) approaches. Flight-test results were utilized to prove NASA with a data base to be used as a performance measure for advanced guidance and navigation concepts, and to provide FAA with data for establishment of TERPS criteria. The first flight-test investigation consisted of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico, using weather/mapping radar, operational pilots, and a Bell 212 helicopter. The second flight-test investigation consisted of IFR MLS approaches at Crows Landing (near Ames Research Center), with a Bell UH-1H helicopter, using NASA, FAA, and operational industry pilots. Tests are described and results discussed.

  14. Evolution of INMARSAT systems and applications: The land mobile experience

    NASA Technical Reports Server (NTRS)

    Staffa, Eugene; Subramaniam, Ram

    1993-01-01

    Inmarsat has provided mobile satellite communication services for land mobile applications for well over a decade. Having started with the Inmarsat-A voice and telex system, Inmarsat is committed to the evolution of services towards a global personal, handheld satellite communicator. Over the years, users have benefitted from the evolution of technologies, increased user friendliness and portability of terminals and ever decreasing cost of operations. This paper describes the various present systems, their characteristics and applications, and outlines their contributions in the evolution towards the personal global communicator.

  15. Integrating the system dynamic and cellular automata models to predict land use and land cover change

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoming; Du, Ziqiang; Zhang, Hong

    2016-10-01

    Land use and land cover change (LULCC) is a widely researched topic in related studies. A number of models have been established to simulate LULCC patterns. However, the integration of the system dynamic (SD) and the cellular automata (CA) model have been rarely employed in LULCC simulations, although it allows for combining the advantages of each approach and therefore improving the simulation accuracy. In this study, we integrated an SD model and a CA model to predict LULCC under three future development scenarios in Northern Shanxi province of China, a typical agro-pastoral transitional zone. The results indicated that our integrated approach represented the impacts of natural and socioeconomic factors on LULCC well, and could accurately simulate the magnitude and spatial pattern of LULCC. The modeling scenarios illustrated that different development pathways would lead to various LULCC patterns. This study demonstrated the advantages of the integration approach for simulating LULCC and suggests that LULCC is affected to a large degree by natural and socioeconomic factors.

  16. Evolving the Land Information System into a Cloud Computing Service

    SciTech Connect

    Houser, Paul R.

    2015-02-17

    The Land Information System (LIS) was developed to use advanced flexible land surface modeling and data assimilation frameworks to integrate extremely large satellite- and ground-based observations with advanced land surface models to produce continuous high-resolution fields of land surface states and fluxes. The resulting fields are extremely useful for drought and flood assessment, agricultural planning, disaster management, weather and climate forecasting, water resources assessment, and the like. We envisioned transforming the LIS modeling system into a scientific cloud computing-aware web and data service that would allow clients to easily setup and configure for use in addressing large water management issues. The focus of this Phase 1 project was to determine the scientific, technical, commercial merit and feasibility of the proposed LIS-cloud innovations that are currently barriers to broad LIS applicability. We (a) quantified the barriers to broad LIS utility and commercialization (high performance computing, big data, user interface, and licensing issues); (b) designed the proposed LIS-cloud web service, model-data interface, database services, and user interfaces; (c) constructed a prototype LIS user interface including abstractions for simulation control, visualization, and data interaction, (d) used the prototype to conduct a market analysis and survey to determine potential market size and competition, (e) identified LIS software licensing and copyright limitations and developed solutions, and (f) developed a business plan for development and marketing of the LIS-cloud innovation. While some significant feasibility issues were found in the LIS licensing, overall a high degree of LIS-cloud technical feasibility was found.

  17. 43 CFR 3140.7 - Lands within the National Park System.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Lands within the National Park System... Lands within the National Park System. Conversions of existing oil and gas leases and valid claims based on mineral locations to combined hydrocarbon leases within units of the National Park System shall...

  18. 43 CFR 3140.7 - Lands within the National Park System.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Lands within the National Park System... Lands within the National Park System. Conversions of existing oil and gas leases and valid claims based on mineral locations to combined hydrocarbon leases within units of the National Park System shall...

  19. 43 CFR 3140.7 - Lands within the National Park System.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Lands within the National Park System... Lands within the National Park System. Conversions of existing oil and gas leases and valid claims based on mineral locations to combined hydrocarbon leases within units of the National Park System shall...

  20. Integrated Display System for Low Visibility Landing and Surface Operations

    NASA Technical Reports Server (NTRS)

    Beskenis, Sharon Otero; Green, David F., Jr.; Hyer, Paul V.; Johnson, Edward J., Jr.

    1998-01-01

    This report summarizes the software products and system architectures developed by Lockheed Martin in support of the Low Visibility Landing and Surface Operations (LVLASO) program at NASA Langley Research Center. It presents an overview of the technical aspects, capabilities, and system integration issues associated with an integrated display system (IDS) that collects, processes and presents information to an aircraft flight crew during all phases of landing, roll-out, turn-off, inbound taxi, outbound taxi and takeoff. Communications hardware, drivers, and software provide continuous real-time data at varying rates and from many different sources to the display programs for presentation on a head-down display (HDD) and/or a head-up display (HUD). An electronic moving map of the airport surface is implemented on the HDD which includes the taxi route assigned by air traffic control, a text messaging system, and surface traffic and runway status information. Typical HUD symbology for navigation and control of the aircraft is augmented to provide aircraft deceleration guidance after touchdown to a pilot selected exit and taxi guidance along the route assigned by ATC. HUD displays include scene-linked symbolic runways, runway exits and taxiways that are conformal with the actual locations on the airport surface. Display formats, system architectures, and the various IDS programs are discussed.

  1. Flight tests of the Digital Integrated Automatic Landing System (DIALS)

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1984-01-01

    The design, development, implementation and flight tests of the Digital Integrated Automatic Landing System (DIALS) are discussed. The system was implemented and flight tested on the Transport Systems Research Vehicle (TSRV), a Boeing 737-100. The design uses modern optimal control methods. The direct digital design obtained uses a 10 Hz rate for the sampling of sensors and the control commands. The basic structure of the control law consists of a steady state Kalman filter followed by a control gain matrix. The sensor information used includes Microwave Landing System (MLS) position, attitude, calibrated airspeed, and body accelerations. The phases of the final approach considered are localized and steep glideslope capture (which may be performed simultaneously or independently), localizer and glideslope track, crab/decrab, and flare to touchdown. The system can capture, track, and flare from conventional, as well as steep, glideslopes ranging from 2.5 deg to 5.5 deg. All of the modes of the control law including the Kalman filters were implemented on the TSRV flight computers which use fixed point arithmetic with 16 bit words. The implementation considerations are described as well as an analysis of the flight test results.

  2. Landing impact studies of a 0.3-scale model air cushion landing system for a Navy fighter airplane

    NASA Technical Reports Server (NTRS)

    Leland, T. J. W.; Thompson, W. C.

    1975-01-01

    An experimental study was conducted in order to determine the landing-impact behavior of a 0.3-scale, dynamically (but not physically) similar model of a high-density Navy fighter equipped with an air cushion landing system. The model was tested over a range of landing contact attitudes at high forward speeds and sink rates on a specialized test fixture at the Langley aircraft landing loads and traction facility. The investigation indicated that vertical acceleration at landing impact was highly dependent on the pitch angle at ground contact, the higher acceleration of approximately 5g occurring near zero body-pitch attitude. A limited number of low-speed taxi tests were made in order to determine model stability characteristics. The model was found to have good pitch-damping characteristics but stability in roll was marginal.

  3. Mars Science Laboratory: Entry, Descent, and Landing System Performance

    NASA Technical Reports Server (NTRS)

    Way, David W.; Powell, Richard W.; Chen, Allen; Steltzner, Adam D.; San Martin, Alejandro M.; Burkhart, Paul D.; mendeck, Gavin F.

    2006-01-01

    In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. To do so, MSL will fly a guided lifting entry at a lift-to-drag ratio in excess of that ever flown at Mars, deploy the largest parachute ever at Mars, and perform a novel Sky Crane maneuver. Through improved altitude capability, increased latitude coverage, and more accurate payload delivery, MSL is allowing the science community to consider the exploration of previously inaccessible regions of the planet. The MSL EDL system is a new EDL architecture based on Viking heritage technologies and designed to meet the challenges of landing increasing massive payloads on Mars. In accordance with level-1 requirements, the MSL EDL system is being designed to land an 850 kg rover to altitudes as high as 1 km above the Mars Orbiter Laser Altimeter defined areoid within 10 km of the desired landing site. Accordingly, MSL will enter the largest entry mass, fly the largest 70 degree sphere-cone aeroshell, generate the largest hypersonic lift-to-drag ratio, and deploy the largest Disk-Gap-Band supersonic parachute of any previous mission to Mars. Major EDL events include a hypersonic guided entry, supersonic parachute deploy and inflation, subsonic heatshield jettison, terminal descent sensor acquisition, powered descent initiation, sky crane terminal descent, rover touchdown detection, and descent stage flyaway. Key performance metrics, derived from level-1 requirements and tracked by the EDL design team to indicate performance capability and timeline margins, include altitude and range at parachute deploy, time on radar, and propellant use. The MSL EDL system, which will continue to develop over the next three years, will enable a notable extension in the advancement of Mars surface science by delivering more science capability than ever before to the surface of

  4. Mars Science Laboratory: Entry, Descent, and Landing System Performance

    NASA Technical Reports Server (NTRS)

    Way, David W.; Powell, Richard W.; Chen, Allen; SanMartin, A. Miguel; Burkhart, P. Daniel; Mendeck, Gavin F.

    2007-01-01

    In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. To do so, MSL will fly a guided lifting entry at a lift-to-drag ratio in excess of that ever flown at Mars, deploy the largest parachute ever at Mars, and perform a novel Sky Crane maneuver. Through improved altitude capability, increased latitude coverage, and more accurate payload delivery, MSL is allowing the science community to consider the exploration of previously inaccessible regions of the planet. The MSL EDL system is a new EDL architecture based on Viking heritage technologies and designed to meet the challenges of landing increasing massive payloads on Mars. In accordance with level-1 requirements, the MSL EDL system is being designed to land an 850 kg rover to altitudes as high as 1 km above the Mars Orbiter Laser Altimeter defined areoid within 10 km of the desired landing site. Accordingly, MSL will enter the largest entry mass, fly the largest 70 degree sphere-cone aeroshell, generate the largest hypersonic lift-to-drag ratio, and deploy the largest Disk-Gap-Band supersonic parachute of any previous mission to Mars. Major EDL events include a hypersonic guided entry, supersonic parachute deploy and inflation, subsonic heatshield jettison, terminal descent sensor acquisition, powered descent initiation, sky crane terminal descent, rover touchdown detection, and descent stage flyaway. Key performance metrics, derived from level-1 requirements and tracked by the EDL design team to indicate performance capability and timeline margins, include altitude and range at parachute deploy, time on radar, and propellant use. The MSL EDL system, which will continue to develop over the next three years, will enable a notable extension in the advancement of Mars surface science by delivering more science capability than ever before to the surface of

  5. Development of land based radar polarimeter processor system

    NASA Technical Reports Server (NTRS)

    Kronke, C. W.; Blanchard, A. J.

    1983-01-01

    The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended.

  6. Integrating land management into Earth system models: the importance of land use transitions at sub-grid-scale

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Wilkenskjeld, Stiig; Kloster, Silvia; Reick, Christian

    2014-05-01

    Recent studies indicate that changes in surface climate and carbon fluxes caused by land management (i.e., modifications of vegetation structure without changing the type of land cover) can be as large as those caused by land cover change. Further, such effects may occur on substantial areas: while about one quarter of the land surface has undergone land cover change, another fifty percent are managed. This calls for integration of management processes in Earth system models (ESMs). This integration increases the importance of awareness and agreement on how to diagnose effects of land use in ESMs to avoid additional model spread and thus unnecessary uncertainties in carbon budget estimates. Process understanding of management effects, their model implementation, as well as data availability on management type and extent pose challenges. In this respect, a significant step forward has been done in the framework of the current IPCC's CMIP5 simulations (Coupled Model Intercomparison Project Phase 5): The climate simulations were driven with the same harmonized land use dataset that, different from most datasets commonly used before, included information on two important types of management: wood harvest and shifting cultivation. However, these new aspects were employed by only part of the CMIP5 models, while most models continued to use the associated land cover maps. Here, we explore the consequences for the carbon cycle of including subgrid-scale land transformations ("gross transitions"), such as shifting cultivation, as example of the current state of implementation of land management in ESMs. Accounting for gross transitions is expected to increase land use emissions because it represents simultaneous clearing and regrowth of natural vegetation in different parts of the grid cell, reducing standing carbon stocks. This process cannot be captured by prescribing land cover maps ("net transitions"). Using the MPI-ESM we find that ignoring gross transitions

  7. Carbon balances during land conversion in early bioenergy systems

    NASA Astrophysics Data System (ADS)

    Zenone, T.; Chen, J.; Gelfand, I.; Robertson, G. P.; Hamilton, S. K.

    2012-12-01

    In this study, we established a field experiment and deployed seven eddy-covariance towers to quantify the roles of land use change and the subsequent carbon (C) balances of three different bioenergy systems (corn, switchgrass, and mixed prairie species) that were developed from two historical land use types: monocultural grasslands dominated by smooth brome (Bromus inermis Leyss) and lands in the Conservation Reserve Program (CRP). Three CRP fields and three cropland fields were converted to soybean in 2009 (conversion year) before establishing the cellulosic biofuel cropping systems in 2010 (establishment year). A CRP perennial grassland site was kept undisturbed as a reference. Conversion of CRP to soybean induced net C emissions during the conversion year (134 -262 g C m-2 yr-1), while in the same year the net C balance at the CRP grassland reference was -35 g C m-2 yr-1 (i.e., net C sequestration). The establishment of switchgrass and mixed prairie induced a cumulative C balance of -113 g C m-2 (switchgrass from CRP), 250 g C m-2 (switchgrass from cropland), 706 g C m-2 (mixed prairie from CRP), and 59 g C m-2 (mixed prairie from cropland) over the three-year study period. The cumulative three-year C balance of corn converted from CRP and from cropland was -151 g C m-2 and -183 g C m-2, respectively. Eddy flux measurements during cellulosic biofuel crop establishment reveal annual changes in C balance that cannot be detected using conventional mass balance approaches. When end-use of harvested biomass was considered, the C balances for all studied systems, except the reference site, exhibited large C emissions ranging from 150 to 990 g C m-2 over the three-year conversion phase.

  8. Treatment of systematic errors in land data assimilation systems

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Yilmaz, M.

    2012-12-01

    Data assimilation systems are generally designed to minimize the influence of random error on the estimation of system states. Yet, experience with land data assimilation systems has also revealed the presence of large systematic differences between model-derived and remotely-sensed estimates of land surface states. Such differences are commonly resolved prior to data assimilation through implementation of a pre-processing rescaling step whereby observations are scaled (or non-linearly transformed) to somehow "match" comparable predictions made by an assimilation model. While the rationale for removing systematic differences in means (i.e., bias) between models and observations is well-established, relatively little theoretical guidance is currently available to determine the appropriate treatment of higher-order moments during rescaling. This talk presents a simple analytical argument to define an optimal linear-rescaling strategy for observations prior to their assimilation into a land surface model. While a technique based on triple collocation theory is shown to replicate this optimal strategy, commonly-applied rescaling techniques (e.g., so called "least-squares regression" and "variance matching" approaches) are shown to represent only sub-optimal approximations to it. Since the triple collocation approach is likely infeasible in many real-world circumstances, general advice for deciding between various feasible (yet sub-optimal) rescaling approaches will be presented with an emphasis of the implications of this work for the case of directly assimilating satellite radiances. While the bulk of the analysis will deal with linear rescaling techniques, its extension to nonlinear cases will also be discussed.

  9. Development and flight test of a deployable precision landing system

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.; Murray, James E.; Neufeld, David C.; Reed, R. Dale

    1994-01-01

    A joint NASA Dryden Flight Research Facility and Johnson Space Center program was conducted to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of entry from space that included a precision landing. The feasibility of this system was studied using a flight model of a spacecraft in the generic shape of a flattened biconic that weighed approximately 150 lb and was flown under a commercially available, ram-air parachute. Key elements of the vehicle included the Global Positioning System guidance for navigation, flight control computer, ultrasonic sensing for terminal altitude, electronic compass, and onboard data recording. A flight test program was used to develop and refine the vehicle. This vehicle completed an autonomous flight from an altitude of 10,000 ft and a lateral offset of 1.7 miles that resulted in a precision flare and landing into the wind at a predetermined location. At times, the autonomous flight was conducted in the presence of winds approximately equal to vehicle airspeed. Several novel techniques for computing the winds postflight were evaluated. Future program objectives are also presented.

  10. BAE systems brownout landing aid system technology (BLAST) system overview and flight test results

    NASA Astrophysics Data System (ADS)

    Sykora, Brian

    2012-06-01

    Rotary wing aircraft continue to experience mishaps caused by the loss of visual situational awareness and spatial disorientation due to brownout or whiteout in dusty, sandy or snowy conditions as the downwash of the rotor blades creates obscurant clouds that completely engulf the helicopter during approaches to land. BAE Systems has developed a "see-through" brownout landing aid system technology (BLAST) based on a small and light weight 94GHz radar with proven ability to penetrate dust, coupled with proprietary antenna tracking, signal processing and digital terrain morphing algorithms to produce a cognitive real-time 3D synthetic image of the ground and proximate surface hazards in and around the landing zone. A series of ground and flight tests have been conducted at the United States Army's Yuma Proving Ground in Arizona that reflect operational scenarios in relevant environments to progressively mature the technology. A description of the BLAST solution developed by BAE Systems and results from recent flight tests is provided.

  11. Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Guerrero, H.; Schmidt, W.; Haukka, H.; Finchenko, V.; Martynov, M.; Ostresko, B.; Ponomarenko, A.; Kazakovtsev, V.; Arruego, I.; Martin, S.; Siili, T.

    2013-09-01

    In 2001 - 2011 an inflatable Entry, Descent and Landing System (EDLS) for Martian atmosphere was developed by FMI and the MetNet team. This MetNet Mars Lander EDLS is used in both the initial deceleration during atmospheric entry and in the final deceleration before the semi-hard impact of the penetrator to Martian surface. The EDLS design is ingenious and its applicability to Earth's atmosphere is studied in the on-going project. In particular, the behavior of the system in the critical transonic aerodynamic (from hypersonic to subsonic) regime will be investigated. This project targets to analyze and test the transonic behavior of this compact and light weight payload entry system to Earth's atmosphere [1]. Scaling and adaptation for terrestrial atmospheric conditions, instead of a completely new design, is a favorable approach for providing a new re-entry vehicle for terrestrial space applications.

  12. A guide to NASA's Pilot Land Data System (PLDS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's Pilot Land Data System (PLDS) is a distributed information management system designed to support NASA's land science community. The PLDS provides a wide range of services including management of information about scientific data, access to a library of scientific data, a data ordering capability, communications, connection to data analysis facilities, and electronic mail. The PLDS provides these services by offering the scientist the capability to search for and order data, and to communicate electronically with other scientists and computers. Three functions enable scientists to find what data are available and where they reside. The first two, Find data summaries and Read detailed descriptions give summary and detailed descriptions about data sets or groups of related data sets, science, projects, and institutions which archive land data. The third, gives information about specific pieces of data. This last function has two components, Search systemwide inventory and Search local inventory. The first component enables the user to find data elements (images, geological samples, transects, maps, etc.) that exist anywhere in the PLDS while the second has only information about data at the local site. The first enables the user to find pieces of data from several different data sets with the same temporal and spatial coverage and other elements common to most data sets, while the second allows the user to select a data set based on these descriptors and on those that are unique to a data set. The PLDS provides capabilities that enable electronic file transfers, intercomputer connection, and electronic mail. Both TCP/IP and DECnet protocols are supported via the NASA Science Internet (NIS). Access is also available through Telenet.

  13. A parsimonious land data assimilation system for the SMAP/GPM satellite era

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land data assimilation systems typically require complex parameterizations in order to: define required observation operators, quantify observing/forecasting errors and calibrate a land surface assimilation model. These parameters are commonly defined in an arbitrary manner and, if poorly specified,...

  14. 23 CFR 970.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... LANDS HIGHWAYS NATIONAL PARK SERVICE MANAGEMENT SYSTEMS National Park Service Management Systems § 970... value (protection/rejuvenation of resources, improved visitor experience) to the park and...

  15. 23 CFR 970.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... LANDS HIGHWAYS NATIONAL PARK SERVICE MANAGEMENT SYSTEMS National Park Service Management Systems § 970... value (protection/rejuvenation of resources, improved visitor experience) to the park and...

  16. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  17. Nitrogen leaching losses from a wastewater land application system.

    PubMed

    Duan, Runbin; Fedler, Clifford B; Sheppard, Christopher D

    2010-03-01

    Potential contamination of groundwater because of nitrogen leaching has been an important concern in municipal wastewater land application systems; however, few efforts have made to measure nitrogen leaching (total N, NO(3-)-N, and NH(4+)-N) under field conditions. This research successfully developed a conceptual nitrogen mass balance model and quantified its components at a wastewater land application system located at the City of Littlefield, Texas, from October 2005 to September 2007. The concentrations of total nitrogen and nitrate-nitrogen in the leachate were significantly less than 10 mg/L, therefore, there was no potential nitrogen contamination to groundwater found at this site during the research period. Linear regression models were analyzed and resulted in R2 values of 0.918, 0.966, and 0.833 between cumulative applied total nitrogen mass and cumulative leached total nitrogen mass, cumulative applied nitrate-nitrogen mass and cumulative leached nitrate-nitrogen mass, and cumulative applied ammonia-nitrogen mass and cumulative leached ammonia-nitrogen mass, respectively. The nitrogen mass balance design approach for this site resulted in significant nitrogen removal. Organic nitrogen may leach with other forms of nitrogen, and denitrification plays an important role in nitrogen removal during the winter and spring seasons when the grass is dry.

  18. Neutron-based land mine detection system development

    SciTech Connect

    Davis, H.A.; McDonald, T.E. Jr.; Nebel, R.A.; Pickrell, M.M.

    1997-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to examine the feasibility of developing a land mine detection system that can detect nonmetallic (plastic) mines using the detection and analysis of prompt gamma neutron activation analysis (PGNAA). The authors approached this study by first carrying out a review of other nonmetallic land mine detection methods for comparison with the PGNAA concept. They reviewed issues associated with detecting and recording the return gamma signal resulting from neutrons interacting with high explosive in mines and they examined two neutron source technologies that have been under development at Los Alamos for the past several years for possible application to a PGNAA system. A major advantage of the PGNAA approach is it`s ability to discriminate detection speed and need for close proximity. The authors identified approaches to solving these problems through development of improved neutron sources and detection sensors.

  19. Deployable Landing Leg Concept for Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Solano, Paul; Bartos, Karen

    2007-01-01

    The NASA Exploration program is investigating the merits of land landing concepts for the Crew Exploration Vehicle (CEV). Four options are under investigation: retro-rockets which fire and slow the vehicle before contact with the landing surface, deployable crushable material which deploys just before landing and crushes during land contact, airbags which deploy just before landing and deflate during land contact, and deployable legs which deploy before landing and contain material that absorbs energy during land contact. The purpose of the present work is to determine the effectiveness of the deployable leg concept. To accomplish this goal, structural models of the deployable leg concept are integrated with the Crew Model (CM) and computational simulations are performed to determine vehicle and component loadings and acceleration levels. Details of the modeling approach, deployable leg design, and resulting accelerations are provided.

  20. Mars Science Laboratory Entry, Descent and Landing System Development Challenges and Preliminary Flight Performance

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tommaso P.

    2013-01-01

    The Mars Science Laboratory project recently landed the Curiosity rover on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent, and landing capabilities has been extended over the previous state of the art. This paper will present an overview of the MSL entry, descent, and landing system, a discussion of a subset of its development challenges, and include a discussion of preliminary results of the flight reconstruction effort.

  1. Land-surface atmosphere coupling in an earth system model

    NASA Astrophysics Data System (ADS)

    de Vrese, Philipp; Hagemann, Stefan

    2014-05-01

    The interaction between the atmosphere and the strongly heterogeneous land surface is one of the central scientific topics within Earth system sciences and especially climate research. Many processes, such as vegetation dynamics and the development of spatial patterns in the Subtropics and permafrost regions, take place on scales much below the scale of model resolution. Thus, it is an important scientific challenge to consider the influence of sub-scale heterogeneity on the vertical near-surface fluxes of energy and water. Most climate models do not take into account the actual scale of surface heterogeneities. When coupling a heterogeneous surface to the atmosphere often coupling methods are employed, which include the underlying assumption that the horizontal extent of the individual heterogeneity is so small that the turbulent vertical fluxes stemming from the different surface heterogeneities within one grid-box have mixed horizontally below the lowest model level of the atmosphere. This assumption allows a comparatively simple land-surface-atmosphere coupling with a horizontally homogeneous state of the atmosphere, but it may also be the source of significant errors. In order to access the extent of error introduced we designed an experiment in which the results of three different coupling schemes were compared. The first one is a parameter-aggregation scheme, the second a flux-aggregation scheme based on the assumption of a horizontally homogeneous atmosphere on the lowest atmospheric model level and the third one is a coupling scheme which allows, up to a given height, for the atmosphere to be horizontally heterogeneous within a grid-box. These coupling methods were implemented in the land-surface model JSBACH which was then coupled to the general circulation model ECHAM6, both part of the Max Planck Institute for Meteorology's earth system model MPI-ESM. In a first step sensitivity studies are being carried out to gain process understanding and to

  2. a Study on the Improvement of Cadastral System in Mongolia - Focused on National Land Information System

    NASA Astrophysics Data System (ADS)

    Munkhbaatar, B.; Lee, J.

    2015-10-01

    National land information system (NLIS) is an essential part of the Mongolian land reform. NLIS is a web based and centralized system which covers administration of cadastral database all over the country among land departments. Current ongoing NLIS implementation is vital to improve the cadastral system in Mongolia. This study is intended to define existing problems in current Mongolian cadastral system and propose administrative institutional and systematic implementation through NLIS. Once NLIS launches with proposed model of comprehensive cadastral system it will lead to not only economic and sustainable development but also contribute to citizens' satisfaction and lessen the burdensomeness of bureaucracy. Moreover, prevention of land conflicts, especially in metropolitan area as well as gathering land tax and fees. Furthermore after establishment of NLIS, it is advisable that connecting NLIS to other relevant state administrational organizations or institutions that have relevant database system. Connections with other relevant organizations will facilitate not only smooth and productive workflow but also offer reliable and more valuable information by its systemic integration with NLIS.

  3. Entry, Descent and Landing Systems Analysis Study: Phase 2 Report on Exploration Feed-Forward Systems

    NASA Technical Reports Server (NTRS)

    Dwyer Ciancolo, Alicia M.; Davis, Jody L.; Engelund, Walter C.; Komar, D. R.; Queen, Eric M.; Samareh, Jamshid A.; Way, David W.; Zang, Thomas A.; Murch, Jeff G.; Krizan, Shawn A.; Olds, Aaron D.; Powell, Richard W.; Shidner, Jeremy D.; Kinney, Daivd J.; McGuire, M. Kathleen; Arnold, James O.; Covington, M. Alan; Sostaric, Ronald R.; Zumwalt, Carlie H.; Llama, Eduardo G.

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 t. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  4. A mini/microcomputer-based land use information system

    NASA Technical Reports Server (NTRS)

    Seitz, R. N.; Keefer, R. L.; Britton, L. J.; Wilson, J. M.

    1977-01-01

    The paper describes the Multipurpose Interactive NASA Information System (MINIS), a data management system for land-use applications. MINIS is written nearly entirely in FORTRAN IV, and has a full range of conditional, Boolean and arithmetic commands, as well as extensive format control and the capability of interactive file creation and updating. It requires a mini or microcomputer with at least 64 K of core or semiconductor memory. MINIS has its own equation-oriented query language for retrieval from different kinds of data bases. It features a graphics output which permits output of overlay maps. Some experience of the U.S. Department of Agriculture and the Tennessee State Planning Office with MINIS is discussed.

  5. A land-potential knowledge system (LandPKS) based on local and scientific knowledge of land productivity and resilience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economic assessment of land use change in drylands depends on understanding potential productivity, degradation resistance and resilience, all of which vary widely and are often ignored. Rapidly increasing demand, together with new technologies, migration and global capital mobility are driving dram...

  6. The Mars Exploration Rover (MER) Transverse Impulse Rocket System (TIRS)

    NASA Technical Reports Server (NTRS)

    SanMartin, Alejandro Miguel; Bailey, Erik

    2005-01-01

    In a very short period of time the MER project successfully developed and tested a system, TIRS/DIMES, to improve the probability of success in the presence of large Martian winds. The successful development of TIRS/DIMES played a big role in the landing site selection process by enabling the landing of Spirit on Gusev crater, a site of very high scientific interest but with known high wind conditions. The performance of TIRS by Spirit at Gusev Crater was excellent. The velocity prediction error was small and Big TIRS was fired reducing the impact horizontal velocity from approximately 23 meters per second to approximately 11 meters per second, well within the airbag capabilities. The performance of TIRS by Opportunity at Meridiani was good. The velocity prediction error was rather large (approximately 6 meters per second, a less than 2 sigma value, but TIRS did not fire which was the correct action.

  7. Reliability of clinician scoring of the landing error scoring system to assess jump-landing movement patterns.

    PubMed

    Markbreiter, Jessica G; Sagon, Bronson K; Valovich McLeod, Tamara C; Welch, Cailee E

    2015-05-01

    Clinical Scenario: An individual's movement patterns while landing from a jump can predispose him or her to lower-extremity injury, if performed improperly. The Landing Error Scoring System (LESS) is a clinical tool to assess jump-landing biomechanics as an individual jumps forward from a box. Improper movement patterns, which could predispose an individual to lower-extremity injuries, are scored as errors. However, because of the subjective nature of scoring errors during the task, the consistency and reliability of scoring the task are important. Since the LESS is a newer assessment tool, it is important to understand its reliability. Focused Clinical Question: Are clinicians reliable at scoring the LESS to assess jump-landing biomechanics of physically active individuals? PMID:25203628

  8. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... use of hydraulic pressure) to keep the landing gear extended. (c) Emergency operation. For a landplane... operation system; or (2) Any reasonably probable failure in a power source that would prevent the operation... closed beyond the power settings normally used for landing approach if the landing gear is not...

  9. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... use of hydraulic pressure) to keep the landing gear extended. (c) Emergency operation. For a landplane... operation system; or (2) Any reasonably probable failure in a power source that would prevent the operation... closed beyond the power settings normally used for landing approach if the landing gear is not...

  10. Land-use implications of wind-energy-conversion systems

    SciTech Connect

    Noun, R.J.

    1981-02-01

    An estimated 20 utilities in the United States are now investigating potential wind machine sites in their areas. Identifying sites for wind machine clusters (wind farms) involves more than just finding a location with a suitable wind resource. Consideration must also be given to the proximity of sites to existing transmission lines, environmental impacts, aesthetics, and legal concerns as well as the availability of and alternative uses for the land. These issues have made it increasingly difficult for utilities to bring conventional power plants on-line quickly. Utilities are now required, however, to give careful consideration to specific legal, social, and environmental questions raised by the siting of wind energy conversion systems (WECS).

  11. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Haukka, H.; Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Finchenko, V.; Martynov, M.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.

    2015-10-01

    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface.

  12. Land Management for Climate Change Mitigation and Geoengineering - Are Earth System Models up to the Challenge?

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.

    2015-12-01

    Many of the terrestrial models included in Earth system models simulate changes to the land surface from human activities. In the Community Land Model (CLM), for example, irrigation, nitrogen fertilization, soil tillage, wood harvesting, and numerous crop types are represented in addition to anthropogenic land-cover change (e.g., deforestation, reforestation, and afforestation). These land uses are included in the models because they have a strong influence on the hydrological cycle (irrigation), crop yield and greenhouse gas emissions (nitrogen fertilization, crop type), and carbon storage (wood harvesting, tillage). However, the representation of these processes in Earth system models is uncertain, as is the specification of transient changes from 1850 through the historical era and into the future. A more fundamental aspect of land surface models is the coupling of land and atmosphere through exchanges of energy, mass, and momentum. Here, too, anthropogenic activities can affect climate through land-cover change and land management. Eddy covariance flux tower analyses suggest that the land management effects are as significant as the land-cover change effects. These analyses pose a challenge to land surface models - How well do the models simulate the effects of land management (e.g., changes in leaf area index or community composition) on surface flux exchange with the atmosphere? Here I use the CLM and a new, advanced multilayer canopy flux model to illustrate challenges in model surface fluxes and the influence of land management on surface fluxes.

  13. The NASA-Goddard Multi-Scale Modeling Framework - Land Information System: Global Land/atmosphere Interaction with Resolved Convection

    NASA Technical Reports Server (NTRS)

    Mohr, Karen Irene; Tao, Wei-Kuo; Chern, Jiun-Dar; Kumar, Sujay V.; Peters-Lidard, Christa D.

    2013-01-01

    The present generation of general circulation models (GCM) use parameterized cumulus schemes and run at hydrostatic grid resolutions. To improve the representation of cloud-scale moist processes and landeatmosphere interactions, a global, Multi-scale Modeling Framework (MMF) coupled to the Land Information System (LIS) has been developed at NASA-Goddard Space Flight Center. The MMFeLIS has three components, a finite-volume (fv) GCM (Goddard Earth Observing System Ver. 4, GEOS-4), a 2D cloud-resolving model (Goddard Cumulus Ensemble, GCE), and the LIS, representing the large-scale atmospheric circulation, cloud processes, and land surface processes, respectively. The non-hydrostatic GCE model replaces the single-column cumulus parameterization of fvGCM. The model grid is composed of an array of fvGCM gridcells each with a series of embedded GCE models. A horizontal coupling strategy, GCE4fvGCM4Coupler4LIS, offered significant computational efficiency, with the scalability and I/O capabilities of LIS permitting landeatmosphere interactions at cloud-scale. Global simulations of 2007e2008 and comparisons to observations and reanalysis products were conducted. Using two different versions of the same land surface model but the same initial conditions, divergence in regional, synoptic-scale surface pressure patterns emerged within two weeks. The sensitivity of largescale circulations to land surface model physics revealed significant functional value to using a scalable, multi-model land surface modeling system in global weather and climate prediction.

  14. Assessing sustainable land-use practices using geographic information systems

    NASA Astrophysics Data System (ADS)

    Davis, Amelie Y.

    Many prominent scientists have claimed that we need to develop environmentally sustainable practices otherwise societies may collapse. The use of Geographic Information Systems allows detailed studies that can cross disciplinary boundaries and lead to quantifiable statements as to the change of land use practices that took place in the past and those that may occur in the future. This dissertation focuses on two research topics. One that attempts to quantify the environmental consequences of parking lots located in the Midwest, USA. The other research topic focuses on the land area needed to support ethanol in the United States. In Tippecanoe County, Indiana, it was determined that parking lots occupied approximately 6.6% of the urban areas, that the area devoted to parking lots exceeded the area devoted to urban parks by a factor of 3, and that these parking lots contributed to increased runoff of pollutants. The parking lots of Tippecanoe County were estimated to be responsible for 46.5 thousand pounds of oil and grease released annually in runoff, as well as an increase of 240.6 thousand pounds of suspended solids, and 65.7 pounds of lead released when compared to pre-development conditions. A method that scales up the county wide study was also developed to determine the areal footprint of parking lots with the states of Illinois, Indiana, Michigan and Wisconsin. It was estimated that these four states allocate approximately 1260 square km of their land to parking lots and that this accounts for 4.97% of urban land use and over 43 million parking spaces, whereas the number of individuals in age of driving (adults over 18 years old) amounted to just over 25 million. Within the four states studied, states where urban sprawl was considered more prevalent were also states that had a higher proportion of their urban land devoted to parking lots. The second dissertation topic focused on using GIS to locate suitable sites for corn or cellulosic based ethanol

  15. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Harri, Ari-Matti; Aleksashkin, Sergey; Koryanov, Vsevolod; Arruego, Ignacio; Schmidt, Walter; Haukka, Harri; Finchenko, Valery; Martynov, Maxim; Ostresko, Boris; Ponomarenko, Andrey; Kazakovtsev, Viktor; Martin, Susanna; Siili, Tero

    2014-05-01

    A new generation of inflatable Entry, Descent and Landing System (EDLS) for Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth's atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry. 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth's atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. 'Mini-1' category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: qmax (kW/m2): maximal specific heat flux, Q (MJ/m2): specific integral heat flux to DV front shield, m (kg): descent vehicle (DV) mass, V (m/s): re-entry velocity and Θ (deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet ('Mini-1' category) -type lander, with mass of 22kg, being

  16. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Aleksashkin, Sergey; Martynov, Maxim; Schmidt, Walter; Harri, Ari-Matti; Vsevolod Koryanov, D.; Kazakovtcev, Victor; Haukka, Harri; Arruego, Ignacio; Finchenko, Valery; Ostresko, Boris; Ponomarenko, Andrei; Martin, Susanna; Siili, Tero

    Abstract A new generation of inflatable Entry, Descent and Landing System (EDLS) or Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth’s atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth’s atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. “Mini-1” category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: - qmax (kW/m2): maximal specific heat flux, - Q (MJ/m2): specific integral heat flux to DV front shield, - m (kg): descent vehicle (DV) mass, - V (m/s): re-entry velocity and - theta(deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet (“Mini-1” category) -type

  17. 23 CFR 970.212 - Federal lands safety management system (SMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Federal lands safety management system (SMS). 970.212 Section 970.212 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL LANDS HIGHWAYS NATIONAL PARK SERVICE MANAGEMENT SYSTEMS National Park Service Management Systems §...

  18. 23 CFR 970.212 - Federal lands safety management system (SMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Federal lands safety management system (SMS). 970.212 Section 970.212 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL LANDS HIGHWAYS NATIONAL PARK SERVICE MANAGEMENT SYSTEMS National Park Service Management Systems §...

  19. 23 CFR 973.214 - Indian lands congestion management system (CMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Indian lands congestion management system (CMS). 973.214... HIGHWAYS MANAGEMENT SYSTEMS PERTAINING TO THE BUREAU OF INDIAN AFFAIRS AND THE INDIAN RESERVATION ROADS PROGRAM Bureau of Indian Affairs Management Systems § 973.214 Indian lands congestion management...

  20. 23 CFR 972.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Federal lands congestion management system (CMS). 972... § 972.214 Federal lands congestion management system (CMS). (a) For purposes of this section, congestion... interference. For those FWS transportation systems that require a CMS, in both metropolitan and...

  1. 23 CFR 973.208 - Indian lands pavement management system (PMS).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., 2001, is available for inspection as prescribed at 49 CFR part 7. It is also available from the... 23 Highways 1 2014-04-01 2014-04-01 false Indian lands pavement management system (PMS). 973.208... PROGRAM Bureau of Indian Affairs Management Systems § 973.208 Indian lands pavement management system...

  2. 23 CFR 973.208 - Indian lands pavement management system (PMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., 2001, is available for inspection as prescribed at 49 CFR part 7. It is also available from the... 23 Highways 1 2013-04-01 2013-04-01 false Indian lands pavement management system (PMS). 973.208... PROGRAM Bureau of Indian Affairs Management Systems § 973.208 Indian lands pavement management system...

  3. Mars Exploration Rover Landing Site Hectometer Slopes

    NASA Astrophysics Data System (ADS)

    Haldemann, A. F.; Anderson, F. S.

    2002-12-01

    The Mars Exploration Rover (MER) airbag landing system imposes a maximum slope of 5 degrees over 100 m length-scales. This limit avoids dangerous changes in elevation over the horizontal travel distance of the lander on its parachute between the time of the last radar altimeter detection of the surface and the time the retro-rockets fire and the bridle to the airbags is cut. Stereo imagery from the MGS MOC can provide information at this length scale, but MOC stereo coverage is sparse, even when targeted to MER landing sites. Additionally, MGS spacecraft stability issues affect the DEMs at precisely the hectometric length-scale1. The MOLA instrument provides global coverage pulse-width measurements2 over a single MOLA-pulse footprint, which is about 100 m in diameter. However, the pulse spread only provides an upper bound on the 100 m slope. We chose another approach. We sample the inter-pulse root-mean-square (RMS) height deviations for MOLA track segments restricted to pixels of 0.1 deg latitude by 0.1 deg longitude. Then, under the assumption of self-affine topography, we determine the scale-dependence of the RMS deviations and extrapolate that behavior over the range of 300 m to 1.2 km downward to the 100 m scale. Shepard et al.3 clearly summarize the statistical properties of the RMS deviation (noting that it also goes by the name structure function, variogram or Allan deviation), and we follow their nomenclature. The RMS deviation is a useful measure in that it can be directly converted to RMS-slope for a given length-scale. We map the results of this self-affine extrapolation method for each of the proposed MER landing sites as well as Viking Lander 1 (VL1) and Pathfiner (MPF). In order of decreasing average hectometer RMS-slopes, Melas (about 4.5 degrees) > Elysium EP80 > Gusev > MPF > Elysium EP78 > VL1 > Athabasca > Isidis > Hematite (about 1 degree). We also map the scaling parameter (Hurst exponent); its behavior in the MER landing site regions is

  4. Retrieval of land parameters by multi-sensor information using the Earth Observation Land Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Chernetskiy, Maxim; Gobron, Nadine; Gomez-Dans, Jose; Disney, Mathias

    2016-07-01

    Upcoming satellite constellations will substantially increase the amount of Earth Observation (EO) data, and presents us with the challenge of consistently using all these available information to infer the state of the land surface, parameterised through Essential Climate Variables (ECVs). A promising approach to this problem is the use of physically based models that describe the processes that generate the images, using e.g. radiative transfer (RT) theory. However, these models need to be inverted to infer the land surface parameters from the observations, and there is often not enough information in the EO data to satisfactorily achieve this. Data assimilation (DA) approaches supplement the EO data with prior information in the form of models or prior parameter distributions, and have the potential for solving the inversion problem. These methods however are computationally expensive. In this study, we show the use of fast surrogate models of the RT codes (emulators) based on Gaussian Processes (Gomez-Dans et al, 2016) embedded with the Earth Observation Land Data Assimilation System (EO-LDAS) framework (Lewis et al 2012) in order to estimate the surface of the land surface from a heterogeneous set of optical observations. The study uses time series of moderate spatial resolution observations from MODIS (250 m), MERIS (300 m) and MISR (275 m) over one site to infer the temporal evolution of a number of land surface parameters (and associated uncertainties) related to vegetation: leaf area index (LAI), leaf chlorophyll content, etc. These parameter estimates are then used as input to an RT model (semidiscrete or PROSAIL, for example) to calculate fluxes such as broad band albedo or fAPAR. The study demonstrates that blending different sensors in a consistent way using physical models results in a rich and coherent set of land surface parameters retrieved, with quantified uncertainties. The use of RT models also allows for the consistent prediction of fluxes

  5. Constellation Program (CxP) Crew Exploration Vehicle (CEV) Project Integrated Landing System

    NASA Technical Reports Server (NTRS)

    Baker, John D.; Yuchnovicz, Daniel E.; Eisenman, David J.; Peer, Scott G.; Fasanella, Edward L.; Lawrence, Charles

    2009-01-01

    Crew Exploration Vehicle (CEV) Chief Engineer requested a risk comparison of the Integrated Landing System design developed by NASA and the design developed by Contractor- referred to as the LM 604 baseline. Based on the results of this risk comparison, the CEV Chief engineer requested that the NESC evaluate identified risks and develop strategies for their reduction or mitigation. The assessment progressed in two phases. A brief Phase I analysis was performed by the Water versus Land-Landing Team to compare the CEV Integrated Landing System proposed by the Contractor against the NASA TS-LRS001 baseline with respect to risk. A phase II effort examined the areas of critical importance to the overall landing risk, evaluating risk to the crew and to the CEV Crew Module (CM) during a nominal land-landing. The findings of the assessment are contained in this report.

  6. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  7. The Land Potential Knowledge System: Application of earth observation data for sustainable land management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Africa is facing numerous challenges including a rapidly growing population, soil erosion, declining soil fertility and climate change. In the face of all these problems, the need to feed the growing population has led to expansion of land for agriculture and pasture production rather than increasin...

  8. The Pilot Land Data System: Report of the Program Planning Workshops

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An advisory report to be used by NASA in developing a program plan for a Pilot Land Data System (PLDS) was developed. The purpose of the PLDS is to improve the ability of NASA and NASA sponsored researchers to conduct land-related research. The goal of the planning workshops was to provide and coordinate planning and concept development between the land related science and computer science disciplines, to discuss the architecture of the PLDs, requirements for information science technology, and system evaluation. The findings and recommendations of the Working Group are presented. The pilot program establishes a limited scale distributed information system to explore scientific, technical, and management approaches to satisfying the needs of the land science community. The PLDS paves the way for a land data system to improve data access, processing, transfer, and analysis, which land sciences information synthesis occurs on a scale not previously permitted because of limits to data assembly and access.

  9. Interfacing geographic information systems and remote sensing for rural land-use analysis

    NASA Technical Reports Server (NTRS)

    Nellis, M. Duane; Lulla, Kamlesh; Jensen, John

    1990-01-01

    Recent advances in computer-based geographic information systems (GISs) are briefly reviewed, with an emphasis on the incorporation of remote-sensing data in GISs for rural applications. Topics addressed include sampling procedures for rural land-use analyses; GIS-based mapping of agricultural land use and productivity; remote sensing of land use and agricultural, forest, rangeland, and water resources; monitoring the dynamics of irrigation agriculture; GIS methods for detecting changes in land use over time; and the development of land-use modeling strategies.

  10. Overview of the NASA Entry, Descent and Landing Systems Analysis Study

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Dwyer-Cianciolo, Alicia M.; Kinney, David J.; Howard, Austin R.; Chen, George T.; Ivanov, Mark C.; Sostaric, Ronald R.; Westhelle, Carlos H.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and human-scale missions. This paper summarizes the approach and top-level results from Year 1 of the Study, which focused on landing 10-50 mt on Mars, but also included a trade study of the best advanced parachute design for increasing the landed payloads within the EDL architecture of the Mars Science Laboratory (MSL) mission.

  11. Results from Assimilating AMSR-E Soil Moisture Estimates into a Land Surface Model Using an Ensemble Kalman Filter in the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay B.; Crosson, William L.; Case, Jonathan L.; Hale, Robert

    2010-01-01

    Improve simulations of soil moisture/temperature, and consequently boundary layer states and processes, by assimilating AMSR-E soil moisture estimates into a coupled land surface-mesoscale model Provide a new land surface model as an option in the Land Information System (LIS)

  12. The Unparalleled Systems Engineering of MSL's Backup Entry, Descent, and Landing System: Second Chance

    NASA Technical Reports Server (NTRS)

    Roumeliotis, Chris; Grinblat, Jonathan; Reeves, Glenn

    2013-01-01

    Second Chance (SECC) was a bare bones version of Mars Science Laboratory's (MSL) Entry Descent & Landing (EDL) flight software that ran on Curiosity's backup computer, which could have taken over swiftly in the event of a reset of Curiosity's prime computer, in order to land her safely on Mars. Without SECC, a reset of Curiosity's prime computer would have lead to catastrophic mission failure. Even though a reset of the prime computer never occurred, SECC had the important responsibility as EDL's guardian angel, and this responsibility would not have seen such success without unparalleled systems engineering. This paper will focus on the systems engineering behind SECC: Covering a brief overview of SECC's design, the intense schedule to use SECC as a backup system, the verification and validation of the system's "Do No Harm" mandate, the system's overall functional performance, and finally, its use on the fateful day of August 5th, 2012.

  13. Fractal analysis of urban environment: land use and sewer system

    NASA Astrophysics Data System (ADS)

    Gires, A.; Ochoa Rodriguez, S.; Van Assel, J.; Bruni, G.; Murla Tulys, D.; Wang, L.; Pina, R.; Richard, J.; Ichiba, A.; Willems, P.; Tchiguirinskaia, I.; ten Veldhuis, M. C.; Schertzer, D. J. M.

    2014-12-01

    Land use distribution are usually obtained by automatic processing of satellite and airborne pictures. The complexity of the obtained patterns which are furthermore scale dependent is enhanced in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. A parameter commonly analysed in urban hydrology is the coefficient of imperviousness, which reflects the proportion of rainfall that will be immediately active in the catchment response. This coefficient is strongly scale dependent with a rasterized representation. This complex behaviour is well grasped with the help of the scale invariant notion of fractal dimension which enables to quantify the space occupied by a geometrical set (here the impervious areas) not only at a single scale but across all scales. This fractal dimension is also compared to the ones computed on the representation of the catchments with the help of operational semi-distributed models. Fractal dimensions of the corresponding sewer systems are also computed and compared with values found in the literature for natural river networks. This methodology is tested on 7 pilot sites of the European NWE Interreg IV RainGain project located in France, Belgium, Netherlands, United-Kingdom and Portugal. Results are compared between all the case study which exhibit different physical features (slope, level of urbanisation, population density...).

  14. Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages

    NASA Astrophysics Data System (ADS)

    VöRöSmarty, C. J.; Fekete, B. M.; Meybeck, M.; Lammers, R. B.

    2000-06-01

    The spatial organization of the Earth's land mass is analyzed using a simulated topological network (STN-30p) representing potential flow pathways across the entire nonglacierized surface of the globe at 30-min (longitude × latitude) spatial resolution. We discuss a semiautomated procedure to develop this topology combining digital elevation models and manual network editing. STN-30p was verified against several independent sources including map products and drainage basin statistics, although we found substantial inconsistency within the extant literature itself. A broad suite of diagnostics is offered that quantitatively describes individual grid cells, river segments, and complete drainage systems spanning orders 1 through 6 based on the Strahler classification scheme. Continental and global-scale summaries of key STN-30p attributes are given. Summaries are also presented which distinguish basins that potentially deliver discharge to an ocean (exorheic) from those that potentially empty into an internal receiving body (endorheic). A total of 59,122 individual grid cells constitutes the global nonglacierized land mass. At 30-min spatial resolution, the cells are organized into 33,251 distinct river segments which define 6152 drainage basins. A global total of 133.1 × 106 km2 bear STN-SOp flow paths with a total length of 3.24 × 106 km. The organization of river networks has an important role in linking land mass to ocean. From a continental perspective, low-order river segments (orders 1-3) drain the largest fraction of land (90%) and thus constitute a primary source area for runoff and constituents. From an oceanic perspective, however, the small number (n=101) of large drainage systems (orders 4-6) predominates; draining 65% of global land area and subsuming a large fraction of the otherwise spatially remote low-order rivers. Along river corridors, only 10% of land mass is within 100 km of a coastline, 25% is within 250 km, and 50% is within 750 km. The

  15. System architecture and market aspects of an European Land Mobile Satellite System via EMS

    NASA Astrophysics Data System (ADS)

    Ananasso, F.; Mistretta, I.

    1992-03-01

    The paper describes an implementation scenario of a Land Mobile Satellite System via the EMS (European Mobile System) payload embarked on Italsat F-2. Some emphasis is given on market issues aiming at singling out business niches of Land Mobile Satellite Services (LMSS) in Europe. Other crucial issues exist such as: the alternate/competitive systems, the problems of interworking with other existing and/or planned systems, the definition of network architecture that better fits the user requirements, the marketing strategy and, last but not least, the financial evaluation of the project. The paper, on the basis of a study performed by Telespazio on behalf of ESA, discusses some of these issues with emphasis on competitive market aspects.

  16. 78 FR 68811 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The National Advisory Committee for Implementation of the National Forest System Land Management Planning Rule will meet... the National Forest System Land Management Planning Rule. The purpose of this meeting is to...

  17. 78 FR 9883 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The National Advisory Committee for Implementation of the National Forest System Land Management Planning Rule will meet... Forest System Land Management Rule. The meeting is also open to the public. The purpose of the meeting...

  18. 78 FR 46565 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The National Advisory Committee for Implementation of the National Forest System Land Management Planning Rule will meet... of the National Forest System Land Management Planning Rule. The purpose of this meeting is...

  19. 23 CFR 970.210 - Federal lands bridge management system (BMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... National Bridge Inspection Standards (23 CFR part 650, subpart C); (ii) Data characterizing the severity... 23 Highways 1 2013-04-01 2013-04-01 false Federal lands bridge management system (BMS). 970.210... Federal lands bridge management system (BMS). In addition to the requirements provided in § 970.204,...

  20. 23 CFR 970.210 - Federal lands bridge management system (BMS).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... National Bridge Inspection Standards (23 CFR part 650, subpart C); (ii) Data characterizing the severity... 23 Highways 1 2012-04-01 2012-04-01 false Federal lands bridge management system (BMS). 970.210... Federal lands bridge management system (BMS). In addition to the requirements provided in § 970.204,...

  1. 23 CFR 970.210 - Federal lands bridge management system (BMS).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... National Bridge Inspection Standards (23 CFR part 650, subpart C); (ii) Data characterizing the severity... 23 Highways 1 2014-04-01 2014-04-01 false Federal lands bridge management system (BMS). 970.210... Federal lands bridge management system (BMS). In addition to the requirements provided in § 970.204,...

  2. 23 CFR 972.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Federal lands congestion management system (CMS). 972.214 Section 972.214 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL LANDS HIGHWAYS FISH AND WILDLIFE SERVICE MANAGEMENT SYSTEMS Fish and Wildlife Service Management...

  3. 75 FR 52713 - Nationwide Aerial Application of Fire Retardant on National Forest System Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... Forest Service Nationwide Aerial Application of Fire Retardant on National Forest System Lands AGENCY... aerial application of fire retardant on National Forest System lands. The responsible official for this.... Comments may also be sent via e- mail to FireRetardantEIS@fs.fed.us . FOR FURTHER INFORMATION CONTACT:...

  4. A Generic, Interoperable, Hydrologic Data Assimilation Framework using the Land Information System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land Information System (LIS; http://lis.gsfc.nasa.gov) is a hydrologic modeling system that integrates the use of various community land surface models, use of ground and satellite-based observations, and high performance computing and data management tools to enable hydrologic prediction at variou...

  5. 23 CFR 971.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Federal lands congestion management system (CMS). 971... Federal lands congestion management system (CMS). (a) For purposes of this section, congestion means the...) Develop criteria to determine when a CMS is to be implemented for a specific FH; and (2) Have CMS...

  6. A role for AVIRIS in the Landsat and Advanced Land Remote Sensing Systems program

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Simmonds, John J.

    1993-01-01

    As a calibrated imaging spectrometer flying at a 20 km altitude, AVIRIS may contribute to the Landsat and the Advanced Land Remote Sensing System efforts. These contributions come in the areas of: (1) on-orbit calibration, (2) specification of new spectral bands, (3) validation of algorithms, and (4) investigation of an imaging spectrometer of the Advanced Land Remote Sensing System.

  7. 23 CFR 972.208 - Federal lands pavement management system (PMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... “Pavement Management Guide,” AASHTO, 2001, is available for inspection as prescribed at 49 CFR part 7. It is... 23 Highways 1 2013-04-01 2013-04-01 false Federal lands pavement management system (PMS). 972.208....208 Federal lands pavement management system (PMS). In addition to the requirements provided in §...

  8. 23 CFR 970.208 - Federal lands pavement management system (PMS).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Federal lands pavement management system (PMS). 970.208... Federal lands pavement management system (PMS). In addition to the requirements provided in § 970.204, the...) An inventory of the physical pavement features including the number of lanes, length, width,...

  9. 23 CFR 971.208 - Federal lands pavement management system (PMS).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...,” AASHTO, 2001, is available for inspection as prescribed at 49 CFR part 7. It is also available from the... 23 Highways 1 2014-04-01 2014-04-01 false Federal lands pavement management system (PMS). 971.208... lands pavement management system (PMS). In addition to the requirements provided in § 971.204, the...

  10. 23 CFR 971.208 - Federal lands pavement management system (PMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...,” AASHTO, 2001, is available for inspection as prescribed at 49 CFR part 7. It is also available from the... 23 Highways 1 2013-04-01 2013-04-01 false Federal lands pavement management system (PMS). 971.208... lands pavement management system (PMS). In addition to the requirements provided in § 971.204, the...

  11. 23 CFR 970.208 - Federal lands pavement management system (PMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Federal lands pavement management system (PMS). 970.208... Federal lands pavement management system (PMS). In addition to the requirements provided in § 970.204, the...) An inventory of the physical pavement features including the number of lanes, length, width,...

  12. 23 CFR 972.208 - Federal lands pavement management system (PMS).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... “Pavement Management Guide,” AASHTO, 2001, is available for inspection as prescribed at 49 CFR part 7. It is... 23 Highways 1 2014-04-01 2014-04-01 false Federal lands pavement management system (PMS). 972.208....208 Federal lands pavement management system (PMS). In addition to the requirements provided in §...

  13. A Terminal Descent Sensor Trade Study Overview for the Orion Landing and Recovery System

    NASA Technical Reports Server (NTRS)

    Dunn, Catherine; Prakash, Ravi

    2008-01-01

    This trade study was conducted as a part of the Orion Landing System Advanced Development Project to determine possible Terminal Descent Sensor (TDS) architectures that could be used for a rocket assisted landing system. Several technologies were considered for the Orion TDS including radar, lidar, GPS applications, mechanical sensors, and gamma ray altimetry.

  14. 23 CFR 972.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Federal lands congestion management system (CMS). 972.214 Section 972.214 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL LANDS HIGHWAYS FISH AND WILDLIFE SERVICE MANAGEMENT SYSTEMS Fish and Wildlife Service Management...

  15. 23 CFR 972.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Federal lands congestion management system (CMS). 972.214 Section 972.214 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL LANDS HIGHWAYS FISH AND WILDLIFE SERVICE MANAGEMENT SYSTEMS Fish and Wildlife Service Management...

  16. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Arruego, Ignacio; Schmidt, Walter; Haukka, Harri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Martin, Susana

    2015-04-01

    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface. Our development and assessments show clearly that this kind of inflatable technology originally developed for the Martian atmosphere, is feasible for use by Earth entry and descent applications. The preliminary results are highly promising indicating that the current Mars probe design could be used as it is for the Earth. According tp our analyses, the higher atmospheric pressure at an altitude of 12 km and less requires an additional pressurizing device for the in atable system increasing the entry mass by approximately 2 kg. These analyses involved the calculation of 120 different atmospheric entry and descent trajectories. The analysis of the existing technologies and current trends have indicated that the kind of inflatable technology pursued by RITD has high potential to enhance the European space technology expertise. This kind of technology is clearly feasible for utilization by Earth entry and descent applications.

  17. An Integrated System for Sequential Hydrologic Data Assimilation using the Land Information System

    NASA Astrophysics Data System (ADS)

    Kumar, S. V.; Reichle, R.; Peters-Lidard, C.; Koster, R.

    2007-05-01

    The Land Information System (LIS; http:lis.gsfc.nasa.gov) is a hydrologic modeling system that integrates various community land surface models, ground and satellite-based observations, and high performance computing and data management tools to enable assessment and prediction of hydrologic conditions at various spatial and temporal scales. Recently, the LIS framework has been enhanced by developing an interoperable extension for sequential data assimilation, thereby providing a comprehensive framework that can integrate data assimilation techniques, hydrologic models, observations, and the required computing infrastructure. The extensible LIS data assimilation framework allows the incorporation and interplay of multiple observational sources, multiple data assimilation algorithms, and multiple land surface models. These capabilities are demonstrated using a suite of observing system simulation experiments (OSSEs) that assimilate different sources of observational data into different land surface models to propagate observational information in space and time using assimilation algorithms with varying complexity ranging from rule-based approaches to ensemble Kalman Filtering (EnKF). The assimilation of soil moisture, snow cover, and snow water equivalent data is demonstrated using the Noah and Catchment land surface models using a number of sequential assimilation algorithms. These experiments illustrate the sensitivity of model parameterizations and physical representations on the efficiency of the assimilation process and the relative merits of the assimilation approaches. Further, the system also provides an infrastructure to diagnose the consequences of assumptions on model and observation error properties on the accuracy of assimilated products. These experiments demonstrate the use of LIS data assimilation framework as an ideal testbed for development and evaluation of techniques in hydrologic data assimilation.

  18. Cross-site comparison of land-use decision-making and its consequences across land systems with a generalized agent-based model.

    PubMed

    Magliocca, Nicholas R; Brown, Daniel G; Ellis, Erle C

    2014-01-01

    Local changes in land use result from the decisions and actions of land-users within land systems, which are structured by local and global environmental, economic, political, and cultural contexts. Such cross-scale causation presents a major challenge for developing a general understanding of how local decision-making shapes land-use changes at the global scale. This paper implements a generalized agent-based model (ABM) as a virtual laboratory to explore how global and local processes influence the land-use and livelihood decisions of local land-users, operationalized as settlement-level agents, across the landscapes of six real-world test sites. Test sites were chosen in USA, Laos, and China to capture globally-significant variation in population density, market influence, and environmental conditions, with land systems ranging from swidden to commercial agriculture. Publicly available global data were integrated into the ABM to model cross-scale effects of economic globalization on local land-use decisions. A suite of statistics was developed to assess the accuracy of model-predicted land-use outcomes relative to observed and random (i.e. null model) landscapes. At four of six sites, where environmental and demographic forces were important constraints on land-use choices, modeled land-use outcomes were more similar to those observed across sites than the null model. At the two sites in which market forces significantly influenced land-use and livelihood decisions, the model was a poorer predictor of land-use outcomes than the null model. Model successes and failures in simulating real-world land-use patterns enabled the testing of hypotheses on land-use decision-making and yielded insights on the importance of missing mechanisms. The virtual laboratory approach provides a practical framework for systematic improvement of both theory and predictive skill in land change science based on a continual process of experimentation and model enhancement.

  19. A digital head-up display system as part of an integrated autonomous landing system concept

    NASA Astrophysics Data System (ADS)

    Wisely, Paul L.

    2008-04-01

    Considerable interest continues both in the aerospace industry and the military in the concept of autonomous landing guidance, and as previously reported, BAE Systems has been engaged for some time on an internally funded program to replace the high voltage power supply, tube and deflection amplifiers of its head up displays with an all digital solid state illuminated image system, based on research into the requirements for such a display as part of an integrated Enhanced Vision System. This paper describes the progress made to date in realising and testing a weather penetrating system incorporating an all digital head up display as its pilot-machine interface.

  20. Message handling system concepts and services in a land mobile satellite system

    NASA Technical Reports Server (NTRS)

    Barberis, S.; Settimo, F.; Giralda, A.; Mistretta, I.; Loisy, C.; Parmentier, J. L.

    1990-01-01

    A network architecture containing the capabilities offered by the Message Handling System (MHS) to the PRODAT Land Mobile Satellite System (LMSS) is described taking into account the constraints of a preexisting satellite system which is going to become operational. The mapping between MHS services and PRODAT requirements is also reported and shows that the supplied performance can be significantly enhanced to both fixed and mobile users. The impact of the insertion of additional features on the system structure, especially on the centralized control unit, are also addressed.

  1. Decision analysis and risk models for land development affecting infrastructure systems.

    PubMed

    Thekdi, Shital A; Lambert, James H

    2012-07-01

    Coordination and layering of models to identify risks in complex systems such as large-scale infrastructure of energy, water, and transportation is of current interest across application domains. Such infrastructures are increasingly vulnerable to adjacent commercial and residential land development. Land development can compromise the performance of essential infrastructure systems and increase the costs of maintaining or increasing performance. A risk-informed approach to this topic would be useful to avoid surprise, regret, and the need for costly remedies. This article develops a layering and coordination of models for risk management of land development affecting infrastructure systems. The layers are: system identification, expert elicitation, predictive modeling, comparison of investment alternatives, and implications of current decisions for future options. The modeling layers share a focus on observable factors that most contribute to volatility of land development and land use. The relevant data and expert evidence include current and forecasted growth in population and employment, conservation and preservation rules, land topography and geometries, real estate assessments, market and economic conditions, and other factors. The approach integrates to a decision framework of strategic considerations based on assessing risk, cost, and opportunity in order to prioritize needs and potential remedies that mitigate impacts of land development to the infrastructure systems. The approach is demonstrated for a 5,700-mile multimodal transportation system adjacent to 60,000 tracts of potential land development.

  2. LAS - LAND ANALYSIS SYSTEM, VERSION 5.0

    NASA Technical Reports Server (NTRS)

    Pease, P. B.

    1994-01-01

    The Land Analysis System (LAS) is an image analysis system designed to manipulate and analyze digital data in raster format and provide the user with a wide spectrum of functions and statistical tools for analysis. LAS offers these features under VMS with optional image display capabilities for IVAS and other display devices as well as the X-Windows environment. LAS provides a flexible framework for algorithm development as well as for the processing and analysis of image data. Users may choose between mouse-driven commands or the traditional command line input mode. LAS functions include supervised and unsupervised image classification, film product generation, geometric registration, image repair, radiometric correction and image statistical analysis. Data files accepted by LAS include formats such as Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Advanced Very High Resolution Radiometer (AVHRR). The enhanced geometric registration package now includes both image to image and map to map transformations. The over 200 LAS functions fall into image processing scenario categories which include: arithmetic and logical functions, data transformations, fourier transforms, geometric registration, hard copy output, image restoration, intensity transformation, multispectral and statistical analysis, file transfer, tape profiling and file management among others. Internal improvements to the LAS code have eliminated the VAX VMS dependencies and improved overall system performance. The maximum LAS image size has been increased to 20,000 lines by 20,000 samples with a maximum of 256 bands per image. The catalog management system used in earlier versions of LAS has been replaced by a more streamlined and maintenance-free method of file management. This system is not dependent on VAX/VMS and relies on file naming conventions alone to allow the use of identical LAS file names on different operating systems. While the LAS code has been improved, the original capabilities

  3. A Generic, Interoperable, Hydrologic Data Assimilation Framework using the Land Information System

    NASA Astrophysics Data System (ADS)

    Kumar, S. V.; Peters-Lidard, C. D.; Eylander, J.; Reichle, R.; Crow, W.; Zhan, X.; Houser, P.; Koster, R.; Suarez, M.; Dong, J.

    2006-12-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov) is a hydrologic modeling system that integrates various community land surface models, ground and satellite-based observations, and high performance computing and data management tools to enable assessment and prediction of hydrologic conditions at various spatial and temporal scales. The LIS architecture is designed using advanced software engineering principles, allowing the interoperability of land surface models, meteorological inputs, land surface parameters and observational data. In this work, we describe the extension of the LIS framework to incorporate data assimilation capabilities, through a collaborative effort. The extensible LIS data assimilation framework allows the incorporation and interplay of multiple observational sources, multiple data assimilation algorithms, and multiple land surface models. These capabilities are demonstrated using a suite of experiments that assimilate various sources observational data into different land surface models to propagate observational information in space and time. The available data assimilation algorithms include direct insertion, rule-based approaches, and ensemble Kalman Filtering (EnKF). The assimilation of soil moisture and snow water equivalent data is demonstrated using the Noah, Community Land Model (CLM), and Catchment Land Surface Model using a number of different assimilation algorithms. We will also demonstrate the ability of the system to simultaneously assimilate multiple observations. These experiments are used to demonstrate the use of the flexible, extensible LIS data assimilation framework to effectively apply hydrological observations and modeling tools to understand and improve the prediction land surface water and energy cycling.

  4. Land mobile satellite communication system. Volume 2: Traffic analysis and market demand for the land mobile communications system in the European scenario

    NASA Astrophysics Data System (ADS)

    Carnebianca, C.; Pavesi, B.; Tuozzi, A.; Capone, R.

    1986-06-01

    The socioeconomic desirability in terms of market demand, technical economic feasibility, and price-performance for a Land Mobile Communication system ground based and/or satellite aided, able to satisfy the request of the traffic demand, foreseable in the 1995-2005 time frame, for the Western European countries was assessed. The criterion of economic value of the mobile system is considered as the driving element. The presence of gaps in the terrestrial system and reasonable traffic extrapolations suggest a very attractive role for a land mobile satellite communications mission.

  5. Simulation of a Doppler lidar system for autonomous navigation and hazard avoidance during planetary landing

    NASA Astrophysics Data System (ADS)

    Budge, Scott E.; Chester, David B.

    2016-05-01

    The latest mission proposals for exploration of solar system bodies require accurate position and velocity data during the descent phase in order to ensure safe, soft landing at the pre-designated sites. During landing maneuvers, the accuracy of the on-board inertial measurement unit (IMU) may not be reliable due to drift over extended travel times to destinations. NASA has proposed an advanced Doppler lidar system with multiple beams that can be used to accurately determine attitude and position of the landing vehicle during descent, and to detect hazards that might exist in the landing area. In order to assess the effectiveness of such a Doppler lidar landing system, it is valuable to simulate the system with different beam numbers and configurations. In addition, the effectiveness of the system to detect and map potential landing hazards must be understood. This paper reports the simulated system performance for a proposed multi-beam Doppler lidar using the LadarSIM system simulation software. Details of the simulation methods are given, as well as lidar performance parameters such as range and velocity accuracy, detection and false alarm rates, and examples of the Doppler lidars ability to detect and characterize simulated hazards in the landing site. The simulation includes modulated pulse generation and coherent detection methods, beam footprint simulation, beam scanning, and interaction with terrain.

  6. 78 FR 23219 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The National Advisory Committee for Implementation of the National Forest System Land Management Planning Rule will meet... Land Management Planning Directives. DATES: The meeting will be held on May 7-9, 2013, from 8:30...

  7. 43 CFR 3140.7 - Lands within the National Park System.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AREAS Conversion of Existing Oil and Gas Leases and Valid Claims Based on Mineral Locations § 3140.7 Lands within the National Park System. Conversions of existing oil and gas leases and valid claims based... allowed only where mineral leasing is permitted by law and where the lands covered by the lease or...

  8. Cartography and Information Systems for the Luna-Glob Landing Sites

    NASA Astrophysics Data System (ADS)

    Kokhanov, A.; Karachevtseva, I.; Oberst, J.; Zubarev, A.; Robinson, M. S.

    2012-09-01

    We provide cartography and information system support to the LUNA-GLOB mission and assess candidate landing sites [1] on the basis of different available remote sensing data sets. The main goal of our work is to identify science opportunities in the sub-polar areas and to detect possible hazards for any landing spacecraft.

  9. Decision Support Systems (DSSs) For Contaminated Land Management - Gaps And Challenges

    EPA Science Inventory

    A plethora of information is available when considering decision support systems for risk-based management of contaminated land. Broad issues of what is contaminated land, what is a brownfield, and what is remediation are discussed in EU countries and the U.S. Making decisions ...

  10. Establishing sustainable GHG inventory systems in African countries for Agriculture and Land Use, Land-use Change and Forestry (LULUCF)

    NASA Astrophysics Data System (ADS)

    Wirth, T. C.; Troxler, T.

    2015-12-01

    As signatories to the United Nations Framework Convention on Climate Change (UNFCCC), developing countries are required to produce greenhouse gas (GHG) inventories every two years. For many developing countries, including many of those in Africa, this is a significant challenge as it requires establishing a robust and sustainable GHG inventory system. In order to help support these efforts, the U.S. Environmental Protection Agency (EPA) has worked in collaboration with the UNFCCC to assist African countries in establishing sustainable GHG inventory systems and generating high-quality inventories on a regular basis. The sectors we have focused on for these GHG inventory capacity building efforts in Africa are Agriculture and Land Use, Land-use Change and Forestry (LULUCF) as these tend to represent a significant portion of their GHG emissions profile and the data requirements and methodologies are often more complex than for other sectors. To support these efforts, the U.S. EPA has provided technical assistance in understanding the methods in the IPCC Guidelines, assembling activity data and emission factors, including developing land-use maps for representing a country's land base, and implementing the calculations. EPA has also supported development of various tools such as a Template Workbook that helps the country build the institutional arrangement and strong documentation that are necessary for generating GHG inventories on a regular basis, as well as performing other procedures as identified by IPCC Good Practice Guidance such as quality assurance/quality control, key category analysis and archiving. Another tool used in these projects and helps country's implement the methods from the IPCC Guidelines for the Agriculture and LULUCF sectors is the Agriculture and Land Use (ALU) tool. This tool helps countries assemble the activity data and emission factors, including supporting the import of GIS maps, and applying the equations from the IPPC Guidelines to

  11. A Virtual Sensor Web Study Based on the Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Su, H.; Houser, P.; Tian, Y.; Kumar, S.; Geiger, J.; Belvedere, D.

    2008-05-01

    Land Surface Models (LSMs) are being developed within frameworks such as the Land Information System (LIS) to enable them to assimilate currently-available observations. With the development of intelligent sensors and communication in the next generation satellite constellations that provides an opportunity to enhance information retrieval via 2-way information flow between the LSMs and the sensors. In this presentation, recent progress on developing a prototype Land Information Sensor Web (LISW), which integrates the Land Information System (LIS) and a sensor web framework, will be presented. The overall goal is to minimize the system uncertainty through sensor web reconfiguration. All the experiments were done synthetically. These synthetic experiments provide a controlled environment in which to examine the end-to-end system performance of the prototype, the impact of various sensor web design trade-offs and the eventual value of sensor webs for a particular prediction or decision support objective. The Common Land Model (CLM2.0) was used to produce a "virtual land truth". The Noah land model was employed to simulate the "virtual land truth" by assimilating observations from the reconfigurable sensor web which observes the "virtual land truth". The LISW is composed of three central components: the Sensor Web Framework, the Sensor Web Simulator and the Land Information System. The first layer soil moisture is studied in our experiment. Seasonal variation of the data assimilation performance is found, which may be caused by the different physics of the CLM and Noah in a particular season. That suggests a constant frequency or accuracy of observations is not optimal to minimize the overall system uncertainty. A dynamical adjustment of the observing frequency or accuracy is necessary. The study area is the conterminous US and the period is from 2003 through 2005. Because of the intensive computation required by different configurations of the data assimilation, the

  12. Land-use systems and resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico.

    PubMed

    García-Romero, Arturo; Oropeza-Orozco, Oralia; Galicia-Sarmiento, Leopoldo

    2004-12-01

    Land-cover types were analyzed for 1970, 1990 and 2000 as the bases for determining land-use systems and their influence on the resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico. Deforestation (DR) and mean annual transformation rates were calculated from land-cover change data; thus, the classification of land-use change processes was determined according to their impact on resilience: a) Modification, including land-cover conservation and intensification, and b) Conversion, including disturbance and regeneration processes. Regeneration processes, from secondary vegetation under extensive use, cultivated vegetation under intensive use, and cultivated or induced vegetation under extensive use to mature or secondary vegetation, have high resilience capacity. In contrast, cattle-raising is characterized by rapid expansion, long-lasting change, and intense damages; thus, recent disturbance processes, which include the conversion to cattle-raising, provoke the downfall of the traditional agricultural system, and nullify the capacity of resilience of tropical rain forest. The land-use cover change processes reveal a) the existence of four land-use systems (forestry, extensive agriculture, extensive cattle-raising, and intensive uses) and b) a trend towards the replacement of agricultural and forestry systems by extensive cattle-raising, which was consolidated during 1990-2000 (DR of evergreen tropical rain forest = 4.6%). Only the forestry system, which is not subject to deforestation, but is affected by factors such as selective timber, extraction, firewood collection, grazing, or human-induced fire, is considered to have high resilience (2 years), compared to agriculture (2-10 years) or cattle-raising (nonresilient). It is concluded that the analysis of land-use systems is essential for understanding the implications of land-use cover dynamics on forest recovery and land degradation in tropical rain forests.

  13. Atmosphere, ocean, and land: Critical gaps in Earth system models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Hartley, Dana

    1992-01-01

    We briefly review current knowledge and pinpoint some of the major areas of uncertainty for the following fundamental processes: (1) convection, condensation nuclei, and cloud formation; (2) oceanic circulation and its coupling to the atmosphere and cryosphere; (3) land surface hydrology and hydrology-vegetation coupling; (4) biogeochemistry of greenhouse gases; and (5) upper atmospheric chemistry and circulation.

  14. A Graphical System for Introducing Estates in Land.

    ERIC Educational Resources Information Center

    Laurence, Robert T.; And Others

    1980-01-01

    A method for introducing estates in land to first-year law students is presented in detail. A key element is its use of transparencies to graphically represent crucial concepts and appropriate language. The concepts are introduced in a systematic fashion to allow students to build an understanding gradually. (JMD)

  15. Downscaling land use and land cover from the Global Change Assessment Model for coupling with Earth system models

    NASA Astrophysics Data System (ADS)

    Le Page, Yannick; West, Tris O.; Link, Robert; Patel, Pralit

    2016-09-01

    The Global Change Assessment Model (GCAM) is a global integrated assessment model used to project future societal and environmental scenarios, based on economic modeling and on a detailed representation of food and energy production systems. The terrestrial module in GCAM represents agricultural activities and ecosystems dynamics at the subregional scale, and must be downscaled to be used for impact assessments in gridded models (e.g., climate models). In this study, we present the downscaling algorithm of the GCAM model, which generates gridded time series of global land use and land cover (LULC) from any GCAM scenario. The downscaling is based on a number of user-defined rules and drivers, including transition priorities (e.g., crop expansion preferentially into grasslands rather than forests) and spatial constraints (e.g., nutrient availability). The default parameterization is evaluated using historical LULC change data, and a sensitivity experiment provides insights on the most critical parameters and how their influence changes regionally and in time. Finally, a reference scenario and a climate mitigation scenario are downscaled to illustrate the gridded land use outcomes of different policies on agricultural expansion and forest management. Several features of the downscaling can be modified by providing new input data or changing the parameterization, without any edits to the code. Those features include spatial resolution as well as the number and type of land classes being downscaled, thereby providing flexibility to adapt GCAM LULC scenarios to the requirements of a wide range of models and applications. The downscaling system is version controlled and freely available.

  16. Enhanced Flight Vision Systems and Synthetic Vision Systems for NextGen Approach and Landing Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K. E.; Williams, Steven P.; Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Shelton, Kevin J.

    2013-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment with equivalent efficiency as visual operations. To meet this potential, research is needed for effective technology development and implementation of regulatory standards and design guidance to support introduction and use of SVS/EFVS advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. A fixed-base pilot-in-the-loop simulation test was conducted at NASA Langley Research Center that evaluated the use of SVS/EFVS in NextGen low visibility approach and landing operations. Twelve crews flew approach and landing operations in a simulated NextGen Chicago O'Hare environment. Various scenarios tested the potential for using EFVS to conduct approach, landing, and roll-out operations in visibility as low as 1000 feet runway visual range (RVR). Also, SVS was tested to evaluate the potential for lowering decision heights (DH) on certain instrument approach procedures below what can be flown today. Expanding the portion of the visual segment in which EFVS can be used in lieu of natural vision from 100 feet above the touchdown zone elevation to touchdown and rollout in visibilities as low as 1000 feet RVR appears to be viable as touchdown performance was acceptable without any apparent workload penalties. A lower DH of 150 feet and/or possibly reduced visibility minima using SVS appears to be viable when implemented on a Head-Up Display, but the landing data suggests further study for head-down implementations.

  17. Application of learning management system (LMS) to the learning of land evaluation

    NASA Astrophysics Data System (ADS)

    Gascó, G.; Guerrero, F.; Gallardo, J.; Gascó, J. M.; Saa, A.

    2010-05-01

    The adaptation of the Universities to European Higher Education Area (EHEA) is producing changes in the learning system. One of the new learning system is the use of Moodle which is an Open Source Course Management System (CMS), also known as a Learning Management System (LMS) or a Virtual Learning Environment (VLE). It has become very popular among educators around the world as a tool for creating online dynamic web sites for their students. Professors of Soil Science Department of Universidad Politécnica de Madrid are introducing the use of moodle combined with the portfolio development in the learning of the subject of Land Evaluation. The objective of this subject is the application of the land capability system to the land evaluation of an specific area. The aim of this work is to evaluate the influence of the application of LMS in the teaching of Land Evaluation at University level.

  18. Urbanization suitability maps: a dynamic spatial decision support system for sustainable land use

    NASA Astrophysics Data System (ADS)

    Cerreta, M.; De Toro, P.

    2012-11-01

    Recent developments in land consumption assessment identify the need to implement integrated evaluation approaches, with particular attention to the development of multidimensional tools for guiding and managing sustainable land use. Land use policy decisions are implemented mostly through spatial planning and its related zoning. This involves trade-offs between many sectorial interests and conflicting challenges seeking win-win solutions. In order to identify a decision-making process for land use allocation, this paper proposes a methodological approach for developing a Dynamic Spatial Decision Support System (DSDSS), denominated Integrated Spatial Assessment (ISA), supported by Geographical Information Systems (GIS) combined with the Analytic Hierarchy Process (AHP). Through empirical investigation in an operative case study, an integrated evaluation approach implemented in a DSDSS helps produce "urbanization suitability maps" in which spatial analysis combined with multi-criteria evaluation methods proved to be useful for both facing the main issues relating to land consumption as well as minimizing environmental impacts of spatial planning.

  19. 76 FR 3015 - Prohibitions in Areas Designated by Order; Closure of National Forest System Lands To Protect...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... National Forest System Lands To Protect Privacy of Tribal Activities AGENCY: Forest Service, USDA. ACTION... closure of National Forest System lands to protect the privacy of tribal activities for traditional and....'' FCEA authorizes the Secretary of Agriculture to ensure access to National Forest System lands, to...

  20. Marine algae and land plants share conserved phytochrome signaling systems

    PubMed Central

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee-Hong; Jiménez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia-Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-01-01

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae. PMID:25267653

  1. Marine algae and land plants share conserved phytochrome signaling systems

    DOE PAGES

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; et al

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence ofmore » phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.« less

  2. Marine algae and land plants share conserved phytochrome signaling systems

    SciTech Connect

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia -Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.

  3. Requirements for ongoing development of the Pilot Land Data System (PLDS)

    NASA Technical Reports Server (NTRS)

    Wharton, S. W.; Newcomer, J. A.

    1988-01-01

    The Pilot Land Data System being developed to address the information processing needs of the NASA land sciences research community is presented. The objective of the pilot program is to establish a limited-scale, distributed information system for the archival, location, transfer, integration, and manipulation of data across multiple sites connected by a high-speed communications network. Functional capabilities required for users to create, access, and maintain local and distributed data bases containing various types of data in support of land sciences research are summarized.

  4. Decision-support systems for natural-hazards and land-management issues

    USGS Publications Warehouse

    Dinitz, Laura; Forney, William; Byrd, Kristin

    2012-01-01

    Scientists at the USGS Western Geographic Science Center are developing decision-support systems (DSSs) for natural-hazards and land-management issues. DSSs are interactive computer-based tools that use data and models to help identify and solve problems. These systems can provide crucial support to policymakers, planners, and communities for making better decisions about long-term natural hazards mitigation and land-use planning.

  5. Miltipath measurements for land mobile satellite service using global positioning system signals

    NASA Technical Reports Server (NTRS)

    Lemmon, John J.

    1988-01-01

    A proposed multipath system for the land mobile satellite radio channel using the Global Positioning System (GPS) is presented. The measurement technique and equipment used to make multipath measurements on communications links are briefly described. The system configuration and performance specifications of the proposed measurement system are discussed.

  6. Disaster Management: AN Integral Part of Science & Technology System and Land Administration-Management System

    NASA Astrophysics Data System (ADS)

    Ghawana, T.; Zlatanova, S.

    2016-06-01

    Disaster management is a multidisciplinary field, which requires a general coordination approach as well as specialist approaches. Science and Technology system of a country allows to create policies and execution of technical inputs required which provide services for the specific types of disasters management. Land administration and management agencies, as the administrative and management bodies, focus more on the coordination of designated tasks to various agencies responsible for their dedicated roles. They get help from Scientific and technical inputs & policies which require to be implemented in a professional manner. The paper provides an example of such integration from India where these two systems complement each other with their dedicated services. Delhi, the Capital of India, has such a disaster management system which has lot of technical departments of government which are mandated to provide their services as Emergency Service Functionaries. Thus, it is shown that disaster management is a job which is an integral part of Science & Technology system of a country while being implemented primarily with the help of land administration and management agencies. It is required that new policies or mandates for the Science and technology organizations of government should give a primary space to disaster management

  7. A fuzzy intelligent system for land consolidation - a case study in Shunde, China

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, A.; Hu, Y.; Li, C.; Wang, L.

    2015-08-01

    Traditionally, potential evaluation methods for farmland consolidation have depended mainly on the experts' experiences, statistical computations or subjective adjustments. Some biases usually exist in the results. Thus, computer-aided technology has become essential. In this study, an intelligent evaluation system based on a fuzzy decision tree was established, and this system can deal with numerical data, discrete data and symbolic data. When the original land data are input, the level of potential of the agricultural land for development will be output by this new model. The provision of objective proof for decision-making by authorities in rural management is helpful. Agricultural land data characteristically comprise large volumes, complex varieties and more indexes. In land consolidation, it is very important to construct an effective index system. A group of indexes need to be selected for land consolidation. In this article, a fuzzy measure was adopted to accomplish the selection of specific features. A fuzzy integral based on a fuzzy measure is a type of fusion tool. The optimal solution with the fewest non-zero elements was obtained for the fuzzy measure by solving a fuzzy integral. This algorithm provides a quick and optimal way to identify the land-index system when preparing to conduct land consolidation. This new research was applied to Shunde's "Three Old" consolidation project which provides the data. Our estimation system was compared with a conventional evaluation system that is still accepted by the public. Our results prove to be consistent, and the new model is more automatic and intelligent. The results of this estimation system are significant for informing decision-making in land consolidation.

  8. Improved Modeling of Land-Atmosphere Interactions using a Coupled Version of WRF with the Land Information System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaCasse, Katherine M.; Santanello, Joseph A., Jr.; Lapenta, William M.; Petars-Lidard, Christa D.

    2007-01-01

    The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many hydrometeorological processes. Accurate and high-resolution representations of surface properties such as sea-surface temperature (SST), vegetation, soil temperature and moisture content, and ground fluxes are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of weather and climate phenomena. The NASA/NWS Short-term Prediction Research and Transition (SPORT) Center is currently investigating the potential benefits of assimilating high-resolution datasets derived from the NASA moderate resolution imaging spectroradiometer (MODIS) instruments using the Weather Research and Forecasting (WRF) model and the Goddard Space Flight Center Land Information System (LIS). The LIS is a software framework that integrates satellite and ground-based observational and modeled data along with multiple land surface models (LSMs) and advanced computing tools to accurately characterize land surface states and fluxes. The LIS can be run uncoupled to provide a high-resolution land surface initial condition, and can also be run in a coupled mode with WRF to integrate surface and soil quantities using any of the LSMs available in LIS. The LIS also includes the ability to optimize the initialization of surface and soil variables by tuning the spin-up time period and atmospheric forcing parameters, which cannot be done in the standard WRF. Among the datasets available from MODIS, a leaf-area index field and composite SST analysis are used to improve the lower boundary and initial conditions to the LIS/WRF coupled model over both land and water. Experiments will be conducted to measure the potential benefits from using the coupled LIS/WRF model over the Florida peninsula during May 2004. This month experienced relatively benign weather conditions, which will allow the experiments to focus on the local and mesoscale

  9. Land-cover observations as part of a Global Earth Observation System of Systems (GEOSS): progress, activities, and prospects

    USGS Publications Warehouse

    Herold, M.; Woodcock, C.E.; Loveland, Thomas R.; Townshend, J.; Brady, M.; Steenmans, C.; Schmullius, C. C.

    2008-01-01

    The international land-cover community has been working with GEO since 2005 to build the foundations for land-cover observations as an integral part of a Global Earth Observation System of Systems (GEOSS). The Group on Earth Observation (GEO) has provided the platform to elevate the societal relevance of land cover monitoring and helped to link a diverse set of global, regional, and national activities. A dedicated 2007-2009 GEO work plan task has resulted in achievements on the strategic and implementation levels. Integrated Global Observations of the Land (IGOL), the land theme of the Integrated Global Observation Strategy (IGOS), has been approved and is now in the process of transition into GEO implementation. New global land-cover maps at moderate spatial resolutions (i.e., GLOBCOVER) are being produced using guidelines and standards of the international community. The Middecadal Global Landsat Survey for 2005-2006 is extending previous 1990 and 2000 efforts for global, high-quality Landsat data. Despite this progress, essential challenges for building a sustained global land-cover-observing system remain, including: international cooperation on the continuity of global observations; ensuring consistency in land monitoring approaches; community engagement and country participation in mapping activities; commitment to ongoing quality assurance and validation; and regional networking and capacity building.

  10. Landing performance of an air cushion landing system installed on a 1/10-scale dynamic model on the C-8 Buffalo airplane

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.

    1973-01-01

    An experimental study was conducted to evaluate the landing behavior of a 1/10-scale dynamic model of the C-8 Buffalo airplane equipped with an air-cushion landing system (ACLS) on a variety of surfaces including both calm and rough water and a smooth hard surface. Taxi runs were made on the hard surface over several obstacles. Landings were made with the model at various pitch and roll attitudes and vertical velocities and at one nominal horizontal velocity. Data from the landings include time histories of the trunk and air-cushion pressures and accelerations at selected locations on the model.

  11. Simulation study of two VTOL control/display systems in IMC approach and landing

    NASA Technical Reports Server (NTRS)

    Merrick, V. K.

    1981-01-01

    Both systems had full attitude command; the more complex system (Type 1) also had translational velocity command. The systems were applied to existing models of a VTOL lift-fan transport and the AV-8A Harrier. Simulated landings were made on a model of a DD963 Spruance-class destroyer. It was concluded that acceptable transitions and vertical landings can be performed, using the Type 1 system, in free-air turbulence up to 2.5 m/sec and sea state 6 and, using the Type 2 system, in free-air turbulence up to 1.5 m/sec and sea state 4.

  12. Modeling Global Change in Local Places: Capturing Global Change and Local Impacts in a Global Land System Change Model

    NASA Astrophysics Data System (ADS)

    Verburg, P.; Eitelberg, D.; Ornetsmueller, C.; van Vliet, J.

    2015-12-01

    Global land use models are driven by demands for food and urban space. However, at the same time many transitions in land use and land cover are driven by societal changes and the demand for a wide range of landscape functions or ecosystem services, including the conservation of biodiversity, regulation of climate and floods, and recreation. Some of these demands lead to tele-connected land use change through the transport of good and services, others are place-based and shape the local realities of land system change. Most current land use change models focus on land cover changes alone and ignore the importance of changes in land management and landscape configuration that affect climate, biodiversity and the provisioning of ecosystem services. This talk will present an alternative approach to global land use modelling based on the simulation of changes in land systems in response to a wide set of ecosystem service demands. Simulations at global scale illustrate that accounting for demands for livestock products, carbon sequestration and biological conservation (following the Aichi targets) leads to different outcomes of land change models and allows the identification of synergies between carbon and biodiversity targets. An application in Laos indicates the complex transitions in land systems and landscapes that occur upon the transition from shifting cultivation to permanent agriculture and tree-crop plantations. We discuss the implications of such land system representations for Earth system modelling.

  13. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    SciTech Connect

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-29

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validation of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.

  14. The effects of land surface process perturbations in a global ensemble forecast system

    NASA Astrophysics Data System (ADS)

    Deng, Guo; Zhu, Yuejian; Gong, Jiandong; Chen, Dehui; Wobus, Richard; Zhang, Zhe

    2016-10-01

    Atmospheric variability is driven not only by internal dynamics, but also by external forcing, such as soil states, SST, snow, sea-ice cover, and so on. To investigate the forecast uncertainties and effects of land surface processes on numerical weather prediction, we added modules to perturb soil moisture and soil temperature into NCEP's Global Ensemble Forecast System (GEFS), and compared the results of a set of experiments involving different configurations of land surface and atmospheric perturbation. It was found that uncertainties in different soil layers varied due to the multiple timescales of interactions between land surface and atmospheric processes. Perturbations of the soil moisture and soil temperature at the land surface changed sensible and latent heat flux obviously, as compared to the less or indirect land surface perturbation experiment from the day-to-day forecasts. Soil state perturbations led to greater variation in surface heat fluxes that transferred to the upper troposphere, thus reflecting interactions and the response to atmospheric external forcing. Various verification scores were calculated in this study. The results indicated that taking the uncertainties of land surface processes into account in GEFS could contribute a slight improvement in forecast skill in terms of resolution and reliability, a noticeable reduction in forecast error, as well as an increase in ensemble spread in an under-dispersive system. This paper provides a preliminary evaluation of the effects of land surface processes on predictability. Further research using more complex and suitable methods is needed to fully explore our understanding in this area.

  15. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-01

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validation of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.

  16. Investigating potential transferability of place-based research in land system science

    NASA Astrophysics Data System (ADS)

    Václavík, Tomáš; Langerwisch, Fanny; Cotter, Marc; Fick, Johanna; Häuser, Inga; Hotes, Stefan; Kamp, Johannes; Settele, Josef; Spangenberg, Joachim H.; Seppelt, Ralf

    2016-09-01

    Much of our knowledge about land use and ecosystem services in interrelated social-ecological systems is derived from place-based research. While local and regional case studies provide valuable insights, it is often unclear how relevant this research is beyond the study areas. Drawing generalized conclusions about practical solutions to land management from local observations and formulating hypotheses applicable to other places in the world requires that we identify patterns of land systems that are similar to those represented by the case study. Here, we utilize the previously developed concept of land system archetypes to investigate potential transferability of research from twelve regional projects implemented in a large joint research framework that focus on issues of sustainable land management across four continents. For each project, we characterize its project archetype, i.e. the unique land system based on a synthesis of more than 30 datasets of land-use intensity, environmental conditions and socioeconomic indicators. We estimate the transferability potential of project research by calculating the statistical similarity of locations across the world to the project archetype, assuming higher transferability potentials in locations with similar land system characteristics. Results show that areas with high transferability potentials are typically clustered around project sites but for some case studies can be found in regions that are geographically distant, especially when values of considered variables are close to the global mean or where the project archetype is driven by large-scale environmental or socioeconomic conditions. Using specific examples from the local case studies, we highlight the merit of our approach and discuss the differences between local realities and information captured in global datasets. The proposed method provides a blueprint for large research programs to assess potential transferability of place-based studies to other

  17. Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.

  18. Analysis of Summer Thunderstorms in Central Alabama Using the NASA Land Information System

    NASA Technical Reports Server (NTRS)

    James, Robert; Case, Jonathan; Molthan, Andrew; Jedloved, Gary

    2010-01-01

    Forecasters have difficulty predicting "random" afternoon thunderstorms during the summer months. Differences in soil characteristics could be a contributing factor for storms. The NASA Land Information System (LIS) may assist forecasters in predicting summer convection by identifying boundaries in land characteristics. This project identified case dates during the summer of 2009 by analyzing synoptic weather maps, radar, and satellite data to look for weak atmospheric forcing and disorganized convective development. Boundaries in land characteristics that may have lead to convective initiation in central Alabama were then identified using LIS.

  19. 23 CFR 972.214 - Federal lands congestion management system (CMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... LANDS HIGHWAYS FISH AND WILDLIFE SERVICE MANAGEMENT SYSTEMS Fish and Wildlife Service Management Systems... means the level at which transportation system performance is no longer acceptable due to traffic... combinations of strategies for each area: (A) Transportation demand management measures; (B)...

  20. Semi-active control of a landing gear system using magnetrorheological damper

    NASA Astrophysics Data System (ADS)

    Nam, Y. J.; Park, M. K.; Choi, J. W.; Yamane, R.

    2007-12-01

    This paper is concerned with the applicability of the developed MR damper to the landing gear system for the attenuating undesired shock and vibration in the landing and taxing phases. First of all, the experimental model of the MR damper is derived based on the results of performance evaluations. Next, a simplified skyhook controller, which is one of the most straightforward, but effective approaches for improving ride comport in vehicles with active suspensions, is formulated. Finally, the vibration control performances of the landing gear system using the MR damper are theoretically evaluated in the landing phase of the aircraft. A series of simulation analyses show that the proposed MR damper with the skyhook controller is effective for suppressing undesired vibration of the aircraft body.

  1. Entry, Descent and Landing Systems Analysis: Exploration Feed Forward Internal Peer Review Slide Package

    NASA Technical Reports Server (NTRS)

    Dwyer Cianciolo, Alicia M. (Editor)

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 mt. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  2. Application of ERTS-1 imagery to state wide land information system in Minnesota

    NASA Technical Reports Server (NTRS)

    Sizer, J. E.; Borchert, J. R. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. To update and refine existing state-wide land resource information systems, the Minnesota State Planning Agency is assessing the feasibility of extracting resource information from ERTS-1 imagery. Work has centered on a comparative analysis of Minnesota Land Management Information System (MLMIS) and ERTS-1 land use classes. The associated problems of determining appropriate data cell size and optimal seasonal timing have also been addressed. Using ERTS-1 images, dominant land use is classified as follows: urban, forest, agriculture, extractive, transportation, water, and wetlands. Preliminary analysis suggests that with appropriate changes in operational definitions these general classes can be further refined for the benefit of MLMIS users. Additional detail appears most feasible extractive classes.

  3. The concept of development of the integrated agricultural land assessment system

    NASA Astrophysics Data System (ADS)

    Zatserkovniy, V. I.; Gebrin, L. V.; Kryvoberets, S. V.

    2014-12-01

    The article takes up some of the characteristics of Ukrainian soils current conditions. Here cartographically shown the matter of soils, heavy metals pollution of soils, soil loss tolerance and a radiation pollution of soils. The article also analyzes the functional diagram of the agricultural lands spatial data integration and the stages of implementation of the overall agricultural lands monitoring system. It describes the advantages of the integrated agricultural crops conditions assessment model and the advantages of crop yield forecasting based on remote sensing.

  4. The Land-Potential Knowledge System (LandPKS): mobile apps and collaboration for optimizing climate change investments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Massive investments in climate change mitigation and adaptation are projected during coming decades. Many of these investments will seek to modify how land is managed. The return on both types of investments can be increased through an understanding of land potential: the potential of the land to s...

  5. 78 FR 58555 - Public Land Order No. 7821; Withdrawal of National Forest System Land for Steamboat Rock Picnic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... business hours. SUPPLEMENTARY INFORMATION: This order replaces expired Public Land Order No. 6689 (53 FR... Steamboat Rock Picnic Grounds; South Dakota AGENCY: Bureau of Land Management, Interior. ACTION: Public Land... to protect the recreational uses and improvements at the Steamboat Rock Picnic Grounds within...

  6. North American Land Change Monitoring System: Current Status and Future Development

    NASA Astrophysics Data System (ADS)

    Pouliot, D.; Homer, C.; Ressl, R.; Takaki, F.; Meneses, C.; Latifovic, R.; Giri, C.; Colditz, R.; Jimenez, F.; Orozco, R.; Hossain, N.; Lopez, G.; Palafox, R.; Díaz, P.

    2009-05-01

    At the Land Cover Summit meeting held in Washington, DC in September 2006 the North American Land Change Monitoring System (NLCMS) project was initiated between representatives from the US Geological Survey (USGS), the National Institute of Geographic Statistics and Information of Mexico (INEGI) and the Canada Centre for Remote Sensing (CCRS). The objective of the NALCMS is a joint effort to create a harmonized system for multi-scale and multi-temporal monitoring and reporting of North American land cover change. The proposed system couples 250m and 30m resolutions, offering products relevant at both spatial scales. The two spatial resolutions will provide users with investigation, confirmation, calibration, and assessment of 250m change products with 30m product support. This combination of spatial resolutions offers a valuable increase in temporal frequency, context, and strategic prioritization for 30m products. In due course these land change products can provide continental, national, and regional consistency to land cover and land cover change analysis.

  7. Land-use poverty traps identified in shifting cultivation systems shape long-term tropical forest cover.

    PubMed

    Coomes, Oliver T; Takasaki, Yoshito; Rhemtulla, Jeanine M

    2011-08-23

    In this article we illustrate how fine-grained longitudinal analyses of land holding and land use among forest peasant households in an Amazonian village can enrich our understanding of the poverty/land cover nexus. We examine the dynamic links in shifting cultivation systems among asset poverty, land use, and land cover in a community where poverty is persistent and primary forests have been replaced over time--with community enclosure--by secondary forests (i.e., fallows), orchards, and crop land. Land cover change is assessed using aerial photographs/satellite imagery from 1965 to 2007. Household and plot level data are used to track land holding, portfolios, and use as well as land cover over the past 30 y, with particular attention to forest status (type and age). Our analyses find evidence for two important types of "land-use" poverty traps--a "subsistence crop" trap and a "short fallow" trap--and indicate that the initial conditions of land holding by forest peasants have long-term effects on future forest cover and household welfare. These findings suggest a new mechanism driving poverty traps: insufficient initial land holdings induce land use patterns that trap households in low agricultural productivity. Path dependency in the evolution of household land portfolios and land use strategies strongly influences not only the wellbeing of forest people but also the dynamics of tropical deforestation and secondary forest regrowth. PMID:21873179

  8. An Earth Observation Land Data Assimilation System (EO-LDAS)

    NASA Astrophysics Data System (ADS)

    Gomez-Dans, Jose; Lewis, Philip; Quaife, Tristan; Kaminski, Tomas; Styles, Jon

    2013-04-01

    In order to monitor the land surface, EO data provides the means of achieving global coverage in a timely fashion. Different sensors orbit the Earth acquiring data at different times and with different spectral and spatial properties. Blending all these observations presents a considerable challenge. Purely statistical methods based on machine learning techniques require accurate and extensive ground truth for "training" models. The complexities of the processes that take place in the scene result in limited usefulness of these models outside their training region or period. Models that describe the physical processes that give rise to the measurements, based on radiative transfer theory, offer a more robust way of interpreting the recorded data and relating it to surface properties such as leaf area index, chlorophyll concentration, etc. Unfortunately, the information content in the signals is rarely sufficient to unambigously determine the many parameters that are required in typical radiative transfer models. To improve on this, the use of prior information is required. Typically, this information is given as parameter ranges, or maybe even distributions, which can have a positive effect in the so-called "inverse problem". Data assimilation techniques allow one to use models of the land surface as priors, to constrain the inverse problem. These models can be very useful in improving the ability of inverting the observations, as the models can give very valuable information on the dynamics of some parameters, like LAI. However, some parameters that have a strong bearing on the observations (some pigments, leaf angle distributions...) have no analogues in typical DGVMs. In this work, we introduce and demonstrate the use of weak constraint 4DVAR data assimilation to the problem of inverting optical RT models. We demonstrate that the use of this technique results in important gains in parameter uncertainty reduction for a typical satellite mission, including

  9. Navigation systems for approach and landing of VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Schmidt, S. F.; Mohr, R. L.

    1979-01-01

    The formulation and implementation of navigation systems used for research investigations in the V/STOLAND avionics system are described. The navigation systems prove position and velocity in a cartestian reference frame aligned with the runway. They use filtering techniques to combine the raw position data from navaids (e.g., TACAN, MLS) with data from onboard inertial sensors. The filtering techniques which use both complementary and Kalman filters, are described. The software for the navigation systems is also described.

  10. Fiber optic security systems for land- and sea-based applications

    NASA Astrophysics Data System (ADS)

    Crickmore, Roger I.; Nash, Phillip J.; Wooler, John P. F.

    2004-11-01

    QinetiQ have been developing security systems for land and sea applications using interferometric based fiber optic sensors. We have constructed and tested a multi-channel fiber-optic hydrophone seabed array, which is designed for maritime surveillance and harbor security applications. During a recent trial it was deployed in a coastal location for an 8 day period during which it successfully detected and tracked a wide variety of traffic. The array can be interfaced with an open architecture processing system that carries out automatic detection and tracking of targets. For land based applications we have developed a system that uses high sensitivity fiber optic accelerometers and buried fiber optic cable as sensor elements. This uses the same opto-electronic interrogator as the seabed array, so a combined land and sea security system for coastal assets could be monitored using a single interrogator.

  11. A wideband channel model for land mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Jahn, Axel; Buonomo, Sergio; Sforza, Mario; Lutz, Erich

    1995-01-01

    A wideband channel model for Land Mobile Satellite (LMS) services is presented which characterizes the time-varying transmission channel between a satellite and a mobile user terminal. The channel model statistic parameters are the results of fitting procedures to measured data. The data used for fitting have a time resolution of 33 ns corresponding to a bandwidth of 30 MHz. Thus, the model is capable to characterize the channel behaviour for a wide range of services e.g., voice transmission, digital audio broadcasting (DAB), and spread spectrum modulation schemes. The model is presented for different environments and scenarios. The model is derived for a quasi-mobile user with hand-held terminal being in two different environments: rural and urban. The parameters needed for the description are (a) the number of echoes, (b) the distribution of the echo power, and (c) the distribution of the echo delay. It is shown that the direct path follows a Rician distribution whereas the reflected paths are Rayleigh/lognormal distributed. The parameters are given for an elevation angle of 25 deg.

  12. The Feasibility of a Land Ferry System to Reduce Highway Maintenance Cost and Associated Externalities.

    PubMed

    Merrill, Steve J; Paz, Alexander; Molano, Victor; Shrestha, Pramen P; Maheshwari, Pankaj; Stephen, Haroon; de la Fuente-Mella, Hanns

    2016-01-01

    This study provides an economic evaluation for a Land Ferry, which is a rail system capable of carrying trucks and all other types of vehicles, passengers, and cargo. The Land Ferry system involves a sliding loading system to roll heavy loads onto a flatbed; as a result, loading and unloading of all vehicles and cargo could be accomplished simultaneously. The evaluation for this system included (1) the design of a new track alignment over which the Land Ferry system would run, (2) evaluation of various sources of power, (3) estimation of how many local jobs the Land Ferry would generate, and (4) a benefit-cost analysis. It was estimated that the Land Ferry would create over 45,788 temporary jobs in Nevada during the three-year construction period and 318 permanent jobs during operation. The majority of the benefits were attributed to savings in travel time ($356.4 M), vehicle operating costs ($1000.4 M), reduction of accidents ($544.6 M), and pavement maintenance ($503.2 M). These benefits would be a consequence of the shift of trucks from the highway, thus resulting in higher speeds, decrease fuel consumption, and decrease vehicle maintenance costs. The overall benefit-cost ratio of 1.7 implies a cost-effective project.

  13. The Feasibility of a Land Ferry System to Reduce Highway Maintenance Cost and Associated Externalities.

    PubMed

    Merrill, Steve J; Paz, Alexander; Molano, Victor; Shrestha, Pramen P; Maheshwari, Pankaj; Stephen, Haroon; de la Fuente-Mella, Hanns

    2016-01-01

    This study provides an economic evaluation for a Land Ferry, which is a rail system capable of carrying trucks and all other types of vehicles, passengers, and cargo. The Land Ferry system involves a sliding loading system to roll heavy loads onto a flatbed; as a result, loading and unloading of all vehicles and cargo could be accomplished simultaneously. The evaluation for this system included (1) the design of a new track alignment over which the Land Ferry system would run, (2) evaluation of various sources of power, (3) estimation of how many local jobs the Land Ferry would generate, and (4) a benefit-cost analysis. It was estimated that the Land Ferry would create over 45,788 temporary jobs in Nevada during the three-year construction period and 318 permanent jobs during operation. The majority of the benefits were attributed to savings in travel time ($356.4 M), vehicle operating costs ($1000.4 M), reduction of accidents ($544.6 M), and pavement maintenance ($503.2 M). These benefits would be a consequence of the shift of trucks from the highway, thus resulting in higher speeds, decrease fuel consumption, and decrease vehicle maintenance costs. The overall benefit-cost ratio of 1.7 implies a cost-effective project. PMID:27419201

  14. The Feasibility of a Land Ferry System to Reduce Highway Maintenance Cost and Associated Externalities

    PubMed Central

    Merrill, Steve J.; Paz, Alexander; Molano, Victor; Shrestha, Pramen P.; Maheshwari, Pankaj; Stephen, Haroon

    2016-01-01

    This study provides an economic evaluation for a Land Ferry, which is a rail system capable of carrying trucks and all other types of vehicles, passengers, and cargo. The Land Ferry system involves a sliding loading system to roll heavy loads onto a flatbed; as a result, loading and unloading of all vehicles and cargo could be accomplished simultaneously. The evaluation for this system included (1) the design of a new track alignment over which the Land Ferry system would run, (2) evaluation of various sources of power, (3) estimation of how many local jobs the Land Ferry would generate, and (4) a benefit-cost analysis. It was estimated that the Land Ferry would create over 45,788 temporary jobs in Nevada during the three-year construction period and 318 permanent jobs during operation. The majority of the benefits were attributed to savings in travel time ($356.4 M), vehicle operating costs ($1000.4 M), reduction of accidents ($544.6 M), and pavement maintenance ($503.2 M). These benefits would be a consequence of the shift of trucks from the highway, thus resulting in higher speeds, decrease fuel consumption, and decrease vehicle maintenance costs. The overall benefit-cost ratio of 1.7 implies a cost-effective project. PMID:27419201

  15. An economics systems analysis of land mobile radio telephone services

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.; Stevenson, S. M.

    1980-01-01

    The economic interaction of the terrestrial and satellite systems is considered. Parametric equations are formulated to allow examination of necessary user thresholds and growth rates as a function of system costs. Conversely, first order allowable systems costs are found as a function of user thresholds and growth rates. Transitions between satellite and terrestrial service systems are examined. User growth rate density (user/year/sq km) is shown to be a key parameter in the analysis of systems compatibility. The concept of system design matching the price/demand curves is introduced and examples are given. The role of satellite systems is critically examined and the economic conditions necessary for the introduction of satellite service are identified.

  16. The Development of the MSL Guidance, Navigation, and Control System for Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    San Martin, A. Miguel; Lee, Steven W.; Wong, Edward C.

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory (MSL) mission successfully delivered the Curiosity rover to its intended target. It was the most complex and ambitious landing in the history of the red planet. A key component of the landing system, the requirements for which were driven by the mission ambitious science goals, was the Guidance, Navigation, and Control (GN&C) system. This paper will describe the technical challenges of the MSL GN&C system, the resulting architecture and design needed to meet those challenges, and the development process used for its implementation and testing.

  17. Remote sensing applications for urban planning - The LUMIS project. [Land Use Management Information System

    NASA Technical Reports Server (NTRS)

    Paul, C. K.; Landini, A. J.; Diegert, C.

    1975-01-01

    The Santa Monica mountains of Los Angeles consist primarily of complexly folded sedimentary marine strata with igneous and metamorphic rocks at the eastern end of the mountains. With the increased development of the Santa Monicas, a study was conducted to determine the critical land use data items in the mountains. Two information systems developed in parallel are described. One capitalizes on the City's present computer line printer system, and the second utilizes map overlay techniques on an interactive computer terminal. Results concerning population, housing, and land improvement illustrate the successful linking of ordinal and nominal data files in the interactive system.-

  18. The Watershed Planning System: A Tool for Integrated Land Use Management

    NASA Astrophysics Data System (ADS)

    Weller, D. G.

    2002-05-01

    The challenge in Maryland and across the nation is allowing economic growth while protecting our environment. Maryland's Smart Growth policies provide a strong foundation for conserving resource land, minimizing nutrient loadings from new development, and revitalizing our urban/suburban communities. To assist local governments and communities, MDP has developed the Watershed Planning System (WPS). It is an analytical tool to conduct watershed-based assessments of the impacts of current and alternative programs and policies on land and water resources. The WPS consists of two GIS-based models, the Growth Management Simulation, and the Pollution Simulation Management models. The Growth Management Simulation Model estimates changes in land uses by watershed as a function of population and household projections, as well as state and county policies, regulations, and programs. The model allows evaluation of different future land use scenarios by changing assumptions associated with comprehensive plans and zoning, subdivision, and environmental regulations through which plans are implemented. The Pollution Simulation Management model evaluates the effects of pollution management alternatives on current land use and future land use conditions. The output provides a basis for selecting a feasible mix of management alternatives that can be implemented through program changes, such as: comprehensive plans, soil conservation and water quality plans, nutrient management programs, zoning and subdivision programs, and sensitive area protection programs, and through implementation of best management practices. The WPS has been applied in the 13 counties, Anne Arundel, Calvert, Charles, Howard, Montgomery, Prince George's, St. Mary's, Worcester, Cecil, Wicomico, Frederick, Carroll, and Harford, to address a variety of land use management, resource conservation, and pollution control objectives. In addition, the model has been used to produce statewide 2020 land use projections

  19. Soil organic phosphorus in soils under different land use systems in northeast Germany

    NASA Astrophysics Data System (ADS)

    Slazak, Anna; Freese, Dirk; Hüttl, Reinhard F.

    2010-05-01

    Phosphorus (P) is commonly known as a major plant nutrient, which can act as a limiting factor for plant growth in many ecosystems, including different land use systems. Organic P (Po), transformations in soil are important in determining the overall biological availability of P and additionally Po depletion is caused by land cultivation. It is expected that changes of land use modifies the distribution of soil P among the various P-pools (Ptotal, Plabile, Po), where the Plabile forms are considered to be readily available to plants and Po plays an important role with P nutrition supply for plants. The aim of the study was to measure the different soil P pools under different land use systems. The study was carried out in northeast of Brandenburg in Germany. Different land use systems were studied: i) different in age pine-oak mixed forest stands, ii) silvopastoral land, iii) arable lands. Samples were taken from two mineral soil layers: 0-10 and 10-20 cm. Recently, a variety of analytical methods are available to determine specific Po compounds in soils. The different P forms in the soil were obtained by a sequential P fractionation by using acid and alkaline extractants, which mean that single samples were subjected to increasingly stronger extractants, consequently separating the soil P into fractions based on P solubility. The soil Ptotal for the forest stands ranged from 100 to 183 mg kg -1 whereas Po from 77 to 148 mg kg -1. The Po and Plabile in both soil layers increased significantly with increase of age-old oak trees. The most available-P fraction was Plabile predominate in the oldest pine-oak forest stand, accounting for 29% of soil Ptotal. For the silvopasture and arable study sites the Ptotal content was comparable. However, the highest value of Ptotal was measured in the 30 years old silvopastoral system with 685 mg kg-1 and 728 mg kg-1 at 0-10 cm and 10-20 cm depth, respectively than in arable lands. The results have shown that the 30 years old

  20. Overview of the NASA Entry, Descent and Landing Systems Analysis Exploration Feed-Forward Study

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Zang, Thomas A.; Sostaric, Ronald R.; McGuire, M. Kathy

    2011-01-01

    Technology required to land large payloads (20 to 50 mt) on Mars remains elusive. In an effort to identify the most viable investment path, NASA and others have been studying various concepts. One such study, the Entry, Descent and Landing Systems Analysis (EDLSA) Study [1] identified three potential options: the rigid aeroshell, the inflatable aeroshell and supersonic retropropulsion (SRP). In an effort to drive out additional levels of design detail, a smaller demonstrator, or exploration feed-forward (EFF), robotic mission was devised that utilized two of the three (inflatable aeroshell and SRP) high potential technologies in a configuration to demonstrate landing a two to four metric ton payload on Mars. This paper presents and overview of the maximum landed mass, inflatable aeroshell controllability and sensor suite capability assessments of the selected technologies and recommends specific technology areas for additional work.

  1. Estimation of land subsidence caused by loss of smectite-interlayer water in shallow aquifer systems

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Wuing; Lin, Wen-Sheng; Cheng, Li-Hsin

    2006-04-01

    Traditionally, land subsidence that results from groundwater over-pumping has often been described by the theory of consolidation. The mechanism of land subsidence due to the dehydration of clay minerals is not well addressed. A model of the “hydration state of smectite”, and a “solid solution model of smectite dehydration”, incorporating a thermodynamic solid solution model and laboratory results concerning clay-water systems of swelling pressure, hydration state and basal spacing in smectite interlayer, are employed to examine the effect of the release of water from the smectite interlayer on land subsidence in the coastal area of the Chou-Shui River alluvial fan and the Yun Lin offshore industrial infrastructure complex in Taiwan. The results indicate that 9.56-22.80% of the total cumulative land subsidence to a depth of 300 m is consistent with smectite dehydration following the over-pumping of groundwater. This dehydration-related land subsidence occurred to a depth of 0-60 m, with subsidence due to smectite dehydration accounting for 6.20-13.32% of the primary consolidation. Additionally, the total amount of subsidence resulting from both smectite dehydration and primary consolidation is consistent with the subsidence observed in the field. This study reveals that smectite dehydration appears to be important in assessing and predicting land subsidence in shallow aquifer systems.

  2. Land-Use Change and Earth System Dynamics: Advancing the Science

    NASA Astrophysics Data System (ADS)

    Hurtt, George

    2010-05-01

    Quantifying the effects of land-use changes on Earth system dynamics requires adequate information on both past and future land-use activities in a format appropriate for models capable of tracking relevant impacts. This presentation will review past approaches to understanding the role of land-use change on the Earth system dynamics, and summarize new work involving ‘land-use harmonization' (Hurtt et al. 2009) to advance the understanding for IPCC-AR5 and beyond. Emphasis will be placed on the importance and accuracy of historical maps, uncertainties in future projections, and key challenges for the future. Hurtt, G. C., L. P. Chini, S. Frolking, R. Betts, J. Feedema, G. Fischer, K. Klein Goldewijk, K. Hibbard, A. Janetos, C. Jones, G. Kindermann, T. Kinoshita, K. Riahi, E. Shevliakova, S. Smith, E. Stehfest, A. Thomson, P. Thorton, D. van Vuuren, Y. Wang (2009), Harmonization of Global Land-Use Scenarios for the Period 1500-2100 for IPCC-AR5. Integrated Land Ecosystem-Atmosphere Processes Study (iLEAPS) Newsletter 7:6-8.

  3. An evaluation of the land and material requirements for the satellite power system

    NASA Technical Reports Server (NTRS)

    Ankerbrandt, S. D.

    1980-01-01

    Current research and evaluation of the physical resources requirements for the Satellite Power System (SPS) concentrates on three topics: land requirements and the siting of rectennas; the environmental impacts of the rectenna siting; and the materials requirements. The first two focus exclusively on the Earth based element of the SPS while the materials assessment considered requirements for both the space and Earth systems.

  4. Benchmarking the performance of a land data assimilation system for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of land data assimilation systems to operational agricultural drought monitoring requires the development of (at least) three separate system sub-components: 1) a retrieval model to invert satellite-derived observations into soil moisture estimates, 2) a prognostic soil water balance...

  5. 77 FR 28797 - Redundancy of Communications Systems: Backup Power Private Land Mobile Radio Services: Selection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 12 and 90 Redundancy of Communications Systems: Backup Power Private Land Mobile...--REDUNDANCY OF COMMUNICATIONS SYSTEMS 0 1. The authority citation for part 12 continues to read as...

  6. 23 CFR 973.214 - Indian lands congestion management system (CMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Indian lands congestion management system (CMS). 973.214... (CMS). (a) For purposes of this section, congestion means the level at which transportation system... the tribes, shall develop criteria to determine when a CMS is to be implemented for a...

  7. Land Application of Wastes: An Educational Program. Waste Application Systems - Module 12, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    Land application systems are discussed with reference to the options available for applying wastewater and sludge to the site. Spray systems, surface flow methods, and sludge application schemes are all included with discussions of the advantages and disadvantages of each option within these categories. A distinction is made between the choice of…

  8. Assessment on EXPERT Descent and Landing System Aerodynamics

    NASA Astrophysics Data System (ADS)

    Wong, H.; Muylaert, J.; Northey, D.; Riley, D.

    2009-01-01

    EXPERT is a re-entry vehicle designed for validation of aero-thermodynamic models, numerical schemes in Computational Fluid Dynamics codes and test facilities for measuring flight data under an Earth re-entry environment. This paper addresses the design for the descent and landing sequence for EXPERT. It includes the descent sequence, the choice of drogue and main parachutes, and the parachute deployment condition, which can be supersonic or subsonic. The analysis is based mainly on an engineering tool, PASDA, together with some hand calculations for parachute sizing and design. The tool consists of a detailed 6-DoF simulation performed with the aerodynamics database of the vehicle, an empirical wakes model and the International Standard Atmosphere database. The aerodynamics database for the vehicle is generated by DNW experimental data and CFD codes within the framework of an ESA contract to CIRA. The analysis will be presented in terms of altitude, velocity, accelerations, angle-of- attack, pitch angle and angle of rigging line. Discussion on the advantages and disadvantages of each parachute deployment condition is included in addition to some comparison with the available data based on a Monte-Carlo method from a Russian company, FSUE NIIPS. Sensitivity on wind speed to the performance of EXPERT is shown to be strong. Supersonic deployment of drogue shows a better performance in stability at the expense of a larger G-load than those from the subsonic deployment of drogue. Further optimization on the parachute design is necessary in order to fulfill all the EXPERT specifications.

  9. Commercialization of the land remote sensing system: An examination of mechanisms and issues

    NASA Technical Reports Server (NTRS)

    Cauley, J. K.; Gaelick, C.; Greenberg, J. S.; Logsdon, J.; Monk, T.

    1983-01-01

    In September 1982 the Secretary of Commerce was authorized (by Title II of H.R. 5890 of the 97th Congress) to plan and provide for the management and operation of the civil land remote sensing satellite systems, to provide for user fees, and to plan for the transfer of the ownership and operation of future civil operational land remote sensing satellite systems to the private sector. As part of the planning for transfer, a number of approaches were to be compared including wholly private ownership and operation of the system by an entity competitively selected, mixed government/private ownership and operation, and a legislatively-chartered privately-owned corporation. The results of an analysis and comparison of a limited number of financial and organizational approaches for either transfer of the ownership and operation of the civil operational land remote sensing program to the private sector or government retention are presented.

  10. Space shuttle post-entry and landing analysis. Volume 1: Candidate system evaluations

    NASA Technical Reports Server (NTRS)

    Crawford, B. S.; Duiven, E. M.

    1973-01-01

    The general purpose of this study is to aid in the evaluation and design of multi-sensor navigation schemes proposed for the orbiter. The scope of the effort is limited to the post-entry, energy management, and approach and landing mission phases. One candidate system based on conventional navigation aids is illustrated including two DME (Distance Measuring Equipment) stations and ILS (Instrument Landing System) glide slope and localizer antennas. Some key elements of the system not shown are the onboard IMUs (Inertial Measurement Units), altimeters, and a computer. The latter is programmed to mix together (filter) the IMU data and the externally-derived data. A completely automatic, all-weather landing capability is required. Since no air-breathing engines will be carried on orbital flights, there will be no chance to go around and try again following a missed approach.

  11. Effect of weight, height and BMI on injury outcome in side impact crashes without airbag deployment.

    PubMed

    Pal, Chinmoy; Tomosaburo, Okabe; Vimalathithan, K; Jeyabharath, M; Muthukumar, M; Satheesh, N; Narahari, S

    2014-11-01

    A comprehensive analysis is performed to evaluate the effect of weight, height and body mass index (BMI) of occupants on side impact injuries at different body regions. The accident dataset for this study is based on the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) for accident year 2000-08. The mean BMI values for driver and front passenger are estimated from all types of crashes using NASS database, which clearly indicates that mean BMI has been increasing over the years in the USA. To study the effect of BMI in side impact injuries, BMI was split into three groups namely (1) thin (BMI<21), (2) normal (BMI 24-27), (3) obese (BMI>30). For more clear identification of the effect of BMI in side impact injuries, a minimum gap of three BMI is set in between each adjacent BMI groups. Car model years from MY1995-1999 to MY2000-2008 are chosen in order to identify the degree of influence of older and newer generation of cars in side impact injuries. Impact locations particularly side-front (F), side-center (P) and side-distributed (Y) are chosen for this analysis. Direction of force (DOF) considered for both near side and far side occupants are 8 o'clock, 9 o'clock, 10 o'clock and 2 o'clock, 3 o'clock and 4 o'clock respectively. Age <60 years is also one of the constraints imposed on data selection to minimize the effect of bone strength on the occurrence of occupant injuries. AIS2+ and AIS3+ injury risk in all body regions have been plotted for the selected three BMI groups of occupant, delta-V 0-60kmph, two sets (old and new) of car model years. The analysis is carried with three approaches: (a) injury risk percentage based on simple graphical method with respect to a single variable, (b) injury distribution method where the injuries are marked on the respective anatomical locations and (c) logistic regression, a statistical method, considers all the related variables together. Lower extremity injury risk appears to be high for thin BMI

  12. Assessing land-use impacts on biodiversity using an expert systems tool

    USGS Publications Warehouse

    Crist, P.J.; Kohley, T.W.; Oakleaf, J.

    2000-01-01

    Habitat alteration, in the form of land-use development, is a leading cause of biodiversity loss in the U.S. and elsewhere. Although statutes in the U.S. may require consideration of biodiversity in local land-use planning and regulation, local governments lack the data, resources, and expertise to routinely consider biotic impacts that result from permitted land uses. We hypothesized that decision support systems could aid solution of this problem. We developed a pilot biodiversity expert systems tool (BEST) to test that hypothesis and learn what additional scientific and technological advancements are required for broad implementation of such a system. BEST uses data from the U.S. Geological Survey's Gap Analysis Program (GAP) and other data in a desktop GIS environment. The system provides predictions of conflict between proposed land uses and biotic elements and is intended for use at the start of the development review process. Key challenges were the development of categorization systems that relate named land-use types to ecological impacts, and relate sensitivities of biota to ecological impact levels. Although the advent of GAP and sophisticated desktop GIS make such a system feasible for broad implementation, considerable ongoing research is required to make the results of such a system scientifically sound, informative, and reliable for the regulatory process. We define a role for local government involvement in biodiversity impact assessment, the need for a biodiversity decision support system, the development of a prototype system, and scientific needs for broad implementation of a robust and reliable system.

  13. Recreational System Optimization to Reduce Conflict on Public Lands

    NASA Astrophysics Data System (ADS)

    Shilling, Fraser; Boggs, Jennifer; Reed, Sarah

    2012-09-01

    In response to federal administrative rule, the Tahoe National Forest (TNF), California, USA engaged in trail-route prioritization for motorized recreation (e.g., off-highway-vehicles) and other recreation types. The prioritization was intended to identify routes that were suitable and ill-suited for maintenance in a transportation system. A recreational user survey was conducted online ( n = 813) for user preferences for trail system characteristics, recreational use patterns, and demographics. Motorized trail users and non-motorized users displayed very clear and contrasting preferences for the same system. As has been found by previous investigators, non-motorized users expressed antagonism to motorized use on the same recreational travel system, whereas motorized users either supported multiple-use routes or dismissed non-motorized recreationists' concerns. To help the TNF plan for reduced conflict, a geographic information system (GIS) based modeling approach was used to identify recreational opportunities and potential environmental impacts of all travel routes. This GIS-based approach was based on an expert-derived rule set. The rules addressed particular environmental and recreation concerns in the TNF. Route segments were identified that could be incorporated into minimal-impact networks to support various types of recreation. The combination of potential impacts and user-benefits supported an optimization approach for an appropriate recreational travel network to minimize environmental impacts and user-conflicts in a multi-purpose system.

  14. Recreational system optimization to reduce conflict on public lands.

    PubMed

    Shilling, Fraser; Boggs, Jennifer; Reed, Sarah

    2012-09-01

    In response to federal administrative rule, the Tahoe National Forest (TNF), California, USA engaged in trail-route prioritization for motorized recreation (e.g., off-highway-vehicles) and other recreation types. The prioritization was intended to identify routes that were suitable and ill-suited for maintenance in a transportation system. A recreational user survey was conducted online (n = 813) for user preferences for trail system characteristics, recreational use patterns, and demographics. Motorized trail users and non-motorized users displayed very clear and contrasting preferences for the same system. As has been found by previous investigators, non-motorized users expressed antagonism to motorized use on the same recreational travel system, whereas motorized users either supported multiple-use routes or dismissed non-motorized recreationists' concerns. To help the TNF plan for reduced conflict, a geographic information system (GIS) based modeling approach was used to identify recreational opportunities and potential environmental impacts of all travel routes. This GIS-based approach was based on an expert-derived rule set. The rules addressed particular environmental and recreation concerns in the TNF. Route segments were identified that could be incorporated into minimal-impact networks to support various types of recreation. The combination of potential impacts and user-benefits supported an optimization approach for an appropriate recreational travel network to minimize environmental impacts and user-conflicts in a multi-purpose system. PMID:22773115

  15. Present and future of desertification in Spain: Implementation of a surveillance system to prevent land degradation.

    PubMed

    Martínez-Valderrama, Jaime; Ibáñez, Javier; Del Barrio, Gabriel; Sanjuán, Maria E; Alcalá, Francisco J; Martínez-Vicente, Silvio; Ruiz, Alberto; Puigdefábregas, Juan

    2016-09-01

    Mitigation strategies are crucial for desertification given that once degradation starts, other solutions are extremely expensive or unworkable. Prevention is key to handle this problem and solutions should be based on spotting and deactivating the stressors of the system. Following this topic, the Spanish Plan of Action to Combat Desertification (SPACD) created the basis for implementing two innovative approaches to evaluate the threat of land degradation in the country. This paper presents tools for preventing desertification in the form of a geomatic approach to enable the periodic assessments of the status and trends of land condition. Also System Dynamics modelling has been used to integrate bio-physical and socio-economic aspects of desertification to explain and analyse degradation in the main hot spots detected in Spain. The 2dRUE procedure was implemented to map the land-condition status by comparing potential land productivity according to water availability, the limiting factor in arid lands, with plant-biomass data. This assessment showed that 20% of the territory is degraded and an additional 1% is actively degrading. System Dynamics modelling was applied to study the five desertification landscapes identified by the SPACD. The risk analysis, implemented on these models, concluded that 'Herbaceous crops affected by soil erosion' is the landscape most at risk, while the Plackett-Burman sensitivity analysis used to rank the factors highlighted the supremacy of climatic factors above socioeconomic drivers.

  16. Present and future of desertification in Spain: Implementation of a surveillance system to prevent land degradation.

    PubMed

    Martínez-Valderrama, Jaime; Ibáñez, Javier; Del Barrio, Gabriel; Sanjuán, Maria E; Alcalá, Francisco J; Martínez-Vicente, Silvio; Ruiz, Alberto; Puigdefábregas, Juan

    2016-09-01

    Mitigation strategies are crucial for desertification given that once degradation starts, other solutions are extremely expensive or unworkable. Prevention is key to handle this problem and solutions should be based on spotting and deactivating the stressors of the system. Following this topic, the Spanish Plan of Action to Combat Desertification (SPACD) created the basis for implementing two innovative approaches to evaluate the threat of land degradation in the country. This paper presents tools for preventing desertification in the form of a geomatic approach to enable the periodic assessments of the status and trends of land condition. Also System Dynamics modelling has been used to integrate bio-physical and socio-economic aspects of desertification to explain and analyse degradation in the main hot spots detected in Spain. The 2dRUE procedure was implemented to map the land-condition status by comparing potential land productivity according to water availability, the limiting factor in arid lands, with plant-biomass data. This assessment showed that 20% of the territory is degraded and an additional 1% is actively degrading. System Dynamics modelling was applied to study the five desertification landscapes identified by the SPACD. The risk analysis, implemented on these models, concluded that 'Herbaceous crops affected by soil erosion' is the landscape most at risk, while the Plackett-Burman sensitivity analysis used to rank the factors highlighted the supremacy of climatic factors above socioeconomic drivers. PMID:27135580

  17. Preliminary Assessment of Mars Exploration Rover Landing Site Predictions

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Grant, J.; Parker, T.; Crisp, J.; Squyres, S.; Carr, M.; Haldemann, A.; Arvidson, R.; Ehlmann, B.; Bell, J.

    2004-01-01

    Selection of the Mars Exploration Rover (MER) landing sites took place over a three year period in which engineering constraints were identified, 155 possible sites were downselected to the final two, surface environments and safety considerations were developed, and the potential science return at the sites was considered. Landing sites in Gusev crater and Meridiani Planum were selected because they appeared acceptably safe for MER landing and roving and had strong morphologic and mineralogical indicators of liquid water in their past and thus appeared capable of addressing the science objectives of the MER missions, which are to determine the aqueous, climatic, and geologic history of sites on Mars where conditions may have been favorable to the preservation of evidence of possible pre-biotic or biotic processes. Engineering constraints important to the selection included: latitude (10 N-15 S) for maximum solar power; elevation (<-1.3 km) for sufficient atmosphere to slow the lander; low horizontal winds, shear and turbulence in the last few kilometers to minimize horizontal velocity; low 10-m scale slopes to reduce airbag spinup and bounce; moderate rock abundance to reduce abrasion or stroke-out of the airbags; and a radar-reflective, load-bearing and trafficable surface safe for landing and roving that is not dominated by fine-grained dust. In selecting the MER landing sites these engineering constraints were addressed via comprehensive evaluation of surface and atmospheric characteristics from existing remote sensing data and models as well as targeted orbital information acquired from Mars Global Surveyor and Mars Odyssey. This evaluation resulted in a number of predictions of the surface characteristics of the sites, which are tested in this abstract. Relating remote sensing signatures to surface characteristics at landing sites allows these sites to be used as ground truth for the orbital data, is essential for selecting and validating landing sites for

  18. Implementation of Pin Point Landing Vision Components in an FPGA System

    NASA Technical Reports Server (NTRS)

    Morfopolous, Arin; Metz, Brandon; Villalpando, Carlos; Matthies, Larry; Serrano, Navid

    2011-01-01

    Pin-point landing is required to enable missions to land close, typically within 10 meters, to scientifically important targets in generally hazardous terrain. In Pin Point Landing both high accuracy and high speed estimation of position and orientation is needed to provide input to the control system to safely choose and navigate to a safe landing site. A proposed algorithm called VISion aided Inertial NAVigation (VISINAV) has shown that the accuracy requirements can be met. [2][3] VISINAV was shown in software only, and was expected to use FPGA enhancements in the future to improve the computational speed needed for pin point landing during Entry Descent and Landing (EDL). Homography, feature detection and spatial correlation are computationally intensive parts of VISINAV. Homography aligns the map image with the descent image so that small correlation windows can be used, and feature detection provides regions that spatial correlation can track from frame to frame in order to estimate vehicle motion. On MER the image Homography, Feature Detection and Correlation would take approximately 650ms tracking 75 features between frames. We implemented Homography, Feature detection and Correlation on a Virtex 4 LX160 FPGA to run in under 25ms while tracking 500 features to improve algorithm reliability and throughput.

  19. Microwave scanning beam landing system compatibility and performance: Engineering analyses 75-1 and 75-2. [space shuttle orbiter landing

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The microwave scanning beam landing system (MSBLS) is the primary position sensor of the Orbiter's navigation subsystem during the autoland phase of the flight. Portions of the system are discussed with special emphasis placed on potential problem areas as referenced to the Orbiter's mission. Topics discussed include system compatability, system accuracy, and expected RF signal levels. A block and flow diagram of MSBLS system operation is included with a list of special tests required to determine system performance.

  20. The development and application of a decision support system for land management in the Lake Tahoe Basin—The Land Use Simulation Model

    USGS Publications Warehouse

    Forney, William M.; Oldham, I. Benson; Crescenti, Neil

    2013-01-01

    This report describes and applies the Land Use Simulation Model (LUSM), the final modeling product for the long-term decision support project funded by the Southern Nevada Public Land Management Act and developed by the U.S. Geological Survey’s Western Geographic Science Center for the Lake Tahoe Basin. Within the context of the natural-resource management and anthropogenic issues of the basin and in an effort to advance land-use and land-cover change science, this report addresses the problem of developing the LUSM as a decision support system. It includes consideration of land-use modeling theory, fire modeling and disturbance in the wildland-urban interface, historical land-use change and its relation to active land management, hydrologic modeling and the impact of urbanization as related to the Lahontan Regional Water Quality Control Board’s recently developed Total Maximum Daily Load report for the basin, and biodiversity in urbanizing areas. The LUSM strives to inform land-management decisions in a complex regulatory environment by simulating parcel-based, land-use transitions with a stochastic, spatially constrained, agent-based model. The tool is intended to be useful for multiple purposes, including the multiagency Pathway 2007 regional planning effort, the Tahoe Regional Planning Agency (TRPA) Regional Plan Update, and complementary research endeavors and natural-resource-management efforts. The LUSM is an Internet-based, scenario-generation decision support tool for allocating retired and developed parcels over the next 20 years. Because USGS staff worked closely with TRPA staff and their “Code of Ordinances” and analyzed datasets of historical management and land-use practices, this report accomplishes the task of providing reasonable default values for a baseline scenario that can be used in the LUSM. One result from the baseline scenario for the model suggests that all vacant parcels could be allocated within 12 years. Results also include

  1. A fuzzy intelligent system for land consolidation - a case study in Shunde, China

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, A.; Hu, Y.; Li, C.; Wang, L.

    2015-04-01

    Traditionally, potential evaluation methods for farmland consolidation have depended mainly on the experts' experiences, statistical computations or subjective adjustments. Some biases usually exist in the results. Thus, computer-aided technology has become essential. In this study, an intelligent evaluation system based on a fuzzy decision tree was established, and this system can deal with numerical data, discrete data and symbolic data. When the original land data are input, the level of potential of the agricultural land for development will be output by this new model. The provision of objective proof for decision making by authorities in rural management is helpful. Agricultural land data characteristically comprise large volumes, complex varieties and more indexes. In land consolidation, it is very important to construct an effective index system. We needed to select a group of indexes useful for land consolidation according to the concrete demand. In this paper, a fuzzy measure, which can describe the importance of a single feature or a group of features, is adopted to accomplish the selection of specific features. A fuzzy integral that is based on a fuzzy measure is a type of fusion tool. We obtained the optimal solution for a fuzzy measure by solving a fuzzy integral. The fuzzy integrals can be transformed to a set of linear equations. We applied the L1-norm regularization method to solve the linear equations, and we found a solution with the fewest nonzero elements for the fuzzy measure; this solution shows the contribution of corresponding features or the combinations of decisions. This algorithm provides a quick and optimal way to identify the land index system when preparing to conduct the research, such as we describe herein, on land consolidation. Shunde's "Three Old" consolidation project provides the data for this work. Our estimation system was compared with a conventional evaluation system that is still accepted by the public. Our results prove

  2. The role of GMES / Sentinels in Land-Surface Earth System Science

    NASA Astrophysics Data System (ADS)

    Moreno, J.

    2009-04-01

    A general trend in the current status of representation of Land Surface schemes into Earth System models is driven by the parameterisation of "cycles" instead of individual processes. Particular emphasis is made to account for couplings among the individual cycles, as between the carbon and water cycles. Moreover, the current tendency is to use the measured data -time series in most cases- together with models, in a data assimilation scenario where inputs from multiple sources are integrated. Such approach is more and more necessary as land models tend to be more complex, and particularly due to the fact that land surface variability is not just driven by physical and chemical processes, but intricate biological processes also altered by anthropogenic influences. Human influences in the land system (land use changes, urban development, etc.) and the impacts of natural disasters are becoming also part of land models, but critical data in high spatial and temporal resolutions are needed to properly model such processes. Until now, problems with data availability, data inconsistency and lack of adequate temporal sampling have limited the potential usefulness of such observations in modelling land surface processes. The availability of the GMES / Sentinel series of satellites represents a quite unique opportunity for consolidation of current tendencies and development of new science based on the new type of data that soon will become available. The usefulness of the different Sentinel missions for Land science has been recognised. Although the Sentinel satellite series were primarily designed to provide observations for operational services and routine applications, there is a growing interest in the scientific community towards the usage of Sentinel data for more advanced and innovative science. Moreover, the availability of consistent time series covering a period of over 20 years opens possibilities never explored before, such as systematic data assimilation

  3. Integrated Multimedia Modeling System Response to Regional Land Management Change

    EPA Science Inventory

    A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of research and development. It is ...

  4. Heave-pitch-roll analysis and testing of air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Boghani, A. B.; Captain, K. M.; Wormley, D. N.

    1978-01-01

    The analytical tools (analysis and computer simulation) needed to explain and predict the dynamic operation of air cushion landing systems (ACLS) is described. The following tasks were performed: the development of improved analytical models for the fan and the trunk; formulation of a heave pitch roll analysis for the complete ACLS; development of a general purpose computer simulation to evaluate landing and taxi performance of an ACLS equipped aircraft; and the verification and refinement of the analysis by comparison with test data obtained through lab testing of a prototype cushion. Demonstration of simulation capabilities through typical landing and taxi simulation of an ACLS aircraft are given. Initial results show that fan dynamics have a major effect on system performance. Comparison with lab test data (zero forward speed) indicates that the analysis can predict most of the key static and dynamic parameters (pressure, deflection, acceleration, etc.) within a margin of a 10 to 25 percent.

  5. CV-990 Landing Systems Research Aircraft (LSRA) during final Space Shuttle tire test

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Convair 990 (CV-990) was used as a Landing Systems Research Aircraft (LSRA) at NASA's Dryden Flight Research Center, Edwards, California, to test space shuttle landing gear and braking systems as part of NASA's effort to upgrade and improve space shuttle capabilities. The first flight at Dryden of the CV-990 with shuttle test components occurred in April 1993, and tests continued into August 1995, when this photo shows a test of the shuttle tires. The purpose of this series of tests was to determine the performance parameters and failure limits of the tires. This particular landing was on the dry lakebed at Edwards, but other tests occurred on the main runway there. The CV-990, built in 1962 by the Convair Division of General Dynamics Corp., Ft. Worth, Texas, served as a research aircraft at Ames Research Center, Moffett Field, California, before it came to Dryden.

  6. 77 FR 8895 - Public Land Order No. 7788; Withdrawal of National Forest System Land for the Red Cloud...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Red Cloud Campground; New Mexico AGENCY: Bureau of Land Management, Interior. ACTION: Public Land... historical interpretive integrity of the Red Cloud Campground within the Cibola National Forest, and to... to develop the Red Cloud Campground facility and the unique recreational and historical...

  7. Sensor Integration in a Low Cost Land Mobile Mapping System

    PubMed Central

    Madeira, Sergio; Gonçalves, José A.; Bastos, Luísa

    2012-01-01

    Mobile mapping is a multidisciplinary technique which requires several dedicated equipment, calibration procedures that must be as rigorous as possible, time synchronization of all acquired data and software for data processing and extraction of additional information. To decrease the cost and complexity of Mobile Mapping Systems (MMS), the use of less expensive sensors and the simplification of procedures for calibration and data acquisition are mandatory features. This article refers to the use of MMS technology, focusing on the main aspects that need to be addressed to guarantee proper data acquisition and describing the way those aspects were handled in a terrestrial MMS developed at the University of Porto. In this case the main aim was to implement a low cost system while maintaining good quality standards of the acquired georeferenced information. The results discussed here show that this goal has been achieved. PMID:22736985

  8. Trajectories of Future Land Use for Earth System Modeling of the Northeast United States

    NASA Astrophysics Data System (ADS)

    Rosenzweig, B.; Vorosmarty, C. J.; Lu, X.; Kicklighter, D. W.

    2015-12-01

    The U.S. Northeast includes some of the nation's most populated cities and their supporting hinterlands, with an urban corridor spanning from Maine to Virginia. The megaregion's centuries-long history of landscape transformations has had enduring impact on the region's hydrology, ecosystems and socioeconomy. Driven by policy decisions made in the next decade, future landscape changes will also interplay with climate change, with multi-decadal effects that are currently poorly understood. While existing national and global land cover trajectories will play an important role in understanding these future impacts, they do not allow for investigation of many issues of interest to regional stakeholders, such as local zoning and suburban sprawl, the development of a regional food system, or varying rates of natural lands protection. Existing land cover trajectories also do not usually provide the detail needed as input drivers for earth system models, such as disaggregated vegetation types or harmonized time series of infrastructure management. We discuss the development of a simple land use/land cover allocation scheme to develop such needed trajectories, their implementation for 4 regional socioeconomic pathways developed collaboratively with regional stakeholders, and their preliminary use in regional ecosystem modeling.

  9. Assessing land-use history for reporting on cropland dynamics - A case study using the Land-Parcel Identification System in Ireland

    NASA Astrophysics Data System (ADS)

    Zimmermann, Jesko; González, Ainhoa; Jones, Michael; O'Brien, Phillip; Stout, Jane C.; Green, Stuart

    2016-04-01

    In developed countries, cropland and grassland conversions and management can be a major factor in Land Use and Land Use Change (LULUC) related Greenhouse Gas (GHG) dynamics. Depending on land use, management and factors such as soil properties land can either act as source or sink for GHGs. Currently many countries depend on national statistics combined with socio-economic modelling to assess current land use as well as inter-annual changes. This potentially introduces a bias as it neither provides information on direct land- use change trajectories nor spatially explicit information to assess the environmental context. In order to improve reporting countries are shifting towards high resolution spatial datasets. In this case study, we used the Land Parcel Identification System (LPIS), a pan-European geographical database developed to assist farmers and authorities with agricultural subsidies, to analyse cropland dynamics in Ireland. The database offer high spatial resolution and is updated annually. Generally Ireland is considered grassland dominated with 90 % of its agricultural area under permanent grassland, and only a small area dedicated to cropland. However an in-depth analysis of the LPIS for the years 2000 to 2012 showed strong underlying dynamics. While the annual area reported as cropland remained relatively constant at 3752.3 ± 542.3 km2, the area of permanent cropland was only 1251.9 km2. Reversely, the area that was reported as cropland for at least one year during the timeframe was 7373.4 km2, revealing a significantly higher area with cropland history than annual statistics would suggest. Furthermore, the analysis showed that one quarter of the land converting from or to cropland will return to the previous land use within a year. To demonstrate potential policy impact, we assessed cropland/grassland dynamics from the 2008 to 2012 commitment period using (a) annual statistics, and (b) data including land use history derived from LPIS. Under

  10. Satellite Power System (SPS) resource requirements (critical materials, energy and land)

    NASA Technical Reports Server (NTRS)

    Kotin, A. D.

    1978-01-01

    The resource impacts of the proposed satellite power system are evaluated. Three classes of resource impacts are considered separately: critical materials, energy, and land use. The analysis focuses on the requirements associated with the annual development of two five-gigawatt satellites and the associated receiving facilities.

  11. Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas

    NASA Technical Reports Server (NTRS)

    Matolak, David W.

    2007-01-01

    In this project final report, entitled "Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas," we provide a detailed description and model representation for the wireless channel in the airport surface environment in this band. In this executive summary, we review report contents, describe the achieved objectives and major findings, and highlight significant conclusions and recommendations.

  12. 78 FR 34034 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The National Advisory Committee for Implementation of the National Forest System Land Management Planning Rule will meet... Management Planning Directives. The meeting is also open to the public. DATES: The meeting will be held,...

  13. Leveraging microwave polarization information for calibration of a land data assimilation system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This letter contributes a new approach to calibrating a tau-omega radiative transfer model coupled to a land surface model with low frequency (< 10 GHz) microwave brightness temperature (TB) observations. The problem of calibrating this system is generally poorlyposed because various parameter combi...

  14. 23 CFR 972.210 - Federal lands bridge management system (BMS).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... CFR 650, subpart C, National Bridge Inspection Standards (NBIS). (b) The BMS shall be designed to fit... include: (i) The inventory data required by the NBIS (23 CFR 650, subpart C); (ii) Data characterizing the... 23 Highways 1 2014-04-01 2014-04-01 false Federal lands bridge management system (BMS)....

  15. 23 CFR 972.210 - Federal lands bridge management system (BMS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CFR 650, subpart C, National Bridge Inspection Standards (NBIS). (b) The BMS shall be designed to fit... include: (i) The inventory data required by the NBIS (23 CFR 650, subpart C); (ii) Data characterizing the... 23 Highways 1 2013-04-01 2013-04-01 false Federal lands bridge management system (BMS)....

  16. 23 CFR 972.210 - Federal lands bridge management system (BMS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CFR 650, subpart C, National Bridge Inspection Standards (NBIS). (b) The BMS shall be designed to fit... include: (i) The inventory data required by the NBIS (23 CFR 650, subpart C); (ii) Data characterizing the... 23 Highways 1 2011-04-01 2011-04-01 false Federal lands bridge management system (BMS)....

  17. 23 CFR 972.210 - Federal lands bridge management system (BMS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CFR 650, subpart C, National Bridge Inspection Standards (NBIS). (b) The BMS shall be designed to fit.../replacement and estimated costs, prediction of the estimated remaining life of the bridge, development of a... 23 Highways 1 2010-04-01 2010-04-01 false Federal lands bridge management system (BMS)....

  18. Assimilation of gridded GRACE terrestrial water storage estimates in the North American Land Data Assimilation System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the North American Land Data Assimilation System (NLDAS) is to provide best-available estimates of near surface meteorological conditions and soil hydrological status for the Continental United States. The first two phases of NLDAS, however, have not included the assimilation of rem...

  19. Using System Dynamics Analysis for Evaluating Neighborhood Economic Outcomes from Transportation and Land Use Decisions

    EPA Science Inventory

    Proposed Title: Using System Dynamics Analysis for Evaluating Neighborhood Economic Outcomes from Transportation and Land Use Decisions Topic (must choose one item from a drop-down list): Community Indicators Learning Objectives (must list 2): • What are the benefits and l...

  20. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... shutoff for the warning device prescribed in this paragraph, the warning system must be designed so that.... There may not be a manual shutoff for this warning device. The flap position sensing unit may be... burst, or rocks, water, and slush that may enter the landing gear bay....

  1. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... shutoff for the warning device prescribed in this paragraph, the warning system must be designed so that.... There may not be a manual shutoff for this warning device. The flap position sensing unit may be... burst, or rocks, water, and slush that may enter the landing gear bay....

  2. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... shutoff for the warning device prescribed in this paragraph, the warning system must be designed so that.... There may not be a manual shutoff for this warning device. The flap position sensing unit may be... burst, or rocks, water, and slush that may enter the landing gear bay....

  3. Human performance evaluation of enhanced vision systems for approach and landing

    NASA Astrophysics Data System (ADS)

    Yang, Lee C.; Hansman, R. John, Jr.

    1994-07-01

    A study was conducted to compare three types of enhanced vision systems (EVS) from the human pilot's perspective. The EVS images were generated on a silicon graphics workstation to represent: an active radar-mapping imaging system, an idealized forward-looking infrared (FLIR) sensor system, and a synthetic wireframe airport database system. The study involved six commercial airline pilots. The task was to make manual landings using a simulated head- up display superimposed on the EVS images. In addition to the image type, the sensor range was varied to examine the effect of atmospheric attenuation on landing performance. A third factor looked at the effect of runway touchdown and centerline markings. The low azimuthal resolution of the radar images (0.3 degree(s)) appeared to have affected the lateral precision of the landings. Subjectively, the pilots were split between the idealized FLIR and wireframe images while the radar image was judged to be significantly inferior. Runway markings provided better lateral accuracy in landing and better vertical accuracy during the approach. Runway markings were unanimously preferred by the six pilots.

  4. Application of an autonomous landing guidance system for civil and military aircraft

    NASA Astrophysics Data System (ADS)

    Franklin, Michael R.

    1995-06-01

    The ever increasing demand in the airline industry to reduce the costs associated with weather- related flight delays and cancellations has resulted in the need to be able to land an aircraft in low visibility. This has influenced research in recent years in the development of enhanced vision systems which allow all-weather operations, by providing both visual cues to the pilot and an independent integrity monitor. This research has focused on providing aircraft users with both enhanced performance and a cost effective landing solution with less dependence on ground systems, and has interested both the military and civil aircraft operator communities. The Autonomous Landing Guidance (ALG) system provides the capability to land in low visibility by displaying to the pilot an image of the real world without the need for an onboard Category II or III (CAT II/III) autoload system and without the associated ground facilities normally required. Besides the inherent advantage of saving the cost of expensive installations at airports, ALG also has the effect of inevitably solving the airport capacity problem, weather-related delays and diversions, and airport closures. Low visibility conditions typically cause the complete shutdown of smaller regional airports and reduces the availability of runways at major hubs, which creates a capacity problem to airlines.

  5. Renewable Energy Assessment of Bureau of Reclamation Land and Facilities Using Geographic Information Systems

    SciTech Connect

    Heimiller, D.; Haase, S.; Melius, J.

    2013-05-01

    This report summarizes results of geographic information system screening for solar and wind potential at select Bureau of Reclamation lands in the western United States. The study included both utility-scale and facility-scale potential. This study supplements information in the report titled Renewable Energy Assessment for the Bureau of Reclamation: Final Report.

  6. Technical Bulletin, Evaluation of Land Application Systems: Evaluation Checklist and Supporting Commentary.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document contains a checklist and background information for the evaluation for land application systems of wastewater. It is divided into three major sections dealing with facilities plans, design plans and specifications, and operation and maintenance manuals. The focus of section one is the thorough evaluation of alternatives and the…

  7. The effect of control and display lag on unmanned air system internal pilot manual landing performance

    NASA Astrophysics Data System (ADS)

    Lloyd, Marshall Everett

    An important characteristic of UASs is lag because it can become a considerable challenge to successful human-in-the-loop control. As such, UASs are designed and configured to minimize system lag, though this can increase acquisition and operation costs considerably. In an effort to cut costs, an organization may choose to accept greater risk and deploy a UAS with high system lag. Before this risk can be responsibly accepted, it must be quantified. While many studies have examined system lag, very few have been able to quantify the risk that various levels of lag pose to an internally piloted, manually landed UAS. This study attempted to do so by evaluating pilot landing performance in a simulator with 0 ms, 240 ms, and 1000 ms of additional lag. Various measures were used, including a novel coding technique. Results indicated that 1000 ms of lag was unsafe by all measures. They also indicate that 240 ms of lag degrades performance, but participants were able to successfully land the simulated aircraft. This study showed the utility of using several measures to evaluate the effect of lag on landing performance and it helped demonstrate that while 1000 ms poses a high risk, 240 ms of lag may be a much more manageable risk. Future research suggested by this research includes: investigating lag between 240 ms and 1000 ms, introducing different weather phenomena, developing system lag training techniques for operators, and investigating the effect of aides such as predictive displays and autopilot-assisted recovery.

  8. Evaluation of VICAR software capability for land information support system needs. [Elk River quadrangle, Idaho

    NASA Technical Reports Server (NTRS)

    Yao, S. S. (Principal Investigator)

    1981-01-01

    A preliminary evaluation of the processing capability of the VICAR software for land information support system needs is presented. The geometric and radiometric properties of four sets of LANDSAT data taken over the Elk River, Idaho quadrangle were compared. Storage of data sets, the means of location, pixel resolution, and radiometric and geometric characteristics are described. Recommended modifications of VICAR programs are presented.

  9. LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application

    NASA Astrophysics Data System (ADS)

    Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin

    2014-11-01

    The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product

  10. The Utility of the Real-Time NASA Land Information System Data for Drought Monitoring Applications

    NASA Technical Reports Server (NTRS)

    White, Kristopher D.; Case, Jonathan L.

    2013-01-01

    Measurements of soil moisture are a crucial component for the proper monitoring of drought conditions. The large spatial variability of soil moisture complicates the problem. Unfortunately, in situ soil moisture observing networks typically consist of sparse point observations, and conventional numerical model analyses of soil moisture used to diagnose drought are of coarse spatial resolution. Decision support systems such as the U.S. Drought Monitor contain drought impact resolution on sub-county scales, which may not be supported by the existing soil moisture networks or analyses. The NASA Land Information System, which is run with 3 km grid spacing over the eastern United States, has demonstrated utility for monitoring soil moisture. Some of the more useful output fields from the Land Information System are volumetric soil moisture in the 0-10 cm and 40-100 cm layers, column-integrated relative soil moisture, and the real-time green vegetation fraction derived from MODIS (Moderate Resolution Imaging Spectroradiometer) swath data that are run within the Land Information System in place of the monthly climatological vegetation fraction. While these and other variables have primarily been used in local weather models and other operational forecasting applications at National Weather Service offices, the use of the Land Information System for drought monitoring has demonstrated utility for feedback to the Drought Monitor. Output from the Land Information System is currently being used at NWS Huntsville to assess soil moisture, and to provide input to the Drought Monitor. Since feedback to the Drought Monitor takes place on a weekly basis, weekly difference plots of column-integrated relative soil moisture are being produced by the NASA Short-term Prediction Research and Transition Center and analyzed to facilitate the process. In addition to the Drought Monitor, these data are used to assess drought conditions for monthly feedback to the Alabama Drought Monitoring

  11. Improved aircraft dynamic response and fatigue life during ground operations using an active control landing gear system

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.; Carden, H. D.; Edson, R.

    1978-01-01

    A three-degree-of-freedom aircraft landing analysis incorporating a series-hydraulic active control main landing gear has been developed and verified using preliminary experimental data from drop tests of a modified main landing gear from a 2722 kg (6000 lbm) class of airplane. The verified analysis was also employed to predict the landing dynamics of a supersonic research airplane with an active control main landing gear system. The results of this investigation have shown that this type of active gear is feasible and indicate a potential for improving airplane dynamic response and reducing structural fatigue damage during ground operations by approximately 90% relative to that incurred with the passive gear.

  12. Propagation measurements for an Australian land mobile satellite system

    NASA Technical Reports Server (NTRS)

    Bundrock, Anthony J.; Harvey, Robert

    1988-01-01

    Measurements of attenuation statistics using a helicopter and an instrumented van are discussed. Results are given for two different tree densities, for elevation angles of 30, 45 and 60 degrees and for frequencies of 893, 1550 and 2660 MHz. These results show that at 1550 MHz and 45 degrees elevation angle, attenuation values of 5.0 and 8.6 dB were exceeded 10 percent of the time for roadside tree densities of 35 percent and 85 percent respectively. Comparisons with other results made in the Northern Hemisphere are made and show general agreement. The implication of the measured values on system design are discussed, and it is shown that, for Australia, an adaptive margin allocation scheme would require an average margin of approximately 5 dB.

  13. Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System

    NASA Technical Reports Server (NTRS)

    James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.

    2011-01-01

    During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.

  14. Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego F.; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.

    2011-01-01

    The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of robotic and manned vehicles with a high degree of precision. Currently, NASA is developing novel lidar sensors aimed at needs of future planetary landing missions. These lidar sensors are a 3-Dimensional Imaging Flash Lidar, a Doppler Lidar, and a Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain that indicate hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase of a landing vehicle, at about 1 km above the ground, can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground relative velocity and distance data allowing for precision navigation to the landing site. Our Doppler lidar utilizes three laser beams pointed to different directions to measure line of sight velocities and ranges to the ground from altitudes of over 2 km. Throughout the landing trajectory starting at altitudes of about 20 km, the Laser Altimeter can provide very accurate ground relative altitude measurements that are used to improve the vehicle position knowledge obtained from the vehicle navigation system. At altitudes from approximately 15 km to 10 km, either the Laser Altimeter or the Flash Lidar can be used to generate contour maps of the terrain, identifying known surface features such as craters, to perform Terrain relative Navigation thus further reducing the vehicle s relative position error. This paper describes the operational capabilities of each lidar sensor and provides a status of their development. Keywords: Laser Remote Sensing, Laser Radar, Doppler Lidar, Flash Lidar, 3-D Imaging, Laser Altimeter, Precession Landing, Hazard Detection

  15. Improving land vehicle situational awareness using a distributed aperture system

    NASA Astrophysics Data System (ADS)

    Fortin, Jean; Bias, Jason; Wells, Ashley; Riddle, Larry; van der Wal, Gooitzen; Piacentino, Mike; Mandelbaum, Robert

    2005-05-01

    U.S. Army Research, Development, and Engineering Command (RDECOM) Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (NVESD) has performed early work to develop a Distributed Aperture System (DAS). The DAS aims at improving the situational awareness of armored fighting vehicle crews under closed-hatch conditions. The concept is based on a plurality of sensors configured to create a day and night dome of surveillance coupled with heads up displays slaved to the operator's head to give a "glass turret" feel. State-of-the-art image processing is used to produce multiple seamless hemispherical views simultaneously available to the vehicle commander, crew members and dismounting infantry. On-the-move automatic cueing of multiple moving/pop-up low silhouette threats is also done with the possibility to save/revisit/share past events. As a first step in this development program, a contract was awarded to United Defense to further develop the Eagle VisionTM system. The second-generation prototype features two camera heads, each comprising four high-resolution (2048x1536) color sensors, and each covering a field of view of 270°hx150°v. High-bandwidth digital links interface the camera heads with a field programmable gate array (FPGA) based custom processor developed by Sarnoff Corporation. The processor computes the hemispherical stitch and warp functions required for real-time, low latency, immersive viewing (360°hx120°v, 30° down) and generates up to six simultaneous extended graphics array (XGA) video outputs for independent display either on a helmet-mounted display (with associated head tracking device) or a flat panel display (and joystick). The prototype is currently in its last stage of development and will be integrated on a vehicle for user evaluation and testing. Near-term improvements include the replacement of the color camera heads with a pixel-level fused combination of

  16. Management of land use land cover through the application of remote sensing, geographic information systems and simulation

    NASA Astrophysics Data System (ADS)

    Jha, Praveen

    Deforestation and degradation of forest areas, including those in the Protected Areas (PAs), are major concerns in India. There were 2 broad objectives of the study: the technological objective pertained to the development of state-of-art programs that could serve as Decision Support Systems while finalizing plans and policy interventions, while the other objective aimed at generating geo-spatial data in 2 PAs. A part of the Eastern Himalaya biodiversity hotspot, Manas Tiger Reserve (MTR), Assam, India having an area of 2837.12 sq km and an important part of Rajaji-Corbett Tiger Conservation Unit, Rajaji National Park (RNP), Uttarakhand, India, having an area of 820.42 sq km, were taken for the assessment of land use and land cover (LULC) change during 1990--2004. Simulation was undertaken in a smaller area of 1.2 km * 1.2 km right on the fringe of RNP. Three advanced geo-spatial programs---Multi-Algorithm Automation Program (MAAP), Data Automatic Modification Program (DAMP) and Multi-Stage Simulation Program (MUSSIP)---developed by the author were used extensively. Based on the satellite data, MAAP was used for the rapid assessments of LULC of 2004 and 1990; DAMP was used for the spectral modification of the satellite data of the adjacent scenes of 2004 and of 1990; and MUSSIP was used to simulate LULC maps for the future periods (till 2018). These programs produced very high accuracy levels: 91.12% in 2004 and 89.67% in 1990 were obtained for MTR; and 94.87% in 2004 and 94.10% in 1990 were obtained for RNP; 93.40% pixel-to-pixel accuracy and 0.7904 for kappa were achieved for simulation. The annual rate of loss of forests (0.41% in MTR and 1.20% in RNP) and loss of water (1.79% in MTR and 1.69% in RNP) during 1990-2004 is a matter of serious concern. The scenario analysis in the study area for simulation revealed that the deforestation rate of 1.27% per year during 2004--2018 would increase to 2.04% if the human population growth rate is enhanced by 10%. Hence

  17. Seismic characterization of the Wasatch fault system beneath Salt Lake City using a land streamer system

    NASA Astrophysics Data System (ADS)

    Brophy, B.; Liberty, L. M.; Gribler, G.

    2015-12-01

    We characterize the active Wasatch fault system beneath downtown Salt Lake City by measuring p- and s-wave velocities and seismic reflection profiling. Our focus was on the segment boundary between the Warm Springs and East Bench faults. We collected 14.5 km along 9 west-east profiles in 3 field days using a 60 m aperture seismic land streamer and 200 kg weight drop system. From a p-wave refraction analysis, we measure velocities from 230-3900 m/s for the upper 20-25 meters. Shear wave velocities for the upper 30 m, derived from a multi-channel analysis of surface waves (MASW) approach, show velocities that range from 100-1800 m/s. P-wave reflection images from the upper 100 m depth indicate offset and truncated (mostly) west-dipping strata (Bonneville Lake deposits?) that suggest active faults extend beneath the downtown urban corridor. We identify saturated sediments on the lower elevation (western) portions of the profiles and shallow high velocity (dry) strata to the east of the mapped faults. We observe slow p-wave velocities near identified faults that may represent the fault's colluvial wedge. These velocity results are best highlighted with Vp/Vs ratios. Analyzing shear wave velocities by NEHRP class, we estimate soft soil (NEHRP D) limited less than 1 m depth along most profiles, and stiff soil (NEHRP C) to up to 25 m depth in some locations. However near steep topographic slopes (footwall deposits), we identify NEHRP Class D stiff soil velocities to less than 2 m depth before transition to NEHRP Class C soft rock. Depth to hard rock (velocities >760 m/s) are as shallow as 20 m below the land surface on some steep slopes beneath north Salt Lake City and greater than our imaging depths along the western portions of our profiles. Our findings suggest large variations in seismic velocities beneath the Salt Lake City corridor and that multiple fault strands related to the Warm Springs fault segment extend beneath downtown.

  18. The international geosphere biosphere programme data and information system global land cover data set (DIScover)

    USGS Publications Warehouse

    Loveland, T.R.; Belward, A.S.

    1997-01-01

    The International Geosphere Biosphere Programme Data and Information System (IGBP-DIS), through the mapping expertise of the U.S. Geological Survey and the European Commission's Joint Research Centre, recently guided the completion of a 1-km resolution global land cover data set from advanced very high resolution radiometer (AVHRR) data. The 1-km resolution land cover product, 'DISCover,' was based on monthly normalized difference vegetation index composites from 1992 and 1993. The development of DISCover was coordinated by the IGBP-DIS Land Cover Working Group as part of the IGBP-DIS Focus 1 activity. DISCover is a 17-class land cover data set based on the scientific requirements of IGBP elements. The mapping used unsupervised classification and postclassification refinement using ancillary data. The development of this data set was motivated by the need for global land cover data with higher spatial resolution, improved temporal specificity, and known classification accuracy. The completed DISCover data set will soon be validated to determine the accuracy of the global classification.

  19. A land data assimilation system for simultaneous simulation of soil moisture and vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Sawada, Yohei; Koike, Toshio; Walker, Jeffrey P.

    2015-06-01

    Despite the importance of the coupling between vegetation dynamics and root-zone soil moisture in land-atmosphere interactions, there is no land data assimilation system (LDAS) that currently addresses this issue, limiting the capacity to positively impact weather and seasonal forecasting. We develop a new LDAS that can improve the skill of an ecohydrological model to simulate simultaneously surface soil moisture, root-zone soil moisture, and vegetation dynamics by assimilating passive microwave observations that are sensitive to both surface soil moisture and terrestrial biomass. This LDAS first calibrates both hydrological and ecological parameters of a land surface model, which explicitly simulates vegetation growth and senescence. Then, it adjusts the model states of soil moisture and leaf area index (LAI) sequentially using a genetic particle filter. We can adjust the subsurface soil moisture, which is not observed directly by satellites, because we simulate the interactions between vegetation dynamics and subsurface water dynamics. From a point-scale evaluation, we succeed in improving the performance of our land surface model and generate ensembles of the model state whose distribution reflects the combined information in the land surface model and satellite observations. We show that the adjustment of the subsurface soil moisture significantly improves the capacity to simulate vegetation dynamics in seasonal forecast timescales. This LDAS can contribute to the generation of ensemble initial conditions of surface and subsurface soil moisture and LAI for a probabilistic framework of weather and seasonal forecasting.

  20. The Significance of Land-Atmosphere Processes in the Earth System

    NASA Astrophysics Data System (ADS)

    Suni, T.; Kulmala, M. T.; Guenther, A. B.

    2012-12-01

    The land-atmosphere interface is where humans primarily operate. Humans modify the land surface in many ways that influence the fluxes of energy and trace gases between land and atmosphere. Their emissions change the chemical composition of the atmosphere and anthropogenic aerosols change the radiative balance of the globe directly by scattering sunlight back to space and indirectly by changing the properties of clouds. Feedback loops among all these processes, land, the atmosphere, and biogeochemical cycles of nutrients and trace gases extend the human influence even further. Over the last decade, the importance of land-atmosphere processes and feedbacks in the Earth System has been shown on many levels and with multiple approaches, and a number of publications have shown the crucial role of the terrestrial ecosystems as regulators of climate [1-6]. Modellers have clearly shown the effect of missing land cover changes and other feedback processes and regional characteristics in current climate models and recommended actions to improve them [7-11]. Unprecedented insights of the long-term net impacts of aerosols on clouds and precipitation have also been provided [12-14]. Land-cover change has been emphasized with model intercomparison projects that showed that realistic land-use representation was essential in land surface modelling [11, 15]. Crucially important tools in this research have been the networks of long-term flux stations and large-scale land-atmosphere observation platforms that are also beginning to combine remote sensing techniques with ground observations [16-20]. Human influence has always been an important part of land-atmosphere science but in order to respond to the new challenges of global sustainability, closer ties with social science and economics groups will be necessary to produce realistic estimates of land use and anthropogenic emissions by analysing future population increase, migration patterns, food production allocation, land

  1. Integration of multiple land surface models into NASA's Carbon Monitoring System

    NASA Astrophysics Data System (ADS)

    Sikka, M.; Fisher, J. B.; Schwalm, C. R.; Liu, J.; Bowman, K. W.; Huntzinger, D. N.

    2013-12-01

    NASA's Carbon Monitoring System Flux (CMS-Flux) integrates NASA remote sensing and modeling capabilities with emphasis on CO2 fluxes between the land (incl. fossil fuel), ocean, and atmosphere. CMS-Flux is distinguished by two foci: cross-component expertise, and exploitation of new global satellite observations of atmospheric CO2 (XCO2) from JAXA's GOSAT and NASA's imminent OCO-2. Critical objectives of CMS-Flux include the spatiotemporal representation of flux uncertainty within the carbon cycle and the assessment of where the integration of remote sensing carbon data across components can reduce that uncertainty. One of the largest uncertainties in the global carbon cycle is from the terrestrial biosphere, and we asked how atmospheric CO2 observations can constrain terrestrial biosphere carbon flux estimates. To address this, we provided the CMS-Flux atmospheric inversion model (which is driven by XCO2) with terrestrial biosphere flux estimates using 10 process models from the Multi-Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) as a prior estimate of land flux. We show here the system of integrating the benchmark-weighted multi-model mean and variability of MsTMIP land models into the atmospheric system, and present results on how coupling these two cutting-edge land and atmospheric components reduces uncertainty in the global carbon cycle.

  2. Guidance studies for curved, descending approaches using the Microwave Landing System (MLS)

    NASA Technical Reports Server (NTRS)

    Feather, J. B.

    1986-01-01

    Results for the Microwave Landing System (MLS) guidance algorithm development conducted under the Advance Transport Operating System (ATOPS) Technology Studies (NAS1-16202) are documented. The study consisted of evaluating guidance law for vertical and lateral path control, as well as speed control, for approaches not possible with the present Instrument Landing System (ILS) equipment. Several specific approaches were simulated using the MD-80 aircraft simulation program, including curved, descending (segmented glide slope), and decelerating paths. Emphasis was placed on development of guidance algorithms specifically for approaches at Burbank, where proposed flight demonstrations are planned. Results of this simulation phase are suitable for use in future fixed base simulator evaluations employing actual hardware (autopilot and a performance management system).

  3. 77 FR 2563 - Public Land Order No. 7787; Withdrawal of Public and National Forest System Lands in the Grand...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Coconino and Mohave Counties, Arizona. The lands will remain open to the mineral leasing laws, geothermal... U.S.C. 22-54), but not from the mineral leasing, geothermal leasing, mineral materials or...

  4. 78 FR 12084 - Public Land Order No. 7809; Withdrawal of National Forest System Land for the Settler's Grove of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... business hours. SUPPLEMENTARY INFORMATION: This order replaces Public Land Order 6658 (52 FR 36577 (1987... one of the few remaining stands of old- growth western red cedar trees in the Settler's Grove...

  5. Sensitivity analysis of helicopter IMC decelerating steep approach and landing performance to navigation system parameters

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.

    1982-01-01

    Results of a study to investigate, by means of a computer simulation, the performance sensitivity of helicopter IMC DSAL operations as a function of navigation system parameters are presented. A mathematical model representing generically a navigation system is formulated. The scenario simulated consists of a straight in helicopter approach to landing along a 6 deg glideslope. The deceleration magnitude chosen is 03g. The navigation model parameters are varied and the statistics of the total system errors (TSE) computed. These statistics are used to determine the critical navigation system parameters that affect the performance of the closed-loop navigation, guidance and control system of a UH-1H helicopter.

  6. Design and Application of a Community Land Benchmarking System for Earth System Models

    NASA Astrophysics Data System (ADS)

    Mu, M.; Hoffman, F. M.; Lawrence, D. M.; Riley, W. J.; Keppel-Aleks, G.; Koven, C. D.; Kluzek, E. B.; Mao, J.; Randerson, J. T.

    2015-12-01

    Benchmarking has been widely used to assess the ability of climate models to capture the spatial and temporal variability of observations during the historical era. For the carbon cycle and terrestrial ecosystems, the design and development of an open-source community platform has been an important goal as part of the International Land Model Benchmarking (ILAMB) project. Here we developed a new benchmarking software system that enables the user to specify the models, benchmarks, and scoring metrics, so that results can be tailored to specific model intercomparison projects. Evaluation data sets included soil and aboveground carbon stocks, fluxes of energy, carbon and water, burned area, leaf area, and climate forcing and response variables. We used this system to evaluate simulations from the 5th Phase of the Coupled Model Intercomparison Project (CMIP5) with prognostic atmospheric carbon dioxide levels over the period from 1850 to 2005 (i.e., esmHistorical simulations archived on the Earth System Grid Federation). We found that the multi-model ensemble had a high bias in incoming solar radiation across Asia, likely as a consequence of incomplete representation of aerosol effects in this region, and in South America, primarily as a consequence of a low bias in mean annual precipitation. The reduced precipitation in South America had a larger influence on gross primary production than the high bias in incoming light, and as a consequence gross primary production had a low bias relative to the observations. Although model to model variations were large, the multi-model mean had a positive bias in atmospheric carbon dioxide that has been attributed in past work to weak ocean uptake of fossil emissions. In mid latitudes of the northern hemisphere, most models overestimate latent heat fluxes in the early part of the growing season, and underestimate these fluxes in mid-summer and early fall, whereas sensible heat fluxes show the opposite trend.

  7. Digital simulation of continuous error models with application to an instrument landing system error

    NASA Technical Reports Server (NTRS)

    Merrick, R. B.; Smith, G. L.

    1972-01-01

    A digital simulation of the continuous error of the localized beam of a conventional instrument landing system is discussed. The digital simulation was developed during the analysis of space shuttle navigation capabilities. A discrete mathematical model for use on a digital computer is described. The model generates an output random sequence which is equivalent, for simulation purposes, to the desired random process. The model is a system of difference equations driven by a zero-mean Gaussian random sequence.

  8. Future Requirements For Small Deep Space And Landed Modules Power Systems In Science And Exploration Missions

    NASA Astrophysics Data System (ADS)

    Ulamec, Jens Biele; Van Zoest, Tim; Grundmann, Jan Thimo

    2011-10-01

    This paper discusses various power concepts for small missions to deep space requiring low (typically < 100 W) average power. Particular emphasis is on landed devices, e.g., for the Moon, Mars, or small bodies. We present the status and the future power system requirements for such modules in science and exploration missions. We outline the developments where we see potential for a significant increase in power system performance (mass, robustness, predictability) for the mission types mentioned.

  9. Field performance of a geosynthetic clay liner landfill capping system under simulated waste subsidence

    SciTech Connect

    Weiss, W.; Siegmund, M.; Alexiew, D.

    1995-10-01

    A flexible landfill capping system consisting of a 3-D-geocore composite for gas vent, a Geosynthetic Clay Liner (GCL) for sealing and a 3-D-geocore composite for drainage of the vegetation soil was built on a test field at Michelshoehe landfill near Weimar, Germany. At four locations airbags were installed underneath the thin capping system to simulate subsidences. On top of three of these airbags overlaps of the GCL were positioned, for comparison there was no overlap at the fourth location. After hydratation of the GCL the airbags were de-aerated and subsidences occurred with app. 5 % tensile strain in the GCL. For three weeks the test field was intensively sprinkled in intervals. Then horizontal and vertical deformations were measured, but not displacements were registered in the overlaps. The evaluation of the GCL`s permeability showed no significant difference between the locations with and without overlaps.

  10. LandCaRe DSS--an interactive decision support system for climate change impact assessment and the analysis of potential agricultural land use adaptation strategies.

    PubMed

    Wenkel, Karl-Otto; Berg, Michael; Mirschel, Wilfried; Wieland, Ralf; Nendel, Claas; Köstner, Barbara

    2013-09-01

    Decision support to develop viable climate change adaptation strategies for agriculture and regional land use management encompasses a wide range of options and issues. Up to now, only a few suitable tools and methods have existed for farmers and regional stakeholders that support the process of decision-making in this field. The interactive model-based spatial information and decision support system LandCaRe DSS attempts to close the existing methodical gap. This system supports interactive spatial scenario simulations, multi-ensemble and multi-model simulations at the regional scale, as well as the complex impact assessment of potential land use adaptation strategies at the local scale. The system is connected to a local geo-database and via the internet to a climate data server. LandCaRe DSS uses a multitude of scale-specific ecological impact models, which are linked in various ways. At the local scale (farm scale), biophysical models are directly coupled with a farm economy calculator. New or alternative simulation models can easily be added, thanks to the innovative architecture and design of the DSS. Scenario simulations can be conducted with a reasonable amount of effort. The interactive LandCaRe DSS prototype also offers a variety of data analysis and visualisation tools, a help system for users and a farmer information system for climate adaptation in agriculture. This paper presents the theoretical background, the conceptual framework, and the structure and methodology behind LandCaRe DSS. Scenario studies at the regional and local scale for the two Eastern German regions of Uckermark (dry lowlands, 2600 km(2)) and Weißeritz (humid mountain area, 400 km(2)) were conducted in close cooperation with stakeholders to test the functionality of the DSS prototype. The system is gradually being transformed into a web version (http://www.landcare-dss.de) to ensure the broadest possible distribution of LandCaRe DSS to the public. The system will be continuously

  11. Ecological and socio-economic functions across tropical land use systems after rainforest conversion.

    PubMed

    Drescher, Jochen; Rembold, Katja; Allen, Kara; Beckschäfer, Philip; Buchori, Damayanti; Clough, Yann; Faust, Heiko; Fauzi, Anas M; Gunawan, Dodo; Hertel, Dietrich; Irawan, Bambang; Jaya, I Nengah S; Klarner, Bernhard; Kleinn, Christoph; Knohl, Alexander; Kotowska, Martyna M; Krashevska, Valentyna; Krishna, Vijesh; Leuschner, Christoph; Lorenz, Wolfram; Meijide, Ana; Melati, Dian; Nomura, Miki; Pérez-Cruzado, César; Qaim, Matin; Siregar, Iskandar Z; Steinebach, Stefanie; Tjoa, Aiyen; Tscharntke, Teja; Wick, Barbara; Wiegand, Kerstin; Kreft, Holger; Scheu, Stefan

    2016-05-19

    Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes. PMID:27114577

  12. Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Roback, Vincent E.; Bulyshev, Alexander E.; Brewster, Paul F.; Carrion, William A; Pierrottet, Diego F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.

    2015-01-01

    NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.

  13. Ecological and socio-economic functions across tropical land use systems after rainforest conversion.

    PubMed

    Drescher, Jochen; Rembold, Katja; Allen, Kara; Beckschäfer, Philip; Buchori, Damayanti; Clough, Yann; Faust, Heiko; Fauzi, Anas M; Gunawan, Dodo; Hertel, Dietrich; Irawan, Bambang; Jaya, I Nengah S; Klarner, Bernhard; Kleinn, Christoph; Knohl, Alexander; Kotowska, Martyna M; Krashevska, Valentyna; Krishna, Vijesh; Leuschner, Christoph; Lorenz, Wolfram; Meijide, Ana; Melati, Dian; Nomura, Miki; Pérez-Cruzado, César; Qaim, Matin; Siregar, Iskandar Z; Steinebach, Stefanie; Tjoa, Aiyen; Tscharntke, Teja; Wick, Barbara; Wiegand, Kerstin; Kreft, Holger; Scheu, Stefan

    2016-05-19

    Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes.

  14. Ecological and socio-economic functions across tropical land use systems after rainforest conversion

    PubMed Central

    Rembold, Katja; Allen, Kara; Beckschäfer, Philip; Buchori, Damayanti; Clough, Yann; Faust, Heiko; Fauzi, Anas M.; Gunawan, Dodo; Hertel, Dietrich; Irawan, Bambang; Jaya, I. Nengah S.; Klarner, Bernhard; Kleinn, Christoph; Knohl, Alexander; Kotowska, Martyna M.; Krashevska, Valentyna; Krishna, Vijesh; Leuschner, Christoph; Lorenz, Wolfram; Meijide, Ana; Melati, Dian; Nomura, Miki; Pérez-Cruzado, César; Qaim, Matin; Siregar, Iskandar Z.; Steinebach, Stefanie; Tjoa, Aiyen; Tscharntke, Teja; Wick, Barbara; Wiegand, Kerstin; Kreft, Holger; Scheu, Stefan

    2016-01-01

    Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes. PMID:27114577

  15. National Climate Assessment - Land Data Assimilation System (NCA-LDAS) Data at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, Bill; Vollmer, Bruce; Jasinski, Michael; Mocko, David; Kempler, Steven

    2016-01-01

    As part of NASA's active participation in the Interagency National Climate Assessment (NCA) program, the Goddard Space Flight Center's Hydrological Sciences Laboratory (HSL) is supporting an Integrated Terrestrial Water Analysis, by using NASA's Land Information System (LIS) and Land Data Assimilation System (LDAS) capabilities. To maximize the benefit of the NCA-LDAS, on completion of planned model runs and uncertainty analysis, NASA will provide open access to all NCA-LDAS components, including input data, output fields, and indicator data, to other NCA-teams and the general public. The NCA-LDAS data will be archived at the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) and can be accessed via direct ftp, THREDDS, Mirador search and download, and Giovanni visualization and analysis system.

  16. The role of ERTS in the establishment and of a nationwide land cover information system

    NASA Technical Reports Server (NTRS)

    Abram, P.; Tullos, J.

    1974-01-01

    The economic potential of utilizing an ERTS type satellite in the development, updating, and maintenance of a nation-wide land cover information system in the post-1977 time frame was examined. Several alternative acquisition systems were evaluated for land cover data acquisition, processing, and interpretation costs in order to determine, on a total life cycle cost basis, under which conditions of user demand (i.e., area of coverage, frequency of coverage, timeliness of information, and level of information detail) an ERTS type satellite would be cost effective, and what the annual cost savings benefits would be. It was concluded that a three satellite system with high and low altitude aircraft and ground survey team utilizing automatic interpretation and classification techniques is an economically sound proposal.

  17. Max Launch Abort System (MLAS) Landing Parachute Demonstrator (LPD) Drop Test

    NASA Technical Reports Server (NTRS)

    Shreves, Christopher M.

    2011-01-01

    The Landing Parachute Demonstrator (LPD) was conceived as a low-cost, rapidly-developed means of providing soft landing for the Max Launch Abort System (MLAS) crew module (CM). Its experimental main parachute cluster deployment technique and off-the-shelf hardware necessitated a full-scale drop test prior to the MLAS mission in order to reduce overall mission risk. This test was successfully conducted at Wallops Flight Facility on March 6, 2009, with all vehicle and parachute systems functioning as planned. The results of the drop test successfully qualified the LPD system for the MLAS flight test. This document captures the design, concept of operations and results of the drop test.

  18. Leveraging microwave polarization information for the calibration of a land data assimilation system

    NASA Astrophysics Data System (ADS)

    Holmes, Thomas R. H.; Crow, Wade T.; De Jeu, Richard A. M.

    2014-12-01

    This letter contributes a new approach to calibrating a tau-omega radiative transfer model coupled to land surface model output with low-frequency (<10 GHz) microwave brightness temperature (TB) observations. The problem of calibrating this system is generally poorly posed because various parameter combinations may yield indistinguishable (least squares error) results. This is theoretically important for a land data assimilation system since alternative parameter combinations have different impacts on the sensitivity of TB to soil moisture and misattribution of systematic error may therefore disrupt data assimilation system performance. Via synthetic experiments we demonstrate that using TB polarization difference to parameterize vegetation opacity can improve the stability of calibrated soil moisture/TB sensitivities relative to the more typical approach of utilizing ancillary information to estimate vegetation opacity. The proposed approach fully follows from the radiative transfer model, implemented according to commonly adopted assumptions, and reduces by one the number of calibration parameters.

  19. Calibration of the Space Shuttle Microwave Scanning Beam Landing System using a laser tracker

    NASA Technical Reports Server (NTRS)

    Ford, K.

    1979-01-01

    Verification tests of the Space Shuttle Microwave Scanning Beam Landing System (MSBLS) performed with respect to the Precision Laser Tracking System are reported. MSBLS ground station measurements of the azimuth, elevation and range of a NASA Jetstar aircraft equipped with a laser retroreflector, a MSBLS antenna and commissioning instruments including a MSBLS navigation set of the type installed in the Orbiter, during the performance of radial, orbital and glideslope runs with respect to the ground station were compared with laser ground station measurements of aircraft position. Data obtained from flight testing at Shuttle landing sites reveal MSBLS distance measuring equipment performance to be very good, with elevation errors found at very low elevation angles and azimuth errors as a function of aircraft attitude. The Precision Laser Tracking System has thus proven to be a satisfactory instrument for determining MSBLS performance, and an ideal instrument for its calibration.

  20. A Subbasin-based framework to represent land surface processes in an Earth System Model

    SciTech Connect

    Tesfa, Teklu K.; Li, Hongyi; Leung, Lai-Yung R.; Huang, Maoyi; Ke, Yinghai; Sun, Yu; Liu, Ying

    2014-05-20

    Realistically representing spatial heterogeneity and lateral land surface processes within and between modeling units in earth system models is important because of their implications to surface energy and water exchange. The traditional approach of using regular grids as computational units in land surface models and earth system models may lead to inadequate representation of lateral movements of water, energy and carbon fluxes, especially when the grid resolution increases. Here a new subbasin-based framework is introduced in the Community Land Model (CLM), which is the land component of the Community Earth System Model (CESM). Local processes are represented assuming each subbasin as a grid cell on a pseudo grid matrix with no significant modifications to the existing CLM modeling structure. Lateral routing of water within and between subbasins is simulated with the subbasin version of a recently-developed physically based routing model, Model for Scale Adaptive River Routing (MOSART). As an illustration, this new framework is implemented in the topographically diverse region of the U.S. Pacific Northwest. The modeling units (subbasins) are delineated from high-resolution Digital Elevation Model while atmospheric forcing and surface parameters are remapped from the corresponding high resolution datasets. The impacts of this representation on simulating hydrologic processes are explored by comparing it with the default (grid-based) CLM representation. In addition, the effects of DEM resolution on parameterizing topography and the subsequent effects on runoff processes are investigated. Limited model evaluation and comparison showed that small difference between the averaged forcing can lead to more significant difference in the simulated runoff and streamflow because of nonlinear horizontal processes. Topographic indices derived from high resolution DEM may not improve the overall water balance, but affect the partitioning between surface and subsurface runoff

  1. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams.

    PubMed

    Nimptsch, Jorge; Woelfl, Stefan; Osorio, Sebastian; Valenzuela, Jose; Ebersbach, Paul; von Tuempling, Wolf; Palma, Rodrigo; Encina, Francisco; Figueroa, David; Kamjunke, Norbert; Graeber, Daniel

    2015-12-15

    Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradability are unknown. The aim of this study was thus to investigate the inputs of anthropogenic DOM from land-based aquaculture to the predominantly pristine river systems of North Patagonia. We hypothesized, that i) DOM exported from land-based aquaculture mainly consists of protein-like fluorescence (tyrosine and tryptophan) released from fish feces and food remains, and that ii) this DOM is highly degradable and therefore rapidly turned-over within the receiving streams. In the North Patagonian region we conducted a screening of ten land-based aquacultures and an intensive sampling campaign for one aquaculture. This was combined with longitudinal transects and a degradation experiment in order to couple the composition of DOM exported from land-based aquacultures to its degradability in streams. We measured dissolved organic carbon (DOC) concentration by high-temperature catalytic oxidation and DOM composition by fluorescence spectroscopy and parallel factor analysis. In the effluent of the ten screened aquacultures and in the repeated sampling of one aquaculture, we consistently found an increase of DOC concentrations and a dominance of protein-like fluorescence. The protein-like fluorescence rapidly disappeared downstream of the aquacultures, and in the degradation experiment. 21% of the DOC export from the repeatedly sampled aquaculture resulted from food addition and 76% from fish production. We conclude that large amounts of degradable DOM are exported from land-based aquacultures. This probably has strong effects on the ecological structure and function of North Patagonian streams, and similarly affected streams worldwide.

  2. Integration between terrestrial-based and satellite-based land mobile communications systems

    NASA Technical Reports Server (NTRS)

    Arcidiancono, Antonio

    1990-01-01

    A survey is given of several approaches to improving the performance and marketability of mobile satellite systems (MSS). The provision of voice/data services in the future regional European Land Mobile Satellite System (LMSS), network integration between the Digital Cellular Mobile System (GSM) and LMSS, the identification of critical areas for the implementation of integrated GSM/LMSS areas, space segment scenarios, LMSS for digital trunked private mobile radio (PMR) services, and code division multiple access (CDMA) techniques for a terrestrial/satellite system are covered.

  3. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    NASA Astrophysics Data System (ADS)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  4. Model evaluation using a community benchmarking system for land surface models

    NASA Astrophysics Data System (ADS)

    Mu, M.; Hoffman, F. M.; Lawrence, D. M.; Riley, W. J.; Keppel-Aleks, G.; Kluzek, E. B.; Koven, C. D.; Randerson, J. T.

    2014-12-01

    Evaluation of atmosphere, ocean, sea ice, and land surface models is an important step in identifying deficiencies in Earth system models and developing improved estimates of future change. For the land surface and carbon cycle, the design of an open-source system has been an important objective of the International Land Model Benchmarking (ILAMB) project. Here we evaluated CMIP5 and CLM models using a benchmarking system that enables users to specify models, data sets, and scoring systems so that results can be tailored to specific model intercomparison projects. Our scoring system used information from four different aspects of global datasets, including climatological mean spatial patterns, seasonal cycle dynamics, interannual variability, and long-term trends. Variable-to-variable comparisons enable investigation of the mechanistic underpinnings of model behavior, and allow for some control of biases in model drivers. Graphics modules allow users to evaluate model performance at local, regional, and global scales. Use of modular structures makes it relatively easy for users to add new variables, diagnostic metrics, benchmarking datasets, or model simulations. Diagnostic results are automatically organized into HTML files, so users can conveniently share results with colleagues. We used this system to evaluate atmospheric carbon dioxide, burned area, global biomass and soil carbon stocks, net ecosystem exchange, gross primary production, ecosystem respiration, terrestrial water storage, evapotranspiration, and surface radiation from CMIP5 historical and ESM historical simulations. We found that the multi-model mean often performed better than many of the individual models for most variables. We plan to publicly release a stable version of the software during fall of 2014 that has land surface, carbon cycle, hydrology, radiation and energy cycle components.

  5. A web-based system for supporting global land cover data production

    NASA Astrophysics Data System (ADS)

    Han, Gang; Chen, Jun; He, Chaoying; Li, Songnian; Wu, Hao; Liao, Anping; Peng, Shu

    2015-05-01

    Global land cover (GLC) data production and verification process is very complicated, time consuming and labor intensive, requiring huge amount of imagery data and ancillary data and involving many people, often from different geographic locations. The efficient integration of various kinds of ancillary data and effective collaborative classification in large area land cover mapping requires advanced supporting tools. This paper presents the design and development of a web-based system for supporting 30-m resolution GLC data production by combining geo-spatial web-service and Computer Support Collaborative Work (CSCW) technology. Based on the analysis of the functional and non-functional requirements from GLC mapping, a three tiers system model is proposed with four major parts, i.e., multisource data resources, data and function services, interactive mapping and production management. The prototyping and implementation of the system have been realised by a combination of Open Source Software (OSS) and commercially available off-the-shelf system. This web-based system not only facilitates the integration of heterogeneous data and services required by GLC data production, but also provides online access, visualization and analysis of the images, ancillary data and interim 30 m global land-cover maps. The system further supports online collaborative quality check and verification workflows. It has been successfully applied to China's 30-m resolution GLC mapping project, and has improved significantly the efficiency of GLC data production and verification. The concepts developed through this study should also benefit other GLC or regional land-cover data production efforts.

  6. Application of NCEP Land Data Assimilation Systems for Global and Regional Drought Analysis, Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Xia, Y.; Meng, C. J.; Dong, J.

    2012-12-01

    Currently, NCEP/EMC includes three Land Data Assimilation Systems (LDASs): (1) Global LDAS (GLDAS), (2) North American LDAS (NLDAS), and (3) high resolution NLDAS on the Hydrologic Rainfall Analysis Project (HRAP) grid (HRAP-NLDAS). GLDAS was developed to provide initial conditions for NCEP coupled global weather and climate models, NLDAS to provide hydrometeorological products to support the National Integrated Drought Information System (NIDIS), and HRAP-NLDAS for long-term and near real-time high-resolution (~4 km) hydrometeorological products to support hydrological research and application at National Weather Service (NWS) River Forecast Centers and the Office of Hydrologic Development (OHD). These three systems are independent but closely related. The core model of the three systems is the NCEP operational land surface model (Noah) and the OHD operational hydrological model (SAC-HT); two additional land surface/hydrological models are used in NLDAS. The three systems are all moving towards being used for global and regional drought analysis, monitoring and prediction. The uncoupled GLDAS used the Noah land model in the Climate Forecast System Reanalysis (CFSR), with blended atmospheric model and observed precipitation forcing used to generate long-term (1979-present) global hydrometeorological products (at ~38 km) as part of the proposed Global Drought Information System (GDIS) in association with the NOAA Climate Program Office (CPO) Modeling, Analysis, Predictions and Projection (MAPP) Drought Task Force; use of GLDAS/Noah continues in the operational Climate Forecast System version 2 (CFSv2). NLDAS is a quasi-operational system that supports U.S. operational drought monitoring and seasonal hydrological prediction, in particular for NIDIS. One key application of the near real-time updates is drought monitoring over the Continental United States (CONUS), shown at the "NLDAS Drought" tab of the NLDAS website (www.emc.ncep.noaa.gov/mmb/nldas). NLDAS is mature

  7. The role of GMES / Sentinels in Land-Surface Earth System Science

    NASA Astrophysics Data System (ADS)

    Moreno, J.

    2009-04-01

    A general trend in the current status of representation of Land Surface schemes into Earth System models is driven by the parameterisation of "cycles" instead of individual processes. Particular emphasis is made to account for couplings among the individual cycles, as between the carbon and water cycles. Moreover, the current tendency is to use the measured data -time series in most cases- together with models, in a data assimilation scenario where inputs from multiple sources are integrated. Such approach is more and more necessary as land models tend to be more complex, and particularly due to the fact that land surface variability is not just driven by physical and chemical processes, but intricate biological processes also altered by anthropogenic influences. Human influences in the land system (land use changes, urban development, etc.) and the impacts of natural disasters are becoming also part of land models, but critical data in high spatial and temporal resolutions are needed to properly model such processes. Until now, problems with data availability, data inconsistency and lack of adequate temporal sampling have limited the potential usefulness of such observations in modelling land surface processes. The availability of the GMES / Sentinel series of satellites represents a quite unique opportunity for consolidation of current tendencies and development of new science based on the new type of data that soon will become available. The usefulness of the different Sentinel missions for Land science has been recognised. Although the Sentinel satellite series were primarily designed to provide observations for operational services and routine applications, there is a growing interest in the scientific community towards the usage of Sentinel data for more advanced and innovative science. Moreover, the availability of consistent time series covering a period of over 20 years opens possibilities never explored before, such as systematic data assimilation

  8. Relative impacts of land-use, management intensity and fertilization on microbial community structure in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of agricultural land management practices on soil prokaryotic diversity have not been well described. Soil microbial communities under three agricultural management systems (conventionally tilled cropland, hayed pasture, and grazed pasture) and two fertilizer systems [inorganic fertilizer (I...

  9. Customer-oriented Data Formats and Services for Global Land Data Assimilation System (GLDAS) Products at the NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Fang, Hongliang; Beaudoing, Hiroko; Rodell, Matthew; Teng, BIll; Vollmer, Bruce

    2008-01-01

    The Global Land Data Assimilation System (GLDAS) is generating a series of land surface state (e.g., soil moisture and surface temperature) and flux (e.g., evaporation and sensible heat flux) products simulated by four land surface Models (CLM, Mosaic, Noah and VIC). These products are now accessible at the Hydrology Data and Information Services Center (HDISC), a component of NASA Goddard Earth Sciences Data and Information Services Center (GESDISC).

  10. Improvement of the Russian system of medical care at the site of space crew landing

    NASA Astrophysics Data System (ADS)

    Rukavishnikov, Ilya; Bogomolov, Valery; Polyakov, Alexey

    The crew members are delivered to ISS and return back to the Earth on the space craft "Soyuz TMA" at present time. The technical means providing the safe landing of space crews are reliable enough. In spite of that the complex of negative factors (long lasting alternating and shock overloads, effects of landing apparatus rotation on vestibular system) affects the crew during landing and can reach the extreme values under the certain conditions. According to this fact there is a possibility of appearance of bodily damages of different weight besides the traditional functional disturbances. The group of search and rescue on the landing site includes the medical specialists appropriately equipped to stop the symptoms of medical contingency (strong vestibule-vegetative reactions, traumas of different weight, etc.) Medical evacuation complex which provides the acceptable conditions for the cosmonauts including the conditions for medical care is delivered to the landing site as well. The long term experience of search and rescue assurance at the landing site have shown that the specialists successfully cope with this task. In some cases it was required to give the medical help which allowed to improve the general condition and physical capacity of crewmembers and provide their evacuation to the places of postflight rehabilitation. At the same time the solution of some of the problems from our point of view could increase the efficacy of medical care for the landing crew. The organization of the training on emergency under the field conditions for medical specialists on the regular basis (not less that once a year) is extremely important. The equipment of medical specialists requires the regular improvement and modernization due to the fast changing medical technologies and standards. Wearable medical sets must provide the first aid performing in accordance to the modern medical requirements. It is also necessary to include in the list of equipment the textbook of

  11. National Climate Assessment - Land Data Assimilation System (NCA-LDAS) Data at NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Rui, H.; Vollmer, B.; Jasinski, M. F.; Mocko, D. M.; Kempler, S. J.

    2014-12-01

    As part of NASA's active participation in the Interagency National Climate Assessment (NCA) program, the Goddard Space Flight Center's Hydrological Sciences Laboratory (HSL) is supporting an Integrated Terrestrial Water Analysis, by using NASA's Land Information System (LIS) and Land Data Assimilation System (LDAS) capabilities. The resulting system, the NCA - Land Data Assimilation System (NCA-LDAS), is a NASA contribution to the NCA. The outputs of the NCA-LDAS contribute to the development and evaluation of a suite of water indicators. To maximize the benefit of the NCA-LDAS, on completion of planned model runs and uncertainty analysis, NASA will provide open access to all NCA-LDAS components, including input data, output fields, and validation data, to other NCA-teams and the general public. Currently released data include NCA-LDAS outputs from the Noah Land Surface Model version 3.3 (Noah-3.3) and Catchment Land Surface Model version Fortuna-2.5 (CLSM-F2.5) and the post- processed data sets for the routing variables. The NCA-LDAS data have temporal and spatial resolutions, respectively, of daily and 0.125x0.125 degree, covering North America (25N ~ 53N; 125W ~ 67W) and the period January 1979 to December 2012. The data files are in self-describing, machine-independent netCDF-4 format. The data contain a set of water- and energy-related Essential Climate Variables (ECV). The NCA-LDAS data are archived at the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) and can be accessed via direct ftp (ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/NCA_LDAS), THREDDS (http://hydro1.sci.gsfc.nasa.gov/thredds/catalog.html), and Mirador search and download (http://mirador.gsfc.nasa.gov/). This presentation describes the main characteristics of the NCA-LDAS data and data services (access, subsetting, visualization, and analysis). The major differences between the NCA-LDAS data and the North American Land Data Assimilation System (NLDAS) data are discussed

  12. Dust in the Earth system: the biogeochemical linking of land, air and sea.

    PubMed

    Ridgwell, Andy J

    2002-12-15

    Understanding the response of the Earth's climate system to anthropogenic perturbation has been a pressing priority for society since the late 1980s. However, recent years have seen a major paradigm shift in how such an understanding can be reached. Climate change demands analysis within an integrated 'Earth-system' framework, taken to encompass the suite of interacting physical, chemical, biological and human processes that, in transporting and transforming materials and energy, jointly determine the conditions for life on the whole planet. This is a highly complex system, characterized by multiple nonlinear responses and thresholds, with linkages often between apparently disparate components. The interconnected nature of the Earth system is wonderfully illustrated by the diverse roles played by atmospheric transport of mineral 'dust', particularly in its capacity as a key pathway for the delivery of nutrients essential to plant growth, not only on land, but perhaps more importantly, in the ocean. Dust therefore biogeochemically links land, air and sea. This paper reviews the biogeochemical role of mineral dust in the Earth system and its interaction with climate, and, in particular, the potential importance of both past and possible future changes in aeolian delivery of the micro-nutrient iron to the ocean. For instance, if, in the future, there was to be a widespread stabilization of soils for the purpose of carbon sequestration on land, a reduction in aeolian iron supply to the open ocean would occur. The resultant weakening of the oceanic carbon sink could potentially offset much of the carbon sequestered on land. In contrast, during glacial times, enhanced dust supply to the ocean could have 'fertilized' the biota and driven atmospheric CO(2) lower. Dust might even play an active role in driving climatic change; since changes in dust supply may affect climate, and changes in climate, in turn, influence dust, a 'feedback loop' is formed. Possible feedback

  13. Land-use impacts of the Houston Transitway System: Summary report. Technical report

    SciTech Connect

    Washington, E.J.; Stokes, R.W.

    1989-10-01

    The report provides a summary of a five-year study of the transportation and land use impacts resulting from the implementation of an extensive priority system of busways (transitways) and park-and-ride facilities in Houston, Texas. Over the duration of the study, four high-occupancy vehicle (HOV) lanes with supporting park-and-ride facilities were placed in operation in Houston's North (I-45N), Katy (I-10W), Gulf (I-45S) and Northwest (US 290) freeway corridors. The impacts resulting from three of these HOV treatments, I-45N, I-45S, I-10W, are the object of the study. Preliminary results indicate that while the transportation impacts of those elements of the Houston Transitway system which are operational have been substantial, no substantial land use impacts can be identified at this time. It appears that a more definitive assessment of land use impacts may not be possible until the transitway system is fully operational and more fully integrated into the community's total transportation system.

  14. Application of Calspan pitch rate control system to the Space Shuttle for approach and landing

    NASA Technical Reports Server (NTRS)

    Weingarten, N. C.; Chalk, C. R.

    1983-01-01

    A pitch rate control system designed for use in the shuttle during approach and landing was analyzed and compared with a revised control system developed by NASA and the existing OFT control system. The design concept control system uses filtered pitch rate feedback with proportional plus integral paths in the forward loop. Control system parameters were designed as a function of flight configuration. Analysis included time and frequency domain techniques. Results indicate that both the Calspan and NASA systems significantly improve the flying qualities of the shuttle over the OFT. Better attitude and flight path control and less time delay are the primary reasons. The Calspan system is preferred because of reduced time delay and simpler mechanization. Further testing of the improved flight control systems in an in-flight simulator is recommended.

  15. From Land Use to Land Cover: Restoring the Afforestation Signal in a Coupled Integrated Assessment - Earth System Model and the Implications for CMIP5 RCP Simulations

    NASA Astrophysics Data System (ADS)

    Di Vittorio, A. V.; Chini, L. P.; Bond-Lamberty, B. P.; Mao, J.; Shi, X.; Truesdale, J. E.; Craig, A.; Calvin, K. V.; Jones, A. D.; Collins, W.; Edmonds, J.; Hurtt, G. C.; Thornton, P. E.; Thomson, A. M.

    2014-12-01

    Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). The CMIP5 project used a novel "land use harmonization" based on the Global Land use Model (GLM) to provide ESMs with consistent 1500-2100 land use trajectories generated by historical data and four IAM projections. A direct coupling of the Global Change Assessment Model (GCAM), GLM, and the Community ESM (CESM) has allowed us to characterize and partially address a major gap in the CMIP5 land coupling design: the lack of a corresponding land cover harmonization. The CMIP5 CESM global afforestation is only 22% of GCAM's 2005 to 2100 RCP4.5 afforestation. Likewise, only 17% of GCAM's 2040 RCP4.5 afforestation, and zero pasture loss, were transmitted to CESM within the directly coupled model. This is a problem because afforestation was relied upon to achieve RCP4.5 climate stabilization. GLM modifications within the directly coupled model did not increase CESM afforestation. Modifying the CESM land use translator in addition to GLM, however, enabled CESM to simulate 66% of GCAM's afforestation in 2040, and 94% of GCAM's pasture loss as grassland and shrubland losses. This additional afforestation increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, implying different RCP4.5 climate scenarios between CMIP5 GCAM and CESM. Although the IAMs and ESMs were not expected to have exactly the same climate forcing, due in part to different terrestrial carbon cycles and atmospheric radiation algorithms, the ESMs were expected to project climates representative of the RCP scenarios. Similar land cover inconsistencies exist in other CMIP5 model results, primarily because land cover information is not shared between IAM and ESM models. High RCP4.5 afforestation might also contribute to inconsistencies as

  16. Characterizing Mediterranean Land Surfaces as Component of the Regional Climate System by Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bolle, H.-J.; Koslowsky, D.; Menenti, M.; Nerry, F.; Otterman, Joseph; Starr, D.

    1998-01-01

    Extensive areas in the Mediterranean region are subject to land degradation and desertification. The high variability of the coupling between the surface and the atmosphere affects the regional climate. Relevant surface characteristics, such as spectral reflectance, surface emissivity in the thermal-infrared region, and vegetation indices, serve as "primary" level indicators for the state of the surface. Their spatial, seasonal and interannual variability can be monitored from satellites. Using relationships between these primary data and combining them with prior information about the land surfaces (such as topography, dominant soil type, land use, collateral ground measurements and models), a second layer of information is built up which specifies the land surfaces as a component of the regional climate system. To this category of parameters which are directly involved in the exchange of energy, momentum and mass between the surface and the atmosphere, belong broadband albedo, thermodynamic surface temperature, vegetation types, vegetation cover density, soil top moisture, and soil heat flux. Information about these parameters finally leads to the computation of sensible and latent heat fluxes. The methodology was tested with pilot data sets. Full resolution, properly calibrated and normalized NOAA-AVHRR multi-annual primary data sets are presently compiled for the whole Mediterranean area, to study interannual variability and longer term trends.

  17. Automatic carrier landing system for V/STOL aircraft using L1 adaptive and optimal control

    NASA Astrophysics Data System (ADS)

    Hariharapura Ramesh, Shashank

    This thesis presents a framework for developing automatic carrier landing systems for aircraft with vertical or short take-off and landing capability using two different control strategies---gain-scheduled linear optimal control, and L1 adaptive control. The carrier landing sequence of V/STOL aircraft involves large variations in dynamic pressure and aerodynamic coefficients arising because of the transition from aerodynamic-supported to jet-borne flight, descent to the touchdown altitude, and turns performed to align with the runway. Consequently, the dynamics of the aircraft exhibit a highly non-linear dynamical behavior with variations in flight conditions prior to touchdown. Therefore, the implication is the need for non-linear control techniques to achieve automatic landing. Gain-scheduling has been one of the most widely employed techniques for control of aircraft, which involves designing linear controllers for numerous trimmed flight conditions, and interpolating them to achieve a global non-linear control. Adaptive control technique, on the other hand, eliminates the need to schedule the controller parameters as they adapt to changing flight conditions.

  18. Autonomous landing of a helicopter UAV with a ground-based multisensory fusion system

    NASA Astrophysics Data System (ADS)

    Zhou, Dianle; Zhong, Zhiwei; Zhang, Daibing; Shen, Lincheng; Yan, Chengping

    2015-02-01

    In this study, this paper focus on the vision-based autonomous helicopter unmanned aerial vehicle (UAV) landing problems. This paper proposed a multisensory fusion to autonomous landing of an UAV. The systems include an infrared camera, an Ultra-wideband radar that measure distance between UAV and Ground-Based system, an PAN-Tilt Unit (PTU). In order to identify all weather UAV targets, we use infrared cameras. To reduce the complexity of the stereovision or one-cameral calculating the target of three-dimensional coordinates, using the ultra-wideband radar distance module provides visual depth information, real-time Image-PTU tracking UAV and calculate the UAV threedimensional coordinates. Compared to the DGPS, the test results show that the paper is effectiveness and robustness.

  19. San Juan National Forest Land Management Planning Support System (LMPSS) requirements definition

    NASA Technical Reports Server (NTRS)

    Werth, L. F. (Principal Investigator)

    1981-01-01

    The role of remote sensing data as it relates to a three-component land management planning system (geographic information, data base management, and planning model) can be understood only when user requirements are known. Personnel at the San Juan National Forest in southwestern Colorado were interviewed to determine data needs for managing and monitoring timber, rangelands, wildlife, fisheries, soils, water, geology and recreation facilities. While all the information required for land management planning cannot be obtained using remote sensing techniques, valuable information can be provided for the geographic information system. A wide range of sensors such as small and large format cameras, synthetic aperture radar, and LANDSAT data should be utilized. Because of the detail and accuracy required, high altitude color infrared photography should serve as the baseline data base and be supplemented and updated with data from the other sensors.

  20. Development of Lidar Sensor Systems for Autonomous Safe Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierottet, Diego F.; Petway, Larry B.; Vanek, Michael D.

    2010-01-01

    Lidar has been identified by NASA as a key technology for enabling autonomous safe landing of future robotic and crewed lunar landing vehicles. NASA LaRC has been developing three laser/lidar sensor systems under the ALHAT project. The capabilities of these Lidar sensor systems were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard helicopters and a fixed wing aircraft. The airborne tests were performed over Moon-like terrain in the California and Nevada deserts. These tests provided the necessary data for the development of signal processing software, and algorithms for hazard detection and navigation. The tests helped identify technology areas needing improvement and will also help guide future technology advancement activities.

  1. A Computerized Data-Base System for Land-Use and Land-Cover Data Collected at Ground-Water Sampling Sites in the Pilot National Water Quality Assessment Program

    USGS Publications Warehouse

    Scott, Jonathon C.

    1989-01-01

    Data-base software has been developed for the management of land-use and land-cover data collected by the U.S. Geological Survey as part of a pilot program to test and refine concepts for a National Water-Quality Assessment Program. This report describes the purpose, use, and design of the land-use and land-cover data-base software. The software provides capabilities for interactive storage and retrieval of land-use and land-cover data collected at ground-water sampling sites. Users of the software can add, update, and delete land-use and land-cover data. The software also provides capabilities to group, print, and summarize the data. The land-use and land-cover data-base software supports multiple data-base systems so that data can be accessed by persons in different offices. Data-base systems are organized in a tiered structure. Each data-base system contains all the data stored in the data-base systems located in the lower tiers of the structure. Data can be readily transmitted from lower tiers to high tiers of the structure. Therefore, the data-base system at the highest tier of the structure contains land-use and land-cover data for the entire pilot program.

  2. Towards a South Asia Land Data Assimilation System: first results for transboundary basins

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.; Ghatak, D.; Toll, D. L.; Searby, N. D.; Limaye, A. S.; Peters-Lidard, C. D.; Bajracharya, B.; Shrestha, B. R.; Iceland, C.; Narula, K.; Lee, S.; Mourad, B.; Doorn, B.

    2014-12-01

    South Asia faces a remarkably complex and diverse set of hydrologic stresses, including melting glaciers, variable snowpack, intensively utilized transboundary rivers, rapid groundwater depletion due to irrigation, flood and drought hazard, and rapidly changing land use/cover and climate conditions. The management and prediction challenges posed by these conditions are compounded by the sparseness of in situ monitoring sites, particularly in headwaters regions, and a lack of open sharing of hydrometeorological data across national boundaries. As a result, uncertainties in availability in a situation of rising demands are leading to increasing competing and exploitive use of a limited resource, being experienced at various scales. An open water information system for decision support is an absolute necessity. In order to provide an open and spatially complete water information system for decision support across the region, we are implementing a customized Land Data Assimilation System (LDAS) designed to provide best-available estimates of hydrologic states and fluxes across South Asia, both retrospectively and in near-real time. The LDAS merges advanced land surface models with satellite-derived and in situ observations. In the case of South Asia, multiple satellite-derived hydrological fields are relevant to complete water balance analysis, including precipitation from multiple sources (e.g., TRMM, CHIRPS, GPM), water storage anomalies from GRACE, thermal infrared evapotranspiration estimates, and snowpack characteristics from visible and microwave sensors. Each of these observation types can either be ingested to South Asia LDAS or used as an independent observation for comparison. Here we present the first results of this South Asian Land Data Assimilation System, with a focus on complete water balance analysis for selected river basins in South Asia.

  3. A prototype Global Drought Information System based on multiple land surface models

    NASA Astrophysics Data System (ADS)

    Nijssen, Bart; Shukla, Shrad; Lin, Chi-Yu; Lettenmaier, Dennis

    2013-04-01

    Droughts are pervasive natural hazards, which cause large economic losses and human suffering. While the absolute magnitude of these losses is greatest in the developed world, the relative impact is much higher in the developing world. Nonetheless, our ability to monitor and predict the development and occurrence of droughts at a global scale in near real-time is limited. This ability is of particular importance in estimating regional crop production and thus current and future prices of agricultural commodities, as well as the implementation of emergency measures in areas where the effects of drought threaten lives and livelihoods. We describe the implementation of a multi-model drought monitoring system, which provides near real-time estimates of soil moisture conditions for the global land areas between 50S and 50N with a latency of about one day. The system is an extension of similar systems developed by both the University of Washington and the National Centers for Environmental Prediction for use in the U.S. Drought Monitor. Global application of the protocols used in the U.S. systems poses new challenges, particularly with respect to the generation of meteorological forcings with which to drive the land surface models used in such a system. The global system we describe uses satellite-based precipitation (as contrasted with gridded station data in the U.S. systems) as well as temperature estimates based on global weather model analysis fields to track the evolution of soil moisture in near real-time at a spatial resolution of 0.5 degree using multiple land surface models. By comparing the modeled, near real-time soil moisture values with the results from long-term retrospective simulations, the model estimates can be placed in historic context (as soil moisture percentiles) and used to monitor the development of droughts around the world. We evaluate the performance of our system for historic droughts, and compare with other drought analyses and analytical

  4. Ultrawideband radar echoes of land mine targets measured at oblique incidence using a 250-kW impulse radar system

    NASA Astrophysics Data System (ADS)

    Chant, Ian J.; Staines, Geoff

    1997-07-01

    United Nations Peacekeeping forces around the world need to transport food, personnel and medical supplies through disputed regions were land mines are in active use as road blocks and terror weapons. A method of fast, effective land mine detection is needed to combat this threat to road transport. The technique must operate from a vehicle travelling at a reasonable velocity and give warning far enough ahead for the vehicle to stop in time to avoid the land mine. There is particular interest in detecting low- metallic content land mines. One possible solutionis the use of ultra-wide-band (UWB) radar. The Australian Defence Department is investigating the feasibility of using UWB radar for land mine detection from a vehicle. A 3 GHz UWB system has been used to collect target response from a series of inert land mines and mine-like objects placed on the ground and buried in the ground. The targets measured were a subset of those in the target set described in Wong et al. with the addition of inert land mines corresponding to some of the surrogate targets in this set. The results are encouraging for the detection of metallic land mines and the larger non-metallic land mines. Smaller low-metallic- content anti-personnel land mines are less likely to be detected.

  5. Evaluation of the Space Shuttle Transatlantic Abort Landing Atmospheric Sounding System

    NASA Technical Reports Server (NTRS)

    Leahy, Frank B.

    2003-01-01

    A study was conducted to determine the quality of thermodynamic and wind data measured by or derived from the Transatlantic Abort Landing (TAL) Atmospheric Sounding System (TASS). The system has Global Positioning System (GPS) tracking capability and includes a helium-filled latex balloon that carries an instrument package (sonde) and various ground equipment that receives and processes the data from the sonde. TASS is used to provide vertical profiles of thermodynamic and low-resolution wind data in support of Shuttle abort landing operations at TAL sites. TASS uses GPS to determine height, wind speed, and wind direction. The TASS sonde has sensors that directly measure air temperature and relative humidity. These are then used to derive air pressure and density. Test flights were conducted where a TASS sonde and a reference sonde were attached to the same balloon and the two profiles were compared. The objective of the testing was to determine if TASS thermodynamic and wind data met Space Shuttle Program (SSP) accuracy requirements outlined in the Space Shuttle Launch and Landing Program Requirements Document (PRD).

  6. Land-use planning of Volyn region (Ukraine) using Geographic Information Systems (GIS) technologies

    NASA Astrophysics Data System (ADS)

    Strielko, Irina; Pereira, Paulo

    2014-05-01

    Land-use development planning is carried out in order to create a favourable environment for human life, sustainable socioeconomic and spatial development. Landscape planning is an important part of land-use development that aims to meet the fundamental principles of sustainable development. Geographic Information Systems (GIS) is a fundamental tool to make a better landscape planning at different territorial levels, providing data and maps to support decision making. The objective of this work is to create spatio-temporal, territorial and ecological model of development of Volyn region (Ukraine). It is based on existing spatial raster and vector data and includes the analysis of territory dynamics as the aspects responsible for it. A spatial analyst tool was used to zone the areas according to their environmental components and economic activity. This analysis is fundamental to define the basic parameters of sustainability of Volyn region. To carry out this analysis, we determined the demographic capacity of districts and the analysis of spatial parameters of land use. On the basis of the existing natural resources, we observed that there is a need of landscape protection and integration of more are natural areas in the Pan-European Ecological Network. Using GIS technologies to landscape planning in Volyn region, allowed us to identify, natural areas of interest, contribute to a better resource management and conflict resolution. Geographic Information Systems will help to formulate and implement landscape policies, reform the existing administrative system of Volyn region and contribute to a better sustainable development.

  7. Characterizing hydrological hazards and trends with the NASA South Asia Land Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Ghatak, D.; Zaitchik, B. F.; Limaye, A. S.; Searby, N. D.; Doorn, B.; Bolten, J. D.; Toll, D. L.; Lee, S.; Mourad, B.; Narula, K.; Nischal, S.; Iceland, C.; Bajracharya, B.; Kumar, S.; Shrestha, B. R.; Murthy, M.; Hain, C.; Anderson, M. C.

    2015-12-01

    South Asia faces severe challenges to meet the need of water for agricultural, domestic and industrial purposes while coping with the threats posed by climate and land use/cover changes on regional hydrology. South Asia is also characterized by extreme climate contrasts, remote and poorly-monitored headwaters regions, and large uncertainties in estimates of consumptive water withdrawals. Here, we present results from the South Asia Land Data Assimilation System (South Asia LDAS) that apply multiple simulations involving different combination of forcing datasets, land surface models, and satellite-derived parameter datasets to characterize the distributed water balance of the subcontinent. The South Asia LDAS ensemble of simulations provides a range of uncertainty associated with model products. The system includes customized irrigation schemes to capture water use and HYMAP streamflow routing for application to floods. This presentation focuses on two key application areas for South Asia LDAS: the representation of extreme floods in transboundary rivers, and the estimate of water use in irrigated agriculture. We show that South Asia LDAS captures important features of both phenomena, address opportunities and barriers for the use of South Asia LDAS in decision support, and review uncertainties and limitations.This work is being performed by an interdisciplinary team of scientists and decision makers, to ensure that the modeling system meets the needs of decision makers at national and regional levels.

  8. Change in land use in the Phoenix (1:250,000) Quadrangle, Arizona between 1970 and 1972: Successful use of proposed land use classification system

    NASA Technical Reports Server (NTRS)

    Place, J. L.

    1973-01-01

    Changes in land use in the Phoenix (1:250,000 scale) Quadrangle in Arizona have been mapped using only the images from ERTS-1, tending to verify the utility of a land use classification system proposed for use with ERTS images. The period of change investigated was from November 1970 to late summer or early fall, 1972. Seasonal changes also were studied using successive ERTS images. Types of equipment used to aid interpretation included a color additive viewer, a twenty-power magnifier, a density slicer, and a diazo copy machine for making ERTS color composites in hard copy. Types of changes detected have been: (1) cropland or rangeland developed for new residential areas; (2) rangeland converted to new cropland; and (3) possibly new areas of industrial or commercial development. A map of land use previously compiled from air photos was updated in this manner.

  9. AgRISTARS: Renewable resources inventory. Land information support system implementation plan and schedule. [San Juan National Forest pilot test

    NASA Technical Reports Server (NTRS)

    Yao, S. S. (Principal Investigator)

    1981-01-01

    The planning and scheduling of the use of remote sensing and computer technology to support the land management planning effort at the national forests level are outlined. The task planning and system capability development were reviewed. A user evaluation is presented along with technological transfer methodology. A land management planning pilot test of the San Juan National Forest is discussed.

  10. Application of the Auto-Tuned Land Assimilation System (ATLAS) to ASCAT and SMOS soil moisture retrieval products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land data assimilations are typically based on highly uncertain assumptions regarding the statistical structure of observation and modeling errors. Left uncorrected, poor assumptions can degrade the quality of analysis products generated by land data assimilation systems. Recently, Crow and van de...

  11. Heterogeneity and scaling land-atmospheric water and energy fluxes in climate systems

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.

    1993-01-01

    The effects of small-scale heterogeneity in land surface characteristics on the large-scale fluxes of water and energy in land-atmosphere system has become a central focus of many of the climatology research experiments. The acquisition of high resolution land surface data through remote sensing and intensive land-climatology field experiments (like HAPEX and FIFE) has provided data to investigate the interactions between microscale land-atmosphere interactions and macroscale models. One essential research question is how to account for the small scale heterogeneities and whether 'effective' parameters can be used in the macroscale models. To address this question of scaling, three modeling experiments were performed and are reviewed in the paper. The first is concerned with the aggregation of parameters and inputs for a terrestrial water and energy balance model. The second experiment analyzed the scaling behavior of hydrologic responses during rain events and between rain events. The third experiment compared the hydrologic responses from distributed models with a lumped model that uses spatially constant inputs and parameters. The results show that the patterns of small scale variations can be represented statistically if the scale is larger than a representative elementary area scale, which appears to be about 2 - 3 times the correlation length of the process. For natural catchments this appears to be about 1 - 2 sq km. The results concerning distributed versus lumped representations are more complicated. For conditions when the processes are nonlinear, then lumping results in biases; otherwise a one-dimensional model based on 'equivalent' parameters provides quite good results. Further research is needed to fully understand these conditions.

  12. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment

    PubMed Central

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-01-01

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments. PMID:27589755

  13. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    PubMed

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-08-30

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.

  14. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    PubMed

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-01-01

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments. PMID:27589755

  15. Simulation evaluation of two VTOL control/display systems in IMC approach and shipboard landing

    NASA Technical Reports Server (NTRS)

    Merrick, V. K.

    1984-01-01

    Two control/display systems, which differed in overall complexity but were both designed for VTOL flight operations to and from small ships in instrument meteorological conditions (IMC), were tested using the Ames Flight Simulator for Advanced Aircraft (FSAA). Both systems have attitude command in transition and horizontal-velocity command in hover; the more complex system also has longitudinal-acceleration and flightpath-angle command in transition, and vertical-velocity command in hover. The most important overall distinction between the two systems for the viewpoint of implementation is that in one - the more complex - engine power and nozzle position are operated indirectly through flight controllers, whereas in the other they are operated directly by the pilot. Simulated landings were made on a moving model of a DD 963 Spruance-class destroyer. Acceptable transitions can be performed in turbulence of 3 m/sec rms using either system. Acceptable landings up to sea state 6 can be performed using the more complex system, and up to sea state 5 using the other system.

  16. Bioenergy costs and potentials with special attention to implications for the land system

    NASA Astrophysics Data System (ADS)

    Popp, A.; Lotze-Campen, H.; Dietrich, J.; Klein, D.; Bauer, N.; Krause, M.; Beringer, T.; Gerten, D.

    2011-12-01

    In the coming decades, an increasing competition for global land and water resources can be expected, due to rising demand for agricultural products, goals of nature conservation, and changing production conditions due to climate change. Especially biomass from cellulosic bioenergy crops, such as Miscanthus or poplar, is being proposed to play a substantial role in future energy systems if climate policy aims at stabilizing greenhouse gas (GHG) concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements, land availability for biomass plantations, and implications for the land system. In order to explore the cost-effective contribution of bioenergy to a low carbon transition with special attention to implications for the land system, we present a modeling framework with detailed biophysical and economic representation of the land and energy sector: We have linked the global dynamic vegetation and water balance model LPJmL (Bondeau et al. 2007, Rost et al. 2008), the global land and water use model MAgPIE (Lotze-Campen et al. 2008, Popp et al. 2010), and the global energy-economy-climate model ReMIND (Leimbach et al. 2009). In this modeling framework LPJmL supplies spatially explicit (0.5° resolution) agricultural yields as well as carbon and water stocks and fluxes. Based on this biophysical input MAgPIE delivers cost-optimized land use patterns (0.5° resolution), associated GHG emissions and rates of future yield increases in agricultural production. Moreover, shadow prices are calculated for irrigation water (as an indicator for water scarcity), food commodities, and bioenergy (as an indicator for changes in production costs) under different land use constraints such as forest conservation for climate change mitigation and as a contribution to biodiversity conservation. The energy-economy-climate model ReMIND generates the demand for

  17. Selection of the Mars Exploration Rover landing sites

    USGS Publications Warehouse

    Golombek, M.P.; Grant, J. A.; Parker, T.J.; Kass, D.M.; Crisp, J.A.; Squyres, S. W.; Haldemann, A.F.C.; Adler, M.; Lee, W.J.; Bridges, N.T.; Arvidson, R. E.; Carr, M.H.; Kirk, R.L.; Knocke, P.C.; Roncoli, R.B.; Weitz, C.M.; Schofield, J.T.; Zurek, R.W.; Christensen, P.R.; Fergason, R.L.; Anderson, F.S.; Rice, J. W.

    2003-01-01

    The selection of Meridiani Planum and Gusev crater as the Mars Exploration Rover landing sites took over 2 years, involved broad participation of the science community via four open workshops, and narrowed an initial ???155 potential sites (80-300 ?? 30 km) to four finalists based on science and safety. Engineering constraints important to the selection included (1) latitude (10??N- 15??S) for maximum solar power, (2) elevation (less than - 1.3 km) for sufficient atmosphere to slow the lander, (3) low horizontal winds, shear, and turbulence in the last few kilometers to minimize horizontal velocity, (4) low 10-m-scale slopes to reduce airbag spin-up and bounce, (5) moderate rock abundance to reduce abrasion or strokeout of the airbags, and (6) a radar-reflective, load-bearing, and trafficable surface safe for landing and roving that is not dominated by fine-grained dust. The evaluation of sites utilized existing as well as targeted orbital information acquired from the Mars Global Surveyor and Mars Odyssey. Three of the final four landing sites show strong evidence for surface processes involving water and appear capable of addressing the science objectives of the missions, which are to determine the aqueous, climatic, and geologic history of sites on Mars where conditions may have been favorable to the preservation of evidence of possible prebiotic or biotic processes. The evaluation of science criteria placed Meridiani and Gusev as the highest-priority sites. The evaluation of the three most critical safety criteria (10-m-scale slopes, rocks, and winds) and landing simulation results indicated that Meridiani and Elysium Planitia are the safest sites, followed by Gusev and Isidis Planitia. Copyright 2003 by the American Geophysical Union.

  18. Research on the electro-optical assistant landing system based on the dual camera photogrammetry algorithm

    NASA Astrophysics Data System (ADS)

    Mi, Yuhe; Huang, Yifan; Li, Lin

    2015-08-01

    Based on the location technique of beacon photogrammetry, Dual Camera Photogrammetry (DCP) algorithm was used to assist helicopters landing on the ship. In this paper, ZEMAX was used to simulate the two Charge Coupled Device (CCD) cameras imaging four beacons on both sides of the helicopter and output the image to MATLAB. Target coordinate systems, image pixel coordinate systems, world coordinate systems and camera coordinate systems were established respectively. According to the ideal pin-hole imaging model, the rotation matrix and translation vector of the target coordinate systems and the camera coordinate systems could be obtained by using MATLAB to process the image information and calculate the linear equations. On the basis mentioned above, ambient temperature and the positions of the beacons and cameras were changed in ZEMAX to test the accuracy of the DCP algorithm in complex sea status. The numerical simulation shows that in complex sea status, the position measurement accuracy can meet the requirements of the project.

  19. Summary for policymakers: Unlocking the sustainable potential of land resources. Evaluation systems, strategies and tools

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land evaluation can be used by national policymakers, international development organizations, farmers, and conservationists to increase productivity, biodiversity conservation success, and to promote innovation. Land evaluation helps make better decisions about how to use the land, and is therefore...

  20. Atmospheric Risk Assessment for the Mars Science Laboratory Entry, Descent, and Landing System

    NASA Technical Reports Server (NTRS)

    Chen, Allen; Vasavada, Ashwin; Cianciolo, Alicia; Barnes, Jeff; Tyler, Dan; Hinson, David; Lewis, Stephen

    2010-01-01

    In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. As with previous Mars landers, atmospheric conditions during entry, descent, and landing directly impact the performance of MSL's EDL system. While the vehicle's novel guided entry system allows it to "fly out" a range of atmospheric uncertainties, its trajectory through the atmosphere creates a variety of atmospheric sensitivities not present on previous Mars entry systems and landers. Given the mission's stringent landing capability requirements, understanding the atmosphere state and spacecraft sensitivities takes on heightened importance. MSL's guided entry trajectory differs significantly from recent Mars landers and includes events that generate different atmospheric sensitivities than past missions. The existence of these sensitivities and general advancement in the state of Mars atmospheric knowledge has led the MSL team to employ new atmosphere modeling techniques in addition to past practices. A joint EDL engineering and Mars atmosphere science and modeling team has been created to identify the key system sensitivities, gather available atmospheric data sets, develop relevant atmosphere models, and formulate methods to integrate atmosphere information into EDL performance assessments. The team consists of EDL engineers, project science staff, and Mars atmospheric scientists from a variety of institutions. This paper provides an overview of the system performance sensitivities that have driven the atmosphere modeling approach, discusses the atmosphere data sets and models employed by the team as a result of the identified sensitivities, and introduces the tools used to translate atmospheric knowledge into quantitative EDL performance assessments.

  1. Validation of a land data assimilation system using river discharge and agricultural yield observations

    NASA Astrophysics Data System (ADS)

    Calvet, Jean-Christophe; Barbu, Alina; Fairbairn, David; Gelati, Emiliano

    2015-04-01

    Meteo-France develops the ISBA-A-gs generic Land Surface Model (LSM) able to represent the diurnal cycle of the surface fluxes together with the seasonal, interannual and decadal variability of the vegetation biomass. The LSM is embedded in the SURFEX modeling platform together with a simplified extended Kalman filter. These tools form a Land Data Assimilation System (LDAS). The current version of the LDAS assimilates SPOT-VGT LAI and ASCAT surface soil moisture (SSM) products over France (8km x 8km), and a passive monitoring of albedo, FAPAR and Land Surface temperature (LST) is performed (i.e., the simulated values are compared with the satellite products). The vegetation biomass is analysed together with the root-zone soil moisture. The LDAS was coupled to the MODCOU hydrological model, and this allowed the use of in situ river discharge observations for the validation of the whole system. Moreover, open-loop (i.e. without integrationg satellite observations into the model) simulations of the above-ground biomass of straw cereals were compared with the analyzed values (i.e. after integration of satellite observations into the model), and with agricultural yield observations. It is shown that the assimilation of satellite observations sharply enhances the overall correlation of the simulated above-ground biomass with the agricultural yield observations.

  2. Extreme temperature trends in major cropping systems and their relation to agricultural land use change

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.

    2015-12-01

    High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.

  3. Conservation strategies for effective land management of protected areas using an erosion prediction information system (EPIS).

    PubMed

    Millward, A A; Mersey, J E

    2001-04-01

    This research demonstrates the predictive modeling capabilities of a geographic information system (GIS)-based soil erosion potential model to assess the effects of implementing land use change within a tropical watershed. The Revised Universal Soil Loss Equation (RUSLE) was integrated with a GIS to produce an Erosion Prediction Information System (EPIS) and modified to reflect conditions found in the mountainous tropics. Research was conducted in the Zenzontia subcatchment of the Río Ayuquíla, located within the Sierra de Manantlán Biosphere Reserve (SMBR), México. Expanding agricultural activities within this area will accentuate the already high rate of soil erosion and resultant sediment loading occurring in the Río Ayuquíla. Two land-use change scenarios are modeled with the EPIS: (1) implementation of soil conservation practices in erosion prone locations; and (2) selection of sites for agricultural expansion which minimize potential soil loss. Confronted with limited financial resources and the necessity for expedient action, managers of the SMBR can draw upon the predictive capacity of the EPIS to facilitate rapid and informed land-use planning decisions.

  4. Evaluation ofthe Middle East and North Africa Land Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Bolten, John D.; Rodell, Matthew; Zaitchik, Benjamin; Ozdogan, Mutlu; Anderson, Martha; Bergaoui, Karim B.; Khalaf, Adla J.; McDonnell, Rachael A.

    2012-01-01

    The Middle East and North Africa (MENA) region is dominated by dry, warm deserts, areas of dense population, and inefficient use of fresh water resources. Due to the scarcity, high intensity, and short duration of rainfall in the MENA, the region is prone to hydro climatic extremes that are realized by devastating floods and times of drought. However, given its widespread water stress and the considerable demand for water, the MENA remains relatively poorly monitored. This is due in part to the shortage of meteorological observations and the lack of data sharing between nations. As a result, the accurate monitoring of the dynamics of the water cycle in the MENA is difficult. The Land Data Assimilation System for the MENA region (MENA LDAS) has been developed to provide regional, gridded fields of hydrological states and fluxes relevant for water resources assessments. As an extension of the Global Land Data Assimilation System (GLDAS), the MENA LDAS was designed to aid in the identification and evaluation of regional hydrological anomalies by synergistically combining the physically-based Catchment Land Surface Model (CLSM) with observations from several independent data products including soil-water storage variations from the Gravity Recovery and Climate Experiment (GRACE) and irrigation intensity derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). In this fashion, we estimate the mean and seasonal cycle of the water budget components across the MENA.

  5. Development of Thermal Protection Materials for Future Mars Entry, Descent and Landing Systems

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Beck, Robin A. S.; Arnold, James O.; Hwang, Helen; Wright, Michael J.; Szalai, Christine E.; Blosser, Max; Poteet, Carl C.

    2010-01-01

    Entry Systems will play a crucial role as NASA develops the technologies required for Human Mars Exploration. The Exploration Technology Development Program Office established the Entry, Descent and Landing (EDL) Technology Development Project to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. An assessment of current entry system technologies identified significant opportunity to improve the current state of the art in thermal protection materials in order to enable landing of heavy mass (40 mT) payloads. To accomplish this goal, the EDL Project has outlined a framework to define, develop and model the thermal protection system material concepts required to allow for the human exploration of Mars via aerocapture followed by entry. Two primary classes of ablative materials are being developed: rigid and flexible. The rigid ablatives will be applied to the acreage of a 10x30 m rigid mid L/D Aeroshell to endure the dual pulse heating (peak approx.500 W/sq cm). Likewise, flexible ablative materials are being developed for 20-30 m diameter deployable aerodynamic decelerator entry systems that could endure dual pulse heating (peak aprrox.120 W/sq cm). A technology Roadmap is presented that will be used for facilitating the maturation of both the rigid and flexible ablative materials through application of decision metrics (requirements, key performance parameters, TRL definitions, and evaluation criteria) used to assess and advance the various candidate TPS material technologies.

  6. Flight Testing a Real-Time Hazard Detection System for Safe Lunar Landing on the Rocket-Powered Morpheus Vehicle

    NASA Technical Reports Server (NTRS)

    Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.

    2015-01-01

    The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.

  7. Land use, spatial scale, and stream systems: Lessons from an agricultural region

    USGS Publications Warehouse

    Vondracek, B.; Blann, K.L.; Cox, C.B.; Nerbonne, J.F.; Mumford, K.G.; Nerbonne, B.A.; Sovell, L.A.; Zimmerman, J.K.H.

    2005-01-01

    We synthesized nine studies that examined the influence of land use at different spatial scales in structuring biotic assemblages and stream channel characteristics in southeastern Minnesota streams. Recent studies have disagreed about the relative importance of catchment versus local characteristics in explaining variation in fish assemblages. Our synthesis indicates that both riparian- and catchment-scale land use explained significant variation in water quality, channel morphology, and fish distribution and density. Fish and macroinvertebrate assemblages can be positively affected by increasing the extent of perennial riparian and upland vegetation. Our synthesis is robust; more than 425 stream reaches were examined in an area that includes a portion of three ecoregions. Fishes ranged from coldwater to warmwater adapted. We suggest that efforts to rehabilitate stream system form and function over the long term should focus on increasing perennial vegetation in both riparian areas and uplands and on managing vegetation in large, contiguous blocks. ?? 2005 Springer Science+Business Media, Inc.

  8. Global positioning system surveying to monitor land subsidence in Sacramento Valley, California, USA

    USGS Publications Warehouse

    Ikehara, M.E.

    1994-01-01

    A subsidence research program began in 1985 to document the extent and magnitude of land subsidence in Sacramento Valley, California, an area of about 15 600 km2m, using Global Positioning System (GPS) surveying. In addition to periodic conventional spirit levelling, an examination was made of the changes in GPS-derived ellipsoidal height differences (summary differences) between pairs of adjacent bench marks in central Sacramento Valley from 1986 to 1989. The average rates of land subsidence in the southern Sacramento Valley for the past several decades were determined by comparing GPS-derived orthometric heights with historic published elevations. A maximum average rate of 0.053 m year-1 (0.90 m in 17 years) of subsidence has been measured. -Author

  9. Analyzing the flared landing task with pitch-rate flight control systems

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Yousefpor, Marduke

    1990-01-01

    A closed-loop handling qualities methodology is applied to an analysis of the flared landing task with pitch-rate flight control systems. A model of pilot behavior throughout approach and flare is developed which postulates the manner in which the pilot may move from pitch attitude to flight path angle control. Twenty-five configurations flight tested on the NC-131H Total In-flight Simulator aircraft are analyzed using a structural pilot model ad a handling qualities methodology previously reported in the literature. Closed-loop simulation of the simplified landing task is undertaken using the structural model. The pilot ratings from flight test extended the data base supporting the utility of a model-based handling qualities metric. A handling qualities sensitivity function is introduced which may have potential as a design tool.

  10. Propagation effects for land mobile satellite systems: Overview of experimental and modeling results

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1992-01-01

    Models developed and experiments performed to characterize the propagation environment associated with land mobile communication using satellites are discussed. Experiments were carried out with transmitters on stratospheric balloons, remotely piloted aircraft, helicopters, and geostationary satellites. This text is comprised of compiled experimental results for the expressed use of communications engineers, designers of planned Land Mobile Satellite Systems (LMSS), and modelers of propagation effects. The results presented here are mostly derived from systematic studies of propagation effects for LMSS geometries in the United States associated with rural and suburban regions. Where applicable, the authors also draw liberally from the results of other related investigations in Canada, Europe, and Australia. Frequencies near 1500 MHz are emphasized to coincide with frequency bands allocated for LMSS by the International Telecommunication Union, although earlier experimental work at 870 MHz is also included.

  11. Development and flight test of a helicopter compact, portable, precision landing system concept

    NASA Technical Reports Server (NTRS)

    Clary, G. R.; Bull, J. S.; Davis, T. J.; Chisholm, J. P.

    1984-01-01

    An airborne, radar-based, precision approach concept is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. A transponder-based beacon landing system (BLS) applying state-of-the-art X-band radar technology and digital processing techniques, was built and is being flight tested to demonstrate the concept feasibility. The BLS airborne hardware consists of an add-on microprocessor, installed in conjunction with the aircraft weather/mapping radar, which analyzes the radar beacon receiver returns and determines range, localizer deviation, and glide-slope deviation. The ground station is an inexpensive, portable unit which can be quickly deployed at a landing site. Results from the flight test program show that the BLS concept has a significant potential for providing rotorcraft with low-cost, precision instrument approach capability in remote areas.

  12. Land mobile satellite communication system. Volume 3: Annexes to volume 2: Particular aspects of market analyses

    NASA Astrophysics Data System (ADS)

    Carnebianca, C.; Pavesi, B.; Tuozzi, A.; Capone, R.

    1986-06-01

    The socioeconomic desirability in terms of market demand, technical economic feasibility, and price-performance for a Land Mobile Communication system ground based and/or satellite aided, able to satisfy the request of the traffic demand, foreseeable in the 1995 to 2005 time frame, for the Western European countries was assessed. The criterion of economic value of the mobile system is considered as the driving element. Data on traffic; socioeconomic factors; economic factors; and radiotelephony, paging, and dispatch subscription and value for money trends are presented.

  13. LUMIS: Land Use Management and Information Systems; coordinate oriented program documentation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An integrated geographic information system to assist program managers and planning groups in metropolitan regions is presented. The series of computer software programs and procedures involved in data base construction uses the census DIME file and point-in-polygon architectures. The system is described in two parts: (1) instructions to operators with regard to digitizing and editing procedures, and (2) application of data base construction algorithms to achieve map registration, assure the topological integrity of polygon files, and tabulate land use acreages within administrative districts.

  14. Evaluation of Robotic Systems to Carry Out Traverse Execution, Opportunistic Science, and Landing Site Evaluation Tasks

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Leonard, Matther J.; Pacal, Lee

    2011-01-01

    This report covers the execution of and results from the activities proposed and approved in Exploration Analogs and Mission Development (EAMD) Field Test Protocol HMP2010: Evaluation of Robotic Systems to carry out Traverse Execution, Opportunistic Science, and Landing Site Evaluation Tasks. The field tests documented in this report examine one facet of a larger program of planetary surface exploration. This program has been evolving and maturing for several years, growing from a broad policy statement with a few specified milestones for NASA to an international effort with much higher fidelity descriptions of systems and operations necessary to accomplish this type of exploration.

  15. Refinement and validation of two digital Microwave Landing System (MLS) theoretical models

    NASA Technical Reports Server (NTRS)

    Duff, W. G.; Guarino, C. R.

    1975-01-01

    Two digital microwave landing system theoretical models are considered which are generic models for the Doppler and scanning-beam frequency reference versions of the MLS. These models represent errors resulting from both system noise and discrete multipath. The data used for the validation effort were obtained from the Texas Instrument conventional scanning beam and the Hazeltine Doppler feasibility hardware versions of the MLS. Topics discussed include tape read software, time history plots, computation of power spectral density, smoothed power spectra, best-fit models, different equations for digital simulation, and discrete multipath errors.

  16. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    NASA Technical Reports Server (NTRS)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  17. Validation of the Global Land Data Assimilation System based on measurements of soil temperature profiles

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Xiuping; Chen, Yingying; Yang, Kun; Chen, Deliang

    2016-04-01

    Soil temperature is a key parameter in the soil-vegetation-atmosphere system. It plays an important role in the land surface water and energy cycles, and has a major influence on vegetation growth and other hydrological aspects. We evaluated the accuracy of the soil temperature profiles from the Global Land Data Assimilation System (GLDAS) using nine observational networks across the world and aimed to find a reliable global soil temperature profile dataset for future hydrological and ecological studies. In general, the soil temperature profile data generated by the Noah model driven by the GLDAS forcing data (GLDAS_Noah10 and GLDAS_Noah10_v2) were found to have high skills in terms of daily, monthly, and mean seasonal variations, indicated by smaller bias and root-mean-square-error (RMSE) (both < 3 °C) and correlation coefficients larger than 0.90. Conversely, the Community Land Model (CLM) results (GLDAS_CLM10) generally showed larger bias and RMSE (both > 4°C). Further analysis showed that the overestimation by GLDAS_CLM10 was mainly caused by overestimation of the ground heat flux, determined by the thermal conductivity parameterization scheme, whereas the underestimation by GLDAS_Noah10 was due to underestimation of downward longwave radiation from the forcing data. Thus, more accurate forcing data should be required for the Noah model and an improved thermal parameterization scheme should be developed for the CLM. These approaches will improve the accuracy of simulated soil temperatures. To our knowledge, it is the first study to evaluate the GLDAS soil temperatures with comprehensive in situ observations across the world, and has a potential to facilitate an overall improvement of the GLDAS products (not only soil temperatures but also the related energy and water fluxes) as well as a refinement of the land surface parameterization used in GLDAS.

  18. Category identification of changed land-use polygons in an integrated image processing/geographic information system

    NASA Technical Reports Server (NTRS)

    Westmoreland, Sally; Stow, Douglas A.

    1992-01-01

    A framework is proposed for analyzing ancillary data and developing procedures for incorporating ancillary data to aid interactive identification of land-use categories in land-use updates. The procedures were developed for use within an integrated image processsing/geographic information systems (GIS) that permits simultaneous display of digital image data with the vector land-use data to be updated. With such systems and procedures, automated techniques are integrated with visual-based manual interpretation to exploit the capabilities of both. The procedural framework developed was applied as part of a case study to update a portion of the land-use layer in a regional scale GIS. About 75 percent of the area in the study site that experienced a change in land use was correctly labeled into 19 categories using the combination of automated and visual interpretation procedures developed in the study.

  19. From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations

    SciTech Connect

    Di Vittorio, Alan V.; Chini, Louise M.; Bond-Lamberty, Benjamin; Mao, Jiafu; Shi, Xiaoying; Truesdale, John E.; Craig, Anthony P.; Calvin, Katherine V.; Jones, Andrew D.; Collins, William D.; Edmonds, James A.; Hurtt, George; Thornton, Peter E.; Thomson, Allison M.

    2014-11-27

    Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). To facilitate consistency, CMIP5 used a novel land use harmonization to provide ESMs with seamless, 1500-2100 land use trajectories generated by historical data and four IAMs. However, we have identified and partially addressed a major gap in the CMIP5 land coupling design. The CMIP5 Community ESM (CESM) global afforestation is only 22% of RCP4.5 afforestation from 2005 to 2100. Likewise, only 17% of the Global Change Assessment Model’s (GCAM’s) 2040 RCP4.5 afforestation signal, and none of the pasture loss, were transmitted to CESM within a newly integrated model. This is a critical problem because afforestation is necessary for achieving the RCP4.5 climate stabilization. We attempted to rectify this problem by modifying only the ESM component of the integrated model, enabling CESM to simulate 66% of GCAM’s afforestation in 2040, and 94% of GCAM’s pasture loss as grassland and shrubland losses. This additional afforestation increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, implying different climate scenarios between CMIP5 GCAM and CESM. Similar inconsistencies likely exist in other CMIP5 model results, primarily because land cover information is not shared between models, with possible contributions from afforestation exceeding model-specific, potentially viable forest area. Further work to harmonize land cover among models will be required to adequately rectify this problem.

  20. Land desertification monitoring and assessment in Yulin of Northwest China using remote sensing and geographic information systems (GIS).

    PubMed

    Zhang, Yuanzhi; Chen, Zhengyi; Zhu, Boqin; Luo, Xiuyue; Guan, Yanning; Guo, Shan; Nie, Yueping

    2008-12-01

    The objective of this study is to develop techniques for assessing and analysing land desertification in Yulin of Northwest China, as a typical monitoring region through the use of remotely sensed data and geographic information systems (GIS). The methodology included the use of Landsat TM data from 1987, 1996 and 2006, supplemented by aerial photos in 1960, topographic maps, field work and use of other existing data. From this, land cover, the Normalised Difference Vegetation Index (NDVI), farmland, woodland and grassland maps at 1:100,000 were prepared for land desertification monitoring in the area. In the study, all data was entered into a GIS using ILWIS software to perform land desertification monitoring. The results indicate that land desertification in the area has been developing rapidly during the past 40 years. Although land desertification has to some extent been controlled in the area by planting grasses and trees, the issue of land desertification is still serious. The study also demonstrates an example of why the integration of remote sensing with GIS is critical for the monitoring of environmental changes in arid and semi-arid regions, e.g. in land desertification monitoring in the Yulin pilot area. However, land desertification monitoring using remote sensing and GIS still needs to be continued and also refined for the purpose of long-term monitoring and the management of fragile ecosystems in the area.

  1. Integrated Land Information System - a relevant step for development of information background for PEEX?

    NASA Astrophysics Data System (ADS)

    Shvidenko, Anatoly; Schepaschenko, Dmitry; Baklanov, Alexander

    2014-05-01

    PEEX, as a long-term multidisciplinary integrated study, needs a systems design of a relevant information background. The idea of development of an Integrated Land Information System (ILIS) for the region as an initial step of future advanced integrated observing systems is considered as a promising way. The ILIS could serve (1) for introduction of a unified system of classification and quantification of environment, ecosystems and landscapes; (2) as a benchmark for tracing the dynamics of land use - land cover and ecosystems parameters, particularly for forests; (3) as a systems background for empirical assessment of indicators of an interest (e.g., components of biogeochemical cycles); (4) comparisons, harmonizing and mutual constraints of the results obtained by different methods; (5) for parameterization of surface fluxes for the 'atmosphere-land' system; (6) for use in divers models and for models' validation; (7) for downscaling of available information to a required scale; (8) for understanding of gradients for up-scaling of "point" data, etc. The ILIS is presented in form of multi-layer and multi-scale GIS that includes a hybrid land cover (HLC) by a definite date and corresponding legends and attributive databases. The HLC is based on relevant combination of a "multi" remote sensing concept that includes sensors of different type and resolution and ground data. The ILIS includes inter alia (1) general geographical and biophysical description of the territory (landscapes, soil, vegetation, hydrology, bioclimatic zones, permafrost etc.); (2) diverse datasets of measurements in situ; (3) sets of empirical and semi-empirical aggregation and auxiliary models, (4) data on different inventories and surveys (forest inventory, land account, results of forest monitoring); (5) spatial and temporal description of anthropogenic and natural disturbances; (5) climatic data with relevant temporal resolution etc. The ILIS should include only the data with known

  2. Surface Hydrology in Global River Basins in the Off-Line Land-Surface GEOS Assimilation (OLGA) System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Yang, Runhua; Houser, Paul R.

    1998-01-01

    Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.

  3. CV-990 Landing Systems Research Aircraft (LSRA) flight #145 drilling of shuttle tire using Tire Assa

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Created from a 1/16th model of a German World War II tank, the TAV (Tire Assault Vehicle) was an important safety feature for the Convair 990 Landing System Research Aircraft, which tested space shuttle tires. It was imperative to know the extreme conditions the shuttle tires could tolerate at landing without putting the shuttle and its crew at risk. In addition, the CV990 was able to land repeatedly to test the tires. The TAV was built from a kit and modified into a radio controlled, video-equipped machine to drill holes in aircraft test tires that were in imminent danger of exploding because of one or more conditions: high air pressure, high temperatures, and cord wear. An exploding test tire releases energy equivalent to two and one-half sticks of dynamite and can cause severe injuries to anyone within 50 ft. of the explosion, as well as ear injury - possibly permanent hearing loss - to anyone within 100 ft. The degree of danger is also determined by the temperature pressure and cord wear of a test tire. The TAV was developed by David Carrott, a PRC employee under contract to NASA.

  4. Noah-MP-Crop: Enhancing cropland representation in the community land surface modeling system

    NASA Astrophysics Data System (ADS)

    Liu, X.; Chen, F.; Barlage, M. J.; Zhou, G.; Niyogi, D.

    2015-12-01

    Croplands are important in land-atmosphere interactions and in modifying local and regional weather and climate. Despite their importance, croplands are poorly represented in the current version of the coupled Weather Research and Forecasting (WRF)/ Noah land-surface modeling system, resulting in significant surface temperature and humidity biases across agriculture- dominated regions of the United States. This study aims to improve the WRF weather forecasting and regional climate simulations during the crop growing season by enhancing the representation of cropland in the Noah-MP land model. We introduced dynamic crop growth parameterization into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at both the field and regional scales with multiple crop biomass datasets, surface fluxes and soil moisture/temperature observations. We also integrated a detailed cropland cover map into WRF, enabling the model to simulate corn and soybean field across the U.S. Great Plains. Results show marked improvement in the Noah-MP-Crop performance in simulating leaf area index (LAI), crop biomass, soil temperature, and surface fluxes. Enhanced cropland representation is not only crucial for improving weather forecasting but can also help assess potential impacts of weather variability on regional hydrometeorology and crop yields. In addition to its applications to WRF, Noah-MP-Crop can be applied in high-spatial-resolution regional crop yield modeling and drought assessments

  5. Assimilation of SMOS Retrieved Soil Moisture into the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Case, Jonathan; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) instrument are assimilated into the Noah land surface model (LSM) within the NASA Land Information System (LIS). Before assimilation, SMOS retrievals are bias-corrected to match the model climatological distribution using a Cumulative Distribution Function (CDF) matching approach. Data assimilation is done via the Ensemble Kalman Filter. The goal is to improve the representation of soil moisture within the LSM, and ultimately to improve numerical weather forecasts through better land surface initialization. We present a case study showing a large area of irrigation in the lower Mississippi River Valley, in an area with extensive rice agriculture. High soil moisture value in this region are observed by SMOS, but not captured in the forcing data. After assimilation, the model fields reflect the observed geographic patterns of soil moisture. Plans for a modeling experiment and operational use of the data are given. This work helps prepare for the assimilation of Soil Moisture Active/Passive (SMAP) retrievals in the near future.

  6. Evaluation of the Space Shuttle Transatlantic Abort Landing Atmospheric Sounding System

    NASA Technical Reports Server (NTRS)

    Leahy, Frank B.

    2004-01-01

    This paper describes a study that was conducted to determine the quality of thermodynamic and wind data measured by the Space Shuttle Transatlantic Abort Landing (TAL) Atmospheric Sounding System (TASS). The system has Global Positioning System (GPS) tracking capability and provides profiles of atmospheric parameters such as temperature, relative humidity, and wind in support of potential emergency Space Shuttle landings at TAL sites. Ten comparison flights between the Low-Resolution Flight Element (LRFE) of the Automated Meteorological Profiling System (AMPS) and TASS were conducted at the Eastern Test Range (ETR) in early 2002. Initial results indicated that wind, temperature, and relative humidity compared well. However, incorrect GPS settings in the TASS software were resulting in altitude differences of about 60 to 70 m (approximately 200 to 230 ft) and air pressure differences of approximately 4 hectoPascals (hPa). TASS software updates to correct altitude data were completed in early 2003. Subsequent testing showed that altitude and air pressure differences were generally less than 5 m and 1 hPa, respectively.

  7. Design, building, and testing of the post landing systems for the assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A.

    1991-01-01

    The design, building, and testing of the post landing support systems for a water landing Assured Crew Return Vehicle (ACRV) are presented. One ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment to Assured Crew Return Capability in the event of an accident or illness. The configuration of the ACRV is based on an Apollo Command Module (ACM) derivative. The 1990 to 91 effort concentrated on the design, building, and testing of a 1/5 scale model of the egress and stabilization systems. The objective was to determine the feasibility of: (1) stabilizing the ACM out of the range of motions which cause sea sickness; and (2) the safe and rapid removal of a sick or injured crewmember from the ACRV. The ACRV model construction is presented along with a discussion of the water test facility. The rapid egress system is also presented along with a discussion of the ACRV stabilization control systems. Results are given and discussed in detail.

  8. Definition and testing of the hydrologic component of the pilot land data system

    NASA Technical Reports Server (NTRS)

    Ragan, Robert M.; Sircar, Jayanta K.

    1987-01-01

    The specific aim was to develop within the Pilot Land Data System (PLDS) software design environment, an easily implementable and user friendly geometric correction procedure to readily enable the georeferencing of imagery data from the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA series spacecraft. A software subsystem was developed within the guidelines set by the PLDS development environment utilizing NASA Goddard Space Flight Center (GSFC) Image Analysis Facility's (IAF's) Land Analysis Software (LAS) coding standards. The IAS current program development environment, the Transportable Applications Executive (TAE), operates under a VAX VMS operating system and was used as the user interface. A brief overview of the ICARUS algorithm that was implemented in the set of functions developed, is provided. The functional specifications decription is provided, and a list of the individual programs and directory names containing the source and executables installed in the IAF system are listed. A user guide is provided for the LAS system documentation format for the three functions developed.

  9. A Catchment Systems Engineering (CSE) approach to managing intensively farmed land

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark; ODonnell, Greg

    2014-05-01

    Rural land management practices can have a significant impact on the hydrological and nutrient dynamics within a catchment which can dramatically alter the way it processes water, exacerbating nutrient losses from the system. A collaborative and holistic approach for managing potential conflicts between land management activity for food production alongside the aspiration to achieve good water quality and the need to make space for water can ensure the long-term sustainability of our agricultural catchments. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source many runoff attenuation features or measures can be co-located to achieve benefits for water quality. Examples of community-led mitigation measures using the CSE approach will be presented from two catchments in Northumberland, Northern England, that demonstrate the generic framework for identification of multipurpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-field sediment filters and sediment traps which demonstrate how sediment can be trapped locally (including silt and clay fractions) and be recovered for use back on the land. Deliverables from this CSE approach includes the reduction of downstream flood risk and capturing of sediment and associated nutrients. The CSE approach allows for a more natural flood and nutrient management approach which helps to restore vital catchment functions to re-establish a healthy catchment system.

  10. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  11. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  12. Preliminary comparative assessment of land use for the Satellite Power System (SPS) and alternative electric energy technologies

    NASA Astrophysics Data System (ADS)

    Newsom, D. E.; Wolsko, T.

    1980-04-01

    A preliminary comparative assessment of land use for the satellite power system (SPS), other solar technologies, and alternative electric energy technologies was conducted. The alternative technologies are coal gasification/combined-cycle, coal fluidized-bed combustion (FBC), light water reactor (LWR), liquid metal fast breeder reactor (LMFBR), terrestrial photovoltaics (TPV), solar thermal electric (STE), and ocean thermal energy conversion (OTEC). The major issues of a land use assessment are the quantity, purpose, duration, location, and costs of the required land use. The phased methodology described treats the first four issues, but not the costs. Several past efforts are comparative or single technology assessment are reviewed briefly. The current state of knowledge about land use is described for each technology. Conclusions are drawn regarding deficiencies in the data on comparative land use and needs for further research.

  13. Preliminary comparative assessment of land use for the Satellite Power System (SPS) and alternative electric energy technologies

    NASA Technical Reports Server (NTRS)

    Newsom, D. E.; Wolsko, T.

    1980-01-01

    A preliminary comparative assessment of land use for the satellite power system (SPS), other solar technologies, and alternative electric energy technologies was conducted. The alternative technologies are coal gasification/combined-cycle, coal fluidized-bed combustion (FBC), light water reactor (LWR), liquid metal fast breeder reactor (LMFBR), terrestrial photovoltaics (TPV), solar thermal electric (STE), and ocean thermal energy conversion (OTEC). The major issues of a land use assessment are the quantity, purpose, duration, location, and costs of the required land use. The phased methodology described treats the first four issues, but not the costs. Several past efforts are comparative or single technology assessment are reviewed briefly. The current state of knowledge about land use is described for each technology. Conclusions are drawn regarding deficiencies in the data on comparative land use and needs for further research.

  14. Use of South American Land Data Assimilation System (SALDAS) to Assess Impacts of Biofuel Expansion on Water Resources in Brazil

    NASA Astrophysics Data System (ADS)

    Goncalves, L.; De Mattos, J. Z.; Scarpare, F.; Galdos, M. V.; Scanlon, B.; Long, D.

    2013-12-01

    Large scale expansion of sugarcane production in Brazil is very positive in terms of biofuels and greenhouse gases; however, potential impacts on water resources are uncertain. The objective of this analysis is to assess potential impacts of biofuel expansion in Central South Brazil on water resources using the South American Land Data Assimilation System (SALDAS). SALDAS is driven by 3 hourly atmospheric forcing. Limited surface observations have resulted in use of remotely sensed data merged with surface observations to calculate precipitation and shortwave radiation fields. SALDAS simulates partitioning of water and energy in response to spatiotemporal variability in climate forcing and land use change related to biofuel expansion. The impacts of land use changes related to biofuel expansion will be examined by evaluating water and energy fluxes in areas of different land use and substituting space for time. Output from SALDAS will be compared with coarser resolution Global Land Data Assimilation System (GLDAS) and other more traditional modeling approaches, such as CROPWAT, to estimate changes in water use from biofuel expansion. Land surface models provide an excellent reconnaissance tool to better understand the hydrology of regional systems in response to climate and land use in data constrained regions.

  15. Airborne antenna coverage requirements for the TCV B-737 aircraft. [for operation with microwave landing systems

    NASA Technical Reports Server (NTRS)

    Southall, W. A., Jr.; White, W. F.

    1978-01-01

    The airborne antenna line of sight look angle requirement for operation with a Microwave Landing System (MLS) was studied. The required azimuth and elevation line of sight look angles from an antenna located on an aircraft to three ground based antenna sites at the Wallops Flight Center (FPS-16 radar, MLS aximuth, and MLS elevation) as the aircraft follows specific approach paths selected as representative of MLS operations at the Denver, Colorado, terminal area are presented. These required azimuth and elevation look angles may be interpreted as basic design requirements for antenna of the TCV B-737 airplane for MLS operations along these selected approach paths.

  16. Flight evaluation of advanced controls and displays for transition and landing on the NASA V/STOL systems research aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III

    1996-01-01

    Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for

  17. Further development and flight test of an autonomous precision landing system using a parafoil

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Sim, Alex G.; Neufeld, David C.; Rennich, Patrick K.; Norris, Stephen R.; Hughes, Wesley S.

    1994-01-01

    NASA Dryden Flight Research Center and NASA Johnson Space Center are jointly conducting a phased program to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of entry from space to a precision landing. The feasibility is being studied using a flight model of a spacecraft in the generic shape of a flattened biconic that weighs approximately 120 lb and is flown under a commercially available ram-air parafoil. Key components of the vehicle include the global positioning system (GPS) guidance for navigation, a flight control computer, an electronic compass, a yaw rate gyro, and an onboard data recorder. A flight test program is being used to develop and refine the vehicle. The primary flight goal is to demonstrate autonomous flight from an altitude of 3,000 m (10,000 ft) with a lateral offset of 1.6 km (1.0 mi) to a precision soft landing. This paper summarizes the progress to date. Much of the navigation system has been tested, including a heading tracker that was developed using parameter estimation techniques and a complementary filter. The autoland portion of the autopilot is still in development. The feasibility of conducting the flare maneuver without servoactuators was investigated as a means of significantly reducing the servoactuator rate and load requirements.

  18. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning.

    PubMed

    Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui

    2016-01-01

    In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles. PMID:27231917

  19. The development and flight test of a deployable precision landing system for spacecraft recovery

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.; Murray, James E.; Neufeld, David C.; Reed, R. Dale

    1993-01-01

    A joint NASA Dryden Flight Research Facility and Johnson Space Center program was conducted to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of entry from space that included a precision landing. The feasibility of this system was studied using a flight model of a spacecraft in the generic shape of a flattened biconic which weighed approximately 150 lb and was flown under a commercially available, ram-air parachute. Key elements of the vehicle included the Global Positioning System guidance for navigation, flight control computer, ultrasonic sensing for terminal altitude, electronic compass, and onboard data recording. A flight test program was used to develop and refine the vehicle. This vehicle completed an autonomous flight from an altitude of 10,000 ft and a lateral offset of 1.7 miles which resulted in a precision flare and landing into the wind at a predetermined location. At times, the autonomous flight was conducted in the presence of winds approximately equal to vehicle airspeed. Several techniques for computing the winds postflight were evaluated. Future program objectives are also presented.

  20. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning

    PubMed Central

    Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui

    2016-01-01

    In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles. PMID:27231917

  1. Impacts of land use on phosphorus transport in a river system

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pant, H. K.

    2010-12-01

    Phosphorus (P) is a primary limiting nutrient in freshwater systems, however, excessive P load in the systems cause eutriphication, resulting in algal blooms and oxygen depletion. This study estimated potential exchange of P between water column and sediments by P sorption, and identified P compounds in sediments by 31Phosphorus Nuclear Magnetic Resonance Spectroscopy in the samples collected from the Bronx River, New York City, NY. Similarly, mineralization, as well as enzymatic hydrolysis using native phosphoatases (NPase) and phosphodiesterase (PDEase) showed that land use changes and other anthropogenic factors had effects on the P availability in the river. Distinguished characteristics of P bioavailability appeared at major tributaries of Sprain Brook and Troublesome Brook, boundary between fresh and saline water at East Tremont Ave, and estuary close to Hunts Point Wastewater Treatment Plant. Incidental sewer overflows at Yonkers, oil spill at East Tremont Avenue Bridge, fertilizer application at Westchester’s lawns, and gardens, animal manure from the zoo, combined sewer overflows (CSOs), storm water runoff from Bronx River Parkway, and inputs from East River influenced spatial and temporal variations on P transport in the river. This study provides an overview of impacts of land use on nutrient transport in a river system, which may help to make effective policies to regulate P application in the river watersheds, in turn, improve water quality and ecological restoration of a river.

  2. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning.

    PubMed

    Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui

    2016-01-01

    In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles.

  3. The development and flight test of a deployable precision landing system for spacecraft recovery

    NASA Astrophysics Data System (ADS)

    Sim, Alex G.; Murray, James E.; Neufeld, David C.; Reed, R. Dale

    1993-09-01

    A joint NASA Dryden Flight Research Facility and Johnson Space Center program was conducted to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of entry from space that included a precision landing. The feasibility of this system was studied using a flight model of a spacecraft in the generic shape of a flattened biconic which weighed approximately 150 lb and was flown under a commercially available, ram-air parachute. Key elements of the vehicle included the Global Positioning System guidance for navigation, flight control computer, ultrasonic sensing for terminal altitude, electronic compass, and onboard data recording. A flight test program was used to develop and refine the vehicle. This vehicle completed an autonomous flight from an altitude of 10,000 ft and a lateral offset of 1.7 miles which resulted in a precision flare and landing into the wind at a predetermined location. At times, the autonomous flight was conducted in the presence of winds approximately equal to vehicle airspeed. Several techniques for computing the winds postflight were evaluated. Future program objectives are also presented.

  4. A web based spatial decision supporting system for land management and soil conservation

    NASA Astrophysics Data System (ADS)

    Terribile, F.; Agrillo, A.; Bonfante, A.; Buscemi, G.; Colandrea, M.; D'Antonio, A.; De Mascellis, R.; De Michele, C.; Langella, G.; Manna, P.; Marotta, L.; Mileti, F. A.; Minieri, L.; Orefice, N.; Valentini, S.; Vingiani, S.; Basile, A.

    2015-02-01

    Today it is evident that there are many contrasting demands on our landscape (e.g. food security, more sustainable agriculture, higher income in rural areas, etc.) but also many land degradation problems. It has been proved that providing operational answers to these demands and problems is extremely difficult. Here we aim to demonstrate that a Spatial Decision Support System based on geospatial cyber-infrastructure (GCI) can embody all of the above, so producing a smart system for supporting decision making for agriculture, forestry and urban planning with respect to the landscape. In this paper, we discuss methods and results of a special kind of GCI architecture, one that is highly focused on soil and land conservation (SOILCONSWEB-LIFE+ project). The system allows us to obtain dynamic, multidisciplinary, multiscale, and multifunctional answers to agriculture, forestry and urban planning issues through the web. The system has been applied to and tested in an area of about 20 000 ha in the South of Italy, within the framework of a European LIFE+ project. The paper reports - as a case study - results from two different applications dealing with agriculture (olive growth tool) and environmental protection (soil capability to protect groundwater). Developed with the help of end users, the system is starting to be adopted by local communities. The system indirectly explores a change of paradigm for soil and landscape scientists. Indeed, the potential benefit is shown of overcoming current disciplinary fragmentation over landscape issues by offering - through a smart web based system - truly integrated geospatial knowledge that may be directly and freely used by any end user (http://www.landconsultingweb.eu). This may help bridge the last much important divide between scientists working on the landscape and end users.

  5. A Web-based spatial decision supporting system for land management and soil conservation

    NASA Astrophysics Data System (ADS)

    Terribile, F.; Agrillo, A.; Bonfante, A.; Buscemi, G.; Colandrea, M.; D'Antonio, A.; De Mascellis, R.; De Michele, C.; Langella, G.; Manna, P.; Marotta, L.; Mileti, F. A.; Minieri, L.; Orefice, N.; Valentini, S.; Vingiani, S.; Basile, A.

    2015-07-01

    Today it is evident that there are many contrasting demands on our landscape (e.g. food security, more sustainable agriculture, higher income in rural areas, etc.) as well as many land degradation problems. It has been proved that providing operational answers to these demands and problems is extremely difficult. Here we aim to demonstrate that a spatial decision support system based on geospatial cyberinfrastructure (GCI) can address all of the above, so producing a smart system for supporting decision making for agriculture, forestry, and urban planning with respect to the landscape. In this paper, we discuss methods and results of a special kind of GCI architecture, one that is highly focused on land management and soil conservation. The system allows us to obtain dynamic, multidisciplinary, multiscale, and multifunctional answers to agriculture, forestry, and urban planning issues through the Web. The system has been applied to and tested in an area of about 20 000 ha in the south of Italy, within the framework of a European LIFE+ project (SOILCONSWEB). The paper reports - as a case study - results from two different applications dealing with agriculture (olive growth tool) and environmental protection (soil capability to protect groundwater). Developed with the help of end users, the system is starting to be adopted by local communities. The system indirectly explores a change of paradigm for soil and landscape scientists. Indeed, the potential benefit is shown of overcoming current disciplinary fragmentation over landscape issues by offering - through a smart Web-based system - truly integrated geospatial knowledge that may be directly and freely used by any end user (www.landconsultingweb.eu). This may help bridge the last very important divide between scientists working on the landscape and end users.

  6. Direct Sensor Orientation of a Land-Based Mobile Mapping System

    PubMed Central

    Rau, Jiann-Yeou; Habib, Ayman F.; Kersting, Ana P.; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua

    2011-01-01

    A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy. PMID:22164015

  7. Identifying and locating land irrigated by center-pivot irrigation systems using satellite imagery

    NASA Technical Reports Server (NTRS)

    Hoffman, R. O.

    1980-01-01

    A methodology for using Landsat imagery for the identification and location of land irrigated by center-pivot irrigation systems is presented. The procedure involves the use of sets of Landsat band 5 imagery taken separated in time by about three weeks during the irrigation season, a zoom transfer scope and mylar base maps to record the locations of center pivots. Further computer processing of the data has been used to obtain plots of center-pivot irrigation systems and tables indicating the distribution and growth of systems by county for the state of Nebraska, and has been found to be in 95% agreement with current high-altitude IR photography. The information obtainable can be used for models of ground-water aquifers or resource planning.

  8. Development of a graphical user interface for the global land information system (GLIS)

    USGS Publications Warehouse

    Alstad, Susan R.; Jackson, David A.

    1993-01-01

    The process of developing a Motif Graphical User Interface for the Global Land Information System (GLIS) involved incorporating user requirements, in-house visual and functional design requirements, and Open Software Foundation (OSF) Motif style guide standards. Motif user interface windows have been developed using the software to support Motif window functions war written using the C programming language. The GLIS architecture was modified to support multiple servers and remote handlers running the X Window System by forming a network of servers and handlers connected by TCP/IP communications. In April 1993, prior to release the GLIS graphical user interface and system architecture modifications were test by developers and users located at the EROS Data Center and 11 beta test sites across the country.

  9. A Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing (SAPE)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2009-01-01

    SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis within the same framework. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python language-a platform-independent open-source software for integration and for the user interface. The development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft Windows and Apple Mac OS X and has been partially tested on Linux.

  10. Handover aspects for a Low Earth Orbit (LEO) CDMA Land Mobile Satellite (LMS) system

    NASA Technical Reports Server (NTRS)

    Carter, P.; Beach, M. A.

    1993-01-01

    This paper addresses the problem of handoff in a land mobile satellite (LMS) system between adjacent satellites in a low earth orbit (LEO) constellation. In particular, emphasis is placed on the application of soft handoff in a direct sequence code division multiple access (DS-CDMA) LMS system. Soft handoff is explained in terms of terrestrial macroscopic diversity, in which signals transmitted via several independent fading paths are combined to enhance the link quality. This concept is then reconsidered in the context of a LEO LMS system. A two-state Markov channel model is used to simulate the effects of shadowing on the communications path from the mobile to each satellite during handoff. The results of the channel simulation form a platform for discussion regarding soft handoff, highlighting the potential merits of the scheme when applied in a LEO LMS environment.

  11. Flight study of on-board enhanced vision system for all-weather aircraft landing

    NASA Astrophysics Data System (ADS)

    Akopdjanan, Yuri A.; Machikhin, Alexander S.; Bilanchuk, Vyacheslav V.; Drynkin, Vladimir N.; Falkov, Eduard Y.; Tsareva, Tatiana I.; Fomenko, Anatoly I.

    2014-11-01

    On-board enhanced vision system for all-weather aircraft navigation and landing which is currently under development in State research institute of aviation systems is described. The system is based on combination of three imagers sensitive in visible, short wave infrared (SWIR) and long wave infrared (LWIR) spectral ranges and demonstrating to the pilot only the most informative images from the time-aligned multi-sensor data. The results of flight tests at glissade trajectories of the light aircraft OR-5 MO obtained at various weather conditions are presented. It is shown that each spectral range may be informative under certain conditions of observation. In adverse and poor-visibility conditions, such as fog, high humidity and low clouds, SWIR range has the biggest information content.

  12. Assessing ecological land use and water demand of river systems: a case study in Luanhe River, North China

    NASA Astrophysics Data System (ADS)

    Yan, D. H.; Wang, G.; Wang, H.; Qin, T. L.

    2012-08-01

    Economic and social development has greatly increased ecological water demand and modified land use of river systems worldwide, causing overall degradation of many of these systems. In this study, theoretical and technical frameworks for regionalization on the eco-environmental function of river systems are formulated and applied to the Luanhe River system. Based on its eco-environmental functions, this river can be regionalized into four types of first-class functional areas: ecological preservation areas, habitat restoration areas, ecological buffer areas and development and utilization areas. Considering the overall eco-environmental functions, we assessed the ecological land use of the Luanhe River system. The total area of basic ecological land use is 876.98 km2; the restrictive ecological land use is 1745.52 km2; ecological land use of the river system returned from farmland is 284.25 km2; and that returned from construction land is 17.35 km2. The average minimum ecological flow of mainstreams in upper and middle reaches of the Luanhe River is 4.896 m3 s-1 based on the habitat method. And the recommended minimum and suitable annual ecological water demand of channels in the lower reaches are 391 million m3 and 819.5 million m3, respectively. The evaporation and seepage consumption and vegetation consumption in riparian zones of the Luanhe River system are approximately 132.6 million m3 and 145.3 million m3 per year, respectively. Our results suggest that is crucial to regulate the instream ecological water use of the Luanhe River's mainstream starting from the Panjiakou-Daheiting Reservoir system. We recommend accelerating ecological land-use planning and strengthening the regulation of ecological water use on this river system focusing on important lower reaches under the condition of competitive water demand.

  13. Massive land system changes impact water quality of the Jhelum River in Kashmir Himalaya.

    PubMed

    Rather, Mohmmad Irshad; Rashid, Irfan; Shahi, Nuzhat; Murtaza, Khalid Omar; Hassan, Khalida; Yousuf, Abdul Rehman; Romshoo, Shakil Ahmad; Shah, Irfan Yousuf

    2016-03-01

    The pristine aquatic ecosystems in the Himalayas are facing an ever increasing threat from various anthropogenic pressures which necessitate better understanding of the spatial and temporal variability of pollutants, their sources, and possible remedies. This study demonstrates the multi-disciplinary approach utilizing the multivariate statistical techniques, data from remote sensing, lab, and field-based observations for assessing the impact of massive land system changes on water quality of the river Jhelum. Land system changes over a period of 38 years have been quantified using multi-spectral satellite data to delineate the extent of different anthropogenically driven land use types that are the main non-point sources of pollution. Fifteen water quality parameters, at 12 sampling sites distributed uniformly along the length of the Jhelum, have been assessed to identify the possible sources of pollution. Our analysis indicated that 18% of the forested area has degraded into sparse forest or scrublands from 1972 to 2010, and the areas under croplands have decreased by 24% as people shifted from irrigation-intensive agriculture to orchard farming while as settlements showed a 397% increase during the observation period. One-way ANOVA revealed that all the water quality parameters had significant spatio-temporal differences (p < 0.01). Cluster analysis (CA) helped us to classify all the sampling sites into three groups. Factor analysis revealed that 91.84% of the total variance was mainly explained by five factors. Drastic changes in water quality of the Jhelum since the past three decades are manifested by increases in nitrate-nitrogen, TDS, and electric conductivity. The especially high levels of nitrogen (858 ± 405 μgL(-1)) and phosphorus (273 ± 18 μgL(-1)) in the Jhelum could be attributed to the reckless application of fertilizers, pesticides, and unplanned urbanization in the area.

  14. Surface Hydrological Load Displacements from the National Land Data Assimilation System (NLDAS) model

    NASA Astrophysics Data System (ADS)

    Puskas, C. M.; Meertens, C. M.; Phillips, D. A.

    2015-12-01

    UNAVCO is currently developing forward displacement models from surface water stored in soil moisture, snowpack, and vegetation based on the National Land Data Assimilation System (NLDAS). UNAVCO already produces hydrological models from the Global Land Data Assimilation System (GLDAS), estimating the elastic loading from surface water at GPS coordinates for stations and processed by the GAGE Analysis Center. GLDAS incorporates satellite and ground observations into forcing parameters to be used for climate and weather models. The GLDAS forcing parameters include temperature, humidity, precipitation, radiation, wind, and pressure data at global 1º grid squares, excluding the oceanic surface. NLDAS uses the same set of forcing parameters but in an area restricted to the continental United States plus parts of Canada and Mexico and with a 0.125º grid. Research groups contribute Land Surface Models (LSMs) based on NLDAS or GLDAS to produce time series of modeled environmental parameters. Individual LSMs differ based on model equations and soil and vegetation properties. In this study we extract the parameters from the NLDAS LSMs to produce hydrologic displacement models at GPS station coordinates within the conterminous US. We check whether NLDAS displacement models can resolve regional variations due to topography that are smoothed in the GLDAS models. We compare the soil moisture, snowpack, and vegetation mass per area directly between the GLDAS and NLDAS LSMs, to see whether the mass variations between GLDAS and NLDAS are large enough to cause significant deformation changes. By comparing the hydrologic displacement models with GPS time series, we estimate how well the surface water loading predicts observed seasonal and secular GPS signals as opposed to tectonic signals. These comparisons will help us evaluate the NLDAS-derived displacement models as part of the process of developing a new model product for use in time series analysis, tectonic or hydrologic

  15. Massive land system changes impact water quality of the Jhelum River in Kashmir Himalaya.

    PubMed

    Rather, Mohmmad Irshad; Rashid, Irfan; Shahi, Nuzhat; Murtaza, Khalid Omar; Hassan, Khalida; Yousuf, Abdul Rehman; Romshoo, Shakil Ahmad; Shah, Irfan Yousuf

    2016-03-01

    The pristine aquatic ecosystems in the Himalayas are facing an ever increasing threat from various anthropogenic pressures which necessitate better understanding of the spatial and temporal variability of pollutants, their sources, and possible remedies. This study demonstrates the multi-disciplinary approach utilizing the multivariate statistical techniques, data from remote sensing, lab, and field-based observations for assessing the impact of massive land system changes on water quality of the river Jhelum. Land system changes over a period of 38 years have been quantified using multi-spectral satellite data to delineate the extent of different anthropogenically driven land use types that are the main non-point sources of pollution. Fifteen water quality parameters, at 12 sampling sites distributed uniformly along the length of the Jhelum, have been assessed to identify the possible sources of pollution. Our analysis indicated that 18% of the forested area has degraded into sparse forest or scrublands from 1972 to 2010, and the areas under croplands have decreased by 24% as people shifted from irrigation-intensive agriculture to orchard farming while as settlements showed a 397% increase during the observation period. One-way ANOVA revealed that all the water quality parameters had significant spatio-temporal differences (p < 0.01). Cluster analysis (CA) helped us to classify all the sampling sites into three groups. Factor analysis revealed that 91.84% of the total variance was mainly explained by five factors. Drastic changes in water quality of the Jhelum since the past three decades are manifested by increases in nitrate-nitrogen, TDS, and electric conductivity. The especially high levels of nitrogen (858 ± 405 μgL(-1)) and phosphorus (273 ± 18 μgL(-1)) in the Jhelum could be attributed to the reckless application of fertilizers, pesticides, and unplanned urbanization in the area. PMID:26903209

  16. Autonomous Hovering and Landing of a Quad-rotor Micro Aerial Vehicle by Means of on Ground Stereo Vision System

    NASA Astrophysics Data System (ADS)

    Pebrianti, Dwi; Kendoul, Farid; Azrad, Syaril; Wang, Wei; Nonami, Kenzo

    On ground stereo vision system is used for autonomous hovering and landing of a quadrotor Micro Aerial Vehicle (MAV). This kind of system has an advantage to support embedded vision system for autonomous hovering and landing, since an embedded vision system occasionally gives inaccurate distance calculation due to either vibration problem or unknown geometry of the landing target. Color based object tracking by using Continuously Adaptive Mean Shift (CAMSHIFT) algorithm was examined. Nonlinear model of quad-rotor MAV and a PID controller were used for autonomous hovering and landing. The result shows that the Camshift based object tracking algorithm has good performance. Additionally, the comparison between the stereo vision system based and GPS based autonomous hovering of a quad-rotor MAV shows that stereo vision system has better performance. The accuracy of the stereo vision system is about 1 meter in the longitudinal and lateral direction when the quad-rotor flies in 6 meters of altitude. In the same experimental condition, the GPS based system accuracy is about 3 meters. Additionally, experiment on autonomous landing gives a reliable result.

  17. Development of a satellite-based multi-scale land use classification system for land and water management in Uzbekistan and Kazakhstan

    NASA Astrophysics Data System (ADS)

    Löw, Fabian; Michel, Ulrich; Dech, Stefan; Conrad, Christopher

    2011-11-01

    Satellite remote sensing is an invaluable tool to assess the status and changes of irrigated agricultural systems. Agricultural sites are among the most heterogeneous sites at the landscape level: spatial pattern of agricultural fields, within-field heterogeneity, crop phenology and crop management practices vary significantly. Highly dynamic objects (crops and crop rotations) result in large temporal variability of surface spatial heterogeneity. Technological advances have opened the possibility to monitor agricultural sites combining satellite images with both high spatial resolution and high revisit frequency, which could overcome these constraints. Yet depending on the field sizes and crop phenology of the agricultural system observed, requisites in terms of the instrument's spatial resolution and optimal timing of crop observation will be different. The overall goal is to quantitatively define region specific satellite observation support requirements in order to perform land use classification at the field basis. The main aspect studied here is the influence of spatial resolution on the accuracy of land use classification over a variety of different irrigated agricultural landscapes. This will guide in identifying an appropriate spatial resolution and input parameters for classification. The study will be performed over distinct locations in irrigated agro-ecosystems in Central Asia, where reliable information on agricultural crops and crop rotations is needed for sustainable land and water management.

  18. The CEOS-Land Surface Imaging Constellation Portal for GEOSS: A resource for land surface imaging system information and data access

    USGS Publications Warehouse

    Holm, Thomas; Gallo, Kevin P.; Bailey, Bryan

    2010-01-01

    The Committee on Earth Observation Satellites is an international group that coordinates civil space-borne observations of the Earth, and provides the space component of the Global Earth Observing System of Systems (GEOSS). The CEOS Virtual Constellations concept was implemented in an effort to engage and coordinate disparate Earth observing programs of CEOS member agencies and ultimately facilitate their contribution in supplying the space-based observations required to satisfy the requirements of the GEOSS. The CEOS initially established Study Teams for four prototype constellations that included precipitation, land surface imaging, ocean surface topography, and atmospheric composition. The basic mission of the Land Surface Imaging (LSI) Constellation [1] is to promote the efficient, effective, and comprehensive collection, distribution, and application of space-acquired image data of the global land surface, especially to meet societal needs of the global population, such as those addressed by the nine Group on Earth Observations (GEO) Societal Benefit Areas (SBAs) of agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather. The LSI Constellation Portal is the result of an effort to address important goals within the LSI Constellation mission and provide resources to assist in planning for future space missions that might further contribute to meeting those goals.

  19. The Emergence of Land Use as a Global Force in the Earth System

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.

    2015-12-01

    Human societies have emerged as a global force capable of transforming the biosphere, hydrosphere, lithosphere, atmosphere and climate. As a result, the long-term dynamics of the Earth system can no longer be understood or predicted without understanding their coupling with human societal dynamics. Here, a general causal theory is presented to explain why behaviorally modern humans, unlike any prior multicellular species, gained this unprecedented capacity to reshape the Earth system and how this societal capacity has changed from the Pleistocene to the present and future. Sociocultural niche construction theory, building on existing theories of ecosystem engineering, niche construction, the extended evolutionary synthesis, cultural evolution, ultrasociality and social change, can explain both the long-term upscaling of human societies and their unprecedented capacity to transform the Earth system. Regime shifts in human sociocultural niche construction, from the clearing of land using fire, to shifting cultivation, to intensive agriculture, to global food systems dependent on fossil fuel combustion, have enabled human societies to scale up while gaining the capacity to reshape the global patterns and processes of biogeography, ecosystems, landscapes, biomes, the biosphere, and ultimately the functioning of the Earth system. Just as Earth's geophysical climate system shapes the long-term dynamics of energy and material flow across the "spheres" of the Earth system, human societies, interacting at global scale to form "human systems", are increasingly shaping the global dynamics of energy, material, biotic and information flow across the spheres of the Earth system, including a newly emerged anthroposphere comprised of human societies and their material cultures. Human systems and the anthroposphere are strongly coupled with climate and other Earth systems and are dynamic in response to evolutionary changes in human social organization, cooperative ecosystem

  20. Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Poulter, B.; MacBean, N.; Hartley, A.; Khlystova, I.; Arino, O.; Betts, R.; Bontemps, S.; Boettcher, M.; Brockmann, C.; Defourny, P.; Hagemann, S.; Herold, M.; Kirches, G.; Lamarche, C.; Lederer, D.; Ottlé, C.; Peters, M.; Peylin, P.

    2015-07-01

    Global land cover is a key variable in the earth system with feedbacks on climate, biodiversity and natural resources. However, global land cover data sets presently fall short of user needs in providing detailed spatial and thematic information that is consistently mapped over time and easily transferable to the requirements of earth system models. In 2009, the European Space Agency launched the Climate Change Initiative (CCI), with land cover (LC_CCI) as 1 of 13 essential climate variables targeted for research development. The LC_CCI was implemented in three phases: first responding to a survey of user needs; developing a global, moderate-resolution land cover data set for three time periods, or epochs (2000, 2005, and 2010); and the last phase resulting in a user tool for converting land cover to plant functional type equivalents. Here we present the results of the LC_CCI project with a focus on the mapping approach used to convert the United Nations Land Cover Classification System to plant functional types (PFTs). The translation was performed as part of consultative process among map producers and users, and resulted in an open-source conversion tool. A comparison with existing PFT maps used by three earth system modeling teams shows significant differences between the LC_CCI PFT data set and those currently used in earth system models with likely consequences for modeling terrestrial biogeochemistry and land-atmosphere interactions. The main difference between the new LC_CCI product and PFT data sets used currently by three different dynamic global vegetation modeling teams is a reduction in high-latitude grassland cover, a reduction in tropical tree cover and an expansion in temperate forest cover in Europe. The LC_CCI tool is flexible for users to modify land cover to PFT conversions and will evolve as phase 2 of the European Space Agency CCI program continues.