Science.gov

Sample records for airbag-based crew impact

  1. Feasibility Study of an Airbag-Based Crew Impact Attenuation System for the Orion MPCV

    NASA Technical Reports Server (NTRS)

    Do, Sydney; deWeck, Olivier

    2011-01-01

    Airbag-based methods for crew impact attenuation have been highlighted as a potential lightweight means of enabling safe land-landings for the Orion Multi-Purpose Crew Vehicle, and the next generation of ballistic shaped spacecraft. To investigate the performance feasibility of this concept during a nominal 7.62m/s Orion landing, a full-scale personal airbag system 24% lighter than the Orion baseline has been developed, and subjected to 38 drop tests on land. Through this effort, the system has demonstrated the ability to maintain the risk of injury to an occupant during a 7.85m/s, 0 deg. impact angle land-landing to within the NASA specified limit of 0.5%. In accomplishing this, the airbag-based crew impact attenuation concept has been proven to be feasible. Moreover, the obtained test results suggest that by implementing anti-bottoming airbags to prevent direct contact between the system and the landing surface, the system performance during landings with 0 deg impact angles can be further improved, by at least a factor of two. Additionally, a series of drop tests from the nominal Orion impact angle of 30 deg indicated that severe injury risk levels would be sustained beyond impact velocities of 5m/s. This is a result of the differential stroking of the airbags within the system causing a shearing effect between the occupant seat structure and the spacecraft floor, removing significant stroke from the airbags.

  2. Debris Impact Detection Instrument for Crewed Modules

    NASA Technical Reports Server (NTRS)

    Opiela, J.; Corsaro, R.; Giovanes, F.; Lio, J.-C.

    2012-01-01

    When micrometeoroid or debris impacts occur on a space habitat, crew members need to be quickly informed of the likely extent of damage, and be directed to the impact location for possible repairs. This is especially important because the outer walls of pressurized volumes are often not easily accessible, blocked by racks or cabinets. The goal of the Habitat Particle Impact Monitoring System (HIMS) is to develop a fully automated, end-to-end particle impact detection system for crewed space exploration modules. The HIMS uses multiple passive, thin film piezo-polymer vibration sensors to detect impacts on a surface, and computer processing of the acoustical signals to characterize the impacts. Development and demonstration of the HIMS is proceeding in concert with NASA's Habitat Demonstration Unit (HDU) Project. The HDU Project is designed to develop and test various technologies, configurations, and operational concepts for exploration habitats. This paper describes the HIMS development, initial testing, and HDU integration efforts. Initial tests of the system on the HDU were conducted at NASA s 2010 and 2011 Desert Research and Technologies Studies (Desert-RATS or D-RATS). The HDU lab module, as seen from above, has an open circular floorplan divided into eight wedge-shaped Segments. The side wall of the module -- the surface used for this technology demonstration -- is a hard fiberglass composite covered with a layer of sprayed-on foam insulation. Four sensor locations were assigned near the corners of a rectangular pattern on the wall of one segment of the HDU lab module. The flat, self-adhesive sensors were applied to the module during its initial outfitting. To study the influence of the wall s construction (thickness and materials), three sets of four sensors were installed at different layer depths: on the interior of the module s wall, on the exterior of the same wall, and on the exterior of the foam insulation. The signal produced when a vibration passes

  3. Airbag Landing Impact Performance Optimization for the Orion Crew Module

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; McKinney, John; Corliss, James M.

    2008-01-01

    This report will discuss the use of advanced simulation techniques to optimize the performance of the proposed Orion Crew Module airbag landing system design. The Boeing Company and the National Aeronautic and Space Administration s Langley Research Center collaborated in the analysis of the proposed airbag landing system for the next generation space shuttle replacement, the Orion spacecraft. Using LS-DYNA to simulate the Crew Module landing impacts, two main objectives were established and achieved: the investigation of potential methods of optimizing the airbag performance in order to reduce rebound on the anti-bottoming bags, lower overall landing loads, and increase overall Crew Module stability; and the determination of the Crew Module stability and load boundaries using the optimized airbag design, based on the potential Crew Module landing pitch angles and ground slopes in both the center of gravity forward and aft configurations. This paper describes the optimization and stability and load boundary studies and presents a summary of the results obtained and key lessons learned from this analysis.

  4. Women's Learning and Leadership Styles: Impact on Crew Resource Management.

    ERIC Educational Resources Information Center

    Turney, Mary Ann

    With an increasing number of women becoming members of flight crews, the leadership styles of men and women are at issue. A study explored three basic questions: (1) How do male and female learning and leadership styles differ? (2) What barriers to gender integration and crew teamwork are perceived by pilot crew members? and (3) What…

  5. Launch Architecture Impact on Ascent Abort and Crew Survival

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Lawrence, Scott L.

    2006-01-01

    A study was performed to assess the effect of booster configuration on the ascent abort process. A generic abort event sequence was created and booster related risk drivers were identified. Three model boosters were considered in light of the risk drivers: a solid rocket motor configuration, a side mount combination solid and liquid configuration, and a stacked liquid configuration. The primary risk drivers included explosive fireball, overpressure, and fragment effects and booster-crew module re-contact. Risk drivers that were not specifically booster dependent were not addressed. The solid rocket configuration had the most benign influence on an abort while the side mount architecture provided the most challenging abort environment.

  6. An Environmental Impact Assessment of Perfluorocarbon Thermal Working Fluid Use On Board Crewed Spacecraft

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Arnold, William a.

    2006-01-01

    The design and operation of crewed spacecraft requires identifying and evaluating chemical compounds that may present reactivity and compatibility risks with the environmental control and life support (ECLS) system. Such risks must be understood so that appropriate design and operational controls, including specifying containment levels, can be instituted or an appropriate substitute material selected. Operational experience acquired during the International Space Station (ISS) program has found that understanding ECLS system and environmental impact presented by thermal control system working fluids is imperative to safely operating any crewed space exploration vehicle. Perfluorocarbon fluids are used as working fluids in thermal control fluid loops on board the ISS. Also, payload hardware developers have identified perfluorocarbon fluids as preferred thermal control working fluids. Interest in using perfluorocarbon fluids as thermal control system working fluids for future crewed space vehicles and outposts is high. Potential hazards associated with perfluorocarbon fluids are discussed with specific attention given to engineering assessment of ECLS system compatibility, compatibility testing results, and spacecraft environmental impact. Considerations for perfluorocarbon fluid use on crewed spacecraft and outposts are summarized.

  7. Demonstration of a Particle Impact Monitoring System for Crewed Space Exploration Modules

    NASA Technical Reports Server (NTRS)

    Opiela, J. N.; Liou, J.-C.; Corsaro, R.; Giovane, F.; Anz-Meador, P.

    2011-01-01

    When micrometeorite or debris impacts occur on a space habitat, crew members need to be quickly informed of the likely extent of damage, and be directed to the impact location for possible repairs. The goal of the Habitat Particle Impact Monitoring System (HIMS) is to develop a fully automated, end-to-end particle impact detection system for crewed space exploration modules, both in space and on the surfaces of Solar System bodies. The HIMS uses multiple thin film piezo-polymer vibration sensors to detect impacts on a surface, and computer processing of the acoustical signals to characterize the impacts. Development and demonstration of the HIMS is proceeding in concert with NASA's Habitat Demonstration Unit (HDU) Project. The HDU Project is designed to develop and test various technologies, configurations, and operational concepts for exploration habitats. This paper describes the HIMS development, initial testing, and HDU integration efforts. Initial tests of the system on the HDU were conducted at NASA?s 2010 Desert Research and Technologies Studies (Desert-RATS). Four sensor locations were assigned near the corners of a rectangular pattern. To study the influence of wall thickness, three sets of four sensors were installed at different layer depths: on the interior of the PEM wall, on the exterior of the same wall, and on the exterior of a layer of foam insulation applied to the exterior wall. Once the system was activated, particle impacts were periodically applied by firing a pneumatic pellet gun at the exterior wall section. Impact signals from the sensors were recognized by a data acquisition system when they occurred, and recorded on a computer for later analysis. Preliminary analysis of the results found that the HIMS system located the point of impact to within 8 cm, provided a measure of the impact energy / damage produced, and was insensitive to other acoustic events. Based on this success, a fully automated version of this system will be completed and

  8. Position-specific behaviors and their impact on crew performance: Implications for training

    NASA Technical Reports Server (NTRS)

    Law, J. Randolph

    1993-01-01

    The present study was motivated by results from a preliminary report documenting the impact of specific crewmembers on overall crew performance (Wilhelm & Law, 1992), and a cross-airline cross-fleet project investigating human factors behaviors of commercial aviation flightcrews (Helmreich, Butler, Whilhelm, & Lofaro, 1992). The purpose of the current investigation is to study how position-specific behaviors impact flightcrew performance, and how these position-specific behaviors differ between two airlines and two flying environments. Implications for training will also be addressed.

  9. Selection for optimal crew performance - Relative impact of selection and training

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.

    1987-01-01

    An empirical study supporting Helmreich's (1986) theoretical work on the distinct manner in which training and selection impact crew coordination is presented. Training is capable of changing attitudes, while selection screens for stable personality characteristics. Training appears least effective for leadership, an area strongly influenced by personality. Selection is least effective for influencing attitudes about personal vulnerability to stress, which appear to be trained in resource management programs. Because personality correlates with attitudes before and after training, it is felt that selection may be necessary even with a leadership-oriented training cirriculum.

  10. Sand Impact Tests of a Half-Scale Crew Module Boilerplate Test Article

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.; Hardy, Robin C.

    2012-01-01

    Although the Orion Multi-Purpose Crew Vehicle (MPCV) is being designed primarily for water landings, a further investigation of launch abort scenarios reveals the possibility of an onshore landing at Kennedy Space Center (KSC). To gather data for correlation against simulations of beach landing impacts, a series of sand impact tests were conducted at NASA Langley Research Center (LaRC). Both vertical drop tests and swing tests with combined vertical and horizontal velocity were performed onto beds of common construction-grade sand using a geometrically scaled crew module boilerplate test article. The tests were simulated using the explicit, nonlinear, transient dynamic finite element code LS-DYNA. The material models for the sand utilized in the simulations were based on tests of sand specimens. Although the LSDYNA models provided reasonable predictions for peak accelerations, they were not always able to track the response through the duration of the impact. Further improvements to the material model used for the sand were identified based on results from the sand specimen tests.

  11. Impact of cabin environment on thermal protection system of crew hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao Wei; Zhao, Jing Quan; Zhu, Lei; Yu, Xi Kui

    2016-05-01

    Hypersonic crew vehicles need reliable thermal protection systems (TPS) to ensure their safety. Since there exists relative large temperature difference between cabin airflow and TPS structure, the TPS shield that covers the cabin is always subjected to a non-adiabatic inner boundary condition, which may influence the heat transfer characteristic of the TPS. However, previous literatures always neglected the influence of the inner boundary by assuming that it was perfectly adiabatic. The present work focuses on studying the impact of cabin environment on the thermal performance. A modified TPS model is created with a mixed thermal boundary condition to connect the cabin environment with the TPS. This helps make the simulation closer to the real situation. The results stress that cabin environment greatly influences the temperature profile inside the TPS, which should not be neglected in practice. Moreover, the TPS size can be optimized during the design procedure if taking the effect of cabin environment into account.

  12. A Summary of the Development of a Nominal Land Landing Airbag Impact Attenuation System for the Orion Crew Module

    NASA Technical Reports Server (NTRS)

    Tutt, Ben; Gill, Susannah; Wilson, Aaron; Johnson, Keith

    2009-01-01

    Airborne Systems North America (formally Irvin Aerospace Inc) has developed an Airbag Landing System for the Orion Crew Module of the Crew Exploration Vehicle. This work is in support of the NASA Langley Research Center Landing System Advanced Development Project. Orion is part of the Constellation Program to send human explorers back to the moon, and then onwards to Mars and other destinations in the Solar System. A component of the Vision for Space Exploration, Orion is being developed to also enable access to space following the retirement of the Space Shuttle in the next decade. This paper documents the development of a conceptual design, fabrication of prototype assemblies, component level testing and two generations of airbag landing system testing. The airbag system has been designed and analyzed using the transient dynamic finite element code LS-DYNA(RegisteredTradeMark). The landing system consists of six airbag assemblies; each assembly comprising a primary impact venting airbag and a non-venting anti-bottoming airbag. The anti-bottoming airbag provides ground clearance following the initial impact attenuation sequence. Incorporated into each primary impact airbag is an active vent that allows the entrapped gas to exit the control volume. The size of the vent is tailored to control the flow-rate of the exiting gas. An internal shaping structure is utilized to control the shape of the primary or main airbags prior to ground impact; this significantly improves stroke efficiency and performance.

  13. Crew health

    NASA Technical Reports Server (NTRS)

    Billica, Roger D.

    1992-01-01

    Crew health concerns for Space Station Freedom are numerous due to medical hazards from isolation and confinement, internal and external environments, zero gravity effects, occupational exposures, and possible endogenous medical events. The operational crew health program will evolve from existing programs and from life sciences investigations aboard Space Station Freedom to include medical monitoring and certification, medical intervention, health maintenance and countermeasures, psychosocial support, and environmental health monitoring. The knowledge and experience gained regarding crew health issues and needs aboard Space Station Freedom will be used not only to verify requirements and programs for long duration space flight, but also in planning and preparation for Lunar and Mars exploration and colonization.

  14. Commercial Crew

    NASA Video Gallery

    Phil McAlister delivers a presentation by the Commercial Crew (CC) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of this workshop was to...

  15. The impact of cockpit automation on crew coordination and communication. Volume 1: Overview, LOFT evaluations, error severity, and questionnaire data

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.; Chidester, Thomas R.; Kanki, Barbara G.; Palmer, Everett A.; Curry, Renwick E.; Gregorich, Steven E.

    1991-01-01

    The purpose was to examine, jointly, cockpit automation and social processes. Automation was varied by the choice of two radically different versions of the DC-9 series aircraft, the traditional DC-9-30, and the glass cockpit derivative, the MD-88. Airline pilot volunteers flew a mission in the simulator for these aircraft. Results show that the performance differences between the crews of the two aircraft were generally small, but where there were differences, they favored the DC-9. There were no criteria on which the MD-88 crews performed better than the DC-9 crews. Furthermore, DC-9 crews rated their own workload as lower than did the MD-88 pilots. There were no significant differences between the two aircraft types with respect to the severity of errors committed during the Line-Oriented Flight Training (LOFT) flight. The attitude questionnaires provided some interesting insights, but failed to distinguish between DC-9 and MD-88 crews.

  16. Space station crew safety alternatives study. Volume 3: Safety impact of human factors

    NASA Technical Reports Server (NTRS)

    Rockoff, L. A.; Raasch, R. F.; Peercy, R. L., Jr.

    1985-01-01

    The first 15 years of accumulated space station concepts for Initial Operational Capability (IOC) during the early 1990's was considered. Twenty-five threats to the space station are identified and selected threats addressed as impacting safety criteria, escape and rescue, and human factors safety concerns. Of the 25 threats identified, eight are discussed including strategy options for threat control: fire, biological or toxic contamination, injury/illness, explosion, loss of pressurization, radiation, meteoroid penetration and debris. Of particular interest here is volume three (of five volumes) pertaining to the safety impact of human factors.

  17. The contamination impact of human exploration to a subterranean environment and the implications for further crewed space exploration

    NASA Astrophysics Data System (ADS)

    Leuko, Stefan; Rettberg, Petra; De Waele, Jo; Sanna, Laura; Koskinen, Kaisa

    2016-07-01

    The quest of exploring and looking for life in new places is a human desire since centuries. Nowadays, we are not only looking on planet Earth any more, but our endeavours focus on nearby planets in our solar system. It is therefore of great importance to preserve the extra-terrestrial environment and not to contaminate it with terrestrial / human associated bacteria. At this point in time we are not able to send crewed missions to other planets; however, analysing the impact of human exploration on environments is of great planetary protection concern. This can be achieved by obtaining samples from a subterranean environment, where only expert speleologists have access and the human impact is considered very low. For this study, astronauts participating in the 2014 ESA CAVES (Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills) training course, obtained samples from deep within a subterranean environment and returned them to the laboratory for molecular microbial analysis. The diversity of the returned soil samples was analysed by molecular means such as clone library and next-generation sequencing (NGS). It was found that humans have an immense impact on the microbial diversity in the environment. Although the cave system is sparsely entered by humans, a high relative abundance of Staphylococcus spp. and Propionibacteria spp., organisms that are characteristic for human skin, have been recovered. Some samples even showed the presence of human gut associated methanogenic archaea, Methanomassiliicoccus spp. The obtained data from this investigation indicate that human exploration is strongly polluting an environment and may lead to false-positive sign of life on other planets. It is therefore imperative to increase our awareness to this problem as well as work towards new protocols to protect a pristine extraterrestrial environment during exploration.

  18. Environmental impact on crew of armoured vehicles: Effects of 24 h combat exercise in a hot desert

    NASA Astrophysics Data System (ADS)

    Singh, A. P.; Majumdar, D.; Bhatia, M. R.; Srivastava, K. K.; Selvamurthy, W.

    1995-06-01

    A field study was undertaken to investigate the effects of combined noise, vibration and heat stress on the physiological functions of the crew of armoured vehicles during prolonged combat exercise in a desert. The sound pressure level of noise was measured with a sound level meter and accelerations by vibration analyser. The thermal load on the crew was evaluated by calculating the wet bulb globe temperature index. The physiological responses of the subjects ( n=9), included significant increases in the heart rate, 24 h water intake and urinary catecholamine concentration. A significant decrease was recorded in body mass, peak expiratory flow rate and 24 h urinary output. The high heat load on the crew resulted in a hypohydration of 3% body mass and appeared to be the dominant factor in producing the physiological strain.

  19. Crew Health and Performance Improvements with Reduced Carbon Dioxide Levels and the Resource Impact to Accomplish Those Reductions

    NASA Technical Reports Server (NTRS)

    James, John T.; Meyers, Valerie E.; Sipes, Walter; Scully, Robert R.; Matty, Christopher M.

    2011-01-01

    Carbon dioxide (CO2) removal is one of the primary functions of the International Space Station (ISS) atmosphere revitalization systems. Primary CO2 removal is via the ISS s two Carbon Dioxide Removal Assemblies (CDRAs) and the Russian carbon dioxide removal assembly (Vozdukh); both of these systems are regenerable, meaning that their CO2 removal capacity theoretically remains constant as long as the system is operating. Contingency CO2 removal capability is provided by lithium hydroxide (LiOH) canisters, which are consumable, meaning that their CO2 removal capability disappears once the resource is used. With the advent of 6 crew ISS operations, experience showing that CDRA failures are not uncommon, and anecdotal association of crew symptoms with CO2 values just above 4 mmHg, the question arises: How much lower do we keep CO2 levels to minimize the risk to crew health and performance, and what will the operational cost to the CDRAs be to do it? The primary crew health concerns center on the interaction of increased intracranial pressure from fluid shifts and the increased intracranial blood flow induced by CO2. Typical acute symptoms include headache, minor visual disturbances, and subtle behavioral changes. The historical database of CO2 exposures since the beginning of ISS operations has been compared to the incidence of crew symptoms reported in private medical conferences. We have used this database in an attempt to establish an association between the CO2 levels and the risk of crew symptoms. This comparison will answer the question of the level needed to protect the crew from acute effects. As for the second part of the question, operation of the ISS s regenerable CO2 removal capability reduces the limited life of constituent parts. It also consumes limited electrical power and thermal control resources. Operation of consumable CO2 removal capability (LiOH) uses finite consumable materials, which must be replenished in the long term. Therefore, increased CO

  20. The Integrated Medical Model - Optimizing In-flight Space Medical Systems to Reduce Crew Health Risk and Mission Impacts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Walton, Marlei; Minard, Charles; Saile, Lynn; Myers, Jerry; Butler, Doug; Lyengar, Sriram; Fitts, Mary; Johnson-Throop, Kathy

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool used by medical system planners and designers as they prepare for exploration planning activities of the Constellation program (CxP). IMM provides an evidence-based approach to help optimize the allocation of in-flight medical resources for a specified level of risk within spacecraft operational constraints. Eighty medical conditions and associated resources are represented in IMM. Nine conditions are due to Space Adaptation Syndrome. The IMM helps answer fundamental medical mission planning questions such as What medical conditions can be expected? What type and quantity of medical resources are most likely to be used?", and "What is the probability of crew death or evacuation due to medical events?" For a specified mission and crew profile, the IMM effectively characterizes the sequence of events that could potentially occur should a medical condition happen. The mathematical relationships among mission and crew attributes, medical conditions and incidence data, in-flight medical resources, potential clinical and crew health end states are established to generate end state probabilities. A Monte Carlo computational method is used to determine the probable outcomes and requires up to 25,000 mission trials to reach convergence. For each mission trial, the pharmaceuticals and supplies required to diagnose and treat prevalent medical conditions are tracked and decremented. The uncertainty of patient response to treatment is bounded via a best-case, worst-case, untreated case algorithm. A Crew Health Index (CHI) metric, developed to account for functional impairment due to a medical condition, provides a quantified measure of risk and enables risk comparisons across mission scenarios. The use of historical in-flight medical data, terrestrial surrogate data as appropriate, and space medicine subject matter expertise has enabled the development of a probabilistic, stochastic decision support tool capable of

  1. Hypervelocity Impact of Unstressed and Stressed Titanium in a Whipple Configuration in Support of the Orion Crew Exploration Vehicle Service Module Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Christiansen, Eric; Piekutowski, Andrew; Lyons, Frankel; Keddy, Christopher; Salem, Jonathan; Poormon, Kevin; Bohl, William; Miller, Joshua; Greene, Nathanael; Rodriquez, Karen

    2010-01-01

    Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium: shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the defInition of the penetration criteria of the propellant and oxidizer tanks dome surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.

  2. Hypervelocity Impact of Unstressed and Stressed Titanium in a Whipple Configuration in Support of the Orion Crew Exploration Vehicle Service Module Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Christiansen, Eric; Piekutowski, Andrew; Lyons, Frankel; Keddy, Christopher; Salem, Jonathan; Miller, Joshua; Bohl, William; Poormon, Kevin; Greene, Nathanel; Rodriquez, Karen

    2010-01-01

    Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the definition of the penetration criteria of the propellant tanks surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.

  3. Economic impact of stimulated technological activity. Part 3: Case study, knowledge additions and earth links from space crew systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A case study of knowledge contributions from the crew life support aspect of the manned space program is reported. The new information needed to be learned, the solutions developed, and the relation of new knowledge gained to earthly problems were investigated. Illustrations are given in the following categories: supplying atmosphere for spacecraft; providing carbon dioxide removal and recycling; providing contaminant control and removal; maintaining the body's thermal balance; protecting against the space hazards of decompression, radiation, and meteorites; minimizing fire and blast hazards; providing adequate light and conditions for adequate visual performance; providing mobility and work physiology; and providing adequate habitability.

  4. How effective is cockpit resource management training? Exploring issues in evaluating the impact of programs to enhance crew coordination.

    PubMed

    Helmreich, R L; Chidester, T R; Foushee, H C; Gregorich, S; Wilhelm, J A

    1990-05-01

    The question "Is cockpit resource management effective?" has been asked frequently in the years since 1979 when a National Aeronautics and Space Administration (NASA)/Industry workshop addressed the concepts of crew coordination and effective utilization of all available resources in flight operations (Cooper, White, & Lauber, 1980). If one looks at the proliferation of cockpit resource management (CRM) training programs in domestic and foreign, civil and military aviation, and the enormous investment in time and money that they entail, it would appear that the question has been answered in the affirmative. It is our position, however, that the question remains open and that empirical evidence is just beginning to accumulate.

  5. How effective is cockpit resource management training? Exploring issues in evaluating the impact of programs to enhance crew coordination.

    PubMed

    Helmreich, R L; Chidester, T R; Foushee, H C; Gregorich, S; Wilhelm, J A

    1990-05-01

    The question "Is cockpit resource management effective?" has been asked frequently in the years since 1979 when a National Aeronautics and Space Administration (NASA)/Industry workshop addressed the concepts of crew coordination and effective utilization of all available resources in flight operations (Cooper, White, & Lauber, 1980). If one looks at the proliferation of cockpit resource management (CRM) training programs in domestic and foreign, civil and military aviation, and the enormous investment in time and money that they entail, it would appear that the question has been answered in the affirmative. It is our position, however, that the question remains open and that empirical evidence is just beginning to accumulate. PMID:11538318

  6. Radiation exposure of German aircraft crews under the impact of solar cycle 23 and airline business factors.

    PubMed

    Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Schlosser, Andrea; Stegemann, Ralf

    2014-12-01

    The exposure of German aircraft crews to cosmic radiation varies both with solar activity and operational factors of airline business. Data come from the German central dose registry and cover monthly exposures of up to 37,000 German aircraft crewmembers that were under official monitoring. During the years 2004 to 2009 of solar cycle 23 (i.e., in the decreasing phase of solar activity), the annual doses of German aircraft crews increased by an average of 20%. Decreasing solar activity allows more galactic radiation to reach the atmosphere, increasing high-altitude doses. The rise results mainly from the less effective protection from the solar wind but also from airline business factors. Both cockpit and cabin personnel differ in age-dependent professional and social status. This status determines substantially the annual effective dose: younger cabin personnel and the elder pilots generally receive higher annual doses than their counterparts. They also receive larger increases in their annual dose when the solar activity decreases. The doses under this combined influence of solar activity and airline business factors result in a maximum of exposure for German aircrews for this solar cycle. With the increasing solar activity of the current solar cycle 24, the doses are expected to decrease again. PMID:25353240

  7. The Impact of Data Communications Messages in the Terminal Area on Flight Crew Workload and Eye Scanning

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; Baxley, Brian T.; Norman, Robert M.; Ellis, Kyle K. E.; Adams, Cathy A.; Latorella, Kara A.; Lynn, William A.

    2010-01-01

    This paper, to accompany a discussion panel, describes a collaborative FAA and NASA research study to determine the effect Data Communications (Data Comm) messages have on flight crew workload and eye scanning behavior in busy terminal area operations. In the Next Generation Air Transportation System Concept of Operations, for the period 2017-2022, the FAA envisions Data Comm between controllers and the flight crew to become the primary means of communicating non-time critical information. Four research conditions were defined that span current day to future equipage levels (Voice with Paper map, Data Comm with Paper map, Data Comm with Moving Map Display with ownship position displayed, Data Comm with Moving Map, ownship and taxi route displayed), and were used to create arrival and departure scenarios at Boston Logan Airport. Preliminary results for workload, situation awareness, and pilot head-up time are presented here. Questionnaire data indicated that pilot acceptability, workload, and situation awareness ratings were favorable for all of the conditions tested. Pilots did indicate that there were times during final approach and landing when they would prefer not to hear the message chime, and would not be able to make a quick response due to high priority tasks in the cockpit.

  8. Radiation exposure of German aircraft crews under the impact of solar cycle 23 and airline business factors.

    PubMed

    Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Schlosser, Andrea; Stegemann, Ralf

    2014-12-01

    The exposure of German aircraft crews to cosmic radiation varies both with solar activity and operational factors of airline business. Data come from the German central dose registry and cover monthly exposures of up to 37,000 German aircraft crewmembers that were under official monitoring. During the years 2004 to 2009 of solar cycle 23 (i.e., in the decreasing phase of solar activity), the annual doses of German aircraft crews increased by an average of 20%. Decreasing solar activity allows more galactic radiation to reach the atmosphere, increasing high-altitude doses. The rise results mainly from the less effective protection from the solar wind but also from airline business factors. Both cockpit and cabin personnel differ in age-dependent professional and social status. This status determines substantially the annual effective dose: younger cabin personnel and the elder pilots generally receive higher annual doses than their counterparts. They also receive larger increases in their annual dose when the solar activity decreases. The doses under this combined influence of solar activity and airline business factors result in a maximum of exposure for German aircrews for this solar cycle. With the increasing solar activity of the current solar cycle 24, the doses are expected to decrease again.

  9. Commercial Crew Program Crew Safety Strategy

    NASA Technical Reports Server (NTRS)

    Vassberg, Nathan; Stover, Billy

    2015-01-01

    The purpose of this presentation is to explain to our international partners (ESA and JAXA) how NASA is implementing crew safety onto our commercial partners under the Commercial Crew Program. It will show them the overall strategy of 1) how crew safety boundaries have been established; 2) how Human Rating requirements have been flown down into programmatic requirements and over into contracts and partner requirements; 3) how CCP SMA has assessed CCP Certification and CoFR strategies against Shuttle baselines; 4) Discuss how Risk Based Assessment (RBA) and Shared Assurance is used to accomplish these strategies.

  10. Space-station crew-safety requirements

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1983-01-01

    Baseline rescue and survival concepts for future space station crews are described. Preliminary studies are being carried out to identify potential threats to crew safety and means to counteract the dangers. Significant factors being considered include the type of threat, the warning time, the number of crewmembers, strategies for protection of the crew (including life-support measures redundancy), and the dependence of space station crews on ground personnel. Attention is being given to the impact of safety devices on the space station geometry and cost, as well as the equipment necessary to maintain the crew in a psychological status positive enough to cope with emergencies. Typical threats would be fire, crewmember illness or injury, and abandonment of the station. A Shuttle launch could take up to 12 days, while equipping the space station with an emergency return capsule would permit return on the same day as the capsule was occupied.

  11. Estimating the Reliability of a Crewed Spacecraft

    NASA Astrophysics Data System (ADS)

    Lutomski, M. G.; Garza, J.

    2012-01-01

    Now that the Space Shuttle Program has been retired, the Russian Soyuz Launcher and Soyuz Spacecraft are the only means for crew transportation to and from the International Space Station (ISS). Are the astronauts and cosmonauts safer on the Soyuz than the Space Shuttle system? How do you estimate the reliability of such a crewed spacecraft? The recent loss of the 44 Progress resupply flight to the ISS has put these questions front and center. The Soyuz launcher has been in operation for over 40 years. There have been only two Loss of Crew (LOC) incidents and two Loss of Mission (LOM) incidents involving crew missions. Given that the most recent crewed Soyuz launcher incident took place in 1983, how do we determine current reliability of such a system? How do all of the failures of unmanned Soyuz family launchers such as the 44P impact the reliability of the currently operational crewed launcher? Does the Soyuz exhibit characteristics that demonstrate reliability growth and how would that be reflected in future estimates of success? In addition NASA has begun development of the Orion or Multi-Purpose Crewed Vehicle as well as started an initiative to purchase Commercial Crew services from private firms. The reliability targets are currently several times higher than the last Shuttle reliability estimate. Can these targets be compared to the reliability of the Soyuz arguably the highest reliable crewed spacecraft and launcher in the world to determine whether they are realistic and achievable? To help answer these questions this paper will explore how to estimate the reliability of the Soyuz launcher/spacecraft system over its mission to give a benchmark for other human spaceflight vehicles and their missions. Specifically this paper will look at estimating the Loss of Mission (LOM) and Loss of Crew (LOC) probability for an ISS crewed Soyuz launcher/spacecraft mission using historical data, reliability growth, and Probabilistic Risk Assessment (PRA) techniques.

  12. Sonic Boom Assessment for the Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Herron, Marissa

    2007-01-01

    The Constellation Environmental Impact Statement (Cx EIS) requires that an assessment be performed on the environmental impact of sonic booms during the reentry of the Crew Exploration Vehicle (CEV). This included an analysis of current planned vehicle trajectories for the Crew Module (CM) and the Service Module (SM) debris and the determination of the potential impact to the overflown environment.

  13. STS-96 Crew Training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The training for the crew members of the STS-96 Discovery Shuttle is presented. Crew members are Kent Rominger, Commander; Rick Husband, Pilot; Mission Specialists, Tamara Jernigan, Ellen Ochoa, and Daniel Barry; Julie Payette, Mission Specialist (CSA); and Valery Ivanovich Tokarev, Mission Specialist (RSA). Scenes show the crew sitting and talking about the Electrical Power System; actively taking part in virtual training in the EVA Training VR (Virtual Reality) Lab; using the Orbit Space Vision Training System; being dropped in water as a part of the Bail-Out Training Program; and taking part in the crew photo session.

  14. Crew Training STS-110

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The crewmembers are shown being suited for the STS-110 flight. The STS-110 crews are shown in training for four EVA's on the International Space Station. The crewmembers consist of: Michael J. Bloomfield, mission commander; Stephen N. Frick, pilot; and mission specialists: Ellen Ochoa, Lee M.E. Morin, Rex J. Walheim, Steven L. Smith, and Jerry Ross. Crew ascent middeck operations and Orbiter Skills Training in a fixed Based Simulator are the training areas shown. The STS-110 crew and Expedition four are seen during training at the Johnson Space Center Space Station Training Facility (SSTF). A photo session of the crew is also presented.

  15. Wireless Crew Communication Feasibility Assessment

    NASA Technical Reports Server (NTRS)

    Archer, Ronald D.; Romero, Andy; Juge, David

    2016-01-01

    Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of wireless crew communication results in increased crew task completion times and lower productivity, creates cable management issues, and increases crew frustration.

  16. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  17. Exploring flight crew behaviour

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  18. Commercial Crew Medical Ops

    NASA Technical Reports Server (NTRS)

    Heinbaugh, Randall; Cole, Richard

    2016-01-01

    Provide commercial partners with: center insight into NASA spaceflight medical experience center; information relative to both nominal and emergency care of the astronaut crew at landing site center; a basis for developing and sharing expertise in space medical factors associated with returning crew.

  19. Aircrew perceived stress: examining crew performance, crew position and captains personality.

    PubMed

    Bowles, S; Ursin, H; Picano, J

    2000-11-01

    This study was conducted at NASA Ames Research Center as a part of a larger research project assessing the impact of captain's personality on crew performance and perceived stress in 24 air transport crews (5). Three different personality types for captains were classified based on a previous cluster analysis (3). Crews were comprised of three crewmembers: captain, first officer, and second officer/flight engineer. A total of 72 pilots completed a 1.5-d full-mission simulation of airline operations including emergency situations in the Ames Manned Vehicle System Research Facility B-727 simulator. Crewmembers were tested for perceived stress on four dimensions of the NASA Task Load Index after each of five flight legs. Crews were divided into three groups based on rankings from combined error and rating scores. High performance crews (who committed the least errors in flight) reported experiencing less stress in simulated flight than either low or medium crews. When comparing crew positions for perceived stress over all the simulated flights no significant differences were found. However, the crews led by the "Right Stuff" (e.g., active, warm, confident, competitive, and preferring excellence and challenges) personality type captains typically reported less stress than crewmembers led by other personality types.

  20. Crew Transportation Plan

    NASA Technical Reports Server (NTRS)

    Zeitler, Pamela S. (Compiler); Mango, Edward J.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives.

  1. STS-63 crew insignia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Designed by the crew members, the crew patch depicts the Orbiter maneuving to rendezvous with Russia's Space Station Mir. The name is printed in Cyrillic on the side of the station. Visible in the Orbiter's payload bay are the commercial space laboratory Spacehab and the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) satellite which are major payloads on the flight. The six points on the rising sun and the three stars are symbolic of the mission's Space Transportation System (STS) numerical designation. Flags of the United States and Russia at the bottom of the patch symbolize the cooperative operations of this mission. The crew will be flying aboard the space shuttle Discovery.

  2. Crew Transportation Operations Standards

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.; Pearson, Don J. (Compiler)

    2013-01-01

    The Crew Transportation Operations Standards contains descriptions of ground and flight operations processes and specifications and the criteria which will be used to evaluate the acceptability of Commercial Providers' proposed processes and specifications.

  3. STS-87 Crew Breakfast

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-87 flight crew enjoys the traditional pre-liftoff breakfast in the crew quarters of the Operations and Checkout Building. They are, from left, Mission Specialist Winston Scott; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Commander Kevin Kregel; Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine; Mission Specialist Kalpana Chawla, Ph.D.; and Pilot Steven Lindsey. After a weather briefing, the flight crew will be fitted with their launch and entry suits and depart for Launch Pad 39B. Once there, they will take their positions in the crew cabin of the Space Shuttle Columbia to await liftoff during a two-and-a-half-hour window that will open at 2:46 p.m. EDT, Nov. 19.

  4. STS-54 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Astronauts pictured in the STS-54 crew portrait from left to right are: Mario Runco, Jr., mission specialist; John H. Casper, commander; Donald R. McMonagle, pilot; and mission specialists Susan J. Helms, and Gregory J. Harbaugh. Launched aboard the Space Shuttle Endeavour on January 13, 1993 at 8:59:30 am (EST), the crew deployed the fifth Tracking and Data Relay Satellite (TDRS-6).

  5. Expedition Seven Crew Members

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This crew portrait of Expedition Seven, Cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander (left), and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer (right) was taken while in training at the Gagarin Cosmonaut Training Center in Star City, Russia. Destined for the International Space Station (ISS), the two-man crew launched from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. aboard a Soyez TMA-1 spacecraft.

  6. STS-58 crew portrait

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-58 crew portrait shows the crew wearing training versions of their launch and entry garments. Left to right (front) are David A. Wolf, and Shannon W. Lucid, both mission specialists; Rhea Seddon, payload commander; and Richard A. Searfoss, pilot. Left to right (rear) are John E. Blaha, mission commander; William S. McArthur Jr., mission specialist; and payload specialist Martin J. Fettman, DVM.

  7. Expedition 5 Crew Insignia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    JOHNSON SPACE CENTER, HOUSTON, TEXAS -- EXPEDITION FIVE CREW INSIGNIA (ISS05-S-001) -- The International Space Station (ISS) Expedition Five patch depicts the Station in its completed configuration and represents the vision of mankind's first step as a permanent human presence in space. The United States and Russian flags are joined together in a Roman numeral V to represent both the nationalities of the crew and the fifth crew to live aboard the ISS. Crew members' names are shown in the border of this patch. This increment encompasses a new phase in growth for the Station, with three Shuttle crews delivering critical components and building blocks to the ISS. To signify the participation of each crew member, the Shuttle is docked to the Station beneath a constellation of 17 stars symbolizing all those visiting and living aboard Station during this increment. The NASA insignia design for Shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.

  8. Coordination strategies of crew management

    NASA Technical Reports Server (NTRS)

    Conley, Sharon; Cano, Yvonne; Bryant, Don

    1991-01-01

    An exploratory study that describes and contrasts two three-person flight crews performing in a B-727 simulator is presented. This study specifically attempts to delineate crew communication patterns accounting for measured differences in performance across routine and nonroutine flight patterns. The communication patterns in the two crews evaluated indicated different modes of coordination, i.e., standardization in the less effective crew and planning/mutual adjustment in the more effective crew.

  9. Crew Activity Analyzer

    NASA Technical Reports Server (NTRS)

    Murray, James; Kirillov, Alexander

    2008-01-01

    The crew activity analyzer (CAA) is a system of electronic hardware and software for automatically identifying patterns of group activity among crew members working together in an office, cockpit, workshop, laboratory, or other enclosed space. The CAA synchronously records multiple streams of data from digital video cameras, wireless microphones, and position sensors, then plays back and processes the data to identify activity patterns specified by human analysts. The processing greatly reduces the amount of time that the analysts must spend in examining large amounts of data, enabling the analysts to concentrate on subsets of data that represent activities of interest. The CAA has potential for use in a variety of governmental and commercial applications, including planning for crews for future long space flights, designing facilities wherein humans must work in proximity for long times, improving crew training and measuring crew performance in military settings, human-factors and safety assessment, development of team procedures, and behavioral and ethnographic research. The data-acquisition hardware of the CAA (see figure) includes two video cameras: an overhead one aimed upward at a paraboloidal mirror on the ceiling and one mounted on a wall aimed in a downward slant toward the crew area. As many as four wireless microphones can be worn by crew members. The audio signals received from the microphones are digitized, then compressed in preparation for storage. Approximate locations of as many as four crew members are measured by use of a Cricket indoor location system. [The Cricket indoor location system includes ultrasonic/radio beacon and listener units. A Cricket beacon (in this case, worn by a crew member) simultaneously transmits a pulse of ultrasound and a radio signal that contains identifying information. Each Cricket listener unit measures the difference between the times of reception of the ultrasound and radio signals from an identified beacon

  10. Preliminary assessment of the impact of incorporating a detailed algorithm for the effects of nuclear irradiation on combat crew performance into the Janus combat simulation

    SciTech Connect

    Warshawsky, A.S.; Uzelac, M.J.; Pimper, J.E. )

    1989-05-01

    The Crew III algorithm for assessing time and dose dependent combat crew performance subsequent to nuclear irradiation was incorporated into the Janus combat simulation system. Battle outcomes using this algorithm were compared to outcomes based on the currently used time-independent cookie-cutter'' assessment methodology. The results illustrate quantifiable differences in battle outcome between the two assessment techniques. Results suggest that tactical nuclear weapons are more effective than currently assumed if performance degradation attributed to radiation doses between 150 to 3000 rad are taken into account. 6 refs., 9 figs.

  11. Assured Crew Return Vehicle

    NASA Technical Reports Server (NTRS)

    Stone, D. A.; Craig, J. W.; Drone, B.; Gerlach, R. H.; Williams, R. J.

    1991-01-01

    The developmental status is discussed regarding the 'lifeboat' vehicle to enhance the safety of the crew on the Space Station Freedom (SSF). NASA's Assured Crew Return Vehicle (ACRV) is intended to provide a means for returning the SSF crew to earth at all times. The 'lifeboat' philosophy is the key to managing the development of the ACRV which further depends on matrixed support and total quality management for implementation. The risk of SSF mission scenarios are related to selected ACRV mission requirements, and the system and vehicle designs are related to these precepts. Four possible ACRV configurations are mentioned including the lifting-body, Apollo shape, Discoverer shape, and a new lift-to-drag concept. The SCRAM design concept is discussed in detail with attention to the 'lifeboat' philosophy and requirements for implementation.

  12. Spacecraft crew escape

    NASA Astrophysics Data System (ADS)

    Miller, B. A.

    Safe crew escape from spacecraft is extremely difficult to engineer and has large cost and vehicle payload penalties. Because of these factors calculated risks have apparently been taken and only the most rudimentary means of crew protecion have been provided for space programs. Although designed for maximum reliability and safety a calculated risk is taken that on-balance it is more acceptable to risk the loss of possibly some or all occupants than introduce the mass, cost and complexity of an escape system. This philosophy was accepted until the Challenger tragedy. It is now clear that the use of this previously acceptable logic is invalid and that provisions must be made for spacecraft crew escape in the event of a catastrophic accident. This paper reviews the funded studies and subsequent proposals undertaken by Martin-Baker for the use of both encapsullated and open ejection seats for the Hermes Spaceplane. The technical difficulties, special innovations and future applications are also discussed.

  13. Airline Crew Training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The discovery that human error has caused many more airline crashes than mechanical malfunctions led to an increased emphasis on teamwork and coordination in airline flight training programs. Human factors research at Ames Research Center has produced two crew training programs directed toward more effective operations. Cockpit Resource Management (CRM) defines areas like decision making, workload distribution, communication skills, etc. as essential in addressing human error problems. In 1979, a workshop led to the implementation of the CRM program by United Airlines, and later other airlines. In Line Oriented Flight Training (LOFT), crews fly missions in realistic simulators while instructors induce emergency situations requiring crew coordination. This is followed by a self critique. Ames Research Center continues its involvement with these programs.

  14. Crew activities in space

    NASA Technical Reports Server (NTRS)

    Bluford, G. S., Jr.

    1981-01-01

    One of the mission requirements of the Space Shuttle is to serve as a working platform for experiments in space. Many of these experiments will be performed by crewmembers (mission specialists and payload specialists) in a general purpose laboratory called Spacelab. All nonexperiment-related activities or housekeeping activities will be done in the Orbiter, while most of the mission-related activities (experiments) will be done in Spacelab. In order for experimenters to design their experiments to best utilize the capabilities of the Orbiter, the Spacelab, and the crew, the working environment in the Orbiter and in Spacelab is described. In addition, the housekeeping activities required of the crew are summarized.

  15. STS-118 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These seven astronauts take a break from training to pose for the STS-118 crew portrait. Pictured from the left are astronauts Richard A. 'Rick' Mastracchio, mission specialist; Barbara R. Morgan, mission specialist; Charles O. Hobaugh, pilot; Scott J. Kelly, commander; Tracy E. Caldwell, Canadian Space Agency's Dafydd R. 'Dave' Williams, and Alvin Drew Jr., all mission specialists. The crew members are attired in training versions of their shuttle launch and entry suits. The main objective of the STS-118 mission was to install the fifth Starboard (S5) truss segment on the International Space Station (ISS).

  16. Assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Cerimele, Christopher J. (Inventor); Ried, Robert C. (Inventor); Peterson, Wayne L. (Inventor); Zupp, George A., Jr. (Inventor); Stagnaro, Michael J. (Inventor); Ross, Brian P. (Inventor)

    1991-01-01

    A return vehicle is disclosed for use in returning a crew to Earth from low earth orbit in a safe and relatively cost effective manner. The return vehicle comprises a cylindrically-shaped crew compartment attached to the large diameter of a conical heat shield having a spherically rounded nose. On-board inertial navigation and cold gas control systems are used together with a de-orbit propulsion system to effect a landing near a preferred site on the surface of the Earth. State vectors and attitude data are loaded from the attached orbiting craft just prior to separation of the return vehicle.

  17. STS-110 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is the official STS-110 crew portrait. In front, from the left, are astronauts Stephen N. Frick, pilot; Ellen Ochoa, flight engineer; and Michael J. Bloomfield, mission commander; In the back, from left, are astronauts Steven L. Smith, Rex J. Walheim, Jerry L. Ross and Lee M.E. Morin, all mission specialists. Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission crew prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The mission served as the 8th ISS assembly flight.

  18. STS-86 Crew Walkout

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-86 crew members smile and wave to the crowd of press representatives, KSC employees and other well-wishers as they prepare to board the astronaut van, at right, after departing from the Operations and Checkout Building. Leading the way are Pilot Michael J. Bloomfield, at left, and Commander James D. Wetherbee. Mission Specialists David A. Wolf, at left, and Vladimir Georgievich Titov of the Russian Space Agency are directly behind them, followed by Mission Specialist Wendy B. Lawrence, at center. Bringing up the rear are Mission Specialists Scott E. Parazynski, at left, and Jean-Loup J.M. Chretien of the French Space Agency, CNES. The seven-member crew is en route to Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff on a planned 10-day mission slated to be the seventh docking of the Space Shuttle and the Russian Space Station Mir. Wolf is scheduled to transfer to the Mir 24 crew for an approximate four- month stay aboard the Russian space station. He will replace U.S. astronaut C. Michael Foale, who will return to Earth aboard Atlantis with the remainder of the STS-86 crew.

  19. Crew Selection and Training

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1996-01-01

    This research addressed a number of issues relevant to the performance of teams in demanding environments. Initial work, conducted in the aviation analog environment, focused on developing new measures of performance related attitudes and behaviors. The attitude measures were used to assess acceptance of concepts related to effective teamwork and personal capabilities under stress. The behavioral measures were used to evaluate the effectiveness of flight crews operating in commercial aviation. Assessment of team issues in aviation led further to the evaluation and development of training to enhance team performance. Much of the work addressed evaluation of the effectiveness of such training, which has become known as Crew Resource Management (CRM). A second line of investigation was into personality characteristics that predict performance in challenging environments such as aviation and space. A third line of investigation of team performance grew out of the study of flight crews in different organizations. This led to the development of a theoretical model of crew performance that included not only individual attributes such as personality and ability, but also organizational and national culture. A final line of investigation involved beginning to assess whether the methodologies and measures developed for the aviation analog could be applied to another domain -- the performance of medical teams working in the operating room.

  20. STS-71 crew insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The STS-71 crew patch design depicts the orbiter Atlantis in the process of the first international docking mission with the Russian Space Station Mir. The names of the 10 astronauts and cosmonauts who will fly aboard the orbiter are shown along the outer

  1. Official Apollo 11 Crew Photo

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Official Crew Photo of the Apollo 11 Prime Crew. From left to right are Astronauts Neil A. Armstrong, Commander; Michael Collins, Command Module Pilot; and Edwin E. Aldrin Jr., Lunar Module Pilot.

  2. Getting a Crew into Orbit

    ERIC Educational Resources Information Center

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  3. Results of an International Space Crew Debrief

    NASA Technical Reports Server (NTRS)

    Santy, P. A.; Holland, A. W.; Looper, L.; Marcondes-North, R.

    1992-01-01

    In order to identify potential multi-cultural and multinational problems for future International Space Station Freedom crew, a crew debrief questionnaire was developed for U.S. astronauts who flew on shuttle missions with one or more crew members from other countries. Methods: From 1981-90, a total of 20 U.S. astronauts flew on international space missions. Debriefs were mailed to all 20 with instructions not to identify themselves or their specific mission. The debrief focused primarily on preflight training and post flight incidents of misunderstanding, miscommunication, and interpersonal friction among crewmembers. Astronauts were also asked to rate the impact of the incident to the mission (low, medium, high). Results: Ten astronauts responded, but only nine responses were able to be scored, for a return rate of 45 percent. 42 incidents were reported, 9 in the preflight period, 26 inflight, and 7 in the postflight period. Most of the incidents were rated at a low or medium impact, but 5 of the inflight incidents were rated at a 'high' mission impact. A number of causes for the problems were listed, and are discussed. Conclusions: The debrief respondents provide useful and timely recommendations on preflight training which might help facilitate the integration of multinational crews and prevent multi-cultural or multinational factors from interfering with mission operations.

  4. Crew decision making under stress

    NASA Technical Reports Server (NTRS)

    Orasanu, J.

    1992-01-01

    Flight crews must make decisions and take action when systems fail or emergencies arise during flight. These situations may involve high stress. Full-missiion flight simulation studies have shown that crews differ in how effectively they cope in these circumstances, judged by operational errors and crew coordination. The present study analyzed the problem solving and decision making strategies used by crews led by captains fitting three different personality profiles. Our goal was to identify more and less effective strategies that could serve as the basis for crew selection or training. Methods: Twelve 3-member B-727 crews flew a 5-leg mission simulated flight over 1 1/2 days. Two legs included 4 abnormal events that required decisions during high workload periods. Transcripts of videotapes were analyzed to describe decision making strategies. Crew performance (errors and coordination) was judged on-line and from videotapes by check airmen. Results: Based on a median split of crew performance errors, analyses to date indicate a difference in general strategy between crews who make more or less errors. Higher performance crews showed greater situational awareness - they responded quickly to cues and interpreted them appropriately. They requested more decision relevant information and took into account more constraints. Lower performing crews showed poorer situational awareness, planning, constraint sensitivity, and coordination. The major difference between higher and lower performing crews was that poorer crews made quick decisions and then collected information to confirm their decision. Conclusion: Differences in overall crew performance were associated with differences in situational awareness, information management, and decision strategy. Captain personality profiles were associated with these differences, a finding with implications for crew selection and training.

  5. STS-112 Crew Interviews - Wolf

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-112 Mission Specialist David Wolf is seen during this preflight interview, where he first answers questions on his career path and role models. Other questions cover mission goals, ISS (International Space Station) Expedition 5 spacecrew, crew training, the S1 Truss and its radiators, the MBS (Mobile Base Structure), his experience onboard Mir, and his EVAs (extravehicular activities) on the coming mission. The EVAs are the subject of several questions. Wolf discusses his crew members, and elsewhere discusses Pilot Pamela Melroy's role as an IV crew member during EVAs. In addition, Wolf answers questions on transfer operations, the SHIMMER experiment, and his thoughts on multinational crews and crew bonding.

  6. STS-67 crew insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Observation and remote exploration of the Universe in the ultraviolet wavelengths of light are the focus of the STS-67/ASTRO-2 mission, as depicted in the crew patch designed by the crew members. The insignia shows the ASTRO-2 telescopes in the Space Shuttle Endeavour's payload bay, orbiting high above Earth's atmosphere. The three sets of rays, diverging from the telescope on the patch atop the Instrument Pointing System (IPS), correspond to the three ASTRO-2 telescopes - the Hopkins Ultraviolet Telescope (HUT), The Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE). The telescopes are coaligned to simultaneously view the same astronomical object, as shown by the convergence of rays on the NASA symbol. This symbol also represents the excellence of the union of the NASA teams and the universality's in the exploration of the universe through astronomy. The celestial targets of ASTRO-2 include the observation of planets, stars and gala

  7. Flight Crew Health Maintenance

    NASA Technical Reports Server (NTRS)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  8. STS-99 Crew Insignia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-99 crew members designed the flight insignia for the Shuttle Radar Topography Mission (SRTM), the most ambitious Earth mapping mission to date. Two radar anternas, one located in the Shuttle bay and the other located on the end of a 60-meter deployable mast, was used during the mission to map Earth's features. The goal was to provide a 3-dimensional topographic map of the world's surface up to the Arctic and Antarctic Circles. In the patch, the clear portion of Earth illustrates the radar beams penetrating its cloudy atmosphere and the unique understanding of the home planet that is provided by space travel. The grid on Earth reflects the mapping character of the SRTM mission. The patch depicts the Space Shuttle Endeavour orbiting Earth in a star spangled universe. The rainbow along Earth's horizon resembles an orbital sunrise. The crew deems the bright colors of the rainbow as symbolic of the bright future ahead because of human beings' venturing into space. The crew of six launched aboard the Space Shuttle Endeavor on February 11, 2000 and completed 222 hours of around the clock radar mapping gathering enough information to fill more than 20,000 CDs.

  9. Risk factors for skin cancer among Finnish airline cabin crew.

    PubMed

    Kojo, Katja; Helminen, Mika; Pukkala, Eero; Auvinen, Anssi

    2013-07-01

    Increased incidence of skin cancers among airline cabin crew has been reported in several studies. We evaluated whether the difference in risk factor prevalence between Finnish airline cabin crew and the general population could explain the increased incidence of skin cancers among cabin crew, and the possible contribution of estimated occupational cosmic radiation exposure. A self-administered questionnaire survey on occupational, host, and ultraviolet radiation exposure factors was conducted among female cabin crew members and females presenting the general population. The impact of occupational cosmic radiation dose was estimated in a separate nested case-control analysis among the participating cabin crew (with 9 melanoma and 35 basal cell carcinoma cases). No considerable difference in the prevalence of risk factors of skin cancer was found between the cabin crew (N = 702) and the general population subjects (N = 1007) participating the study. The mean risk score based on all the conventional skin cancer risk factors was 1.43 for cabin crew and 1.44 for general population (P = 0.24). Among the cabin crew, the estimated cumulative cosmic radiation dose was not related to the increased skin cancer risk [adjusted odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.57-1.00]. The highest plausible risk of skin cancer for estimated cosmic radiation dose was estimated as 9% per 10 mSv. The skin cancer cases had higher host characteristics scores than the non-cases among cabin crew (adjusted OR = 1.43, 95% CI: 1.01-2.04). Our results indicate no difference between the female cabin crew and the general female population in the prevalence of factors generally associated with incidence of skin cancer. Exposure to cosmic radiation did not explain the excess of skin cancer among the studied cabin crew in this study. PMID:23316078

  10. Risk factors for skin cancer among Finnish airline cabin crew.

    PubMed

    Kojo, Katja; Helminen, Mika; Pukkala, Eero; Auvinen, Anssi

    2013-07-01

    Increased incidence of skin cancers among airline cabin crew has been reported in several studies. We evaluated whether the difference in risk factor prevalence between Finnish airline cabin crew and the general population could explain the increased incidence of skin cancers among cabin crew, and the possible contribution of estimated occupational cosmic radiation exposure. A self-administered questionnaire survey on occupational, host, and ultraviolet radiation exposure factors was conducted among female cabin crew members and females presenting the general population. The impact of occupational cosmic radiation dose was estimated in a separate nested case-control analysis among the participating cabin crew (with 9 melanoma and 35 basal cell carcinoma cases). No considerable difference in the prevalence of risk factors of skin cancer was found between the cabin crew (N = 702) and the general population subjects (N = 1007) participating the study. The mean risk score based on all the conventional skin cancer risk factors was 1.43 for cabin crew and 1.44 for general population (P = 0.24). Among the cabin crew, the estimated cumulative cosmic radiation dose was not related to the increased skin cancer risk [adjusted odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.57-1.00]. The highest plausible risk of skin cancer for estimated cosmic radiation dose was estimated as 9% per 10 mSv. The skin cancer cases had higher host characteristics scores than the non-cases among cabin crew (adjusted OR = 1.43, 95% CI: 1.01-2.04). Our results indicate no difference between the female cabin crew and the general female population in the prevalence of factors generally associated with incidence of skin cancer. Exposure to cosmic radiation did not explain the excess of skin cancer among the studied cabin crew in this study.

  11. Automation design and crew coordination

    NASA Technical Reports Server (NTRS)

    Segal, Leon D.

    1993-01-01

    Advances in technology have greatly impacted the appearance of the modern aircraft cockpit. Where once one would see rows upon rows. The introduction of automation has greatly altered the demands on the pilots and the dynamics of aircrew task performance. While engineers and designers continue to implement the latest technological innovations in the cockpit - claiming higher reliability and decreased workload - a large percentage of aircraft accidents are still attributed to human error. Rather than being the main instigators of accidents, operators tend to be the inheritors of system defects created by poor design, incorrect installation, faulty maintenance and bad management decisions. This paper looks at some of the variables that need to be considered if we are to eliminate at least one of these inheritances - poor design. Specifically, this paper describes the first part of a comprehensive study aimed at identifying the effects of automation on crew coordination.

  12. STS-39 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The STS-39 crew portrait includes 7 astronauts. Pictured are Charles L. Veach, mission specialist 5; Michael L. Coats, commander; Gregory J. Harbaugh, mission specialist 2; Donald R. McMonagle, mission specialist 4; L. Blaine Hammond, pilot; Richard J. Hieb, mission specialist 3; and Guion S. Buford, Jr., mission specialist 1. Launched aboard the Space Shuttle Discovery on April 28, 1991 at 7:33:14 am (EDT), STS-39 was a Department of Defense (DOD) mission. The primary unclassified payload included the Air Force Program 675 (AFP-675), the Infrared Background Signature Survey (IBSS), and the Shuttle Pallet Satellite II (SPAS II).

  13. STS-92 Crew Training

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Footage shows the crew of STS-92, Commander Brian Duffy, Pilot Pamela A. Melroy, and Mission Specialists Koichi Wakata, Leroy Chiao, Peter J.K. Wisoff, Michael E. Lopez-Alegria, and William S. McArthur during various parts of their training. Clips are seen of the Shuttle bailout training, Shuttle arm and extravehicular activity (EVA) training at the Virtual Reality Lab, EVA training at the Neutral Buoyancy Lab, Shuttle operations training, EVA prep and post training in the Full Fuselage Trainer, ascent and post insertion training in the Guidance Navigation Simulator, and Mission Specialist Wakata in the Shuttle Engineering Dome and training on the Manipulator Development Facility.

  14. STS-79 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The crew assigned to the STS-79 mission included (seated front left to right) Jerome (Jay) Apt, mission specialist; Terrence W. Wilcutt, pilot; William F. Readdy, commander; Thomas D. Akers, and Carl E. Walz, both mission specialists. On the back row (left to right) are mission specialists Shannon W. Lucid, and John E. Blaha. Launched aboard the Space Shuttle Atlantis on September 16, 1996 at 4:54:49 am (EDT), the STS-79 mission marked the fourth U.S. Space Shuttle-Russian Space Station Mir docking, the second flight of the SPACEHAB module in support of Shuttle-Mir activities and the first flight of the SPACEHAB Double Module Configuration.

  15. STS-101 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Six astronauts and a Russian cosmonaut comprised the STS-101 mission that launched aboard the Space Shuttle Atlantis on May 19, 2000 at 5:11 am (CDT). Seated in front are astronauts James D. Halsell (right), mission commander; and Scott J. Horowitz, pilot. Others, from the left, are Mary Ellen Weber, Jeffrey N. Williams, Yury V. Usachev, James S. Voss and Susan J. Helms, all mission specialists. Usachev represents the Russian Space Agency (RSA). The crew of the STS- 101 mission refurbished and replaced components in both the Zarya and Unity modules, with top priority being the Zarya module.

  16. STS-88 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Five NASA astronauts and a Russian cosmonaut assigned to the STS-88 mission pose for a crew portrait. Seated in front (left to right) are mission specialists Sergei K. Krikalev, representing the Russian Space Agency (RSA), and astronaut Nancy J. Currie. In the rear from the left, are astronauts Jerry L. Ross, mission specialist; Robert D. Cabana, mission commander; Frederick W. 'Rick' Sturckow, pilot; and James H. Newman, mission specialist. The STS-88 mission launched aboard the Space Shuttle Endeavor on December 4, 1998 at 2:35 a.m. (CST) to deliver the Unity Node to the International Space Station (ISS).

  17. STS-84 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew assigned to the STS-84 mission included (seated front left to right) Jerry M Linenger, mission specialist; Charles J. Precourt, commander; and C. Michael Foale, mission specialist. On the back row (left to right) are Jean-Francois Clervoy (ESA), mission specialist; Eileen M. Collins, pilot; Edward T. Lu, mission specialist; Elena V. Kondakova (RSA), mission specialist; and Carlos I. Noriega, mission specialist. Launched aboard the Space Shuttle Atlantis on May 15, 1997 at 4:07:48 am (EDT), the STS-84 mission served as the sixth U.S. Space Shuttle-Russian Space Station Mir docking.

  18. STS-86 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew assigned to the STS-86 mission included five U.S. astronauts, one Russian cosmonaut, and one Canadian astronaut. Kneeling is mission specialist Scott E. Parazynski. Others, pictured from left to right, are Michael J. Bloomfield, pilot; David A. Wolf, mission specialist; James D. Wetherbee, commander; and mission specialists Wendy B. Lawrence, Vlamimir G. Titov (RSA), and Jean-Loup J.M. Chretien (CNES). Launched aboard the Space Shuttle Atlantis on September 25, 1997 at 10:34:19 pm (EDT), the STS-86 mission served as the 7th U.S. Space Shuttle-Russian Space Station Mir docking.

  19. STS-63 crew portrait

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With the United States and Russian flags in the background, five NASA astronauts and a Russian cosmonaut named to fly aboard the Space Shuttle Discovery for the the STS-63 mission pose for the flight crew portrait at JSC. Left to right (front row) are Janice E. Voss, mission specialist, Eileen M. Collins, pilot; James D. Wetherbee, mission commander; and Vladimir Titov of the Russian Space Agency, mission specialist. In the rear are Bernard A. Harris Jr., payload commander; and C. Michael Foale, mission specialist.

  20. Crew appliance study

    NASA Technical Reports Server (NTRS)

    Proctor, B. W.; Reysa, R. P.; Russell, D. J.

    1975-01-01

    Viable crew appliance concepts were identified by means of a thorough literature search. Studies were made of the food management, personal hygiene, housekeeping, and off-duty habitability functions to determine which concepts best satisfy the Space Shuttle Orbiter and Modular Space Station mission requirements. Models of selected appliance concepts not currently included in the generalized environmental-thermal control and life support systems computer program were developed and validated. Development plans of selected concepts were generated for future reference. A shuttle freezer conceptual design was developed and a test support activity was provided for regenerative environmental control life support subsystems.

  1. STS-113 Crew Training Clip

    NASA Astrophysics Data System (ADS)

    2002-01-01

    The STS-113 crew consists of Commander Jim Weatherbee, Pilot Paul Lockhart, and Mission Specialists Michael Lopez-Alegria and John Herrington. The goal of the STS-113 mission is to deliver the Expedition Six crew to the International Space Station and return the Expedition Five crew to Earth. Also, the P1 Truss will be installed on the International Space Station. The STS-113 crew is shown getting suited for Pre-Launch Ingress and Egress. The Neutral Buoyancy Lab Extravehicular Activity training (NBL) (EVA), CETA Bolt Familiarization, and Photography TV instruction are also presented.

  2. STS-86 Crew Walkout

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The five STS-86 mission specialists wave to the crowd of press representatives, KSC employees and other well-wishers as they depart from the Operations and Checkout Building. The three U.S. mission specialists (and their nicknames for this flight) are, from left, 'too tall' Scott E. Parazynski, 'just right' David A. Wolf and 'too short' Wendy B. Lawrence. The two mission specialists representing foreign space agencies are Vladimir Georgievich Titov of the Russian Space Agency, in foreground at right, and Jean-Loup J.M. Chretien of the French Space Agency, CNES, in background at right. Commander James D. Wetherbee and Pilot Michael J. Bloomfield are out of the frame. STS-86 is slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. Wolf is scheduled to transfer to the Mir 24 crew for an approximate four-month stay aboard the Russian space station. Parazynski and Lawrence were withdrawn from training for an extended stay aboard the Mir - Parazynski because he was too tall to fit safely in a Russian Soyuz spacecraft, and Lawrence because she was too short to fit into a Russian spacewalk suit. The crew is en route to Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff on the planned 10-day mission.

  3. Deployable Crew Quarters

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    The deployable crew quarters (DCQ) have been designed for the International Space Station (ISS). Each DCQ would be a relatively inexpensive, deployable boxlike structure that is designed to fit in a rack bay. It is to be occupied by one crewmember to provide privacy and sleeping functions for the crew. A DCQ comprises mostly hard panels, made of a lightweight honeycomb or matrix/fiber material, attached to each other by cloth hinges. Both faces of each panel are covered with a layer of Nomex cloth and noise-suppression material to provide noise isolation from ISS. On Earth, the unit is folded flat and attached to a rigid pallet for transport to the ISS. On the ISS, crewmembers unfold the unit and install it in place, attaching it to ISS structural members by use of soft cords (which also help to isolate noise and vibration). A few hard pieces of equipment (principally, a ventilator and a smoke detector) are shipped separately and installed in the DCQ unit by use of a system of holes, slots, and quarter-turn fasteners. Full-scale tests showed that the time required to install a DCQ unit amounts to tens of minutes. The basic DCQ design could be adapted to terrestrial applications to satisfy requirements for rapid deployable emergency shelters that would be lightweight, portable, and quickly erected. The Temporary Early Sleep Station (TeSS) currently on-orbit is a spin-off of the DCQ.

  4. Asteroid Crewed Segment Mission Lean Development

    NASA Technical Reports Server (NTRS)

    Gard, Joe; McDonald, Mark; Jermstad, Wayne

    2014-01-01

    The next generation of human spaceflight missions presents numerous challenges to designers that must be addressed to produce a feasible concept. The specific challenges of designing an exploration mission utilizing the Space Launch System and the Orion spacecraft to carry astronauts beyond earth orbit to explore an asteroid stored in a distant retrograde orbit around the moon will be addressed. Mission designers must carefully balance competing constraints including cost, schedule, risk, and numerous spacecraft performance metrics including launch mass, nominal landed mass, abort landed mass, mission duration, consumable limits and many others. The Asteroid Redirect Crewed Mission will be described along with results from the concurrent mission design trades that led to its formulation. While the trades presented are specific to this mission, the integrated process is applicable to any potential future mission. The following trades were critical in the mission formulation and will be described in detail: 1) crew size, 2) mission duration, 3) trajectory design, 4) docking vs grapple, 5) extravehicular activity tasks, 6) launch mass and integrated vehicle performance, 7) contingency performance, 8) crew consumables including food, clothing, oxygen, nitrogen and water, and 9) mission risk. The additional Orion functionality required to perform the Asteroid Redirect Crewed Mission and how it is incorporated while minimizing cost, schedule and mass impacts will be identified. Existing investments in the NASA technology portfolio were leveraged to provide the added functionality that will be beneficial to future exploration missions. Mission kits are utilized to augment Orion with the necessary functionality without introducing costly new requirements to the mature Orion spacecraft design effort. The Asteroid Redirect Crewed Mission provides an exciting early mission for the Orion and SLS while providing a stepping stone to even more ambitious missions in the future.

  5. Flight Crew Health Stabilization Program

    NASA Technical Reports Server (NTRS)

    Johnston, Smith L.

    2010-01-01

    This document establishes the policy and procedures for the HSP and is authorized through the Director, Johnson Space Center (JSC). This document delineates the medical operations requirements for the HSP. The HSP goals are accomplished through an awareness campaign and procedures such as limiting access to flight crewmembers, medical screening, and controlling flight crewmember activities. NASA's Human Space Flight Program uses strategic risk mitigation to achieve mission success while protecting crew health and safety. Infectious diseases can compromise crew health and mission success, especially in the immediate preflight period. The primary purpose of the Flight Crew Health Stabilization Program (HSP) is to mitigate the risk of occurrence of infectious disease among astronaut flight crews in the immediate preflight period. Infectious diseases are contracted through direct person-to-person contact, and through contact with infectious material in the environment. The HSP establishes several controls to minimize crew exposure to infectious agents. The HSP provides a quarantine environment for the crew that minimizes contact with potentially infectious material. The HSP also limits the number of individuals who come in close contact with the crew. The infection-carrying potential of these primary contacts (PCs) is minimized by educating them in ways to avoid infections and avoiding contact with the crew if they are or may be sick. The transmission of some infectious diseases can be greatly curtailed by vaccinations. PCs are strongly encouraged to maintain updated vaccinations.

  6. Flight crew health stabilization program

    NASA Technical Reports Server (NTRS)

    Wooley, B. C.; Mccollum, G. W.

    1975-01-01

    The flight crew health stabilization program was developed to minimize or eliminate the possibility of adverse alterations in the health of flight crews during immediate preflight, flight, and postflight periods. The elements of the program, which include clinical medicine, immunology, exposure prevention, and epidemiological surveillance, are discussed briefly. No crewmember illness was reported for the missions for which the program was in effect.

  7. STS-71 preflight crew portrait

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Crew members for the STS-71 mission and the related Mir missions assembled for a crew portrait at JSC. In front are, left to right, Vladimir N. Dezhurov, Robert L. Gibson and Anatoliy Y. Solovyev, mission commanders for Mir-18, STS-71 and Mir-19, respecti

  8. Crew Transportation Technical Management Processes

    NASA Technical Reports Server (NTRS)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  9. Crew Interviews: Treschev

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sergei Treschev is a Cosmonaut of the Rocket Space Corporation Energia, (RSC), from Volynsky District, Lipetsk Region (Russia). He graduated from Moscow Energy Institute. After years of intense training with RSC Energia, he was selected as International Space Station (ISS) Increment 5 flight engineer. The Expedition-Five crew (two Russian cosmonauts and one American astronaut) will stay on the station for approximately 5 months. The Multipurpose Logistics Module, or MPLM, will carry experiment racks and three stowage and resupply racks to the station. The mission will also install a component of the Canadian Arm called the Mobile Base System (MBS) to the Mobile Transporter (MT) installed during STS-110. This completes the Canadian Mobile Servicing System, or MSS. The mechanical arm will now have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites.

  10. Apollo 11 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is the official crew portrait of the Apollo 11 astronauts. Pictured from left to right are: Neil A. Armstrong, Commander; Michael Collins, Module Pilot; Edwin E. 'Buzz' Aldrin, Lunar Module Pilot. Apollo 11 was the first marned lunar landing mission that placed the first humans on the surface of the moon and returned them back to Earth. Astronaut Armstrong became the first man on the lunar surface, and astronaut Aldrin became the second. Astronaut Collins piloted the Command Module in a parking orbit around the Moon. Launched aboard the Saturn V launch vehicle (SA-506), the three astronauts began their journey to the moon with liftoff from launch complex 39A at the Kennedy Space Center at 8:32 am CDT, July 16, 1969.

  11. STS-69 Crew members display 'Dog Crew' patches

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Following their arrival at KSC's Shuttle Landing Facility, the five astronauts assigned to Space Shuttle Mission STS-69 display the unofficial crew patch for their upcoming spaceflight: the Dog Crew II patch. Mission Commander David M. Walker (center) and Payload Commander James S. Voss (second from right) previously flew together on Mission STS-53, the final dedicated Department of Defense flight on the Space Shuttle. A close comradery formed among Walker, Voss and the rest of the crew, and they dubbed themselves the 'dogs of war', with each of the STS-53 'Dog Crew' members assigned a 'dog tag' or nickname. When the STS-69 astronauts also became good buddies, they decided it was time for the Dog Crew II to be named. Walker's dog tag is Red Dog, Voss's is Dogface, Pilot Kenneth D. Cockrell (second from left) is Cujo, space rookie and Mission Specialist Michael L. Gernhardt (left) is Under Dog, and Mission Specialist James H. Newman (right) is Pluato. The Dog Crew II patch features a bulldog peering out from a doghouse shaped like the Space Shuttle and lists the five crew member's dog names. The five astronauts are scheduled to lift off on the fifth Shuttle flight of the year at 11:04 a.m. EDT, August 31, aboard the Space Shuttle Endeavour.

  12. Vulnerability of manned spacecraft to crew loss from orbital debris penetration

    NASA Technical Reports Server (NTRS)

    Williamsen, J. E.

    1994-01-01

    Orbital debris growth threatens the survival of spacecraft systems from impact-induced failures. Whereas the probability of debris impact and spacecraft penetration may currently be calculated, another parameter of great interest to safety engineers is the probability that debris penetration will cause actual spacecraft or crew loss. Quantifying the likelihood of crew loss following a penetration allows spacecraft designers to identify those design features and crew operational protocols that offer the highest improvement in crew safety for available resources. Within this study, a manned spacecraft crew survivability (MSCSurv) computer model is developed that quantifies the conditional probability of losing one or more crew members, P(sub loss/pen), following the remote likelihood of an orbital debris penetration into an eight module space station. Contributions to P(sub loss/pen) are quantified from three significant penetration-induced hazards: pressure wall rupture (explosive decompression), fragment-induced injury, and 'slow' depressurization. Sensitivity analyses are performed using alternate assumptions for hazard-generating functions, crew vulnerability thresholds, and selected spacecraft design and crew operations parameters. These results are then used to recommend modifications to the spacecraft design and expected crew operations that quantitatively increase crew safety from orbital debris impacts.

  13. Design Considerations for a Crewed Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2015-01-01

    Exploration architecture studies identified the Mars Ascent Vehicle (MAV) as one of the largest "gear ratio" items in a crewed Mars mission. Because every kilogram of mass ascended from the Martian surface requires seven kilograms or more of ascent propellant, it is desirable for the MAV to be as small and lightweight as possible. Analysis identified four key factors that drive MAV sizing: 1) Number of crew: more crew members require more equipment-and a larger cabin diameter to hold that equipment-with direct implications to structural, thermal, propulsion, and power subsystem mass. 2) Which suit is worn during ascent: Extravehicular Activity (EVA) type suits are physically larger and heavier than Intravehicular Activity (IVA) type suits and because they are less flexible, EVA suits require more elbow-room to maneuver in and out of. An empty EVA suit takes up about as much cabin volume as a crew member. 3) How much time crew spends in the MAV: less than about 12 hours and the MAV can be considered a "taxi" with few provisions for crew comfort. However, if the crew spends more than 12 consecutive hours in the MAV, it begins to look like a Habitat requiring more crew comfort items. 4) How crew get into/out of the MAV: ingress/egress method drives structural mass (for example, EVA hatch vs. pressurized tunnel vs. suit port) as well as consumables mass for lost cabin atmosphere, and has profound impacts on surface element architecture. To minimize MAV cabin mass, the following is recommended: Limit MAV usage to 24 consecutive hours or less; discard EVA suits on the surface and ascend wearing IVA suits; Limit MAV functionality to ascent only, rather than dual-use ascent/habitat functions; and ingress/egress the MAV via a detachable tunnel to another pressurized surface asset.

  14. STS-112 Crew Training Clip

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Footage shows the crew of STS-112 (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Piers Sellers, Sandra Magnus, and Fyodor Yurchikhin, Mission Specialists) during several parts of their training. The video is arranged into short segments. In 'Topside Activities at the NBL', Wolf and Sellers are fitted with EVA suits for pool training. 'Pre-Launch Bailout Training in CCT II' shows all six crew members exiting from the hatch on a model of a shuttle orbiter cockpit. 'EVA Training in the VR Lab' shows a crew member training with a virtual reality simulator, interspersed with footage of Magnus, and Wolf with Melroy, at monitors. There is a 'Crew Photo Session', and 'Pam Melroy and Sandy Magnus at the SES Dome' also features a virtual reality simulator. The final two segments of the video involve hands-on training. 'Post Landing Egress at the FFT' shows the crew suiting up into their flight suits, and being raised on a harness, to practice rapelling from the cockpit hatch. 'EVA Prep and Post at the ISS Airlock' shows the crew assembling an empty EVA suit onboard a model of a module. The crew tests oxygen masks, and Sellers is shown on an exercise bicycle with an oxygen mask, with his heart rate monitored (not shown).

  15. STS-112 Crew Training Clip

    NASA Astrophysics Data System (ADS)

    2002-09-01

    Footage shows the crew of STS-112 (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Piers Sellers, Sandra Magnus, and Fyodor Yurchikhin, Mission Specialists) during several parts of their training. The video is arranged into short segments. In 'Topside Activities at the NBL', Wolf and Sellers are fitted with EVA suits for pool training. 'Pre-Launch Bailout Training in CCT II' shows all six crew members exiting from the hatch on a model of a shuttle orbiter cockpit. 'EVA Training in the VR Lab' shows a crew member training with a virtual reality simulator, interspersed with footage of Magnus, and Wolf with Melroy, at monitors. There is a 'Crew Photo Session', and 'Pam Melroy and Sandy Magnus at the SES Dome' also features a virtual reality simulator. The final two segments of the video involve hands-on training. 'Post Landing Egress at the FFT' shows the crew suiting up into their flight suits, and being raised on a harness, to practice rapelling from the cockpit hatch. 'EVA Prep and Post at the ISS Airlock' shows the crew assembling an empty EVA suit onboard a model of a module. The crew tests oxygen masks, and Sellers is shown on an exercise bicycle with an oxygen mask, with his heart rate monitored (not shown).

  16. Flight Crew Integration (FCI) ISS Crew Comments Database & Products Summary

    NASA Technical Reports Server (NTRS)

    Schuh, Susan

    2016-01-01

    This Crew Debrief Data provides support for design and development of vehicles, hardware, requirements, procedures, processes, issue resolution, lessons learned, consolidation and trending for current Programs; and much of the data is also used to support development of future Programs.

  17. Communication indices of crew coordination

    NASA Technical Reports Server (NTRS)

    Kanki, B. G.; Lozito, S.; Foushee, H. C.

    1989-01-01

    The relationship between communication patterns and performance in 10 two-person flightcrews is explored with the aim of identifying speech variations which differentiate low- and high-error full mission simulator flights. Verbal data, transcribed from the videotaped performances, are treated as interactive sequences of speech events in which statements spoken by one crewmember are considered within the context of the other crewmember's prior and subsequent speech. Specific speech patterns characterized each crew, but the overriding findings included: a) marked homogeneity of patterns characterizing low-error crews, interpreted as the adoption of a standard form of communicating, and b) heterogeneity of patterns characterizing high-error crews, interpreted as the relative absence of a conventionalized form. Because conventions are regularities which confirm the expectations of those involved, predictability of crewmember behavior should be greater when standard conventions are followed. We conclude that such a practice can facilitate the coordination process and enhance crew performance.

  18. Commercial Crew Planning Status Forum

    NASA Video Gallery

    NASA presents an overview of common themes captured from industry responses provided to NASA's Commercial Crew Initiative Request for Information (RFI) published on May 21, 2010. The forum includes...

  19. Space Shuttle Wireless Crew Communications

    NASA Technical Reports Server (NTRS)

    Armstrong, R. W.; Doe, R. A.

    1982-01-01

    The design, development, and performance characteristics of the Space Shuttle's Wireless Crew Communications System are discussed. This system allows Space Shuttle crews to interface with the onboard audio distribution system without the need for communications umbilicals, and has been designed through the adaptation of commercially available hardware in order to minimize development time. Testing aboard the Space Shuttle Orbiter Columbia has revealed no failures or design deficiencies.

  20. Coordinated crew performance in commercial aircraft operations

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.

    1977-01-01

    A specific methodology is proposed for an improved system of coding and analyzing crew member interaction. The complexity and lack of precision of many crew and task variables suggest the usefulness of fuzzy linguistic techniques for modeling and computer simulation of the crew performance process. Other research methodologies and concepts that have promise for increasing the effectiveness of research on crew performance are identified.

  1. Microcoding of communications in accident investigation - Crew coordination in United 811 and United 232

    NASA Technical Reports Server (NTRS)

    Predmore, Steven C.

    1991-01-01

    Two recent airline accidents that underscored the value of cockpit resource management (CRM) to line operations, especially under stressful, high workload conditions are reviewed. An analysis of the verbal behavior of each crew was conducted to explore how catastrophic events impact upon the dynamics of crew interaction. In both cases the Captain stated that training in CRM contributed significantly to the overall effectiveness of the crews.

  2. Intercultural crew issues in long-duration spaceflight.

    PubMed

    Kraft, Norbert O; Lyons, Terence J; Binder, Heidi

    2003-05-01

    Before long-duration flights with international crews can be safely undertaken, potential interpersonal difficulties will need to be addressed. Crew performance breakdown has been recognized by the American Institute of Medicine, in scientific literature, and in popular culture. However, few studies of human interaction and performance in confined, isolated environments exist, and the data pertaining to those studies are mostly anecdotal. Many incidents involving crew interpersonal dynamics, those among flight crews, as well as between flight crews and ground controllers, are reported only in non-peer reviewed books and newspapers. Consequently, due to this lack of concrete knowledge, the selection of astronauts and cosmonauts has focused on individual rather than group selection. Additional selection criteria such as interpersonal and communication competence, along with intercultural training, will have a decisive impact on future mission success. Furthermore, industrial psychological research has demonstrated the ability to select a group based on compatibility. With all this in mind, it is essential to conduct further research on heterogeneous, multi-national crews including selection and training for long-duration space missions. PMID:12751589

  3. Intercultural crew issues in long-duration spaceflight

    NASA Technical Reports Server (NTRS)

    Kraft, Norbert O.; Lyons, Terence J.; Binder, Heidi

    2003-01-01

    Before long-duration flights with international crews can be safely undertaken, potential interpersonal difficulties will need to be addressed. Crew performance breakdown has been recognized by the American Institute of Medicine, in scientific literature, and in popular culture. However, few studies of human interaction and performance in confined, isolated environments exist, and the data pertaining to those studies are mostly anecdotal. Many incidents involving crew interpersonal dynamics, those among flight crews, as well as between flight crews and ground controllers, are reported only in non-peer reviewed books and newspapers. Consequently, due to this lack of concrete knowledge, the selection of astronauts and cosmonauts has focused on individual rather than group selection. Additional selection criteria such as interpersonal and communication competence, along with intercultural training, will have a decisive impact on future mission success. Furthermore, industrial psychological research has demonstrated the ability to select a group based on compatibility. With all this in mind, it is essential to conduct further research on heterogeneous, multi-national crews including selection and training for long-duration space missions.

  4. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  5. STS-87 crew participates in Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center are STS-87 crew members, assisted by Glenda Laws, extravehicular activity (EVA) coordinator, Johnson Space Center. Standing behind Laws are Takao Doi, Ph.D., of the National Space Development Agency of Japan, and Winston Scott, both mission specialists on STS-87. The STS-87 mission will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, scheduled for a Nov. 19 liftoff from KSC, Dr. Doi and Scott will both perform spacewalks.

  6. Communications indices of crew coordination

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Foushee, H. Clayton; Lozito, Sandra

    1987-01-01

    Verbal exchanges occuring during task execution during full mission two-person simulator flights are used to study the effect of the interactive communication process on crew coordination and performance. The ratio of initiator to response speech is calculated and speech variations are recorded. The results of this study are compared with the findings of Ginnett's (1986) study of leaders. It is shown that low-error crews adopt a standard form of communicating, allowing for the ability to predict one another's behavior, facilitating the coordination process. The higher performance of crews that have flown together before is believed to be due to the increased amount of time for establishing a conventional means of communication.

  7. Commercial Crew Development Program Overview

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.

    2011-01-01

    NASA's Commercial Crew Development Program is designed to stimulate efforts within the private sector that will aid in the development and demonstration of safe, reliable, and cost-effective space transportation capabilities. With the goal of delivery cargo and eventually crew to Low Earth Orbit (LEO) and the International Space Station (ISS) the program is designed to foster the development of new spacecraft and launch vehicles in the commercial sector. Through Space Act Agreements (SAAs) in 2011 NASA provided $50M of funding to four partners; Blue Origin, The Boeing Company, Sierra Nevada Corporation, and SpaceX. Additional, NASA has signed two unfunded SAAs with ATK and United Space Alliance. This paper will give a brief summary of these SAAs. Additionally, a brief overview will be provided of the released version of the Commercial Crew Development Program plans and requirements documents.

  8. Readiness for First Crewed Flight

    NASA Technical Reports Server (NTRS)

    Schaible, Dawn M.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to develop a generic framework for evaluating whether any given program has sufficiently complete and balanced plans in place to allow crewmembers to fly safely on a human spaceflight system for the first time (i.e., first crewed flight). The NESC assembled a small team which included experts with experience developing robotic and human spaceflight and aviation systems through first crewed test flight and into operational capability. The NESC team conducted a historical review of the steps leading up to the first crewed flights of Mercury through the Space Shuttle. Benchmarking was also conducted with the United States (U.S.) Air Force and U.S. Navy. This report contains documentation of that review.

  9. Assured crew return capability Crew Emergency Return Vehicle (CERV) avionics

    NASA Technical Reports Server (NTRS)

    Myers, Harvey Dean

    1990-01-01

    The Crew Emergency Return Vehicle (CERV) is being defined to provide Assured Crew Return Capability (ACRC) for Space Station Freedom. The CERV, in providing the standby lifeboat capability, would remain in a dormat mode over long periods of time as would a lifeboat on a ship at sea. The vehicle must be simple, reliable, and constantly available to assure the crew's safety. The CERV must also provide this capability in a cost effective and affordable manner. The CERV Project philosophy of a simple vehicle is to maximize its useability by a physically deconditioned crew. The vehicle reliability goes unquestioned since, when needed, it is the vehicle of last resort. Therefore, its systems and subsystems must be simple, proven, state-of-the-art technology with sufficient redundancy to make it available for use as required for the life of the program. The CERV Project Phase 1'/2 Request for Proposal (RFP) is currently scheduled for release on October 2, 1989. The Phase 1'/2 effort will affirm the existing project requirements or amend and modify them based on a thorough evaluation of the contractor(s) recommendations. The system definition phase, Phase 2, will serve to define CERV systems and subsystems. The current CERV Project schedule has Phase 2 scheduled to begin October 1990. Since a firm CERV avionics design is not in place at this time, the treatment of the CERV avionics complement for the reference configuration is not intended to express a preference with regard to a system or subsystem.

  10. International Space Station Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.

    2010-01-01

    The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  11. Achieving the Proper Balance between Crew & Public Safety

    NASA Astrophysics Data System (ADS)

    Wilde, P.; Gowan, J.; Silvestri, R.; Stahl, B.; Rosati, P.

    2012-01-01

    A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard, and the design engineers must give these requirements the same consideration as crew safety requirements. For human spaceflight, the primary purpose and operational concept for any flight safety system is to protect the public while maximizing the likelihood of crew survival. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. An overview of existing range and crew safety policy requirements will be presented. Application of these requirements and lessons learned from both the Space Shuttle and Constellation Programs will also be discussed. Using these past programs as examples, the paper will detail operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Crewed vehicle perspectives from the Federal Aviation Administration and Air Force organizations that oversee public safety will be summarized as well. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.

  12. The evolution of Crew Resource Management training in commercial aviation

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.; Merritt, A. C.; Wilhelm, J. A.

    1999-01-01

    In this study, we describe changes in the nature of Crew Resource Management (CRM) training in commercial aviation, including its shift from cockpit to crew resource management. Validation of the impact of CRM is discussed. Limitations of CRM, including lack of cross-cultural generality are considered. An overarching framework that stresses error management to increase acceptance of CRM concepts is presented. The error management approach defines behavioral strategies taught in CRM as error countermeasures that are employed to avoid error, to trap errors committed, and to mitigate the consequences of error.

  13. Automation and crew time saving in the space experiment

    NASA Technical Reports Server (NTRS)

    Matsumoto, Kohtaro; Suzuki, Tsuyoshi; Funaya, Kouichi; Kawamura, Takeya; Sonobe, Masayoshi

    1994-01-01

    We describe preliminary results of the feasibility study of automation and crew workload saving in space experiments on the space station. Some functions have been studied that can be automated within a single rack and without major impact to the development process and costs. In addition, we assume the following premises: (1) applicable as the second generation apparatuses; (2) maximum reduction of the crew workload; and (3) automation between racks including storage. Four apparatuses have been selected as the study case; results for three are summarized.

  14. Pilot personality and crew coordination - Implications for training and selection

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Helmreich, Robert L.; Gregorich, Steven E.; Geis, Craig E.

    1991-01-01

    It is contended that past failures to find linkages between performance and personality were due to a combination of premature performance evaluation, inadequate statistical modeling, and/or the reliance on data gathered in contrived as opposed to realistic situations. The goal of the research presented is to isolate subgroups of pilots along performance-related personality dimensions and to document limits on the impact of crew coordination training between the groups. Three different profiles were identified through cluster analysis of personality scales that replicated across samples and predicted attitude change following training in crew coordination.

  15. Crew quarters for Space Station

    NASA Technical Reports Server (NTRS)

    Mount, F. E.

    1989-01-01

    The only long-term U.S. manned space mission completed has been Skylab, which has similarities as well as differences to the proposed Space Station. With the exception of Skylab missions, there has been a dearth of experience on which to base the design of the individual Space Station Freedom crew quarters. Shuttle missions commonly do not have sleep compartments, only 'sleeping arrangements'. There are provisions made for each crewmember to have a sleep restraint and a sleep liner, which are attached to a bulkhead or a locker. When the Shuttle flights began to have more than one working shift, crew quarters became necessary due to noise and other disturbances caused by crew task-related activities. Shuttle missions that have planned work shifts have incorporated sleep compartments. To assist in gaining more information and insight for the design of the crew quarters for the Space Station Freedom, a survey was given to current crewmembers with flight experience. The results from this survey were compiled and integrated with information from the literature covering space experience, privacy, and human-factors issues.

  16. Apollo 13 prime crew portrait

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 13 prime crew portrait. From left to right are Astronauts James A. Lovell, Thomas K. Mattingly, and Fred W. Haise in their space suits. On the table in front of them are (l-r) a model of a sextant, the Apollo 13 insignia, and a model of an astrolabe. The sextant and astrolabe are two ancient forms of navigation.

  17. Commercial Crew Program CCiCap Partners

    NASA Video Gallery

    NASA's Commercial Crew Program and its newest Commercial Crew Integrated Capability (CCiCap) partners are embracing the American spirit as they advance their integrated rocket and spacecraft design...

  18. Orbiter Crew Compartment Integration-Stowage

    NASA Technical Reports Server (NTRS)

    Morgan, L. Gary

    2007-01-01

    This viewgraph presentation describes the Orbiter Crew Compartment Integration (CCI) stowage. The evolution of orbiter crew compartment stowage volume is also described, along with photographs presented of the on-orbit volume stowage capacity.

  19. Psychosocial issues affecting crews during long-duration international space missions.

    PubMed

    Kanas, N

    1998-01-01

    Psychosocial issues can negatively impact on crew performance and morale during long-duration international space missions. Major psychosocial factors that have been described in anecdotal reports from space and in studies from analog situations on Earth include: 1) crew heterogeneity due to gender differences, cultural issues, and work experiences and motivations; 2) language and dialect variations; and 3) task versus supportive leadership roles. All of these factors can lead to negative sequelae, such as intra-crew tension and cohesion disruptions. Specific sequelae that can result from single factors include subgrouping and scapegoating due to crew heterogeneity; miscommunication due to major or subtle language differences; and role confusion, competition, and status leveling due to inappropriate leadership role definition. It is time to conduct research exploring the impact of these psychosocial factors and their sequelae on space crews during actual long-duration international space missions.

  20. Psychosocial issues affecting crews during long-duration international space missions

    NASA Technical Reports Server (NTRS)

    Kanas, N.

    1998-01-01

    Psychosocial issues can negatively impact on crew performance and morale during long-duration international space missions. Major psychosocial factors that have been described in anecdotal reports from space and in studies from analog situations on Earth include: 1) crew heterogeneity due to gender differences, cultural issues, and work experiences and motivations; 2) language and dialect variations; and 3) task versus supportive leadership roles. All of these factors can lead to negative sequelae, such as intra-crew tension and cohesion disruptions. Specific sequelae that can result from single factors include subgrouping and scapegoating due to crew heterogeneity; miscommunication due to major or subtle language differences; and role confusion, competition, and status leveling due to inappropriate leadership role definition. It is time to conduct research exploring the impact of these psychosocial factors and their sequelae on space crews during actual long-duration international space missions.

  1. Orion Crew Member Injury Predictions during Land and Water Landings

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Littell, Justin D.; Fasanella, Edwin L.; Tabiei, Ala

    2008-01-01

    A review of astronaut whole body impact tolerance is discussed for land or water landings of the next generation manned space capsule named Orion. LS-DYNA simulations of Orion capsule landings are performed to produce a low, moderate, and high probability of injury. The paper evaluates finite element (FE) seat and occupant simulations for assessing injury risk for the Orion crew and compares these simulations to whole body injury models commonly referred to as the Brinkley criteria. The FE seat and crash dummy models allow for varying the occupant restraint systems, cushion materials, side constraints, flailing of limbs, and detailed seat/occupant interactions to minimize landing injuries to the crew. The FE crash test dummies used in conjunction with the Brinkley criteria provides a useful set of tools for predicting potential crew injuries during vehicle landings.

  2. STS-112 crew with President of Ajara in Georgia (Russia)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, Aslan Abashidze (right), President of the Autonomous Republic of Ajara in Georgia (Russia), visits with the STS-112 crew. From left, they are Mission Specialist Piers J. Sellers; Pilot Pamela Ann Melroy; Mission Specialist Fyodor N. Yurchikhin, a cosmonaut with the Russian Space Agency; Mission Specialist Sandra H. Magnus; and CommanderJeffrey S. Ashby. Mission Specialist David A. Wolf, not pictured, is also a member of the crew. The crew is awaiting launch on mission STS-112 to the International Space Station aboard Space Shuttle Atlantis. The launch has been postponed to no earlier than Monday, Oct. 7, so that the Mission Control Center, located at the Lyndon B. Johnson Space Center in Houston, Texas, can be secured and protected from potential storm impacts from Hurricane Lili.

  3. 46 CFR 185.420 - Crew training.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Crew training. 185.420 Section 185.420 Shipping COAST...) OPERATIONS Crew Requirements § 185.420 Crew training. (a) The owner, charterer, master or managing operator... duties listed in the station bill required by § 185.514 of this part. (b) Training conducted on a...

  4. 46 CFR 122.420 - Crew training.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Crew training. 122.420 Section 122.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS OPERATIONS Crew Requirements § 122.420 Crew training. (a) The owner,...

  5. Interior of Apollo Mission Simulator crew station

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Interior view of the Apollo Mission Simulator (AMS) crew station located in bldg 5. The AMS is a primary training system which will prepare Apollo astronauts for flights. The AMS stands nearly 30 feet high and weighs approximately 40 tons. The simulator is designed to familiarize Apollo crews with equipment, crew tasks, mission procedures, and emergency flight situations.

  6. STS-114: Discovery Crew Arrival

    NASA Technical Reports Server (NTRS)

    2005-01-01

    George Diller of NASA Public Affairs narrates the STS-114 Crew arrival at Kennedy Space Center aboard a Gulf Stream aircraft. They were greeted by Center Director Jim Kennedy. Commander Eileen Collins introduced each of her crew members and gave a brief description of their roles in the mission. Mission Specialist 3, Andrew Thomas will be the lead crew member on the inspection on flight day 2; he is the intravehicular (IV) crew member that will help and guide Mission Specialists Souichi Noguchi and Stephen Robinson during their spacewalks. Pilot James Kelly will be operating the shuttle systems in flying the Shuttle; he will be flying the space station robotic arm during the second extravehicular activity and he will be assisting Mission Specialist Wendy Lawrence during the other two extravehicular activities; he will be assisting on the rendezvous on flight day three, and landing of the shuttle. Commander Collins also mentioned Pilot Kelly's recent promotion to Colonel by the United States Air Force. Mission Specialist 1, Souichi Noguchi from JAXA (The Japanese Space Agency) will be flying on the flight deck for ascent; he will be doing three spacewalks on day 5, 7, and 9; He will be the photo/TV lead for the different types of cameras on board to document the flight and to send back the information to the ground for both technical and public affairs reasons. Mission Specialist 5, Charles Camada will be doing the inspection on flight day 2 with Mission Specialist Thomas and Pilot Kelly; he will be transferring the logistics off the shuttle and onto the space station and from the space station back to the shuttle; He will help set up eleven lap tops on board. Mission Specialist 4, Wendy Lawrence will lead the transfer of logistics to the space station; she is the space station arm operator during extravehicular activities 1 and 3; she will be carrying the 6,000 pounds of external storage platform from the shuttle payload bay over to the space station; she is also

  7. Modeling strength data for CREW CHIEF

    NASA Technical Reports Server (NTRS)

    Mcdaniel, Joe W.

    1990-01-01

    The Air Force has developed CREW CHIEF, a computer-aided design (CAD) tool for simulating and evaluating aircraft maintenance to determine if the required activities are feasible. CREW CHIEF gives the designer the ability to simulate maintenance activities with respect to reach, accessibility, strength, hand tool operation, and materials handling. While developing the CREW CHIEF, extensive research was performed to describe workers strength capabilities for using hand tools and manual handling of objects. More than 100,000 strength measures were collected and modeled for CREW CHIEF. These measures involved both male and female subjects in the 12 maintenance postures included in CREW CHIEF. The data collection and modeling effort are described.

  8. Spacecraft Crew Cabin Condensation Control

    NASA Technical Reports Server (NTRS)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  9. Composite Crew Module: Primary Structure

    NASA Technical Reports Server (NTRS)

    Kirsch, Michael T.

    2011-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center to design, build, and test a full-scale crew module primary structure, using carbon fiber reinforced epoxy based composite materials. The overall goal of the Composite Crew Module project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project's baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. This report discusses the project management aspects of the project including team organization, decision making, independent technical reviews, and cost and schedule management approach.

  10. Manned Mars mission crew factors

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.

    1986-01-01

    Crew factors include a wide range of concerns relating to the human system and its role in a Mars mission. There are two important areas which will play a large part in determining the crew for a Mars mission. The first relates to the goals and priorities determined for such a vast endeavor. The second is the design of the vehicle for the journey. The human system cannot be separated from the other systems in that vehicle. In fact it will be the human system which drives the development of many of the technical breakthroughs necessary to make a Mars mission successful. As much as possible, the engineering systems must adapt to the needs of the human system and its individual components.

  11. The formation process of flight crews

    NASA Technical Reports Server (NTRS)

    Ginnett, Robert C.

    1987-01-01

    A study which uses Hackman's Normative Model (1986) for group effectiveness to see if there are any differences between the behaviors of effective and less effective captains at building and maintaining their crews is presented. Captains were selected using crew evaluations, creating a final pool of six effective crew managers and four captains less proficient as crew leaders. Data collection began at crew briefings, and continued through two trips, with intense data gathering during critical incidents for both task and process events. It was found that a predetermined set of interactions that can occur between crew members exists for the forming crew. It is concluded that effective captains expand the set of interactions, decreasing the limitations on how the group will work together.

  12. STS-51B Crew Portrait

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-51B mission included (seated left to right) Robert F. Overmyer, commander; and Frederick D. Gregory, pilot. Standing, left to right, are Don L. Lind, mission specialist; Taylor G. Wang, payload specialist; Norman E. Thagard, mission specialist; William E. Thornton, mission specialist; and Lodewijk van den Berg, payload specialist. Launched aboard the Space Shuttle Challenger on April 29, 1985 at 12:02:18 pm (EDT), the STS-51A mission's primary payload was the Spacelab-3.

  13. Orion Crew Module Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Bibb, Karen L.; Brauckmann, Gregory J.; Rhode, Matthew N.; Owens, Bruce; Chan, David T.; Walker, Eric L.; Bell, James H.; Wilson, Thomas M.

    2011-01-01

    The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects.

  14. Quarantined Apollo 11 Crew Debriefing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. The three are seen here at the MSC, still inside the MQF, undergoing their first debriefing on Sunday, August 3, 1969. Behind the glass are (L-R): Edwin Aldrin, Michael Collins, and Neil Armstrong.

  15. Achieving the Proper Balance Between Crew and Public Safety

    NASA Technical Reports Server (NTRS)

    Gowan, John; Silvestri, Ray; Stahl, Ben; Rosati, Paul; Wilde, Paul

    2011-01-01

    A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard, and the design engineers must give these requirements the same consideration as crew safety requirements. For human spaceflight, the primary purpose and operational concept for any flight safety system is to protect the public while maximizing the likelihood of crew survival. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. An overview of existing range and crew safety policy requirements will be presented. Application of these requirements and lessons learned from both the Space Shuttle and Constellation Programs will also be discussed. Using these past programs as examples, the paper will detail operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Manned vehicle perspectives from the Federal Aviation Administration (FAA) and Air Force organizations that oversee public safety will be summarized as well. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.

  16. Crew/Automation Interaction in Space Transportation Systems: Lessons Learned from the Glass Cockpit

    NASA Technical Reports Server (NTRS)

    Rudisill, Marianne

    2000-01-01

    The progressive integration of automation technologies in commercial transport aircraft flight decks - the 'glass cockpit' - has had a major, and generally positive, impact on flight crew operations. Flight deck automation has provided significant benefits, such as economic efficiency, increased precision and safety, and enhanced functionality within the crew interface. These enhancements, however, may have been accrued at a price, such as complexity added to crew/automation interaction that has been implicated in a number of aircraft incidents and accidents. This report briefly describes 'glass cockpit' evolution. Some relevant aircraft accidents and incidents are described, followed by a more detailed description of human/automation issues and problems (e.g., crew error, monitoring, modes, command authority, crew coordination, workload, and training). This paper concludes with example principles and guidelines for considering 'glass cockpit' human/automation integration within space transportation systems.

  17. NASA Crew Launch Vehicle Overview

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The US. Vision for Space Exploration, announced January 2004, outlines the National Aeronautics and Space Administration s (NASA) strategic goals and objectives. These include: 1) Flying the Shuttle as safely as possible until its retirement, not later than 2010. 2) Bringing a new Crew Exploration Vehicle (CEV) into service as soon as possible after Shuttle retirement. 3) Developing a balanced overall program of science, exploration, and aeronautics at NASA, consistent with the redirection of the human spaceflight program to focus on exploration. 4) Completing the International Space Station (ISS) in a manner consistent with international partner commitments and the needs of human exploration. 5) Encouraging the pursuit of appropriate partnerships with the emerging commercial space sector. 6) Establishing a lunar return program having the maximum possible utility for later missions to Mars and other destinations. Following the confirmation of the new NASA Administrator in April 2005, the Agency commissioned a team of aerospace subject matter experts from government and industry to perform the Exploration Systems Architecture Study (ESAS), which provided in-depth information for selecting the follow-on launch vehicle designs to enable these goals, The ESAS team analyzed a number of potential launch systems, with a focus on: (1) a human-rated launch vehicle for crew transport and (2) a heavy lift launch vehicle (HLLV) to carry cargo. After several months of intense study utilizing technical performance, budget, and schedule objectives, the results showed that the optimum architecture to meet the challenge of safe, reliable crew transport is a two-stage variant of the Space Shuttle propulsion system - utilizing the reusable Solid Rocket Booster (SRB) as the first stage, along with a new upper stage that uses a derivative of the RS-25 Space Shuttle Main Engine to deliver 25 metric tons to low-Earth orbit. The CEV that this new Crew Launch Vehicle (CLV) lofts into space

  18. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains in the crew compartment trainer (CCT) located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Nelson, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and helmet, peers out the open CCT side hatch and prepares to deploy inflatable slide. Technicians observe the activity from scaffolding on either side of the hatch. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  19. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers sit on flight deck of the crew compartment trainer (CCT) shuttle mockup. Pilot Richard O. Covey (left) at pilot station controls and Mission Specialist (MS) John M. Lounge (center) and MS David C. Hilmers on aft flight deck are wearing the new (navy blue) partial pressure suits (launch and entry suits (LESs)). During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. CCT shuttle mockup is located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A.

  20. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck tests cushion outside the crew compartment trainer (CCT) side hatch. Hauck, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and helmet, tumbles out CCT side hatch onto cushion as technicians look on. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. CCT is located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A.

  1. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains in the crew compartment trainer (CCT) located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Nelson, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and helmet, is strapped into his launch and entry station on the CCT middeck. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  2. ISS Crew Transportation and Services Requirements Document

    NASA Technical Reports Server (NTRS)

    Lueders, Kathryn L. (Compiler)

    2015-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document with its sister documents, Crew Transportation Technical Management Processes (CCT-PLN-1120), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), and Crew Transportation Operations Standards (CCT-STD-1150), and International Space Station (ISS) to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase of the NASA Commercial Crew Program (CCP).

  3. Orbiter emergency crew escape system

    NASA Technical Reports Server (NTRS)

    Lofland, W. W.

    1980-01-01

    Two conventional ejection seats were incorporated into the first two orbiter vehicles to provide the crew with emergency ejection capability during the flight test programs. To avoid extensive development and test costs, existing ejection seats were selected and minimum modifications were made to accommodate the orbiter application. The new components and modifications were qualified at the component level, and a minimum sled test program was conducted to verify the orbiter installation and validate the six degree-of-freedom analysis. The system performance was certified and the orbital flight test capability was established by analysis.

  4. STS-61A Crew Portrait

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61A mission included (front row left to right) Reinhard Furrer, German payload specialist; Bonnie J. Dunbar, mission specialist; and Henry W. Hartsfield, Jr. commander. On the back row, left to right, are Steven R. Nagel, pilot; Guion S. Bluford, mission specialist; Ernst Messerscmid, German payload specialist; and Wubbo J. Ockels, Dutch payload specialist. Launched aboard the Space Shuttle Challenger on October 30, 1985 at 12:00:00 noon (EST), the STS-61A mission's primary payload was the Spacelab D-1 (German Spacelab mission).

  5. STS-107 Crew Training Clip

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-107 is a Multidiscipline Microgravity and Earth Science Research Mission to conduct international scientific investigations in orbit. The crew consists of Payload Specialist Ilan Ramon, Commander Rick Husband, Pilot William McCool, and Mission Specialists David Brown, Laurel Clark, Michael Anderson, and Kalpana Chawla. The crewmembers are shown getting suited in the Pre-Launch Ingress and Egress training area. The other areas of training include Payload Experiment in Fixed Base/Spacehab, Mist Experiment Combustion Module 2, Phab 4 Experiment in CCT Mid-deck and Payload Experiment Demo-Protein Crystal Growth.

  6. STS-51G Crew Portrait

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-51G mission included (kneeling front left to right) Daniel C. Brandenstein, commander; and John O. Creighton, pilot. Standing, left to right, are mission specialists Shannon W. Lucid, Steven R. Nagel, and John M. Fabian; and payload specialists Sultan Salman Al-Saud, and Patrick Baudrey. Launched aboard the Space Shuttle Discovery on June 17, 1985 at 7:33:00 am (EDT), the STS-51G mission's primary payloads were three communications satellites: MORELOS-A for Mexico; ARABSAT-A , for Arab Satellite communications; and TELSTAR-3D, for ATT.

  7. Montage of Apollo Crew Patches

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This montage depicts the flight crew patches for the manned Apollo 7 thru Apollo 17 missions. The Apollo 7 through 10 missions were basically manned test flights that paved the way for lunar landing missions. Primary objectives met included the demonstration of the Command Service Module (CSM) crew performance; crew/space vehicle/mission support facilities performance and testing during a manned CSM mission; CSM rendezvous capability; translunar injection demonstration; the first manned Apollo docking, the first Apollo Extra Vehicular Activity (EVA), performance of the first manned flight of the lunar module (LM); the CSM-LM docking in translunar trajectory, LM undocking in lunar orbit, LM staging in lunar orbit, and manned LM-CSM docking in lunar orbit. Apollo 11 through 17 were lunar landing missions with the exception of Apollo 13 which was forced to circle the moon without landing due to an onboard explosion. The craft was,however, able to return to Earth safely. Apollo 11 was the first manned lunar landing mission and performed the first lunar surface EVA. Landing site was the Sea of Tranquility. A message for mankind was delivered, the U.S. flag was planted, experiments were set up and 47 pounds of lunar surface material was collected for analysis back on Earth. Apollo 12, the 2nd manned lunar landing mission landed in the Ocean of Storms and retrieved parts of the unmanned Surveyor 3, which had landed on the Moon in April 1967. The Apollo Lunar Surface Experiments Package (ALSEP) was deployed, and 75 pounds of lunar material was gathered. Apollo 14, the 3rd lunar landing mission landed in Fra Mauro. ALSEP and other instruments were deployed, and 94 pounds of lunar materials were gathered, using a hand cart for first time to transport rocks. Apollo 15, the 4th lunar landing mission landed in the Hadley-Apennine region. With the first use of the Lunar Roving Vehicle (LRV), the crew was bale to gather 169 pounds of lunar material. Apollo 16, the 5th lunar

  8. Advanced crew procedures development techniques

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.; Tatum, I. C.

    1975-01-01

    The development of an operational computer program, the Procedures and Performance Program (PPP), is reported which provides a procedures recording and crew/vehicle performance monitoring capability. The PPP provides real time CRT displays and postrun hardcopy of procedures, difference procedures, performance, performance evaluation, and training script/training status data. During post-run, the program is designed to support evaluation through the reconstruction of displays to any point in time. A permanent record of the simulation exercise can be obtained via hardcopy output of the display data, and via magnetic tape transfer to the Generalized Documentation Processor (GDP). Reference procedures data may be transferred from the GDP to the PPP.

  9. Crew portrait during 51-A mission

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The five-member 51-A crew celebrates a successful mission. Front row (l.-r.) Astronauts David H. Walker,pilot; Anna Lee Fisher and Joseph P. Allen, mission specialists; back row, Dale A. Gardner, mission specialist; and Frederick H. (Rick) Hauck, crew commander. The front row of astronauts are holding up signs which say 'The Eagle Flies High', '2 up, 2 down, the Ace Repo Co.' and 'The Ace Repo Co., The Sky's no limit'. The reference to the Eagle has to do with the Discovery crew's mascot, which appeared both in tis crew portrait and insignia.

  10. Worldwide Spacecraft Crew Hatch History

    NASA Technical Reports Server (NTRS)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  11. Gemini 8 prime and backup crews during press conference

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Gemini 8 prime and backup crews during press conference. Left to right are Astronauts David R. Scott, prime crew pilot; Neil A. Armstrong, prime crew command pilot; Charles Conrad Jr., backup crew command pilot; and Richard F. Gordon Jr., backup crew pilot.

  12. 46 CFR 92.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Location of crew spaces. 92.20-10 Section 92.20-10... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-10 Location of crew spaces. (a) Crew... the crew spaces may be below the deepest load line. (b) There must be no direct communication,...

  13. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Pilot Pamela Melroy checks out the windshield on Atlantis, the designated orbiter for the mission. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  14. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-112 Mission Specialist Piers Sellers checks out flight equipment during a Crew Equipment Interface Test at KSC. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002 .

  15. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - During a Crew Equipment Interface Test, STS-112 Pilot Pamela Melroy (left) and Mission Specialist David Wolf (right) look at equipment pointed out by a technician in the payload bay of Atlantis. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002 .

  16. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Accompanied by a technician, STS-112 Pilot Pamela Melroy (left) and Mission Specialist David Wolf (right) look at the payload and equipment in the bay of Atlantis during a Crew Equipment Interface Test at KSC. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002 .

  17. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Mission Specialist Fyodor Yurchikhin looks at Atlantis, the designated orbiter for the mission. Yurchikhin is with the Russian Space Agency. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  18. STS-54 Crew Arrival for TCDT

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Footage shows the crew of STS-54, Commander John H. Casper, Pilot Donald R. McMonagle, and Mission Specialists Mario Runco, Jr., Gregory J. Harbaugh, and Susan J. Helms landing and emerging from several T-38 aircraft during the Terminal Countdown and Demonstration Test (TCDT). Commander Casper introduces the crew and they each make a brief statement about the mission.

  19. 29 CFR 788.15 - Multiple crews.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Multiple crews. 788.15 Section 788.15 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR... EMPLOYEES ARE EMPLOYED § 788.15 Multiple crews. In many cases an employer who operates a sawmill...

  20. Crew Transportation System Design Reference Missions

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  1. Crew procedures for microwave landing system operations

    NASA Technical Reports Server (NTRS)

    Summers, Leland G.

    1987-01-01

    The objective of this study was to identify crew procedures involved in Microwave Landing System (MLS) operations and to obtain a preliminary assessment of crew workload. The crew procedures were identified for three different complements of airborne equipment coupled to an autopilot. Using these three equipment complements, crew tasks were identified for MLS approaches and precision departures and compared to an ILS approach and a normal departure. Workload comparisons between the approaches and departures were made by using a task-timeline analysis program that obtained workload indexes, i.e., the radio of time required to complete the tasks to the time available. The results showed an increase in workload for the MLS scenario for one of the equipment complements. However, even this workload was within the capacity of two crew members.

  2. Biomedical Wireless Ambulatory Crew Monitor

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  3. Cultural Variability in Crew Discourse

    NASA Technical Reports Server (NTRS)

    Fischer, Ute

    1999-01-01

    Four studies were conducted to determine features of effective crew communication in response to errors during flight. Study One examined whether US captains and first officers use different communication strategies to correct errors and problems on the flight deck, and whether their communications are affected by the two situation variables, level of risk and degree of face-threat involved in challenging an error. Study Two was the cross-cultural extension of Study One and involved pilots from three European countries. Study Three compared communication strategies of female and male air carrier pilots who were matched in terms of years and type of aircraft experience. The final study assessed the effectiveness of the communication strategies observed in Study One.

  4. STS-109 Crew Interviews - Altman

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-109 crew Commander Scott D. Altman is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, which are all related to maintenance of the Hubble Space Telescope (HST). After the Columbia Orbiter's rendezvous with the HST, extravehicular activities (EVA) will be focused on several important tasks which include: (1) installing the Advanced Camera for Surveys; (2) installing a cooling system on NICMOS (Near Infrared Camera Multi-Object Spectrometer); (3) repairing the reaction wheel assembly; (4) installing additional solar arrays; (5) augmenting the power control unit; (6) working on the HST's gyros. The reaction wheel assembly task, a late addition to the mission, may necessitate the abandonment of one or more of the other tasks, such as the gyro work.

  5. The Apollo 11 Prime Crew

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of the prime crew of the Apollo 11 lunar landing mission. From left to right they are: Commander, Neil A. Armstrong, Command Module Pilot, Michael Collins, and Lunar Module Pilot, Edwin E. Aldrin Jr. On July 20th 1969 at 4:18 PM, EDT the Lunar Module 'Eagle' landed in a region of the Moon called the Mare Tranquillitatis, also known as the Sea of Tranquillity. After securing his spacecraft, Armstrong radioed back to earth: 'Houston, Tranquility Base here, the Eagle has landed'. At 10:56 p.m. that same evening and witnessed by a worldwide television audience, Neil Armstrong stepped off the 'Eagle's landing pad onto the lunar surface and said: 'That's one small step for a man, one giant leap for mankind.' He became the first human to set foot upon the Moon.

  6. STS-66 Official Crew insignia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Designed by the crew members, the STS-66 emblem depicts the Space Shuttle Atlantis launching into Earth orbit to study global environmental change. The payload for the Atmospheric Laboratory for Applications and Science (ATLAS-3) and complimentary experiments are part of a continuing study of the atmosphere and the Sun's influence on it. The Space Shuttle is trailed by gold plumes representing the astronaut symbol and is superimposed over the Earth, much of which is visible from the flight's high inclination orbit. Sensitive instruments aboard the ATLAS pallet in the Shuttle payload bay and on the free-flying Cryogenic Infrared Spectrometers and Telescopes for the Atmospheric-Shuttle Pallet Satellite (CHRISTA-SPAS) will gaze down on Earth and toward the Sun, illustrated by the stylized sunrise and visible spectrum.

  7. STS-93: Chandra Crew Arrival

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The primary objective of the STS-93 mission was to deploy the Advanced X-ray Astrophysical Facility, which had been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar. The mission was launched at 12:31 on July 23, 1999 onboard the space shuttle Columbia. The mission was led by Commander Eileen Collins. The crew was Pilot Jeff Ashby and Mission Specialists Cady Coleman, Steve Hawley and Michel Tognini from the Centre National d'Etudes Spatiales (CNES). This videotape shows the astronauts arrival at Kennedy Space Center a week before the launch. Each of the astronauts gives brief remarks, beginning with Eileen Collins, the first woman to command a space mission.

  8. 14 CFR 460.7 - Operator training of crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... update the crew training to ensure that it incorporates lessons learned from training and operational... training for each crew member and maintain the documentation for each active crew member. (d)...

  9. Shared Problem Models and Crew Decision Making

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The importance of crew decision making to aviation safety has been well established through NTSB accident analyses: Crew judgment and decision making have been cited as causes or contributing factors in over half of all accidents in commercial air transport, general aviation, and military aviation. Yet the bulk of research on decision making has not proven helpful in improving the quality of decisions in the cockpit. One reason is that traditional analytic decision models are inappropriate to the dynamic complex nature of cockpit decision making and do not accurately describe what expert human decision makers do when they make decisions. A new model of dynamic naturalistic decision making is offered that may prove more useful for training or aiding cockpit decision making. Based on analyses of crew performance in full-mission simulation and National Transportation Safety Board accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation and reflect the crew's metacognitive skill. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relation between communication that serves to build performance. Implications of these findings for crew training will be discussed.

  10. Personality factors in flight operations. Volume 1: Leader characteristics and crew performance in a full-mission air transport simulation

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Kanki, Barbara G.; Foushee, H. Clayton; Dickinson, Cortlandt L.; Bowles, Stephen V.

    1990-01-01

    Crew effectiveness is a joint product of the piloting skills, attitudes, and personality characteristics of team members. As obvious as this point might seem, both traditional approaches to optimizing crew performance and more recent training development highlighting crew coordination have emphasized only the skill and attitudinal dimensions. This volume is the first in a series of papers on this simulation. A subsequent volume will focus on patterns of communication within crews. The results of a full-mission simulation research study assessing the impact of individual personality on crew performance is reported. Using a selection algorithm described in previous research, captains were classified as fitting one of three profiles along a battery of personality assessment scales. The performances of 23 crews led by captains fitting each profile were contrasted over a one-and-one-half-day simulated trip. Crews led by captains fitting a positive Instrumental-Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Expressive profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of competitiveness, verbal aggressiveness, and impatience and irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.

  11. Crewed Space Vehicle Battery Safety Requirements

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  12. STS-101 crew DEPARTs for Houston

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-101 crew gather with families and friends at Patrick Air Force Base before departure for Houston. In the foreground are Mission Specialists Susan J. Helms, Jeffrey N. Williams and Yury Usachev of Russia. At far left is Mission Specialist James S. Voss. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station.

  13. STS-101 crew DEPARTs for Houston

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-101 crew pose one more time before departing for Houston from Patrick Air Force Base. From left are Commander James D. Halsell Jr., Mission Specialists James S. Voss, Mary Ellen Weber, Susan J. Helms, Jeffrey N. Williams, Yury Usachev of Russia, and Pilot Scott '''Doc''' Horowitz. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station.

  14. STS-101 crew DEPARTs for Houston

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-101 crew gather with families and friends at Patrick Air Force Base before departure for Houston. Pilot Scott '''Doc''' Horowitz is joined by his wife, Lisa, and daughter; Mission Specialist Susan J. Helms is at right. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station.

  15. STS-101 crew DEPARTs for Houston

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-101 crew gather with families and friends at Patrick Air Force Base before departure for Houston. Mission Specialist Mary Ellen Weber is joined by her husband, Dr. Jerome Elkind. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station.

  16. STS-101 crew DEPARTs for Houston

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-101 crew gather with families and friends at Patrick Air Force Base before departure for Houston. Mission Specialist Jeffrey N. Williams is joined by his wife, Anna-Marie, and two sons. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station.

  17. Group interaction and flight crew performance

    NASA Technical Reports Server (NTRS)

    Foushee, H. Clayton; Helmreich, Robert L.

    1988-01-01

    The application of human-factors analysis to the performance of aircraft-operation tasks by the crew as a group is discussed in an introductory review and illustrated with anecdotal material. Topics addressed include the function of a group in the operational environment, the classification of group performance factors (input, process, and output parameters), input variables and the flight crew process, and the effect of process variables on performance. Consideration is given to aviation safety issues, techniques for altering group norms, ways of increasing crew effort and coordination, and the optimization of group composition.

  18. Outcomes of crew resource management training.

    PubMed

    Helmreich, R L; Wilhelm, J A

    1991-01-01

    Participants' self-reports and measures of attitudes regarding flightdeck management indicate that crew resource management training is favorably received and causes highly significant, positive changes in attitudes regarding crew coordination and personal capabilities. However, a subset of participants reacted negatively to the training and showed boomerangs (negative change) in attitudes. Explorations into the causes of this effect pinpoint personality factors and group dynamics as critical determinants of reactions to training and of the magnitude and direction of attitude change. Implications of these findings for organizations desiring to enhance crew effectiveness are discussed, and areas of needed additional research are described.

  19. Outcomes of crew resource management training

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.; Wilhelm, John A.

    1991-01-01

    Participants' self-reports and measures of attitudes regarding flightdeck management indicate that crew resource management training is favorably received and causes highly significant, positive changes in attitudes regarding crew coordination and personal capabilities. However, a subset of participants reacted negatively to the training and showed boomerangs (negative change) in attitudes. Explorations into the causes of this effect pinpoint personality factors and group dynamics as critical determinants of reactions to training and of the magnitude and direction of attitude changes. Implications of these findings for organizations desiring to enhance crew effectiveness are discussed, and areas of needed additional research are described.

  20. Cooling Properties of the Shuttle Advanced Crew Escape Spacesuit: Results of an Environmental Chamber Experiment

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas; Gillis, David; Bue, Grant; Son, Chan; Norcross, Jason; Kuznetz, Larry; Chapman, Kirt; Chhipwadia, Ketan; McBride, Tim

    2008-01-01

    The shuttle crew wears the Advanced Crew Escape Spacesuit (ACES) to protect themselves from cabin decompression and to support bail out during landing. ACES is cooled by a liquid-cooled garment (LCG) that interfaces to a heat exchanger that dumps heat into the cabin. The ACES outer layer is made of Gore-Tex(Registered TradeMark), permitting water vapor to escape while containing oxygen. The crew can only lose heat via insensible water losses and the LCG. Under nominal landing operations, the average cabin temperature rarely exceeds 75 F, which is adequate for the ACES to function. Problem A rescue shuttle will need to return 11 crew members if the previous mission suffers a thermal protection system failure, preventing it from returning safely to Earth. Initial analysis revealed that 11 crew members in the shuttle will increase cabin temperature at wheel stop above 80 F, which decreases the ACES ability to keep crew members cool. Air flow in the middeck of the shuttle is inhomogeneous and some ACES may experience much higher temperatures that could cause excessive thermal stress to crew members. Methods A ground study was conducted to measure the cooling efficiency of the ACES at 75 F, 85 F, and 95 F at 50% relative humidity. Test subjects representing 5, 50, and 95 percentile body habitus of the astronaut corps performed hand ergometry keeping their metabolic rate at 400, 600, and 800 BTU/hr for one hour. Core temperature was measured by rectal probe and skin, while inside and outside the suit. Environmental chamber wall and cooling unit inlet and outlet temperatures were measured using high-resolution thermistors ( 0.2 C). Conclusions Under these test conditions, the ACES was able to protect the core temperature of all test subjects, however thermal stress due to high insensible losses and skin temperature and skin heat flow may impact crew performance. Further research should be performed to understand the impact on cognitive performance.

  1. Interim results of the study of control room crew staffing for advanced passive reactor plants

    SciTech Connect

    Hallbert, B.P.; Sebok, A.; Haugset, K.

    1996-03-01

    Differences in the ways in which vendors expect the operations staff to interact with advanced passive plants by vendors have led to a need for reconsideration of the minimum shift staffing requirements of licensed Reactor Operators and Senior Reactor Operators contained in current federal regulations (i.e., 10 CFR 50.54(m)). A research project is being carried out to evaluate the impact(s) of advanced passive plant design and staffing of control room crews on operator and team performance. The purpose of the project is to contribute to the understanding of potential safety issues and provide data to support the development of design review guidance. Two factors are being evaluated across a range of plant operating conditions: control room crew staffing; and characteristics of the operating facility itself, whether it employs conventional or advanced, passive features. This paper presents the results of the first phase of the study conducted at the Loviisa nuclear power station earlier this year. Loviisa served as the conventional plant in this study. Data collection from four crews were collected from a series of design basis scenarios, each crew serving in either a normal or minimum staffing configuration. Results of data analyses show that crews participating in the minimum shift staffing configuration experienced significantly higher workload, had lower situation awareness, demonstrated significantly less effective team performance, and performed more poorly as a crew than the crews participating in the normal shift staffing configuration. The baseline data on crew configurations from the conventional plant setting will be compared with similar data to be collected from the advanced plant setting, and a report prepared providing the results of the entire study.

  2. Crew Launch Vehicle Upper Stage

    NASA Technical Reports Server (NTRS)

    Davis, D. J.; Cook, J. R.

    2006-01-01

    The Agency s Crew Launch Vehicle (CLV) will be the first human rated space transportation system developed in the United States since the Space Shuttle. The CLV will utilize existing Shuttle heritage hardware and systems combined with a "clean sheet design" for the Upper Stage. The Upper Stage element will be designed and developed by a team of NASA engineers managed by the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The team will design the Upper Stage based on the Exploration Systems Architecture Study (ESAS) Team s point of departure conceptual design as illustrated in the figure below. This concept is a self-supporting cylindrical structure, approximately 1 15 feet long and 216 inches in diameter. While this "clean-sheet" upper stage design inherently carries more risk than utilizing a modified design, the approach also has many advantages. This paper will discuss the advantages and disadvantages of pursuing a "clean-sheet" design for the new CLV Upper Stage as well as describe in detail the overall design of the Upper Stage and its integration into NASA s CLV.

  3. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers trains in the crew compartment trainer (CCT) located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Hilmers, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and helmet, slides out CCT side hatch on his back via platform extension. Astronaut Steven R. Nagel, who has served as both mission specialist and pilot on two previous missions, briefs Hilmers. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  4. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey trains in the crew compartment trainer (CCT) located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Covey, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and communications carrier assembly (CCA), pulls himself up onto flight deck from the middeck through the interdeck access hatch. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. CCT is in launch (vertical) position therefore the aft middeck bulkhead becomes the floor (note technician at the side hatch).

  5. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains in the crew compartment trainer (CCT) located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Nelson, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and helmet, maneuvers himself into middeck mission specialists seat as MS David C. Hilmers pulls himself up onto flight deck from the middeck through the interdeck access hatch. Side hatch is closed and stowed treadmill appears in the foreground. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. CCT is in launch (vertical) position therefore the aft middeck bulkhead and airlock become the floor.

  6. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) John M. Lounge trains in the crew compartment trainer (CCT) located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Lounge, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and communications carrier assembly (CCA), pulls himself up onto flight deck from the middeck through the interdeck access hatch. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. CCT is in launch (vertical) position therefore the aft middeck bulkhead becomes the floor (note technician at the side hatch).

  7. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains in the crew compartment trainer (CCT) located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Nelson, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and helmet, exits CCT via slide inflated at side hatch. Technicians at the bottom of the slide prepare to help Nelson to his feet as a second set of technicians observe the activity from scaffolding on either side of the open hatch. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  8. Students Speak With Expedition 30 Crew

    NASA Video Gallery

    The International Space Station's Expedition 30 crew participates in a Digital Learning Network (DLN) event with students at O. Henry Middle School in Austin, Texas. The DLN connects students and t...

  9. Crew Exploration Vehicle Ascent Abort Overview

    NASA Technical Reports Server (NTRS)

    Davidson, John B., Jr.; Madsen, Jennifer M.; Proud, Ryan W.; Merritt, Deborah S.; Sparks, Dean W., Jr.; Kenyon, Paul R.; Burt, Richard; McFarland, Mike

    2007-01-01

    One of the primary design drivers for NASA's Crew Exploration Vehicle (CEV) is to ensure crew safety. Aborts during the critical ascent flight phase require the design and operation of CEV systems to escape from the Crew Launch Vehicle and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. The analysis involves an evaluation of the feasibility and survivability of each abort mode and an assessment of the abort mode coverage. These studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the CEV, driving requirements for abort scenarios, and an overview of current ascent abort modes. Example analysis results are then discussed. Finally, future areas for abort analysis are addressed.

  10. Crew Looking Forward to Top Wakeup Songs

    NASA Video Gallery

    Discovery Commander Steve Lindsey thanks everyone for voting for their favorite space shuttle wakeup songs. The crew is looking forward to hearing your selections on the last two days of Discovery'...

  11. ISS Update: Flight Surgeon Keeps Crew Healthy

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer talks with NASA Medical Flight Officer Steve Gilmore about the role of a flight surgeon in tracking astronaut health and coordinating crew medical experim...

  12. 46 CFR 185.420 - Crew training.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... time on a particular vessel and at least once every three months, as to the duties that the crew member... vessel may be considered equivalent to the initial and quarterly training requirements contained...

  13. 46 CFR 185.420 - Crew training.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... time on a particular vessel and at least once every three months, as to the duties that the crew member... vessel may be considered equivalent to the initial and quarterly training requirements contained...

  14. 46 CFR 185.420 - Crew training.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... time on a particular vessel and at least once every three months, as to the duties that the crew member... vessel may be considered equivalent to the initial and quarterly training requirements contained...

  15. 46 CFR 185.420 - Crew training.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... time on a particular vessel and at least once every three months, as to the duties that the crew member... vessel may be considered equivalent to the initial and quarterly training requirements contained...

  16. Behind the Scenes: STS-134 Crew Training

    NASA Video Gallery

    03/25/2011 -- Astronaut Mike Massimino talks to the members of the STS-134 crew of space shuttle Endeavour about their mission during a training session at the Neutral Buoyancy Laboratory near NASA...

  17. Habitability Designs for Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara

    2006-01-01

    NASA's space human factors team is contributing to the habitability of the Crew Exploration Vehicle (CEV), which will take crews to low Earth orbit, and dock there with additional vehicles to go on to the moon's surface. They developed a task analysis for operations and for self-sustenance (sleeping, eating, hygiene), and estimated the volumes required for performing the various tasks and for the associated equipment, tools and supplies. Rough volumetric mockups were built for crew evaluations. Trade studies were performed to determine the size and location of windows. The habitability analysis also contributes to developing concepts of operations by identifying constraints on crew time. Recently completed studies provided stowage concepts, tools for assessing lighting constraints, and approaches to medical procedure development compatible with the tight space and absence of gravity. New work will be initiated to analyze design concepts and verify that equipment and layouts do meet requirements.

  18. STS-134 Crew Talks With Sam Ting

    NASA Video Gallery

    The STS-134 crew talks with Sam Ting, principal investigator for the Alpha Magnetic Spectrometer, following the installation of the particle physics detector on the International Space Station duri...

  19. New Crew Members Arrive at Station

    NASA Video Gallery

    The Expedition 28 crew expanded to six members with the arrival of Flight Engineers Mike Fossum, Sergei Volkov and Satoshi Furukawa. The new trio docked to the International Space Station in the So...

  20. STS-113 Crew Interviews: Paul Lockhart, Pilot

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-113 Pilot Paul Lockhart is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Lockhart outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the primary mission payload (the P1 truss) and the crew transfer activities (Expedition 6 crew will replace the Expedition 5 Crew). Lockhart discusses the planned EVAs in detail and mentions what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts about the importance of the ISS as the second anniversary of continuous human occupation of the space station approaches.

  1. President Obama Calls Atlantis and Station Crews

    NASA Video Gallery

    President Barack Obama called the crews of Atlantis and the International Space Station today, noting that the final shuttle mission also "ushers in an exciting new era to push the frontiers of spa...

  2. Expedition 31 Crew Trains for Launch

    NASA Video Gallery

    The Expedition 31 crew - astronaut Joe Acaba and cosmonauts Gennady Padalka and Sergei Revin -- trains at Star City, Russia, for its upcoming launch to the International Space Station. Their backup...

  3. Expedition 33/34 Crew Prelaunch Activities

    NASA Video Gallery

    Expedition 33/34 crew members Kevin Ford, Oleg Novitskiy and Evgeny Tarelkin participate in a variety of prelaunch activities at the Baikonur Cosmodrome in Kazakhstan. They are set to launch aboard...

  4. Next Generation Spacecraft, Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes research on reusable launch vehicles, aerospace planes, shuttle replacement, crew/cargo transfer vehicle, related X-craft, orbital space plane, and next generation launch technology.

  5. Integrated Approach to Flight Crew Training

    NASA Technical Reports Server (NTRS)

    Carroll, J. E.

    1984-01-01

    The computer based approach used by United Airlines for flight training is discussed. The human factors involved in specific aircraft accidents are addressed. Flight crew interaction and communication as they relate to training and flight safety are considered.

  6. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    NASA Technical Reports Server (NTRS)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  7. Effects of checklist interface on non-verbal crew communications

    NASA Technical Reports Server (NTRS)

    Segal, Leon D.

    1994-01-01

    The investigation looked at the effects of the spatial layout and functionality of cockpit displays and controls on crew communication. Specifically, the study focused on the intra-cockpit crew interaction, and subsequent task performance, of airline pilots flying different configurations of a new electronic checklist, designed and tested in a high-fidelity simulator at NASA Ames Research Center. The first part of this proposal establishes the theoretical background for the assumptions underlying the research, suggesting that in the context of the interaction between a multi-operator crew and a machine, the design and configuration of the interface will affect interactions between individual operators and the machine, and subsequently, the interaction between operators. In view of the latest trends in cockpit interface design and flight-deck technology, in particular, the centralization of displays and controls, the introduction identifies certain problems associated with these modern designs and suggests specific design issues to which the expected results could be applied. A detailed research program and methodology is outlined and the results are described and discussed. Overall, differences in cockpit design were shown to impact the activity within the cockpit, including interactions between pilots and aircraft and the cooperative interactions between pilots.

  8. Achieving the Proper Balance Between Crew and Public Safety

    NASA Technical Reports Server (NTRS)

    Gowan, John; Rosati, Paul; Silvestri, Ray; Stahl, Ben; Wilde, Paul

    2011-01-01

    A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. Historical examples and lessons learned from both the Space Shuttle and Constellation Programs will be presented. Using these examples as context, the paper will discuss some operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Manned vehicle perspectives from the FAA and Air Force organizations that oversee public safety will also be summarized. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.

  9. STS-47 Astronaut Crew Training Clip

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri, is seen during various parts of their training, including SAREX training in the Full Fuselage Trainer (FFT), firefighting training. A familiarization flight in the KC-135, a food tasting, photo training in the Crew Compartment Trainer, and bailout training in the Weightless Environment Training Facility (WETF) are also shown.

  10. Hubble Space Telescope Crew Rescue Analysis

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri L.; Canga, Michael; Boyer, Roger; Thigpen, Eric

    2009-01-01

    In the aftermath of the 2003 Columbia accident NASA removed the Hubble Space Telescope (HST) Servicing Mission 4 (SM4) from the Space Shuttle manifest. Reasons cited included concerns that the risk of flying the mission would be too high. There was at the time no viable technique to repair the orbiter s thermal protection system if it were to be damaged by debris during ascent. Furthermore in the event of damage, since the mission was not to the International Space Station, there was no safe haven for the crew to wait for an extended period of time for a rescue. The HST servicing mission was reconsidered because of improvements in the ascent debris environment, the development of techniques for the astronauts to perform on orbit repairs to damage thermal protection, and the development of a strategy to provide a crew rescue capability. However, leading up to the launch of servicing mission, the HST crew rescue capability was a recurring topic. For HST there was a limited amount of time available to perform a crew rescue because of the limited consumables available on the Orbiter. The success of crew rescue depends upon several factors including when a problem is identified, when and to what extent power down procedures are begun, and where the rescue vehicle is in its ground processing cycle. Severe power downs maximize crew rescue success but would eliminate the option for the orbiter servicing the HST to attempt a landing. Therefore, crew rescue success needed to be weighed against preserving the ability of the orbiter to have landing option in case there was a problem with the rescue vehicle. This paper focuses on quantification of the HST mission loss of crew rescue capability using Shuttle historical data and various power down capabilities. That work supported NASA s decision to proceed with the HST service mission, which was successfully completed on May 24th 2009.

  11. Crew factors in the aerospace workplace

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Foushee, H. C.

    1990-01-01

    The effects of technological change in the aerospace workplace on pilot performance are discussed. Attention is given to individual and physiological problems, crew and interpersonal problems, environmental and task problems, organization and management problems, training and intervention problems. A philosophy and conceptual framework for conducting research on these problems are presented and two aerospace studies are examined which investigated: (1) the effect of leader personality on crew effectiveness and (2) the working undersea habitat known as Aquarius.

  12. Skylab medical experiments altitude test crew observations.

    NASA Technical Reports Server (NTRS)

    Bobko, K. J.

    1973-01-01

    The paper deals with the crew's observations during training and the SMEAT 56-day test. Topics covered include the crew's adaptation to the SMEAT environment and medical experiments protocol. Personal observations are made of daily activities surrounding the medical experiments hardware, Skylab clothing, supplementary activities, recreational equipment, food, and waste management. An assessment of these items and their contributions to the Skylab flight program is made.

  13. The STS-108 crew are at KSC for Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT) activities at KSC, STS-108 Commander Dominic L. Gorie checks the windshield inside orbiter Endeavour. The CEIT provides familiarization with the launch vehicle and payload. Mission STS-108 is a Utilization Flight (UF-1), carrying the Expedition Four crew plus Multi-Purpose Logistics Module Raffaello to the International Space Station. The mission crew comprises Gorie, Pilot Mark E. Kelly and Mission Specialists Linda A. Godwin and Daniel M. Tani. The Expedition Four crew comprises Yuri Onufriyenko, commander, Russian Aviation and Space Agency, and astronauts Daniel W. Bursch and Carl E. Walz. Endeavour is scheduled to launch Nov. 29 on mission STS-108.

  14. Advanced Crew Rescue Vehicle/Personnel Launch System

    NASA Technical Reports Server (NTRS)

    Craig, Jerry W.

    1993-01-01

    The Advanced Crew Rescue Vehicle (ACRV) will be an essential element of the Space Station to respond to three specific missions, all of which have occurred during the history space exploration by the U.S. and the Soviets: (1) Mission DRM-1: Return of disabled crew members during medical emergencies; (2) Mission DRM-2: Return of crew members from accidents or as a result of failures of Space Station systems; and (3) Mission DRM-3: Return of crew members during interruption of Space Shuttle launches. The ACRV will have the ability to transport up to eight astronauts during a 24-hour mission. Not only would the ACRV serve as a lifeboat to provide transportation back to Earth, but it would also be available as a immediately available safe refuge in case the Space Station were severely damaged by space debris or other catastrophe. Upon return to Earth, existing world-wide search and rescue assets operated by the Coast Guard and Department of Defense would be able to retrieve personnel returned to Earth via the ACRV. The operational approach proposed for the ACRV is tailored to satisfying mission requirements for simplicity of operation (no piloting skills or specially trained personnel are required), continuous availability, high reliability and affordability. By using proven systems as the basis for many critical ACRV systems, the ACRV program is more likely to achieve each of these mission requirements. Nonetheless, the need for the ACRV to operate reliably with little preflight preparation after, perhaps, 5 to 10 years in orbit imposes challenges not faced by any previous space system of this complexity. Specific concerns exist regarding micrometeoroid impacts, battery life, and degradation of recovery parachutes while in storage.

  15. Analysis of Crew Fatigue in AIA Guantanamo Bay Aviation Accident

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin B.; Miller, Donna L.; Co, Elizabeth L.; Lebacqz, J. Victor; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Flight operations can engender fatigue, which can affect flight crew performance, vigilance, and mood. The National Transportation Safety Board (NTSB) requested the NASA Fatigue Countermeasures Program to analyze crew fatigue factors in an aviation accident that occurred at Guantanamo Bay, Cuba. There are specific fatigue factors that can be considered in such investigations: cumulative sleep loss, continuous hours of wakefulness prior to the incident or accident, and the time of day at which the accident occurred. Data from the NTSB Human Performance Investigator's Factual Report, the Operations Group Chairman's Factual Report, and the Flight 808 Crew Statements were analyzed, using conservative estimates and averages to reconcile discrepancies among the sources. Analysis of these data determined the following: the entire crew displayed cumulative sleep loss, operated during an extended period of continuous wakefulness, and obtained sleep at times in opposition to the circadian disposition for sleep, and that the accident occurred in the afternoon window of physiological sleepiness. In addition to these findings, evidence that fatigue affected performance was suggested by the cockpit voice recorder (CVR) transcript as well as in the captain's testimony. Examples from the CVR showed degraded decision-making skills, fixation, and slowed responses, all of which can be affected by fatigue; also, the captain testified to feeling "lethargic and indifferent" just prior to the accident. Therefore, the sleep/wake history data supports the hypothesis that fatigue was a factor that affected crewmembers' performance. Furthermore, the examples from the CVR and the captain's testimony support the hypothesis that the fatigue had an impact on specific actions involved in the occurrence of the accident.

  16. 14 CFR 29.805 - Flight crew emergency exits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight crew emergency exits. 29.805 Section... Accommodations § 29.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of...

  17. 14 CFR 27.805 - Flight crew emergency exits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight crew emergency exits. 27.805 Section... § 27.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are not convenient to the flight crew, there must be flight crew emergency exits, on both sides of the rotorcraft...

  18. 46 CFR 92.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the crew spaces may be below the deepest load line. (b) There must be no direct communication, except... 46 Shipping 4 2013-10-01 2013-10-01 false Location of crew spaces. 92.20-10 Section 92.20-10... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-10 Location of crew spaces. (a)...

  19. 46 CFR 72.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... spaces may be below the deepest load line. (b) There must be no direct communication, except through... 46 Shipping 3 2014-10-01 2014-10-01 false Location of crew spaces. 72.20-10 Section 72.20-10... ARRANGEMENT Accommodations for Officers and Crew § 72.20-10 Location of crew spaces. (a) Crew quarters...

  20. 46 CFR 72.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... spaces may be below the deepest load line. (b) There must be no direct communication, except through... 46 Shipping 3 2010-10-01 2010-10-01 false Location of crew spaces. 72.20-10 Section 72.20-10... ARRANGEMENT Accommodations for Officers and Crew § 72.20-10 Location of crew spaces. (a) Crew quarters...

  1. 46 CFR 190.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of the deck head of the crew spaces may be below the deepest load line. (b) There must be no direct... 46 Shipping 7 2011-10-01 2011-10-01 false Location of crew spaces. 190.20-10 Section 190.20-10... crew spaces. (a) Crew quarters must not be located farther forward in the vessel than a vertical...

  2. 46 CFR 92.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the crew spaces may be below the deepest load line. (b) There must be no direct communication, except... 46 Shipping 4 2014-10-01 2014-10-01 false Location of crew spaces. 92.20-10 Section 92.20-10... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-10 Location of crew spaces. (a)...

  3. 46 CFR 72.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... spaces may be below the deepest load line. (b) There must be no direct communication, except through... 46 Shipping 3 2011-10-01 2011-10-01 false Location of crew spaces. 72.20-10 Section 72.20-10... ARRANGEMENT Accommodations for Officers and Crew § 72.20-10 Location of crew spaces. (a) Crew quarters...

  4. 46 CFR 190.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of the deck head of the crew spaces may be below the deepest load line. (b) There must be no direct... 46 Shipping 7 2012-10-01 2012-10-01 false Location of crew spaces. 190.20-10 Section 190.20-10... crew spaces. (a) Crew quarters must not be located farther forward in the vessel than a vertical...

  5. 46 CFR 92.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the crew spaces may be below the deepest load line. (b) There must be no direct communication, except... 46 Shipping 4 2011-10-01 2011-10-01 false Location of crew spaces. 92.20-10 Section 92.20-10... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-10 Location of crew spaces. (a)...

  6. 46 CFR 190.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of the deck head of the crew spaces may be below the deepest load line. (b) There must be no direct... 46 Shipping 7 2010-10-01 2010-10-01 false Location of crew spaces. 190.20-10 Section 190.20-10... crew spaces. (a) Crew quarters must not be located farther forward in the vessel than a vertical...

  7. 46 CFR 190.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of the deck head of the crew spaces may be below the deepest load line. (b) There must be no direct... 46 Shipping 7 2014-10-01 2014-10-01 false Location of crew spaces. 190.20-10 Section 190.20-10... crew spaces. (a) Crew quarters must not be located farther forward in the vessel than a vertical...

  8. 46 CFR 190.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of the deck head of the crew spaces may be below the deepest load line. (b) There must be no direct... 46 Shipping 7 2013-10-01 2013-10-01 false Location of crew spaces. 190.20-10 Section 190.20-10... crew spaces. (a) Crew quarters must not be located farther forward in the vessel than a vertical...

  9. 46 CFR 72.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... spaces may be below the deepest load line. (b) There must be no direct communication, except through... 46 Shipping 3 2012-10-01 2012-10-01 false Location of crew spaces. 72.20-10 Section 72.20-10... ARRANGEMENT Accommodations for Officers and Crew § 72.20-10 Location of crew spaces. (a) Crew quarters...

  10. 46 CFR 72.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... spaces may be below the deepest load line. (b) There must be no direct communication, except through... 46 Shipping 3 2013-10-01 2013-10-01 false Location of crew spaces. 72.20-10 Section 72.20-10... ARRANGEMENT Accommodations for Officers and Crew § 72.20-10 Location of crew spaces. (a) Crew quarters...

  11. 46 CFR 92.20-10 - Location of crew spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the crew spaces may be below the deepest load line. (b) There must be no direct communication, except... 46 Shipping 4 2012-10-01 2012-10-01 false Location of crew spaces. 92.20-10 Section 92.20-10... CONSTRUCTION AND ARRANGEMENT Accommodations for Officers and Crew § 92.20-10 Location of crew spaces. (a)...

  12. International Space Station Crew Return Vehicle: X-38. Educational Brief.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The International Space Station (ISS) will provide the world with an orbiting laboratory that will have long-duration micro-gravity experimentation capability. The crew size for this facility will depend upon the crew return capability. The first crews will consist of three astronauts from Russia and the United States. The crew is limited to three…

  13. 19 CFR 122.46 - Crew purchase list.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Crew purchase list. 122.46 Section 122.46 Customs..., and Overflying the United States § 122.46 Crew purchase list. (a) When required. A crew purchase list...) Exception. A crew purchase list is not required for aircraft arriving directly from Canada on a...

  14. Hubble Space Telescope Crew Rescue Analysis

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri L.; Canga, Michael A.; Cates, Grant R.

    2010-01-01

    In the aftermath of the 2003 Columbia accident, NASA removed the Hubble Space Telescope (HST) Servicing Mission 4 (SM4) from the Space Shuttle manifest. Reasons cited included concerns that the risk of flying the mission would be too high. The HST SM4 was subsequently reinstated and flown as Space Transportation System (STS)-125 because of improvements in the ascent debris environment, the development of techniques for astronauts to perform on orbit repairs to damaged thermal protection, and the development of a strategy to provide a viable crew rescue capability. However, leading up to the launch of STS-125, the viability of the HST crew rescue capability was a recurring topic. For STS-125, there was a limited amount of time available to perform a crew rescue due to limited consumables (power, oxygen, etc.) available on the Orbiter. The success of crew rescue depended upon several factors, including when a problem was identified; when and what actions, such as powering down, were begun to conserve consumables; and where the Launch on Need (LON) vehicle was in its ground processing cycle. Crew rescue success also needed to be weighed against preserving the Orbiter s ability to have a landing option in case there was a problem with the LON vehicle. This paper focuses on quantifying the HST mission loss of crew rescue capability using Shuttle historical data and various power down strategies. Results from this effort supported NASA s decision to proceed with STS-125, which was successfully completed on May 24th 2009.

  15. [Characteristics of crew communicative behavior and gonadal hormones excretion during long-term chamber isolation of international male crew].

    PubMed

    Ushakov, I B; Gushchin, V I; Larina, I M; Shved, D M; Pastushkova, L Kh; Vinokhodova, A G

    2012-01-01

    The peculiarities of psycho-physiological adaptation to the simulation of the extended autonomous manned Mission to Mars with limited resources and external communication were studied. Verbal communication of the crew of 6 male subjects, representing Russian and European Space Agency with Mission Control (MC) as well as physiological correlates of 105-days life and work in the chambers under sensory deprivation, confinement, monotony and high autonomy were observed. Psychological, physiological and biochemical (urinary cortisol and gonadal hormones) testing together with content-analysis of the crew communication with MC were made in parallel. Gained results confirmed to a considerable extent the preliminary hypothesis about the serious impact of such stressful factors as intragroup conflict, significant decrease of the variety and scope of communication with the outer world and social pressure on the verbal behavior and hormonal excretion of the future Martian crew. For the first time correlation between the metabolism of the gonadal hormones and the volume, content and creativity of the verbal human behavior during various stages of adaptation to the extended isolation in the chambers. PMID:23393787

  16. Crew-Aided Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.

    2015-01-01

    A sextant provides manual capability to perform star/planet-limb sightings and offers a cheap, simple, robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the lost-communication backup for all Apollo missions. This study characterized error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions. This study modernized and updated those findings in addition to showing feasibility using Linear Covariance analysis techniques. The human eyeball is a remarkable piece of optical equipment and provides many advantages over camera-based systems, including dynamic range and detail resolution. This technique utilizes those advantages and provides important autonomy to the crew in the event of lost communication with the ground. It can also provide confidence and verification of low-TRL automated onboard systems. The technique is extremely flexible and is not dependent on any particular vehicle type. The investigation involved procuring navigation-grade sextants and characterizing their performance under a variety of conditions encountered in exploration missions. The JSC optical sensor lab and Orion mockup were the primary testing locations. For the accuracy assessment, a group of test subjects took sextant readings on calibrated targets while instrument/operator precision was measured. The study demonstrated repeatability of star/planet-limb sightings with bias and standard deviation around 10 arcseconds, then used high-fidelity simulations to verify those accuracy levels met the needs for targeting mid-course maneuvers in preparation for Earth reen.

  17. 49 CFR 1242.56 - Engine crews and train crews (accounts XX-51-56 and XX-51-57).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Engine crews and train crews (accounts XX-51-56 and XX-51-57). 1242.56 Section 1242.56 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Transportation § 1242.56 Engine crews and train crews (accounts XX-51-56...

  18. 49 CFR 1242.56 - Engine crews and train crews (accounts XX-51-56 and XX-51-57).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Engine crews and train crews (accounts XX-51-56 and XX-51-57). 1242.56 Section 1242.56 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Transportation § 1242.56 Engine crews and train crews (accounts XX-51-56...

  19. 49 CFR 1242.56 - Engine crews and train crews (accounts XX-51-56 and XX-51-57).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Engine crews and train crews (accounts XX-51-56 and XX-51-57). 1242.56 Section 1242.56 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Transportation § 1242.56 Engine crews and train crews (accounts XX-51-56...

  20. 49 CFR 1242.56 - Engine crews and train crews (accounts XX-51-56 and XX-51-57).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Engine crews and train crews (accounts XX-51-56 and XX-51-57). 1242.56 Section 1242.56 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Transportation § 1242.56 Engine crews and train crews (accounts XX-51-56...

  1. 49 CFR 1242.56 - Engine crews and train crews (accounts XX-51-56 and XX-51-57).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Engine crews and train crews (accounts XX-51-56 and XX-51-57). 1242.56 Section 1242.56 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Transportation § 1242.56 Engine crews and train crews (accounts XX-51-56...

  2. Portrait of Gemini 11 prime and backup crews

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Portrait of Gemini 11 prime and backup crews. Seated are the Gemini 11 prime crewmembers (l.-r.) Astronauts Richard F. Gordon Jr., prime crew pilot, and Charles Conrad Jr., prime crew command pilot. Standing are (l.-r.) Astronauts William A. Anders, backup crew pilot, and Neil Armstrong, backup crew command pilot. They are in their space suits next to a mock-up of the Gemini spacecraft.

  3. Gemini 4 prime crew with Official medical nurse for Astronaut crew members

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gemini 4 prime crew, Astronauts Edward H. White II, (left), and James A. McDivitt (right) are shown with Lt. Dolores (Dee) O'Hare, US Air Force, Center Medical Office, Flight Medicine Branch, Manned Spaceflight Center (MSC). Lieutenant O'Hare has served during several space flights as Official medical nurse for the astronaut crew members on the missions.

  4. The STS-108 crew are at KSC for Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Inside the payload bay of orbiter Endeavour, members of the STS-108 mission crew look over equipment during Crew Equipment Interface Test (CEIT) activities. From left are Mission Specialists Daniel M. Tani and Linda A. Godwin; at right is a technician. The CEIT provides familiarization with the launch vehicle and payload. Mission STS-108 is a Utilization Flight (UF-1), carrying the Expedition Four crew plus Multi-Purpose Logistics Module Raffaello to the International Space Station. Other crew members are Commander Dominic L. Gorie and Pilot Mark E. Kelly. The Expedition Four crew comprises Yuri Onufriyenko, commander, Russian Aviation and Space Agency, and astronauts Daniel W. Bursch and Carl E. Walz. Endeavour is scheduled to launch Nov. 29 on mission STS-108.

  5. Continuous Reliability Enhancement for Wind (CREW) database :

    SciTech Connect

    Hines, Valerie Ann-Peters; Ogilvie, Alistair B.; Bond, Cody R.

    2013-09-01

    To benchmark the current U.S. wind turbine fleet reliability performance and identify the major contributors to component-level failures and other downtime events, the Department of Energy funded the development of the Continuous Reliability Enhancement for Wind (CREW) database by Sandia National Laboratories. This report is the third annual Wind Plant Reliability Benchmark, to publically report on CREW findings for the wind industry. The CREW database uses both high resolution Supervisory Control and Data Acquisition (SCADA) data from operating plants and Strategic Power Systems ORAPWindª (Operational Reliability Analysis Program for Wind) data, which consist of downtime and reserve event records and daily summaries of various time categories for each turbine. Together, these data are used as inputs into CREWs reliability modeling. The results presented here include: the primary CREW Benchmark statistics (operational availability, utilization, capacity factor, mean time between events, and mean downtime); time accounting from an availability perspective; time accounting in terms of the combination of wind speed and generation levels; power curve analysis; and top system and component contributors to unavailability.

  6. Crew Exploration Vehicle Ascent Abort Coverage Analysis

    NASA Technical Reports Server (NTRS)

    Abadie, Marc J.; Berndt, Jon S.; Burke, Laura M.; Falck, Robert D.; Gowan, John W., Jr.; Madsen, Jennifer M.

    2007-01-01

    An important element in the design of NASA's Crew Exploration Vehicle (CEV) is the consideration given to crew safety during various ascent phase failure scenarios. To help ensure crew safety during this critical and dynamic flight phase, the CEV requirements specify that an abort capability must be continuously available from lift-off through orbit insertion. To address this requirement, various CEV ascent abort modes are analyzed using 3-DOF (Degree Of Freedom) and 6-DOF simulations. The analysis involves an evaluation of the feasibility and survivability of each abort mode and an assessment of the abort mode coverage using the current baseline vehicle design. Factors such as abort system performance, crew load limits, thermal environments, crew recovery, and vehicle element disposal are investigated to determine if the current vehicle requirements are appropriate and achievable. Sensitivity studies and design trades are also completed so that more informed decisions can be made regarding the vehicle design. An overview of the CEV ascent abort modes is presented along with the driving requirements for abort scenarios. The results of the analysis completed as part of the requirements validation process are then discussed. Finally, the conclusions of the study are presented, and future analysis tasks are recommended.

  7. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, the STS-103 crew look over equipment to be used during their mission. The seven-member crew, taking part in a Crew Equipment Interface Test, are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  8. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, STS-103 Mission Specialist Steven L. Smith (right) and other members of the crew look over new Multi-Layer Insulation (MLI) intended for the Hubble Space Telescope. The seven-member crew, taking part in a Crew Equipment Interface Test, are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with the MLI. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  9. Cultural Variability in Crew Communication

    NASA Technical Reports Server (NTRS)

    Fischer, Ute

    1997-01-01

    In this study we examined what linguistic strategies pilots use when they have to challenge the actions of a colleague, and how their communications balance the need for informativeness with the need for assuring the other's cooperation. Two strategies emerged for captains. They either gave commands or they made suggestions that referred to actions of the crew. Both strategies explicitly state what action should be taken but they differ in their social implications. Commands are direct insofar as they entail a strong obligation for the listener to comply with the speaker' s request. Suggestions are less direct in this respect. However, by using the collegial "Let's do," speakers appeal to the solidarity between themselves and their listeners and seek compliance in this way. Commands, in contrast, are inherently authoritative and imply an asymmetry in status. Speakers by giving a command, express their belief that they are socially more powerful than their listeners and that they are thus licensed to command. That is, speakers seek listener compliance by appeal to their status. Status-based commands were more frequent among male captains than among female captains. Female captains instead were likely to shift the motivation for their commands away from their status to some objective necessity by referring to some problem or goal It remains to be seen, however, how captains' strategies were affected by the severity of a problem situation. Results in a preliminary study involving only male participants, suggests that pilots increased the directness of their utterances in situations that they perceived to be risky. Thus the observation that male captains used complex communications half of the time while female captains did so 75% of the time, could indicate that male captains were more likely than female captains to change their strategies with the severity of situations. Both male and female first officers in this study were less direct than captains. The most common

  10. Crew on the ISS: Creativity or determinism?

    NASA Astrophysics Data System (ADS)

    Krikalev, Sergey K.; Kalery, Alexander Yu.; Sorokin, Igor V.

    2010-01-01

    Analyzing the experience of human flights to the Mir space station in 1986-2000 and to the ISS in 2000-2008, as well as Space Shuttle missions we can define structural and organizational tendencies in human missions to space and mission support. The tendency to the increased determinism in flight operations leads to lower flexibility of the "Crew-Mission Control Center" link in case of contingency. We justify the necessity to reduce the centralization of the control process and to hand over some mission control centers (MCC) authority to the International Space Station (ISS) crew. We conclude that human missions to the Moon and Mars where crew actions will be independent to a high degree will be impossible without resolution of this issue. Creativity and determinism should be properly balanced.

  11. Composite Crew Module (CCM) Permeability Characterization

    NASA Technical Reports Server (NTRS)

    Kirsch, Michael T.

    2013-01-01

    In January 2007, the NASA Administrator chartered the NASA Engineering and Safety Center (NESC) to form an Agency team to design and build a composite crew module in 18 months in order to gain hands-on experience in anticipation that future exploration systems may be made of composite materials. One of the conclusions from this Composite Crew Module Primary Structure assessment was that there was a lack of understanding regarding the ability for composite pressure shells to contain consumable gases, which posed a technical risk relative to the use of a metallic design. After the completion of the Composite Crew Module test program, the test article was used in a new program to assess the overall leakage/permeability and identify specific features associated with high leak rates. This document contains the outcome of the leakage assessment.

  12. STS-111 Crew Interviews: Paul Lockhart, Pilot

    NASA Astrophysics Data System (ADS)

    2002-04-01

    STS-111 Pilot Paul Lockhart is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He discusses the following mission goals: the crew transfer activities (the Expedition 5 crew is replacing the Expedition 4 crew on the International Space Station (ISS)), the delivery of the payloads which includes the Mobile Remote Servicer Base System (MBS), and the planned extravehicular activities (EVAs) which include attaching the MBS to the ISS and repairing the station's robot arm. He describes in-flight procedures for launch, reentry and docking with the ISS. He ends with his thoughts on the role of international cooperation in building and maintaining ISS.

  13. Behavioral characteristics of effective crew leaders

    NASA Technical Reports Server (NTRS)

    Ginnett, Robert C.

    1989-01-01

    The behaviors of effective versus less effective captains as they form and lead their crews in line operations are analyzed. The research examines real work groups in an actual organization with a specific and consequential task to perform and is based on a normative model of work group effectiveness. Selection of captains is outlined, as well as data collection over the course of six months of crew and cockpit observations including over 300 hours of direct crew observations and 110 hours of actual flight time. Common characteristics of the effective leaders as well as the deviations of the less effective are described, and organizational implications are assessed. The concept of 'shells' depicted as a series of concentric circles moving outward from the group's task execution at the center is introduced and discussed.

  14. STS-113 crew breakfast before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-113 crew enjoys a snack before suiting up for launch. Seated left to right are Mission Specialists John Herrington and Michael Lopez-Alegria, Pilot Paul Lockhart and Commander James Wetherbee; Expedition 6 flight engineer Donald Pettit, Commander Ken Bowersox and flight engineer Nikolai Budarin. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  15. STS-113 Crew Interviews: Jim Wetherbee, Commander

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-113 Commander Jim Wetherbee is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Wetherbee outlines his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 6 crew in place of the Expedition 5 crew on the International Space Station (ISS)) and what the importance of the primary payload (the P1 truss) will be. He also provides a detailed account of the three planned extravehicular activities (EVAs) and additional transfer duties. He ends by offering his thoughts on the success of the ISS as the second anniversary of continuous human occupation of the ISS approaches.

  16. Structural Health System for Crew Habitats

    NASA Technical Reports Server (NTRS)

    Brandon, Erik

    2005-01-01

    This viewgraph presentation reviews the history of JPL, and its affilation with CalTech and NASA. It continues by examining some of the sensors, and systems to ensure structural health that JPL has developed. It also reviews some of the habitat designs that are being developed for the lunar base. With these crew habitats, there is a requirement to have embedded systems health monitoring, to alert the crew in time about adverse structural conditions. The use of sensing technologies and smart materials are being developed to assure mechanical flexibility, minimumally invasive, autonomous, and enhanced reliability.

  17. Realistic training for effective crew performance

    NASA Technical Reports Server (NTRS)

    Foushee, H. C.

    1985-01-01

    Evaluation of incident and accident statistics reveals that most problems occur not because of a lack of proficiency in pilot training, but because of the inability to coordinate skills into effective courses of action. Line-Oriented Flight Training (LOFT) and Cockpit Resource Management (CRM) programs provide training which will develop both individual crew member skills, as well as those associated with effective group function. A study conducted by NASA at the request of the U.S. Congress supports the argument for training that enhances crew performance in addition to providing individual technical skills, and is described in detail.

  18. Expedition 8 Crew Interview: Pedro Duque

    NASA Technical Reports Server (NTRS)

    2003-01-01

    European Space Agency (ESA) astronaut Pedro Duque is interviewed in preparation for his flight to and eight day stay on the International Space Station (ISS) as part of the Cervantes mission. Duque arrived on the ISS with the Expedition 8 crew onboard a Soyuz TMA-3, the seventh Soyuz flight to the station. He departed from the ISS on a Soyuz TMA-2 with the Expedition 7 crew of the ISS. In the video, Duque answers questions on: the goals of his flight; his life and career path; the Columbus Module, which ESA will contribute to the ISS, the ride onboard a Soyuz, and the importance of the ISS.

  19. STS-8 onboard crew press conference

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Six news reporters listen to a response from Astronaut Guion S. Bluford (note TV monitor) in a rare space-to-Earth press conference involving all the STS-8 crew. The participants are, left to right, Gary Schwitzer, Cable News Network; Morton Dean, CBS; Roy Neal, NBC; Lynn Sherr, ABC; Howard Benedict, Associated Press; Al Rossiter, United Press International. The astronauts on the monitor are Richard H. Truly, cneter left, crew commander; Daniel C. Brandenstein, lower left, pilot; and Dr. William E. Thornton, upper left, Guion S. Bluford, upper right; and Dale E. Gardner, all mission specialists.

  20. STS-105 Crew Interview: Dan Barry

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-105 Mission Specialist Dan Barry is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, training for the mission, and his role in the mission's activities. He gives details on the mission's goals, which include the transfer of supplies from the Discovery Orbiter to the International Space Station (ISS) and the change-over of the Expedition 2 and Expedition 3 crews (the resident crews of ISS). Barry discusses the importance of the ISS in the future of human spaceflight.

  1. Airport ramp safety and crew performance issues

    NASA Technical Reports Server (NTRS)

    Chamberlin, Roy; Drew, Charles; Patten, Marcia; Matchette, Robert

    1995-01-01

    This study examined 182 ramp operations incident reports from the Aviation Safety Reporting System (ASRS) database, to determine which factors influence ramp operation incidents. It was found that incidents occurred more often during aircraft arrival operations than during departure operations; incidents occurred most often at the gate stop area, less so at the gate entry/exit areas, and least on the ramp fringe areas; and reporters cited fewer incidents when more ground crew were present. The authors offer suggestions for both airline management and flight crews to reduce the rate of ramp incidents.

  2. Crew support tools for Euromir 95.

    PubMed

    Bessone, L; de Jong, F; Nespoli, P

    1996-11-01

    The Euromir 95 long-duration mission raised many new crew-support issues for ESA. Previous mission experience indicated the need for increased emphasis on generic tools for astronaut Thomas Reiter. In addition, some possible solutions could be demonstrated to combat Mir's onboard stowage problem. Overall, the mission considerably increased ESA's operational experience, while the experimental introduction of certain items generated a vast number of 'lessons learned' in the crew-support domain. Further experience in this area would enhance Europe's role in the International Space Station's operational phase.

  3. PROCRU: A model for analyzing crew procedures in approach to landing

    NASA Technical Reports Server (NTRS)

    Baron, S.; Muralidharan, R.; Lancraft, R.; Zacharias, G.

    1980-01-01

    A model for analyzing crew procedures in approach to landing is developed. The model employs the information processing structure used in the optimal control model and in recent models for monitoring and failure detection. Mechanisms are added to this basic structure to model crew decision making in this multi task environment. Decisions are based on probability assessments and potential mission impact (or gain). Sub models for procedural activities are included. The model distinguishes among external visual, instrument visual, and auditory sources of information. The external visual scene perception models incorporate limitations in obtaining information. The auditory information channel contains a buffer to allow for storage in memory until that information can be processed.

  4. PROCRU: A model for analyzing flight crew procedures in approach to landing

    NASA Technical Reports Server (NTRS)

    Baron, S.; Zacharias, G.; Muraidharan, R.; Lancraft, R.

    1982-01-01

    A model for the human performance of approach and landing tasks that would provide a means for systematic exploration of questions concerning the impact of procedural and equipment design and the allocation of resources in the cockpit on performance and safety in approach-to-landing is discussed. A system model is needed that accounts for the interactions of crew, procedures, vehicle, approach geometry, and environment. The issues of interest revolve principally around allocation of tasks in the cockpit and crew performance with respect to the cognitive aspects of the tasks. The model must, therefore, deal effectively with information processing and decision-making aspects of human performance.

  5. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, members of the STS-103 crew look at some of the equipment to be used during their mission. The seven-member crew are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  6. Astronaut Gordon Cooper smiles for recovery crew

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper Jr., has a smile for the recovery crew of the U.S.S. Kearsarge, after he is on board from a successful 22 orbit mission of the earth in his spacecraft 'Faith 7'. Cooper is still sitting in his capsule, with his helmet off.

  7. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, some of the STS-103 crew look over lubrication devices to be used during their mission. The seven-member crew are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  8. Commercial Crew Program: Boeing Breakout Video

    NASA Video Gallery

    NASA and The Boeing Company of Houston signed a funded Space Act Agreement (SAA) in March 2011 for the company’s CST-100. Under the $92.3 million agreement, NASA’s Commercial Crew Program (...

  9. 30 CFR 250.1621 - Crew instructions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Crew instructions. 250.1621 Section 250.1621 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1621...

  10. 30 CFR 250.1621 - Crew instructions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Crew instructions. 250.1621 Section 250.1621 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1621...

  11. 30 CFR 250.1621 - Crew instructions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Crew instructions. 250.1621 Section 250.1621 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1621...

  12. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, members of the STS-103 crew get instructions on use of rib clamps for the Shield Shell Replacement Fabric (SSRF) task on repair of the Hubble Space Telescope. The seven-member crew are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  13. Potential Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; McDonald, Mark A.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  14. STS-71 Crew Lunch and Photo Opportunity

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Already well into their launch day timeline, the STS-71 flight crew pauses for lunch in the Operations and Checkout Building. From left are Mission Specialists Gregory J. Harbaugh and Bonnie J. Dunbar; Payload Commander Dr. Ellen S. Baker; STS-71 Mission Commander Robert L. 'Hoot' Gibson; Mir 19 Mission Commander Anatoly Y. Solovyev; Mir 19 Flight Engineer Nikolai M. Budarin; and STS-71 Pilot Charles J. Precourt. The crew's wakeup time was 4:43 a.m.EDT, exactly 12 hours before the planned launch time of 4:43:02 p.m. EDT. While this means that today will be a long workday for the crew, their schedule is being driven by the mission timeline to insure that they are well-rested when it comes time to carry out the prime objective of Mission STS-71: the first rendezvous and docking between the U.S. Space Shuttle and the Russian Space Station Mir. The flight crew will receive a weather briefing before donning their launch/entry suits and departing for Launch Pad 39A, where the Space Shuttle Atlantis stands poised for liftoff on the 100th U.S. human space launch.

  15. Portrait of STS 51-G crew

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Portrait of STS 51-G crew. Kneeling in front are Astronauts Daniel C. Brandenstein (left) and John O. Creighton, commander and pilot, respectively. Astronauts Shannon W. Lucid, Steven R. Nagel, and John M. Fabian, mission specialist (l.-r.) joing Payload specialists Sultan Salman Abdelazize Al-Saud (second right) and Patrick Baudry on the back row.

  16. 19 CFR 122.45 - Crew list.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Crew list. 122.45 Section 122.45 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for...

  17. The STS-135 Crew Participates in Interviews

    NASA Video Gallery

    The STS-135 crew members talk with representatives of WBNG-TV and WICZ-TV in Binghamton, N.Y., near Pilot Doug Hurley’s home town of Apalachin, and KGO-TV of San Francisco. Mission Specialist Rex...

  18. 30 CFR 250.506 - Crew instructions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Crew instructions. 250.506 Section 250.506 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... to be encountered, and general safety considerations to protect personnel, equipment, and...

  19. 30 CFR 250.1621 - Crew instructions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Crew instructions. 250.1621 Section 250.1621 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... to be encountered, and general safety considerations to protect personnel, equipment, and...

  20. 30 CFR 250.606 - Crew instructions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Crew instructions. 250.606 Section 250.606 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... to be encountered, and general safety considerations to protect personnel, equipment, and...

  1. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test, STS-103 Commander Curtis L. Brown Jr. (left) and Pilot Scott J. Kelly look at a replacement computer for the Hubble Space Telescope. The payload hardware is in the Payload Hazardous Servicing Facility. Other members of the crew are Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with the new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  2. Apollo 11 crew pose after mission rehearsal

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 astronauts rehearsed their lunar landing mission in simulators here today. Pictured in front of a lunar module mockup in the Flight Crew Training Building area, from left, are Michael Collins, Command Module Pilot; Neil A. Armstrong, Commander; and Edwin E. Aldrin Jr., Lunar Module Pilot.

  3. New Crew Docks to Poisk Module

    NASA Video Gallery

    Three new Expedition 31 crew members Gennady Padalka, Joe Acaba and Sergei Revin docked to the International Space Station’s Poisk module Thursday May 17, at 12:36 a.m. EDT. They began their jour...

  4. Official STS-59 preflight crew portrait

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the Official STS-59 preflight crew portrait. Sidney M. Gutierrez, mission commander is standing (right) along with Kevin P. Chilton, pilot. Others, left to right are Limda M. Godwin, payload commander; and Thomas D. Jones, Jerome (Jay) Apt and Michael R. (Rich) Clifford, all mission specialists. All are wearing orange launch and entry suits.

  5. Crew equipment applications - Firefighter's Breathing System.

    NASA Technical Reports Server (NTRS)

    Smith, W. L.

    1973-01-01

    The Firefighter's Breathing System (FBS) represents a significant step in applying NASA's crew equipment technologists and technologies to civilian sector problems. This paper describes the problem, the utilization of user-design committees as a forum for development of design goals, the design of the FBS, and the field test program to be conducted.

  6. Crew Transportation Technical Standards and Design Evaluation Criteria

    NASA Technical Reports Server (NTRS)

    Lueders, Kathryn L.; Thomas, Rayelle E. (Compiler)

    2015-01-01

    Crew Transportation Technical Standards and Design Evaluation Criteria contains descriptions of technical, safety, and crew health medical processes and specifications, and the criteria which will be used to evaluate the acceptability of the Commercial Providers' proposed processes and specifications.

  7. The STS-108 crew look over MPLM during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-108 crew look into the hatch of the Multi-Purpose Logistics Module Raffaello. From left are Commander Dominic L. Gorie, Pilot Mark E. Kelly, and Mission Specialists Linda A. Godwin and Daniel M. Tani. The four astronauts are taking part in Crew Equipment Interface Test (CEIT) activities at KSC. The CEIT provides familiarization with the launch vehicle and payload. Mission STS-108 is a Utilization Flight (UF-1), carrying the Expedition Four crew plus Multi-Purpose Logistics Module Raffaello to the International Space Station. The Expedition Four crew comprises Yuri Onufriyenko, commander, Russian Aviation and Space Agency, and astronauts Daniel W. Bursch and Carl E. Walz. Endeavour is scheduled to launch Nov. 29 on mission STS-108.

  8. What went right: lessons for the intensivist from the crew of US Airways Flight 1549.

    PubMed

    Eisen, Lewis A; Savel, Richard H

    2009-09-01

    On January 15, 2009, US Airways Flight 1549 hit geese shortly after takeoff from LaGuardia Airport in New York City. Both engines lost power, and the crew quickly decided that the best action was an emergency landing in the Hudson River. Due to the crew's excellent performance, all 155 people aboard the flight survived. Intensivists can learn valuable lessons from the processes and outcome of this incident, including the importance of simulation training and checklists. By learning from the aviation industry, the intensivist can apply principles of crew resource management to reduce errors and improve patient safety. Additionally, by studying the impact of the mandated process-engineering applications within commercial aviation, intensivists and health-care systems can learn certain principles that, if adequately and thoughtfully applied, may seriously improve the art and science of health-care delivery at the bedside.

  9. Leader personality and crew effectiveness - A full-mission simulation experiment

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Foushee, H. Clayton

    1989-01-01

    A full-mission simulation research study was completed to assess the impact of individual personality on crew performance. Using a selection algorithm described by Chidester (1987), captains were classified as fitting one of three profiles along a battery of personality assessment scales. The performances of 23 crews led by captains fitting each profile were contrasted over a one and one-half day simulated trip. Crews led by captains fitting a positive Instrumental-Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Expressive profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of competitiveness, Verbal Aggressiveness, and Impatience and Irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.

  10. International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.

    2009-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  11. [Musculoskeletal pain in Venezuelan oil tanker crews].

    PubMed

    Fernández-D'Pool, Janice; Jameson, Robby; Brito, Angel

    2014-06-01

    The objective of this investigation was to analyze the prevalence of musculoskeletal pain (MSP) in oil tanker crew members in Venezuela. A descriptive cross-sectional study was implemented, using a modified version of the Standardized Nordic Questionnaires. The prevalence of MSP in 127 men was 82%. The mean age was statistically different (p < 0.05) between the MSP group (39.29 +/- 10.16 years, range 24-60) and the no-MSP group (34.9 +/- 9.76 years, range 24-58 years). There was no significant difference between the body mass indexes (BMI) of the MSP group (29.94 +/- 4.31 kg/m2) and the no-MSP group (30.02 +/- 4.96 km/m2). The majority of the crew members with MSP (83%) had < or = 10 years seniority, mean value of 4.31 +/- 2.44 years. MSP occurrence was the same (50%) for crew members located in engine rooms and decks. The MSP frequency for anatomical region was 57% in lower back, 32% knees, 24% in neck and upper back and 19% shoulders. There was a significant association between lower back pain and seniority (p < 0.05), also between age and BMI (p < 0.01); and an inverse significant correlation (p < 0.01) between lower back pain and knee pain, age and neck pain and seniority in the job. The crew members in the deck area showed a higher occurrence of neck pain (33%) than the engine crew (16%) (p< 0.01). Our findings suggest the need to implement health programs to reduce the occurrence of MSP in the workplace.

  12. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety system crew data. 415.131... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant's safety review document must identify each flight safety system crew position and the role of...

  13. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight safety system crew data. 415.131... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant's safety review document must identify each flight safety system crew position and the role of...

  14. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Flight safety system crew data. 415.131... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant's safety review document must identify each flight safety system crew position and the role of...

  15. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Flight safety system crew data. 415.131... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant's safety review document must identify each flight safety system crew position and the role of...

  16. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Flight safety system crew data. 415.131... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant's safety review document must identify each flight safety system crew position and the role of...

  17. 14 CFR 135.330 - Crew resource management training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Crew resource management training. 135.330... § 135.330 Crew resource management training. (a) Each certificate holder must have an approved crew resource management training program that includes initial and recurrent training. The training...

  18. 14 CFR 135.330 - Crew resource management training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Crew resource management training. 135.330... § 135.330 Crew resource management training. (a) Each certificate holder must have an approved crew resource management training program that includes initial and recurrent training. The training...

  19. 14 CFR 135.330 - Crew resource management training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Crew resource management training. 135.330... § 135.330 Crew resource management training. (a) Each certificate holder must have an approved crew resource management training program that includes initial and recurrent training. The training...

  20. 14 CFR 460.9 - Informing crew of risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.9 Informing crew of... space flight participants. An operator must provide this information— (a) Before entering into any... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Informing crew of risk. 460.9 Section...

  1. Latino High School Students' Perceptions of Gangs and Crews

    ERIC Educational Resources Information Center

    Lopez, Edward M.; Wishard, Alison; Gallimore, Ronald; Rivera, Wendy

    2006-01-01

    Controversies around definitions and perceptions of gangs are heightened by the scarcity of research on crews. In an open-ended interview, 77 Latino 10th graders from a random longitudinal sample provided information about gangs and crews. Although less than 10% reported having been in gangs or crews, 84% reported having personal contact with…

  2. 49 CFR 218.24 - One-person crew.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false One-person crew. 218.24 Section 218.24..., DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Blue Signal Protection of Workers § 218.24 One-person crew. (a) An engineer working alone as a one-person crew shall not perform duties on, under,...

  3. 14 CFR 23.1523 - Minimum flight crew.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Minimum flight crew. 23.1523 Section 23... Information § 23.1523 Minimum flight crew. The minimum flight crew must be established so that it is... commuter category airplanes, each crewmember workload determination must consider the following: (1)...

  4. 14 CFR 23.1523 - Minimum flight crew.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Minimum flight crew. 23.1523 Section 23... Information § 23.1523 Minimum flight crew. The minimum flight crew must be established so that it is... commuter category airplanes, each crewmember workload determination must consider the following: (1)...

  5. 14 CFR 23.1523 - Minimum flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum flight crew. 23.1523 Section 23... Information § 23.1523 Minimum flight crew. The minimum flight crew must be established so that it is... commuter category airplanes, each crewmember workload determination must consider the following: (1)...

  6. 14 CFR 23.1523 - Minimum flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum flight crew. 23.1523 Section 23... Information § 23.1523 Minimum flight crew. The minimum flight crew must be established so that it is... commuter category airplanes, each crewmember workload determination must consider the following: (1)...

  7. 14 CFR 25.1523 - Minimum flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum flight crew. 25.1523 Section 25.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Limitations § 25.1523 Minimum flight crew. The minimum flight crew must be established so that it...

  8. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that...

  9. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that...

  10. 14 CFR 29.1523 - Minimum flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum flight crew. 29.1523 Section 29.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Limitations § 29.1523 Minimum flight crew. The minimum flight crew must be established so that it...

  11. 14 CFR 27.1523 - Minimum flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum flight crew. 27.1523 Section 27.1523 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... § 27.1523 Minimum flight crew. The minimum flight crew must be established so that it is sufficient...

  12. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that...

  13. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that...

  14. Portrait of the Gemini 8 prime and backup crews

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Portrait of the Gemini 8 prime and backup crews. Astronauts David R. Scott (left), pilot, and Astronaut Neil A. Armstrong, command pilot, are the prime crew of the Gemini 8 mission. Backup crew (left to right, standing), are Astronauts Richard F. Gordon Jr., pilot, and Charles Conrad Jr., command pilot.

  15. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that...

  16. 49 CFR 174.26 - Notice to train crews.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Notice to train crews. 174.26 Section 174.26 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements § 174.26 Notice to train crews. (a) The train crew must have a document that reflects the...

  17. 49 CFR 174.26 - Notice to train crews.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Notice to train crews. 174.26 Section 174.26 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements § 174.26 Notice to train crews. (a) The train crew must have a document that reflects the...

  18. 49 CFR 174.26 - Notice to train crews.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Notice to train crews. 174.26 Section 174.26 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements § 174.26 Notice to train crews. (a) The train crew must have a document that reflects the...

  19. 19 CFR 122.75b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... issued by the TSA to an air carrier subject to the provisions of 49 CFR part 1544, 1546, or 1550. The... and non-crew members onboard commercial aircraft departing from the United States. 122.75b Section 122...; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard...

  20. 19 CFR 122.75b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... issued by the TSA to an air carrier subject to the provisions of 49 CFR part 1544, 1546, or 1550. The... and non-crew members onboard commercial aircraft departing from the United States. 122.75b Section 122...; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard...

  1. 19 CFR 122.75b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... issued by the TSA to an air carrier subject to the provisions of 49 CFR part 1544, 1546, or 1550. The... and non-crew members onboard commercial aircraft departing from the United States. 122.75b Section 122...; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard...

  2. 19 CFR 122.75b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... issued by the TSA to an air carrier subject to the provisions of 49 CFR part 1544, 1546, or 1550. The... and non-crew members onboard commercial aircraft departing from the United States. 122.75b Section 122...; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard...

  3. 19 CFR 122.75b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... issued by the TSA to an air carrier subject to the provisions of 49 CFR part 1544, 1546, or 1550. The... and non-crew members onboard commercial aircraft departing from the United States. 122.75b Section 122...; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard...

  4. A NASA Perspective on Maintenance Activities and Maintenance Crews

    NASA Technical Reports Server (NTRS)

    Barth Tim

    2007-01-01

    Proactive consideration of ground crew factors enhances the designs of space vehicles and vehicle safety by: (1) Reducing the risk of undetected ground crew errors and collateral damage that compromise vehicle reliability and flight safety (2) Ensuring compatibility of specific vehicle to ground system interfaces (3) Optimizing ground systems. During ground processing and launch operations, public safety, flight crew safety, ground crew safety, and the safety of high-value spacecraft are inter-related. For extended Exploration missions, surface crews perform functions that merge traditional flight and ground operations.

  5. Designing the Space Station Crew Compartment

    NASA Astrophysics Data System (ADS)

    Kitmacher, Gary

    2002-01-01

    Design of the crew compartment in the modules of the International Space Station began in the mid-1980s and was influenced by past experiences as well as new and innovative designs. This paper will trace some of the alternative configurations that were considered during the early Phase B studies and the trade studies, design and modeling activities which led to the configuration as it is being flown today. Design of the core systems, lofts, and rack-based modules will all be reviewed. Based upon crew feedback and experiences in the integration of space station missions over the years of operation, problems that have been experienced in planning and implementation will be reviewed.

  6. Endeavour's crew poses for a photo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-97 crew pauses for a photograph before heading for crew quarters. They landed safely at the SLF at 6:04 p.m. EST after a successful mission. From the left are Mission Specialists Joseph Tanner and Carlos Noriega, Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialist Marc Garneau of Canada. Endeavour carried the P6 Integrated Truss Structure with solar arrays to power the International Space Station. The arrays and other equipment were installed during three EVAs that totaled 19 hours, 20 minutes. Endeavour was docked with the Space Station for 6 days, 23 hours, 13 minutes. This was the 16th nighttime landing for a Space Shuttle and the 53rd at Kennedy Space Center.

  7. NASA Crew Launch Vehicle Flight Test Process

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Robinson, Kimberly F.; Sullivan, Gregory P.; Tuma, Margaret L.

    2006-01-01

    In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and to prepare for human exploration of Mars. One of the first new developments will be the Crew Launch Vehicle (CLV) , which will carry the Crew Exploration Vehicle (CEV) into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, to support lunar missions. As part of the CLV development, NASA will perform a series of CLV flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. In addition, the data gained from the flight tests will be used to certify the new CLV/CEV vehicle for human space flight. This paper will provide an overview of the CLV flight test process and details of the individual flight tests

  8. STS-113 crew group photo during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-113 crew poses for a photo on 195-foot level of the Fixed Service Structure on Launch Pad 39A. From left are Mission Specialist John Herrington, Pilot Paul Lockhart, Commander James Wetherbee and Mission Specialist Michael Lopez-Alegria. Along with the Expedition 6 crew, they have been participating in emergency egress training, part of Terminal Countdown Demonstration Test activities in preparation for their launch. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour, as well as Expedition 6, who will replace Expedition 5 on the Station. The mission is scheduled to launch Nov. 10, 2002.

  9. Dual Oculometer System for Aviation Crew Assessment

    NASA Technical Reports Server (NTRS)

    Latorella, Kara; Ellis, Kyle K.; Lynn, William A.; Frasca, Dennis; Burdette, Daniel W.; Feigh, Charles T.; Douglas, Alan L.

    2010-01-01

    Oculometers, eye trackers, are a useful tool for ascertaining the manner in which pilots deploy visual attentional resources, and for assessing the degree to which stimuli capture attention exogenously. The aim of this effort was to obtain oculometer data comfortably, unobtrusively, reliably and with good spatial resolution over a standard B757-like flight deck for both individuals in a crew. We chose to implement two remote, 5-camera Smarteye systems which were crafted for this purpose to operate harmoniously. We present here the results of validation exercises, lessons learned for improving data quality, and initial thoughts on the use of paired oculometer data to reflect crew workload, coordination, and situation awareness, in the aggregate.

  10. Crew factors in the design of the Space Station

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.

    1987-01-01

    The designing of Space Shuttle modules and equipment in order to provide a stimulating and efficient work atmosphere and a pleasant living environment is examined. The habitation module for the eight crew members is divided into four areas: ceiling, floor, port, and starboard. The module is to consist of crew quarters, a wardroom, a galley, a personal hygiene facility, a health maintenance facility, and stowage areas. There is a correlation between the function of the module and its location; for example the galley will be near the wardroom and the personal hygiene facility near the crew quarters. The designs of the equipment for crew accommodation and of the equipment to be maintained and repaired by the crew will be standarized. The design and functions of the crew and equipment restraints, crew mobility aids, racks to contain equipment, and functional units are described.

  11. Systems Modeling for Crew Core Body Temperature Prediction Postlanding

    NASA Technical Reports Server (NTRS)

    Cross, Cynthia; Ochoa, Dustin

    2010-01-01

    The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.

  12. STS-85 Crew Arrival for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Mission STS-85 crew arrives at the Shuttle Landing Facility for their mission's Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. They are (from left): Mission Specialist Stephen K. Robinson; Payload Commander N. Jan Davis; Mission Specialist Robert L. Curbeam; Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger; and Payload Specialist Bjarni V. Tryggvason. The liftoff for STS-85 is targeted for August 7, 1997.

  13. Non-Microgravity Provocations to Crew - Food

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele H.

    2010-01-01

    This slide presentation reviews the importance of food for long term space exploration missions. The Goals and objectives of the NASA food system is to develop a food system that is safe, nutritious, acceptable and efficiently balances appropriate vehicle resources: volume, mass, waste, water, power, cooling, air, and crew time. The importance of not only the nutrition, but the socialization of meals is also discussed.

  14. STS-80 Crew Arrival (Commander Kenneth Cockrell)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-80 Commander Kenneth D. Cockrell and four fellow crew members arrive at KSC's Shuttle Landing Facility as preparations continue for launch of the final Shuttle flight of 1996. Tomorrow, Nov. 12, the launch countdown will begin at 1 p.m. with the countdown clock set at T-43 hours. The Space Shuttle Columbia is scheduled for liftoff from Launch Pad 39B at 2:50 p.m. EST, Nov. 15.

  15. The Actual Apollo 13 Prime Crew

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The actual Apollo 13 lunar landing mission prime crew from left to right are: Commander, James A. Lovell Jr., Command Module pilot, John L. Swigert Jr.and Lunar Module pilot, Fred W. Haise Jr. The original Command Module pilot for this mission was Thomas 'Ken' Mattingly Jr. but due to exposure to German measles he was replaced by his backup, Command Module pilot, John L. 'Jack' Swigert Jr.

  16. [Preparation of the flight crew to bailout].

    PubMed

    Korzhen'iants, V A; Moiseev, Iu B; Strakhov, A Iu

    2011-06-01

    The authors demonstrate that the training of flight personnel to the ejection from an aircraft in distress is a learning system that includes interconnected types of land-based activities: studying the material part of the means of salvation, documentation, regulatory need for ejection and the ejection rule; exercises in the cockpit; training on special simulators; parachute training; demonstration bailout; making available to the flight crew documents the forced ejection of the Air Force to analyze their outcomes.

  17. Crew portrait during 51-B mission

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Crew portrait during 51-B mission. Note the gold T-shirts of 'gold' team members Robert F. Overmyer (bottom left), Don L. Lind (behind Overmyer), William E. Thornton (bottom right) and Taylor G. Wang (behind Thornton). Posing 'upside down' are 'silver team members (l.-r.) Frederick D. Gregory, Norman E. Thagard and Lodewijk van den Berg. The seven are in the long science module for Spacelab 3 in the cargo bay of the Shuttle Challenger.

  18. Space Station crew safety - Human factors model

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.; Junge, M. K.

    1984-01-01

    A model of the various human factors issues and interactions that might affect crew safety is developed. The first step addressed systematically the central question: How is this Space Station different from all other spacecraft? A wide range of possible issue was identified and researched. Five major topics of human factors issues that interacted with crew safety resulted: Protocols, Critical Habitability, Work Related Issues, Crew Incapacitation and Personal Choice. Second, an interaction model was developed that would show some degree of cause and effect between objective environmental or operational conditions and the creation of potential safety hazards. The intermediary steps between these two extremes of causality were the effects on human performance and the results of degraded performance. The model contains three milestones: stressor, human performance (degraded) and safety hazard threshold. Between these milestones are two countermeasure intervention points. The first opportunity for intervention is the countermeasure against stress. If this countermeasure fails, performance degrades. The second opportunity for intervention is the countermeasure against error. If this second countermeasure fails, the threshold of a potential safety hazard may be crossed.

  19. STS-86 Crew walkout for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-86 Commander James D. Wetherbee, in foreground at right, leads the way as the next Space Shuttle crew does a practice walkout from the Operations and Checkout Building en route to Launch Pad 39A. The seven crew members are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. Pilot Michael J. Bloomfield is in foreground at left. Directly behind the pilot and commander, from left, are Mission Specialists Jean-Loup J.M. Chretien of the French Space Agency, CNES, and Scott E. Parazynski. Bringing up the rear, from left, are Mission Specialists David A. Wolf, Wendy B. Lawrence and Vladimir Georgievich Titov of the Russian Space Agency. STS-86 will be the seventh docking of the Space Shuttle with the Russian Space Station Mir. After the docking, Wolf will transfer to the Mir 24 crew, replacing U.S. astronaut C. Michael Foale, who arrived there during the last docking mission, STS-85, in May. The STS-86 launch aboard Atlantis is targeted for Sept. 25.

  20. STS-111 crew breakfast before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-111 crew gather for the traditional pre-launch meal before the second launch attempt aboard Space Shuttle Endeavour. Seated left to right are Mission Specialists Franklin Chang-Diaz and Philippe Perrin (CNES); the Expedition 5 crew cosmonauts Sergei Treschev (RSA) and Valeri Korzun (RSA) and astronaut Peggy Whitson; Pilot Paul Lockhart and Commander Kenneth Cockrell. In front of them is the traditional cake. This mission marks the 14th Shuttle flight to the International Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  1. Continuation of advanced crew procedures development techniques

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Evans, M. E.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.; Tatum, I. C.

    1976-01-01

    An operational computer program, the Procedures and Performance Program (PPP) which operates in conjunction with the Phase I Shuttle Procedures Simulator to provide a procedures recording and crew/vehicle performance monitoring capability was developed. A technical synopsis of each task resulting in the development of the Procedures and Performance Program is provided. Conclusions and recommendations for action leading to the improvements in production of crew procedures development and crew training support are included. The PPP provides real-time CRT displays and post-run hardcopy output of procedures, difference procedures, performance data, parametric analysis data, and training script/training status data. During post-run, the program is designed to support evaluation through the reconstruction of displays to any point in time. A permanent record of the simulation exercise can be obtained via hardcopy output of the display data and via transfer to the Generalized Documentation Processor (GDP). Reference procedures data may be transferred from the GDP to the PPP. Interface is provided with the all digital trajectory program, the Space Vehicle Dynamics Simulator (SVDS) to support initial procedures timeline development.

  2. Evaluation of Cabin Crew Technical Knowledge

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa G.; Chute, Rebecca D.; Jordan, Kevin

    1998-01-01

    Accident and incident reports have indicated that flight attendants have numerous opportunities to provide the flight-deck crew with operational information that may prevent or essen the severity of a potential problem. Additionally, as carrier fleets transition from three person to two person flight-deck crews, the reliance upon the cabin crew for the transfer of this information may increase further. Recent research (Chute & Wiener, 1996) indicates that light attendants do not feel confident in their ability to describe mechanical parts or malfunctions of the aircraft, and the lack of flight attendant technical training has been referenced in a number of recent reports (National Transportation Safety Board, 1992; Transportation Safety Board of Canada, 1995; Chute & Wiener, 1996). The present study explored both flight attendant technical knowledge and flight attendant and dot expectations of flight attendant technical knowledge. To assess the technical knowledge if cabin crewmembers, 177 current flight attendants from two U.S. carriers voluntarily :ompleted a 13-item technical quiz. To investigate expectations of flight attendant technical knowledge, 181 pilots and a second sample of 96 flight attendants, from the same two airlines, completed surveys designed to capture each group's expectations of operational knowledge required of flight attendants. Analyses revealed several discrepancies between the present level of flight attendants.

  3. STS-87 crew walkout for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at Kennedy Space Center (KSC), participated in the Terminal Countdown Demonstration Test (TCDT) at KSC. Simulating the walk-out from the Operations and Checkout Building before entering a van to take them to the launch pad are (left to right) Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine; Mission Specialist Kalpana Chawla, Ph.D.; Pilot Steve Lindsey; Mission Specialist Winston Scott; Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Commander Kevin Kregel. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  4. STS-87 crew walkout for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at Kennedy Space Center (KSC), participated in the Terminal Countdown Demonstration Test (TCDT) at KSC. Simulating the walk-out from the Operations and Checkout Building before entering a van to take them to the launch pad are Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (at back left); Pilot Steve Lindsey (back right); Mission Specialist Kalpana Chawla, Ph.D. (middle left); Mission Specialist Winston Scott (middle right); Takao Doi, Ph.D., of the National Space Development Agency of Japan (front left); and Commander Kevin Kregel. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  5. STS-87 crew participate in TCDT activities

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from Pad 39B at Kennedy Space Center (KSC), participates in the Terminal Countdown Demonstration Test (TCDT) at KSC. Getting a look at the Space Shuttle Columbia are, from left, Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialist Kalpana Chawla, Ph.D.; Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU); Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Kadenyuks back-up, Yaroslav Pustovyi, Ph.D., also of NSAU; and Mission Specialist Winston Scott. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  6. International Space Station USOS Crew Quarters Development

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.

    2008-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) currently provides a Temporary Sleep Station (TeSS) as crew quarters for one crewmember in the Laboratory Module. The Russian Segment provides permanent crew quarters (Kayutas) for two crewmembers in the Service Module. The TeSS provides limited electrical, communication, and ventilation functionality. A new permanent rack sized USOS ISS Crew Quarters (CQ) is being developed. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The new CQs will provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, controllable airflow, communication equipment, redundant electrical systems, and redundant caution and warning systems. The rack sized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. Providing an acoustically quiet and visually isolated environment, while ensuring crewmember safety, is critical for obtaining crewmember rest and comfort to enable long term crewmember performance. The numerous human factor, engineering, and program considerations during the concept, design, and prototyping are outlined in the paper.

  7. Crew Health and Performance on Mars

    NASA Technical Reports Server (NTRS)

    Stegemoeller, Charlie

    1998-01-01

    The issues surrounding the health and performance on Mars of a human crew are discussed in this presentation. The work of Human Space Life Sciences Program Office (HSLSPO) in the preparation of a crew for a Martian mission is reviewed. This includes a review of issues relating to human health and performance (HHP) in space and microgravity. The Mars design reference mission requires the most rigorous life sciences critical path of any manned mission in the forseeable future. This mission will require a 30 months round trip, with 4 different transistions to different gravities, and two episodes of high gravity load, during the Mars and Earth Aerobraking exercises. A graph is presented which shows the number of subjects with human space flight experience greater than 30 days. A chart presents the physical challenges to HHP in terms of gravity and acceleration and the length of times the crew will be exposed to the various gravity loads. Another chart presents the radiation challenges to the HHP for the duration of the trip. The human element is the most complex element of the mission design. Some challenges (i.e., human engineering and life support) must be overcome, and some issues such as bone loss, and radiation exposure must be addressed prior to making a decision for a manned Martian mission.

  8. Multicultural factors in the space environment - Results of an international shuttle crew debrief

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.; Holland, Albert W.; Looper, Laurie; Marcondes-North, Regina

    1993-01-01

    There is increasing interest and concern about the multicultural and multinational factors which might negatively affect adjustment and performance of Space Station Freedom (SSF) crews, living and working for long periods of time in the space environment. To begin identifying potential problem areas, a crew debrief questionnaire (called an 'International Crew Debrief') was mailed to U.S. astronauts who flew on Shuttle missions between 1981-1990 with one or more crewmembers from other countries. There were 20 U.S. astronauts who flew on international space missions; 9 of these responded to the questionnaire, for a return rate of 45 percent. There were 42 incidents reported: 9 in the preflight period; 26 inflight; and 7 in the postflight period. Most of these incidents were rated as having a low or medium impact, but five of the inflight incidents were rated to have a 'high' mission impact. A number of causes for the problems were listed, and are discussed. Debrief respondents provided useful and timely recommendations on preflight training which may help facilitate the integration of multinational crews, and prevent multicultural or multinational factors from interfering with mission operations.

  9. STS-112 crew with President of Ajara in Georgia (Russia)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, Aslan Abashidze (left), President of the Autonomous Republic of Ajara in Georgia (Russia), STS-112 Mission Specialist Fyodor N. Yurchikhin, Ph.D., a cosmonaut with the Russian Space Agency; and Georgi Abashidze, Mayor of Batumi (Yurchikhin's hometown), pose for a portrait. Yurchikhin and the other members of the STS-112 crew are awaiting launch to the International Space Station aboard Space Shuttle Atlantis. The launch has been postponed to no earlier than Monday, Oct. 7, so that the Mission Control Center, located at the Lyndon B. Johnson Space Center in Houston, Texas, can be secured and protected from potential storm impacts from Hurricane Lili.

  10. Dummy left behind by Skylab 3 crew for the Skylab 4 crew

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This photograph is an illustration of the humorous side of the Skylab 3 crew. This dummy was left behind in the Skylab space station by the Skylab 3 crew to be found by the Skylab 4 crew. The dummy is dressed in a flight suit and placed in the Lower Body Negative Pressure Device. The name tag indicates that it represents Gerald P. Carr, Skylab 4 commander. In the background is a partial view of the dummy for William R. Pogue, Skylab 4 pilot, propped upon the bicycle ergometer (1586); This dummy is dressed in a flight suit and propped upon the bicycle ergometer. The name tag indicates that it represents William R. Pogue, Skylab 4 pilot (1587).

  11. Integrating Human Factors into Crew Exploration Vehicle Design

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Baggerman, Susan; Campbell, paul

    2007-01-01

    With NASA's new Vision for Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, and an iterative prototype/test/redesign process. Addressing human-system interface issues early on can be very cost effective even cost reducing when performed early in the design and development cycle. To achieve this goal within Crew Exploration Vehicle (CEV) Project Office, human engineering (HE) team is formed. Key tasks are to apply HE requirements and guidelines to hardware/software, and provide HE design, analysis and evaluation of crew interfaces. Initial activities included many practice-orientated evaluations using low-fidelity CEV mock-ups. What follows is a description of such evaluations that focused on a HE requirement regarding Net Habitable Volume (NHV). NHV is defined as the total remaining pressurized volume available to on-orbit crew after accounting for the loss of volume due to deployed hardware and structural inefficiencies which decrease functional volume. The goal of the NHV evaluations was to develop requirements providing sufficient CEV NHV for crewmembers to live and perform tasks in support of mission goals. Efforts included development of a standard NHV calculation method using computer models and physical mockups, and crew/ stakeholder evaluations. Nine stakeholders and ten crewmembers participated in the unsuited evaluations. Six crewmembers also participated in a suited evaluation. The mock-up was outfitted with volumetric representation of sub-systems such as seats, and stowage bags. Thirteen scenarios were developed to represent mission/crew tasks and considered to be primary volume drivers (e.g., suit donning) for the CEV. Unsuited evaluations included a structured walkthrough of these tasks. Suited evaluations included timed donning of the existing launch and entry suit to simulate a contingency scenario followed by doffing/ stowing of the suits. All mockup

  12. Expedition 4 crew member Daniel W. Bursch arrives at KSC

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 4 crew member Daniel W. Bursch arrives at KSC KSC-01PD-1705 KENNEDY SPACE CENTER, Fla. - Expedition 4 crew member Daniel W. Bursch arrives at KSC in a T-38 jet trainer. He and other crew members Commander Yuri Onufrienko and astronaut Carl E. Walz will be traveling on Space Shuttle Endeavour - mission STS-108 - to replace the Expedition 3 crew. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews, bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello, and completion of spacewalk and robotics tasks. The mission crew comprises Commander Dominic L. Gorie, Pilot Mark E. Kelly and Mission Specialists Linda A. Godwin and Daniel M. Tani. Liftoff is scheduled for 7:41 p.m. EST..

  13. LOFT Debriefings: An Analysis of Instructor Techniques and Crew Participation

    NASA Technical Reports Server (NTRS)

    Dismukes, R. Key; Jobe, Kimberly K.; McDonnell, Lori K.

    1997-01-01

    This study analyzes techniques instructors use to facilitate crew analysis and evaluation of their Line-Oriented Flight Training (LOFT) performance. A rating instrument called the Debriefing Assessment Battery (DAB) was developed which enables raters to reliably assess instructor facilitation techniques and characterize crew participation. Thirty-six debriefing sessions conducted at five U.S. airlines were analyzed to determine the nature of instructor facilitation and crew participation. Ratings obtained using the DAB corresponded closely with descriptive measures of instructor and crew performance. The data provide empirical evidence that facilitation can be an effective tool for increasing the depth of crew participation and self-analysis of CRM performance. Instructor facilitation skill varied dramatically, suggesting a need for more concrete hands-on training in facilitation techniques. Crews were responsive but fell short of actively leading their own debriefings. Ways to improve debriefing effectiveness are suggested.

  14. Chromosomal aberrations in ISS crew members

    NASA Astrophysics Data System (ADS)

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra

    2012-07-01

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). Nonetheless, the effect of increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required in order to better estimate the radiation risk for longer duration missions. The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (around 6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second one within 3 days after return from flight. From lymphocyte cultures metaphase plates were prepared on glass slides. Giemsa stained and in situ hybridised metaphases were scored for chromosome changes in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to elevated radiation levels. Overall slight but significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed. Our data indicate no elevation of mutation rates due to short term stays on-board the ISS.

  15. Cancer incidence among Nordic airline cabin crew.

    PubMed

    Pukkala, Eero; Helminen, Mika; Haldorsen, Tor; Hammar, Niklas; Kojo, Katja; Linnersjö, Anette; Rafnsson, Vilhjálmur; Tulinius, Hrafn; Tveten, Ulf; Auvinen, Anssi

    2012-12-15

    Airline cabin crew are occupationally exposed to cosmic radiation and jet lag with potential disruption of circadian rhythms. This study assesses the influence of work-related factors in cancer incidence of cabin crew members. A cohort of 8,507 female and 1,559 male airline cabin attendants from Finland, Iceland, Norway and Sweden was followed for cancer incidence for a mean follow-up time of 23.6 years through the national cancer registries. Standardized incidence ratios (SIRs) were defined as ratios of observed and expected numbers of cases. A case-control study nested in the cohort (excluding Norway) was conducted to assess the relation between the estimated cumulative cosmic radiation dose and cumulative number of flights crossing six time zones (indicator of circadian disruption) and cancer risk. Analysis of breast cancer was adjusted for parity and age at first live birth. Among female cabin crew, a significantly increased incidence was observed for breast cancer [SIR 1.50, 95% confidence interval (95% CI) 1.32-1.69], leukemia (1.89, 95% CI 1.03-3.17) and skin melanoma (1.85, 95% CI 1.41-2.38). Among men, significant excesses in skin melanoma (3.00, 95% CI 1.78-4.74), nonmelanoma skin cancer (2.47, 95% CI 1.18-4.53), Kaposi sarcoma (86.0, 95% CI 41.2-158) and alcohol-related cancers (combined SIR 3.12, 95% CI 1.95-4.72) were found. This large study with complete follow-up and comprehensive cancer incidence data shows an increased incidence of several cancers, but according to the case-control analysis, excesses appear not to be related to the cosmic radiation or circadian disruptions from crossing multiple time zones.

  16. APOLLO 13: The Crew Makes Emergency Repairs

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 13: Support on the ground design emergency equipment for the crew of Aquarius, and then radio instructions From the film documentary 'APOLLO 13: 'Houston, We've got a problem'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO 13 : Third manned lunar landing attempt with James A. Lovell, Jr., John L. Swigert, Jr., and Fred w. Haise, Jr. Pressure lost in SM oxygen system; mission aborted; LM used for life support. Mission Duration 142hrs 54mins 41sec

  17. International Space Station Crew Restraint Design

    NASA Technical Reports Server (NTRS)

    Whitmore, M.; Norris, L.; Holden, K.

    2005-01-01

    With permanent human presence onboard the International Space Station (ISS), crews will be living and working in microgravity, dealing with the challenges of a weightless environment. In addition, the confined nature of the spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity areas, as well as prolonged periods of unnatural postures. Without optimum restraints, crewmembers may be handicapped for performing some of the on-orbit tasks. Currently, many of the tasks on ISS are performed with the crew restrained merely by hooking their arms or toes around handrails to steady themselves. This is adequate for some tasks, but not all. There have been some reports of discomfort/calluses on the top of the toes. In addition, this type of restraint is simply insufficient for tasks that require a large degree of stability. Glovebox design is a good example of a confined workstation concept requiring stability for successful use. They are widely used in industry, university, and government laboratories, as well as in the space environment, and are known to cause postural limitations and visual restrictions. Although there are numerous guidelines pertaining to ventilation, seals, and glove attachment, most of the data have been gathered in a 1-g environment, or are from studies that were conducted prior to the early 1980 s. Little is known about how best to restrain a crewmember using a glovebox in microgravity. In 2004, The Usability Testing and Analysis Facility (UTAF) at the NASA Johnson Space Center completed development/evaluation of several design concepts for crew restraints to meet the various needs outlined above. Restraints were designed for general purpose use, for teleoperation (Robonaut) and for use with the Life Sciences Glovebox. All design efforts followed a human factors engineering design lifecycle, beginning with identification of requirements followed by an iterative prototype/test cycle. Anthropometric

  18. The Original Apollo 13 Prime Crew

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The original Apollo 13 prime crew. From left to right are: Commander, James A. Lovell, Command Module pilot, Thomas K. Mattingly and Lunar Module pilot, Fred W. Haise. On the table in front of them are from left to right, a model of a sextant, the Apollo 13 insignia, and a model of an astrolabe. The sextant and astrolabe are two ancient forms of navigation. Command Module pilot Thomas 'Ken' Mattingly was exposed to German measles prior to his mission and was replaced by his backup, Command Module pilot, John L.'Jack' Swigert Jr.

  19. Crew emergency return vehicle autoland feasibility study

    NASA Technical Reports Server (NTRS)

    Bossi, J. A.; Langehough, M. A.; Lee, K. L.

    1989-01-01

    The crew emergency return vehicle (CERV) autoland feasibility study focused on determining the controllability of the NASA Langley high lift over drag CERV for performing an automatic landing at a prescribed runway. An autoland system was developed using integral linear quadratic Gaussian (LQG) design techniques. The design was verified using a nonlinear 6 DOF simulation. Simulation results demonstrate that the CERV configuration is a very flyable configuration for performing an autoland mission. Adequate stability and control was demonstrated for wind turbulence and wind shear. Control surface actuator requirements were developed.

  20. Crew coordination concepts: Continental Airlines CRM training

    NASA Technical Reports Server (NTRS)

    Christian, Darryl; Morgan, Alice

    1987-01-01

    The outline of the crew coordination concepts at Continental airlines is: (1) Present relevant theory: Contained in a pre-work package and in lecture/discussion form during the work course, (2) Discuss case examples: Contained in the pre-work for study and use during the course; and (3) Simulate practice problems: Introduced during the course as the beginning of an ongoing process. These concepts which are designed to address the problem pilots have in understanding the interaction between situations and their own theories of practice are briefly discussed.

  1. Apollo 11 Crew in Raft before Recovery

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 crew await pickup by a helicopter from the USS Hornet, prime recovery ship for the historic Apollo 11 lunar landing mission. The fourth man in the life raft is a United States Navy underwater demolition team swimmer. All four men are wearing Biological Isolation Garments (BIG). The Apollo 11 Command Module 'Columbia,' with astronauts Neil A. Armstrong, Michael Collins, and Edwin E. Aldrin Jr. splashed down at 11:49 a.m. (CDT), July 24, 1969, about 812 nautical miles southwest of Hawaii and only 12 nautical miles from the USS Hornet.

  2. Official STS-67 preflight crew portrait

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Official STS-67 preflight crew portrait. In front are astronauts (left to right) Stephen S. Oswald, mission commander; Tamara E. Jernigan, payload commander; and William G. Gregory, pilot. In the back are (left to right) Ronald A. Parise, payload specialist; astronauts Wendy B. Lawrence, and John Grunsfeld, both mission specialists; and Samuel T. Durrance, payload specialist. Dr. Durrance is a research scientist in the Department of Physics and Astronomy at Johns Hopkins University, Baltimore, Maryland. Dr. Parise is a senior scientist in the Space Observatories Department, Computer Sciences Corporation, Silver Spring, Maryland. Both payload specialists flew aboard the Space Shuttle Columbia for STS-35/ASTRO-1 mission in December 1990.

  3. Crew Management Processes Revitalize Patient Care

    NASA Technical Reports Server (NTRS)

    2009-01-01

    In 2005, two physicians, former NASA astronauts, created LifeWings Partners LLC in Memphis, Tennessee and began using Crew Resource Management (CRM) techniques developed at Ames Research Center in the 1970s to help improve safety and efficiency at hospitals. According to the company, when hospitals follow LifeWings? training, they can see major improvements in a number of areas, including efficiency, employee satisfaction, operating room turnaround, patient advocacy, and overall patient outcomes. LifeWings has brought its CRM training to over 90 health care organizations and annual sales have remained close to $3 million since 2007.

  4. STS-93: Crew Arrival and PR Location

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The primary objective of the STS-93 mission was to deploy the Advanced X-ray Astrophysical Facility, which had been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar. The mission was launched at 12:31 on July 23, 1999 onboard the space shuttle Columbia. The mission was led by Commander Eileen Collins. The crew was Pilot Jeff Ashby and Mission Specialists Cady Coleman, Steve Hawley and Michel Tognini from the Centre National d'Etudes Spatiales (CNES). This videotape shows the astronauts arriving at Kennedy and an inspection in the clean room.

  5. Waste streams in a crewed space habitat.

    PubMed

    Wydeven, T; Golub, M A

    1991-01-01

    A compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future, long-duration, human space missions. Data for the constituents and chemical formulae of the following waste streams are presented and/or discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Data on dust generation are also presented and discussed.

  6. Project EGRESS: The design of an assured crew return vehicle for the space station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Keeping preliminary studies by NASA in mind, an Assured Crew Return Vehicle (ACRV) was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in Space Station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on Space Station operations, interfaces and docking facilities, and maintenance needs. A water landing, medium lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing the safety and reliability requirements. With a single vehicle, one injured crew member could be returned to Earth with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow full evacuation of the Space Station. The craft could be constructed entirely with available 1990 technology and launched aboard a shuttle orbiter.

  7. The Effect of Predicted Vehicle Displacement on Ground Crew Task Performance and Hardware Design

    NASA Technical Reports Server (NTRS)

    Atencio, Laura Ashley; Reynolds, David W.

    2011-01-01

    NASA continues to explore new launch vehicle concepts that will carry astronauts to low- Earth orbit to replace the soon-to-be retired Space Transportation System (STS) shuttle. A tall vertically stacked launch vehicle (> or =300 ft) is exposed to the natural environment while positioned on the launch pad. Varying directional winds and vortex shedding cause the vehicle to sway in an oscillating motion. Ground crews working high on the tower and inside the vehicle during launch preparations will be subjected to this motion while conducting critical closeout tasks such as mating fluid and electrical connectors and carrying heavy objects. NASA has not experienced performing these tasks in such environments since the Saturn V, which was serviced from a movable (but rigid) service structure; commercial launchers are likewise attended by a service structure that moves away from the vehicle for launch. There is concern that vehicle displacement may hinder ground crew operations, impact the ground system designs, and ultimately affect launch availability. The vehicle sway assessment objective is to replicate predicted frequencies and displacements of these tall vehicles, examine typical ground crew tasks, and provide insight into potential vehicle design considerations and ground crew performance guidelines. This paper outlines the methodology, configurations, and motion testing performed while conducting the vehicle displacement assessment that will be used as a Technical Memorandum for future vertically stacked vehicle designs.

  8. Crew member and instructor evaluations of line oriented flight training

    NASA Technical Reports Server (NTRS)

    Wilhelm, John

    1991-01-01

    Results obtained from the NASA/UT/LOFT survey of 8300 crew members from four airlines is presented. As simulator training is very expensive and excellence in training is the objective, some effort is justified in evaluating LOFT and in determining what it is about the best scenarios that creates positive effects. Attention is given to the effects of different scenarios, self reports of crew resource management behaviors, organization, fleet and crew position differences.

  9. Inflight views of the crew of STS-7

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Inflight view of the crew of STS-7. This view is a group portrait of the crew on the flight deck displaying some jelly beans discovered among their food supplies. The label on the candy reads 'Compliments of the White House.' In the rear from left to right are Astronauts Robert L. Crippen, crew commander; Frederick H. Hauck, pilot; and John M. Fabian, mission specialist. In front are Drs. Sally K. Ride and Norman E. Thagard, mission specialists.

  10. Crewed Mission to Callisto Using Advanced Plasma Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Statham, G.; White, S.; Patton, B.; Thio, Y. C. F.; Alexander, R.; Fincher, S.; Polsgrove, T.; Chapman, J.; Hopkins, R.

    2003-01-01

    This paper describes the engineering of several vehicles designed for a crewed mission to the Jovian satellite Callisto. Each subsystem is discussed in detail. Mission and trajectory analysis for each mission concept is described. Crew support components are also described. Vehicles were developed using both fission powered magneto plasma dynamic (MPD) thrusters and magnetized target fusion (MTF) propulsion systems. Conclusions were drawn regarding the usefulness of these propulsion systems for crewed exploration of the outer solar system.

  11. [Occupational neurosensory deafness in civil aircraft crew members].

    PubMed

    Kharitonova, O I; Poteriaeva, E L; Kruglikova, N V

    2015-01-01

    The article covers data on prevalence of neurosensory deafness among civil aircraft crew members. The study revealed high level of neurosensory deafness in civil aircraft crew members, averaging to 50.8% in neurosensory deafness structure among noise-related occupations. Arterial hypertension appeared to be the most prevalent concurrent disease in civil aircraft crew members with neurosensory deafness, found in 47.5% of the patients examined - that considers arterial hypertension as a factor of neurosensory deafness progression.

  12. Crew Exploration Vehicle Service Module Ascent Abort Coverage

    NASA Technical Reports Server (NTRS)

    Tedesco, Mark B.; Evans, Bryan M.; Merritt, Deborah S.; Falck, Robert D.

    2007-01-01

    The Crew Exploration Vehicle (CEV) is required to maintain continuous abort capability from lift off through destination arrival. This requirement is driven by the desire to provide the capability to safely return the crew to Earth after failure scenarios during the various phases of the mission. This paper addresses abort trajectory design considerations, concept of operations and guidance algorithm prototypes for the portion of the ascent trajectory following nominal jettison of the Launch Abort System (LAS) until safe orbit insertion. Factors such as abort system performance, crew load limits, natural environments, crew recovery, and vehicle element disposal were investigated to determine how to achieve continuous vehicle abort capability.

  13. ISS Update: Integrating International Training for the Crew

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries interviews Alicia Simpson, Expedition 34/35 Training Integrator, about organizing the international training required for station crew members. Station c...

  14. Crew productivity issues in long-duration space flight

    NASA Technical Reports Server (NTRS)

    Nicholas, John M.; Foushee, H. Clayton; Ulschak, Francis L.

    1988-01-01

    Considerable evidence suggests the importance of teamwork, coordination, and conflict resolution to the performance and survival of isolated, confined groups in high-technology environments. With the advent of long-duration space flight, group-related issues of crew functioning will take on added significance. This paper discusses the influence of crew roles, status, leadership, and norms on the performance of small, confined groups, and offers guidelines and suggestions regarding organizational design, crew selection, training, and team building for crew productivity and social well-being in long-duration spaceflight.

  15. 23. VIEW SHOWING SALT RIVER PROJECT CREWS SLIPFORMING LATERAL DURING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW SHOWING SALT RIVER PROJECT CREWS SLIPFORMING LATERAL DURING REHABILITATION AND BETTERMENT PROGRAM Photographer: unknown. April 1968 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  16. Crew behavior and performance in space analog environments

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    1992-01-01

    The objectives and the current status of the Crew Factors research program conducted at NASA-Ames Research Center are reviewed. The principal objectives of the program are to determine the effects of a broad class of input variables on crew performance and to provide guidance with respect to the design and management of crews assigned to future space missions. A wide range of research environments are utilized, including controlled experimental settings, high fidelity full mission simulator facilities, and fully operational field environments. Key group processes are identified, and preliminary data are presented on the effect of crew size, type, and structure on team performance.

  17. ISS Update: Brent Jett Discusses the Commercial Crew Program

    NASA Video Gallery

    Brent Jett, Commercial Crew Program Deputy Manager, talks about how NASA and its commercial partners are proceeding with vehicle development to launch astronauts to the International Space Station ...

  18. Commercial Flight Crew Decision-Making during Low-Visibility Approach Operations Using Fused Synthetic/Enhanced Vision Systems

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Bailey, Randall E.; Prinzel, Lawrence J., III

    2007-01-01

    NASA is investigating revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next-generation air transportation system. A fixed-based piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck on the crew's decision-making process during low-visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were neither improved nor adversely impacted by the display concepts. The addition of Enhanced Vision may not, unto itself, provide an improvement in runway incursion detection without being specifically tailored for this application. Existing enhanced vision system procedures were effectively used in the crew decision-making process during approach and missed approach operations but having to forcibly transition from an excellent FLIR image to natural vision by 100 ft above field level was awkward for the pilot-flying.

  19. Effective Crew Operations: An Analysis of Technologies for Improving Crew Activities and Medical Procedures

    NASA Technical Reports Server (NTRS)

    Harvey, Craig

    2005-01-01

    NASA's vision for space exploration (February 2004) calls for development of a new crew exploration vehicle, sustained lunar operations, and human exploration of Mars. To meet the challenges of planned sustained operations as well as the limited communications between Earth and the crew (e.g., Mars exploration), many systems will require crews to operate in an autonomous environment. It has been estimated that once every 2.4 years a major medical issue will occur while in space. NASA's future travels, especially to Mars, will begin to push this timeframe. Therefore, now is the time for investigating technologies and systems that will support crews in these environments. Therefore, this summer two studies were conducted to evaluate the technology and systems that may be used by crews in future missions. The first study evaluated three commercial Indoor Positioning Systems (IPS) (Versus, Ekahau, and Radianse) that can track equipment and people within a facility. While similar to Global Positioning Systems (GPS), the specific technology used is different. Several conclusions can be drawn from the evaluation conducted, but in summary it is clear that none of the systems provides a complete solution in meeting the tracking and technology integration requirements of NASA. From a functional performance (e.g., system meets user needs) evaluation perspective, Versus performed fairly well on all performance measures as compared to Ekahau and Radianse. However, the system only provides tracking at the room level. Thus, Versus does not provide the level of fidelity required for tracking assets or people for NASA requirements. From an engineering implementation perspective, Ekahau is far simpler to implement that the other two systems because of its wi-fi design (e.g., no required runs of cable). By looking at these two perspectives, one finds there was no clear system that met NASA requirements. Thus it would be premature to suggest that any of these systems are ready for

  20. Flying Schedule-Matching Descents to Explore Flight Crews' Perceptions of Their Load and Task Feasibility

    NASA Technical Reports Server (NTRS)

    Martin, Lynne Hazel; Sharma, Shivanjli; Lozito, Sharon; Kaneshige, John; Hayashi, Miwa; Dulchinos, Victoria

    2012-01-01

    Multiple studies have investigated the development and use of ground-based (controller) tools to manage and schedule traffic in future terminal airspace. No studies have investigated the impacts that such tools (and concepts) could have on the flight-deck. To begin to redress the balance, an exploratory study investigated the procedures and actions of ten Boeing-747-400 crews as they flew eight continuous descent approaches in the Los Angeles terminal airspace, with the descents being controlled using speed alone. Although the study was exploratory in nature, four variables were manipulated: speed changes, route constraints, clearance phraseology, and winds. Despite flying the same scenarios with the same events and timing, there was at least a 50 second difference in the time it took crews to fly the approaches. This variation is the product of a number of factors but highlights potential difficulties for scheduling tools that would have to accommodate this amount of natural variation in descent times. The primary focus of this paper is the potential impact of ground scheduling tools on the flight crews performance and procedures. Crews reported "moderate to low" workload, on average; however, short periods of intense and high workload were observed. The non-flying pilot often reported a higher level of workload than the flying-pilot, which may be due to their increased interaction with the Flight Management Computer, when using the aircraft automation to assist with managing the descent clearances. It is concluded that ground-side tools and automation may have a larger impact on the current-day flight-deck than was assumed and that studies investigating this impact should continue in parallel with controller support tool development.

  1. STS-81 Crew Walkout for TCDT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The STS-81 mission flight crew walks out of the Operations and Checkout Building at KSC on their way to Launch Pad 39B during the final phase of the Terminal Countdown Demonstration Test (TCDT) exercises for that mission, a simulated final countdown until just before main engine ignition. They are (from right front): ): Mission Commander Michael A. Baker; Pilot Brent W. Jett, Jr.; and Mission Specialists J.M. 'Jerry' Linenger, Peter J. K. 'Jeff' Wisoff; John M. Grunsfeld and Marsha S. Ivins. STS- 81 is the fifth Shuttle-Mir docking mission and will feature the transfer of Linenger to Mir to replace astronaut John Blaha, who has been on the orbital laboratory since Sept. 19 after arrival there during the STS-79 mission. During STS-81, Shuttle and Mir crews will conduct risk mitigation, human life science, microgravity and materials processing experiments that will provide data for the design, development and operation of the International Space Station. The primary payload is the SPACEHAB- DM double module will provide space for more than 2,000 pounds of hardware, food and water that will be transferred into the Russian space station during five days of docking operations during the 10-day mission. The SPACEHAB will also be used to return experiment samples from the Mir to Earth for analysis and for microgravity experiments during the mission.

  2. STS-90 crew during TCDT activities

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Members of the STS-90 flight crew train in the braking pit area for the emergency egress system slidewire baskets for Launch Pad 39B during Terminal Countdown Demonstration Test (TCDT) activities for that mission. The TCDT is held at KSC prior to each Space Shuttle flight to provide crews with the opportunity to participate in simulated countdown activities. From left to right are Commander Richard Searfoss, Mission Specialist Kathryn (Kay) Hire, Pilot Scott Altman, Payload Specialist Jay Buckey, M.D. (behind), Mission Specialist Dafydd (Dave) Williams, M.D., with the Canadian Space Agency, Payload Specialist James Pawelczyk, Ph.D., and Mission Specialist Richard Linnehan, D.V.M. Backup Payload Specialists Alexander Dunlap (holding camera), D.V.M., M.D., and Chiaki Mukai, M.D., Ph.D., with the National Space Development Agency of Japan are also listening to the trainer's instruction. Columbia is targeted for launch of STS-90 on April 16 at 2:19 p.m. EST and will be the second mission of 1998. The mission is scheduled to last nearly 17 days.

  3. F111 Crew Escape Module pilot parachute

    SciTech Connect

    Tadios, E.L.

    1991-01-01

    A successfully deployment of a parachute system highly depends on the efficiency of the deployment device and/or method. There are several existing methods and devices that may be considered for a deployment system. For the F111 Crew Escape Module (CEM), the recovery parachute system deployment is initiated by the firing of a catapult that ejects the complete system from the CEM. At first motion of the pack, a drogue gun is fired, which deploys the pilot parachute system. The pilot parachute system then deploys the main parachute system, which consists of a cluster of three 49-ft diameter parachutes. The pilot parachute system which extracts the F111 Crew Escape Module recovery parachute system must provide reasonable bag strip velocities throughout the flight envelope (10 psf to 300 psf). The pilot parachute system must, therefore, have sufficient drag area at the lower dynamic pressures and a reduced drag area at the high end of the flight envelope. The final design that was developed was a dual parachute system which consists of a 5-ft diameter guide surface parachute tethered inside a 10-ft diameter flat circular parachute. The high drag area is sustained at the low dynamic pressures by keeping both parachutes intact. The drag area is reduced at the higher extreme by allowing the 10-ft parachute attachment to fail. The discussions to follow describe in detail how the system was developed. 4 refs., 10 figs., 2 tabs.

  4. STS-113 crew after landing at KSC

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Commander James Wetherbee shakes hands with Michael D. Leinbach, Shuttle Launch Director at KSC, on the runway of the Shuttle Landing Facility following the landing of Endeavour. From left are Wetherbee, Leinbach, Dr. Daniel R. Mulville, NASA Associate Deputy Administrator, and Mrs. Mulville. Commander Wetherbee earlier guided Space Shuttle Endeavour to a flawless touchdown on runway 33 at the Shuttle Landing Facility after completing the 13-day, 18-hour, 48-minute, 5.74-million mile STS-113 mission to the International Space Station. Main gear touchdown was at 2:37:12 p.m. EST, nose gear touchdown was at 2:37:23 p.m., and wheel stop was at 2:38:25 p.m. Poor weather conditions thwarted landing opportunities until a fourth day, the first time in Shuttle program history that a landing has been waved off for three consecutive days. The orbiter also carried the other members of the STS-113 crew, Pilot Paul Lockhart and Mission Specialists Michael Lopez-Alegria and John Herrington, as well as the returning Expedition Five crew, Commander Valeri Korzun, ISS Science Officer Peggy Whitson and Flight Engineer Sergei Treschev. The installation of the P1 truss on the International Space Station was accomplished during the mission.

  5. Gemini 11 prime and back-up crews at Gemini Mission Simulator at Cape Kennedy

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Gemini 11 prime and back-up crews at Gemini Mission Simulator at Cape Kennedy, Florida. Left to right are Astronauts William A. Anders, back-up crew pilot; Richard F. Gordon Jr., prime crew pilot; Charles Conrad Jr. (foot on desk), prime crew command pilot; and Neil A. Armstrong, back-up crew command pilot.

  6. Applying a Crew Accommodations Resource Model to Future Space Vehicle Research

    NASA Technical Reports Server (NTRS)

    Blume, Jennifer Linda

    2003-01-01

    The success of research and development for human space flight depends heavily on modeling. In addition, the use of such models is especially critical at the earliest phase of research and development of any manned vehicle or habitat. NASA is currently studying various innovative and futuristic propulsion technologies to enable further exploration of space by untended as well as tended vehicles. Details such as vehicle mass, volume, shape and configuration are required variables to evaluate the success of the propulsion concepts. For tended vehicles, the impact of the crew's requirements on those parameters must be included. This is especially important on long duration missions where the crew requirements become more complex. To address these issues, a crew accommodations resource model, developed as a mission planning tool for human spaceflight (Stillwell, Boutros, & Connolly), was applied to a reference mission in order to estimate the volume and mass required to sustain a crew for a variety of long duration missions. The model, which compiled information from numerous different sources and contains various attributes which can be modified to enable comparisons across different dimensions, was instrumental in deriving volume and mass required for a tended long duration space flight. With the inclusion of some additional variables, a set of volume and mass requirements were provided to the project. If due consideration to crew requirements for volume and mass had not been entertained, the assumptions behind validation of the propulsion technology could have been found to be incorrect, possibly far into development of the technology or even into the design and build of test vehicles. The availability and use of such a model contributes significantly by increasing the accuracy of human space flight research and development activities and acts as a cost saving measure by preventing inaccurate assumptions from driving design decisions.

  7. Risk of Performance Decrement and Crew Illness Due to an Inadequate Food System

    NASA Technical Reports Server (NTRS)

    Douglas, Grace L.; Cooper, Maya; Bermudez-Aguirre, Daniela; Sirmons, Takiyah

    2016-01-01

    NASA is preparing for long duration manned missions beyond low-Earth orbit that will be challenged in several ways, including long-term exposure to the space environment, impacts to crew physiological and psychological health, limited resources, and no resupply. The food system is one of the most significant daily factors that can be altered to improve human health, and performance during space exploration. Therefore, the paramount importance of determining the methods, technologies, and requirements to provide a safe, nutritious, and acceptable food system that promotes crew health and performance cannot be underestimated. The processed and prepackaged food system is the main source of nutrition to the crew, therefore significant losses in nutrition, either through degradation of nutrients during processing and storage or inadequate food intake due to low acceptability, variety, or usability, may significantly compromise the crew's health and performance. Shelf life studies indicate that key nutrients and quality factors in many space foods degrade to concerning levels within three years, suggesting that food system will not meet the nutrition and acceptability requirements of a long duration mission beyond low-Earth orbit. Likewise, mass and volume evaluations indicate that the current food system is a significant resource burden. Alternative provisioning strategies, such as inclusion of bioregenerative foods, are challenged with resource requirements, and food safety and scarcity concerns. Ensuring provisioning of an adequate food system relies not only upon determining technologies, and requirements for nutrition, quality, and safety, but upon establishing a food system that will support nutritional adequacy, even with individual crew preference and self-selection. In short, the space food system is challenged to maintain safety, nutrition, and acceptability for all phases of an exploration mission within resource constraints. This document presents the

  8. Crew coordination issues of EVS approaches

    NASA Astrophysics Data System (ADS)

    Lorenz, Bernd; Korn, Bernd R.

    2004-08-01

    Enhanced Vision Systems (EVS) are currently developed with the goal to alleviate restrictions in airspace and airport capacity in low visibility conditions. Existing EVS-systems are based on IR-sensors although the penetration of bad weather (dense fog and light rain) by MMW-radar is remarkably better than in the infrared spectrum. But the quality of MMW radar is rather poor compared to IR images. However, the analysis of radar images can be simplified dramatically when simple passive radar retro-reflectors are used to mark the runway. This presentation is the third in a series of studies investigating the use of such simple landing aids. In the first study the feasibility of the radar PAPI concept was determined; the second one provided first promising human performance results in a low-fidelity simulation. The present study examined pilot performance, workload, situation awareness, and crew coordination issues in a high-fidelity simulation of 'Radar-PAPI' visual aids supporting a precision straight-in landing in low visibility (CAT-II). Simulation scenarios were completed in a fixed-base cockpit simulator involving six two-pilot flight-deck crews. Pilots could derive visual cues to correct lateral glide-path deviations from 13 pairs of runway-marking corner reflectors. Vertical deviations were indicated by a set of six diplane reflectors using intensity-coding to provide the PAPI categories needed for the correction of vertical deviations. The study compared three display formats and associated crew coordination issues: (1) PF views a head-down B-scope display and switches to visual landing upon PNF's call-out that runway is in sight; (2) PF views a head-down C-scope display and switches to visual landing upon PNF's call-out that runway is in sight; (3) PF views through a head-up display (HUD) that displays primary flight guidance information and receives vertical and lateral guidance from PNF who views a head-down B-scope. PNF guidance is terminated upon PF

  9. 19 CFR 122.49c - Master crew member list and master non-crew member list requirement for commercial aircraft...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... subject to the provisions of 49 CFR part 1544, 1546, or 1550. The amendments will have superseding effect... Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard... applicable; (12) Status onboard the aircraft. (d) Exception. The master crew member and non-crew member...

  10. 19 CFR 122.49c - Master crew member list and master non-crew member list requirement for commercial aircraft...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... subject to the provisions of 49 CFR part 1544, 1546, or 1550. The amendments will have superseding effect... Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard... applicable; (12) Status onboard the aircraft. (d) Exception. The master crew member and non-crew member...

  11. 19 CFR 122.49c - Master crew member list and master non-crew member list requirement for commercial aircraft...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... subject to the provisions of 49 CFR part 1544, 1546, or 1550. The amendments will have superseding effect... Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard... applicable; (12) Status onboard the aircraft. (d) Exception. The master crew member and non-crew member...

  12. 19 CFR 122.49c - Master crew member list and master non-crew member list requirement for commercial aircraft...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... subject to the provisions of 49 CFR part 1544, 1546, or 1550. The amendments will have superseding effect... Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard... applicable; (12) Status onboard the aircraft. (d) Exception. The master crew member and non-crew member...

  13. 19 CFR 122.49c - Master crew member list and master non-crew member list requirement for commercial aircraft...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... subject to the provisions of 49 CFR part 1544, 1546, or 1550. The amendments will have superseding effect... Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard... applicable; (12) Status onboard the aircraft. (d) Exception. The master crew member and non-crew member...

  14. 20. HANDHELD VIEW OF CREW AT REST WHILE UNDERWAY ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. HANDHELD VIEW OF CREW AT REST WHILE UNDERWAY ON MOBILE BAY TO TRAIN TAKEOVER CREW FROM DOMINICAN REPUBLIC. - U.S. Coast Guard Cutter WHITE PINE, U.S. Coast Guard 8th District Base, South Broad Street, Mobile, Mobile County, AL

  15. 76 FR 71057 - Agency Information Collection Activities: Crew's Effects Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... previously published in the Federal Register (76 FR 56213) on September 12, 2011, allowing for a 60-day... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Crew's Effects... approval in accordance with the Paperwork Reduction Act: Crew's Effects Declaration (CBP Form 1304)....

  16. 76 FR 56213 - Agency Information Collection Activities: Crew's Effects Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Crew's Effects... Effects Declaration (CBP Form 1304). This request for comment is being made pursuant to the Paperwork... concerning the following information collection: Title: Crew's Effects Declaration. OMB Number:...

  17. 46 CFR 185.502 - Crew and passenger list.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Crew and passenger list. 185.502 Section 185.502 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Preparations for Emergencies § 185.502 Crew and passenger list. (a) The...

  18. 46 CFR 185.502 - Crew and passenger list.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Crew and passenger list. 185.502 Section 185.502 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Preparations for Emergencies § 185.502 Crew and passenger list. (a) The...

  19. 46 CFR 185.502 - Crew and passenger list.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Crew and passenger list. 185.502 Section 185.502 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Preparations for Emergencies § 185.502 Crew and passenger list. (a) The...

  20. 46 CFR 185.502 - Crew and passenger list.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Crew and passenger list. 185.502 Section 185.502 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Preparations for Emergencies § 185.502 Crew and passenger list. (a) The...

  1. 46 CFR 185.502 - Crew and passenger list.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Crew and passenger list. 185.502 Section 185.502 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Preparations for Emergencies § 185.502 Crew and passenger list. (a) The...

  2. High Speed Lunar Navigation for Crewed and Remotely Piloted Vehicles

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Allan, M.; To, V.; Utz, H.; Wojcikiewicz, W.; Chautems, C.

    2010-01-01

    Increased navigation speed is desirable for lunar rovers, whether autonomous, crewed or remotely operated, but is hampered by the low gravity, high contrast lighting and rough terrain. We describe lidar based navigation system deployed on NASA's K10 autonomous rover and to increase the terrain hazard situational awareness of the Lunar Electric Rover crew.

  3. 14 CFR 460.7 - Operator training of crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Operator training of crew. 460.7 Section 460.7 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew §...

  4. 14 CFR 91.1061 - Augmented flight crews.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Augmented flight crews. 91.1061 Section 91... Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any flight crewmember, and no flight crewmember may accept an assignment, for flight time as a member of an...

  5. 20 CFR 404.1010 - Farm crew leader as employer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Farm crew leader as employer. 404.1010 Section 404.1010 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Employment, Wages, Self-Employment, and Self-Employment Income Employment § 404.1010 Farm crew leader as employer. A farm...

  6. 20 CFR 404.1010 - Farm crew leader as employer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Farm crew leader as employer. 404.1010 Section 404.1010 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Employment, Wages, Self-Employment, and Self-Employment Income Employment § 404.1010 Farm crew leader as employer. A farm...

  7. 20 CFR 404.1010 - Farm crew leader as employer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Farm crew leader as employer. 404.1010 Section 404.1010 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Employment, Wages, Self-Employment, and Self-Employment Income Employment § 404.1010 Farm crew leader as employer. A farm...

  8. 20 CFR 404.1010 - Farm crew leader as employer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Farm crew leader as employer. 404.1010 Section 404.1010 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Employment, Wages, Self-Employment, and Self-Employment Income Employment § 404.1010 Farm crew leader as employer. A farm...

  9. 20 CFR 404.1010 - Farm crew leader as employer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Farm crew leader as employer. 404.1010 Section 404.1010 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Employment, Wages, Self-Employment, and Self-Employment Income Employment § 404.1010 Farm crew leader as employer. A farm...

  10. STS-86 crew members Bloomfield and Chretien in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    While a white room closeout crew member looks on, STS-86 Pilot Michael J. Bloomfield, at right, gets some assistance from fellow crew member, Mission Specialist Jean-Loup J.M. Chretien of the French Space Agency, CNES, before entering the Space Shuttle Atlantis at Launch Pad 39A.

  11. Coral Reef Early Warning System (CREWS) RPC Experiment

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.; Hall, Callie

    2007-01-01

    This viewgraph document reviews the background, objectives, methodology, validation, and present status of the Coral Reef Early Warning System (CREWS) Rapid Prototyping Capability (RPC) experiment. The potential NASA contribution to CREWS Decision Support Tool (DST) centers on remotely sensed imagery products.

  12. 50 CFR 648.51 - Gear and crew restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Gear and crew restrictions. 648.51... Measures for the Atlantic Sea Scallop Fishery § 648.51 Gear and crew restrictions. (a) Trawl vessel gear... long axis of the net. (3) Chafing gear and other gear obstructions—(i) Net obstruction or...

  13. 14 CFR 460.5 - Crew qualifications and training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pilot and control the launch or reentry vehicle that will operate in the National Airspace System (NAS..., DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.5... scenarios; and (ii) Emergency operations. (b) Each member of a flight crew must demonstrate an ability...

  14. 14 CFR 460.5 - Crew qualifications and training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pilot and control the launch or reentry vehicle that will operate in the National Airspace System (NAS..., DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.5... scenarios; and (ii) Emergency operations. (b) Each member of a flight crew must demonstrate an ability...

  15. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with...

  16. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with...

  17. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with...

  18. How Effective Is Communication Training For Aircraft Crews

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte; Goguen, Joseph; Devenish, Linda

    1992-01-01

    Report surveys communication training for aircraft crews. Intended to alleviate problems caused or worsened by poor communication and coordination among crewmembers. Focuses on two training methods: assertiveness training and grid-management training. Examines theoretical background of methods and attempts made to validate their effectiveness. Presents criteria for evaluating applicability to aviation environment. Concludes communication training appropriate for aircraft crews.

  19. 14 CFR 91.1061 - Augmented flight crews.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... crewmember, and no flight crewmember may accept an assignment, for flight time as a member of an augmented crew if that crewmember's total flight time in all commercial flying will exceed— (1) 500 hours in any... crewmember's flight time or duty period will exceed, or rest time will be less than— 3-Pilot crew...

  20. 14 CFR 91.1061 - Augmented flight crews.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... crewmember, and no flight crewmember may accept an assignment, for flight time as a member of an augmented crew if that crewmember's total flight time in all commercial flying will exceed— (1) 500 hours in any... crewmember's flight time or duty period will exceed, or rest time will be less than— 3-Pilot crew...

  1. 46 CFR 168.15-5 - Location of crew spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Location of crew spaces. 168.15-5 Section 168.15-5... VESSELS Accommodations § 168.15-5 Location of crew spaces. (a) Quarters must be located so that sufficient... bulkhead, nor may such section or sections of any deck head occupied by quarters be below the deepest...

  2. 46 CFR 168.15-5 - Location of crew spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Location of crew spaces. 168.15-5 Section 168.15-5... VESSELS Accommodations § 168.15-5 Location of crew spaces. (a) Quarters must be located so that sufficient... bulkhead, nor may such section or sections of any deck head occupied by quarters be below the deepest...

  3. 46 CFR 168.15-5 - Location of crew spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Location of crew spaces. 168.15-5 Section 168.15-5... VESSELS Accommodations § 168.15-5 Location of crew spaces. (a) Quarters must be located so that sufficient... bulkhead, nor may such section or sections of any deck head occupied by quarters be below the deepest...

  4. 46 CFR 168.15-5 - Location of crew spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Location of crew spaces. 168.15-5 Section 168.15-5... VESSELS Accommodations § 168.15-5 Location of crew spaces. (a) Quarters must be located so that sufficient... bulkhead, nor may such section or sections of any deck head occupied by quarters be below the deepest...

  5. 46 CFR 168.15-5 - Location of crew spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Location of crew spaces. 168.15-5 Section 168.15-5... VESSELS Accommodations § 168.15-5 Location of crew spaces. (a) Quarters must be located so that sufficient... bulkhead, nor may such section or sections of any deck head occupied by quarters be below the deepest...

  6. 33 CFR 157.168 - Crew member: Main deck watch.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Crew member: Main deck watch. 157.168 Section 157.168 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... deck watch. During COW operations, the master shall ensure that at least one member of the crew with...

  7. 33 CFR 157.168 - Crew member: Main deck watch.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Crew member: Main deck watch. 157.168 Section 157.168 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... deck watch. During COW operations, the master shall ensure that at least one member of the crew with...

  8. 33 CFR 157.168 - Crew member: Main deck watch.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Crew member: Main deck watch. 157.168 Section 157.168 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... deck watch. During COW operations, the master shall ensure that at least one member of the crew with...

  9. 33 CFR 157.168 - Crew member: Main deck watch.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Crew member: Main deck watch. 157.168 Section 157.168 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... deck watch. During COW operations, the master shall ensure that at least one member of the crew with...

  10. 33 CFR 157.168 - Crew member: Main deck watch.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Crew member: Main deck watch. 157.168 Section 157.168 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... deck watch. During COW operations, the master shall ensure that at least one member of the crew with...

  11. Flight data file: STS-4 crew activity plan

    NASA Technical Reports Server (NTRS)

    Pippert, E. B., Jr.

    1982-01-01

    The STS-4 Crew Activity Plan contains the on-orbit timeline, which is a flight data file article. Various time scales such as Mission Elapsed Time (MET), Greenwich Mean Time (GMT), and time until deorbit ignition as well as crew activities, day/night, orbit position, ground tracking, communication coverage, attitude, and maneuvers are presented in chart form.

  12. 24 CFR 3286.407 - Supervising work of crew.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Supervising work of crew. 3286.407... HUD-Administered States § 3286.407 Supervising work of crew. The installer will be responsible for the work performed by each person engaged to perform installation tasks on a manufactured home,...

  13. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Composition of flight crew. 135.99 Section 135.99 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with...

  14. 14 CFR 91.1061 - Augmented flight crews.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Augmented flight crews. 91.1061 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any...

  15. 14 CFR 135.99 - Composition of flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Composition of flight crew. 135.99 Section... REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.99 Composition of flight crew. (a) No certificate holder may operate an aircraft with...

  16. 14 CFR 460.9 - Informing crew of risk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Informing crew of risk. 460.9 Section 460.9 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... risk. An operator must inform in writing any individual serving as crew that the United...

  17. STS 41-D mission crew training in Shuttle Mission simulator

    NASA Technical Reports Server (NTRS)

    1983-01-01

    View of members of the STS 41-D mission crew training in Shuttle Mission simulator. The crew members are in the simulated flight deck. Seated behind the pilot is mission specialist Steven Hawley. Beside him are mission specialist Judith Resnick and pilot Michael Coats. All three are wearing their communication kit assemblies.

  18. Design of a fast crew transfer vehicle to Mars

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A final report is made on the trajectory and vehicle requirements for a fast crew transfer vehicle to Mars which will complete an Earth to Mars (and Mars to Earth) transfer in 150 days and will have a stay time at Mars of 40 days. This vehicle will maximize the crew's effectiveness on Mars by minimizing detrimental physiological effects such as bone demineralization and loss of muscle tone caused by long period exposure to zero gravity and radiation from cosmic rays and solar flares. The crew transfer vehicle discussed will complete the second half of a Split Mission to Mars. In the Split Mission, a slow, unmanned cargo vehicle, nicknamed the Barge, is sent to Mars ahead of the crew vehicle. Once the Barge is in orbit around Mars, the fast crew vehicle will be launched to rendezvous with the Barge in Mars orbit. The vehicle presented is designed to carry six astronauts for a mission duration of one year. The vehicle uses a chemical propulsion system and a nuclear power system. Four crew modules, similar to the proposed Space Station Common Modules, are used to house the crew and support equipment during the mission. The final design also includes a command module that is shielded to protect the crew during radiation events.

  19. STS-26 crew in JSC Shuttle Mockup and Integration Laboratory

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers have donned their new (navy blue) partial pressure suits (launch and entry suits (LESs)) for a training exercise in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Commander Frederick H. Hauck is in the center foreground. Hauck is flanked by fellow crewmembers (left to right) Mission Specialist (MS) John M. Lounge, MS George D. Nelson, Pilot Richard O. Covey, and MS David C. Hilmers. Astronaut Steven R. Nagel, not assigned as crewmember but assisting in training, is at far right. During Crew Station Review (CSR) #3, the crew is scheduled to check out the new partial pressure suits and crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  20. Facilitation techniques as predictors of crew participation in LOFT debriefings

    NASA Technical Reports Server (NTRS)

    McDonnell, L. K.

    1996-01-01

    Based on theories of adult learning and airline industry guidelines for Crew Resource Management (CRM), the stated objective during Line Oriented Flight Training (LOFT) debriefings is for instructor pilots (IP's) to facilitate crew self-analysis of performance. This study reviews 19 LOFT debriefings from two major U.S. airlines to examine the relationship between IP efforts at facilitation and associated characteristics of crew participation. A subjective rating scale called the Debriefing Assessment Battery was developed and utilized to evaluate the effectiveness of IP facilitation and the quality of crew participation. The results indicate that IP content, encouragement, and questioning techniques are highly and significantly correlated with, and can therefore predict, the degree and depth of crew participation.

  1. STS-102 (Expedition II) crew members at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At SPACEHAB, in Titusville, Fla., members of the STS-102 crew pose for a photograph with SPACEHAB workers in front of the International Cargo Carrier, which will carry cargo to the International Space Station (ISS). The crew are, left to right, Mission Specialists James Voss, Yuri Usachev, who is with the Russian Space Agency (RSA), and Susan Helms. STS-102 is a resupply mission to the International Space Station, transporting the Leonardo Multi-Purpose Logistics Module (MPLM) with equipment to assist in outfitting the U.S. Lab, which will already be in place. The mission is also transporting Helms, Voss and Usachev as the second resident crew (designated Expedition crew 2) to the station. In exchange, the mission will return to Earth the first expedition crew on ISS: William Shepherd, Sergei Krikalev (RSA) and Yuri Gidzenko (RSA). STS-102 is scheduled to launch no earlier than Oct. 19, 2000.

  2. Waste streams in a crewed space habitat

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Golub, M. A.

    1991-01-01

    A judicious compilation of generation rates and chemical compositions of potential waste feed streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future long-duration human space missions. Tables of data for the constituents and chemical formulas of the following waste streams are presented and discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Tables of data on dust generation and pH values of the different waste streams are also presented and discussed.

  3. STS-103 crew have breakfast before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, the STS-103 crew are all smiles as they gather for breakfast before suiting up for launch. From left are Mission Specialists Claude Nicollier of Switzerland and C. Michael Foale (Ph.D.), Pilot Scott J. Kelly, Commander Curtis L. Brown Jr., and Mission Specialists Jean-Francois Clervoy of France, John M. Grunsfeld (Ph.D.) and Steven L. Smith. Nicollier and Clervoy are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. The mission is expected to last about 8 days and 21 hours. Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  4. STS-88 Crew Interview: Robert Cabana

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Commander Robert D. Cabana discusses the seven-day mission that will be highlighted by the mating of the U.S.-built Node 1 station element to the Functional Energy Block (FGB) which will already be in orbit, and two spacewalks to connect power and data transmission cables between the Node and the FGB. Node 1 will be the first Space Station hardware delivered by the Space Shuttle. He also disscusses the assembly sequence. The crew will conduct a series of rendezvous maneuvers similar to those conducted on other Shuttle missions to reach the orbiting FGB. Once the two elements are docked, Ross and Newman will conduct two scheduled spacewalks to connect power and data cables between the Node, PMAs and the FGB. The day following the spacewalks, Endeavour will undock from the two components, completing the first Space Station assembly mission.

  5. Internal Arrangement of Skylab Workshop Crew Quarters

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This image depicts a layout of the Skylab workshop 1-G trainer crew quarters. At left, in the sleep compartment, astronauts slept strapped to the walls of cubicles and showered at the center. Next right was the waste management area where wastes were processed and disposed. Upper right was the wardroom where astronauts prepared their meals and foods were stored. In the experiment operation area, upper left, against the far wall, was the lower-body negative-pressure device (Skylab Experiment M092) and the Ergometer for the vectorcardiogram experiment (Skylab Experiment M063). The trainers and mockups were useful in the developmental phase, while engineers and astronauts were still working out optimum designs. They provided much data applicable to the manufacture of the flight articles.

  6. STS-113 crew group photo during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The crews of Mission STS-113 gather for a group photograph on the 195-foot level of the Fixed Service Structure on Launch Pad 39A. From left are STS-113 Pilot Paul Lockhart; Expedition 6 Commander Ken Bowersox; STS-113 Mission Specialists Michael Lopez-Alegria and John Herrington, and Commander James Wetherbee; Expedition 6 astronaut Donald Pettit and cosmonaut Nikolai Budarin. They have been participating in emergency egress training, part of Terminal Countdown Demonstration Test activities in preparation for their launch. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour, as well as Expedition 6, who will replace Expedition 5 on the Station. The mission is scheduled to launch Nov. 10, 2002.

  7. STS-113 crew group photo during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The crews of Mission STS-113 gather for a group photograph on the 195-foot level of the Fixed Service Structure on Launch Pad 39A. From left are Expedition 6 cosmonaut Nikolai Budarin and astronaut Donald Pettit; STS-113 Pilot Paul Lockhart and Commander James Wetherbee; Expedition 6 Commander Ken Bowersox; STS-113 Mission Specialists Michael Lopez-Alegria and John Herrington. They have been participating in emergency egress training, part of Terminal Countdown Demonstration Test activities in preparation for their launch. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour, as well as Expedition 6, who will replace Expedition 5 on the Station. The mission is scheduled to launch Nov. 10, 2002.

  8. STS-114 Crew Interview: Stephen Robinson

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Stephen Robinson, Mission Specialist 2 (MS2), of the STS-114 space mission is seen during a prelaunch interview. He discusses his duties as flight engineer, Extravehicular Activity 2 (EVA 2) spacewalker, and medical officer. Robinson answers questions about his interests in spaceflight and the specific goals of the mission. He identifies this mission as the International Space Station Resupply Mission because supplies and experiments are brought to the International Space Station and Expedition 6 crew of Commander Kenneth Bowersox, and Flight Engineers Donald Pettit and Nikolai Budarin are returning to Earth. Lastly, he talks about the docking of the Space Shuttle Atlantis with the International Space Station. He looks forward to this experience in space.

  9. STS-112 crew take break during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Mission Specialist David Wolf, M.D., takes a break from training at Pad 39B during Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Launch of STS-112 aboard Space Shuttle Atlantis is scheduled for Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  10. STS-112 crew take break during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Commander Jeffrey Ashby, Mission Specialist Sandra Magnus, and Pilot Pamela Melroy take a momentary break from training at Pad 39B during Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Launch of STS-112 aboard Space Shuttle Atlantis is scheduled for Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  11. STS-112 crew take break during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Pilot Pamela Melroy takes a break from training at Pad 39B during Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Launch of STS-112 aboard Space Shuttle Atlantis is scheduled for Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  12. STS-110 Crew Interviews: Lee Morin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission Specialist Lee Morin is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Morin outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Morin discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.

  13. STS-82 Crew Members in VPF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In KSCs Vertical Processing Facility, STS-82 crew members get familiar with some of the hardware they will handle on the second Hubble Space Telescope (HST) servicing mission. Looking over the Flight Support System (FSS) Berthing and Positioning System (BAPS) ring are Mission Specialist Joseph R. 'Joe' Tanner, at far left; Payload Commander Mark C. Lee, third from left; and Gregory J. Harbaugh, fourth from left, along with HST workers. Tanner, Lee and Harbaugh, along with Mission Specialist Steven L. Smith, will perform the spacewalks required for servicing and repair of HST, which was deployed nearly seven years ago and first serviced in 1993. STS-82 is targeted for a mid-February liftoff on the Space Shuttle Discovery.

  14. STS-110 Crew Interviews: Steve Smith

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission Specialist Steve Smith is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Smith outlines his role in the mission in general, and specifically during the docking and extravehicular activities (EVAs). He describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Smith discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). He ends with his thoughts on the most valuable aspect of the ISS.

  15. STS-96 Crew Training, Mission Animation, Crew Interviews, STARSHINE, Discovery Rollout and Repair of Hail Damage

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Live footage shows the crewmembers of STS-96, Commander Kent V. Rominger, Pilot Rick D. Husband, Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette and Valery Ivanovich Tokarev during various training activities. Scenes include astronaut suit-up, EVA training in the Virtual Reality Lab, Orbiter space vision training, bailout training, and crew photo session. Footage also shows individual crew interviews, repair activities to the external fuel tank, and Discovery's return to the launch pad. The engineers are seen sanding, bending, and painting the foam used in repairing the tank. An animation of the deployment of the STARSHINE satellite, International Space Station, and the STS-96 Mission is presented. Footage shows the students from Edgar Allen Poe Middle School sanding, polishing, and inspecting the mirrors for the STARSHINE satellite. Live footage also includes students from St. Michael the Archangel School wearing bunny suits and entering the clean room at Goddard Space Flight Center.

  16. Special Purpose Crew Restraints for Teleoperation

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina; Norris, Lena

    2004-01-01

    With permanent human presence onboard the International Space Station (ISS), and long duration space missions being planned for the moon and Mars, humans will be living and working in microgravity over increasingly long periods of time. In addition to weightlessness, the confined nature of a spacecraft environment results in ergonomic challenges such as limited visibility, and access to the activity area. These challenges can result in prolonged periods of unnatural postures for the crew, ultimately causing pain, injury, and loss of productivity. Determining the right set of human factors requirements and providing an ergonomically designed environment is crucial to mission success. While a number of general purpose restraints have been used on ISS (handrails, foot loops), experience has shown that these general purpose restraints may not be optimal, or even acceptable for some tasks that have unique requirements. For example, some onboard activities require extreme stability (e.g., glovebox microsurgery), and others involve the use of arm, torso and foot movements in order to perform the task (e-g. robotic teleoperation); standard restraint systems will not work in these situations. The Usability Testing and Analysis Facility (WAF) at the NASA Johnson Space Center began evaluations of crew restraints for these special situations by looking at NASAs Robonaut. Developed by the Robot Systems Technology Branch, Robonaut is a humanoid robot that can be remotely operated through a tetepresence control system by an operator. It was designed to perform work in hazardous environments (e.g., Extra Vehicular Activities). A Robonaut restraint was designed, modeled for the population, and ultimately tested onboard the KC-135 microgravity aircraft. While in microgravity, participants were asked to get in and out of the restraint from different locations, perform maximum reach exercises, and finally to teleoperate Robonaut while in the restraint. The sessions were videotaped

  17. An Analysis of Shuttle Crew Scheduling Violations

    NASA Technical Reports Server (NTRS)

    Bristol, Douglas

    2012-01-01

    From the early years of the Space Shuttle program, National Aeronautics and Space Administration (NASA) Shuttle crews have had a timeline of activities to guide them through their time on-orbit. Planners used scheduling constraints to build timelines that ensured the health and safety of the crews. If a constraint could not be met it resulted in a violation. Other agencies of the federal government also have scheduling constraints to ensure the safety of personnel and the public. This project examined the history of Space Shuttle scheduling constraints, constraints from Federal agencies and branches of the military and how these constraints may be used as a guide for future NASA and private spacecraft. This was conducted by reviewing rules and violations with regard to human aerospace scheduling constraints, environmental, political, social and technological factors, operating environment and relevant human factors. This study includes a statistical analysis of Shuttle Extra Vehicular Activity (EVA) related violations to determine if these were a significant producer of constraint violations. It was hypothesized that the number of SCSC violations caused by EVA activities were a significant contributor to the total number of violations for Shuttle/ISS missions. Data was taken from NASA data archives at the Johnson Space Center from Space Shuttle/ISS missions prior to the STS-107 accident. The results of the analysis rejected the null hypothesis and found that EVA violations were a significant contributor to the total number of violations. This analysis could help NASA and commercial space companies understand the main source of constraint violations and allow them to create constraint rules that ensure the safe operation of future human private and exploration missions. Additional studies could be performed to evaluate other variables that could have influenced the scheduling violations that were analyzed.

  18. Theory underlying CRM training: Psychological issues in flight crew performance and crew coordination

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1987-01-01

    What psychological theory and research can reveal about training in Cockpit Resource Management (CRM) is summarized. A framework is provided for the critical analysis of current approaches to CRM training. Background factors and definitions critical to evaluating CRM are reviewed, followed by a discussion of issues directly related to CRM training effectiveness. Some of the things not known about the optimization of crew performance and the research needed to make these efforts as effective as possible are described.

  19. 19 CFR 122.49b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 49 CFR part 1544, 1546, or 1550 of the Transportation Security Administration regulations. Crew... an air carrier subject to 49 CFR part 1544, 1546, or 1550. The provisions or amendments will have... and non-crew members onboard commercial aircraft arriving in, continuing within, and overflying...

  20. 19 CFR 122.49b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 49 CFR part 1544, 1546, or 1550 of the Transportation Security Administration regulations. Crew... an air carrier subject to 49 CFR part 1544, 1546, or 1550. The provisions or amendments will have... and non-crew members onboard commercial aircraft arriving in, continuing within, and overflying...

  1. 19 CFR 122.49b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 49 CFR part 1544, 1546, or 1550 of the Transportation Security Administration regulations. Crew... an air carrier subject to 49 CFR part 1544, 1546, or 1550. The provisions or amendments will have... and non-crew members onboard commercial aircraft arriving in, continuing within, and overflying...

  2. 19 CFR 122.49b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 49 CFR part 1544, 1546, or 1550 of the Transportation Security Administration regulations. Crew... an air carrier subject to 49 CFR part 1544, 1546, or 1550. The provisions or amendments will have... and non-crew members onboard commercial aircraft arriving in, continuing within, and overflying...

  3. 19 CFR 122.49b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 49 CFR part 1544, 1546, or 1550 of the Transportation Security Administration regulations. Crew... an air carrier subject to 49 CFR part 1544, 1546, or 1550. The provisions or amendments will have... and non-crew members onboard commercial aircraft arriving in, continuing within, and overflying...

  4. Flight Crew Training: Multi-Crew Pilot License Training versus Traditional Training and Its Relationship with Job Performance

    ERIC Educational Resources Information Center

    Cushing, Thomas S.

    2013-01-01

    In 2006, the International Civil Aviation Organization promulgated requirements for a Multi-Crew Pilot License for First Officers, in which the candidate attends approximately two years of ground school and trains as part of a two-person crew in a simulator of a Boeing 737 or an Airbus 320 airliner. In the traditional method, a candidate qualifies…

  5. Validation of Finite Element Crash Test Dummy Models for Predicting Orion Crew Member Injuries During a Simulated Vehicle Landing

    NASA Technical Reports Server (NTRS)

    Tabiei, Al; Lawrence, Charles; Fasanella, Edwin L.

    2009-01-01

    A series of crash tests were conducted with dummies during simulated Orion crew module landings at the Wright-Patterson Air Force Base. These tests consisted of several crew configurations with and without astronaut suits. Some test results were collected and are presented. In addition, finite element models of the tests were developed and are presented. The finite element models were validated using the experimental data, and the test responses were compared with the computed results. Occupant crash data, such as forces, moments, and accelerations, were collected from the simulations and compared with injury criteria to assess occupant survivability and injury. Some of the injury criteria published in the literature is summarized for completeness. These criteria were used to determine potential injury during crew impact events.

  6. The Apollo Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions and Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Jones, Jeffrey A.; Polk, James D.; Gillis, David B.; Schmid, Joseph; Duncan, James M.; Davis, Jeffrey R.; Novak, Joseph D.

    2007-01-01

    Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses to and the operational environment of short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware that will be used for long-duration lunar surface operations.Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort.

  7. The Apollo Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions and Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Jones, Jeffrey A.; Jones, Jeffrey A.; Novak, Joseph D.; Polk, James D.; Gillis, David B.; Schmid, Josef; Duncan, James M.; Davis, Jeffrey R.

    2007-01-01

    Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses and the operational environment for short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware will be used for long-duration lunar surface operations. Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort.

  8. Project EGRESS: Earthbound Guaranteed Reentry from Space Station. the Design of an Assured Crew Recovery Vehicle for the Space Station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.

  9. Preliminary Performance Analyses of the Constellation Program ARES 1 Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Phillips, Mark; Hanson, John; Shmitt, Terri; Dukemand, Greg; Hays, Jim; Hill, Ashley; Garcia, Jessica

    2007-01-01

    By the time NASA's Exploration Systems Architecture Study (ESAS) report had been released to the public in December 2005, engineers at NASA's Marshall Space Flight Center had already initiated the first of a series of detailed design analysis cycles (DACs) for the Constellation Program Crew Launch Vehicle (CLV), which has been given the name Ares I. As a major component of the Constellation Architecture, the CLV's initial role will be to deliver crew and cargo aboard the newly conceived Crew Exploration Vehicle (CEV) to a staging orbit for eventual rendezvous with the International Space Station (ISS). However, the long-term goal and design focus of the CLV will be to provide launch services for a crewed CEV in support of lunar exploration missions. Key to the success of the CLV design effort and an integral part of each DAC is a detailed performance analysis tailored to assess nominal and dispersed performance of the vehicle, to determine performance sensitivities, and to generate design-driving dispersed trajectories. Results of these analyses provide valuable design information to the program for the current design as well as provide feedback to engineers on how to adjust the current design in order to maintain program goals. This paper presents a condensed subset of the CLV performance analyses performed during the CLV DAC-1 cycle. Deterministic studies include development of the CLV DAC-1 reference trajectories, identification of vehicle stage impact footprints, an assessment of launch window impacts to payload performance, and the computation of select CLV payload partials. Dispersion studies include definition of input uncertainties, Monte Carlo analysis of trajectory performance parameters based on input dispersions, assessment of CLV flight performance reserve (FPR), assessment of orbital insertion accuracy, and an assessment of bending load indicators due to dispersions in vehicle angle of attack and side slip angle. A short discussion of the various

  10. Observations of Crew Dynamics during Mars Analog Simulations

    NASA Technical Reports Server (NTRS)

    Cusack, Stacy L.

    2010-01-01

    This presentation reviews the crew dynamics during two simulations of Mars Missions. Using an analog of a Mars habitat in two locations, Flashline Mars Arctic Research Station (FMARS) which is located on Devon Island at 75 deg North in the Canadian Arctic, and the Mars Desert Research Station (MDRS) which is located in the south of Utah, the presentation examines the crew dynamics in relation to the leadership style of the commander of the mission. The difference in the interaction of the two crews were shown to be related to the leadership style and the age group in the crew. As much as possible the habitats and environment was to resemble a Mars outpost. The difference between the International Space Station and a Mars missions is reviewed. The leadership styles are reviewed and the contrast between the FMARS and the MDRS leadership styles were related to crew productivity, and the personal interactions between the crew members. It became evident that leadership styles and interpersonal skill had more affect on mission success and crew dynamics than other characteristics.

  11. The Single Crew Module Concept for Exploration

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe

    2012-01-01

    Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technology and capabilities that NASA was directed to pursue, the single crew module (SCM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SCM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper describes the SCM concept, provides a top level mass estimate for the elements needed and trades the concept against Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technology and capabilities that NASA was directed to pursue, the single crew module (SCM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SCM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them

  12. Quantifying Danger To Spacecraft Crews From Orbital Debris

    NASA Technical Reports Server (NTRS)

    Williamsen, Joel

    1996-01-01

    MSCSurv computer program designed to quantify conditional probability of losing one or more crew members following remote likelihood of penetration of orbital debris into cluster of spacecraft modules containing crew members. Contributions to probability of losing one or more crew members quantified from three significant penetration-induced hazards: rupture of pressure wall (explosive decompression), injuries induced by fragments, and "slow" depressurization. Uses Monte Carlo-style subroutine to simulate penetration of thousands of orbital debris particles of various sizes, velocities, and angles of approach into spacecraft of selected exterior geometry. Written in FORTRAN 77.

  13. Apollo experience report: Crew provisions and equipment subsystem

    NASA Technical Reports Server (NTRS)

    Mcallister, F.

    1972-01-01

    A description of the construction and use of crew provisions and equipment subsystem items for the Apollo Program is presented. The subsystem is composed principally of survival equipment, bioinstrumentation devices, medical components and accessories, water- and waste-management equipment, personal-hygiene articles, docking aids, flight garments (excluding the pressure garment assembly), and various other crew-related accessories. Particular attention is given to items and assemblies that presented design, development, or performance problems: the crew optical alinement sight system, the metering water dispenser, and the waste-management system. Changes made in design and materials to improve the fire safety of the hardware are discussed.

  14. STS-107 crew members after arrival at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon (left) and Mission Specialist David Brown (right) are ready to head for crew quarters after arriving at KSC. The crew is taking part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Commander Michael Anderson, and Mission Specialists Kalpana Chawla and Laurel Clark. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.

  15. Space Station crew workload - Station operations and customer accommodations

    NASA Technical Reports Server (NTRS)

    Shinkle, G. L.

    1985-01-01

    The features of the Space Station which permit crew members to utilize work time for payload operations are discussed. The user orientation, modular design, nonstressful flight regime, in space construction, on board control, automation and robotics, and maintenance and servicing of the Space Station are examined. The proposed crew size, skills, and functions as station operator and mission specialists are described. Mission objectives and crew functions, which include performing material processing, life science and astronomy experiments, satellite and payload equipment servicing, systems monitoring and control, maintenance and repair, Orbital Maneuvering Vehicle and Mobile Remote Manipulator System operations, on board planning, housekeeping, and health maintenance and recreation, are studied.

  16. Soviet and American ASTP crew sample candidate food items

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Candidate food items being considered for the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) mission are sampled by three ASTP crewmen in bldg 4 at JSC. They are, left to right, Cosmonaut Valeriy N. Kubasov, engineer on the Soviet ASTP crew; Astronaut Vance D. Brand, command module pilot of the American ASTP crew; and Cosmonaut Aleksey A. Leonov, commander of the Soviet ASTP crew. Kubasov is marking a food rating chart on which the crewmen mark their choices, likes and dislikes of the food being sampled. Brand is drinking orange juice from an accordian-like dispenser. Leonov is eating butter cookies.

  17. Crew Exploration Vehicle Environmental Control and Life Support Development Status

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Barido, Richard; Carrasquillo, Robyn; Cross, CIndy; Peterson, Laurie; Tuan, George

    2007-01-01

    The Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the Moon and back again. This year, the prime contractor has been selected, requirements have been refined, and development areas are being pursued. The Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is moving one year closer to performing on orbit.

  18. Crew Exploration Vehicle Environmental Control and Life Support Development Status

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Barido, Richard; Carrasquillo, Robyn; Cross, Cindy; Peterson, Laurie; Tuan, George

    2009-01-01

    The Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the Moon and back again. This year, the vehicle continued to go through design refinements to reduce weight, meet requirements, and operate reliably. The design of the Orion Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is progressing through the design stage. This paper covers the Orion ECLS development from April 2008 to April 2009.

  19. Cabin Noise Studies for the Orion Spacecraft Crew Module

    NASA Technical Reports Server (NTRS)

    Dandaroy, Indranil; Chu, S. Reynold; Larson, Lauren; Allen, Christopher S.

    2010-01-01

    Controlling cabin acoustic noise levels in the Crew Module (CM) of the Orion spacecraft is critical for adequate speech intelligibility, to avoid fatigue and to prevent any possibility of temporary and permanent hearing loss. A vibroacoustic model of the Orion CM cabin has been developed using Statistical Energy Analysis (SEA) to assess compliance with acoustic Constellation Human Systems Integration Requirements (HSIR) for the on-orbit mission phase. Cabin noise in the Orion CM needs to be analyzed at the vehicle-level to assess the cumulative acoustic effect of various Orion systems at the crewmember's ear. The SEA model includes all major structural and acoustic subsystems inside the CM including the Environmental Control and Life Support System (ECLSS), which is the primary noise contributor in the cabin during the on-orbit phase. The ECLSS noise sources used to excite the vehicle acoustic model were derived using a combination of established empirical predictions and fan development acoustic testing. Baseline noise predictions were compared against acoustic HSIR requirements. Key noise offenders and paths were identified and ranked using noise transfer path analysis. Parametric studies were conducted with various acoustic treatment packages in the cabin to reduce the noise levels and define vehicle-level mass impacts. An acoustic test mockup of the CM cabin has also been developed and noise treatment optimization tests were conducted to validate the results of the analyses.

  20. F-16XL ship #1 crew

    NASA Technical Reports Server (NTRS)

    1995-01-01

    November 27, 1995 Photograph of the F-16XL Ship #1 Cranked-Arrow Wing Aerodynamic Project (CAWAP) Test Team; from left to right, Ron Wilcox; Operations Engineer, Art Cope; Aircraft Mechanic, Dave Fisher; Chief Project Engineer, Dick Denman; Aircraft Mechanic, Bob Garcia; A/C Crew Chief, Susan Ligon; Aircraft Mechanic, Rodger Tarango; Mobile Operations Facility (MOF) Staff, Jerry Cousins; Aircraft Mechanic, Bruce Gallmeyer; MOF Staff, and Mike Reardon; Aircraft Mechanic/Helper. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred at NASA's Dryden Flight Research Center, Edwards, California, on November 21, 1995, and the test program ended in April 1996.

  1. Evaluating Flight Crew Operator Manual Documentation

    NASA Technical Reports Server (NTRS)

    Sherry, Lance; Feary, Michael

    1998-01-01

    Aviation and cognitive science researchers have identified situations in which the pilot s expectations for the behavior of the avionics are not matched by the actual behavior of the avionics. Researchers have attributed these "automation surprises" to the complexity of the avionics mode logic, the absence of complete training, limitations in cockpit displays, and ad-hoc conceptual models of the avionics. Complete canonical rule-based descriptions of the behavior of the autopilot provide the basis for understanding the perceived complexity of the autopilots, the differences between the pilot s and autopilot s conceptual models, and the limitations in training materials and cockpit displays. This paper compares the behavior of the autopilot Vertical Speed/Flight Path Angle (VS-FPA) mode as described in the Flight Crew Operators Manual (FCOM) and the actual behavior of the VS-FPA mode defined in the autopilot software. This example demonstrates the use of the Operational Procedure Model (OPM) as a method for using the requirements specification for the design of the software logic as information requirements for training.

  2. Probabilistic Analysis of a Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Krishnamurthy, Thiagarajan

    2011-01-01

    An approach for conducting reliability-based analysis (RBA) of a Composite Crew Module (CCM) is presented. The goal is to identify and quantify the benefits of probabilistic design methods for the CCM and future space vehicles. The coarse finite element model from a previous NASA Engineering and Safety Center (NESC) project is used as the baseline deterministic analysis model to evaluate the performance of the CCM using a strength-based failure index. The first step in the probabilistic analysis process is the determination of the uncertainty distributions for key parameters in the model. Analytical data from water landing simulations are used to develop an uncertainty distribution, but such data were unavailable for other load cases. The uncertainty distributions for the other load scale factors and the strength allowables are generated based on assumed coefficients of variation. Probability of first-ply failure is estimated using three methods: the first order reliability method (FORM), Monte Carlo simulation, and conditional sampling. Results for the three methods were consistent. The reliability is shown to be driven by first ply failure in one region of the CCM at the high altitude abort load set. The final predicted probability of failure is on the order of 10-11 due to the conservative nature of the factors of safety on the deterministic loads.

  3. STS-107 Crew Choice Television Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The STS-107 flight day highlights begin with a shot inside the flight deck of the Space Shuttle Columbia where Commander Rick Husband, Pilot William McCool, and Mission Specialists David Brown and Kalpana Chawla are seated. The actual liftoff of the Space Shuttle Columbia is shown with Mission Specialists Michael Anderson and Laurel Clark, and Payload Specialist Ilan Ramon seated on the middeck of the spacecraft. Mission Specialist David Brown exits his seat to take pictures of the external tank while Michael Anderson also prepares to take photographs. A beautiful shot of the orbiter flying over Egypt is presented. A view of the Spacehab Research Double Module is shown where crystals are growing in microgravity. Laurel Clark is also shown working on the Bioreactor experiment. Michael Anderson is shown performing various breathing experiments in space. This video shows the last flight of STS-107 during ascent as the crew is seated in the flight deck and middeck of the Space Shuttle Columbia.

  4. The Exploration of Mars: Crew Surface Activities

    NASA Astrophysics Data System (ADS)

    Bhosri, Wisuwat; Cojanis, Philip; Gupta, Madhu; Khopkar, Manasi; Kiely, Aaron; Myers, Michael; Oxnevad, Knut; Sengupta, Anita; Sexton, Adam; Shaw, Don

    1999-01-01

    Surface activities of the first Mars mission crew, as suggested in phase I of the NASA HEDS reference mission, are discussed in this paper. The HEDS reference mission calls for a two phased approach. In phase I, humans supported by robotic systems will explore the Martian surface, collect and analyze geologic, geophysical, and meteorological data, search for potential permanent base sites, and conduct technology verification experiments. In phase II, a Mars base site will be selected, and the building of a permanent human base will be initiated. In this report two complementary architectures are portrayed. First, a permanent base for 3-6 people consisting of an ISRU unit, two nuclear power systems, a green house, and inflatable habitats and laboratories, built inside adobe structures. Second, a reusable, and resupplyable methane propelled very long range type traverse vehicle capable of collecting and analyzing data, and repairing and deploying scientific payloads during its planned 150 days 4800 km traverse. The very long range traverse vehicle will carry smaller rovers, crawlers, blimps, and an air drill capable of quickly reaching depths beyond 100m. The report presents a global vision of human activities on the surface of Mars at a programmatic level. It consists of several vignettes called "concept architectures" We speculate that these activities will facilitate a phase I Mars exploration architecture.

  5. STS-114 Crew Interviews Eileen Collins, CDR

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Commander Eileen Collins of the STS-114 space mission is seen during a pre-launch interview. She answers questions about the primary goals of the mission which are to exchange the expedition six and expedition seven crews. Also, she says that a large amount of logistics will be taken up to the International Space Station. The primary payload on this mission include: 1) The Utilization and Logistics Flight-1 (ULF-1); 2) Raffaello Multi-Purpose Logistics Module (MPLM); and 3) External Stowage Platform (ESP-2) which are all explained in detail by the Commander. The Window Observational Research Facility (WORF) rack, Human Research Facility (HRF) rack, Minus Eighty Degree Laboratory Freezer (MELF) and EXPRESS rack are the Space Station equipment to be installed on the International Space Station (I.S.S.). Collins is the Intravehicular Activity (IVA) specialist for this mission who oversees the three Extravehicular Activity (EVA)'s performed by Mission Specialists Soichi Noguchi and Stephen Robinson. The three EVA's include an external camera installation, positioning devices for an ammonia system and the installation of Floating Potential Measuring Unit (FPMU). Commander Collins expresses that she wants to have a successful mission, and also wants to see the Earth from space.

  6. The Single Crew Module Concept for Exploration

    NASA Technical Reports Server (NTRS)

    Chambliss, Joseph

    2011-01-01

    Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technology and capabilities that NASA was directed to pursue, the single crew module (SCM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SCM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper describes the SCM concept, provides a top level mass estimate for the elements needed and trades the concept against Constellation approaches for Lunar, Near Earth Asteroid and Mars Surface missions.

  7. STS-103 crew is greeted after exiting the Crew Hatch Access Vehicle

    NASA Technical Reports Server (NTRS)

    1999-01-01

    As he exits the Crew Hatch Access Vehicle, STS-103 Commander Curtis L. Brown Jr. is greeted with a handshake by Joseph Rothenberg, associate administrator, Office of Space Flight. Descending the stairs behind Brown are (left to right) Mission Specialists C. Michael Foale (Ph.D.) and John M. Grunsfeld (Ph.D.) and Pilot Scott J. Kelly. At right, applauding the astronauts return are Earle Huckins, deputy associate administrator, Office of Space Science, and Roy Bridges, director, Kennedy Space Center. Others in the crew (not shown) are Mission Specialists Steven L. Smith, and Jean-Francois Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency. The crew of seven completed a successful eight-day mission to service the Hubble Space Telescope, spending the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. Main gear touchdown was at 7:00:47 p.m. EST. Nose gear touchdown occurred at 7:00:58 EST and wheel stop at 7:01:34 EST. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history.

  8. 21. DECK ABOVE CREW'S BERTHING, LOOKING TOWARDS STERN, SHOWING DETAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DECK ABOVE CREW'S BERTHING, LOOKING TOWARDS STERN, SHOWING DETAIL OF THIS DECK THAT WAS EXTENDED IN THE 1960'S. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  9. 23. CREWS' BERTHING, SHOWING DETAIL OF INTERIOR LOCKING MECHANISM ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. CREWS' BERTHING, SHOWING DETAIL OF INTERIOR LOCKING MECHANISM ON HATCH DOOR (INTERIOR SIDE OF DOOR IN IMAGE 22). - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  10. Station Crew Talks To Reporters About Dragon Spacecraft

    NASA Video Gallery

    Expedition 31 Flight Engineers Don Pettit, Andre Kuipers and Joe Acaba discuss Dragon’s mission with reporters during a crew news conference. Dragon is scheduled to spend six days berthed to the ...

  11. Crew Exploration Vehicle Ascent Abort Trajectory Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Gefert, Leon P.

    2007-01-01

    The Orion Crew Exploration Vehicle is the first crewed capsule design to be developed by NASA since Project Apollo. Unlike Apollo, however, the CEV is being designed for service in both Lunar and International Space Station missions. Ascent aborts pose some issues that were not present for Apollo, due to its launch azimuth, nor Space Shuttle, due to its cross range capability. The requirement that a North Atlantic splashdown following an abort be avoidable, in conjunction with the requirement for overlapping abort modes to maximize crew survivability, drives the thrust level of the service module main engine. This paper summarizes 3DOF analysis conducted by NASA to aid in the determination of the appropriate propulsion system for the service module, and the appropriate propellant loading for ISS missions such that crew survivability is maximized.

  12. 27. YCC CREW THAT REBUILT PIMA POINT TRAILS. TIM BEALE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. YCC CREW THAT REBUILT PIMA POINT TRAILS. TIM BEALE, NPS TRAILS, FRONT ROW RIGHT; BERNIE PONYAH, NPS YCC SUPERVISOR, BACK ROW RIGHT. - West Rim Drive, Between Grand Canyon Village & Hermit Rest, Grand Canyon, Coconino County, AZ

  13. STS-135 and Expedition 28 Joint Crew News Conference

    NASA Video Gallery

    Atlantis crew members and their six station colleagues gathered in the Japanese Kibo Laboratory to take questions from news media. Reporters at four NASA centers, NASA headquarters and in Japan par...

  14. 19. Crew's mess, deck house, forward. From left to right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Crew's mess, deck house, forward. From left to right, volunteers Larry Boucher and Maggie Lindley, deckhand Bruce Vanvick, and volunteer Harry Morgan. - Steam Tug HERCULES, Hyde Street Pier, San Francisco, San Francisco County, CA

  15. 87. AFT CREWS' MESS DECK STARBOARD LOOKING TO PORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    87. AFT CREWS' MESS DECK - STARBOARD LOOKING TO PORT SHOWING COFFEE MAKER, ICE CREAM FREEZER, TABLES AND SCUTTLEBUTTS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  16. President Obama Speaks with the STS-133 Crew

    NASA Video Gallery

    President Obama talks with all twelve Discovery and International Space Station crew members about their missions and the importance of their work in space. Joining the president at the White House...

  17. Crew activity and motion effects on the space station

    NASA Technical Reports Server (NTRS)

    Rochon, Brian V.; Scheer, Steven A.

    1987-01-01

    Among the significant sources of internal disturbances that must be considered in the design of space station vibration control systems are the loads induced on the structure from various crew activities. Flight experiment T013, flown on the second manned mission of Skylab, measured force and moment time histories for a range of preplanned crew motions and activities. This experiment has proved itself invaluable as a source of on-orbit crew induced loads that has allowed a space station forcing function data base to be built. This will enable forced response such as acceleration and deflections, attributable to crew activity, to be calculated. The flight experiment, resultant database and structural model pre-processor, analysis examples and areas of combined research shall be described.

  18. STS-134 Crew Wakes to Song Contest Runner-Up

    NASA Video Gallery

    On the day before landing, space shuttle Endeavour's crew wakeup call featured the original composition “Dreams You Give” by Brain Plunkett, the second place winner in the Space Shuttle Program...

  19. Expedition 34/35 Crew Members Visit Red Square

    NASA Video Gallery

    Space Station crew members Chris Hadfield, Roman Romanenko and Tom Marshburn placed flowers at the Kremlin Wall in Red Square in Moscow, Russia, as part of ceremonial activities leading to their la...

  20. Expedition Three crew poses for photo on Fixed Service structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses on the Fixed Service Structure at Launch Pad 39A. From left are cosmonaut Mikhail Tyurin, commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.