Science.gov

Sample records for airborne aerosol measurements

  1. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  2. Design and performance measurements of an airborne aerosol backscatter lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Tratt, David M.; Brothers, Alan M.; Dermenjian, Stephen H.; Esproles, Carlos

    1990-01-01

    The global winds measurement application of coherent Doppler lidar requires intensive study of the global climatology of atmospheric aerosol backscatter at infrared wavelengths. An airborne backscatter lidar is discussed, which has been developed to measure atmospheric backscatter profiles at CO2 laser wavelengths. The instrument characteristics and representative flight measurement results are presented.

  3. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  4. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  5. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  6. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  7. Sun and aureole spectrometer for airborne measurements to derive aerosol optical properties.

    PubMed

    Asseng, Hagen; Ruhtz, Thomas; Fischer, Jürgen

    2004-04-01

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements. PMID:15074425

  8. Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2015-07-01

    A novel method for calibration and quantitative aerosol optical property retrieval from Doppler wind lidars (DWLs) is presented in this work. Due to the strong wavelength dependence of the atmospheric molecular backscatter and the low sensitivity of the coherent DWLs to spectrally broad signals, calibration methods for aerosol lidars cannot be applied to coherent DWLs usually operating at wavelengths between 1.5 and 2 μm. Instead, concurrent measurements of an airborne DWL at 2 μm and the POLIS ground-based aerosol lidar at 532 nm are used in this work, in combination with sun photometer measurements, for the calibration and retrieval of aerosol backscatter and extinction profiles at 532 nm. The proposed method was applied to measurements from the SALTRACE experiment in June-July 2013, which aimed at quantifying the aerosol transport and change in aerosol properties from the Sahara desert to the Caribbean. The retrieved backscatter and extinction coefficient profiles from the airborne DWL are within 20 % of POLIS aerosol lidar and CALIPSO satellite measurements. Thus the proposed method extends the capabilities of coherent DWLs to measure profiles of the horizontal and vertical wind towards aerosol backscatter and extinction profiles, which is of high benefit for aerosol transport studies.

  9. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  10. Airborne lidar measurements of ozone and aerosols during the pacific exploratory mission-tropics A

    NASA Technical Reports Server (NTRS)

    Fenn, Marta A.; Browell, Edward V.; Grant, William B.; Butler, Carolyn F.; Kooi, Susan A.; Clayton, Marian B.; Brackett, Vincent G.; Gregory, Gerald L.

    1998-01-01

    Airborne lidar measurements of aerosol and ozone distributions from the surface to above the tropopause over the South Pacific Ocean are presented. The measurements illustrate large-scale features of the region, and are used to quantify the relative contributions of different ozone sources to the tropospheric ozone budget in this remote region.

  11. Aerosol Optical Depth Measurements by Airborne Sun Photometer in SOLVE II: Comparisons to SAGE III, POAM III and Airborne Spectrometer Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Ramirez, S.; Yee, J-H.; Swartz, W.; Shetter, R.

    2004-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) measured solar-beam transmission on the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II). This paper presents AATS-14 results for multiwavelength aerosol optical depth (AOD), including its spatial structure and comparisons to results from two satellite sensors and another DC-8 instrument. These are the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Polar Ozone and Aerosol Measurement III (POAM III) and the Direct beam Irradiance Airborne Spectrometer (DIAS).

  12. Dual-aureole and sun spectrometer system for airborne measurements of aerosol optical properties.

    PubMed

    Zieger, Paul; Ruhtz, Thomas; Preusker, Rene; Fischer, Jürgen

    2007-12-10

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed. PMID:18071387

  13. Retrieval of aerosol optical thickness over land from airborne polarized measurements in Tianjin and Tangshan

    NASA Astrophysics Data System (ADS)

    Wang, Han; Sun, Xiaobing; Hou, Weizhen; Chen, Cheng; Hong, Jin

    2015-03-01

    New developed sensor was called Atmosphere Multi-angle Polarization Radiometer (AMPR). It provides airborne multi-spectral, multi-angular and polarized measurements. Based on the measurements, a method to retrieve aerosol optical thickness (AOT) was developed. To reduce the ambiguity in retrieval algorithm, the key characteristics of aerosol model over East Asia are constrained. Initial surface reflectance was estimated from measurements at 1640 nm. With iteration the surface polarized reflectance tends to the real value together with AOT. Retrieved cases were selected from measurements in Tianjin. Validation between AOTs from AMPR and CE318 is encouraging. The AOTs along the track shows reasonable temporal and spatial variation.

  14. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  15. Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Radke, L. F.; Langer, G.; Hindman, E. E., II

    1978-01-01

    Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.

  16. Lidar System for Airborne Measurement of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley; Izquierdo, Luis Ramos; Marzouk, Joe

    2008-01-01

    A lidar system for measuring optical properties of clouds and aerosols at three wavelengths is depicted. The laser transmitter is based on a Nd:YVO4 laser crystal pumped by light coupled to the crystal via optical fibers from laser diodes that are located away from the crystal to aid in dissipating the heat generated in the diodes and their drive circuits. The output of the Nd:YVO4 crystal has a wavelength of 1064 nm, and is made to pass through frequency-doubling and frequency-tripling crystals. As a result, the net laser output is a collinear superposition of beams at wavelengths of 1064, 532, and 355 nm. The laser operates at a pulse-repetition rate of 5 kHz, emitting per-pulse energies of 50 microJ at 1064 nm, 25 microJ at 532 nm and 50 microJ at 355 nm. An important feature of this system is an integrating sphere located between the laser output and the laser beam expander lenses. The integrating sphere collects light scattered from the lenses. Three energy-monitor detectors are located at ports inside the integrating sphere. Each of these detectors is equipped with filters such that the laser output energy is measured independently for each wavelength. The laser output energy is measured on each pulse to enable the most accurate calibration possible. The 1064-nm and 532-nm photodetectors are, more specifically, single photon-counting modules (SPCMs). When used at 1064 nm, these detectors have approximately 3% quantum efficiency and low thermal noise (fewer than 200 counts per second). When used at 532 nm, the SPCMs have quantum efficiency of about 60%. The photodetector for the 355-nm channel is a photon-counting photomultiplier tube having a quantum efficiency of about 20%. The use of photon-counting detectors is made feasible by the low laser pulse energy. The main advantage of photon-counting is ease of inversion of data without need for complicated calibration schemes like those necessary for analog detectors. The disadvantage of photon-counting detectors

  17. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  18. Aerosol Backscatter and Extinction Retrieval from Airborne Coherent Doppler Wind Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2016-06-01

    A novel method for coherent Doppler wind lidars (DWLs) calibration is shown in this work. Concurrent measurements of a ground based aerosol lidar operating at 532 nm and an airborne DWL at 2 μm are used in combination with sun photometer measurements for the retrieval of backscatter and extinction profiles. The presented method was successfully applied to the measurements obtained during the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace), which aimed to characterize the Saharan dust long range transport between Africa and the Caribbean.

  19. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  20. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  1. Airborne Cavity Ring-Down Measurement of Aerosol Extinction and Scattering During the Aerosol IOP

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Ricci, K.; Provencal, R.; Schmid, B.; Covert, D.; Elleman, R.; Arnott, P.

    2003-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Min-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects.= We present comparisons between the Cadenza measurements and those friom a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  2. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  3. Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering.

    PubMed

    Dolgos, Gergely; Martins, J Vanderlei

    2014-09-01

    Global satellite remote sensing of aerosols requires in situ measurements to enable the calibration and validation of algorithms. In order to improve our understanding of light scattering by aerosol particles, and to enable routine in situ airborne measurements of aerosol light scattering, we have developed an instrument, called the Polarized Imaging Nephelometer (PI-Neph). We designed and built the PI-Neph at the Laboratory for Aerosols, Clouds and Optics (LACO) of the University of Maryland, Baltimore County (UMBC). This portable instrument directly measures the ambient scattering coefficient and phase matrix elements of aerosols, in the field or onboard an aircraft. The measured phase matrix elements are the P(11), phase function, and P(12). Lasers illuminate the sampled ambient air and aerosol, and a wide field of view camera detects scattered light in a scattering angle range of 3° to 176°. The PI-Neph measures an ensemble of particles, supplying the relevant quantity for satellite remote sensing, as opposed to particle-by-particle measurements that have other applications. Comparisons with remote sensing measurements will have to consider aircraft inlet effects. The PI-Neph first measured at a laser wavelength of 532nm, and was first deployed successfully in 2011 aboard the B200 aircraft of NASA Langley during the Development and Evaluation of satellite ValidatiOn Tools by Experimenters (DEVOTE) project. In 2013, we upgraded the PI-Neph to measure at 473nm, 532nm, and 671nm nearly simultaneously. LACO has deployed the PI-Neph on a number of airborne field campaigns aboard three different NASA aircraft. This paper describes the PI-Neph measurement approach and validation by comparing measurements of artificial spherical aerosols with Mie theory. We provide estimates of calibration uncertainties, which show agreement with the small residuals between measurements of P(11) and -P(12)/P(11) and Mie theory. We demonstrate the capability of the PI-Neph to measure

  4. Airborne Measurements of Trace Gases and Aerosols in Northern China: EAST-AIRE IOP 2005

    NASA Astrophysics Data System (ADS)

    Li, C.; Dickerson, R. R.; Li, Z.; Stehr, J. W.; Chen, H.; Marufu, L. T.

    2005-12-01

    To characterize the emission, transport and removal of pollutants and aerosols emitted from East Asia, a US-China joint field campaign was conducted from February to April in China under the EAST-AIRE project. Surface and airborne measurements of trace gases and aerosols were made at different locations in northern China. In early April, eight research flights were conducted around Shenyang, an industrialized city with a population of about 6 million, 600 km northeast of Beijing. Parameters measured include SO2, CO, O3, aerosol size distribution, aerosol scattering and absorption coefficients. During 4 of the 8 flights, the research aircraft made spirals over two suburban locations (~50 km south and north of the downtown area of Shenyang) to determine the detailed vertical distribution of trace gases and aerosols. Various weather patterns were encountered, allowing an examination of the roles of atmospheric circulation in transporting local pollutants to much larger areas. For example, the flights made ahead of the cold front showed fairly high concentrations of pollutants above the planetary boundary layer, probably lifted by the upward motion associated with the approaching cold fronts. On the other hand, much lower pollutant levels were found for the flights made behind the cold front. Also observed in one cold-sector flight is a level (~3000 m) with enhanced aerosol scattering but almost undetectable SO2. Back trajectory analysis using NOAA-HYSPLIT model suggests possible dust transport from source regions.

  5. Changes in airborne bacteria during a tropical burning season are correlated with satellite aerosol measurements

    NASA Astrophysics Data System (ADS)

    Mims, F., III

    Agricultural burning in the tropics generates vast quantities of smoke that can blanket entire countries and attenuate photosynthetically active radiation (PAR). Thick smoke also reduces the solar ultraviolet-B wavelengths that synthesize vitamin-D precur- sors in vertebrates and suppress many viruses and non-pigmented bacteria. As many pathogenic bacteria are non-pigmented, the latter finding may explain some of the in- creases in respiratory and other diseases that occur during episodes of severe aerosol loading. At Alta Floresta, Brazil, during the 1997 burning season, the correlation (r^2) of UV-B measured at the surface with the ratio of non-pigmented to total airborne bacteria colony forming units (CFUs) was 0.83. The correlation of the aerosol index measured from orbit by TOMS with the ratio of non-pigmented to total airborne bac- teria CFUs was 0.71. These findings suggest the application of satellite measurements of optical depth as a first approximation epidemiological tool for remote regions that have seasonally smokey skies. Further comparisons are warranted of surface measure- ments of airborne bacteria, UV-B and PAR with TOMS and MODIS observations of optical depth during severe air pollution events.

  6. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients.

    PubMed

    Esselborn, Michael; Wirth, Martin; Fix, Andreas; Tesche, Matthias; Ehret, Gerhard

    2008-01-20

    An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May-June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements. PMID:18204721

  7. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  8. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    yields, we were able to predict ~50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA and have an impact on aerosol composition on a regional scale.

  9. Airborne Sunphotometer Studies of Aerosol Properties and Effects, Including Closure Among Satellite, Suborbital Remote, and In situ Measurements

    NASA Technical Reports Server (NTRS)

    Russlee, Philip B.; Schmid, B.; Redemann, J.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Airborne sunphotometry has been used to measure aerosols from North America, Europe, and Africa in coordination with satellite and in situ measurements in TARFOX (1996), ACE-2 (1997), PRIDE (2000), and SAFARI 2000. Similar coordinated measurements of Asian aerosols are being conducted this spring in ACE-Asia and are planned for North American aerosols this summer in CLAMS. This paper summarizes the approaches used, key results, and implications for aerosol properties and effects, such as single scattering albedo and regional radiative forcing. The approaches exploit the three-dimensional mobility of airborne sunphotometry to access satellite scenes over diverse surfaces (including open ocean with and without sunglint) and to match exactly the atmospheric layers sampled by airborne in situ measurements and other radiometers. These measurements permit tests of the consistency, or closure, among such diverse measurements as aerosol size-resolved chemical composition; number or mass concentration; light extinction, absorption, and scattering (total, hemispheric back and 180 deg.); and radiative fluxes. In this way the airborne sunphotometer measurements provide a key link between satellite and in situ measurements that helps to understand any discrepancies that are found. These comparisons have led to several characteristic results. Typically these include: (1) Better agreement among different types of remote measurements than between remote and in situ measurements. (2) More extinction derived from transmission measurements than from in situ measurements. (3) Larger aerosol absorption inferred from flux radiometry than from in situ measurements. Aerosol intensive properties derived from these closure studies have been combined with satellite-retrieved fields of optical depth to produce fields of regional radiative forcing. We show results for the North Atlantic derived from AVHRR optical depths and aerosol intensive properties from TARFOX and ACE-2. Companion papers

  10. Coordinated Airborne, Spaceborne and Ground-based Measurements of Massive Thick Aerosol Layers during the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).

  11. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  12. Airborne Measurements of Secondary Organic Aerosol Formation in the Oil Sands Region of Alberta

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Hayden, K.; Liu, P.; Leithead, A.; Moussa, S. G.; Staebler, R. M.; Gordon, M.; O'brien, J.; Li, S. M.

    2014-12-01

    The Alberta oil sands (OS) region represents a strategic natural resource and is a key driver of economic development. Its rapid expansion has led to a need for a more comprehensive understanding of the associated potential cumulative environmental impacts. In summer 2013, airborne measurements of various gaseous and particulate substances were made in the Athabasca oil sands region between August 13 and Sept 7, 2013. In particular, organic aerosol mass and composition measurements were performed with a High Resolution Time of flight Aerosol Mass Spectrometer (HR-ToF-AMS) supported by gaseous measurements of organic aerosol precursors with Proton Transfer Reaction (PTR) and Chemical Ionization (CI) mass spectrometers. These measurement data on selected flights were used to estimate the potential for local anthropogenic OS emissions to form secondary organic aerosol (SOA) downwind of precursor sources, and to investigate the importance of the surrounding biogenic emissions to the overall SOA burden in the region. The results of several flights conducted to investigate these transformations demonstrate that multiple distinct plumes were present downwind of OS industrial sources, each with differing abilities to form SOA depending upon factors such as NOx level, precursor VOC composition, and oxidant concentration. The results indicate that approximately 100 km downwind of an OS industrial source most of the measured organic aerosol (OA) was secondary in nature, forming at rates of ~6.4 to 13.6 μgm-3hr-1. Positive matrix factor (PMF) analysis of the HR-ToF-AMS data suggests that the SOA was highly oxidized (O/C~0.6) resulting in a measured ΔOA (difference above regional background OA) of approximately 2.5 - 3 despite being 100 km away from sources. The relative contribution of biogenic SOA to the total SOA and the factors affecting SOA formation during a number of flights in the OS region will be described.

  13. Mass spectrometric airborne measurements of submicron aerosol and cloud residual composition in tropic deep convection during ACRIDICON-CHUVA

    NASA Astrophysics Data System (ADS)

    Schulz, Christiane; Schneider, Johannes; Mertes, Stephan; Kästner, Udo; Weinzierl, Bernadett; Sauer, Daniel; Fütterer, Daniel; Walser, Adrian; Borrmann, Stephan

    2015-04-01

    Airborne measurements of submicron aerosol and cloud particles were conducted in the region of Manaus (Amazonas, Brazil) during the ACRIDICON-CHUVA campaign in September 2014. ACRIDICON-CHUVA aimed at the investigation of convective cloud systems in order to get a better understanding and quantification of aerosol-cloud-interactions and radiative effects of convective clouds. For that, data from airborne measurements within convective cloud systems are combined with satellite and ground-based data. We used a C-ToF-AMS (Compact-Time-of-Flight-Aerosol-Mass-Spectrometer) to obtain information on aerosol composition and vertical profiles of different aerosol species, like organics, sulphate, nitrate, ammonium and chloride. The instrument was operated behind two different inlets: The HASI (HALO Aerosol Submicrometer Inlet) samples aerosol particles, whereas the CVI (Counterflow Virtual Impactor) samples cloud droplets and ice particles during in-cloud measurements, such that cloud residual particles can be analyzed. Differences in aerosol composition inside and outside of clouds and cloud properties over forested or deforested region were investigated. Additionally, the in- and outflow of convective clouds was sampled on dedicated cloud missions in order to study the evolution of the clouds and the processing of aerosol particles. First results show high organic aerosol mass concentrations (typically 15 μg/m3 and during one flight up to 25 μg/m3). Although high amounts of organic aerosol in tropic air over rainforest regions were expected, such high mass concentrations were not anticipated. Next to that, high sulphate aerosol mass concentrations (about 4 μg/m3) were measured at low altitudes (up to 5 km). During some flights organic and nitrate aerosol was observed with higher mass concentrations at high altitudes (10-12 km) than at lower altitudes, indicating redistribution of boundary layer particles by convection. The cloud residuals measured during in

  14. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; Omar, A.

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  15. The analysis of in situ and retrieved aerosol properties measured during three airborne field campaigns

    NASA Astrophysics Data System (ADS)

    Corr, Chelsea A.

    Aerosols can directly influence climate, visibility, and photochemistry by scattering and absorbing solar radiation. Aerosol chemical and physical properties determine how efficiently a particle scatters and/or absorbs incoming short-wave solar radiation. Because many types of aerosol can act as nuclei for cloud droplets (CCN) and a smaller population of airborne particles facilitate ice crystal formation (IN), aerosols can also alter cloud-radiation interactions which have subsequent impacts on climate. Thus aerosol properties determine the magnitude and sign of both the direct and indirect impacts of aerosols on radiation-dependent Earth System processes. This dissertation will fill some gaps in our understanding of the role of aerosol properties on aerosol absorption and cloud formation. Specifically, the impact of aerosol oxidation on aerosol spectral (350nm < lambda< 500nm) absorption was examined for two biomass burning plumes intercepted by the NASA DC-S aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission in Spring and Summer 2008. Spectral aerosol single scattering albedo (SSA) retrieved using actinic flux measured aboard the NASA DC-8 was used to calculate the aerosol absorption Angstrom exponents (AAE) for a 6-day-old plume on April 17 th and a 3-hour old plume on June 29th. Higher AAE values for the April 17th plume (6.78+/-0.38) indicate absorption by aerosol was enhanced in the ultraviolet relative to the visible portion of the short-wave spectrum in the older plume compared to the fresher plume (AAE= 3.34 0.11). These differences were largely attributed to the greater oxidation of the organic aerosol in the April 17th plume which can arise either from the aging of primary organic aerosol or the formation of spectrally-absorbing secondary organic aerosol. The validity of the actinic flux retrievals used above were also evaluated in this work by the comparison of SSA retrieved using

  16. Airborne Sun Photometer Measurements of Aerosol Optical Depth during SOLVE II: Comparison with SAGE III and POAM III Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Zawodny, J.

    2003-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II) and obtained successful measurements during the sunlit segments of eight science flights. These included six flights out of Kiruna, Sweden, one flight out of NASA Dryden Flight Research Center (DFRC), and the Kiruna-DFRC return transit flight. Values of spectral aerosol optical depth (AOD), columnar ozone and columnar water vapor have been derived from the AATS-14 measurements. In this paper, we focus on AATS-14 AOD data. In particular, we compare AATS-14 AOD spectra with temporally and spatially near-coincident measurements by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement III (POAM III) satellite sensors. We examine the effect on retrieved AOD of uncertainties in relative optical airmass (the ratio of AOD along the instrument-to-sun slant path to that along the vertical path) at large solar zenith angles. Airmass uncertainties result fiom uncertainties in requisite assumed vertical profiles of aerosol extinction due to inhomogeneity along the viewing path or simply to lack of available data. We also compare AATS-14 slant path solar transmission measurements with coincident measurements acquired from the DC-8 by the NASA Langley Research Center Gas and Aerosol Measurement Sensor (GAMS).

  17. Unique airborne measurements at the tropopause of Fukushima Xe-133, aerosol, and aerosol precursors indicate aerosol formation via homogeneous and cosmic ray induced nucleation

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinfried; Minikin, Andreas; Baumann, Robert; Simgen, Hardy; Lindemann, Stefan; Rauch, Ludwig; Kaether, Frank; Pirjola, Liisa; Schumann, Ulrich

    2014-05-01

    We report unique airborne measurements, at the tropopause, of the Fukushima radio nuclide Xe-133, aerosol particles (size, shape, number concentration, volatility), aerosol precursor gases (particularly SO2, HNO3, H2O). Our measurements and accompanying model simulations indicate homogeneous and cosmic ray induced aerosol formation at the tropopause. Using an extremely sensitive detection method, we managed to detect Fukushima Xe-133, an ideal transport tracer, at and even above the tropopause. To our knowledge, these airborne Xe-133 measurements are the only of their kind. Our investigations represent a striking example how a pioneering measurement of a Fukshima radio nuclide, employing an extremely sensitive method, can lead to new insights into an important atmospheric process. After the Fukushima accidential Xe-133 release (mostly during 11-15 March 2011), we have conducted two aircraft missions, which took place over Central Europe, on 23 March and 11 April 2011. In the air masses, encountered by the research aircraft on 23 March, we have detected Fukushima Xe-133 by an extremely sensitive method, at and even above the tropopause. Besides increased concentrations of Xe-133, we have detected also increased concentrations of the gases SO2, HNO3, and H2O. The Xe-133 data and accompanying transport model simulations indicate that a West-Pacific Warm Conveyor Belt (WCB) lifted East-Asian planetary boundary layer air to and even above the tropopause, followed by relatively fast quasi-horizontal advection to Europe. Along with Xe-133, anthropogenic SO2, NOx (mostly released from East-Asian ground-level combustion sources), and warer vapour were also lifted by the WCB. After the lift, SO2 and NOx experienced efficient solar UV-radiation driven conversion to the important aerosol precursors gases H2SO4 and HNO3. Our investigations indicate that, increased concentrations of the gases SO2, HNO3, and H2O promoted homogeneous and cosmic ray induced aerosol formation at and

  18. Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.

  19. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  20. Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO2 concentration

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; van Roozendael, M.; Theys, N.; Fayt, C.; Hermans, C.; Quennehen, B.; Schwarzenboeck, A.; Ancellet, G.; Pommier, M.; Pelon, J.; Burkhart, J.; Stohl, A.; de Mazière, M.

    2011-05-01

    We report airborne differential optical absorption spectroscopy (DOAS) measurements of aerosol extinction and NO2 tropospheric profiles performed off the North coast of Norway in April 2008. The DOAS instrument was installed on the Safire ATR-42 aircraft during the POLARCAT-France spring campaign and recorded scattered light spectra in near-limb geometry using a scanning telescope. We use O4 slant column measurements to derive the aerosol extinction at 360 nm. Regularization is based on the maximum a posteriori solution, for which we compare a linear and a logarithmic approach. The latter inherently constrains the solution to positive values and yields aerosol extinction profiles more consistent with independently measured size distributions. Two soundings are presented, performed on 8 April 2008 above 71° N, 22° E and on 9 April 2008 above 70° N, 17.8° E. The first profile shows aerosol extinction and NO2 in the marine boundary layer with respective values of 0.04±0.005 km-1 and 1.9±0.3 × 109 molec cm-3. A second extinction layer of 0.01±0.003 km-1 is found at 4 km altitude. During the second sounding, clouds prevented us to retrieve profile parts under 3 km altitude but a layer with enhanced extinction (0.025±0.005 km-1) and NO2 (1.95±0.2 × 109 molec cm-3) is clearly detected at 4 km altitude. From CO and ozone in-situ measurements complemented by back-trajectories, we interpret the measurements in the free troposphere as, for the first sounding, a mix between stratospheric and polluted air from Northern Europe and for the second sounding, polluted air from Central Europe containing NO2. Considering the boundary layer measurements of the first flight, modeled source regions indicate closer sources, especially the Kola Peninsula smelters, which can explain the NO2 enhancement not correlated with a CO increase at the same altitude.

  1. Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO2 concentration

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; van Roozendael, M.; Theys, N.; Fayt, C.; Hermans, C.; Quennehen, B.; Schwarzenboeck, A.; Ancellet, G.; Pommier, M.; Pelon, J.; Burkhart, J.; Stohl, A.; de Mazière, M.

    2011-09-01

    We report on airborne Differential Optical Absorption Spectroscopy (DOAS) measurements of aerosol extinction and NO2 tropospheric profiles performed off the North coast of Norway in April 2008. The DOAS instrument was installed on the Safire ATR-42 aircraft during the POLARCAT-France spring campaign and recorded scattered light spectra in near-limb geometry using a scanning telescope. We use O4 slant column measurements to derive the aerosol extinction at 360 nm. Regularization is based on the maximum a posteriori solution, for which we compare a linear and a logarithmic approach. The latter inherently constrains the solution to positive values and yields aerosol extinction profiles more consistent with independently measured size distributions. We present results from two soundings performed on 8 April 2008 above 71° N, 22° E and on 9 April 2008 above 70° N, 17.8° E. The first profile shows aerosol extinction and NO2 in the marine boundary layer with respective values of 0.04 ± 0.005 km-1 and 1.9 ± 0.3 × 109 molec cm-3. A second extinction layer of 0.01 ± 0.003 km-1 is found at 4 km altitude where the NO2 concentration is 0.32 ± 0.2 × 109 molec cm-3. During the second sounding, clouds prevent retrieval of profile parts under 3 km altitude but a layer with enhanced extinction (0.025 ± 0.005 km-1) and NO2 (1.95 ± 0.2 × 109 molec cm-3) is clearly detected at 4 km altitude. From CO and ozone in-situ measurements complemented by back-trajectories, we interpret the measurements in the free troposphere as, for the first sounding, a mix between stratospheric and polluted air from Northern Europe and for the second sounding, polluted air from Central Europe containing NO2. Considering the boundary layer measurements of the first flight, modeled source regions indicate closer sources, especially the Kola Peninsula smelters, which can explain the NO2 enhancement not correlated with a CO increase at the same altitude.

  2. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  3. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions. PMID:20941181

  4. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  5. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  6. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  7. Ozone and aerosol distributions measured by airborne lidar during the 1988 Arctic Boundary Layer Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Consideration is given to O3 and aerosol distributions measured from an aircraft using a DIAL system in order to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during summer 1988. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere.

  8. Fast Airborne Size Distribution Measurements of an Aerosol Processes and Aging

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A. D.; Zhou, J.; Brekhovskikh, V.; McNaughton, C. S.; Howell, S.

    2009-12-01

    During MILAGRO/INTEX experiment the Hawaii Group for Environmental Aerosol Research (HIGEAR) deployed a wide range of aerosol instrumentation aboard NSF C-130 and NASA DC-8. These were designed to provide rapid information on aerosol composition, state of mixing (internal or external), spectral optical properties (scattering and absorption), the humidity dependence of light scattering - f(RH), and the role of condensed species in changing the absorption properties of black carbon (BC) and inferred properties of organic carbon (OC). We also flew the Fast Mobility Particle Spectrometer (FMPS, TSI Inc.) to measure aerosol size distributions in a range 5.6 - 560 nm. For all our flights around Mexico City, an aerosol number concentration usually was well above the nominal FMPS sensitivity (from ~100 particles/cc @ Dp = 5.6 nm to 1 part/cc @ 560nm), providing us with reliable size distributions even at 1 sec resolution. FMPS measurements revealed small scale structure of an aerosol and allowed us to examine size distributions varying over space and time associated with mixing processes previously unresolved. These 1-Hz measurements during aircraft profiles captured variations in size distributions within shallow layers. Other dynamic processes observed included orography induced aerosol layers and evolution of the nanoparticles formed by nucleation. We put FMPS high resolution size distribution data in a context of aerosol evolution and aging, using a range of established (for MIRAGE/INTEX) chemical, aerosol and transport aging parameters.

  9. Airborne measurement of tropospheric ice nuclei aerosols using the Portable Ice Nucleation Chamber (PINC)

    NASA Astrophysics Data System (ADS)

    Chou, C.; Stetzer, O.; Sierau, B.; Lohmann, U.

    2009-04-01

    Ice clouds and mixed phase clouds have different microphysical and radiative properties that need to be assessed in order to understand their impact on the climate. Indeed, on one hand ice crystals found in the ice phase have the ability to scatter incoming solar radiation and absorb terrestrial radiation. On the other hand, about 70% of the tropical precipitation forms via the ice-phase, this means an impact on the hydrological cycle. Investigation of the ability of an aerosol to act as Ice Nuclei (IN) requires knowledge of the thermodynamics conditions, i.e. relative humidity and temperature at which this aerosol form ice crystal. The PerformPINC project was a research campaign within the Education & Training program of the EUropean Fleet for Airborne Research (EUFAR). The project objectives were to measure the number concentration of IN in free and upper troposphere using the Portable Ice Nucleation Chamber (PINC) recently developed by the Institute for Atmospheric Climate Sciences at the ETH Zürich, and thus as a primary objective, testing the technical performance of the instrument during in-situ airborne measurements at different conditions within the chamber. The PINC is the portable version of the Zurich Ice Nucleation Chamber (ZINC) (Stetzer et al., 2008) and is meant for in-situ measurements. Both ZINC and PINC follow the same principle as the Continuous Flow Diffusion Chamber of the Colorado University (Rogers, 1988) that has proven to be of good performance in previous airborne in-situ campaigns (DeMott et al., 2003a). Unlike the CFDC, the PINC has a flat design composed of a main chamber, and an evaporation part. The cooling system of the PINC is also different and consists for the warm side of two BD120 compressors mounted in parallel. For the cold side, it is four BD120 compressors in parallel mounted to another BD120 compressor in serial, thus allowing us to reach lower temperature than the warm side. Aerosols are collected through an inlet where

  10. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  11. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-03-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 μm) and angular range (180°) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  12. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2009-12-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 μm) and angular range (180°) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  13. Airborne measurements of hygroscopicity and mixing state of aerosols in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Weingartner, Ernest; Gysel, Martin; Rubach, Florian; Mentel, Thomas; Baltensperger, Urs

    2014-05-01

    properties and mixing state. By combining these results with measurements from an aerosol mass spectrometer (AMS) and an aethalometer, insights can be gathered to explain their hygroscopicity. In this work we will present vertical profiles of the hygroscopic growth and mixing state of aerosol particles measured during Zeppelin flights of the PEGASOS campaigns in the Netherlands, Italy and Finland. Results from ground measurements will also be included to compare the aerosol directly at the surface with different heights. W.T. Morgan et al., Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: Airborne measurements in North-Western Europe, Atmospheric Chemistry and Physics 10(2010), pp. 8151-8171. P. Zieger et al., Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw, Atmospheric Chemistry and Physics 11(2011), pp. 2603-2624.

  14. Application of the LIRIC algorithm for the characterization of aerosols during the Airborne Romanian Measurements of Aerosols and Trace gases (AROMAT) campaign

    NASA Astrophysics Data System (ADS)

    Stefanie, Horatiu; Nicolae, Doina; Nemuc, Anca; Belegante, Livio; Toanca, Florica; Ajtai, Nicolae; Ozunu, Alexandru

    2015-04-01

    The ESA/ESTEC AROMAT campaign (Airborne Romanian Measurements of Aerosols and Trace gases) was held between 1st and 14th of September 2014 with the purpose to test and inter-compare newly developed airborne and ground-based instruments dedicated to air quality studies in the context of validation programs of the forthcoming European Space Agency satellites (Sentinel 5P, ADM-Aeolus and EarthCARE). Ground-based remote sensing and airborne in situ measurements were made in southern Romania in order to assess the level and the variability of NO2 and particulate matter, focusing on two areas of interest: SW (Turceni), where many coal based power plants are operating, and SE (Bucharest), affected by intense traffic and partially by industrial pollution. In this paper we present the results obtained after the application of the Lidar - Radiometer Inversion Code (LIRIC) algorithm on combined lidar and sunphotometer data collected at Magurele, 6 km South Bucharest. Full lidar data sets in terms of backscatter signals at 355, 532 and 1064 nm, as well as depolarization at 532 nm were used and combined with Aerosol Robotic Network (AERONET) data, in order to retrieve the profiles of aerosol volume concentrations, separated as fine, spherical and spheroidal coarse modes. Preliminary results showed that aerosols generated by traffic and industrial activities were present in the Planetary Boundary Layer, while biomass burning aerosols transported from the Balkan Peninsula were detected in the upper layers. Acknowledgements: ***This work has been supported by Programme for Research- Space Technology and Advanced Research - STAR, project number 55/2013 - CARESSE. ***The financial support by the European Community's FP7 - PEOPLE 2011 under ITaRS Grant Agreement n° 289923 is gratefully acknowledged.

  15. Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar measurements. I - Algorithm description

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Bowdle, David A.; Vaughan, Michael; Brown, Derek W.; Woodfield, Alan A.

    1991-01-01

    Since 1981 the Royal Signals and Radar Establishment and the Royal Aircraft Establishment, United Kindom, have made vertical and horizontal sounding measurements of aerosol backscatter coefficients at 10.6 microns, using an airborne continuous-wave-focused CO2 Doppler lidar, the Laser True Airspeed System (LATAS). In this paper, the heterodyne signal from the LATAS detector is spectrally analyzed. Then, in conjunction with aircraft flight parameters, the data are processed in a six-stage computer algorithm: set search window, search for peak signal, test peak signal, measure total signal, calculate signal-to-noise ratio, and calculate backscatter coefficient.

  16. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  17. Airborne Aerosol In situ Measurements during TCAP: A Closure Study of Total Scattering

    SciTech Connect

    Kassianov, Evgueni I.; Berg, Larry K.; Pekour, Mikhail S.; Flynn, Connor J.; Tomlinson, Jason M.; Chand, Duli; Shilling, John E.; Ovchinnikov, Mikhail; Barnard, James C.; Sedlacek, Art; Schmid, Beat

    2015-07-31

    We present here a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. The synergistically employed aircraft data involve aerosol microphysical, chemical, and optical components and ambient relative humidity measurements. Our framework is developed emphasizing the explicit use of the complementary chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total aerosol scattering is demonstrated for different ambient conditions with a wide range of relative humidities (from 5 to 80%) using three types of data collected by the U.S. Department of Energy (DOE) G-1 aircraft during the recent Two-Column Aerosol Project (TCAP). Namely, these three types of data employed are: (1) size distributions measured by an Ultra High Sensitivity Aerosol Spectrometer (UHSAS; 0.06-1 µm), a Passive Cavity Aerosol Spectrometer (PCASP; 0.1-3 µm) and a Cloud and Aerosol Spectrometer (CAS; 0.6- >10 µm), (2) chemical composition data measured by an Aerosol Mass Spectrometer (AMS; 0.06-0.6 µm) and a Single Particle Soot Photometer (SP2; 0.06-0.6 µm), and (3) the dry total scattering coefficient measured by a TSI integrating nephelometer at three wavelengths (0.45, 0.55, 0.7 µm) and scattering enhancement factor measured with a humidification system at three RHs (near 45%, 65% and 90%) at a single wavelength (0.525 µm). We demonstrate that good agreement (~10% on average) between the observed and calculated scattering at these three wavelengths can be obtained using the best available chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction and using non-representative RI values can cause a substantial underestimation (~40

  18. Characterization of Aerosols and Bidirectional Reflectance Distribution Function from Airborne Radiation Measurements over Snow, Sea Ice, Tundra, And Clouds

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; King, M. D.

    2009-12-01

    The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) provides a golden opportunity to study the Arctic from ground-, airborne-, and satellite-based measurements in an integrated manner. It also provides an opportunity to validate satellite retrievals that are complicated by the highly reflecting nature of snow-covered sea ice, low sun angles, extensive cloud cover, and seasonal changes. The bidirectional reflectance distribution function (BRDF) or accurate determination of surface albedo is a key to detecting changes in the arctic environment from remote sensing measurements. The Cloud Absorption Radiometer (CAR) has been used to acquire spectral BRDF of the ocean, sea ice, snow, tundra, savanna, smoke, vegetation, desert, salt pans, and clouds, and played a key role in the ARCTAS deployment in spring and summer of 2008. This airborne sensor has a wide aperture of 190°, an instantaneous Field of View of 1°, and can capture the full BRDF, including the hotspot under low sun angle conditions commonly found in the Arctic. The instrument was developed for low- to medium-altitude aircraft and can be used to obtain data with varying spatial resolutions that are important for addressing upscaling needs for satellite validation. The instrument has a unique ability to measure almost simultaneously, both downwelling and upwelling radiance at 14 narrow spectral bands located in the atmospheric window regions of the ultraviolet, visible and near-infrared. When combined with simultaneous airborne measurements of sun/sky radiance, the CAR sky radiance measurements provide information on aerosol (size distribution, single scattering albedo, refractive index) both above and below the aircraft. The intent of this paper is to highlight some of the key results obtained from the analysis of the CAR data from ARCTAS, including retrieval of aerosols and bidirectional reflectance factors over snow and validation of satellite & model snow

  19. Modified cavity attenuated phase shift (CAPS) method for airborne aerosol light extinction measurement

    NASA Astrophysics Data System (ADS)

    Perim de Faria, Julia; Bundke, Ulrich; Freedman, Andrew; Petzold, Andreas

    2015-04-01

    Monitoring the direct impact of aerosol particles on climate requires the consideration of at least two major factors: the aerosol single-scattering albedo, defined as the relation between the amount of energy scattered and extinguished by an ensemble of aerosol particles; and the aerosol optical depth, calculated from the integral of the particle extinction coefficient over the thickness of the measured aerosol layer. Remote sensing networks for measuring these aerosol parameters on a regular basis are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. In particular, the CAPS PMex particle optical extinction monitor has demonstrated sensitivity of less than 2 Mm-1 in 1 second sampling period; with a 60 s averaging time, a detection limit of less than 0.3 Mm-1 can be achieved. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. Here, we report on the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, and subsequent laboratory tests for evaluating the modified instrument prototype: (1) In a

  20. Airborne Measurements of Aerosol Emissions From the Alberta Oil Sands Complex

    NASA Astrophysics Data System (ADS)

    Howell, S. G.; Clarke, A. D.; McNaughton, C. S.; Freitag, S.

    2012-12-01

    The Alberta oil sands contain a vast reservoir of fossil hydrocarbons. The extremely viscous bitumen requires significant energy to extract and upgrade to make a fluid product suitable for pipelines and further refinement. The mining and upgrading process constitute a large industrial complex in an otherwise sparsely populated area of Canada. During the ARCTAS project in June/July 2008, while studying forest fire plumes, the NASA DC-8 and P-3B flew through the plume a total of 5 times. Once was a coordinated visit by both aircraft; the other 3 were fortuitous passes downwind. One study has been published about gas emissions from the complex. Here we concentrate on aerosol emissions and aging. As previously reported, there appear to be at least 2 types of plumes produced. One is an industrial-type plume with vast numbers of ultrafine particles, SO2, sulfate, black carbon (BC), CO, and NO2. The other, probably from the mining, has more organic aerosol and BC together with dust-like aerosols at 3 μm and a 1 μm mode of unknown origin. The DC-8 crossed the plume about 10 km downwind of the industrial site, giving time for the boundary layer to mix and enabling a very crude flux calculation suggesting that sulfate and organic aerosols were each produced at about 500 g/s (estimated errors are a factor of 2, chiefly due to concerns about vertical mixing). Since this was a single flight during a project dedicated to other purposes and operating conditions and weather may change fluxes considerably, this may not be a typical flux. As the plume progresses downwind, the ultrafine particles grow to sizes effective as cloud condensation nucei (CCN), SO2 is converted to sulfate, and organic aerosol is produced. During fair weather in the summer, as was the case during these flights, cloud convection pumps aerosol above the mixed layer. While the aerosol plume is difficult to detect from space, NO2 is measured by the OMI instrument an the Aura satellite and the oil sands plume

  1. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins,D. R.; Knapp, D.; Weinheimer, A. J.; Montzka,D. D.; Campos,T.; Jimenez, J. L.

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  2. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    DOE PAGESBeta

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; et al

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by amore » suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.« less

  3. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    SciTech Connect

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; Tomlinson, Jason; Fast, Jerome

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by a suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.

  4. Airborne Measurements of Carbonaceous Aerosols in Southern Africa during the Dry Biomass Burning Season

    NASA Technical Reports Server (NTRS)

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2003-01-01

    Particulate matter collected aboard the University of Washington's (UW) Convair-580 research aircrafi over southem Afiica during the dry biomass burning season was analyzed for total carbon (TC), organic carbon (OC), and black carbon (BC) contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the TC collected. Consequently, conclusions derived from the data are greatly dependent on whether or not OC concentrations are corrected for this artifact. For example, the estimated aerosol coalbedo (1 - single scattering albedo (SSA)), which is a measure of aerosol absorption, of the biomass smoke samples is 60% larger using corrected OC concentrations. Thus, the corrected data imply that the biomass smoke is 60% more absorbing than do the uncorrected data. The BC to (corrected) OC mass ratio (BC/OC) of smoke plume samples (0.18 plus or minus 0.06) is lower than that of samples collected in the regional haze (0.25 plus or minus 0.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three quarters of the aerosol burden in the regional haze, while other souxes (e.g., fossil fuel burning) contribute the remainder.

  5. Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season

    SciTech Connect

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2002-06-17

    Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

  6. Calibrations and Comparisons of Aerosol Spectrometers linking Ground and Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Williamson, C.; Brock, C. A.; Erdesz, F.

    2015-12-01

    The nucleation-mode aerosol size spectrometer (NMASS), a fast-time response instrument measuring aerosol size distributions between 5 and 60nm, is to sample in the boundary layer and free troposphere on NASA's Atmospheric Tomography mission (ATom), providing contiguous data with global coverage in all four seasons. In preparation for this the NMASS is calibrated for the expected flight conditions and compatibility studies are made with ground-based instrumentation. The NMASS is comprised of 5 parallel condensation particle counters (CPCs) using perfluoro-tributylamine as a working fluid. Understanding the variation of CPC counting efficiencies with respect to the chemical composition of the sample is important for accurate data analysis and can be used to give indirect information about sample chemical composition. This variation is strongly dependent on the working fluid. The absolute responses and associated variations of the NMASS to ammonium sulfate and limonene ozonolysis products, compounds pertinent to the composition of particles nucleated in the free troposphere and boundary later, are compared to those of butanol, diethylene-glycol and water based CPCs, which are more commonly used in ground-based measurements. While fast time-response is key to measuring aerosol size distributions on flights, high size-resolution is often prioritized for ground-based measurements, and so a scanning mobility particle sizer (SMPS) is commonly used. Inter-comparison between NMASS and SMPS data is non-trivial because of the different working principles and resolutions of the instruments and yet it is vital, for example, for understanding the sources of particles observed during flights and the global relevance of phenomena observed from field stations and in chambers. We report compatibility studies on inversions of data from the SMPS and NMASS, evaluating temporal and spatial resolution and sources of uncertainty.

  7. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    EPA Science Inventory

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  8. Airborne Aerosol Closure Studies During PRIDE

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Livingston, John M.; Russell, Philip B.; Schmid, Beat; Reid, Jeff

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during June/July of 2000 to study the properties of Saharan dust aerosols transported across the Atlantic Ocean to the Caribbean Islands. During PRIDE, the NASA Ames Research Center six-channel (380 - 1020 nm) airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane alongside a suite of in situ aerosol instruments. The in situ aerosol instrumentation relevant to this paper included a Forward Scattering Spectrometer Probe (FSSP-100) and a Passive Cavity Aerosol Spectrometer Probe (PCASP), covering the radius range of approx. 0.05 to 10 microns. The simultaneous and collocated measurement of multi-spectral aerosol optical depth and in situ particle size distribution data permits a variety of closure studies. For example, vertical profiles of aerosol optical depth obtained during local aircraft ascents and descents can be differentiated with respect to altitude and compared to extinction profiles calculated using the in situ particle size distribution data (and reasonable estimates of the aerosol index of refraction). Additionally, aerosol extinction (optical depth) spectra can be inverted to retrieve estimates of the particle size distributions, which can be compared directly to the in situ size distributions. In this paper we will report on such closure studies using data from a select number of vertical profiles at Cabras Island, Puerto Rico, including measurements in distinct Saharan Dust Layers. Preliminary results show good agreement to within 30% between mid-visible aerosol extinction derived from the AATS-6 optical depth profiles and extinction profiles forward calculated using 60s-average in situ particle size distributions and standard Saharan dust aerosol refractive indices published in the literature. In agreement with tendencies observed in previous studies, our initial results show an underestimate of aerosol extinction calculated based on the in situ size distributions

  9. Measurements of aerosol distributions and properties from Airborne High Spectral Resolution Lidar and DRAGON during the DISCOVER-AQ California Experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Burton, S. P.; Scarino, A. J.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Mueller, D.; Chemyakin, E.; Cook, A. L.; Harper, D. B.; Hare, R.; Holben, B. N.; Schafer, J.; Anderson, B. E.; Sawamura, P.

    2011-12-01

    The new NASA Langley Research Center airborne High Spectral Resolution Lidar-2 (HSRL-2) was deployed from the NASA Langley King Air aircraft for the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) and DRAGON experiments that occurred over the San Joaquin Valley during January and February, 2013. The HSRL-2, which is the world's first airborne multiwavelength HSRL, measures aerosol extinction at 355 and 532 nm via the HSRL technique, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include aerosol type, mixed layer depth, and range-resolved aerosol microphysical parameters (e.g., effective radius, index of refraction, single scatter albedo, and concentration). During this mission, the King Air flights and HSRL-2 measurements were acquired over the DRAGON network and long-term AERONET sites and were closely coordinated with flights of the NASA P-3 aircraft that carried a suite of in situ aerosol instruments. In this presentation, we discuss how the HSRL-2 and DRAGON observations have been used to examine aerosol optical and microphysical properties as well as spatial and temporal variability. On some days, both HSRL-2 and DRAGON measurements indicated that coarse mode dust contributed a significant fraction of the aerosol optical thickness (AOT); in these cases, HSRL-2 measurements indicated that this depolarizing layer was located at the top of the boundary layer. We discuss differences in the aerosol properties between two episodes of high surface PM2.5 concentrations as revealed by the HSRL-2 and DRAGON measurements. Both the HSRL-2 and DRAGON measurements reveal considerable day-to-day spatial variability in the aerosol distributions across the valley. The HSRL-2 measurements also show variability in the daily evolution of the vertical distribution of aerosols.

  10. Measurements of aerosol distributions and properties from Airborne High Spectral Resolution Lidar and DRAGON during the DISCOVER-AQ California Experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Burton, S. P.; Scarino, A. J.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Mueller, D.; Chemyakin, E.; Cook, A. L.; Harper, D. B.; Hare, R.; Holben, B. N.; Schafer, J.; Anderson, B. E.; Sawamura, P.

    2013-12-01

    The new NASA Langley Research Center airborne High Spectral Resolution Lidar-2 (HSRL-2) was deployed from the NASA Langley King Air aircraft for the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) and DRAGON experiments that occurred over the San Joaquin Valley during January and February, 2013. The HSRL-2, which is the world's first airborne multiwavelength HSRL, measures aerosol extinction at 355 and 532 nm via the HSRL technique, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include aerosol type, mixed layer depth, and range-resolved aerosol microphysical parameters (e.g., effective radius, index of refraction, single scatter albedo, and concentration). During this mission, the King Air flights and HSRL-2 measurements were acquired over the DRAGON network and long-term AERONET sites and were closely coordinated with flights of the NASA P-3 aircraft that carried a suite of in situ aerosol instruments. In this presentation, we discuss how the HSRL-2 and DRAGON observations have been used to examine aerosol optical and microphysical properties as well as spatial and temporal variability. On some days, both HSRL-2 and DRAGON measurements indicated that coarse mode dust contributed a significant fraction of the aerosol optical thickness (AOT); in these cases, HSRL-2 measurements indicated that this depolarizing layer was located at the top of the boundary layer. We discuss differences in the aerosol properties between two episodes of high surface PM2.5 concentrations as revealed by the HSRL-2 and DRAGON measurements. Both the HSRL-2 and DRAGON measurements reveal considerable day-to-day spatial variability in the aerosol distributions across the valley. The HSRL-2 measurements also show variability in the daily evolution of the vertical distribution of aerosols.

  11. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  12. Airborne Coarse Mode Aerosol Measurements with the CAS-DPOL Instrument: Effects of Particle Shape and Refractive Index and Implications for Radiative Transfer Estimate

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gasteiger, J.; Spanu, A.; Freudenthaler, V.; Gross, S.

    2015-12-01

    Each year huge amounts of mineral dust are mobilized in deserts and arid regions of the world and transported over large distances forming thick elevated aerosol layers with a substantial fraction of coarse mode particles. Optical properties of mineral dust, including the absorptive refractive index of some components, cause a significant effect on the atmospheric radiative energy balance from optical to infrared wavelengths. The aerosol characteristics, in particular its coarse mode size distribution, are modified during long-range transport by aging and deposition processes. This also affects the aerosol optical properties and therefore the effect on the atmospheric radiative energy budget. In-situ measurements of aerosol microphysical properties are essential to characterize those effects in order to be implemented in global climate models in parametrized form. However, in-situ measurements of airborne coarse mode aerosols such as mineral dust and volcanic ash are challenging and the measurements are usually affected by substantial uncertainties. In this work we use airborne measurements of mineral dust from our optical light-scattering spectrometer CAS-DPOL during SALTRACE 2013 to discuss the analysis of such data. We cover the effects of varying refractive index and particle shapes and develop recommendations for the configuration of the CAS-DPOL for aerosol studies. We also present an inversion method to derive coarse mode size distributions from light-scattering probes for mixtures of non-spherical, absorbing aerosols. The size distributions retrieved from the in-situ measurements are then validated using an independent analysis with a combination of sun-photometer and lidar data. We apply these methods to investigate the Saharan mineral dust particle size distributions measured on both sides of the Atlantic Ocean and discuss the influence of aerosol aging on the atmospheric radiative energy budget. With this example we also assess how the uncertainties

  13. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  14. Airborne Trace Gas and Aerosol Measurements During ITCT 2k2

    NASA Astrophysics Data System (ADS)

    Hübler, G.; Brock, C.; Cziczo, D.; Dunlea, E.; de Gouw, J.; Holloway, J.; Hudson, P.; Jakoubek, R.; Murphy, D.; Neuman, J. A.; Nicks, D.; Nowak, J.; Parrish, D.; Roberts, J.; Ryerson, T.; Sueper, D.; Thomson, D.; Trainer, M.; Warneke, C.; Fehsenfeld, F.; Alvarez, R.; Eberhard, W.; Marchbanks, R.; Senff, C.; Hardesty, M.; Atlas, E.; Donnelly, S.; Flocke, F.; Schauffler, S.; Huey, G.; Orsini, D.; Sullivan, A.; Tanner, D.; Weber, R.; Lafleur, B.; Reeves, M.; Wilson, C.

    2002-12-01

    From mid-April through mid-May of this year a NOAA Aircraft Operations Center WP-3D Orion aircraft was deployed to Monterey, California to study the inflow to the western US from the eastern Pacific. The scientific payload was chosen to study intercontinental transport and chemical conversion and its potential impact on the US. The payload included an ozone photochemistry suite, i.e. measurements of ozone, its precursors, products and by-products of the photooxidation, and anthropogenic tracers. Aside from the aerosol size distribution, bulk and single particle composition were measured. The flight plans incorporated survey flights along the coast, overflights of the ground site in Trinidad Head, ship plume studies, a visit to the Los Angeles basin and west-east transects (off- to on-shore) along the transport axis. This overview will describe the payload and flight operations from Monterey. Composite profiles of ozone, total nitrogen oxides, and carbon monoxide will be compared to those derived from our previous missions.

  15. Validating Above-cloud Aerosol Optical Depth Retrieved from MODIS using NASA Ames Airborne Sun-Tracking Photometric and Spectrometric (AATS and 4STAR) Measurements

    NASA Astrophysics Data System (ADS)

    Jethva, H. T.; Torres, O.; Remer, L. A.; Redemann, J.; Dunagan, S. E.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.

    2014-12-01

    Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay the lower level cloud decks as evident in the satellite images. In contrast to the cloud-free atmosphere, in which aerosols generally tend to cool the atmosphere, the presence of absorbing aerosols above cloud poses greater potential of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. In recent years, development of algorithms that exploit satellite-based passive measurements of ultraviolet (UV), visible, and polarized light as well as lidar-based active measurements constitute a major breakthrough in the field of remote sensing of aerosols. While the unprecedented quantitative information on aerosol loading above cloud is now available from NASA's A-train sensors, a greater question remains ahead: How to validate the satellite retrievals of above-cloud aerosols (ACA)? Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. In this study, we validate the ACA optical depth retrieved using the 'color ratio' (CR) method applied to the MODIS cloudy-sky reflectance by using the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS-2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (root-mean-square-error<0.1 for Aerosol Optical Depth (AOD) at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals (-10% to +50%). An extensive validation of

  16. Asthmatic responses to airborne acid aerosols.

    PubMed Central

    Ostro, B D; Lipsett, M J; Wiener, M B; Selner, J C

    1991-01-01

    BACKGROUND: Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. METHODS: Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. RESULTS: Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. CONCLUSIONS: In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms. PMID:1851397

  17. Asthmatic responses to airborne acid aerosols

    SciTech Connect

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. )

    1991-06-01

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

  18. Airborne measurements of cloud-forming nuclei and aerosol particles in stabilized ground clouds produced by solid rocket booster firings

    NASA Technical Reports Server (NTRS)

    Hindman, E. E., II; Ala, G. G.; Parungo, F. P.; Willis, P. T.; Bendura, R. J.; Woods, D.

    1978-01-01

    Airborne measurements of cloud volumes, ice nuclei and cloud condensation nuclei, liquid particles, and aerosol particles were obtained from stabilized ground clouds (SGCs) produced by Titan 3 launches at Kennedy Space Center, 20 August and 5 September 1977. The SGCs were bright, white, cumulus clouds early in their life and contained up to 3.5 g/m3 of liquid in micron to millimeter size droplets. The measured cloud volumes were 40 to 60 cu km five hours after launch. The SGCs contained high concentrations of cloud condensation nuclei active at 0.2%, 0.5%, and 1.0% supersaturation for periods of three to five hours. The SGCs also contained high concentrations of submicron particles. Three modes existed in the particle population: a 0.05 to 0.1 micron mode composed of aluminum-containing particles, a 0.2 to 0.8 micron mode, and a 2.0 to 10 micron mode composed of particles that contained primarily aluminum.

  19. Adaption of the MODIS aerosol retrieval algorithm using airborne spectral surface reflectance measurements over urban areas: a case study

    NASA Astrophysics Data System (ADS)

    Jäkel, E.; Mey, B.; Levy, R.; Gu, X.; Yu, T.; Li, Z.; Althausen, D.; Heese, B.; Wendisch, M.

    2015-12-01

    MODIS (MOderate-resolution Imaging Spectroradiometer) retrievals of aerosol optical depth (AOD) are biased over urban areas, primarily because the reflectance characteristics of urban surfaces are different than that assumed by the retrieval algorithm. Specifically, the operational "dark-target" retrieval is tuned towards vegetated (dark) surfaces and assumes a spectral relationship to estimate the surface reflectance in blue and red wavelengths. From airborne measurements of surface reflectance over the city of Zhongshan, China, were collected that could replace the assumptions within the MODIS retrieval algorithm. The subsequent impact was tested upon two versions of the operational algorithm, Collections 5 and 6 (C5 and C6). AOD retrieval results of the operational and modified algorithms were compared for a specific case study over Zhongshan to show minor differences between them all. However, the Zhongshan-based spectral surface relationship was applied to a much larger urban sample, specifically to the MODIS data taken over Beijing between 2010 and 2014. These results were compared directly to ground-based AERONET (AErosol RObotic NETwork) measurements of AOD. A significant reduction of the differences between the AOD retrieved by the modified algorithms and AERONET was found, whereby the mean difference decreased from 0.27±0.14 for the operational C5 and 0.19±0.12 for the operational C6 to 0.10±0.15 and -0.02±0.17 by using the modified C5 and C6 retrievals. Since the modified algorithms assume a higher contribution by the surface to the total measured reflectance from MODIS, consequently the overestimation of AOD by the operational methods is reduced. Furthermore, the sensitivity of the MODIS AOD retrieval with respect to different surface types was investigated. Radiative transfer simulations were performed to model reflectances at top of atmosphere for predefined aerosol properties. The reflectance data were used as input for the retrieval methods. It

  20. Column-integrated aerosol optical properties from ground-based spectroradiometer measurements at Barrax (Spain) during the Digital Airborne Imaging Spectrometer Experiment (DAISEX) campaigns

    NASA Astrophysics Data System (ADS)

    Pedrós, Roberto; Martinez-Lozano, Jose A.; Utrillas, Maria P.; Gómez-Amo, José L.; Tena, Fernando

    2003-09-01

    The Digital Airborne Imaging Spectrometer Experiment (DAISEX) was carried out for the European Space Agency (ESA) in order to develop the potential of spaceborne imaging spectroscopy for a range of different scientific applications. DAISEX involved simultaneous data acquisitions using different airborne imaging spectrometers over test sites in southeast Spain (Barrax) and the Upper Rhine valley (Colmar, France, and Hartheim, Germany). This paper presents the results corresponding to the column-integrated aerosol optical properties from ground-based spectroradiometer measurements over the Barrax area during the DAISEX campaign days in the years 1998, 1999, and 2000. The instruments used for spectral irradiance measurements were two Licor 1800 and one Optronic OL-754 spectroradiometers. The analysis of the spectral aerosol optical depth in the visible range shows in all cases the predominance of the coarse-particle mode over the fine-particle mode. The analysis of the back trajectories of the air masses indicates a predominance of marine-type aerosols in the lower atmospheric layers in all cases. Overall, the results obtained show that during the DAISEX there was a combination of maritime aerosols with smaller continental aerosols.

  1. Airborne aerosol measurements in the quiescent plume of Mount Saint Helens September, 1980

    NASA Technical Reports Server (NTRS)

    Phelan, J. M.; Finnegan, D. L.; Ballantine, D. S.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1982-01-01

    A study of the emissions from the Mt. St. Helens volcano was conducted to obtain data for an assessment of the importance of volcanoes as a global source of volatile trace elements to the atmosphere and to the global biochemical cycles of these elements. Sampling was done on board an Orion P-3 turboprop aircraft modified for tropospheric aerosol and gas sampling. Two filter collection systems were used. Samples were collected on a single flight on September 22, 1980, at which time the volcano was emitting a stable plume to an altitude of between 2 and 3 km. The results regarding the concentrations of aerosols obtained for this mission are presented in a table. Attention is also given to data concerning particulate vs. gas phase sulfur in the Mt. Saint Helens plume, and the estimated volcanic particle flux of selected volatile elements.

  2. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument

  3. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; Harper, David B.

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  4. Estimation of aerosol optical depth and additional atmospheric parameters for the calculation of apparent reflectance from radiance measured by the Airborne Visible/Infrared Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Conel, James E.; Roberts, Dar A.

    1993-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures spatial images of the total upwelling spectral radiance from 400 to 2500 nm through 10 nm spectral channels. Quantitative research and application objectives for surface investigations require inversion of the measured radiance of surface reflectance or surface leaving radiance. To calculate apparent surface reflectance, estimates of atmospheric water vapor abundance, cirrus cloud effects, surface pressure elevation, and aerosol optical depth are required. Algorithms for the estimation of these atmospheric parameters from the AVIRIS data themselves are described. From these atmospheric parameters we show an example of the calculation of apparent surface reflectance from the AVIRIS-measured radiance using a radiative transfer code.

  5. Photoacoustic study of airborne and model aerosols

    NASA Astrophysics Data System (ADS)

    Alebić-Juretić, A.; Zetzsch, C.; Dóka, O.; Bicanic, D.

    2003-01-01

    Airborne particulates of either natural or anthropogenic origin constitute a significant portion of atmospheric pollution. Environmental xenobiotics, among which are polynuclear aromatic hydrocarbons (PAHs) and pesticides, often adsorb to aerosols and as such are transported through the atmosphere with the physicochemical properties of the aerosols determining the lifetime of these organic compounds. As an example, the resistance of some PAHs against the photolysis is explained by the effect of the aerosol's "inner filter" that reduces the intensity of incident light reaching the mineral particles. On the other hand, some constituents of the aerosols can act as catalytic and/or stoichiometric reagents in atmospheric reactions on the solid surfaces. In the study described here the photoacoustic (PA) spectroscopy in the UV-Vis was used to investigate natural and model aerosols. The PA spectra obtained from coal and wood ashes and of Saharan sand, all three representatives of airborne aerosols, provide the evidence for the existence of the "inner filter." Furthermore, valuable information about the different nature of the interaction between the model aerosols and adsorbed organics (e.g., PAH-pyranthrene and silica, alumina, and MgO) has been obtained. Finally, the outcome of the study conducted with powdered mixtures of chalk and black carbon suggests that the PA method is a candidate method for determination of carbon content in stack ashes.

  6. Clear-Sky Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.; Jonsson, Haflidi H.; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Gasso, Santiago; Hegg, Dean A.; Oestroem, Elisabeth; Voss, Kenneth J.; Gordon, Howard R.; Formenti, Paolo; Andreae, Meinrat O.

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud-free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in-situ aerosol size-distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (lambda = 380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda = 525 nm), but these differences are within the combined error bars of the measurements and computations.

  7. Altitude Differentiated Aerosol Extinction Over Tenerife (North Atlantic Coast) During ACE-2 by Means of Ground and Airborne Photometry and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Formenti, P.; Elias, T.; Welton, J.; Diaz, J. P.; Exposito, F.; Schmid, B.; Powell, D.; Holben, B. N.; Smirnov, A.; Andreae, M. O.; Devaux, C.; Voss, K.; Lelieveld, J.; Livingston, J. M.; Russell, P. B.; Durkee, P. A.

    2000-01-01

    Retrievals of spectral aerosol optical depths (tau(sub a)) by means of sun photometers have been undertaken in Tenerife (28 deg 16' N, 16 deg 36' W) during ACE-2 (June-July 1997). Five ground-based sites were located at four different altitudes in the marine boundary layer and in the free troposphere, from 0 to 3570 m asl. The goal of the investigation was to provide estimates of the vertical aerosol extinction over the island, both under clean and turbid conditions. Inversion of spectral tau(sub a) allowed to retrieve size distributions, from which the single scattering albedo omega(sub 0) and the asymmetry factor g could be estimated as a function of altitude. These parameters were combined to calculate aerosol forcing in the column. Emphasis is put on episodes of increased turbidity, which were observed at different locations simultaneously, and attributed to outbreaks of mineral dust from North Africa. Differentiation of tau(sub a) as a function of altitude provided the vertical profile of the extinction coefficient sigma(sub e). For dust outbreaks, aerosol extinction is concentrated in two distinct layers above and below the strong subsidence inversion around 1200 m asl. Vertical profiles of tau(sub a) and sigma(sub e) are shown for July 8. In some occasions, vertical profiles are compared to LIDAR observations, performed both at sea level and in the low free troposphere, and to airborne measurements of aerosol optical depths.

  8. Airborne aerosol measurements in the quiescent plume of Mount St. Helens: September, 1980

    SciTech Connect

    Phelan, J.M.; Finnegan, D.L.; Ballantine, D.S.; Zoller, W.H.; Hart, M.A.; Moyers, J.L.

    1982-09-01

    Atmospheric particulate matter and condensed volatile species were collected in the quiescent plume of Mount St. Helens volcano in Sept. 1980 using air filter systems mounted aboard a NASA turbo-prop P-3 aircraft. Concentrations of 27 elements were determined by instrumental neutron activation analysis and ion chromotagraphy. The volatile elements Cl, Br, F, Zn, W, In, S, Cd, Se, Sb, Hg, As and Au were enriched relative to bulk ash emitted during the earlier eruptions by factors of 50 to 20,000. Particulate S concentrations were approx.3 ..mu..g/m/sup 3/ and accounted for 6% of the total plume sulfur. Gas-phase Hg concentrations were 2.5 to 16 ng/m/sup 3/. Fluxes of elements were estimated by normalizing elemental concentrations to the concurrently measured total sulfur flux. Emission rates vary from 3500 kg/day for particulate Cl to 3 kg/day for Au, with substantial quantities of the enriched elements Zn, As, Hg, Sb, Se, and Cd also being released. Estimated global fluxes of these elements from volcanoes to the atmosphere are in reasonable agreement with other literature estimates.

  9. Airborne measurements of black carbon aerosol over the Southeastern U.S. during the Southeast Atmosphere Study (SAS) experiment

    NASA Astrophysics Data System (ADS)

    Markovic, M. Z.; Perring, A. E.; Schwarz, J. P.; Fahey, D. W.; Gao, R.; Watts, L.; Holloway, J.; Graus, M.; Warneke, C.; De Gouw, J. A.; Veres, P. R.; Roberts, J. M.; Middlebrook, A. M.; Welti, A.; Liao, J.

    2013-12-01

    The Southeast Atmosphere Study (SAS) field campaign was a large-scale, collaborative project, which took place in the Southeastern U.S. in June and July of 2013. The goal of the campaign was to investigate the impacts of biogenic and anthropogenic gases and aerosols on the formation of haze and anomalous climate cooling in the region. During SAS, a NOAA Single Particle Soot Photometer (SP2) instrument was utilized onboard NOAA WP-3D research aircraft for measurements of black carbon (BC) aerosol mass and microphysical properties. BC aerosol is emitted into the atmosphere from biomass burning (BB) and incomplete combustion of fossil and biofuel. Hence, BC sources are strongly linked to anthropogenic activity. BC aerosol is currently the second largest anthropogenic climate forcing agent after CO2(g), and its climate impacts, which depend on vertical burden and internal mixing, are not fully understood. In the Southeast, BC aerosol is expected to provide surface area for the condensation of semi-volatile products of VOC oxidation and subsequent formation of secondary organic aerosol (SOA). Hence, BC is expected to impact the haze formation and regional climate. In this work we present an overview of BC measurements during Southeast Nexus (SENEX) study, the NOAA contribution to SAS. Geographical variations in mass mixing ratios, mass size distributions, and mixing state of BC over the Southeast U.S. are discussed. Relationships of BC with carbon monoxide (CO), acetonitrile (ACN) and other trace gases are used to investigate the impacts of urban, BB, natural gas development, and power plant emissions on the distribution and properties of BC aerosol in the region. Among studied urban centers, St. Louis and Atlanta were determined to be the largest source regions of BC. A clear weekend effect in BC mass mixing ratios and microphysical properties was observed in the metropolitan Atlanta region. Compared to BB and urban centers, power plants and natural gas developments

  10. Clear-Sky Closure Studies of Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Collins, Donald R.; Gasso, Santiago; Oestroem, Elisabeth; Powell, Donna M.; Welton, Ellsworth J.; Durkee, Philip A.; Livingston, John M.; Russell, Philip B.; Flagan, Richard C.; Seinfeld, John H.; Hegg, Dean A.; Noone, Kevin J.; Voss, Kenneth J.; Gordon, Howard R.; Reagan, John A.; Spinhirne, James D.

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (a differential mobility analyzer, three optical particle counters, three nephelometers, and one absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars. A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and (although less frequently than expected) African mineral dust. During the two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. Based on size-resolved composition information we have established an aerosol model that allows us to compute optical properties of the ambient aerosol using the optical particle counter results. In the dust, the agreement in layer AOD (lambda=380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda=525 nm), but these differences are within the combined error bars of the measurements and computations. Aerosol size-distribudon closure based on in-situ size distributions and inverted sunphotometer extinction spectra has been achieved in the MBL (total surface area and volume agree within 0.2, and 7%, respectively) but not in the dust layer. The fact that the three nephelometers operated at three different relative humidities (RH) allowed to parameterize hygroscopic growth and to therefore estimate optical properties at ambient RH. The parameters derived for different aerosol types are themselves useful for the aerosol modeling

  11. LOAC (Light Optical Particle Counter): a new small aerosol counter with particle characterization capabilities for surface and airborne measurements

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Jégou, Fabrice; Jeannot, Matthieu; Jourdain, Line; Dulac, François; Mallet, Marc; Dupont, Jean-Charles; Thaury, Claire; Tonnelier, Thierry; Verdier, Nicolas; Charpentier, Patrick

    2013-04-01

    The determination of the size distribution of tropospheric and stratospheric aerosols with conventional optical counters is difficult when different natures of particles are present (droplets, soot, mineral dust, secondary organic or mineral particles...). Also, a light and cheap aerosol counter that can be used at ground, onboard drones or launched under all kinds of atmospheric balloons can be very useful during specific events as volcanic plumes, desert dust transport or local pollution episodes. These goals can be achieved thanks to a new generation of aerosol counter, called LOAC (Light Optical Aerosol Counter). The instrument was developed in the frame of a cooperation between French scientific laboratories (CNRS), the Environnement-SA and MeteoModem companies and the French Space Agency (CNES). LOAC is a small optical particle counter/sizer of ~250 grams, having a low electrical power consumption. The measurements are conducted at two scattering angles. The first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.3-100 micrometerers. At such an angle close to forward scattering, the signal is much more intense and the measurements are the least sensitive to the particle nature. The second angle is at 60°, where the scattered light is strongly dependent on the particle refractive index and thus on the nature of the aerosols. The ratio of the measurements at the two angles is used to discriminate between the different types of particles dominating the nature of the aerosol particles in the different size classes. The sensor particularly discriminates wet or liquid particles, soil dust and soot. Since 2011, we have operated LOAC in various environments (Arctic, Mediterranean, urban and peri-urban…) under different kinds of balloons including zero pressure stratospheric, tethered, drifting tropospheric, and meteorological sounding balloons. For the last case, the total weight of the gondola

  12. AMALi - the Airborne Mobile Aerosol Lidar for Arctic research

    NASA Astrophysics Data System (ADS)

    Stachlewska, I. S.; Neuber, R.; Lampert, A.; Ritter, C.; Wehrle, G.

    2010-03-01

    The Airborne Mobile Aerosol Lidar (AMALi) is an instrument developed at the Alfred Wegener Institute for Polar and Marine Research for reliable operation under the challenging weather conditions at the Earth's polar regions. Since 2003 the AMALi has been successfully deployed for measurements in ground-based installation and zenith- or nadir-pointing airborne configurations during several scientific campaigns in the Arctic. The lidar provides backscatter profiles at two wavelengths (355/532 nm or 1064/532 nm) together with the linear depolarization at 532 nm, from which aerosol and cloud properties can be derived. This paper presents the characteristics and capabilities of the AMALi system and gives examples of its usage for airborne and ground-based operations in the Arctic. As this backscatter lidar normally does not operate in aerosol-free layers special evaluation schemes are discussed, the nadir-pointing iterative inversion for the case of an unknown boundary condition and the two-stream approach for the extinction profile calculation if a second lidar system probes the same air mass. Also an intercomparison of the AMALi system with an established ground-based Koldewey Aerosol Raman Lidar (KARL) is given.

  13. BOREAS RSS-12 Airborne Tracking Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Lobitz, Brad; Spanner, Michael; Wrigley, Robert

    2000-01-01

    The BOREAS RSS-12 team collected both ground and airborne sunphotometer measurements for use in characterizing the aerosol optical properties of the atmosphere during the BOREAS data collection activities. These measurements are to be used to: 1) measure the magnitude and variability of the aerosol optical depth in both time and space; 2) determine the optical properties of the boreal aerosols; and 3) atmospherically correct remotely sensed data acquired during BOREAS. This data set contains airborne tracking sunphotometer data that were acquired from the C-130 aircraft during its flights over the BOREAS study areas. The data cover selected days and times from May to September 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  15. Intercomparisons of airborne measurements of aerosol ionic chemical composition during TRACE-P and ACE-Asia

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Weber, R. J.; Maxwell-Meier, K.; Orsini, D. A.; Lee, Y.-N.; Huebert, B. J.; Howell, S. G.; Bertram, T.; Talbot, R. W.; Dibb, J. E.; Scheuer, E.

    2004-08-01

    As part of the two field studies, Transport and Chemical Evolution over the Pacific (TRACE-P) and the Asian Aerosol Characterization Experiment (ACE-Asia), the inorganic chemical composition of tropospheric aerosols was measured over the western Pacific from three separate aircraft using various methods. Comparisons are made between the rapid online techniques of the particle into liquid sampler (PILS) for measurement of a suite of fine particle a mist chamber/ion chromatograph (MC/IC) measurement of fine sulfate, and the longer time-integrated filter and micro-orifice impactor (MOI) measurements. Comparisons between identical PILS on two separate aircraft flying in formation showed that they were highly correlated (e.g., sulfate r2 of 0.95), but were systematically different by 10 ± 5% (linear regression slope and 95% confidence bounds), and had generally higher concentrations on the aircraft with a low-turbulence inlet and shorter inlet-to-instrument transmission tubing. Comparisons of PILS and mist chamber measurements of fine sulfate on two different aircraft during formation flying had an r2 of 0.78 and a relative difference of 39% ± 5%. MOI ionic data integrated to the PILS upper measurement size of 1.3 μm sampling from separate inlets on the same aircraft showed that for sulfate, PILS and MOI were within 14% ± 6% and correlated with an r2 of 0.87. Most ionic compounds were within ±30%, which is in the range of differences reported between PILS and integrated samplers from ground-based comparisons. In many cases, direct intercomparison between the various instruments is difficult due to differences in upper-size detection limits. However, for this study, the results suggest that the fine particle mass composition measured from aircraft agree to within 30-40%.

  16. Intercomparisons of Airborne Measurements of Aerosol Ionic Chemical Composition during TRACE-P and ACE-Asia

    NASA Technical Reports Server (NTRS)

    Ma, Y.; Weber, R. J.; Maxwell-Meier, K.; Orsini, D. A.; Lee, Y.-N.; Huebert, B. J.; Howell, S. G.; Bertram, T.; Talbot, R. W.

    2003-01-01

    As part of the two field studies, Transport and Chemical Evolution over the Pacific (TRACE-P), and the Asian Aerosol Characterization Experiment (ACEAsia), the inorganic chemical composition of tropospheric aerosols was measured over the western Pacific from three separate aircraft using various methods. Comparisons are made between the rapid online techniques of the Particle Into Liquid Sampler (PILS) for measurement of a suite of fine particle ionic compounds and a mist chamber (MC/IC) measurement of fine sulfate, and the longer time-integrated filter and multi-orifice impactor (MOI) measurements. Comparisons between identical PILS on two separate aircraft flying in formation showed that they were highly correlated (e.g., sulfate r(sup 2) of 0.95), but were systematically different by 10 +/- 5% (linear regression slope and 95% confidence bounds), and had generally higher concentrations on the aircraft with a low turbulence inlet and shorter inlet-to-instrument transmission tubing. Comparisons of PILS and mist chamber measurements of fine sulfate on two different aircraft during formation flying had an 3 of 0.78 and a relative difference of 39% +/- 5%. MOI ionic data integrated to the PILS upper measurement size of 1.3 pm sampling from separate inlets on the same aircraft showed that for sulfate, PILS and MOI were within 14% +/- 6% and correlated with an r(sup 2) of 0.87. Most ionic compounds were within f 30%, which is in the range of differences reported between PILS and integrated samplers from ground-based comparisons. In many cases, direct intercomparison between the various instruments is difficult due to differences in upper-size detection limits. However, for this study, the results suggest that the fine particle mass composition measured from aircraft agree to within 30-40%.

  17. Lidar measurements of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Li, Guangkun; Philbrick, C. Russell

    2003-03-01

    Raman lidar techniques have been used in remote sensing to measure the aerosol optical extinction in the lower atmosphere, as well as water vapor, temperature and ozone profiles. Knowledge of aerosol optical properties assumes special importance in the wake of studies strongly correlating airborne particulate matter with adverse health effects. Optical extinction depends upon the concentration, composition, and size distribution of the particulate matter. Optical extinction from lidar returns provide information on particle size and density. The influence of relative humidity upon the growth and size of aerosols, particularly the sulfate aerosols along the northeast US region, has been investigated using a Raman lidar during several field measurement campaigns. A particle size distribution model is being developed and verified based on the experimental results. Optical extinction measurements from lidar in the NARSTO-NE-OPS program in Philadelphia PA, during summer of 1999 and 2001, have been analyzed and compared with other measurements such as PM sampling and particle size measurements.

  18. Airborne Lidar measurements of aerosols, mixed layer heights, and ozone during the 1980 PEPE/NEROS summer field experiment

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Shipley, S. T.; Butler, C. F.; Ismail, S.

    1985-01-01

    A detailed summary of the NASA Ultraviolet Differential Absorption Lidar (UV DIAL) data archive obtained during the EPA Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NEROS) Summer Field Experiment Program (July through August 1980) is presented. The UV dial data set consists of remote measurements of mixed layer heights, aerosol backscatter cross sections, and sequential ozone profiles taken during 14 long-range flights onboard the NASA Wallops Flight Center Electra aircraft. These data are presented in graphic and tabular form, and they have been submitted to the PEPE/NEROS data archive on digital magnetic tape. The derivation of mixing heights and ozone profiles from UV Dial signals is discussed, and detailed intercomparisons with measurements obtained by in situ sensors are presented.

  19. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Chance, K.; González Abad, G.; Liu, C.; Zoogman, P.; Cole, J.; Delker, T.; Good, W.; Murcray, F.; Ruppert, L.; Soo, D.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Loughner, C. P.; Pickering, K. E.; Herman, J. R.; Beaver, M. R.; Long, R. W.; Szykman, J. J.; Judd, L. M.; Kelley, P.; Luke, W. T.; Ren, X.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a testbed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas in September 2013. Measurements of backscattered solar radiation between 420-465 nm collected on four days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 molecules cm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.91 for the most polluted day). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.84, slope = 0.94). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  20. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.

    2016-06-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  1. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds.

    PubMed

    Liu, Bo; Wang, Zhien; Cai, Yong; Wechsler, Perry; Kuestner, William; Burkhart, Matthew; Welch, Wayne

    2014-08-25

    A compact airborne Raman lidar system, which can perform water vapor and aerosol measurements both during nighttime and daytime is described. The system design, setup and the data processing methods are described in the paper. The Raman lidar was tested on University of Wyoming King Air research aircraft (UWKA) during the Wyoming King Air PBL Exploratory Experiment (KAPEE) in 2010. An observation showing clouds, aerosols and a dry line is presented to illustrate the lidar detection capabilities. Comparisons of the water vapor and aerosol measurements using the Raman lidar and other in situ airborne instruments show good agreement. PMID:25321266

  2. Ground-Based Lidar Measurements of Aerosols During ACE-2 Instrument Description, Results, and Comparisons with Other Ground-Based and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Maring, Hal; Smirnov, Alexander; Holben, Brent; Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.; Formenti, Paolo

    2000-01-01

    A micro-pulse lidar system (MPL) was used to measure the vertical and horizontal distribution or aerosols during the Aerosol Characterization Experiment 2 (ACE-2) in June and July of 1997. The MPL measurements were made at the Izana observatory (IZO), a weather station located on a mountain ridge (28 deg 18'N, 16 deg 30'W, 2367 m asl) near the center of the island of Tenerife, Canary Islands. The MPL was used to acquire aerosol backscatter, extinction, and optical depth profiles for normal background periods and periods influenced by Saharan dust from North Africa. System tests and calibration procedures are discussed, and in analysis of aerosol optical profiles acquired during ACE-2 is presented. MPL data taken during normal IZO conditions (no dust) showed that upslope aerosols appeared during the day and dissipated at night and that the layers were mostly confined to altitudes a few hundred meters above IZO. MPL data taken during a Saharan dust episode on 17 July showed that peak aerosol extinction values were an order of magnitude greater than molecular scattering over IZO. and that the dust layers extended to 5 km asl. The value of the dust backscatter-extinction ratio was determined to be 0.027 + 0.007 per sr. Comparisons of the MPL data with data from other co-located instruments showed good agreement during the dust episode.

  3. Ground-Based Lidar Measurements of Aerosols During ACE-2: Instrument Description, Results, and Comparisons with Other Ground-Based and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Maring, Hal; Smirnov, Alexander; Holben, Brent; Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.

    2000-01-01

    A micro-pulse lidar system (MPL) was used to measure the vertical and horizontal distribution of aerosols during the Aerosol Characterization Experiment 2 (ACE-2) in June and July of 1997. The MPL measurements were made at the Izana observatory (IZO), a weather station located on a mountain ridge (28 deg 18 min N, 16 deg 30 min W, 2367 m asl) near the center of the island of Tenerife, Canary Islands. The MPL was used to acquire aerosol backscatter, extinction, and optical depth profiles for normal background periods and periods influenced by Saharan dust from North Africa. System tests and calibration procedures are discussed, and an analysis of aerosol optical profiles acquired during ACE-2 is presented. MPL data taken during normal IZO conditions (no dust) showed that upslope aerosols appeared during the day and dissipated at night and that the layers were mostly confined to altitudes a few hundred meters above IZO. MPL data taken during a Saharan dust episode on 17 July showed that peak aerosol extinction values were an order of magnitude greater than molecular scattering over IZO, and that the dust layers extended to 5 km asl. The value of the dust backscatter-extinction ratio was determined to be 0.027 +/- 0.007 sr(exp -1). Comparisons of the MPL data with data from other collocated instruments showed good agreement during the dust episode.

  4. Assimilating airborne gas and aerosol measurements into HYSPLIT: a visualization tool for simultaneous assessment of air mass history and back trajectory reliability

    NASA Astrophysics Data System (ADS)

    Freitag, S.; Clarke, A. D.; Howell, S. G.; Kapustin, V. N.; Campos, T.; Brekhovskikh, V. L.; Zhou, J.

    2013-06-01

    Backward trajectories are commonly used to gain knowledge about the history of airborne observations in terms of possible processes along their path as well as feasible source regions. Here, we describe a refined approach that incorporates airborne gas, aerosol, and environmental data into back trajectories and show how this technique allows for simultaneous assessment of air mass history and back trajectory reliability without the need of calculating trajectory errors. We use the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and add a simple semi-automated computing routine to facilitate high-frequency coverage of back trajectories initiated along the flight track every 10 s. We integrate our in-situ physiochemical data by color-coding each of these trajectories with its corresponding in-situ tracer values measured at the back trajectory start points along the flight path. The unique color for each trajectory aids assessment of trajectory reliability through the visual clustering of air mass pathways of similar coloration. Moreover, marked changes in trajectories associated with marked changes evident in measured physiochemical or thermodynamic properties of an air mass add credence to trajectories, particularly when these air mass properties are linked to trajectory features characteristic of recognized sources or processes. This visual clustering of air mass pathways is of particular value for large-scale 3-D flight tracks common to aircraft experiments where air mass features of interest are often spatially distributed and temporally separated. The cluster-visualization tool used here reveals most back trajectories with pollution signatures measured in the Central Equatorial Pacific reach back to sources on the South American continent over 10 000 km away and 12 days back in time, e.g. the Amazonian basin. We also demonstrate the distinctions in air mass properties between these and trajectories that penetrate deep convection in the

  5. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  6. Variability of aerosol properties and Planetary Boundary Layer heights from airborne High Spectral Resolution Lidar, ground-based measurements, and the WRF model during CalNex and CARES

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Swanson, A. J.; Ferrare, R. A.; Burton, S. P.; Hair, J. W.; Hostetler, C. A.; Rogers, R.; Fast, J. D.; Berg, L. K.; Pekour, M. S.; Shaw, W. J.; Zaveri, R. A.; Haman, C. L.; Cook, A.; Harper, D.

    2011-12-01

    The NASA airborne High Spectral Resolution Lidar (HSRL) was deployed on board the NASA Langley Research Center's B200 aircraft to California in May and June of 2010 to aid in characterizing aerosol properties during the CalNex and CARES field missions. Measurements of aerosol extinction (at 532 nm), backscatter (at 532 and 1064 nm), and depolarization (at 532 and 1064 nm) during 31 flights and nearly 100 hours, many in coordination with other participating research aircraft, satellites, and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as properties and variability of the Planetary Boundary Layer (PBL). This work examines the variability of the extensive (dependent on aerosol type and number density) and intensive (dependent on aerosol type only) aerosol properties to aid in describing the broader context of aerosol behavior within and nearby the Sacramento and Los Angeles Basin regions. PBL heights derived from HSRL measurements will be compared with those produced by local ceilometers, radiosondes, and the Weather Research and Forecasting (WRF) model. Spatial and temporal averages of aerosol properties will be presented.

  7. Aerosol backscatter measurements at 10.6 microns with airborne and ground-based CO2 Doppler lidars over the Colorado High Plains. I - Lidar intercomparison

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.; Rothermel, Jeffry; Vaughan, J. Michael; Brown, Derek W.; Post, Madison J.

    1991-01-01

    An airborne continuous-wave (CW) focused CO2 Doppler lidar and a ground-based pulsed CO2 Doppler lidar were to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6-micron wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter, the two lidars show good agreement, with differences usually less than about 50 percent near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients, the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  8. Aerosol Backscatter from Airborne Continuous Wave CO2 Lidars over Western North America and the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1999-01-01

    Aerosol backscatter measurements using two continuous wave CO2 Doppler lidars were obtained over western North America and the Pacific Ocean during a 1995 NASA airborne mission. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/m.sr, consistent with previous lidar datasets.

  9. Combining airborne gas and aerosol measurements with HYSPLIT: a visualization tool for simultaneous evaluation of air mass history and back trajectory consistency

    NASA Astrophysics Data System (ADS)

    Freitag, S.; Clarke, A. D.; Howell, S. G.; Kapustin, V. N.; Campos, T.; Brekhovskikh, V. L.; Zhou, J.

    2014-01-01

    The history of air masses is often investigated using backward trajectories to gain knowledge about processes along the air parcel path as well as possible source regions. Here, we describe a refined approach that incorporates airborne gas, aerosol, and environmental data into back trajectories and show how this technique allows for simultaneous evaluation of air mass history and back trajectory reliability without the need to calculate trajectory errors. We use the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and add a simple semi-automated computing routine to facilitate high-frequency coverage of back trajectories initiated along free tropospheric (FT) flight tracks and profiles every 10 s. We integrate our in situ physiochemical data by color-coding each of these trajectories with its corresponding in situ tracer values measured at the back trajectory start points along the flight path. The unique color for each trajectory aids assessment of trajectory reliability through the visual clustering of air mass pathways of similar coloration. Moreover, marked changes in trajectories associated with marked changes evident in measured physiochemical or thermodynamic properties of an air mass add credence to trajectories. This is particularly true when these air mass properties are linked to trajectory features characteristic of recognized sources or processes. This visual clustering of air mass pathways is of particular value for large-scale 3-D flight tracks common to aircraft experiments where air mass features of interest are often spatially distributed and temporally separated. The cluster-visualization tool used here reveals that most FT back trajectories with pollution signatures measured in the central equatorial Pacific reach back to sources on the South American continent over 10 000 km away and 12 days back in time, e.g., the Amazonian basin. We also demonstrate the distinctions in air mass properties between these and trajectories

  10. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a

  11. Comparison of Aerosol Classification from Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Omar, A. H.; Hostetler, C. A.; Hair, J. W.; Rogers, R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.

    2012-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 349 science flights in 19 field missions across North America since 2006. The extinction-to-backscatter ratio ("lidar ratio"), aerosol depolarization ratios, and backscatter color ratio measurements from HSRL-1 are scale-invariant parameters that depend on aerosol type but not concentration. These four aerosol intensive parameters are combined to qualitatively classify HSRL aerosol measurements into eight separate composition types. The classification methodology uses models formed from "training cases" with known aerosol type. The remaining measurements are then compared with these models using the Mahalanobis distance. Aerosol products from the CALIPSO satellite include aerosol type information as well, which is used as input to the CALIPSO aerosol retrieval. CALIPSO aerosol types are inferred using a mix of aerosol loading-dependent parameters, estimated aerosol depolarization, and location, altitude, and surface type information. The HSRL instrument flies beneath the CALIPSO satellite orbit track, presenting the opportunity for comparisons between the HSRL aerosol typing and the CALIPSO Vertical Feature Mask Aerosol Subtype product, giving insight into the performance of the CALIPSO aerosol type algorithm. We find that the aerosol classification from the two instruments frequently agree for marine aerosols and pure dust, and somewhat less frequently for pollution and smoke. In addition, the comparison suggests that the CALIPSO polluted dust type is overly inclusive, encompassing cases of dust combined with marine aerosol as well as cases without much evidence of dust. Qualitative classification of aerosol type combined with quantitative profile measurements of aerosol backscatter and extinction has many useful

  12. Vertical Aerosol Backscatter Variability from an Airborne Focused Continuous Wave CO2 Lidar

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1998-01-01

    Atmospheric aerosol backscatter measurements using a continuous wave focused Doppler lidar at 9.1 micron wavelength were obtained over western North America and the Pacific Ocean during 13 - 26 September, 1995 as part of National Aeronautics and Space Administration's (NASA) Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on board the NASA DC8 aircraft. Backscatter variability was measured for approximately 52 flight hours, covering equivalent horizontal distance of approximately 25,000 km in the troposphere. Quasi-vertical backscatter profiles were also obtained during various ascents and descents which ranged between approximately 0.1 to 12.0 km altitude. Aerosol haze layers were encountered at different altitudes. Similarities and differences for aerosol loading over land and over ocean were observed. A mid-tropospheric aerosol backscatter background mode was found with modal value approximately 1O(exp -10)/m/sr, consistent with previous airborne and ground-based datasets.

  13. Continuous aerosol size separator using inertial microfluidics and its application to airborne bacteria and viruses.

    PubMed

    Hong, Seung Chan; Kang, Joon Sang; Lee, Jung Eun; Kim, Sang Soo; Jung, Jae Hee

    2015-04-21

    A microchannel-based aerosol size separator that separates submicron aerosols according to particle inertial differences and Dean vortices in the airflow was developed for use in low-cost, portable, real-time aerosol collectors, detectors, concentrators and other such devices. The microfluidic inertial separator was furthermore applied to simultaneously separate airborne microorganisms by size, such as airborne viruses and bacteria from larger aerosols and viral particles from bacterial cells. The entire system was designed by numerical simulation and analysis. In addition, its performance was evaluated experimentally using airborne standard polystyrene latex (PSL) particles. In addition, two airborne microorganisms, Adenovirus 40 and Staphylococcus epidermidis, were used to verify the performance of the separator. The separation ratios of each bioaerosol were measured using real-time aerosol measurement instruments and quantitative polymerase chain reaction (qPCR) analysis. The system was composed of two 90° curved microchannels and three outlets for separating the virus, bacteria and larger particles. About 70% of 3 μm particles but almost none of the bioaerosols were separated out at the first outlet. In addition, more than 70% of S. epidermidis and ~70% Adenovirus were separated out at the second and third outlets, respectively. Unwanted particle loss in the system was less than 10%. The results indicated not only good separation of bioaerosols but also the potential of our separator for use in bioaerosol applications. PMID:25714231

  14. Detailed Aerosol Characterization using Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, Otto; di Noia, Antonio; Stap, Arjen; Rietjens, Jeroen; Smit, Martijn; van Harten, Gerard; Snik, Frans

    2016-04-01

    Anthropogenic aerosols are believed to cause the second most important anthropogenic forcing of climate change after greenhouse gases. In contrast to the climate effect of greenhouse gases, which is understood relatively well, the negative forcing (cooling effect) caused by aerosols represents the largest reported uncertainty in the most recent assessment of the International Panel on Climate Change (IPCC). To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. There is growing consensus in the aerosol remote sensing community that multi-angle measurements of intensity and polarization are essential to unambiguously determine all relevant aerosol properties. This presentations adresses the different aspects of polarimetric remote sensing of atmospheric aerosols, including retrieval algorithm development, validation, and data needs for climate and air quality applications. During past years, at SRON-Netherlands Instite for Space Research retrieval algorithms have been developed that make full use of the capabilities of polarimetric measurements. We will show results of detailed aerosol properties from ground-based- (groundSPEX), airborne- (NASA Research Scanning Polarimeter), and satellite (POLDER) measurements. Also we will discuss observational needs for future instrumentation in order to improve our understanding of the role of aerosols in climate change and air quality.

  15. Airborne LIDAR Measurements of Water Vapor, Ozone, Clouds, and Aerosols in the Tropics Near Central America During the TC4 Experiment

    NASA Technical Reports Server (NTRS)

    Kooi, Susan; Fenn, Marta; Ismail, Syed; Ferrare, Richard; Hair, John; Browell, Edward; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Simpson, Steven

    2008-01-01

    Large scale distributions of ozone, water vapor, aerosols, and clouds were measured throughout the troposphere by two NASA Langley lidar systems on board the NASA DC-8 aircraft as part of the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4) over Central and South America and adjacent oceans in the summer of 2007. Special emphasis was placed on the sampling of convective outflow and transport, sub-visible cirrus clouds, boundary layer aerosols, Saharan dust, volcanic emissions, and urban and biomass burning plumes. This paper presents preliminary results from this campaign, and demonstrates the value of coordinated measurements by the two lidar systems.

  16. Retrieval of Aerosol Within Cloud Fields Using the MODIS Airborne Simulator (MAS)

    NASA Astrophysics Data System (ADS)

    Munchak, L. A.; Levy, R. C.; Mattoo, S.; Patadia, F.; Wilcox, E. M.; Marshak, A.

    2015-12-01

    Passive satellite remote sensing has become essential for obtaining global information about aerosol properties, including aerosol optical depth (AOD) and aerosol fine mode fraction (FMF). However, due to the spatial resolution of satellite aerosol products (typically 3 km and larger), observing aerosol within dense partly cloudy fields is difficult from space. Here, we apply an adapted version of the MODIS Collection 6 dark target algorithm to the 50-meter MODIS airborne simulator retrieved reflectances measured during the SEAC4RS campaign during 2013 to robustly retrieve aerosol with a 500 m resolution. We show good agreement with AERONET and MODIS away from cloud, suggesting that the algorithm is working as expected. However, closer to cloud, significant AOD increases are observed. We investigate the cause of these AOD increases, including examining the potential for undetected cloud contamination, reflectance increases due to unconsidered 3D radiative effects, and the impact of humidification on aerosol properties. In combination with other sensors that flew in SEAC4RS, these high-resolution observations of aerosol in partly cloudy fields can be used to characterize the radiative impact of the "twilight zone" between cloud and aerosol which is typically not considered in current estimates of direct aerosol radiative forcing.

  17. STATISTICAL MODEL OF LABORATORY DEATH RATE MEASUREMENTS FOR AIRBORNE BACTERIA

    EPA Science Inventory

    From 270 published laboratory airborne death rate measurements, two regression models relating the death rate constant for 15 bacterial species to aerosol age in the dark, Gram reaction, temperature, and an evaporation factor which is a function of RH and temperature were obtaine...

  18. Satellite and airborne aerosol remote sensing in the presence of clouds

    NASA Astrophysics Data System (ADS)

    Redemann, Jens; Russell, Philip; Zhang, Qin; Livingston, John; Shinozuka, Yohei; Mattoo, Shana; Remer, Lorraine

    2010-05-01

    Our ability to assess aerosol effects on climate using remote sensing data depends on the discrimination between cloudy and cloud-free viewing elements. Aerosol microphysical and related radiative properties have been shown to vary rapidly in the immediate vicinity of clouds, a circumstance that further complicates the distinction of cloudy from cloud-free pixels and the assessment of direct and indirect aerosol effects on climate. In this paper we will discuss the utility of simultaneous airborne and satellite aerosol remote sensing and each method's caveats in the presence of clouds. In a few select case studies, we will show how MODIS aerosol retrievals vary as a function of distance from clouds and we will discuss which of the variations found in the MODIS aerosol data can be verified using airborne remote sensing observations. In a case study of aerosol measurements near cloud edges within a dissipating stratiform cloud deck near the California coast in March 2004, we find that the MODIS-derived visible AOD agrees well with the sunphotometer-derived measurements, but that the SWIR (1240-2130nm) AOD increases near cloud edges are of the order of 0.03 and as such three times as large as the sunphotometer-derived values. The implications for the recently discussed "bluing" of aerosols near cloud edges, i.e., a preferential apparent increase in the visible reflectances of clear-sky pixels due to 3-D radiative transfer effects in the vicinity of clouds, are discussed. From a compilation of MODIS validation studies using airborne sunphotometer measurements in a large number of field campaigns we show that the agreement between sunphotometer and MODIS derived aerosol properties varies only slightly with the satellite-derived cloud fraction. We show further how the comparison of MODIS AOD to AOD derived from the CALIPSO backscatter lidar shows a significant dependence on cloud fraction, suggesting that the current version CALIPSO and MODIS data sets can only be

  19. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

  20. Measurements of HNO3, SO2 High Resolution Aerosol SO4 (sup 2-), and Selected Aerosol Species Aboard the NASA DC-8 Aircraft: During the Transport and Chemical Evolution Over the Pacific Airborne Mission (TRACE-P)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    2004-01-01

    The UNH investigation during TRACE-P provided measurements of selected acidic gases and aerosol species aboard the NASA DC-8 research aircraft. Our investigation focused on measuring HNO3, SO2, and fine (less than 2 microns) aerosol SO4(sup 2-) with two minute time resolution in near-real-time. We also quantified mixing ratios of aerosol ionic species, and aerosol (210)Pb and (7)Be collected onto bulk filters at better than 10 minute resolution. This suite of measurements contributed extensively to achieving the principal objectives of TRACE-P. In the context of the full data set collected by experimental teams on the DC-8, our observations provide a solid basis for assessing decadal changes in the chemical composition and source strength of Asian continental outflow. This region of the Pacific should be impacted profoundly by Asian emissions at this time with significant degradation of air quality over the next few decades. Atmospheric measurements in the western Pacific region will provide a valuable time series to help quantify the impact of Asian anthropogenic activities. Our data also provide important insight into the chemical and physical processes transforming Asian outflow during transport over the Pacific, particularly uptake and reactions of soluble gases on aerosol particles. In addition, the TRACE-P data set provide strong constraints for assessing and improving the chemical fields simulated by chemical transport models.

  1. ACID AEROSOL MEASUREMENT WORKSHOP

    EPA Science Inventory

    This report documents the discussion and results of the U.S. EPA Acid Aerosol Measurement Workshop, conducted February 1-3, 1989, in Research Triangle Park, North Carolina. t was held in response to recommendations by the Clean Air Scientific Advisory Committee (CASAC) regarding ...

  2. Airborne water vapor DIAL research: System development and field measurements

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Chyba, Thomas H.; Grossmann, Benoist E.; Butler, Carolyn F.; Fenn, Marta A.; Mayor, Shane D.; Ismail, Syed; Grant, William B.

    1992-01-01

    This paper describes the airborne differential absorption lidar (DIAL) system developed at the NASA Langley Research Center for remote measurement of water vapor (H2O) and aerosols in the lower atmosphere. The airborne H2O DIAL system was flight tested aboard the NASA Wallops Flight Facility (WFF) Electra aircraft in three separate field deployments between 1989 and 1991. Atmospheric measurements were made under a variety of atmospheric conditions during the flight tests, and several modifications were implemented during this development period to improve system operation. A brief description of the system and major modifications will be presented, and the most significant atmospheric observations will be described.

  3. Aerosol Backscatter from Airborne Continuous Wave CO2 Lidars Over Western North America and the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1999-01-01

    Atmospheric aerosol backscatter, beta, variability gives a direct indication of aerosol loading. Since aerosol variability is governed by regional sources and sinks as well as affected by its transport due to meteorological conditions, it is important to characterize this loading at different locations and times. Lidars are sensitive instruments that can effectively provide high-resolution, large-scale sampling of the atmosphere remotely by measuring aerosol beta, thereby capturing detailed temporal and spatial variability of aerosol loading, Although vertical beta profiles are usually obtained by pulsed lidars, airborne-focused CW lidars, with high sensitivity and short time integration, can provide higher resolution sampling in the vertical, thereby revealing detailed structure of aerosol layers. During the 1995 NASA Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission, NASA MSFC airborne-focused CW CO2 Doppler lidars, operating at 9.1 and 10.6-micrometers wavelength, obtained high resolution in situ aerosol beta measurements to characterize aerosol variability. The observed variability in beta at 9.1-micrometers wavelength with altitude is presented as well as comparison with some pulsed lidar profiles.

  4. Airborne Sunphotometry of African Dust and Marine Boundary Layer Aerosols in PRIDE

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Redemann, Jens; Russell, Philip; Schmid, Beat; Reid, Jeff; Pilewskie, Peter; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during summer 2000 to study the radiative, microphysical and transport properties of Saharan dust in the Caribbean region. During PRIDE, NASA Ames Research Center's six-channel airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane based at Roosevelt Roads Naval Station on the northeast coast of Puerto Rico. AATS-6 measurements were taken during 21 science flights off the coast of Puerto Rico in the western Caribbean. Data were acquired within and above the Marine Boundary Layer (MBL) and the Saharan Aerosol Layer (SAL) up to 5.5 km altitude tinder a wide range of dust loadings. Aerosol optical depth (AOD) spectra and columnar water vapor (CWV) values have been calculated from the AATS-6 measurements by using sunphotometer calibration data obtained at Mauna Loa Observatory (3A kin ASL) before (May) and after (October) PRIDE. Mid-visible AOD values measured near the surface during PRIDE ranged from 0.07 on the cleanest day to 0.55 on the most turbid day. Values measured above the MBL were as high as 0.35; values above the SAL were as low as 0.01. The fraction of total column AOD due to Saharan dust cannot be determined precisely from AATS-6 AOD data alone due to the uncertainty in the extent of vertical mixing of the dust down through the MBL. However, analyses of ground-based and airborne in-situ aerosol sampling measurements and ground-based aerosol lidar backscatter data should yield accurate characterization of the vertical mixing that will enable calculation of the Saharan dust AOD component from the sunphotometer data. Examples will be presented showing measured AATS-6 AOD spectra, calculated aerosol extinction and water vapor density vertical profiles, and aerosol size distributions retrieved by inversion of the AOD spectra. Near sea-surface AOD spectra acquired by AATS-6 during horizontal flight legs at 30 m ASL are available for validation of AOD derived from coincident

  5. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  6. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  7. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a

  8. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.; Russell, P.; Livingston, J.; Schmid, B.; Holben, B.; Remer, L.; Smirnov, A.; Hobbs, P. V.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and Sun photometers during TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment). Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA/GSFC Scanning Raman Lidar (SRL) system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W), are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and rms differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a)=60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements.

  9. Multi-wavelength Airborne High Spectral Resolution Lidar Observations of Aerosol Above Clouds in California during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Hostetler, C. A.; Burton, S. P.; Ferrare, R. A.; Rogers, R. R.; Mueller, D.; Chemyakin, E.; Cook, A. L.; Harper, D. B.; Ziemba, L. D.; Beyersdorf, A. J.; Anderson, B. E.

    2013-12-01

    Accurately representing the vertical profile of aerosols is important for determining their radiative impact, which is still one of the biggest uncertainties in climate forcing. Aerosol radiative forcing can be either positive or negative depending on aerosol absorption properties and underlying albedo. Therefore, accurately characterizing the vertical distribution of aerosols, and specifically aerosols above clouds, is vital to understanding climate change. Unlike passive sensors, airborne lidar has the capability to make vertically resolved aerosol measurements of aerosols above and between clouds. Recently, NASA Langley Research Center has built and deployed the world's first airborne multi-wavelength High Spectral Resolution Lidar, HSRL-2. The HSRL-2 instrument employs the HSRL technique to measure extinction at both 355 nm and 532 nm and also measures aerosol depolarization and backscatter at 355 nm, 532 nm and 1064 nm. Additional HSRL-2 data products include aerosol type and range-resolved aerosol microphysical parameters (e.g., effective radius, number concentration, and single scattering albedo). HSRL-2 was deployed in the San Joaquin Valley, California, from January 16 to February 6, 2013, on the DISCOVER-AQ field campaign (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality). On February 6, the observation region was mostly cloudy, and HSRL-2 saw two distinct aerosol layers above the clouds. One layer was aged boundary-layer pollution located just above cloud top at approximately 1.5 km above sea level. An aged smoke layer was also observed over land and over the ocean at altitudes 4-7 km ASL. In this study, we will show HSRL-2 products for these cases, and compare them with airborne in situ measurements of the 1.5-km layer from a coincident flight of the NASA P3B. We will also compare and contrast the HSRL-2 measurements of these two aerosol layers with each other and the clear-air boundary

  10. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  11. Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land.

    PubMed

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550 nm (τ(550)) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ(550) with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ(550) and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ(550) retrieved by Module A (r(2) = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r(2) ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  12. Airborne Trace Gas and Aerosol Measurements in Several Shale Gas Basins during the SONGNEX (Shale Oil and Natural Gas Nexus) Campaign 2015

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Trainer, M.; De Gouw, J. A.

    2015-12-01

    Oil and natural gas from tight sand and shale formations has increased strongly over the last decade. This increased production has been associated with emissions of methane, non-methane hydrocarbons and other trace gases to the atmosphere, which are concerns for air quality, climate and air toxics. The NOAA Shale Oil and Natural Gas Nexus (SONGNEX) aircraft campaign took place in 2015, when the NOAA WP-3 aircraft conducted 20 research flights between March 19 and April 27, 2015 in the following shale gas regions: Denver-Julesberg, Uintah, Upper Green River, San Juan, Bakken, Barnett, Eagle Ford, Haynesville, Woodford, and Permian. The NOAA P3 was equipped with an extensive set of gas phase measurements, including instruments for methane, ethane, CO, CO2, a new H3O+CIMS, canister and cartridge samples for VOCs, HCHO, glyoxal, HNO3, NH3, NOx, NOy, PANs, ozone, and SO2. Aerosol number and size distributions were also measured. This presentation will focus on an overview of all the measurements onboard the NOAA WP-3 aircraft and discuss the differences between the shale gas regions. Due to a drop in oil prices, drilling for oil decreased in the months prior to the mission, but nevertheless the production of oil and natural gas were near the all-time high. Many of the shale gas basins investigated during SONGNEX have quite different characteristics. For example, the Permian Basin is a well-established field, whereas the Eagle Ford and the Bakken saw an almost exponential increase in production over the last few years. The basins differ by the relative amounts of natural gas versus oil that is being produced. Previous work had shown a large variability in methane emissions relative to the production (leak rate) between different basins. By including more and qualitatively different basins during SONGNEX, the study has provided an extensive data set to address how emissions depend on raw gas composition, extraction techniques and regulation. The influence of these

  13. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  14. Light absorption by airborne aerosols: comparison of integrating plate and spectrophone techniques.

    PubMed

    Szkarlat, A C; Japar, S M

    1981-04-01

    An excellent correlation between the integrating plate (IP) and the photoacoustic methods for measuring aerosol light absorption has been found for airborne graphitic carbon in diesel vehicle exhaust. However, the regression coefficient depends on the orientation of the Teflon membrane filter during the IP analysis. With the collected particulates between the filter and the integrating plate, the IP response is 1.85 times that for the filter reversed. In either case the response ratio of the IP method to the photoacoustic method is >1.0, i.e., 2.43 vs 1.30. The IP calibration is also probably dependent on the nature of the filter medium. PMID:20309278

  15. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements.

    PubMed

    Wang, P H; McCormick, M P; McMaster, L R; Chu, W P; Swissler, T J; Osborn, M T; Russell, P B; Oberbeck, V R; Livingston, J; Rosen, J M; Hofmann, D J; Grams, G W; Fuller, W H; Yue, G K

    1989-06-20

    This paper describes an investigation of the comprehensive aerosol correlative measurement experiments conducted between November 1984 and July 1986 for satellite measurement program of the Stratospheric Aerosol and Gas Experiment (SAGE II). The correlative sensors involved in the experiments consist of the NASA Ames Research Center impactor/laser probe, the University of Wyoming dustsonde, and the NASA Langley Research Center airborne 14-inch (36 cm) lidar system. The approach of the analysis is to compare the primary aerosol quantities measured by the ground-based instruments with the calculated ones based on the aerosol size distributions retrieved from the SAGE II aerosol extinction measurements. The analysis shows that the aerosol size distributions derived from the SAGE II observations agree qualitatively with the in situ measurements made by the impactor/laser probe. The SAGE II-derived vertical distributions of the ratio N0.15/N0.25 (where Nr is the cumulative aerosol concentration for particle radii greater than r, in micrometers) and the aerosol backscatter profiles at 0.532- and 0.6943-micrometer lidar wavelengths are shown to agree with the dustsonde and the 14-inch (36-cm) lidar observations, with the differences being within the respective uncertainties of the SAGE II and the other instruments. PMID:11539801

  16. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  17. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  18. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  19. Aerosol-Induced Radiative Flux Changes Off the United States Mid-Atlantic Coast: Comparison of Values Calculated from Sunphotometer and In Situ Data with Those Measured by Airborne Pyranometer

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Hignett, P.; Kinne, S.; Wong, J.; Chien, A.; Bergstrom, R.; Durkee, P.; Hobbs, P. V.

    2000-01-01

    The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) measured a variety of aerosol radiative effects (including flux changes) while simultaneously measuring the chemical, physical, and optical properties of the responsible aerosol particles. Here we use TARFOX-determined aerosol and surface properties to compute shortwave radiative flux changes for a variety of aerosol situations, with midvisible optical depths ranging from 0.06 to 0.55. We calculate flux changes by several techniques with varying degrees of sophistication, in part to investigate the sensitivity of results to computational approach. We then compare computed flux changes to those determined from aircraft measurements. Calculations using several approaches yield downward and upward flux changes that agree with measurements. The agreement demonstrates closure (i.e. consistency) among the TARFOX-derived aerosol properties, modeling techniques, and radiative flux measurements. Agreement between calculated and measured downward flux changes is best when the aerosols are modeled as moderately absorbing (midvisible single-scattering albedos between about 0.89 and 0.93), in accord with independent measurements of the TARPOX aerosol. The calculated values for instantaneous daytime upwelling flux changes are in the range +14 to +48 W/sq m for midvisible optical depths between 0.2 and 0.55. These values are about 30 to 100 times the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger flux changes in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce major aerosol radiative forcing events and contribute to any global-average climate effect.

  20. Horizontal variability of aerosol optical properties observed during the ARCTAS airborne experiment

    NASA Astrophysics Data System (ADS)

    Shinozuka, Y.; Redemann, J.; Russell, P. B.; Livingston, J. M.; Clarke, A. D.; Podolske, J. R.

    2010-12-01

    The properties of tropospheric aerosol and gas vary within a satellite grid cell and between ground-based instruments. This hinders comparison between satellite and suborbital measurements of different spatial scales as well as their applications to climate and air quality studies. This paper quantifies the realistic range of the variability in aerosol optical depth (AOD), its Angstrom exponent, in-situ extinction coefficient and carbon monoxide mixing ratio over horizontal distances of 1-30 km, using measurements from the ARCTAS airborne experiment. The Canada phase in June and July 2008, in which smoke from local forest fires was sampled, likely represents the most heterogeneous of the ambient aerosol environments common over the globe. The relative standard deviation (stdrel) of AOD measured with the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) has median 19.4% (at 499 nm) among thousands of horizontal 20 km segments. For 6 km segments the analogous median is 9.1%. Another measure of horizontal variability, the autocorrelation (r) of AOD499 across 20 km and 6 km segments is 0.37 and 0.71, respectively. In contrast, the Alaska phase in April 2008, which sampled particles transported from Asia, is presumably among the most homogeneous environments. The median stdrel is 3.0% and r is 0.90, both over 30 km, only slightly different from those for 1 km (stdrel=0.4% and r=1.00). r in the Canada phase is ~0.2 less for in situ extinction coefficient (from a nephelometer and a particle soot absorption photometer) than for the AOD. It is ~0.1 less than for the carbon monoxide mixing ratio. The trends of horizontal variability with distance and aerosol environment are different for the wavelength dependence and the humidity response of light scattering. We discuss challenges in estimating aerosol optical properties, particle size and chemical composition from measurements at a distant location. The statistical parameters thus help interpret existing remote

  1. An algorithm for simultaneous inversion of aerosol properties and surface reflectance from airborne GeoTASO hyperspectral data

    NASA Astrophysics Data System (ADS)

    Hou, W.; Wang, J.; Xu, X.; Ding, S.; Han, D.; Leitch, J. W.; Delker, T.; Chen, G.

    2014-12-01

    This paper presents an inversion method to retrieve aerosol properties from the hyperspectral data collected by airborne GeoTASO (Geostationary Trance gas and Aerosol Sensor Optimization). Mounted on the NASA HU-25C aircraft, GeoTASO measures radiation in 1000 spectral bands from 415 nm to 696 nm, and is a prototype for the TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument. It flew over Houston during September 2013 and gathered several days' of airborne hyperspectral remote sensing data for our research. Our inversion method, which is based on the optimization theory and different from the traditional lookup table (LUT) retrieval technique, can simultaneously retrieve parameters of atmospheric aerosols such as the aerosol optical depth and other aerosol parameters, as well as the surface reflectance albedo. To provide constraints of hyperspectral surface reflectance in the inversion, we first conduct principal component analysis (PCA) using 46 reflectance spectra of various plants and vegetation to identify the most influential components. With the first six principal components and the corresponding calculated weight vector, the spectra could be reconstructed with an accuracy of 1%. UNL-VRTM (UNified Linearized Radiative Transfer Model) is employed for forward model calculation, and its outputs include not only the Stokes 4-vector elements, but also their sensitivities (Jacobians) with respect to the aerosol properties parameters and the principal components of surface spectral reflectance. The inversion is carried out with optimization algorithm L-BFGS-B (Large scale BFGS Bound constrained), and is conducted iteratively until the modeled spectral radiance fits with GeoTASO measurements. Finally, the retrieval results of aerosol optical depth and other aerosol parameters are compared against those retrieved by AEROENT and/or in situ measurements during the aircraft campaign.

  2. A Characterization of Arctic Aerosols as Derived from Airborne Observations and their Influence on the Surface Radiation Budget

    NASA Astrophysics Data System (ADS)

    Herber, A.; Stone, R.; Liu, P. S.; Li, S.; Sharma, S.; Neuber, R.; Birnbaumn, G.; Vitale, V.

    2011-12-01

    Arctic climate is influenced by aerosols that affect the radiation balance at the surface and within the atmosphere. Impacts depend on the composition and concentration of aerosols that determine opacity, which is quantified by the measure of aerosol optical depth (AOD). During winter and spring, aerosols are transported into the Arctic from lower latitude industrial regions. Trans-Arctic flight missions PAMARCMiP (Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project) of the German POLAR 5 during spring 2009 and spring 2011 provided opportunities to collect a comprehensive data set from which properties of the aerosol were derived, including AOD. Measurements were made from near the surface to over 4 km in altitude during flights between Svalbard, Norway and Pt. Barrow, Alaska. These, along with measurements of particle size and concentration, and black carbon content (BC) provide a three-dimensional characterization of the aerosols encountered along track. The horizontal and vertical distribution of Arctic haze, in particular, was evaluated. During April 2009, the Arctic atmosphere was variably turbid with total column AOD (at 500 nm) ranging from ~ 0.12 to > 0.35, where clean background values are typically < 0.06 (Stone et al., 2010). The haze was concentrated within and just above the surface-based temperature inversion layer. Few, distinct elevated aerosol layers were observed, also with an aerosol airborne Lidar. The presence of these haze layers in the Arctic atmosphere during spring reduced the diurnally averaged net shortwave irradiance, which can cause cooling of the surface, depending on its Albedo (reflectivity). An overview of both campaigns will be given with results presented in the context of historical observations and current thinking about the impact aerosols have on the Arctic climate. Stone, R.S., A. Herber, V. Vitale, M. Mazzola, A. Lupi, R. Schnell, E.G. Dutton, P. Liu, S.M. Li, K. Dethloff, A. Lampert, C. Ritter

  3. Evaluation of cell sorting aerosols and containment by an optical airborne particle counter.

    PubMed

    Xie, Mike; Waring, Michael T

    2015-08-01

    Understanding aerosols produced by cell sorting is critical to biosafety risk assessment and validation of containment efficiency. In this study an Optical Airborne Particle Counter was used to analyze aerosols produced by the BD FACSAria and to assess the effectiveness of its aerosol containment. The suitability of using this device to validate containment was directly compared to the Glo-Germ method put forth by the International Society for Advancement of Cytometry (ISAC) as a standard for testing. It was found that high concentrations of aerosols ranging from 0.3 µm to 10 µm can be detected in failure mode, with most less than 5 µm. In most cases, while numerous aerosols smaller than 5 µm were detected by the Optical Airborne Particle Counter, no Glo-Germ particles were detected, indicating that small aerosols are under-evaluated by the Glo-Germ method. The results demonstrate that the Optical Airborne Particle Counter offers a rapid, economic, and quantitative analysis of cell sorter aerosols and represents an improved method over Glo-Germ for the task of routine validation and monitoring of aerosol containment for cell sorting. PMID:26012776

  4. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2016-06-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new instrument has been flown in spring of 2014 for a total of ten flights with 27 flight hours. This IPDA lidar provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the results.

  5. An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Pitts, Michael; Hostetler, Chris; Poole, Lamont; Holden, Carl; Rault, Didier

    2000-01-01

    Atmospheric remote sensing with the O2 A-band has a relatively long history, but most of these studies were attempting to estimate surface pressure or cloud-top pressure. Recent conceptual studies have demonstrated the potential of spaceborne high spectral resolution O2 A-band spectrometers for retrieval of aerosol and cloud optical properties. The physical rationale of this new approach is that information on the scattering properties of the atmosphere is embedded in the detailed line structure of the O2 A-band reflected radiance spectrum. The key to extracting this information is to measure the radiance spectrum at very high spectral resolution. Instrument performance requirement studies indicate that, in addition to high spectral resolution, the successful retrieval of aerosol and cloud properties from A-band radiance spectra will also require high radiometric accuracy, instrument stability, and high signal-to-noise measurements. To experimentally assess the capabilities of this promising new remote sensing application, the NASA Langley Research Center is developing an airborne high spectral resolution A-band spectrometer. The spectrometer uses a plane holographic grating with a folded Littrow geometry to achieve high spectral resolution (0.5 cm-1) and low stray light in a compact package. This instrument will be flown in a series of field campaigns beginning in 2001 to evaluate the overall feasibility of this new technique. Results from these campaigns should be particularly valuable for future spaceborne applications of A-band spectrometers for aerosol and cloud retrievals.

  6. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Marenco, Franco; Marinou, Eleni; Rosenberg, Phil; Solomos, Stavros; Trembath, Jamie; Allan, James; Bacak, Asan; Nenes, Athanasios

    2016-06-01

    Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015).

  7. Airborne Observations of Regional Variations in Fluorescent Aerosol Across the U.S.

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Schwarz, J. P.; Baumgardner, D.; Hernandez, M.; Spracklen, D. V.; Heald, C. L.; Gao, R. S.; Kok, G. L.; McMeeking, G.; McQuaid, J. B.; Fahey, D. W.

    2014-12-01

    Airborne observations of fluorescent aerosol were made aboard an airship during CloudLab, a series of flights that took place in September and October of 2013 and covered a wide band of longitude across the continental US between Florida and California between 28 and 37N latitude. Sampling occurred from near the surface to 1000 m above the ground. A Wide-band Integrated Bioaerosol Sensor (WIBS-4) measured concentrations of supermicron fluorescent particles with average regional concentrations ranging from 1.4±0.7 to 6.8±1.4 x 104 particles m-3 and representing up to 24% of total supermicron particle number. We observed distinct variations in size distributions and fluorescent characteristics in different regions, and attribute these to geographically diverse bioaerosol populations. Fluorescent aerosol signatures detected in the east is largely consistent with those of mold spores observed in a laboratory setting. A shift to larger sizes associated with different fluorescent patterns is observed in the west. Loadings in the desert west were nearly as high as those near the Gulf of Mexico, indicating that bioaerosol is a substantial component of supermicron aerosol both of these humid and arid environments. The observations are compared to simulated fungal and bacterial loadings. Good agreement in both particle size and concentrations is observed in the east. In the west the model underestimates observed concentrations by a factor of 2 to 3 and the prescribed particle sizes are smaller than the observed bioaerosol.

  8. Comparison of Predicted and Measured 2 Micron Aerosol Backscatter from the 1998 ACLAIM Flight Tests

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.; Hannon, Stephen M.; Bogue, Rodney K.

    1999-01-01

    The 1998 Airborne Coherent Lidar for Advanced Inflight Measurements (ACLAIM) flight tests were conducted aboard a well-instrumented research aircraft. This paper presents comparisons of 2 micrometer aerosol backscatter coefficient predictions from aerosol sampling data and mie scattering codes with those produced by the ACLAIM instrument.

  9. A Survey of Airborne Observations of Biological Aerosol over the Continental United States during NASA SEAC4RS

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Venkateswaran, K.; Froyd, K.; Dibb, J. E.; Beyersdorf, A. J.; Chen, G.; Crumeyrolle, S.; Hudgins, C.; Lin, J. J.; Moore, R.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2013-12-01

    Aerosols play a significant role in regulating Earth's climate. Biological aerosols exist in the atmosphere in many forms including bacteria, fungal spores, pollens, viruses, and plant detritus. While laboratory studies have illustrated the potential for biological aerosol to act as efficient ice nuclei, ambient observations do not clearly show the significance of this mechanism for ice formation. Particularly lacking for assessing the role of biological aerosol on cloud processes are observations of the vertical extent of biological aerosol, especially in conjunction with strong convection as a pathway for redistributing particles from surface sources to the free troposphere. An extensive suite of instrumentation measuring aerosol chemical, physical, and optical properties was deployed aboard the NASA DC-8 aircraft during the SEAC4RS campaign (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) in August/September of 2013. Flights were focused on characterizing emissions and transport of aerosols in the Southeast United States, a region characterized by strong biogenic activity. Additionally, convection associated with the North American Monsoon and Atlantic-basin hurricanes was targeted. Airborne biological aerosol was specifically measured during SEAC4RS with a Wideband Integrated Bioaerosol Sensor (WIBS-4A, Droplet Measurement Technologies). WIBS-4A utilizes a single-particle laser-induced fluorescence technique at two excitation wavelengths (280nm and 370nm) to identify biological aerosol, in addition to simultaneous determination of optical size and asymmetry factor for particles with diameter greater than 800nm. Single-particle mass spectrometry coupled with filter-based chemical composition and bacterial speciation analyses will be used to assess relationships with co-emitted mineral dusts. Vertical profiles for the background atmosphere will be compared to profiles influenced by convective storms to assess

  10. Resolving Organized Aerosol Structures (Rolls and Layers) with Airborne Fast Mobility Particle Sizer (FMPS) During MILAGRO/INTEX Campaign

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A.; Zhou, J.; Howell, S.; Shinozuka, Y.; Brekhovskikh, V.; McNaughton, C.

    2007-12-01

    The Hawaii Group for Environmental Aerosol Research [http://www.soest.hawaii.edu/HIGEAR] deployed a wide range of aerosol instrumentation aboard the C-130 and the NASA DC-8 as part of MILAGRO/INTEX. These were designed to provide rapid information on aerosol composition, state of mixing (internal or external), spectral optical properties (scattering and absorption), the humidity dependence of light scattering-f(RH), and the role of condensed species in changing the absorption properties of black carbon (BC) and inferred properties of organic carbon (OC). These measurements included size distributions from about 7 nm up to about 10,000 nm and their volatility at 150, 300 and 400 C; size selected response to heating (volatility) to resolve the state of mixing of the aerosol; continuous measurements of the light scattering and absorption at 3 wavelengths; measurements of the f(RH). We also flew the first airborne deployment of the new Fast Mobility Particle Sizer (FMPS, TSI Inc.) that provided information on rapid (1Hz) size variations in the Aitken mode. This revealed small scale structure of the aerosol and allowed us to examine size distributions varying over space and time associated with mixing processes previously unresolved etc. Rapid measurements during profiles also revealed variations in size over shallow layers. Other dynamic processes included rapid size distribution measurements within orographically induced aerosol layers and size distribution evolution of the nanoparticles formed by nucleation (C-130 flights 5, 6 and 9). Evidence for fluctuations induced by underlying changes in topography was also detected. These measurements also frequently revealed the aerosol variability in the presence of boundary layer rolls aligned along the wind in the Marine Boundary Layer (Gulf region) both with and without visible cloud streets (DC-8 flight 4 and C-130 flight 7). This organized convection over 1-2 km scales influences the mixing processes (entrainment, RH

  11. Studyng the Influence of Aerosols in the Evolution of Cloud Microphysics Procesess Associated with Tropical Cyclone Earl Using Airborne Measurements from the NASA Grip Field Campaing 2010

    NASA Astrophysics Data System (ADS)

    Luna-Cruz, Y.; Heymsfield, A.; Jenkins, G. S.; Bansemer, A.

    2011-12-01

    Cloud microphysics processes are strongly related to tropical cyclones evolution. Although there have been three decades of research dedicated to understand the role of cloud microphysics in tropical cyclogenesis, there are still questions unanswered. With the intention of fulfill the gaps and to better understand the processes involves in tropical storms formation the NASA Genesis and Rapid Intensification Processes (GRIP) field campaign was conducted during the months of August and September of 2010. In-situ microphysical measurements, including particle size distributions, shapes, liquid/ice water content and supercooled liquid water were obtained from the DC-8 aircraft. A total of 139 hrs of flying science modules were performed including sampling of four named storms (Earl, Gaston, Karl and Matthew). One tropical cyclone, Earl, was one of the major hurricanes of the season reaching a category 4 in the Saffir-Simpson scale. Earl emerged from the West Africa on August 22 as an easterly wave, moved westward and became a tropical storm on August 25 before undergoing rapid intensification. This project seeks to explore the lifecycle of hurricane Earl including the genesis and rapid intensification from a microphysics perspective; to develop a better understanding of the relationship between dust from the Saharan Air Layer and cloud microphysics evolution and to develop a better understanding of how cloud microphysics processes interacts and serve as precursor for thermodynamics processes. An overview of the microphysics measurements as well as preliminary results will be presented.

  12. Airborne observations of regional variation in fluorescent aerosol across the United States

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Schwarz, J. P.; Baumgardner, D.; Hernandez, M. T.; Spracklen, D. V.; Heald, C. L.; Gao, R. S.; Kok, G.; McMeeking, G. R.; McQuaid, J. B.; Fahey, D. W.

    2015-02-01

    Airborne observations of fluorescent aerosol were made aboard an airship during CloudLab, a series of flights that took place in September and October of 2013 and covered a wideband of longitude across the continental U.S. between Florida and California and between 28 and 37 N latitudes. Sampling occurred from near the surface to 1000 m above the ground. A Wideband Integrated Bioaerosol Sensor (WIBS-4) measured average concentrations of supermicron fluorescent particles aloft (1 µm to 10 µm), revealing number concentrations ranging from 2.1 ± 0.8 to 8.7 ± 2.2 × 104 particles m-3 and representing up to 24% of total supermicron particle number. We observed distinct variations in size distributions and fluorescent characteristics in different regions, and attribute these to geographically diverse bioaerosol. Fluorescent aerosol detected in the east is largely consistent with mold spores observed in a laboratory setting, while a shift to larger sizes associated with different fluorescent patterns is observed in the west. Fluorescent bioaerosol loadings in the desert west were as high as those near the Gulf of Mexico, suggesting that bioaerosol is a substantial component of supermicron aerosol both in humid and arid environments. The observations are compared to model fungal and bacterial loading predictions, and good agreement in both particle size and concentrations is observed in the east. In the west, the model underestimated observed concentrations by a factor between 2 and 4 and the prescribed particle sizes are smaller than the observed fluorescent aerosol. A classification scheme for use with WIBS data is also presented.

  13. An Airborne Sensor and Retrieval Project for Geostationary Trace Gas and Aerosol Sensor Optimization for the GEO-CAPE Mission

    NASA Astrophysics Data System (ADS)

    Leitch, J. W.; Delker, T.; Chance, K.; Liu, X.; Janz, S. J.; Krotkov, N. A.; Pickering, K. E.; Wang, J.

    2012-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (Geo-TASO) Instrument Incubator project involves spectrometer development, airborne data campaigns, and algorithm testing - all in support of mission risk reduction for the UV-Vis trace air quality measurements for the GEO-CAPE mission. A compact, two-channel spectrometer for spectral radiance measurements is being built and readied for use on NASA's DC-8. The goals of the project are to demonstrate the compact spectrometer concept, provide "satellite analog" measurements in support of air quality measurements and data campaigns, and to advance the retrieval algorithm readiness for the GEO-CAPE mission.

  14. Airborne measurements of spatial NO2 distributions during AROMAT

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Seyler, André; Schönhardt, Anja; Richter, Andreas; Ruhtz, Thomas; Lindemann, Carsten; Burrows, John P.

    2015-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In September 2014 several European research groups conducted the ESA funded Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign to test and intercompare newly developed airborne observation sytsems dedicated to air quality satellite validation studies. The IUP Bremen contributed to this campaign with its Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) on board a Cessna 207 turbo, operated by the FU Berlin. AirMAP allows the retrieval of integrated NO2 column densities in a stripe below the aircraft at a fine spatial resolution of up to 30 x 80 m2, at a typical flight altitude. Measurements have been performed over the city of Bucharest, creating for the first time high spatial resolution maps of Bucharest's NO2 distribution in a time window of approx. 2 hours. The observations were synchronised with ground-based car MAX-DOAS measurements for comparison. In addition, measurements were taken over the city of Berlin, Germany and at the Rovinari power plant, Romania. In this work the results of the research flights will be presented and conclusions will be drawn on the quality of the measurements, their applicability for satellite data validation and possible improvements for future measurements.

  15. AROTEL - An Airborne Ozone, Aerosol and Temperature Lidar

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Burris, John F.; Hoegy, Walter; Heaps, William; Silbert, Donald; Twigg, Laurence; Sumnicht, Grant; Nueber, Roland; Schmidt, Thomas; Hostetler, Chris

    2000-01-01

    The AROTEL instrument is a collaboration between scientists at NASA, Goddard Space Flight Center and NASA Langley Research Center. The instrument was designed and constructed to be flown on the NASA DC-8, and to measure vertical profiles of ozone, temperature and aerosol. The instrument transmits radiation at 308, 355, 532, and 1064 nm. Depolarization is measured at 532 nm. In addition to the transmitted wavelengths, Raman scattered signals at 332 nm and 387 nm are also collected. The instrument was installed aboard the DC-8 for the SAGE III Ozone Loss and Validation Experiment (SOLVE) which deployed from Kiruna, Sweden, during the winter of 1999-2000 to study the polar stratosphere. During this time, profile measurements of polar stratospheric clouds, ozone and temperature were made. This paper provides an instrumental overview as an introduction to several data papers to be presented in the poster sessions. In addition to samples of the measurements, examples will be given to establish the quality of the various data products.

  16. Compact airborne lidar for tropospheric ozone: description and field measurements.

    PubMed

    Ancellet, G; Ravetta, F O

    1998-08-20

    An airborne lidar has been developed for tropospheric ozone monitoring. The transmitter module is based on a solid-state Nd:YAG laser and stimulated Raman scattering in deuterium to generate three wavelengths (266, 289, and 316 nm) that are used for differential ozone measurements. Both analog and photon-counting detection methods are used to produce a measurement range up to 8 km. The system has been flown on the French Fokker 27 aircraft to perform both lower tropospheric (0.5-4-km) and upper tropospheric (4-12-km) measurements, with a 1-min temporal resolution corresponding to a 5-km spatial resolution. The vertical resolution of the ozone profile can vary from 300 to 1000 m to accommodate either a large-altitude range or optimum ozone accuracy. Comparisons with in situ ozone measurements performed by an aircraft UV photometer or ozone sondes and with ozone vertical profiles obtained by a ground-based lidar are presented. The accuracy of the tropospheric ozone measurements is generally better than 10-15%, except when aerosol interferences cannot be corrected. Examples of ozone profiles for different atmospheric conditions demonstrate the utility of the airborne lidar in the study of dynamic or photochemical mesoscale processes that control tropospheric ozone. PMID:18286036

  17. Estimation of Aerosol Direct Radiative Effects from Satellite and In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Schmid, Beat; Redemann, Jens; McIntosh, Dawn

    2000-01-01

    Ames researchers have combined measurements from satellite, aircraft, and the surface to estimate the effect of airborne particles (aerosols) on the solar radiation over the North Atlantic region. These aerosols (which come from both natural and pollution sources) can reflect solar radiation, causing a cooling effect that opposes the warming caused by carbon dioxide. Recently, increased attention has been paid to aerosol effects to better understand the Earth climate system.

  18. Airborne compact rotational Raman lidar for temperature measurement.

    PubMed

    Wu, Decheng; Wang, Zhien; Wechsler, Perry; Mahon, Nick; Deng, Min; Glover, Brent; Burkhart, Matthew; Kuestner, William; Heesen, Ben

    2016-09-01

    We developed an airborne compact rotational Raman lidar (CRL) for use on the University of Wyoming King Air (UWKA) aircraft to obtain two-dimensional (2D) temperature disman tributions. It obtained fine-scale 2D temperature distributions within 3 km below the aircraft for the first time during the PECAN (Plains Elevated Convection At Night) campaign in 2015. The CRL provided nighttime temperature measurements with a random error of <0.5 K within 800 m below aircraft at 45 m vertical and 1000 m horizontal resolution. The temperatures obtained by the CRL and a radiosonde agreed. Along with water vapor and aerosol measurements, the CRL provides critical parameters on the state of the lower atmosphere for a wide range of atmospheric research. PMID:27607724

  19. Contribution of airborne microbes to bacterial production and N2 fixation in seawater upon aerosol deposition

    NASA Astrophysics Data System (ADS)

    Rahav, Eyal; Ovadia, Galit; Paytan, Adina; Herut, Barak

    2016-01-01

    Aerosol deposition may supply a high diversity of airborne microbes, which can affect surface microbial composition and biological production. This study reports a diverse microbial community associated with dust and other aerosol particles, which differed significantly according to their geographical air mass origin. Microcosm bioassay experiments, in which aerosols were added to sterile (0.2 µm filtered and autoclaved) SE Mediterranean Sea (SEMS) water, were performed to assess the potential impact of airborne bacteria on bacterial abundance, production, and N2 fixation. Significant increase was observed in all parameters within a few hours, and calculations suggest that airborne microbes can account for one third in bacterial abundance and 50-100% in bacterial production and N2-fixation rates following dust/aerosol amendments in the surface SEMS. We show that dust/aerosol deposition can be a potential source of a wide array of microorganisms, which may impact microbial composition and food web dynamics in oligotrophic marine systems such as the SEMS.

  20. High Energy 2-Micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  1. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  2. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  3. Aerosol Optical Thickness comparisons between NASA LaRC Airborne HSRL and AERONET during the DISCOVER-AQ field campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Hoff, R. M.; Holben, B. N.; Schafer, J.; McGill, M. J.; Yorks, J. E.; Lantz, K. O.; Michalsky, J. J.; Hodges, G.

    2013-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD and during January and February 2013 over the San Joaquin Valley (SJV) of California and also a scheduled deployment during September 2013 over Houston, TX. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the Mixing Layer Height (MLH). HSRL AOT is compared to AOT measured by the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) and long-term AERONET sites. For the 2011 campaign, comparisons of AOT at 532nm between HSRL-1 and AERONET showed excellent agreement (r = 0.98, slope = 1.01, intercept = 0.037) when the King Air flights were within 2.5 km of the ground site and 10 min from the retrieval time. The comparison results are similar for the 2013 DISCOVER-AQ campaign in the SJV. Additional ground-based (MPL) and airborne (CPL) lidar data were used to help screen for clouds in the AERONET observations during the SJV portion. AOT values from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) located at the Porterville, CA site during the SJV campaign are also compared to HSRL-2 AOT. Lastly, using the MLH retrieved from HSRL aerosol backscatter profiles, we describe the distribution of AOT relative to the MLH.

  4. Airborne lidar measurements of pollution transport in central and southern California during CalNEX 2010

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Alvarez, R. J., II; Hardesty, R.; Langford, A. O.; Banta, R. M.; Brewer, A.; Davies, F.; Sandberg, S.; Marchbanks, R.; Weickmann, A.

    2010-12-01

    During the CalNEX experiment from May through July 2010, we co-deployed NOAA’s airborne ozone and aerosol lidar TOPAZ and the University of Leeds scanning Doppler wind lidar on a Twin Otter aircraft. We flew a total of 46 missions over central and southern California, focusing primarily on the Los Angeles Basin and Sacramento areas. The downward-looking lidars provided highly resolved measurements of ozone concentration, aerosol backscatter, and wind speed and direction in the boundary layer and lower free troposphere. We will use the airborne lidar data to characterize transport of ozone and aerosols on regional and local scales. In particular, we will focus on pollutant transport between air basins and the role of flow patterns in complex terrain, such as gap flows and orographic lifting and venting along mountain slopes, on pollutant distribution.

  5. Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: considerations for a new infectious virus aerosol sampler

    PubMed Central

    Fabian, P.; McDevitt, J. J.; Houseman, E. A.; Milton, D. K.

    2013-01-01

    As a first step in conducting studies of airborne influenza transmission, we compared the collection performance of an SKC Biosampler, a compact cascade impactor (CCI), Teflon filters, and gelatin filters by collecting aerosolized influenza virus in a one-pass aerosol chamber. Influenza virus infectivity was determined using a fluorescent focus assay and influenza virus nucleic acid (originating from viable and non-viable viruses) was measured using quantitative PCR. The results showed that the SKC Biosampler recovered and preserved influenza virus infectivity much better than the other samplers – the CCI, Teflon, and gelatin filters recovered only 7–22% of infectious viruses compared with the Biosampler. Total virus collection was not significantly different among the SKC Biosampler, the gelatin, and Teflon filters, but was significantly lower in the CCI. Results from this study show that a new sampler is needed for virus aerosol sampling, as commercially available samplers do not efficiently collect and conserve virus infectivity. Applications for a new sampler include studies of airborne disease transmission and bioterrorism monitoring. Design parameters for a new sampler include high collection efficiency for fine particles and liquid sampling media to preserve infectivity. PMID:19689447

  6. Method for volatility measurements on polydisperse aerosol

    NASA Astrophysics Data System (ADS)

    Schmid, Otmar; Hagen, Donald E.; Whitefield, Philip D.; Hopkins, Alfred R.; Eimer, Ben

    2000-08-01

    We describe a method for measuring the amount of volatile material in the aerosol phase using a thermal discriminator. This method, which requires the measurement of the particle size distributions of the heated (through discriminator) and non-heated (bypassing discriminator) sample aerosol, includes the effects due to both particle loss and partially volatile aerosols. Tests with polydisperse internally mixed, i.e. partially volatile, aerosol (not shown here) indicate a high degree of accuracy of this method even for ultrafine particles.

  7. Airborne Observations of Aerosol Emissions from F-16 Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Cofer, W. R.; McDougal, D. S.

    1999-01-01

    We presented results from the SASS Near-Field Interactions Flight (SNIF-III) Experiment which was conducted during May and June 1997 in collaboration with the Vermont and New Jersey Air National Guard Units. The project objectives were to quantify the fraction of fuel sulfur converted to S(VI) species by jet engines and to gain a better understanding of particle formation and growth processes within aircraft wakes. Size and volatility segregated aerosol measurements along with sulfur species measurements were recorded in the exhaust of F-16 aircraft equipped with F-100 engines burning fuels with a range of fuel S concentrations at different altitudes and engine power settings. A total of 10 missions were flown in which F-16 exhaust plumes were sampled by an instrumented T-39 Sabreliner aircraft. On six of the flights, measurements were obtained behind the same two aircraft, one burning standard JP-8 fuel and the other either approximately 28 ppm or 1100 ppm S fuel or an equal mixture of the two (approximately 560 ppm S). A pair of flights was conducted for each fuel mixture, one at 30,000 ft altitude and the other starting at 35,000 ft and climbing to higher altitudes if contrail conditions were not encountered at the initial flight level. In each flight, the F-16s were operated at two power settings, approx. 80% and full military power. Exhaust emissions were sampled behind both aircraft at each flight level, power setting, and fuel S concentration at an initial aircraft separation of 30 m, gradually widening to about 3 km. Analyses of the aerosol data in the cases where fuel S was varied suggest results were consistent with observations from project SUCCESS, i.e., a significant fraction of the fuel S was oxidized to form S(VI) species and volatile particle emission indices (EIs) in comparably aged plumes exhibited a nonlinear dependence upon the fuel S concentration. For the high sulfur fuel, volatile particle EIs in 10-second-old-plumes were 2 to 3 x 10 (exp 17

  8. A three-dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAM-ARCMIP, April 2009

    NASA Astrophysics Data System (ADS)

    Stone, R. S.; Herber, A.; Vitale, V.; Mazzola, M.; Lupi, A.; Schnell, R. C.; Dutton, E. G.; Liu, P. S. K.; Li, S.-M.; Dethloff, K.; Lampert, A.; Ritter, C.; Stock, M.; Neuber, R.; Maturilli, M.

    2010-07-01

    The Arctic climate is modulated, in part, by atmospheric aerosols that affect the distribution of radiant energy passing through the atmosphere. Aerosols affect the surface-atmosphere radiation balance directly through interactions with solar and terrestrial radiation and indirectly through interactions with cloud particles. Better quantification of the radiative forcing by different types of aerosol is needed to improve predictions of future climate. During April 2009, the airborne campaign Pan-Arctic Measurements and Arctic Regional Climate Model Inter-comparison Project (PAM-ARCMIP) was conducted. The mission was organized by Alfred Wegener Institute for Polar and Marine Research of Germany and utilized their research aircraft, Polar-5. The goal was to obtain a snapshot of surface and atmospheric conditions over the central Arctic prior to the onset of the melt season. Characterizing aerosols was one objective of the campaign. Standard Sun photometric procedures were adopted to quantify aerosol optical depth AOD, providing a three-dimensional view of the aerosol, which was primarily haze from anthropogenic sources. Independent, in situ measurements of particle size distribution and light extinction, derived from airborne lidar, are used to corroborate inferences made using the AOD results. During April 2009, from the European to the Alaskan Arctic, from sub-Arctic latitudes to near the pole, the atmosphere was variably hazy with total column AOD at 500 nm ranging from ˜0.12 to >0.35, values that are anomalously high compared with previous years. The haze, transported primarily from Eurasian industrial regions, was concentrated within and just above the surface-based temperature inversion layer. Extinction, as measured using an onboard lidar system, was also greatest at low levels, where particles tended to be slightly larger than at upper levels. Black carbon (BC) (soot) was observed at all levels sampled, but at moderate to low concentrations compared with

  9. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Di Liberto, Luca; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs

    2016-04-01

    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ˜ 50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ˜ 10:00 LT - local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ˜ 12:00 LT) the ML was fully developed, resulting in

  10. Case studies of aerosol remote sensing with the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Xu, F.; Garay, M. J.; Martonchik, J. V.; Kalashnikova, O. V.; Davis, A. B.; Rheingans, B.; Geier, S.; Jovanovic, V.; Bull, M.

    2012-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an 8-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera, measuring polarization in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire multiangular observations over a ±67° along-track range with 10-m spatial resolution across an 11-km wide swath. Among the instrument objectives are exploration of methodologies for combining multiangle, multispectral, polarimetric, and imaging observations to retrieve the optical depth and microphysical properties of tropospheric aerosols. AirMSPI was integrated on NASA's ER-2 high-altitude aircraft in 2010 and has successfully completed a number of flights over land and ocean targets in the Southern California vicinity. In this paper, we present case studies of AirMSPI imagery, interpreted using vector radiative transfer theory. AirMSPI observations over California's Central Valley are compared with model calculations using aerosol properties reported by the Fresno AERONET sunphotometer. Because determination of the radiative impact of different types of aerosols requires accurate attribution of the source of the reflected light along with characterization of the aerosol optical and microphysical properties, we explore the sensitivity of the Fresno measurements to variations in different aerosol properties, demonstrating the value of combining intensity and polarimetry at multiple view angles and spectral bands for constraining particle microphysical properties. Images over ocean to be presented include scenes over nearly cloud-free skies and scenes containing scattered clouds. It is well known that imperfect cloud screening confounds the determination of aerosol impact on radiation; it is perhaps less well appreciated that the effect of cloud reflections in the water can also be problematic. We calculate the magnitude of this effect in intensity and polarization and discuss its potential impact on aerosol retrievals, underscoring the value

  11. The Airborne Cloud-Aerosol Transport System. Part I; Overview and Description of the Instrument and Retrival Algorithms

    NASA Technical Reports Server (NTRS)

    Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick

    2014-01-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.

  12. Aerosol Measurement and Processing System (AMAPS)

    Atmospheric Science Data Center

    2016-03-22

    Description:  Access aerosol data from MISR and MODIS Subset Level-2 MISR granules by parameter and by space/time region Extract MISR aerosol data for overflights of specific geographic regions or ground site ... or concerns. Details:  Aerosol Measurement and Processing System (AMAPS) Screenshot:  ...

  13. Requirements For Lidar Aerosol and Ozone Measurements

    NASA Astrophysics Data System (ADS)

    Frey, S.; Woeste, L.

    Laser remote sensing is the preferable method, when spatial-temporal resolved data is required. Data from stationary laser remote sensing devices at the earth surface give a very good impression about daily, annual and in general time trends of a measurand and can be compared sometimes to airborne instruments to get a direct link between optical and other methods. Space borne measurements on the other hand are the only possibility for obtaining as much data, as modeller wish to have to initialise, compare or validate there computation. But in this case it is very difficult to get the input in- formation, which is necessary for good quantitative analysis as well as to find points for comparison. In outer space and other harsh field environments only the simplest and most robust equipment for the respective purpose should be applied, to ensure a long-term stable operation. The first question is: what do we have to know about the properties of the atmosphere to get reliable data from instruments, which are just simple enough?, and secondly: how to set-up the instruments? Even for the evaluation of backscatter coefficients a density profile and the so-called Lidar-ratio, the ratio of backscatter to total volume scatter intensity, is necessary. Raman Lidar is a possibility to handle this problem by measuring aerosol extinction profiles. But again a density profile and in addition a guess about the wavelength dependence of the aerosol extinc- tion between the Raman and laser wavelength are required. Unfortunately the tech- nique for Raman measurements is much more sensible and less suited for space borne measurements, because of the much smaller back scatter cross sections and the result- ing weak signals. It becomes worth, when we will have to maintain special laser with colours at molecular absorption bands in outer space, to measure gas concentration. I want to present simulation of optical systems for laser remote sensing, experimental experiences and compare air

  14. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  15. Optical properties of aerosols obtained from airborne lidar and several in-situ instruments during RACE

    NASA Astrophysics Data System (ADS)

    Strawbridge, Kevin B.; Li, Shao-Meng

    1997-05-01

    Two aircraft, the National Research Council of Canada (NRCC) Convair 580 (CV580) and NRCC DHC-6 Twin Otter, along with the Yarmouth and Digby Ferries, a ground site near Yarmouth and coordination with satellite overpasses (AVHRR and LANDSAT) provided an exceptionally well rounded compliment of observing platforms to meet the project objectives for the radiation, aerosols and cloud experiment (RACE) (refer to http://www.on.doe.ca/armp/RACE/RACE.html for a complete list of instrumentation and investigators involved). The general flight plans involved upwind measurements of a selected target by the CV580 lidar, followed by coincident flights allowing the Twin Otter to perform in-situ measurements while the Convair used a variety of remote sensors from above. The CV580 then descended to perform in-situ measurements including size segregated samples through the use of a micro-orifice uniform deposit impactor (MOUDI). This paper focuses on the airborne lidar results during RACE and in particular introduces two case studies comparing the lidar with a MOUDI impactor and ASASP particle probe using Mie theory.

  16. The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-03-01

    The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ɛ, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  17. Airborne Transmission of Melioidosis to Humans from Environmental Aerosols Contaminated with B. pseudomallei

    PubMed Central

    Lin, Hsi-Hsun; Liu, Pei-Ju; Ni, Wei-Fan; Hsueh, Pei-Tan; Liang, Shih-Hsiung; Chen, Chialin; Chen, Ya-Lei

    2015-01-01

    Melioidosis results from an infection with the soil-borne pathogen Burkholderia pseudomallei, and cases of melioidosis usually cluster after rains or a typhoon. In an endemic area of Taiwan, B. pseudomallei is primarily geographically distributed in cropped fields in the northwest of this area, whereas melioidosis cases are distributed in a densely populated district in the southeast. We hypothesized that contaminated cropped fields generated aerosols contaminated with B. pseudomallei, which were carried by a northwesterly wind to the densely populated southeastern district. We collected soil and aerosol samples from a 72 km2 area of land, including the melioidosis-clustered area and its surroundings. Aerosols that contained B. pseudomallei-specific TTSS (type III secretion system) ORF2 DNA were well distributed in the endemic area but were rare in the surrounding areas during the rainy season. The concentration of this specific DNA in aerosols was positively correlated with the incidence of melioidosis and the appearance of a northwesterly wind. Moreover, the isolation rate in the superficial layers of the contaminated cropped field in the northwest was correlated with PCR positivity for aerosols collected from the southeast over a 2-year period. According to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) analyses, PFGE Type Ia (ST58) was the predominant pattern linking the molecular association among soil, aerosol and human isolates. Thus, the airborne transmission of melioidosis moves from the contaminated soil to aerosols and/or to humans in this endemic area. PMID:26061639

  18. Airborne Transmission of Melioidosis to Humans from Environmental Aerosols Contaminated with B. pseudomallei.

    PubMed

    Chen, Pei-Shih; Chen, Yao-Shen; Lin, Hsi-Hsun; Liu, Pei-Ju; Ni, Wei-Fan; Hsueh, Pei-Tan; Liang, Shih-Hsiung; Chen, Chialin; Chen, Ya-Lei

    2015-06-01

    Melioidosis results from an infection with the soil-borne pathogen Burkholderia pseudomallei, and cases of melioidosis usually cluster after rains or a typhoon. In an endemic area of Taiwan, B. pseudomallei is primarily geographically distributed in cropped fields in the northwest of this area, whereas melioidosis cases are distributed in a densely populated district in the southeast. We hypothesized that contaminated cropped fields generated aerosols contaminated with B. pseudomallei, which were carried by a northwesterly wind to the densely populated southeastern district. We collected soil and aerosol samples from a 72 km2 area of land, including the melioidosis-clustered area and its surroundings. Aerosols that contained B. pseudomallei-specific TTSS (type III secretion system) ORF2 DNA were well distributed in the endemic area but were rare in the surrounding areas during the rainy season. The concentration of this specific DNA in aerosols was positively correlated with the incidence of melioidosis and the appearance of a northwesterly wind. Moreover, the isolation rate in the superficial layers of the contaminated cropped field in the northwest was correlated with PCR positivity for aerosols collected from the southeast over a 2-year period. According to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) analyses, PFGE Type Ia (ST58) was the predominant pattern linking the molecular association among soil, aerosol and human isolates. Thus, the airborne transmission of melioidosis moves from the contaminated soil to aerosols and/or to humans in this endemic area. PMID:26061639

  19. Using High-Resolution Airborne Remote Sensing to Study Aerosol Near Clouds

    NASA Technical Reports Server (NTRS)

    Levy, Robert; Munchak, Leigh; Mattoo, Shana; Marshak, Alexander; Wilcox, Eric; Gao, Lan; Yorks, John; Platnick, Steven

    2016-01-01

    The horizontal space in between clear and cloudy air is very complex. This so-called twilight zone includes activated aerosols that are not quite clouds, thin cloud fragments that are not easily observable, and dying clouds that have not quite disappeared. This is a huge challenge for satellite remote sensing, specifically for retrieval of aerosol properties. Identifying what is cloud versus what is not cloud is critically important for attributing radiative effects and forcings to aerosols. At the same time, the radiative interactions between clouds and the surrounding media (molecules, surface and aerosols themselves) will contaminate retrieval of aerosol properties, even in clear skies. Most studies on aerosol cloud interactions are relevant to moderate resolution imagery (e.g. 500 m) from sensors such as MODIS. Since standard aerosol retrieval algorithms tend to keep a distance (e.g. 1 km) from the nearest detected cloud, it is impossible to evaluate what happens closer to the cloud. During Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), the NASA ER-2 flew with the enhanced MODIS Airborne Simulator (eMAS), providing MODIS-like spectral observations at high (50 m) spatial resolution. We have applied MODIS-like aerosol retrieval for the eMAS data, providing new detail to characterization of aerosol near clouds. Interpretation and evaluation of these eMAS aerosol retrievals is aided by independent MODIS-like cloud retrievals, as well as profiles from the co-flying Cloud Physics Lidar (CPL). Understanding aerosolcloud retrieval at high resolution will lead to better characterization and interpretation of long-term, global products from lower resolution (e.g.MODIS) satellite retrievals.

  20. Airborne measurements performed by a light aircraft during Pegasos spring 2013 campaign

    NASA Astrophysics Data System (ADS)

    Väänänen, Riikka; Krejci, Radovan; Manninen, Hanna E.; Nieminen, Tuomo; Yli-Juuti, Taina; Kangasluoma, Juha; Pohja, Toivo; Aalto, Pasi P.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    To fully understand the chemical and physical processes in atmosphere, measuring only on-ground is not sufficient. To extend the measurements into the lower troposphere, the University of Helsinki has performed airborne campaigns since 2009. During spring 2013, a light aircraft was used to measure the aerosol size distribution over boreal forests as a part of the Pegasos 'Norhern Mission'. The aims of the measurements were to quantify the vertical profiles of aerosols up to the altitude of 3.5 km, to study the new particle formation in the lower troposphere, to measure the planetary boundary layer evolution, and to support the measurements performed by Zeppelin NT. We used a Cessna 172 light aircraft as a platform. An aerosol and gas inlet was mounted under the right wing and the sample air was conducted inside the cabin where most of the instruments were placed. The aerosol measurement instruments included a TSI 3776 condensation particle counter (CPC) with a cut-off size of 3 nm, a Scanning Mobility Particle Sizer (SMPS), with a size range of 10-350 nm, and a Particle Size Magnifier (PSM) connected with a TSI 3772 condensation particle counter. As the properties of the PSM measuring in airborne conditions were still under testing during the campaign, the setups of the PSM varied between the measurements. Other instruments on board included a Li-Cor Li-840 H2O/Co2-analyzer, a temperature sensor, a relative humidity sensor, and a GPS receiver. Total amount of 45 flights with 118 flight hours were performed between 24th April and 15th June 2013. The majority of the flights were flown around SMEAR II station located in Hyytiälä, and when possible, the flights were synchronized with the Zeppelin flights. Simultaneously, an extensive field campaign to measure aerosol and gas properties was performed on-ground at SMEAR II station. A time series of airborne aerosol data of around 1.5 months allows us to construct statistical vertical profiles of aerosol size

  1. Optical Modeling and Interpretation of TRACE-P Aerosol Measurements

    NASA Astrophysics Data System (ADS)

    Grant, W. B.; Anderson, B. E.; Browell, E. V.; Butler, C. F.; Brackett, V. G.; Jordan, C. E.

    2002-12-01

    The NASA Langley airborne UV Differential Absorption Lidar (DIAL) system participated in the NASA-sponsored Transport and Atmospheric Chemistry near the Equator-Pacific (TRACE-P) mission, designed to study transport and transformation of emissions from Asia, from February 26 to April 9, 2001. The UV DIAL system measures backscatter in both nadir and zenith at 1064, 600, and 300 nm and depolarization ratio in the nadir at 600 nm. From the lidar backscatter measurement, the aerosol scattering ratio (ASR) is determined. The ASR is the ratio of aerosol backscatter to molecular backscatter and is derived by dividing the total backscatter by a standard atmosphere molecular density profile then normalizing in some low-aerosol region of the atmosphere. The wavelength dependence of aerosol backscatter, which is related to aerosol size, is determined from the ASRs at 1064 and 600 nm. The depolarization ratio, which is sensitive to irregularly shaped particles, is used to determine the presence of dust. Dust encountered during this mission originated primarily in China, but also in India and Africa. In situ instruments onboard the DC-8 provide additional information such as meteorological parameters, aerosol size distributions and chemical composition, and gas concentrations. These in situ data are being used along with the ASRs to help determine the aerosol optical properties. These optical properties will then enable the use of the extensive lidar profiles to achieve the goal of estimating the effects of aerosols on radiative forcing of the atmosphere over the western Pacific as well as over Asia near the coast.

  2. Aerosol extinction measurements with CO2-lidar

    NASA Technical Reports Server (NTRS)

    Hagard, Arne; Persson, Rolf

    1992-01-01

    With the aim to develop a model for infrared extinction due to aerosols in slant paths in the lower atmosphere we perform measurements with a CO2-lidar. Earlier measurements with a transmissometer along horizontal paths have been used to develop relations between aerosol extinction and meteorological parameters. With the lidar measurements we hope to develop corresponding relations for altitude profiles of the aerosol extinction in the infrared. An important application is prediction of detection range for infrared imaging systems.

  3. Development of airborne oil thickness measurements.

    PubMed

    Brown, Carl E; Fingas, Mervin F

    2003-01-01

    A laboratory sensor has now been developed to measure the absolute thickness of oil on water slicks. This prototype oil slick thickness measurement system is known as the laser-ultrasonic remote sensing of oil thickness (LURSOT) sensor. This laser opto-acoustic sensor is the initial step in the ultimate goal of providing an airborne sensor with the ability to remotely measure oil-on-water slick thickness. The LURSOT sensor employs three lasers to produce and measure the time-of-flight of ultrasonic waves in oil and hence provide a direct measurement of oil slick thickness. The successful application of this technology to the measurement of oil slick thickness will benefit the scientific community as a whole by providing information about the dynamics of oil slick spreading and the spill responder by providing a measurement of the effectiveness of spill countermeasures such as dispersant application and in situ burning. This paper will provide a review of early developments and discuss the current state-of-the-art in the field of oil slick thickness measurement. PMID:12899892

  4. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  5. Remote sensing of tropospheric gases and aerosols with airborne DIAL system

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1983-01-01

    The multipurpose airborne DIAL system developed at NASA Langley Research Center is characterized, and the published results of tropospheric O3, H2O, and aerosol-backscatter remote-sensing experiments performed in 1980 and 1981 are summarized. The system comprises two tunable dye lasers pumped by frequency-doubled Nd:YAG lasers, dielectric-coated steering optics, a 36-cm-diameter Cassegrain receiver telescope, gateable photomultiplier tubes, and a minicomputer data-processing unit for real-time calculation of gas concentrations and backscattering profiles. The transmitted energy of the 100-microsec-separated dye-laser pulses is 40, 80, or 50 mJ/pulse at around 300, 600, or 720-nm wavelength, respectively. Good agreement was found between DIAL-remote-sensed and in-situ H2O and O3 profiles of the lower troposphere and O3 profiles of the tropopause region, and the usefulness of DIAL backscattering measurements in the study of boundary-layer and tropospheric dynamics is demonstrated. The feasibility of DIAL sensing of power-plant or urban plume SO2, of urban-area (or rural-area column-content) NO2, and of temperature and H2O (simultaneously using a third laser) has been suggested by simulation studies.

  6. Airborne intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Torres, Arnold L.; Davis, Douglas D.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during missions flown in the fall of 1983 and spring of 1984. Instruments intercompared included a laser-induced fluorescence (LIF) system and two chemiluminescence instruments (CL). NO mixing ratios from below 5 pptv (parts per trillion by volume) to greater than 100 pptv were reported, with the majority less than 20 pptv. Good correlation was observed between the measurements reported by the CL and LIF techniques. The general level of agreement observed for the ensemble of measurements obtained during the two missions provides the basis from which one can conclude that equally 'valid' measurements of background levels of NO can be expected from either CL or LIF instruments. At the same time the periods of disagreement that were observed between the CL and LIF instruments as well as between the two CL instruments highlight the difficulty of obtaining reliable measurements with NO mixing ratios in the 5-20 pptv range and emphasize the vigilance that should be maintained in future NO measurements.

  7. Ground-based Network and Supersite Measurements for Studying Aerosol Properties and Aerosol-Cloud Interactions

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.

    2008-01-01

    capability of AERONET SMART-COMMIT in current Asian Monsoon Year-2008 campaigns that are designed and being executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., airborne dust, smoke, mega-city pollutant). Feedback mechanisms between aerosol radiative effects and monsoon dynamics have been recently proposed, however there is a lack of consensus on whether aerosol forcing would be more likely to enhance or reduce the strength of the monsoon circulation. We envision robust approaches which well-collocated ground-based measurements and space-borne observations will greatly advance our understanding of absorbing aerosols (e.g., "Global Dimming" vs. "Elevated Heat-Pump" effects) on aerosol cloud water cycle interactions.

  8. North Atlantic Aerosol Radiative Effects Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  9. Airborne DIAL Ozone and Aerosol Trends Observed at High Latitudes Over North America from February to May 2000

    NASA Technical Reports Server (NTRS)

    Hair, Jonathan W.; Browell, Edward V.; Butler, Carolyn F.; Grant, William B.; DeYoung, Russell J.; Fenn, Marta A.; Brackett, Vince G.; Clayton, Marian B.; Brasseur, Lorraine

    2002-01-01

    Ozone (O3) and aerosol scattering ratio profiles were obtained from airborne lidar measurements on thirty-eight aircraft flights over seven aircraft deployments covering the latitudes of 40 deg.-85 deg.N between 4 February and 23 May 2000 as part of the TOPSE (Tropospheric Ozone Production about the Spring Equinox) field experiment. The remote and in situ O3 measurements were used together to produce a vertically-continuous O3 profile from near the surface to above the tropopause. Ozone, aerosol, and potential vorticity (PV) distributions were used together to identify the presence of pollution plumes and stratospheric intrusions. The number of observed pollution plumes was found to increase into the spring along with a significant increase in aerosol loading. Ozone was found to increase in the middle free troposphere (4-6 km) at high latitudes (60 deg.-85 deg. N) by an average of 4.3 ppbv/mo from about 55 ppbv in early February to over 72 ppbv in mid-May. The average aerosol scattering ratios in the same region increased at an average rate of 0.37/mo from about 0.35 to over 1.7. Ozone and aerosol scattering were highly correlated over entire field experiment. Based on the above results and the observed aircraft in-situ measurements, it was estimated that stratospherically-derived O3 accounted for less than 20% of the observed increase in mid tropospheric O3 at high latitudes. The primary cause of the observed O3 increase was found to be the photochemical production of O3 in pollution plumes.

  10. Filter measurements of chemical composition during the airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Grandrud, B. W.; Sperry, P. D.; Sanford, L.

    1988-01-01

    During the Airborne Antarctic Ozone Experiment campaign, a filter sampler was flown to measure the bulk composition of aerosol and gas phases. The background sulfate aerosol was measured in regions inside and outside of the chemically perturbed region (CPR) of the polar vortex. The mass ratio of sulfate outside to inside was 2.8. This is indicative of a cleansing mechanism effecting the CPR or of a different air mass inside versus outside. The absolute value of the sulfate mixing ratio shows that the background aerosol has not been influenced by recent volcanic eruptions. The sulfate measured on the ferry flight returning to NASA Ames shows a decrease towards the equator with increasing concentrations in the northern hemisphere. Nitrate in the aerosol phase was observed on two flights. The largest amount of nitrate measured in the aerosol was 44 percent of the total amount of nitrate observed. Other samples on the same flights show no nitrate in the aerosol phase. The presence of nitrate in the aerosol is correlated with the coldest temperatures observed on a given flight. Total nitrate (aerosol plus acidic vapor nitrate) concentrations were observed to increase at flight altitude with increasing latitude north and south of the equator. Total nitrate was lower inside the CPR than outside. Chloride and flouride were not detected in the aerosol phase. From the concentrations of acidic chloride vapor, the ratio of acidic vapor Cl to acidic vapor F and a summing of the individual chloride containing species to yield a total chloride concentration, there is a suggestion that some of the air sampled was dechlorinated. Acidic vapor phase fluoride was observed to increase at flight altitude with increasing latitude both north and south of the equator. The acidic vapor phase fluoride was the only compound measured with the filter technique that exhibited larger concentrations inside the CPR than outside.

  11. The white-light humidified optical particle spectrometer (WHOPS) - a novel airborne system to characterize aerosol hygroscopicity

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Wehrle, G.; Gysel, M.; Zieger, P.; Baltensperger, U.; Weingartner, E.

    2015-02-01

    Aerosol particles experience hygroscopic growth at enhanced relative humidity (RH), which leads to changes in their optical properties. We developed the white-light humidified optical particle spectrometer (WHOPS), a new instrument to investigate the particles' hygroscopic growth. Here we present a detailed technical description and characterization of the WHOPS in laboratory and field experiments. The WHOPS consists of a differential mobility analyzer, a humidifier/bypass and a white-light aerosol spectrometer (WELAS) connected in series to provide fast measurements of particle hygroscopicity at subsaturated RH and optical properties on airborne platforms. The WELAS employs a white-light source to minimize ambiguities in the optical particle sizing. In contrast to other hygroscopicity instruments, the WHOPS retrieves information of relatively large particles (i.e., diameter D > 280 nm), therefore investigating the more optically relevant size ranges. The effective index of refraction of the dry particles is retrieved from the optical diameter measured for size-selected aerosol samples with a well-defined dry mobility diameter. The data analysis approach for the optical sizing and retrieval of the index of refraction was extensively tested in laboratory experiments with polystyrene latex size standards and ammonium sulfate particles of different diameters. The hygroscopic growth factor (GF) distribution and aerosol mixing state is inferred from the optical size distribution measured for the size-selected and humidified aerosol sample. Laboratory experiments with pure ammonium sulfate particles revealed good agreement with Köhler theory (mean bias of ~3% and maximal deviation of 8% for GFs at RH = 95%). During first airborne measurements in the Netherlands, GFs (mean value of the GF distribution) at RH = 95% between 1.79 and 2.43 with a median of 2.02 were observed for particles with a dry diameter of 500 nm. This corresponds to hygroscopicity parameters (κ

  12. An intercomparison of airborne nitric acid measurements

    NASA Astrophysics Data System (ADS)

    Gregory, G. L.; Hoell, J. M.; Huebert, B. J.; van Bramer, S. E.; Lebel, P. J.; Vay, S. A.; Marinaro, R. M.; Schiff, H. I.; Hastie, D. R.; Mackay, G. I.; Karecki, D. R.

    1990-06-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric acid are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during the summer of 1986. Instruments intercompared included a denuder tube collection system (DENUDER) with chemiluminescent detection, a niylon filter collection system (FILTER) with ion chromatography detection, and a tunable diode laser (TDLAS) multipath absorption system. Intercomparison of investigators' calibration standards were also performed as part of the test protocol. While results were somewhat "soft" and data sparse, these tests suggested that the TDLAS measurements might be high compared to the other techniques. Airborne intercomparisons were conducted predominately in the free troposphere and included encounters with marine and continental air masses. While the intercomparisons included mixing ratios to 1000 parts per trillion by volume (pptv), the majority of the results were for mixing ratios of <300 pptv. The TDLAS participated in an intercomparison of NO2 instruments (major focus) that was also conducted during the same flights. As a result the TDLAS data set is limited. Further, a significant fraction of the nitric acid measurements were below the TDLAS detection limit (75 pptv as configured for these tests). While the lack of simultaneous measurements from the three instruments limits the conclusions that can be drawn, it is clear that there can be substantial disagreement among the three techniques, even at mixing ratios above their respective detection limits. Equally clear is that at mixing ratios below 150 pptv there is very little correlation between their results. Based on these observations, an overall conclusion from the intercomparison is that none of the HNO3 techniques can be identified to unambiguously (e.g., 20% accuracy) provide measurements of HNO3 at levels often encountered in the

  13. Backscatter Modeling at 2.1 Micron Wavelength for Space-Based and Airborne Lidars Using Aerosol Physico-Chemical and Lidar Datasets

    NASA Technical Reports Server (NTRS)

    Srivastava, V.; Rothermel, J.; Jarzembski, M. A.; Clarke, A. D.; Cutten, D. R.; Bowdle, D. A.; Spinhirne, J. D.; Menzies, R. T.

    1999-01-01

    Space-based and airborne coherent Doppler lidars designed for measuring global tropospheric wind profiles in cloud-free air rely on backscatter, beta from aerosols acting as passive wind tracers. Aerosol beta distribution in the vertical can vary over as much as 5-6 orders of magnitude. Thus, the design of a wave length-specific, space-borne or airborne lidar must account for the magnitude of 8 in the region or features of interest. The SPAce Readiness Coherent Lidar Experiment under development by the National Aeronautics and Space Administration (NASA) and scheduled for launch on the Space Shuttle in 2001, will demonstrate wind measurements from space using a solid-state 2 micrometer coherent Doppler lidar. Consequently, there is a critical need to understand variability of aerosol beta at 2.1 micrometers, to evaluate signal detection under varying aerosol loading conditions. Although few direct measurements of beta at 2.1 micrometers exist, extensive datasets, including climatologies in widely-separated locations, do exist for other wavelengths based on CO2 and Nd:YAG lidars. Datasets also exist for the associated microphysical and chemical properties. An example of a multi-parametric dataset is that of the NASA GLObal Backscatter Experiment (GLOBE) in 1990 in which aerosol chemistry and size distributions were measured concurrently with multi-wavelength lidar backscatter observations. More recently, continuous-wave (CW) lidar backscatter measurements at mid-infrared wavelengths have been made during the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment in 1995. Using Lorenz-Mie theory, these datasets have been used to develop a method to convert lidar backscatter to the 2.1 micrometer wavelength. This paper presents comparison of modeled backscatter at wavelengths for which backscatter measurements exist including converted beta (sub 2.1).

  14. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various

  15. The effects of the Arctic haze as determined from airborne radiometric measurements during AGASP II

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.; Ackerman, Thomas P.; Gore, Warren J. Y.

    1989-01-01

    The effect of the Arctic-haze aerosol on the parameters of solar radiation was investigated using airborne radiometric measurements of radiation parameters during the second Arctic Gas and Aerosol Sampling Project. Simultaneously with absorption measurements, optical depths and total, direct, and scattered radiation fields were determined. The experimentally determined parameters were used to define an aerosol model, which was then used to calculate atmospheric heating rate profiles. It was found that, besides the increased absorption (30 to 40 percent) and scattering of radiation by the atmosphere, Arctic haze reduces the surface absorption of solar energy by 6 to 10 percent, and the effective planetary albedo over ice surfaces by 3 to 6 percent.

  16. Airborne Polarimeter Intercomparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Redemann, Jens

    2014-01-01

    The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  17. Progress in Airborne Polarimeter Inter Comparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Redemann, Jens

    2014-01-01

    The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multiangle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  18. Airborne polarimeter intercomparison for the NASA Aerosol-Cloud-Ecosystem (ACE) mission

    NASA Astrophysics Data System (ADS)

    Knobelspiesse, K. D.; Redemann, J.

    2014-12-01

    The Aerosol-Cloud-Ecosystem (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeter prototypes, including the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  19. The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): a new tool for aerosol and cloud remote sensing

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Xu, F.; Garay, M. J.; Martonchik, J. V.; Rheingans, B. E.; Geier, S.; Davis, A.; Hancock, B. R.; Jovanovic, V. M.; Bull, M. A.; Capraro, K.; Chipman, R. A.; McClain, S. C.

    2013-08-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an eight-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera, measuring polarization in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire multiangular observations over a ±67° along-track range. The instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI employs a photoelastic modulator-based polarimetric imaging technique to enable accurate measurements of the degree and angle of linear polarization in addition to spectral intensity. A description of the AirMSPI instrument and ground data processing approach is presented. Example images of clear, hazy, and cloudy scenes over the Pacific Ocean and California land targets obtained during flights between 2010 and 2012 are shown, and quantitative interpretations of the data using vector radiative transfer theory and scene models are provided to highlight the instrument's capabilities for determining aerosol and cloud microphysical properties and cloud 3-D spatial distributions. Sensitivity to parameters such as aerosol particle size distribution, ocean surface wind speed and direction, cloud-top and cloud-base height, and cloud droplet size is discussed. AirMSPI represents a major step toward realization of the type of imaging polarimeter envisioned to fly on NASA's Aerosol-Cloud-Ecosystem (ACE) mission in the next decade.

  20. The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): a new tool for aerosol and cloud remote sensing

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Xu, F.; Garay, M. J.; Martonchik, J. V.; Rheingans, B. E.; Geier, S.; Davis, A.; Hancock, B. R.; Jovanovic, V. M.; Bull, M. A.; Capraro, K.; Chipman, R. A.; McClain, S. C.

    2013-02-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an eight-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera, measuring polarization in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire multiangular observations over a ± 67° along-track range. The instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI employs a photoelastic modulator-based polarimetric imaging technique to enable accurate measurements of the degree and angle of linear polarization in addition to spectral intensity. A description of the AirMSPI instrument and ground data processing approach is presented. Example images of clear, hazy, and cloudy scenes over the Pacific Ocean and California land targets obtained during flights between 2010 and 2012 are shown, and quantitative interpretations of the data using vector radiative transfer theory and scene models are provided to highlight the instrument's capabilities for determining aerosol and cloud microphysical properties and cloud 3-D spatial distributions. Sensitivity to parameters such as aerosol particle size distribution, ocean surface wind speed and direction, cloud-top and cloud-base height, and cloud droplet size is discussed. AirMSPI represents a major step toward realization of the type of imaging polarimeter envisioned to fly on NASA's Aerosol-Cloud-Ecosystem (ACE) mission in the next decade.

  1. Stratospheric Aerosol and Gas Experiment (SAGE) II and III Aerosol Extinction Measurements in the Arctic Middle and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Treffeisen, R. E.; Thomason, L. W.; Strom, J.; Herber, A. B.; Burton, S. P.; Yamanouchi, T.

    2006-01-01

    In recent years, substantial effort has been expended toward understanding the impact of tropospheric aerosols on Arctic climate and chemistry. A significant part of this effort has been the collection and documentation of extensive aerosol physical and optical property data sets. However, the data sets present significant interpretive challenges because of the diverse nature of these measurements. Among the longest continuous records is that by the spaceborne Stratospheric Aerosol and Gas Experiment (SAGE) II. Although SAGE tropospheric measurements are restricted to the middle and upper troposphere, they may be able to provide significant insight into the nature and variability of tropospheric aerosol, particularly when combined with ground and airborne observations. This paper demonstrates the capacity of aerosol products from SAGE II and its follow-on experiment SAGE III to describe the temporal and vertical variations of Arctic aerosol characteristics. We find that the measurements from both instruments are consistent enough to be combined. Using this combined data set, we detect a clear annual cycle in the aerosol extinction for the middle and upper Arctic troposphere.

  2. Validation of Airborne CO2 Laser Measurements

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2010-12-01

    This paper discusses the flight test validation of a unique, multi-frequency, intensity-modulated, single-beam laser absorption spectrometer (LAS) that operates near 1.57 μm for remote column CO2 measurements. This laser system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of this LAS system, called the Multi-frequency Fiber Laser Lidar (MFLL), was developed by ITT, and it has been flight tested in nine airborne campaigns since May 2005. This paper focuses on the most recent results obtained over the last two years of flight-testing where the MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. A comprehensive multiple-aircraft flight test program was conducted over Oklahoma and Virginia in July-August 2009. The MFLL obtained surface reflectance and average CO2 column variations along the 50-km flight legs over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Central Facility (CF) in Lamont, Oklahoma; over rural Virginia and North Carolina; and over the Chesapeake Bay. For a flight altitude of 4.6 km, the average signal to noise ratio (SNR) for a 1-s CO2 column measurement was found to be 760, which is the equivalent of a CO2 mixing ratio precision of 0.60 ppmv, and for a 10-s average the SNR was found to be 2002 or 0.20 ppmv. Absolute comparisons of MFLL-derived and in situ-derived CO2 column measurements were made for all daytime flights conducted over Oklahoma and Virginia with an average agreement to within 0.32 ppmv. A major ASCENDS flight test campaign was conducted using the NASA DC-8 during 6-18 July 2010. The MFLL system and associated in situ CO2 instrumentation were operated on DC-8 flights over the Central Valley

  3. Holistic aerosol evaluation using synthesized aerosol aircraft measurements

    NASA Astrophysics Data System (ADS)

    Watson-Parris, Duncan; Reddington, Carly; Schutgens, Nick; Stier, Philip; Carslaw, Ken; Liu, Dantong; Allan, James; Coe, Hugh

    2016-04-01

    Despite ongoing efforts there are still large uncertainties in aerosol concentrations and loadings across many commonly used GCMs. This in turn leads to large uncertainties in the contributions of the direct and indirect aerosol forcing on climate. However, constraining these fields using earth observation data, although providing global coverage, is problematic for many reasons, including the large uncertainties in retrieving aerosol loadings. Additionally, the inability to retrieve aerosols in or around cloudy scenes leads to further sampling biases (Gryspeerdt 2015). Many in-situ studies have used regional datasets to attempt to evaluate the model uncertainties, but these are unable to provide an assessment of the models ability to represent aerosols properties on a global scale. Within the Global Aerosol Synthesis and Science Project (GASSP) we have assembled the largest collection of quality controlled, in-situ aircraft observations ever synthesized to a consistent format. This provides a global set of in-situ measurements of Cloud Condensation Nuclei (CCN) and Black Carbon (BC), amongst others. In particular, the large number of vertical profiles provided by this aircraft data allows us to investigate the vertical structure of aerosols across a wide range of regions and environments. These vertical distributions are particularly valuable when investigating the dominant processes above or below clouds where remote sensing data is not available. Here we present initial process-based assessments of the BC lifetimes and vertical distributions of CCN in the HadGEM-UKCA and ECHAM-HAM models using this data. We use point-by-point based comparisons to avoid the sampling issues associated with comparing spatio-temporal aggregations.

  4. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  5. Airborne gamma radiation soil moisture measurements over short flight lines

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  6. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; Veselovskii, Igor; Forno, Ricardo; Mielke, Bernd; Stein, Bernhard; Leblanc, Thierry; McDermid, Stuart; Voemel, Holger

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  7. Airborne measured analytic signal for UXO detection

    SciTech Connect

    Gamey, T.J.; Holladay, J.S.; Mahler, R.

    1997-10-01

    The Altmark Tank Training Range north of Haldensleben, Germany has been in operation since WWI. Weapons training and testing has included cavalry, cannon, small arms, rail guns, and tank battalions. Current plans are to convert the area to a fully digital combat training facility. Instead of using blank or dummy ordnance, hits will be registered with lasers and computers. Before this can happen, the 25,000 ha must be cleared of old debris. In support of this cleanup operation, Aerodat Inc., in conjunction with IABG of Germany, demonstrated a new high resolution magnetic survey technique involving the measurement of 3-component magnetic gradient data. The survey was conducted in May 1996, and covered 500 ha in two blocks. The nominal line spacing was 10 m, and the average sensor altitude was 7 m. The geologic column consisted of sands over a sedimentary basin. Topographic relief was generally flat with approximately 3 m rolling dunes and occasional man-made features such as fox holes, bunkers, tank traps and reviewing stands. Trees were sparse and short (2-3 metres) due to frequent burn off and tank activity. As such, this site was nearly ideal for low altitude airborne surveying.

  8. An intercomparison of airborne nitric acid measurements

    SciTech Connect

    Gregory, G.L.; Hoell, J.M. Jr.; LeBel, P.J.; Vay, S.A. ); Huebert, B.J. ); Van Bramer, S.E. ); Marinaro, R.M. ); Schiff, H.I.; Hastie, D.R. ); Mackay, G.I.; Karecki, D.R. )

    1990-06-20

    Instruments intercompared included a denuder tube collection system (DENUDER) with chemiluminescent detection, a nylon filter collection system (FILTER) with ion chromatography detection, and a tunable diode laser (TDLAS) multipath absorption system. While results were somewhat soft and data sparse, these tests suggested that the TDLAS measurements might be high compared to the other techniques. Airborne intercomparisons were conducted predominantly in the free troposphere and included encounters with marine and continental air masses. While the intercomparisons included mixing ratios to 1,000 parts per trillion by volume (pptv), the majority of the results were for mixing ratios of <300 pptv. While the lack of simultaneous measurements from the three instruments limits the conclusions that can be drawn, it is clear that there can be substantial disagreement among the three techniques, even at mixing ratios above their respective detection limits. Equally clear is that at mixing ratios below 150 pptv there is very little correlation between their results. Based on these observations, an overall conclusion from the intercomparison is that none of the HNO{sub 3} techniques can be identified to unambiguously (e.g., 20% accuracy) provide measurements of HNO{sub 3} at levels often encountered in the free troposphere (e.g., 100 pptv). However, at the more elevated levels of HNO{sub 3} (e.g., >150 pptv), both the FILTER and DENUDER techniques reported the same levels of nitric acid, while as suggested by the results from the standards intercomparison, the TDLAS reported higher nitric acid values than the other two techniques.

  9. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  10. In Situ Measurement of Aerosol Extinction

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, R.; Owano, T. G.; Bear, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Aerosols are important contributors to the radiative forcing in the atmosphere. Much of the uncertainty in our knowledge of climate forcing is due to uncertainties in the radiative forcing due to aerosols as illustrated in the IPCC reports of the last ten years. Improved measurement of aerosol optical properties, therefore, is critical to an improved understanding of atmospheric radiative forcing. Additionally, attempts to reconcile in situ and remote measurements of aerosol radiative properties have generally not been successful. This is due in part to the fact that it has been impossible to measure aerosol extinction in situ in the past. In this presentation we introduce a new instrument that employs the techniques used in cavity ringdown spectroscopy to measure the aerosol extinction and scattering coefficients in situ. A prototype instrument has been designed and tested in the lab and the field. It is capable of measuring aerosol extinction coefficient to 2x10(exp -6) per meter. This prototype instrument is described and results are presented.

  11. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  12. Aerosol optical depth measuring network - project description

    NASA Astrophysics Data System (ADS)

    Aaltonen, A.; Koskela, K.; Lihavainen, L.

    2003-04-01

    The Finnish Meteorological Institute (FMI), in collaboration with Servicio Meteorológico Nacional (SMN), Argentina, is constructing a network for aerosol optical depth (AOD) measurements. Measurements are to be started in the summer 2003 with three sunphotometers, model PFR, Davos. One of them will be sited in Marambio (64°S), Antarctica, and the rest two in the Observatory of Jokioinen (61°N) and Sodankylä GAW station (67°N), Finland. Each instrument consists of a precision filter radiometer and a suntracker. Due to the harsh climate conditions special solutions had to be introduced to keep the instrument warm and free from snow. Aerosol optical depth measured at Pallas-Sodankylä GAW station can be compared with estimated aerosol extinction, which is calculated from ground base aerosol scattering and absorption coefficient measurements.

  13. Correction of DIAL Stratospheric Ozone Measurements in the Presence of Pinatubo Aerosols

    NASA Technical Reports Server (NTRS)

    Fenn, Marta A.; Ismail, Syed; Browell, Edward V.; Butler, Carolyn F.

    1992-01-01

    NASA Langley's airborne lidar system measured aerosol and ozone distributions in the stratosphere from Jan. - Mar. 1992 as part of the Airborne Arctic Stratospheric expedition (AASE-2). The eruption of Mount Pinatubo in Jun. 1991 has increased the aerosol burden of the stratosphere and thereby increased the importance of applying an aerosol correction to the ozone measurements. The correction relies on a Bernoulli solution to derive a backscatter correction to the differential absorption lidar (DIAL) returns at two wavelengths in the ultraviolet spectral region (lambda(sub on) = 301.5 nm, lambda(sub off) = 310.87 nm) as described in earlier works. This paper discusses how the parameters for the correction were optimized for application to the AASE-2 data set.

  14. Evaluation of LIDAR/Polarimeter Aerosol Measurements by In Situ Instrumentation during DEVOTE

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Anderson, B. E.; Dolgos, G.; Ottaviani, M.; Obland, M. D.; Rogers, R.; Thornhill, K. L.; Winstead, E. L.; Yang, M. M.; Hair, J. W.

    2011-12-01

    -based). In situ measurements include aerosol number density, size, scattering, absorption and hygroscopicity (aerosol scattering as a function of relative humidity). The PI-Neph will provide the first airborne in situ measurements of aerosol polarized phase function for comparison to the RSP retrievals. As this is the first airborne use of the PI-Neph, aerosol scattering measurements from the PI-Neph will be compared to an integrating nephelometer to provide a primary indication of instrument functionality. Specific flights will be performed to study a range of aerosol classifications including fresh anthropogenic pollution (flights over populated regions), aged pollution (tracking pollution as it moves off shore), sea salt (low altitude ocean flights by the in situ aircraft) and biogenic (flights over forest canopies). In addition, the DLH and a wing-mounted cloud aerosol precipitation spectrometer will provide insight into aerosol retrievals above and near clouds.

  15. Aerosol Retrieval from Multiangle Multispectral Photopolarimetric Measurements: Importance of Spectral Range and Angular Resolution

    NASA Technical Reports Server (NTRS)

    Wu, L.; Hasekamp, O.; Van Diedenhoven, B.; Cairns, B.

    2015-01-01

    We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.

  16. Measuring Sodium Chloride Contents of Aerosols

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Amount of sodium chloride in individual aerosol particles measured in real time by analyzer that includes mass spectrometer. Analyzer used to determine mass distributions of active agents in therapeutic or diagnostic aerosols derived from saline solutions and in analyzing ocean spray. Aerosol particles composed of sodium chloride introduced into oven, where individually vaporized on hot wall. Vapor molecules thermally dissociated, and some of resulting sodium atoms ionized on wall. Ions leave oven in burst and analyzed by spectrometer, which is set to monitor sodium-ion intensity.

  17. Aerosol optical thickness measurements during FIFE '89

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi N.; Bruegge, Carol J.; Markham, Brian L.

    1990-01-01

    The measurements used for correction and calibration are presented which permit the estimation of atmospheric effects on reflected and transmitted solar radiation. Four sun-photometers are calibrated and used to derive aerosol optical thicknesses that agree with expected uncertainties, and lower values and higher values are associated with cool dry northerly flows and warm humid southerly flows, respectively. The rapid increase in the vertical aerosol optical thickness after sunrise is related to the growth of the mixing layer which can be inferred from the 2D maps of the instantaneous aerosol number densities.

  18. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  19. In situ Measurements of Absorbing Aerosols from Urban Sources, in Maritime Environments and during Biomass Combustion

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Manvendra, D.; Chylek, P.; Arnott, P.

    2006-12-01

    Absorbing aerosols have important but still ill quantified effects on climate, visibility, cloud processes, and air quality. The compilation of aerosol scattering and absorption databases from reliable measurements is essential to reduce uncertainties in these inter-linked research areas. The atmospheric radiative balance for example, is modeled using the aerosol single scattering albedo (ratio of scattering to scattering plus absorption, SSA) as a fundamental input parameter in climate models. Sulfate aerosols with SSA values close to 1 scatter solar radiation resulting in a negative radiative forcing. However aerosol SSA values less than 1 are common when combustion processes are contributing to the aerosol sources. Absorbing aerosols directly heat the atmosphere and reduce the solar radiation at the surface. Currently, the net global anthropogenic aerosol direct radiative forcing is estimated to be around -0.5W m-2 with uncertainty of about 80% largely due to lack of understanding of SSA of sulfate-organic-soot aerosols. We present a rapidly expanding data set of direct in situ aerosol absorption and scattering measurements performed since June 2005 by photoacoustic instrument (at 781 and 870 nm), with integrated a total scattering sensor, during numerous field campaigns. Data have been collected over a wide range of aerosol sources, local environments and anthropogenic activities. Airborne measurements were performed in marine stratus off shore of the California coast and in cumulus clouds and clear air in the Houston, TX area; ground-based measurements have been performed in many locations in Mexico City; while laboratory measurements have been collected during a controlled combustion experiment of many different biomass fuels. The large dynamic range of aerosol types and conditions from these different field campaigns will be integrated to help quantify the SSA values, their variability, and their implications on the radiative forcing of climate.

  20. Evidence for Novel Atmospheric Organic Aerosol Measured in a Bornean Rainforest

    NASA Astrophysics Data System (ADS)

    Robinson, N. H.; Hamilton, J. F.; Allan, J. D.; Langford, B.; Oram, D. E.; Chen, Q.; Ward, M. W.; Hewitt, C. N.; Martin, S. T.; Coe, H.; McFiggans, G. B.

    2009-12-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth’s atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are currently not well understood or quantified. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects around pristine rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Off line analysis of filter samples was performed using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GCxGC/ToFMS). This technique provide a more detailed chemical characterisation of the SOA, allowing direct links back to gas phase precursors. The ground site data are compared with Aerodyne Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) measurements made on the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. Airborne measurements were made above pristine rainforest surrounding the Danum Valley site, as well as nearby oil palm agricultural sites and palm oil rendering plants. Proton Transfer Reaction Mass Spectrometry (PTRMS) measurements of VOCs were made at the ground site and from the FAAM aircraft. Novel organic aerosol was measured by both AMSs, and identified by GCxGC/ToFMS analysis. The aerosol component was

  1. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    NASA Astrophysics Data System (ADS)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  2. Modeling long distance dispersal of airborne foot-and-mouth disease virus as a polydisperse aerosol - Application to the emergence of a new strain from Egypt to Israel

    NASA Astrophysics Data System (ADS)

    Klausner, Ziv; Klement, Eyal; Fattal, Eyal

    2015-12-01

    Long distance dispersal (LDD) of airborne aerosol of foot-and-mouth disease (FMD) virus was extensively modeled in the literature. Most studies modeled this aerosol in simplistic approach as a passive tracer, neglecting physical and biological mechanisms that affect bio-aerosols such as the FMD aerosol. This approach was justified either because under persistent wind these mechanisms lower the extant of downwind hazard or on the grounds that the effect of some of the physical mechanisms on particles as small as the FMD particles (0.015-20 μm) is supposed to be negligible compared to the effect of atmospheric turbulence. Even when the FMD aerosol was treated as aerosol, it was assumed that it is monodisperse, i.e., all its particles are of the same size. The aim of the study is to examine whether these simplistic approaches are indeed justified when dealing with LDD of a bio-aerosol under actual atmospheric conditions. In order to do so, the influence of a more realistic modeling of the FMD aerosol as a polydisperse aerosol was compared to passive tracer and to monodisperse aerosol. The comparison refers to a case of a widespread FMD outbreak that occurred in 2012 in Egypt. This outbreak involved the emergence of a new serotype in Egypt, SAT2 and concern was raised that this serotype will advance further to Asia and Europe. Israel is located on the land bridge between Africa, Asia and Europe, and shares a long desert border with Egypt as well as a long Mediterranean shore adjacent to Egypt's shore. This unique location as well as the fact that Israel does not have any cattle trade with its neighboring countries make Israel an interesting test case for the examination of the necessary conditions for the long distance dispersal (LDD) of a new FMD strains from Africa to Europe. The analysis in this study shows that under quasi-stationary wind conditions modeling FMD dispersal as a passive tracer results in a significantly longer hazard distance. Under non

  3. Generation and characterization of biological aerosols for laser measurements

    SciTech Connect

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  4. Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles.

    PubMed

    Kaye, P H; Barton, J E; Hirst, E; Clark, J M

    2000-07-20

    We describe a prototype laboratory light-scattering instrument that integrates two approaches to airborne particle characterization: spatial light-scattering analysis and intrinsic fluorescence measurement, with the aim of providing an effective means of classifying biological particles within an ambient aerosol. The system uses a single continuous-wave 266-nm ultraviolet laser to generate both the spatial elastic scatter data (from which an assessment of particle size and shape is made) and the particle intrinsic fluorescence data from particles in the approximate size range of 1-10-mum diameter carried in a sample airflow through the laser beam. Preliminary results suggest that this multiparameter measurement approach can provide an effective means of classifying different particle types and can reduce occurrences of false-positive detection of biological aerosols. PMID:18349949

  5. Temporal variability of MODIS aerosol optical depth and chemical characterization of airborne particulates in Varanasi, India.

    PubMed

    Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, T

    2015-01-01

    Temporal variation of airborne particulate mass concentration was measured in terms of toxic organics, metals and water-soluble ionic components to identify compositional variation of particulates in Varanasi. Information-related fine particulate mass loading and its compositional variation in middle Indo-Gangetic plain were unique and pioneering as no such scientific literature was available. One-year ground monitoring data was further compared to Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 retrieved aerosol optical depth (AOD) to identify trends in seasonal variation. Observed AOD exhibits spatiotemporal heterogeneity during the entire monitoring period reflecting monsoonal low and summer and winter high. Ground-level particulate mass loading was measured, and annual mean concentration of PM2.5 (100.0 ± 29.6 μg/m(3)) and PM10 (176.1 ± 85.0 μg/m(3)) was found to exceed the annual permissible limit (PM10: 80 %; PM2.5: 84 %) and pose a risk of developing cardiovascular and respiratory diseases. Average PM2.5/PM10 ratio of 0.59 ± 0.18 also indicates contribution of finer particulates to major variability of PM10. Particulate sample was further processed for trace metals, viz. Ca, Fe, Zn, Cu, Pb, Co, Mn, Ni, Cr, Na, K and Cd. Metals originated mostly from soil/earth crust, road dust and re-suspended dust, viz. Ca, Fe, Na and Mg were found to constitute major fractions of particulates (PM2.5: 4.6 %; PM10: 9.7 %). Water-soluble ionic constituents accounted for approximately 27 % (PM10: 26.9 %; PM2.5: 27.5 %) of the particulate mass loading, while sulphate (8.0-9.5 %) was found as most dominant species followed by ammonium (6.0-8.2 %) and nitrate (5.5-7.0 %). The concentration of toxic organics representing both aliphatic and aromatic organics was determined by organic solvent extraction process. Annual mean toxic organic concentration was found to be 27.5 ± 12.3 μg/m(3) (n = 104) which constitutes significant proportion of

  6. Optical measurement of medical aerosol media parameters

    NASA Astrophysics Data System (ADS)

    Sharkany, Josif P.; Zhytov, Nikolay B.; Sichka, Mikhail J.; Lemko, Ivan S.; Pintye, Josif L.; Chonka, Yaroslav V.

    2000-07-01

    The problem of aerosol media parameters measurements are presented in the work and these media are used for the treatment of the patients with bronchial asthma moreover we show the results of the development and the concentration and dispersity of the particles for the long-term monitoring under such conditions when the aggressive surroundings are available. The system for concentration measurements is developed, which consists of two identical photometers permitting to carry out the measurements of the transmission changes and the light dispersion depending on the concentration of the particles. The given system permits to take into account the error, connected with the deposition of the salt particles on the optical windows and the mirrors in the course of the long-term monitoring. For the controlling of the dispersity of the aggressive media aerosols the optical system is developed and used for the non-stop analysis of the Fure-spectra of the aerosols which deposit on the lavsan film. The registration of the information is performed with the help of the rule of the photoreceivers or CCD-chamber which are located in the Fure- plane. With the help of the developed optical system the measurements of the concentration and dispersity of the rock-salt aerosols were made in the medical mines of Solotvino (Ukraine) and in the artificial chambers of the aerosol therapy.

  7. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.; Ferrare, R. A.; Browell, E. V.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  8. Comparison between laboratory and airborne BRDF measurements for remote sensing

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2006-08-01

    Samples from soil and leaf litter were obtained at a site located in the savanna biome of South Africa (Skukuza; 25.0°S, 31.5°E) and their bidirectional reflectance distribution functions (BRDF) were measured using the out-of-plane scatterometer located in the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center (GSFC) Diffuser Calibration Facility (DCaF). BRDF was measured using P and S incident polarized light over a range of incident and scatter angles. A monochromator-based broadband light source was used in the ultraviolet (uv) and visible (vis) spectral ranges. The diffuse scattered light was collected using an uv-enhanced silicon photodiode detector with output fed to a computer-controlled lock-in amplifier. Typical measurement uncertainties of the reported laboratory BRDF measurements are found to be less than 1% (k=1). These laboratory results were compared with airborne measurements of BRDF from NASA's Cloud Absorption Radiometer (CAR) instrument over the same general site where the samples were obtained. This study presents preliminary results of the comparison between these laboratory and airborne BRDF measurements and identifies areas for future laboratory and airborne BRDF measurements. This paper presents initial results in a study to try to understand BRDF measurements from laboratory, airborne, and satellite measurements in an attempt to improve the consistency of remote sensing models.

  9. Space measurements of tropospheric aerosols

    NASA Technical Reports Server (NTRS)

    Griggs, M.

    1981-01-01

    A global-scale ground-truth experiment was conducted in the summer of 1980 with the AVHRR sensor on NOAA-6 to investigate the relationship between the upwelling visible radiance and the aerosol optical thickness over oceans at different sites around the globe. The possibility of using inland bodies of water such as rivers, lakes and reservoirs has been recently investigated using the Landsat MSS7 (approximately 0.9 micron) channel. This upwelling near-infrared radiance is less influenced than the visible radiance by the suspended matter generally found in the inland bodies of water, and by the adjacency effect of the surrounding higher albedo land. It is found that the water turbidity has more influence than the adjacency effect and reduces the effectiveness of the technique for inland observations.

  10. A Compact Airborne High Spectral Resolution Lidar for Observations of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Hair, John W.; Cook, Anthony L.

    2002-01-01

    We are in the process of developing a nadir-viewing, aircraft-based high spectral resolution lidar (HSRL) at NASA Langley Research Center. The system is designed to measure backscatter and extinction of aerosols and tenuous clouds. The primary uses of the instrument will be to validate spaceborne aerosol and cloud observations, carry out regional process studies, and assess the predictions of chemical transport models. In this paper, we provide an overview of the instrument design and present the results of simulations showing the instrument's capability to accurately measure extinction and extinction-to-backscatter ratio.

  11. Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Russell, P. B.; Hamill, P.

    2000-01-01

    Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This

  12. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  13. Nanoscale Images of Airborne PM2.5: Aerosol Dynamics with the LCLS X-ray Laser

    NASA Astrophysics Data System (ADS)

    Bogan, M. J.

    2012-12-01

    It is now possible to capture images of individual airborne PM2.5 particles - including soot, NaCl particles and engineered nanoparticles - with 20-40 nm resolution (Loh et al Nature 2012). Ions released during the imaging process provide information on the chemical content of the isolated particles. The scattering signal used to compose the image also provides the fractal dimension of individual particles. This new paradigm of aerosol dynamics is enabled by the incredible brightness and ultrashort pulses available at X-ray free electron laser (FEL) facilities, such as the Linac Coherent Light Source (LCLS) and the FLASH FEL facility in Hamburg. Femtosecond long x-ray pulses deliver sufficient photons (10^12 per pulse) to detect scattered X-rays off individual particles injected at >100 m/s into vacuum through an aerodynamic lens stack. The intensity of the scattered X-rays measured by an area detector is fed into lensless imaging algorithms to reconstruct an image of the particle that caused the scattering. X-ray FELs can peer inside the individual airborne particles and are a sensitive probe of particle crystallinity. The development of this method and applications to imaging micron-sized soot, water droplets and biological aerosols will be discussed. A primary long-term goal of the research is to take snapshots of airborne particles as they change their size, shape and chemical make-up in response to their environment. "Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight" ND Loh, C Hampton, A Martin, D Starodub, R Sierra, A Barty, A Aquila, J Schulz, L Lomb, J Steinbrener, R Shoeman, S Kassemeyer, C Bostedt, J. Bozek, S Epp, B. Erk, R Hartmann, D Rolles, A Rudenko, B Rudek, L Foucar, N Kimmel, G Weidenspointner, G Hauser, P Holl, E. Pedersoli, M Liang, M Hunter, L Gumprecht, N Coppola, C Wunderer, H Graafsma, F Maia, T Ekeberg, M Hantke, H Fleckenstein, H. Hirsemann, K Nass, T White, H Tobias, G Farquar, W Benner, S Hau

  14. Aerosol and Plasma Measurements in Noctilucent Clouds

    NASA Technical Reports Server (NTRS)

    Robertson, Scott

    2000-01-01

    The purpose of this project was to develop rocket-borne probes to detect charged aerosol layers in the mesosphere. These include sporadic E layers, which have their origin in meteoric dust, and noctilucent clouds, which form in the arctic summer and are composed of ice crystals. The probe being developed consists of a charge collecting patch connected to a sensitive electrometer which measures the charge deposited on the patch by impacting aerosols. The ambient electrons and light ions in the mesosphere are prevented from being collected by a magnetic field. The magnetic force causes these lighter particles to turn so that they miss the collecting patch.

  15. Aerosol Composition and Variability in the San Joaquin Valley Measured during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Crumeyrolle, S.; Ziemba, L. D.; Pusede, S. E.; Nowak, J. B.; Burton, S. P.; Chen, G.; Cohen, R. C.; Duffey, K.; Ferrare, R. A.; Hostetler, C. A.; Martin, R.; Moore, R.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2013-12-01

    The composition of aerosol in the San Joaquin Valley (central California) is unique in comparison to most of the United States; dominated by ammonia nitrate as a result of high gas-phase precursor emissions. Remote sensing aerosol measurements in this region are hindered during the winter by the existence of a very shallow boundary layer (measured at less than 500 ft in many cases) and frequent fog events. The DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) project was designed to provide a unique dataset for determining variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Extensive in-situ profiling of the lower atmosphere in the San Joaquin Valley was performed during ten flights in January and February 2013. Nearly identical flight plans and profile locations throughout the campaign provide meaningful statistics for analysis. Simultaneous sampling of aerosol properties was also performed at ground sites throughout the valley and from the NASA airborne high spectral-resolution lidar (HSRL-2). Measured aerosol mass was composed primarily of ammonium nitrate (campaign average of 62%) and water-soluble organics (32%). During most of the DISCOVER-AQ flights, the aerosol was primarily constrained to the very shallow boundary layer with a few cases of lofted layers towards the end of the campaign. The first five flights (over a seven day period) were performed during a period of increasing aerosol loading (aerosol optical depths of 0.04 to 0.08) due to an absence of wet scavenging. A concurrent increase in aerosol size during the week suggests an increase in aerosol age. After a period of heavy rainfall, a second set of five flights was flown over eight days. Aerosol loading was again low at the beginning (aerosol optical depths of 0.033) and increased during this period. Differences were measured between the two periods

  16. Development of eye-safe lidar for aerosol measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Wilderson, Thomas D.

    1990-01-01

    Research is summarized on the development of an eye safe Raman conversion system to carry out lidar measurements of aerosol and clouds from an airborne platform. Radiation is produced at the first Stokes wavelength of 1.54 micron in the eye safe infrared, when methane is used as the Raman-active medium, the pump source being a Nd:YAG laser at 1.064 micron. Results are presented for an experimental study of the dependence of the 1.54 micron first Stokes radiation on the focusing geometry, methane gas pressure, and pump energy. The specific new technique developed for optimizing the first Stokes generation involves retroreflecting the backward-generated first Stokes light back into the Raman cell as a seed Stokes beam which is then amplified in the temporal tail of the pump beam. Almost 20 percent conversion to 1.54 micron is obtained. Complete, assembled hardware for the Raman conversion system was delivered to the Goddard Space Flight Center for a successful GLOBE flight (1989) to measure aerosol backscatter around the Pacific basin.

  17. ARM Airborne Continuous carbon dioxide measurements

    DOE Data Explorer

    Biraud, Sebastien

    2013-03-26

    The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

  18. Influence of suspended inorganic sediment on airborne laser fluorosensor measurements

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Esaias, W. E.

    1983-01-01

    The results of Poole and Esaias (1982) are presently extended to an examination of the influence of inorganic sediment on the water Raman normalization procedure, as well as an assessment of the potential for using the Raman signal to monitor surface water attenuation properties. An optically perfect lidar system is assumed which has geometric properties representative of the Airborne Oceanographic Lidar, and is mounted on an airborne platform flying at an altitude of 150 m above the water surface. The results obtained suggest that caution should be exercised in attempts to quantitatively monitor changes in optical attenuation by means of remote measurements of the Raman scattering signal.

  19. Airborne Measurement of Ecosystem Carbon Dynamics over Heterogeneous Landscapes

    NASA Astrophysics Data System (ADS)

    Wade, T. J.; Hill, T. C.; Clement, R.; Moncrieff, J.; Disney, M.; Nichol, C. J.; Williams, M. D.

    2009-12-01

    Terrestrial carbon sinks are currently believed to account for the removal and storage of approximately 25% of anthropogenic carbon emissions from the atmosphere. The processes involved are numerous and complex and many feedbacks are at play. The ability to study the dynamics of different ecosystems at scales meaningful to climatic forcing is essential for understanding the key processes involved and identifying crucial sensitivities and thresholds. Airborne platforms with the requisite instrumentation offer the opportunity to directly measure biological processes and atmospheric structures at scales that are not achievable by ground measurements alone. The current generation of small research aircraft such as the University of Edinburgh’s Diamond HK36TTC ECO Dimona present excellent platforms for measurement of both the atmosphere and terrestrial surface. In this study we present results from airborne CO2/H2O flux measuring campaigns in contrasting climatic systems to quantify spatial patterns in ecosystem photosynthesis. Several airborne campaigns were undertaken in Arctic Finland, as part of the Arctic Biosphere Atmosphere Coupling at Multiple Scales (ABACUS) project (2008), and mainland UK as part of the UK Population Biology Network (UKPopNet) 2009 project, to explore the variability in surface CO2 flux across spatial scales larger than captured using conventional ground based eddy covariance. We discuss the application of our aircraft platform as a tool to address the challenge of understanding carbon dynamics within landscapes of heterogeneous vegetation class, terrain and hydrology using complementary datasets acquired from airborne eddy covariance and remote sensing.

  20. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  1. Crowdsourced aerosol measurements using smartphone spectropolarimeters

    NASA Astrophysics Data System (ADS)

    Rietjens, J.; Snik, F.; Keller, C. U.; Heinsbroek, R.; van Harten, G.; Heikamp, S.; de Boer, J.; Zeegers, E.; Einarsen, L.; Hasekamp, O.; Smit, M.; di Noia, A.; Apituley, A.; Mijling, B.; Hendriks, E.; Stammes, P.; Volten, H.; Vonk, J.; Berkhout, S.; Haaima, M.; van der Hoff, R.; Stam, D.; Navarro, R.; Bettonvil, F.

    2013-12-01

    We present the development, organisation and results of a large citizen science project with the goal to measure and characterise atmospheric aerosols using a network of smartphone spectropolarimeters. The project, called ';iSPEX', was conceived and carried out in the Netherlands, and organised the first National iSPEX measurement day on July 8th 2013. During this day, more than 3000 people performed over 6000 measurements with their own smartphones using a special add-on and a dedicated app. These measurements were sent to a central database, processed and analysed using a vector-radiative transfer based inversion code in order to extract aerosol properties. The add-on that transforms the camera of the smartphone into a spectropolarimeter and thereby the smartphone into a scientific instrument, employs the method of spectral modulation [1]. The add-on is comprised of polymer parts and was mass-produced and distributed to almost 10000 people. A single measurement involves scanning the blue sky, thereby yielding the angular behaviour of the degree of linear polarisation as a function of wavelength. Although a single iSPEX measurement is not accurate enough, combining many measurements of a crowdsourced experiment with thousands of people should yield sufficiently accurate results that may be interpreted in terms of aerosol optical thickness and aerosol particle properties. By analysing not only the measured results, but also the motivation of the general public to participate, we learn about the possibilities to create a new kind of air quality measurement network. At the conference, we will demonstrate iSPEX and present the results of the first measurement day. We hope to convince you that iSPEX is not only a great outreach tool to engage the public in issues pertaining to atmospheric aerosols, but that it may also contribute to the solution of several urgent societal and scientific problems. [1] Snik, F., Karalidi, T., Keller, C.U.. Spectral modulation for full

  2. Aerosol measurements at the South Pole

    NASA Astrophysics Data System (ADS)

    Bodhaine, Barry A.; Deluisi, John J.; Harris, Joyce M.; Houmere, Pamela; Bauman, Sene

    1986-09-01

    Some results are given regarding the aerosol measurement program conducted by the NOAA at their atmospheric monitoring observatory at Amundsen-Scott Station, South Pole. The program consists of the continuous measurement of condensation nuclei (CN) concentration and aerosol scattering extinction coefficient. A time series of sodium, chlorine, and sulfur concentrations shows that the sulfur and CN records are similar and that the sodium, chlorine, and extinction coefficient records are similar. Large episodes of sodium are measured at the ground in the austral winter and are apparently caused by large-scale warming and weakening of the surface temperature inversion. The CN data show an annual cycle with a maximum exceeding 100 per cubic centimeter in the austral summer and a minimum of about 10 per cubic centimeter in the winter. The extinction coefficient data show an anual cycle markedly different from that of CN with a maximum in late winter, a secondary maximum in summer, and a minimum in May.

  3. Chamber LIDAR measurements of aerosolized biological simulants

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Thrush, Evan P.; Thomas, Michael E.; Siegrist, Karen M.; Baldwin, Kevin; Quizon, Jason; Carter, Christopher C.

    2009-05-01

    A chamber aerosol LIDAR is being developed to perform well-controlled tests of optical scattering characteristics of biological aerosols, including Bacillus atrophaeus (BG) and Bacillus thuringiensis (BT), for validation of optical scattering models. The 1.064 μm, sub-nanosecond pulse LIDAR allows sub-meter measurement resolution of particle depolarization ratio or backscattering cross-section at a 1 kHz repetition rate. Automated data acquisition provides the capability for real-time analysis or recording. Tests administered within the refereed 1 cubic meter chamber can provide high quality near-field backscatter measurements devoid of interference from entrance and exit window reflections. Initial chamber measurements of BG depolarization ratio are presented.

  4. Airborne measurements of organosulfates over the continental U.S.

    PubMed Central

    Liao, Jin; Froyd, Karl D; Murphy, Daniel M; Keutsch, Frank N; Yu, Ge; Wennberg, Paul O; St Clair, Jason M; Crounse, John D; Wisthaler, Armin; Mikoviny, Tomas; Jimenez, Jose L; Campuzano-Jost, Pedro; Day, Douglas A; Hu, Weiwei; Ryerson, Thomas B; Pollack, Ilana B; Peischl, Jeff; Anderson, Bruce E; Ziemba, Luke D; Blake, Donald R; Meinardi, Simone; Diskin, Glenn

    2015-01-01

    Organosulfates are important secondary organic aerosol (SOA) components and good tracers for aerosol heterogeneous reactions. However, the knowledge of their spatial distribution, formation conditions, and environmental impact is limited. In this study, we report two organosulfates, an isoprene-derived isoprene epoxydiols (IEPOX) (2,3-epoxy-2-methyl-1,4-butanediol) sulfate and a glycolic acid (GA) sulfate, measured using the NOAA Particle Analysis Laser Mass Spectrometer (PALMS) on board the NASA DC8 aircraft over the continental U.S. during the Deep Convective Clouds and Chemistry Experiment (DC3) and the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). During these campaigns, IEPOX sulfate was estimated to account for 1.4% of submicron aerosol mass (or 2.2% of organic aerosol mass) on average near the ground in the southeast U.S., with lower concentrations in the western U.S. (0.2–0.4%) and at high altitudes (<0.2%). Compared to IEPOX sulfate, GA sulfate was more uniformly distributed, accounting for about 0.5% aerosol mass on average, and may be more abundant globally. A number of other organosulfates were detected; none were as abundant as these two. Ambient measurements confirmed that IEPOX sulfate is formed from isoprene oxidation and is a tracer for isoprene SOA formation. The organic precursors of GA sulfate may include glycolic acid and likely have both biogenic and anthropogenic sources. Higher aerosol acidity as measured by PALMS and relative humidity tend to promote IEPOX sulfate formation, and aerosol acidity largely drives in situ GA sulfate formation at high altitudes. This study suggests that the formation of aerosol organosulfates depends not only on the appropriate organic precursors but also on emissions of anthropogenic sulfur dioxide (SO2), which contributes to aerosol acidity. Key Points IEPOX sulfate is an isoprene SOA tracer at acidic and low NO conditions Glycolic acid sulfate

  5. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  6. Electronic cigarette aerosol particle size distribution measurements.

    PubMed

    Ingebrethsen, Bradley J; Cole, Stephen K; Alderman, Steven L

    2012-12-01

    The particle size distribution of aerosols produced by electronic cigarettes was measured in an undiluted state by a spectral transmission procedure and after high dilution with an electrical mobility analyzer. The undiluted e-cigarette aerosols were found to have particle diameters of average mass in the 250-450 nm range and particle number concentrations in the 10(9) particles/cm(3) range. These measurements are comparable to those observed for tobacco burning cigarette smoke in prior studies and also measured in the current study with the spectral transmission method and with the electrical mobility procedure. Total particulate mass for the e-cigarettes calculated from the size distribution parameters measured by spectral transmission were in good agreement with replicate determinations of total particulate mass by gravimetric filter collection. In contrast, average particle diameters determined for e-cigarettes by the electrical mobility method are in the 50 nm range and total particulate masses calculated based on the suggested diameters are orders of magnitude smaller than those determined gravimetrically. This latter discrepancy, and the very small particle diameters observed, are believed to result from almost complete e-cigarette aerosol particle evaporation at the dilution levels and conditions of the electrical mobility analysis. A much smaller degree, ~20% by mass, of apparent particle evaporation was observed for tobacco burning cigarette smoke. The spectral transmission method is validated in the current study against measurements on tobacco burning cigarette smoke, which has been well characterized in prior studies, and is supported as yielding an accurate characterization of the e-cigarette aerosol particle size distribution. PMID:23216158

  7. How well can we Measure the Vertical Profile of Tropospheric Aerosol Extinction?

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.

    2005-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (MOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(sub ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instuments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and 2 ground-based elastic backscatter lidars. We find the in-situ measured sigma(sub ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002 - 0.004 K/m equivalent to 12-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(sub ep)(lambda) are higher. An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system looking at the collective results from 6 field campaigns conducted since 1996, airborne in situ measurements of sigma(sub ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(sub ep)(lambda). On the other hand, sigma(sub ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state of-the art instrumentation is 15-20% at visible wavelengths and potentially larger in

  8. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  9. Pulsed airborne lidar measurements of atmospheric CO2 column absorption

    NASA Astrophysics Data System (ADS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Kawa, S. Randoph; Biraud, Sebastien

    2010-11-01

    ABSTRACT We report initial measurements of atmospheric CO2 column density using a pulsed airborne lidar operating at 1572 nm. It uses a lidar measurement technique being developed at NASA Goddard Space Flight Center as a candidate for the CO2 measurement in the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. The pulsed multiple-wavelength lidar approach offers several new capabilities with respect to passive spectrometer and other lidar techniques for high-precision CO2 column density measurements. We developed an airborne lidar using a fibre laser transmitter and photon counting detector, and conducted initial measurements of the CO2 column absorption during flights over Oklahoma in December 2008. The results show clear CO2 line shape and absorption signals. These follow the expected changes with aircraft altitude from 1.5 to 7.1 km, and are in good agreement with column number density estimates calculated from nearly coincident airborne in-situ measurements.

  10. Aerosol measurements in the IR: from limb to nadir?

    NASA Technical Reports Server (NTRS)

    Eldering, A.; Irion, F. W.; Mills, F. P.; Steele, H. M.; Gunson, M. R.

    2001-01-01

    Vertical profiles of aerosol concentration have been derived from the ATMOS solar occultation dataset. The EOS instrument TES has motivated studies of the feasibility of quantifying aerosols in nadir and limb emission measurements.

  11. Interpretation of DIAL Measurements of Lower Stratospheric Ozone in Regions with Pinatubo Aerosols

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Brackett, Vincent G.; Veiga, Robert E.; Mayor, Shane D.; Fishman, Jack; Nganga, D.; Minga, A.

    1992-01-01

    The influence of volcanic aerosols on stratospheric ozone is a topic of current interest, especially with the June 15, 1991 eruption of Mt. Pinatubo in the Philippines. Lidar has been used in the past to provide aerosol profiles which could be compared with ozone profiles measured using ozonesondes to look for coincidences between volcanic aerosols and ozone decreases. The differential absorption lidar (DIAL) technique has the advantages of being able to measure ozone and aerosol profiles simultaneously as well as being able to cover large geographical regions rapidly. While there are problems associated with correcting the ozone profiles for the presence of aerosols, the corrections can be made reliably when the wavelengths are closely spaced and the Bernoulli method is applied. The DIAL measurements considered in this paper are those obtained in the tropical stratosphere in January 1992 during the Airborne Arctic Stratospheric Expedition (AASE-II). The determination of ozone profiles in the presence of Pinatubo aerosols is discussed in a companion paper.

  12. Possible evidence of new particle formation and its impact on cloud microphysics from airborne measurements over Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Deshpande, C. G.; Bhalwankar, Rohini; Padmakumari, B.; Maheskumar, R. S.; Axisa, Duncan; Kulkarni, J. R.

    2014-04-01

    Airborne measurements conducted under a special mission over Bay of Bengal (BoB) during the CAIPEEX (Cloud Aerosol Interaction and Precipitation Enhancement EXperiment) in 2011 were analyzed in the present study. Research flights were carried out on 19 and 20 October, 2011 (referred as RF1 and RF2), in the region over BoB, which was influenced by a depression to evaluate the aerosol-cloud interactions over marine environment. The increased concentration of aitken/accumulation mode particles was observed at 500 m above sea surface level over the ocean after the passage of the depression. The source of these particles and their subsequent growth during RF1 at about 200 km from coastline has been attributed to (i) increased production of aerosols due to oxidation of dimethyl sulfide (DMS) because of upwelling of the deep ocean water during the depression and (ii) anthropogenic aerosols transported from inland. Moreover, measurements of accumulation and coarse mode particles with diameter ranging from 0.1 to 3 μm and cloud droplets in the range 3 to 47 μm show systematic growth associated with cloud microphysical/rain formation process. On the other hand, no such evidence of increasing particle concentration and growth has been observed at about 60 km from coastline towards southeast during RF2. Evidently, the rain event observed during the night hours of 19 October caused the washout and scavenging of aerosols which contributed towards the decreased aerosol concentration observed near the coast.

  13. Airborne Spectral Measurements of Ocean Directional Reflectance

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; King, Michael D.; Lyapustin, Alexei; Arnold, G. Thomas; Redemann, Jens

    2004-01-01

    During summer of 2001 NASA's Cloud Absorption Radiometer (CAR) obtained measurement of ocean angular distribution of reflected radiation or BRDF (bidirectional reflectance distribution function) aboard the University of Washington Convair CV-580 research aircraft under cloud-free conditions. The measurements took place aver the Atlantic Ocean off the eastern seaboard of the U.S. in the vicinity of the Chesapeake Light Tower and at nearby National Oceanic and Atmospheric Administration (NOAA) Buoy Stations. The measurements were in support of CLAMS, Chesapeake Lighthouse and Aircraft Measurements for Satellites, field campaign that was primarily designed to validate and improve NASA's Earth Observing System (EOS) satellite data products being derived from three sensors: MODIS (MODerate Resolution Imaging Spectro-Radiometer), MISR (Multi-angle Imaging Spectro-Radiometer) and CERES (Clouds and Earth s Radiant Energy System). Because of the high resolution of the CAR measurements and its high sensitivity to detect weak ocean signals against a noisy background, results of radiance field above the ocean are seen in unprecedented detail. The study also attempts to validate the widely used Cox-Munk model for predicting reflectance from a rough ocean surface.

  14. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  15. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  16. Characterization of shallow marine convection in subtropical regions by airborne and spaceborne lidar measurements

    NASA Astrophysics Data System (ADS)

    Gross, Silke; Gutleben, Manuel; Schäfler, Andreas; Kiemle, Christoph; Wirth, Martin; Hirsch, Lutz; Ament, Felix

    2016-04-01

    One of the biggest challenges in present day climate research is still the quantification of cloud feedbacks in climate models. Especially the feedback from marine cumulus clouds in the boundary layer with maximum cloud top heights of 4 km introduces large uncertainties in climate sensitivity. Therefore a better understanding of these shallow marine clouds, as well as of their interaction with aerosols and the Earth's energy budget is demanded. To improve our knowledge of shallow marine cumulus convection, measurements onboard the German research aircraft HALO were performed during the NARVAL (Next-generation Aircraft Remote-sensing for Validation studies) mission in December 2013. During NARVAL an EarthCARE equivalent remote sensing payload, with the DLR airborne high spectral resolution and differential absorption lidar system WALES and the cloud radar of the HAMP (HALO Microwave Package) as its core instrumentation, was deployed. To investigate the capability of spaceborne lidar measurements for this kind of study several CALIOP underflights were performed. We will present a comparison of airborne and spaceborne lidar measurements, and we will present the vertical and horizontal distribution of the clouds during NARVAL based on lidar measurements. In particular we investigate the cloud top distribution and the horizontal cloud and cloud gap length. Furthermore we study the representativeness of the NARVAL data by comparing them to and analysing a longer time series and measurements at different years and seasons.

  17. Balloon measurements of aerosol in the Antarctic stratosphere

    NASA Technical Reports Server (NTRS)

    Morita, Y.; Takagi, M.; Iwasaka, Y.; Ono, A.

    1985-01-01

    Three balloon soundings of aerosol were conducted from Syowa Station, Antarctica in April, June and October 1983. Number concentration and the size distribution of aerosol particles with diameter greater than 0.3 microns were measured by using a light scattering aerosol particle counter. The influence of the eruption of Mt. El Chichon on the aerosol concentration in the stratosphere was observed on October 16. Very high aerosol concentration at stratospheric heights was obtained from the first successful aerosol sounding in winter Antarctic stratosphere. The result gives direct evidence of winter enhancement in the Antarctic stratosphere.

  18. Stackable differential mobility analyzer for aerosol measurement

    DOEpatents

    Cheng, Meng-Dawn; Chen, Da-Ren

    2007-05-08

    A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

  19. Airborne tunable diode laser measurements of formaldehyde

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Wert, Bryan P.; Henry, Bruce; Drummond, James R.

    1999-09-01

    Accurate measurements of formaldehyde (CH 2O) in the atmosphere are essential to further our understanding of various atmospheric cycles involving hydrogen and carbon-containing species. Comparisons among independent measurements of this gas and between measurements and model calculations have raised numerous questions regarding the veracity of both endeavors. The present paper describes a long-term effort by our group to develop and employ tunable diode laser absorption spectroscopy (TDLAS) for highly accurate measurements of this gas on both ground-based and aircraft platforms. A highly sensitive and selective TDLAS system, which has successfully flown on three different aircraft campaigns, will be described. Many new hardware and software features, which have been implemented, now make it possible to detect ambient CH 2O concentrations as low as 55 parts-per-trillion employing a 20-s integration time. This paper will also discuss the many aspects associated with high accuracy and its verification, including a brief discussion of our aircraft sampling system and inlet surface effects.

  20. Setup and first airborne application of an aerosol optical properties package for the In-service Aircraft Global Observing System IAGOS.

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Freedman, Andrew; Herber, Andreas; Mattis, Ina; Berg, Marcel; De Faira, Julia; Petzold, Andreas

    2016-04-01

    different spectral information. The number of CAPS units to be used will depend on the size of the final electronic boards which are currently under development. The Sky OPC measures the size distribution theoretically up to 32 μm covering the relevant size information for calculation of aerosol optical properties. Because of the inlet cut off diameter of D50 = 3μm we are using the 16 channel mode in the range of 250 nm - 2.5 μm at 1 Hz resolution. In this presentation the setup of the IAGOS Aerosol package P2E is presented and characterized for pressure levels relevant for the planned application, down to cruising level of 150 hPa. In our aerosol lab we have tested the system against standard instrumentation with different aerosol test substances. In addition first results for airborne measurements are shown from a first airborne field campaign where in situ profiles are compared to LIDAR measurements over Bornholm (Denmark) and Lindenberg (Germany).

  1. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  2. Active-passive airborne ocean color measurement. II - Applications

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1986-01-01

    Reported here for the first time is the use of a single airborne instrument to make concurrent measurements of oceanic chlorophyll concentration by (1) laser-induced fluorescence, (2) passive upwelling radiance, and (3) solar-induced chlorophyll fluorescence. Results from field experiments conducted with the NASA airborne oceanographic lidar (AOL) in the New York Bight demonstrate the capability of a single active-passive instrument to perform new and potentially important ocean color studies related to (1) active lidar validation of passive ocean color in-water algorithms, (2) chlorophyll a in vivo fluorescence yield variability, (3) calibration of active multichannel lidar systems, (4) effect of sea state on passive and active ocean color measurements, (5) laser/solar-induced chlorophyll fluorescence investigations, and (6) subsequent improvement of satellite-borne ocean color scanners. For validation and comparison purposes a separate passive ocean color sensor was also flown along with the new active-passive sensor during these initial field trials.

  3. Radon measurements aboard the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.

    1995-01-01

    We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.

  4. Ultrasonic airborne insertion loss measurements at normal incidence (L).

    PubMed

    Farley, Jayrin; Anderson, Brian E

    2010-12-01

    Transmission loss and insertion loss measurements of building materials at audible frequencies are commonly made using plane wave tubes or as a panel between reverberant rooms. These measurements provide information for noise isolation control in architectural acoustics and in product development. Airborne ultrasonic sound transmission through common building materials has not been fully explored. Technologies and products that utilize ultrasonic frequencies are becoming increasingly more common, hence the need to conduct such measurements. This letter presents preliminary measurements of the ultrasonic insertion loss levels for common building materials over a frequency range of 28-90 kHz using continuous-wave excitation. PMID:21218864

  5. Transported acid aerosols measured in southern Ontario

    NASA Astrophysics Data System (ADS)

    Keeler, Gerald J.; Spengler, John D.; Koutrakis, Petros; Allen, George A.; Raizenne, Mark; Stern, Bonnie

    During the period 29 June 1986-9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO 2, O 3, NO x, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H + concentrations in the range < 10-560 nmoles m -3. The aerosol H + appeared to represent the net strong acidity after H 2SO 4 reaction with NH 3(g). Average daytime concentrations were higher than night-time for aerosol H +, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.

  6. Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study

    NASA Astrophysics Data System (ADS)

    Asa-Awuku, Akua; Moore, Richard H.; Nenes, Athanasios; Bahreini, Roya; Holloway, John S.; Brock, Charles A.; Middlebrook, Ann M.; Ryerson, Thomas B.; Jimenez, Jose L.; Decarlo, Peter F.; Hecobian, Arsineh; Weber, Rodney J.; Stickel, Robert; Tanner, Dave J.; Huey, Lewis G.

    2011-06-01

    Airborne measurements of aerosol and cloud condensation nuclei (CCN) were conducted aboard the National Oceanic and Atmospheric Administration WP-3D platform during the 2006 Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS). The measurements were conducted in regions influenced by industrial and urban sources. Observations show significant local variability of CCN activity (CCN/CN from 0.1 to 0.5 at s = 0.43%), while variability is less significant across regional scales (˜100 km × 100 km; CCN/CN is ˜0.1 at s = 0.43%). CCN activity can increase with increasing plume age and oxygenated organic fraction. CCN measurements are compared to predictions for a number of mixing state and composition assumptions. Mixing state assumptions that assumed internally mixed aerosol predict CCN concentrations well. Assuming organics are as hygroscopic as ammonium sulfate consistently overpredicted CCN concentrations. On average, the water-soluble organic carbon (WSOC) fraction is 60 ± 14% of the organic aerosol. We show that CCN closure can be significantly improved by incorporating knowledge of the WSOC fraction with a prescribed organic hygroscopicity parameter (κ = 0.16 or effective κ ˜ 0.3). This implies that the hygroscopicity of organic mass is primarily a function of the WSOC fraction. The overall aerosol hygroscopicity parameter varies between 0.08 and 0.88. Furthermore, droplet activation kinetics are variable and 60% of particles are smaller than the size characteristic of rapid droplet growth.

  7. Characterization of Cirrus Cloud Properties by Airborne Differential Absorption and High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Gross, S.; Schäfler, A.; Wirth, M.; Fix, A.; Kiemle, C.

    2014-12-01

    Despite the large impact of cirrus clouds on the Earth's climate system, their effects are still only poorly understood. Our knowledge of the climate effect of cirrus clouds is mainly based on theoretical simulations using idealized cloud structure and microphysics, as well as radiative transfer approximations. To improve the representation of cirrus clouds in idealized simulations and circulation models, we need a better understanding of the micro- and macrophysical properties of cirrus clouds. Airborne lidar measurements provide two-dimensional information of the atmospheric structure, and are thus a suitable tool to study the fine-structure of cirrus clouds, as well as their macrophysical properties. Aerosol and water vapor was measured with the airborne high spectral resolution lidar (HSRL) and differential absorption lidar (DIAL) system WALES of the German Aerospace Center (DLR), Oberpfaffenhofen. The system was operated onboard the German high altitude and long range research aircraft HALO during the Next-generation remote sensing for validation studies campaign (NARVAL) in December 2013 over the tropical North-Atlantic and in January 2014 out of Iceland, and during the ML-Cirrus campaign in March/April 2014 over Central and Southern Europe. During NARVAL 18 flights with more than 110 flight hours were performed providing a large number of cirrus cloud overpasses with combined lidar and radar instrumentation. In the framework of the ML-Cirrus campaign 17 flights with more than 80 flight hours were performed to characterize cirrus cloud properties in different environmental conditions using a combination of remote sensing (e.g. lidar) and in-situ observations. In our presentation we will give a general overview of the campaigns and of the WALES measurements. We will show first results from the aerosol and water vapor lidar measurements with focus on the structure of cirrus clouds, the humidity distribution within and outside the cloud and on the impact of the

  8. Time-of-flight measurement techniques for airborne ultrasonic ranging.

    PubMed

    Jackson, Joseph C; Summan, Rahul; Dobie, Gordon I; Whiteley, Simon M; Pierce, S G; Hayward, Gordon

    2013-02-01

    Airborne ultrasonic ranging is used in a variety of different engineering applications for which other positional metrology techniques cannot be used, for example in closed-cell locations, when optical line of sight is limited, and when multipath effects preclude electromagnetic-based wireless systems. Although subject to fundamental physical limitations, e.g., because of the temperature dependence of acoustic velocity in air, these acoustic techniques often provide a cost-effective solution for applications in mobile robotics, structural inspection, and biomedical imaging. In this article, the different techniques and limitations of a range of airborne ultrasonic ranging approaches are reviewed, with an emphasis on the accuracy and repeatability of the measurements. Simple time-domain approaches are compared with their frequency-domain equivalents, and the use of hybrid models and biologically inspired approaches are discussed. PMID:23357908

  9. Aerosol measurements in the stratocumulus project

    NASA Technical Reports Server (NTRS)

    Hudson, James G.

    1990-01-01

    Cloud Condensation Nuclei (CCN) and Condensation Nuclei (CN) were measured from the National Center for Atmospheric Research (NCAR) Electra throughout the marine stratocumulus project. The total particle concentration was measured with a condensation nucleus counter. The CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. This instrument simultaneously measures the concentration of aerosol active at up to 100 different critical supersaturations (Sc). This is accomplished by exposing the sample to a fixed supersaturation field and using the size of the droplets produced in this cloud chamber to deduce the Sc of the nuclei upon which they have grown. Droplet size is associated with Sc through a calibration which is accomplished by passing soluble aerosols of known size and composition through the cloud chamber. This procedure results in a calibration curve of Sc vs. droplet size. This then allows the channel number to be directly associated with Sc. Thus, number concentration vs. Sc is obtained and this is a CCN spectrum. Since the instrument operates continuously, the measurements at all Sc's are available simultaneously. Samples are drawn directly from the ambient air and data is displayed in nearly real time. Samples were integrated over times of about 10 seconds so that substantial spatial resolution is available. Calibrations were performed once or twice a day and were found to be consistent. Preliminary results are shown.

  10. Analyzers Measure Greenhouse Gases, Airborne Pollutants

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In complete darkness, a NASA observatory waits. When an eruption of boiling water billows from a nearby crack in the ground, the observatory s sensors seek particles in the fluid, measure shifts in carbon isotopes, and analyze samples for biological signatures. NASA has landed the observatory in this remote location, far removed from air and sunlight, to find life unlike any that scientists have ever seen. It might sound like a scene from a distant planet, but this NASA mission is actually exploring an ocean floor right here on Earth. NASA established a formal exobiology program in 1960, which expanded into the present-day Astrobiology Program. The program, which celebrated its 50th anniversary in 2010, not only explores the possibility of life elsewhere in the universe, but also examines how life begins and evolves, and what the future may hold for life on Earth and other planets. Answers to these questions may be found not only by launching rockets skyward, but by sending probes in the opposite direction. Research here on Earth can revise prevailing concepts of life and biochemistry and point to the possibilities for life on other planets, as was demonstrated in December 2010, when NASA researchers discovered microbes in Mono Lake in California that subsist and reproduce using arsenic, a toxic chemical. The Mono Lake discovery may be the first of many that could reveal possible models for extraterrestrial life. One primary area of interest for NASA astrobiologists lies with the hydrothermal vents on the ocean floor. These vents expel jets of water heated and enriched with chemicals from off-gassing magma below the Earth s crust. Also potentially within the vents: microbes that, like the Mono Lake microorganisms, defy the common characteristics of life on Earth. Basically all organisms on our planet generate energy through the Krebs Cycle, explains Mike Flynn, research scientist at NASA s Ames Research Center. This metabolic process breaks down sugars for energy

  11. The influence of fog parameters on aerosol depletion measured in the KAEVER experiments

    SciTech Connect

    Poss, G.; Weber, D.; Fritsche, B.

    1995-12-31

    The release of radioactive aerosols in the environment is one of the most serious hazards in case of an accident in nuclear power plant. Many efforts have been made in the past in numerous experimental programs like NSPP, DEMONA, VANAM, LACE, MARVIKEN, others are still underway to improve the knowledge of the aerosol behavior and depletion in a reactor containment in order to estimate the possible source term and to validate computer codes. In the German single compartment KAEVER facility the influence of size distribution, morphology, composition and solubility on the aerosol behavior is investigated. One of the more specific items is to learn about {open_quotes}wet depletion{close_quotes} means, the aerosol depletion behavior in condensing atmospheres. There are no experiments known where the fog parameters like droplet size distribution, volume concentration, respectively airborne liquid water content have been measured in- and on-line explicitly. To the authors knowledge the use of the Battelle FASP photometer, which was developed especially for this reason, for the first time gives insight in condensation behavior under accident typical thermal hydraulic conditions. It delivers a basis for code validation in terms of a real comparison of measurements and calculations. The paper presents results from {open_quotes}wet depletion{close_quotes} aerosol experiments demonstrating how depletion velocity depends on the fog parameters and where obviously critical fog parameter seem to change the regime from a {open_quotes}pseudo dry depletion{close_quotes} at a relative humidity of 100% but quasi no or very low airborne liquid water content to a real {open_quotes}wet depletion{close_quotes} under the presence of fogs with varying densities. Characteristics are outlined how soluble and insoluble particles as well as aerosol mixtures behave under condensing conditions.

  12. Signal to Noise Ratio Analysis of the Data from the Pulsed Airborne CO2 Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.

    2009-12-01

    We are developing a differential absorption lidar (DIAL) for measuring the CO2 column concentrations from space for the ASCENDS mission. Our technique uses two pulsed laser transmitters to simultaneously measure the total column absorption by CO2 in 1570 nm band and O2 extinction in the Oxygen A-band by periodically stepping the laser wavelength at predetermined wavelengths across the absorption lines. The reflected laser signals from the surface and clouds are collected by the receiver telescope and detected by a set of single photon counting detectors. We used pulsed lasers and time resolved photon detection to distinguish the surface echoes from cloud and aerosol backscattering and to measure the column height. . The total column absorption at a given wavelength is determined from the ratio of the received laser pulse energy to the transmitted energy. The column gas concentrations and the spectral line shape are determined from curve fitting of the column absorptions as a function of the wavelength. We have built an airborne lidar to demonstrate the CO2 column measurement technique from the NASA Lear-25 aircraft. The airborne lidar scans the laser wavelength across the CO2 absorption line in 20 steps. The line scan rate is 450 Hz, the laser pulse energy is 25 uJ, and laser pulse widths are 1 usec. The backscatter photons are collected by a 20 cm telescope and detected by a near infrared photomultiplier tube. The detected photons are binned according to their arrival times with the use of a multichannel scaler. Several airborne measurements were conducted during October and December 2008, and August 2009 with many hours of CO2 column measurement data at the 1571.4, 1572.02 and 1572.33 nm CO2 absorption lines. The measurements were made over a variety of land and water surfaces and some through thin clouds. We also made several improvements to the instrument for the later flights. Measurements from early flights showed the receiver signal and noise levels were

  13. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  14. Measurement of airborne {sup 218}Po - A Bayesian approach

    SciTech Connect

    Groer, P.G.; Lo, Y.

    1996-12-01

    The standard mathematical treatment of the buildup and decay of airborne radionuclides on a filter paper uses the solutions of the so-called bateman equations adapted to the sampling process. The equations can be interpreted as differential equations for the expectation of an underlying stochastic process, which describes the random fluctuations in the accumulation and decay of the sampled radioactive atoms. The process for the buildup and decay of airborne {sup 218}Po can be characterized as an {open_quotes}immigration-death process{close_quotes} in the widely adopted, biologically based jargon. The probability distribution for the number of {sup 218}Po atoms, accumulated after sampling time t, is Poisson. We show that the distribution of the number of counts, registered by a detector with efficiency {epsilon} during a counting period T after the end of sampling, it also Poisson, with mean dependent on {epsilon},t,T, the flowrate and N{sub o}, the number of airborne {sup 218}Po atoms per unit volume. This Poisson distribution was used to construct the likelihood given the observed number of counts. After inversion with Bayes` Theorem we obtained the posterior density for N{sub o}. This density characterizes the remaining uncertainty about the measured under of {sup 218}Po atoms per unit volume of air. 6 refs., 3 figs., 1 tab.

  15. Measurement of airborne 218Po--a Bayesian approach.

    PubMed

    Groer, P G; Lo, Y

    1996-12-01

    The standard mathematical treatment of the buildup and decay of airborne radionuclides on a filter paper uses the solutions of the so-called Bateman equations adapted to the sampling process. These equations can be interpreted as differential equations for the expectation of an underlying stochastic process, which describes the random fluctuations in the accumulation and decay of the sampled radioactive atoms. The process for the buildup and decay of airborne 218Po can be characterized as an "immigration-death process" in the widely adopted, biologically based jargon. The probability distribution for the number of 218Po atoms, accumulated after sampling time t, is Poisson. We show that the distribution of the number of counts, registered by a detector with efficiency epsilon during a counting period T after the end of sampling, is also Poisson, with mean dependent on epsilon, t, T, the flowrate and N(o), the number of airborne 218Po atoms per unit volume. This Poisson distribution was used to construct the likelihood given the observed number of counts. After inversion with Bayes' Theorem we obtained the posterior density for N(o). This density characterizes the remaining uncertainty about the measured number of 218Po atoms per unit volume of air. PMID:8919080

  16. Functional requirements document for measuring emissions of airborne radioactive materials

    SciTech Connect

    Criddle, J.D. Jr.

    1994-09-01

    This document states the functional requirements and procedures for systems making measurements of radioactive airborne emissions from facilities at the Hanford Site. The following issues are addressed in this document: Definition of the program objectives; Selection of the overall approach to collecting the samples; Sampling equipment design; Sampling equipment maintenance, and quality assurance issues. The intent of this document is to assist WHC in demonstrating a high quality of air emission measurements with verified system performance based on documented system design, testing, inspection, and maintenance.

  17. Aerosol Optical Depth Measurements in the Southern Ocean Within the Framework of Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Sayer, A. M.; Sakerin, S. M.; Radionov, V. F.; Courcoux, Y.; Broccardo, S. P.; Evangelista, H.; Croot, P. L.; Disterhoft, P.; Piketh, S.; Milinevsky, G. P.; O'Neill, N. T.; Slutsker, I.; Giles, D. M.

    2013-12-01

    Aerosol production sources over the World Ocean and various factors determining aerosol spatial and temporal distribution are important for understanding the Earth's radiation budget and aerosol-cloud interactions. The Maritime Aerosol Network (MAN) as a component of AERONET has been collecting aerosol optical depth data over the oceans since 2006. A significant progress has been made in data acquisition over areas that previously had very little or no coverage. Data collection included intensive study areas in the Southern Ocean and off the coast of Antarctica including a number of circumnavigation cruises in high southern latitudes. It made an important contribution to MAN and provided a valuable reference point in atmospheric aerosol optical studies. The paper presents results of this international and multi-agency effort in studying aerosol optical properties over Southern Ocean and adjacent areas. The ship-borne aerosol optical depth measurements offer an excellent opportunity for comparison with global aerosol transport models, satellite retrievals and provide useful information on aerosol distribution over the World Ocean. A public domain web-based database dedicated to the MAN activity can be found at http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html.

  18. Fungal contribution to size-segregated aerosol measured through biomarkers

    NASA Astrophysics Data System (ADS)

    Di Filippo, Patrizia; Pomata, Donatella; Riccardi, Carmela; Buiarelli, Francesca; Perrino, Cinzia

    2013-01-01

    Fungal spores are the dominant biological component of air. Although ubiquitous in outdoor air, they are scarcely measured due to the inadequacy of measurement methods. The use of biomarkers as tools for the determination of fungal contribution to bioaerosol has often been suggested, and ergosterol, arabitol and mannitol have been associated to fungal spores as tracers. In the present paper, the fungal component of aerosol was studied at suburban/rural and at urban sites. Ergosterol, arabitol, and mannitol contents in airborne particulate matter, even at different sizes, were determined. Literature conversion factors and calculated conversion factors correlating ergosterol, arabitol, and mannitol masses to fungi mass were applied and compared to each other. The obtained fungal spore concentrations were different depending on the marker utilized both with the conversion factors found in literature and the calculated ones. Size-segregated marker distribution suggested different sources for the three tracers indicating ergosterol as the only reliable biomarker at our latitudes. The fungal spore concentrations were higher at the suburban/rural location and respectively inversely and directly proportional to temperature and relative humidity.

  19. Airborne measurements of NO2 shipping emissions using imaging DOAS

    NASA Astrophysics Data System (ADS)

    Meier, Andreas C.; Schönhardt, Anja; Richter, Andreas; Seyler, André; Ruhtz, Thomas; Lindemann, Carsten; Wittrock, Folkard; Burrows, John P.

    2014-05-01

    NOx (NO and NO2) play a key role in tropospheric chemistry and affect human health and the environment. Shipping emissions contribute substantially to the global emissions of anthropogenic NOx. Due to globalization and increased trade volume, the relative importance emissions from ships gain even more importance. The Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP), developed at IUP Bremen, has been used to perform measurements of NO2 in the visible spectral range. The observations allow the determination of spatial distributions of column densities of NO2 below the aircraft. Airborne measurements were performed over Northern Germany and adjacent coastal waters during the NOSE (NO2 from Shipping Emissions) campaign in August 2013. The focus of the campaign activities was on shipping emissions, but NO2 over cities and power plants has been measured as well. The measurements have a spatial resolution below the order of 100 × 30 m2, and they reveal the large spatial variability of NO2 and the evolution of NO2 plumes behind point sources. Shipping lanes as well as plumes of individual ships are detected by the AirMAP instrument. In this study, first results from the NOSE campaign are presented for selected measurement areas.

  20. Drop size measurement of liquid aerosols

    NASA Astrophysics Data System (ADS)

    Liu, B. Y. H.; Pui, D. Y. H.; Xian-Qing, Wang

    The factor B = D/ D' relating the diameter D of a spherical liquid drop to the diameter, D˜, of the same drop collected on a microscope slide has been measured for DOP (di-octyl phthalate) and oleic acid aerosols. The microscope slide was coated with a fluorocarbon, oleophobic surfactant (L-1428, 3M Co., St. Paul, MN). The ratio was found to be independent of drop diameter in the 2-50 μm range and the mean value of B was found to be 0.700 for oleic acid and 0.690 for DOP. Similar measurements for oleic acid and DOP drops collected on a clean, uncoated slide resulted in the values of 0.419 and 0.303, respectively. The experimental values of B were compared with the theoretical values based on contact angle measurements. Good agreement was obtained.

  1. Assessing Aerosol Mixed Layer Heights from the NASA Larc Airborne High Spectral Resolution Lidar (HSRL) during the Discover-AQ Field Campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Sawamura, P.; Collins, J. E., Jr.; Seaman, S. T.; Cook, A. L.; Harper, D. B.; Follette-Cook, M. B.; daSilva, A.; Randles, C. A.

    2014-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD, during January and February 2013 over the San Joaquin Valley of California, during September 2013 over Houston, TX and during July and August 2014 over Denver, CO. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the mixed layer (ML) height. Analysis of the ML height at these four locations is presented, including temporal and horizontal variability and comparisons between land and water, including the Chesapeake Bay and Galveston Bay. Using the ML heights, the distribution of AOT relative to the ML heights is determined, which is relevant for assessing the long-range transport of aerosols. The ML heights are also used to help relate column AOT measurements and extinction profiles to surface PM2.5 concentrations. The HSRL ML heights are also used to evaluate the performance in simulating the temporal and spatial variability of ML heights from both chemical regional models and global forecast models.

  2. Assimilation of satellite Aerosol Optical Depth measurements in the CTM MOCAGE during the ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Sic, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Emili, Emanuele

    2014-05-01

    Aerosols are of great importance for atmospheric chemistry, climate, and public health. Consequently, it is important to well simulate the spatial and temporal aerosol distribution. The atmospheric aerosols are a chemically and physically complex mixture of solid and liquid particles from natural and anthropogenic sources. Thus, modelling of different types of aerosols is subject of many uncertainties related to their parameterizations or sources/sinks. This contribution deals with the improvement of the spatial and temporal representation of different types of aerosols within the chemistry-transport model of Météo-France, MOCAGE. This consists of assimilating Aerosol Optical Depth (AOD) from satellite observations. The used approach during AOD assimilation consists in choosing the total aerosol concentrations as the control variable. First, we will present the methodology and the advantages of such an approach. Second, we will evaluate the AOD analyses by comparison to the independent aerosol measurements performed during the ChArMEx campaign (summer 2013). ChArMEx is a French initiative which aimed to characterize the atmospheric pollution in the western-Mediterranean basin using airborne measurements from balloons and aircrafts as well as ground-based measurements.

  3. Evaluation of a diffusion charger for measuring aerosols in a workplace.

    PubMed

    Vosburgh, Donna J H; Ku, Bon Ki; Peters, Thomas M

    2014-05-01

    The model DC2000CE diffusion charger from EcoChem Analytics (League City, TX, USA) has the potential to be of considerable use to measure airborne surface area concentrations of nanoparticles in the workplace. The detection efficiency of the DC2000CE to reference instruments was determined with monodispersed spherical particles from 54 to 565.7 nm. Surface area concentrations measured by a DC2000CE were then compared to measured and detection efficiency adjusted reference surface area concentrations for polydispersed aerosols (propylene torch exhaust, incense, diesel exhaust, and Arizona road dust) over a range of particle sizes that may be encountered in a workplace. The ratio of surface area concentrations measured by the DC2000CE to that measured with the reference instruments for unimodal and multimodal aerosols ranged from 0.02 to 0.52. The ratios for detection efficiency adjusted unimodal and multimodal surface area concentrations were closer to unity (0.93-1.19) for aerosols where the majority of the surface area was within the size range of particles used to create the correction. A detection efficiency that includes the entire size range of the DC2000CE is needed before a calibration correction for the DC2000CE can be created. For diesel exhaust, the DC2000CE retained a linear response compared to reference instruments up to 2500 mm(2) m(-3), which was greater than the maximum range stated by the manufacturer (1000 mm(2) m(-3)). Physical limitations with regard to DC2000CE orientation, movement, and vibration were identified. Vibrating the DC2000CE while measuring aerosol concentrations may cause an increase of ~35 mm(2) m(-3), whereas moving the DC2000CE may cause concentrations to be inflated by as much as 400 mm(2) m(-3). Depending on the concentration of the aerosol of interest being measured, moving or vibrating a DC2000CE while measuring the aerosol should be avoided. PMID:24458322

  4. Evaluation of a Diffusion Charger for Measuring Aerosols in a Workplace

    PubMed Central

    Vosburgh, Donna J. H.; Ku, Bon Ki; Peters, Thomas M.

    2014-01-01

    The model DC2000CE diffusion charger from EcoChem Analytics (League City, TX, USA) has the potential to be of considerable use to measure airborne surface area concentrations of nanoparticles in the workplace. The detection efficiency of the DC2000CE to reference instruments was determined with monodispersed spherical particles from 54 to 565.7nm. Surface area concentrations measured by a DC2000CE were then compared to measured and detection efficiency adjusted reference surface area concentrations for polydispersed aerosols (propylene torch exhaust, incense, diesel exhaust, and Arizona road dust) over a range of particle sizes that may be encountered in a workplace. The ratio of surface area concentrations measured by the DC2000CE to that measured with the reference instruments for unimodal and multimodal aerosols ranged from 0.02 to 0.52. The ratios for detection efficiency adjusted unimodal and multimodal surface area concentrations were closer to unity (0.93–1.19) for aerosols where the majority of the surface area was within the size range of particles used to create the correction. A detection efficiency that includes the entire size range of the DC2000CE is needed before a calibration correction for the DC2000CE can be created. For diesel exhaust, the DC2000CE retained a linear response compared to reference instruments up to 2500mm2 m−3, which was greater than the maximum range stated by the manufacturer (1000mm2 m−3). Physical limitations with regard to DC2000CE orientation, movement, and vibration were identified. Vibrating the DC2000CE while measuring aerosol concentrations may cause an increase of ~35mm2 m−3, whereas moving the DC2000CE may cause concentrations to be inflated by as much as 400mm2 m−3. Depending on the concentration of the aerosol of interest being measured, moving or vibrating a DC2000CE while measuring the aerosol should be avoided. PMID:24458322

  5. Optical properties and vertical distribution of pollution aerosols in the Mediterranean basin in summertime: airborne observations from the Charmex SOP0, SOP1, and SOP2 campaigns

    NASA Astrophysics Data System (ADS)

    Di Biagio, Claudia; Beekmann, Matthias; Chevallier, Servanne; Denjean, Cyrielle; Doppler, Lionel; Gaimoz, Cecile; Grand, Noel; Loisil, Rodrigue; Mallet, Marc; Pelon, Jacques; Ravetta, Francois; Sartelet, Karine; Schnitt, Sabrina; Triquet, Sylvain; Zapf, Pascal; Formenti, Paola

    2014-05-01

    The Mediterranean basin is a very complex area where high concentrations of atmospheric aerosols of different origin and types may be found. The North-Western part of the Mediterranean basin, due to its closeness with high polluted industrialized areas and coastal high populated cities, is frequently affected by severe pollution episodes. The strength of these episodes is particularly intense during summer when stable meteorological conditions favour the accumulation of pollutants in the lowermost atmospheric layers. Three intensive airborne campaigns (TRAQA, TRansport and Air QuAlity, June-July 2012), ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region, June 2013) and SAFMED (Secondary Aerosol Formation in the MEDiterranean, July 2013) have been conducted over the North-Western and Central Mediterranean basin with the SAFIRE ATR-42 aircraft in the framework of the ChArMex Special Observing Periods 0 and 1. During the different campaigns the ATR-42 was equipped with a large set of instruments for the measurements of the aerosol physico-chemical (GRIMM, SMPS, PCASP, USHAS, FSSP for size distribution, and three lines for filter sampling on polycarbonate and quartz membranes in order to derive the bulk aerosol composition) and optical properties (TSI nephelometer, Magee Sci. aethalomether, and CAPS for scattering, absorption, and extinction coefficients at several wavelengths in the visible). Lidar backscatter profiles at 355, 532, and 1064 nm, meteorological parameters, upward and downward shortwave and longwave radiative fluxes, and atmospheric composition (H2O, CO2, CO, and O3) were also measured from aircraft instrumentation. In this work we present data on the aerosol physico-chemical and optical properties obtained during the 25 scientific flights of TRAQA, ADRIMED, and SAFMED performed in correspondence of pollution episodes. During the campaigns the Western Mediterranean basin was interested by different synoptic

  6. Space Borne Cloud and Aerosol Measurements by the Geoscience Laser Altimeter System: Initial Results

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis L.; Hart, William D.; Mahesh, Ashwin; Welton, Ellsworth J.

    2003-01-01

    In January 2003 the Geoscience Laser Altimeter System (GLAS) was successfully launched into orbit. Beginning in March 2003 GLAS will provide global coverage lidar measurement of the height distribution of clouds and aerosol in the atmosphere for up to five years. The characteristic and value of the unique data will be presented. The instrument is a basic backscatter lidar that operates at two wavelengths, 532 and 1064 nm. The mission data products for atmospheric observations include the calibrated, observed, attenuated backscatter cross section for cloud and aerosol; height detection for multiple cloud layers; planetary boundary layer height; cirrus and aerosol optical depth and the height distribution of aerosol and cloud scattering cross section profiles. The data is expected to significantly enhance knowledge in several areas of atmospheric science, in particular the distribution, transport and influence of atmospheric aerosol and thin clouds. Measurements of the coverage and height of polar and cirrus cloud should be significantly more accurate than previous global observations. In March and April 2003, airborne and ground based data verification experiments will be carried out. Initial results from the verification experiments and the first several months of operation will be presented.

  7. In situ real-time measurement of physical characteristics of airborne bacterial particles

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hee; Lee, Jung Eun

    2013-12-01

    Bioaerosols, including aerosolized bacteria, viruses, and fungi, are associated with public health and environmental problems. One promising control method to reduce the harmful effects of bioaerosols is thermal inactivation via a continuous-flow high-temperature short-time (HTST) system. However, variations in bioaerosol physical characteristics - for example, the particle size and shape - during the continuous-flow inactivation process can change the transport properties in the air, which can affect particle deposition in the human respiratory system or the filtration efficiency of ventilation systems. Real-time particle monitoring techniques are a desirable alternative to the time-consuming process of microscopic analysis that is conventionally used in sampling and particle characterization. Here, we report in situ real-time optical scattering measurements of the physical characteristics of airborne bacteria particles following an HTST process in a continuous-flow system. Our results demonstrate that the aerodynamic diameter of bacterial aerosols decreases when exposed to a high-temperature environment, and that the shape of the bacterial cells is significantly altered. These variations in physical characteristics using optical scattering measurements were found to be in agreement with the results of scanning electron microscopy analysis.

  8. A towed airborne platform for turbulence measurements over the ocean

    NASA Astrophysics Data System (ADS)

    Friehe, Carl; Khelif, Djamal

    2008-11-01

    Measurements of wind stress and associated heat and mass fluxes (water vapor and CO2) down to ˜10 meters height over the ocean are required to establish parameterizations for wave, weather, hurricane and climate models. At high winds and accompanying sea states, such measurements are difficult or impossible. A new airborne instrumented towed platform has been developed that allows measurements down to 10 meters under radar-altitude control while the tow aircraft is safely above. Measurements include the three components of the wind, temperature, humidity, infrared surface temperature, CO2, and motion and navigational parameters. The bandwidth of the sensors allows calculation of the Reynolds averaged covariance's of stress and sensible heat and evaporation fluxes. Results are compared to equivalent measurements made with an instrumented aircraft. We would like to thank Robert Bluth of the Naval Postgraduate School and Jesse Barge and Dan Bierly of Zivko Aeronautics.

  9. Results from 1984 airborne Doppler lidar wind measurements

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1986-01-01

    Observations made with the revised Airborne Doppler Lidar System (ADLS) during research flights in the summer of 1984 are described. The functioning of the ADLS system is described. The research flights measured the flow around Mt. Shasta about 3 km above the surrounding terrain as well as the flow in the area of the Carquenez Strait in the Sacramento River Valley. The flight tracks are described and the resulting scan radial velocities are shown and discussed. The results demonstrate the success of the modifications made in order to correct major error sources present in the 1981 flights of the ADLS system.

  10. Design of an airborne lidar for stratospheric aerosol measurements

    NASA Technical Reports Server (NTRS)

    Evans, W. E.

    1977-01-01

    A modular, multiple-telescope receiving concept is developed to gain a relatively large receiver collection aperture without requiring extensive modifications to the aircraft. This concept, together with the choice of a specific photodetector, signal processing, and data recording system capable of maintaining approximately 1% precision over the required large signal amplitude range, is found to be common to all of the options. It is recommended that development of the lidar begin by more detailed definition of solutions to these important common signal detection and recording problems.

  11. Results of airborne measurements in the plume near and far from the 2014 Bardarbunga-Holuhraun eruption.

    NASA Astrophysics Data System (ADS)

    Arnason, Gylfi; Eliasson, Jonas; Weber, Konradin; Boehlke, Christoph; Palsson, Thorgeir; Rognvaldsson, Olafur; Thorsteinsson, Throstur; Platt, Ulrich; Tirpitz, Lukas; Jones, Roderic L.; Smith, Paul D.

    2015-04-01

    The Volcanic Ash Research (VAR) group is focused on airborne measurement of ash contamination to support safe air travel. In relations to the recent eruption, the group measured ash and several gaseous species in the plume 10-300 km from the volcano. The eruption emitted ash turned out to be mostly in the fine aerosol range (much less than 10 micrometers in diameter). Our highest measured concentrations were lower than 1 mg/m3 indicating that commercial air traffic was not threatened (greater than 2 mg/m3) by the ash contamination. But we measured sulfur dioxide (SO2 ) up to 90 mg/m3, which presented a potentially dangerous pollution problem. However, airborne measurements indicate that the sulfur concentration decays (probably due to scavenging) as the plume is carried by the wind from the volcano, which limits the area of immediate danger to the public. Here we present size distribution for particulate matter collected during flights, near and far from the crater at various times. The particle data is then compared with simultaneously collected sulfur dioxide data and the rate of decay of is estimated. Sulfur and particle concentration variations with height in the far plume are presented. Some airborne measurements for H2S, NO, NO2 and CO2 will also be presented. This includes correlation matrices for simultaneous measurements of these gases and comparison to National Air Quality Standards and background values.

  12. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  13. Formation of highly oxygenated organic aerosol in the atmosphere: Insights from the Finokalia Aerosol Measurement Experiments

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Lea; Kostenidou, Evangelia; Mihalopoulos, Nikos; Worsnop, Douglas R.; Donahue, Neil M.; Pandis, Spyros N.

    2010-12-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiments (FAME-08 and FAME-09), which were part of the EUCAARI intensive campaigns. Quadrupole aerosol mass spectrometers (Q-AMSs) were employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the OA. The experiments provide unique insights into ambient oxidation of aerosol by measuring at the same site but under different photochemical conditions. NR-PM1 concentrations were about a factor of three lower during FAME-09 (winter) than during FAME-08 (summer). The OA sampled was significantly less oxidized and more variable in composition during the winter than during the early summer. Lower OH concentrations in the winter were the main difference between the two campaigns, suggesting that atmospheric formation of highly oxygenated OA is associated with homogeneous photochemical aging.

  14. Airborne UV and visible spectrometer for DOAS and radiometric measurements

    NASA Astrophysics Data System (ADS)

    Petritoli, Andrea; Giovanelli, Giorgio; Bonafe, U.; Bortoli, Daniele; Kostadinov, Ivan; Ravegnani, Fabrizio

    1999-10-01

    A UV/Vis spectrometer (named GASCOD) for Differentiated Optical Absorption Spectroscopy (DOAS) has been developed at ISAO Institute and deployed for ground based measurements of stratospheric trace gases for several years at mid-latitudes and the Antarctic region. An airborne version, called GASCOD/A has been installed on board a M55-Geophysica airplane, a stratospheric research platform, capable of flying at an altitude of up to 20 Km. After a test campaign in Italy, the GASCOD/A performed successfully during the Airborne Polar Experiment in the winter 95/96. More recently, the instrument was upgraded to achieve higher sensitivity and reliability. Two additional radiometric channels were added. The input optics can turn in order to collect solar radiation from five different channels: one for detection of the zenith scattered radiation through the roof window (for DOAS measurement), two for direct and diffused radiation through two lateral windows and two for radiometric measurements through two 2(pi) optical heads mounted on the upper and bottom part of the aircraft and linked to the instrument by means of optical guides. The radiometric channels give us the possibility of calculating the photodissociation rate coefficients (J-values) of photochemical reactions involving ozone and nitrogen dioxides. The mechanical and optical layout of the instrument are presented and discussed, as well as laboratory tests and preliminary results obtained during flights onboard the M55- Geophysica.

  15. Assessing sources of airborne mineral dust and other aerosols, in Iraq

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Johann P.; Jayanty, R. K. M.

    2013-06-01

    Most airborne particulate matter in Iraq comes from mineral dust sources. This paper describes the statistics and modeling of chemical results, specifically those from Teflon® filter samples collected at Tikrit, Balad, Taji, Baghdad, Tallil and Al Asad, in Iraq, in 2006/2007. Methodologies applied to the analytical results include calculation of correlation coefficients, Principal Components Analysis (PCA), and Positive Matrix Factorization (PMF) modeling. PCA provided a measure of the covariance within the data set, thereby identifying likely point sources and events. These include airborne mineral dusts of silicate and carbonate minerals, gypsum and salts, as well as anthropogenic sources of metallic fumes, possibly from battery smelting operations, and emissions of leaded gasoline vehicles. Five individual PMF factors (source categories) were modeled, four of which being assigned to components of geological dust, and the fifth to gasoline vehicle emissions together with battery smelting operations. The four modeled geological components, dust-siliceous, dust-calcic, dust-gypsum, and evaporate occur in variable ratios for each site and size fraction (TSP, PM10, and PM2.5), and also vary by season. In general, Tikrit and Taji have the largest and Al Asad the smallest percentages of siliceous dust. In contrast, Al Asad has the largest proportion of gypsum, in part representing the gypsiferous soils in that region. Baghdad has the highest proportions of evaporite in both size fractions, ascribed to the highly salinized agricultural soils, following millennia of irrigation along the Tigris River valley. Although dust storms along the Tigris and Euphrates River valleys originate from distal sources, the mineralogy bears signatures of local soils and air pollutants.

  16. Hygroscopic Measurements of Aerosol Particles in Colorado during the Discover AQ Campaign 2014

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Espinosa, R.; Martins, J. V.; Hoff, R. M.

    2014-12-01

    In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground observations with other optical aerosol measurements such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. In the summer of 2014, the DISCOVER-AQ campaign was held in Colorado, where systematic and concurrent observations of column- integrated surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Aerosol optical properties were measured in the UMBC trailer at the city of Golden using a TSI-3563 nephelometer and an in-situ Polarized Imaging Nephelometer (PI-NEPH) designed and built by the LACO group at UMBC. The PI-NEPH measures aerosol phase matrix components in high angular range between 2 and 178 degrees scattering angle at three wavelengths (λ=473, 532 and 671nm). The two measured elements of the phase matrix, intensity (P11) and linear polarization (P12) provide extensive characterization of the scattering properties of the studied aerosol. The scattering coefficient, P11 and P12 were measured under different humidity conditions to obtain the enhancement factor f(RH) and the dependence of P11 and P12 to RH using a humidifier dryer system covering a RH range from 20 to 90%. The ratio between scattering coefficients at high and low humidity in Golden Colorado showed relatively low hygroscopic growth in the aerosol particles f(RH=80%) was 1.27±0.19 for the first three weeks of sampling. According to speciated measurements performed at the UMBC trailer, the predominance of dust and organic aerosols over more hygroscopic nitrate and sulfate in the

  17. Statistical characteristics of atmospheric aerosol as determined from AERONET measurements

    NASA Astrophysics Data System (ADS)

    Yoon, Jongmin; Kokhanovsky, Alexander

    2015-04-01

    Seasonal means and standard deviations of column-integrated aerosol optical properties (e.g. spectral aerosol optical thickness (AOT), single scattering albedo, phase function, Ångström exponent, volume particle size distribution, complex refractive index, absorbing aerosol optical thickness) from several Aerosol Robotic Network (AERONET) sites located in typical aerosol source and background regions are investigated (Holben et al., 1998). The AERONET program is an inclusive network of ground-based sun-photometers that measure atmospheric aerosol optical properties (http://aeronet.gsfc.nasa.gov/). The results can be used for improving the accuracy of satellite-retrieved AOT, assessments of the global aerosol models, studies of atmospheric pollution and aerosol radiative forcing on climate. We have paid a special attention to several AERONET sites that are Mexico_City (Mexico), Alta_Floresta (Brazil), Avignon (France), Solar_Village (Saudi Arabia), and Midway_Island (Pacific) representative for industrial/urban, biomass burning, rural, desert dust and oceanic aerosols, respectively. We have found that the optical and microphysical aerosol properties are highly dependent on the local aerosol emission sources and seasonal meteorological conditions.

  18. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart

    2009-01-01

    The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.

  19. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  20. Aged organic aerosol in the Eastern Mediterranean: the Finokalia aerosol measurement experiment-2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Engelhart, G. J.; Mohr, C.; Kostenidou, E.; Lanz, V. A.; Bougiatioti, A.; Decarlo, P. F.; Prévôt, A. S. H.; Baltensperger, U.; Mihalopoulos, N.; Donahue, N. M.; Pandis, S. N.

    2010-01-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with time of day, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm-3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  1. Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment - 2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Engelhart, G. J.; Mohr, C.; Kostenidou, E.; Lanz, V. A.; Bougiatioti, A.; Decarlo, P. F.; Prevot, A. S. H.; Baltensperger, U.; Mihalopoulos, N.; Donahue, N. M.; Pandis, S. N.

    2010-05-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with source region, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm-3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  2. Airborne tunable diode laser measurements of formaldehyde during TRACE-P: Distributions and box model comparisons

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Crawford, James; Olson, Jennifer; Walega, Jim; Potter, William; Wert, Bryan; Jordan, Carolyn; Anderson, Bruce; Shetter, Rick; Lefer, Barry; Blake, Donald; Blake, Nicola; Meinardi, Simone; Heikes, Brian; O'Sullivan, Daniel; Snow, Julie; Fuelberg, Henry; Kiley, Christopher M.; Sandholm, Scott; Tan, David; Sachse, Glen; Singh, Hanwant; Faloona, Ian; Harward, Charles N.; Carmichael, Gregory R.

    2003-10-01

    Airborne measurements of CH2O were acquired employing tunable diode laser absorption spectroscopy during the 2001 Transport and Chemical Evolution Over the Pacific (TRACE-P) study onboard NASA's DC-8 aircraft. Above ˜2.5 km, away from the most extreme pollution influences and heavy aerosol loadings, comprehensive comparisons with a steady state box model revealed agreement to within ±37 pptv in the measurement and model medians binned according to altitude and longitude. Likewise, a near unity slope (0.98 ± 0.03) was obtained from a bivariate fit of the measurements, averaged into 25 pptv model bins, versus the modeled concentrations for values up to ˜450 pptv. Both observations suggest that there are no systematic biases on average between CH2O measurements and box model results out to model values ˜450 pptv. However, the model results progressively underpredict the observations at higher concentrations, possibly due to transport effects unaccounted for in the steady state model approach. The assumption of steady state also appears to contribute to the scatter observed in the point-by-point comparisons. The measurement-model variance was further studied employing horizontal flight legs. For background legs screened using a variety of nonmethane hydrocarbon (NMHC) tracers, measurement and model variance agreed to within 15%. By contrast, measurement variance was ˜60% to 80% higher than the model variance, even with small to modest elevations in the NMHC tracers. Measurement-model comparisons of CH2O in clouds and in the lower marine troposphere in the presence of marine aerosols suggest rather significant CH2O uptake by as much as 85% in one extreme case compared to expectations based on modeled gas phase processes.

  3. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-07-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 orders of magnitude less volatile than fresh laboratory-generated biogenic secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species.

  4. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; Kawa, Stephan

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  5. Measurement of mixed biomass burning and mineral dust aerosol in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Koehler, C. H.; Trautmann, T.; Lindermeir, E.

    2009-03-01

    From January 19th to February 7th, 2008, we installed a Fourier transform infrared spectrometer (FTIR) at Praia Airport on the island of Santiago, Cape Verde. Our goal was to measure the combined radiative effect of biomass burning aerosol and mineral dust usually observed there during that time of the year, when mineral dust emerging from the Sahara mixes with biomass burning aerosol transported north-westwards from the Sahelian region. Our measurements were part of the Saharan Mineral Dwst Experiment 2 (SAMUM 2) funded by the German Research Foundation (DFG) as continuation of the SAMUM field experiment in Morocco in 2006. SAMUM 2 is a joint venture of several German research institutes and universities and included both ground based as well as airborne measurements with the DLR Falcon research aircraft. The ground based instrumentation included spectrometers for visible and thermal infrared downwelling radiation, sun photometers, LIDAR and particle impactors while the Falcon was equipped with LIDAR and several instruments for aerosol analysis and sample return. A comparison of the FTIR measurements with radiative transfer simulations yields the expected aerosol forcing in the atmospheric window region after application of a suitable calibration method.

  6. Simultaneous Red - Blue Lidar and Airborne Impactor Measurements

    NASA Technical Reports Server (NTRS)

    McCormick, M. P.; Blifford, I. H.; Fuller, W. H.; Grams, G. W.

    1973-01-01

    Simultaneous two-color (0.6943 micrometers and 0.3472 micrometers) LIDAR measurements were made in the troposphere and lower stratosphere over Boulder, Colorado during March 1973. In addition, on the evening of March 26, airborne single-stage impactor measurements were made at four altitudes-- 10,500, 25,000, 33,000 and 43,000 feet MSL. These data were integrated at constant altitude for 15,45, 45, and 60 minutes respectively. The LIDAR data were taken with Langley's 48" LIDAR using a dichroic beamsplitter to separate the return at 0.6943 micrometers and 0.3472 micrometers. The analog waveforms for both colors were digitized simultaneously; one on an NCAR data acquisition system and the other on the 48" Langley data acquisition system. A discussion of the preliminary results from these measurements will be presented.

  7. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  8. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  9. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  10. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Numata, K.; Riris, H.; Li, S.; Wu, S.; Kawa, S. R.; Abshire, J. B.; Dawsey, M.; Ramanathan, A.

    2011-12-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from clathrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 um and 1.65 um. We have demonstrated detection of methane at 3.3 μm and 1650 nm in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 um.

  11. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  12. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  13. Characterization of Atmospheric Aerosol Behavior and Climatic Effects by Analysis of SAGE 2 and Other Space, Air, and Ground Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.

    1999-01-01

    This report documents the research performed under NASA Ames Cooperative Agreement NCC 2-991, which covered the period 1 April 1997 through 31 March 1999. Previously, an interim technical report (Technical Report No. 1, 20 March 1998) summarized the work completed during the period 1 April 1997 through 31 March 1998. The objective of the proposed research was to advance our understanding of atmospheric aerosol behavior, aerosol-induced climatic effects, and the remote measurement and retrieval capabilities of spaceborne sensors such as SAGE II by combining and comparing data from these instruments and from airborne and ground-based instruments.

  14. Online Aerosol Size and Composition Measurements in Coastal Antarctica

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Giordano, M.; Kalnajs, L.; Johnson, A.; Davis, S. M.; Deshler, T.; Toohey, D. W.

    2014-12-01

    Aerosol particles play a critical role in the chemical and radiative balance of the Antarctic atmosphere. Aerosols are both a source and sink of gas phase constituents, as well as a transport mechanism for oceanic chemical species into the continental interior. The interaction between aerosols, the gas phase, sea ice and the snow pack is complex and not well understood. Recent observations of ozone depletion events coupled with submicron aerosol mass increase highlight the interaction between the gas and particle phases. These interactions can lead to aerosol formation as well as the deposition of trace elements to the snow pack. To determine the composition and source regions of aerosols in the coastal Antarctic atmosphere, a suite of instruments was deployed in the 2014 Antarctic measurement season including a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-AMS), Ultra High Sensitivity Aerosol Spectrometer (UHSAS), Ozone analyzer, Scanning Electrical Mobility Sizer (SEMS), and Particle-into-Liquid Sampler (PILS). Measurements of gas phase constituents and aerosol composition were interpreted in the context of back trajectories and local meteorological conditions to link the measured air masses to their source regions.

  15. Processing and analysis of radiometer measurements for airborne reconnaissance

    NASA Technical Reports Server (NTRS)

    Suess, Helmut

    1990-01-01

    This paper describes selected results of airborne, radiometric imaging measurements at 90 GHz and 140 GHz relevant for the application in reconnaissance. Using a temperature resolution below 0.5 K and an angular resolution of about 1-degree high-quality images show the capability of discriminating between many brightness temperature classes within our natural environment and man-made objects. Measurement examples are given for cloud and fog penetration at 90 GHz, for the detection of vehicles on roads, and for the detection and classification of airports and airplanes. The application of different contour enhancement methods (Marr-Hildreth and Canny) shows the possibility of extracting lines and shapes precisely in order to improve automatic target recognition. The registration of the passive images with corresponding X-band synthetic aperture images from the same area is carried out and the high degree of correlation is discussed.

  16. Advances in Measurement of Carbonyls in Aerosols.

    NASA Astrophysics Data System (ADS)

    Charles, M.; Jakober, C.; Spaulding, R.; Green, P.; Destaillats, H.; Hughes, J. M.

    2002-12-01

    Chamber studies establish the formation of highly polar oxygenated species from the reaction of anthropogenic and biogenic hydrocarbons with hydroxyl radicals or ozone. A paucity of data exists however on the generation and fate of these organics in the ambient atmospheric environment. This is primarily due to the absence of suitable analytical methods. To address limitations of existing methods, we developed methods that rely on O-(2,3,4,5,6)-pentafluorobenzylhydroxylamine (PFBHA), and bis-(trimethylsilyl) trifluoroacetamide (BSTFA) in concert with GC/ion trap mass spectrometry (GC/ITMS) to identify and quantify carbonyl, dicarbonyl and hydroxy carbonyl photooxidation products in aerosols at part-per-trillion (pptv) levels. We also optimized and evaluated a mist chamber to sample carbonyls and multi-functional carbonyls with 10 minute sampling times. We applied the method to identify and quantify 2-hydroxy-2-methyl propanal (2-HMPR), a proposed photooxidation product of 2-methyl-3-buten-2-ol (MBO) in the Blodgett Forest, CA. The average 2-HMPR/MBO mixing ratio was 0.33ñ 0.25, which is reasonable since the expected yield of 2-HMPR from the hydroxyl radical oxidation of MBO is 0.19-0.35. Further method development in our laboratory is exploring the employment of HPLC/atmospheric pressure chemical ionization (APCI) mass spectra to identify model aliphatic and aromatic carbonyls (the major classes were aldehydes, ketones, dicarbonyls, and quinones) in aerosols. The data indicate the potential for pentafluorobenzyl derivatization in concert with GC/ITMS and HPLC/ITMS to measure a broad range of carbonyls.

  17. Low Permafrost Methane Emissions from Arctic Airborne Flux Measurements

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale greenhouse gas release from Arctic permafrost areas. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of energy and matter. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this question. During the AIRMETH-2012 and AIRMETH-2013 campaigns aboard the research aircraft POLAR 5 we measured turbulent exchange of energy, methane, and (in 2013) carbon dioxide along thousands of kilometers covering the North Slope of Alaska and the Mackenzie Delta, Canada. Time-frequency (wavelet) analysis, footprint modeling, and machine learning techniques are used to (i) determine spatially resolved turbulence statistics, fluxes, and contributions of biophysical surface properties, and (ii) extract regionally valid functional relationships between environmental drivers and the observed fluxes. These environmental response functions (ERF) are used to explain spatial flux patterns and - if drivers are available in temporal resolution - allow for spatio-temporal scaling of the observations. This presentation will focus on 2012 methane fluxes on the North Slope of Alaska and the relevant processes on the regional scale and provide an updated 100 m resolution methane flux map of the North Slope of Alaska.

  18. Deriving simple empirical relationships between aerodynamic and optical aerosol measurements and their application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different measurement techniques for aerosol characterization and quantification either directly or indirectly measure different aerosol properties (i.e. count, mass, speciation, etc.). Comparisons and combinations of multiple measurement techniques sampling the same aerosol can provide insight into...

  19. Bacterial communities in urban aerosols collected with wetted-wall cyclonic samplers and seasonal fluctuations of live and culturable airborne bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The airborne transmission of bacterial pathogens from point sources (e.g. ranches, waste treatment facilities) to areas of food production (farms) has been suspected. However, there have been few studies monitoring the incidence, transport and viability of bacteria in aerosols. We monitored the numb...

  20. Airborne Validation of Spatial Properties Measured by the CALIPSO Lidar

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Vaughan, Mark A.; Trepte, Charles Reginald; Hart, William D.; Hlavka, Dennis L.; Winker, David M.; Keuhn, Ralph

    2007-01-01

    The primary payload onboard the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite is a dual-wavelength backscatter lidar designed to provide vertical profiling of clouds and aerosols. Launched in April 2006, the first data from this new satellite was obtained in June 2006. As with any new satellite measurement capability, an immediate post-launch requirement is to verify that the data being acquired is correct lest scientific conclusions begin to be drawn based on flawed data. A standard approach to verifying satellite data is to take a similar, or validation, instrument and fly it onboard a research aircraft. Using an aircraft allows the validation instrument to get directly under the satellite so that both the satellite instrument and the aircraft instrument are sensing the same region of the atmosphere. Although there are almost always some differences in the sampling capabilities of the two instruments, it is nevertheless possible to directly compare the measurements. To validate the measurements from the CALIPSO lidar, a similar instrument, the Cloud Physics Lidar, was flown onboard the NASA high-altitude ER-2 aircraft during July- August 2006. This paper presents results to demonstrate that the CALIPSO lidar is properly calibrated and the CALIPSO Level 1 data products are correct. The importance of the results is to demonstrate to the research community that CALIPSO Level 1 data can be confidently used for scientific research.

  1. Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system

    NASA Astrophysics Data System (ADS)

    Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole

    2013-04-01

    Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump

  2. Comparison of Continuous Wave CO2 Doppler Lidar Calibration Using Earth Surface Targets in Laboratory and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1999-01-01

    Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency

  3. MISR BRF measurements for various surface types: Intercomparison with coincident airborne and ground measurements.

    NASA Astrophysics Data System (ADS)

    Abdou, W. A.; Helmlinger, M.; Jovanovic, V. M.; Martonchik, J. V.; Diner, D. J.; Gatebe, C. K.; King, M. D.

    2005-05-01

    The BRF retrieved by the multiangle Imaging spectroRadimeter (MISR) are compared with those coincidently measured from aircraft, by the Cloud Absorption Radiometer (CAR) and MISR airborne simulator (AirMISR), and on the ground, by the Portable Apparatus for Rabid Acquisition of Bidirectional Observations of Land and Atmosphere (PARABOLA III). The intercomparisons are made for five types of surfaces: bright desert, salt pans, dark grassland, forests and dismal swamps. The results show that MISR BRF values are within +/- 10% in agreement with the corresponding airborne and ground measurements, independent of the surface type. This study is part of an effort to validate MISR surface products.

  4. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonghua; Moshary, Fred; Gross, Barry; Gilerson, Alex

    2016-06-01

    Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP) with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff), we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  5. Assessment of Error in Aerosol Optical Depth Measured by AERONET Due to Aerosol Forward Scattering

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Holben, Brent N.; Smirnov, Alexander; Eck, Thomas F.; Slustsker, Ilya; Schafer, Joel S.; Giles, David M.; Sorokin, Michail

    2013-01-01

    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, 99.53%. Only 0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold.

  6. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  7. Accuracy of wind measurements using an airborne Doppler lidar

    NASA Technical Reports Server (NTRS)

    Carroll, J. J.

    1986-01-01

    Simulated wind fields and lidar data are used to evaluate two sources of airborne wind measurement error. The system is sensitive to ground speed and track angle errors, with accuracy required of the angle to within 0.2 degrees and of the speed to within 1 knot, if the recovered wind field is to be within five percent of the correct direction and 10 percent of the correct speed. It is found that errors in recovered wind speed and direction are dependent on wind direction relative to the flight path. Recovery of accurate wind fields from nonsimultaneous sampling errors requires that the lidar data be displaced to account for advection so that the intersections are defined by air parcels rather than fixed points in space.

  8. Diode - Pumped Nd:YAG Lidar for Airborne Cloud Measurements

    NASA Technical Reports Server (NTRS)

    Mehnert, A.; Halldorsson, TH.; Herrmann, H.; Haering, R.; Krichbaumer, W.; Streicher, J.; Werner, CH.

    1992-01-01

    This work is concerned with the experimental method used to separate scattering and to use it for the determination of cloud microphysical parameters. It is also the first airborne test of a lidar version related to the ATLID Program - ESA's scheduled spaceborne lidar. The already tested DLR microlidar was modified with the new diode-pumped laser and a faster data recording system was added. The system was used during the CLEOPATRA campaign in the DLR research aircraft Falcon 20 to measure cloud parameters. The diode pumped Nd:YAG laser we developed for the microlidar is a modification of the laser we introduced at the Lidar Congress at 'Laser 1991' in Munich. Various aspects of this work are discussed.

  9. Airborne microwave measurements at 89 and 157 GHz

    NASA Astrophysics Data System (ADS)

    Jones, David C.; English, Stephen J.; Saunders, Roger W.; Prigent, Catherine; Guillou, C.; Chedin, Alain; Claud, C.

    1993-08-01

    In support of the AMSU-B program, the UK Meteorological Office (UKMO) in collaboration with Laboratoire de Meteorologie Dynamique (LMD) have developed the Microwave Airborne Scanning Radiometer System (MARSS) which operates at 89 and 157 GHz, near the 'window' channels of AMSU-B. This total power radiometer is flown on board the C-130 aircraft of the UKMO which is well- equipped with sensors measuring thermodynamical and cloud microphysical parameters up to a height of 9 km. The instrument has a scanning cycle time of approximately 3 seconds, during which time the radiometer takes 9 upward and 9 downward views as well as two views of internal calibration targets. It has been found that the Liebe MPM model gives more consistent agreement with the observed brightness temperatures than other published transmission models.

  10. Aerosol properties derived from spectral actinic flux measurements

    NASA Astrophysics Data System (ADS)

    Stark, H.; Schmidt, K. S.; Pilewskie, P.; Cozic, J.; Wollny, A. G.; Brock, C. A.; Baynard, T.; Lack, D.; Parrish, D. D.; Fehsenfeld, F. C.

    2008-12-01

    Measurement of aerosol properties is very important for understanding climate change. Aerosol optical properties influence solar radiation throughout the troposphere. According to the Working Group I report of the intergovernmental panel for climate change [IPCC, 2007], aerosols have a direct radiative forcing of - 0.5±0.4 W/m2 with a medium to low level of scientific understanding. This relatively large uncertainty indicates the need for more frequent and precise measurements of aerosol properties. We will show how actinic flux measurements can be used to derive important optical aerosol parameters such as aerosol optical thickness and depth, surface albedo, angstrom exponent, radiative forcing by clouds and aerosols, aerosol extinction, and others. The instrument used for this study is a combination of two spectroradiometers measuring actinic flux in the ultraviolet and visible radiation range from 280 to 690 nm with a resolution of 1 nm. Actinic flux is measured as the radiation incident on a spherical surface with sensitivity independent of direction. In contrast, irradiance is measured as the radiation incident on a plane surface, which depends on the cosine of the incident angle. Our goal is to assess the capabilities of using spectral actinic flux measurements to derive various aerosol properties. Here we will compare 1) actinic flux measurements to irradiance measurements from the spectral solar flux radiometer (SSFR), 2) derived aerosol size distributions with measurements from a white light optical particle counter (WLOPC) and ultra high sensitivity aerosol size spectrometer (UHSAS), and 3) derived aerosol optical extinction with measurements from a cavity ringdown aerosol extinction spectrometer (CRD-AES). These comparisons will utilize data from three recent field campaigns over New England and the Atlantic Ocean (ICARTT 2004), Texas and the Gulf of Mexico during (TexAQS/GoMACCS 2006), and Alaska and the Arctic Ocean (ARCPAC 2008) when the instruments

  11. Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon.

    PubMed

    Colls, J J; Micallef, A

    1999-09-01

    Concentrations and vertical profiles of various fractions of airborne particulate matter (suspended particulate matter (SPM), PM10 and PM2.5) have been measured over the first three metres from ground in a street canyon. Measurements were carried out using automated near real-time apparatus called the Kinetic Sequential Sampling (KSS) system. KSS system is essentially an electronically-controlled lift carrying a real-time particle monitor for sampling air sequentially, at different heights within the breathing zone, which includes all heights within the surface layer of a street canyon at which people may breathe. Data is automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of airborne particulate matter. For measuring the airborne particle concentration, a Grimm Dust Monitor 1.104/5 was used. The recorded data also allows for time series analysis of airborne particulate matter concentration at different heights. Time series data and hourly-average vertical concentration profiles in the boundary layer of the confines of a street are thought to be mainly determined by traffic emissions and traffic associated processes. Hence the measured data were compared with results of a street canyon emission-dispersion model in time and space. This Street Level Air Quality (SLAQ) model employs the plume-box technique and includes modules for simulating vehicle-generated effects such as thermally- and mechanically-generated turbulence and resuspension of road dust. Environmental processes, such as turbulence resulting from surface sensible heat and the formation of sulphate aerosol from sulphur dioxide exhaust emissions, are taken into account. The paper presents an outline description of the measuring technique and model used, and a comparison of the measured and modelled data. PMID:10535122

  12. Joint retrieval of aerosol and water-leaving radiance from multispectral, multiangular and polarimetric measurements over ocean

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Dubovik, Oleg; Zhai, Peng-Wang; Diner, David J.; Kalashnikova, Olga V.; Seidel, Felix C.; Litvinov, Pavel; Bovchaliuk, Andrii; Garay, Michael J.; van Harten, Gerard; Davis, Anthony B.

    2016-07-01

    An optimization approach has been developed for simultaneous retrieval of aerosol properties and normalized water-leaving radiance (nLw) from multispectral, multiangular, and polarimetric observations over ocean. The main features of the method are (1) use of a simplified bio-optical model to estimate nLw, followed by an empirical refinement within a specified range to improve its accuracy; (2) improved algorithm convergence and stability by applying constraints on the spatial smoothness of aerosol loading and Chlorophyll a (Chl a) concentration across neighboring image patches and spectral constraints on aerosol optical properties and nLw across relevant bands; and (3) enhanced Jacobian calculation by modeling and storing the radiative transfer (RT) in aerosol/Rayleigh mixed layer, pure Rayleigh-scattering layers, and ocean medium separately, then coupling them to calculate the field at the sensor. This approach avoids unnecessary and time-consuming recalculations of RT in unperturbed layers in Jacobian evaluations. The Markov chain method is used to model RT in the aerosol/Rayleigh mixed layer and the doubling method is used for the uniform layers of the atmosphere-ocean system. Our optimization approach has been tested using radiance and polarization measurements acquired by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) over the AERONET USC_SeaPRISM ocean site (6 February 2013) and near the AERONET La Jolla site (14 January 2013), which, respectively, reported relatively high and low aerosol loadings. Validation of the results is achieved through comparisons to AERONET aerosol and ocean color products. For comparison, the USC_SeaPRISM retrieval is also performed by use of the Generalized Retrieval of Aerosol and Surface Properties algorithm (Dubovik et al., 2011). Uncertainties of aerosol and nLw retrievals due to random and systematic instrument errors are analyzed by truth-in/truth-out tests with three Chl a concentrations, five aerosol loadings

  13. An Intercomparison of Airborne VOC and PAN Measurements

    NASA Astrophysics Data System (ADS)

    Hansel, A.; Wisthaler, A.; Flocke, F.; Weinheimer, A.; Fall, R.; Goldan, P.; Hübler, G.; Fehsenfeld, F. C.

    2002-12-01

    As part of the Texas Air Quality Study (TexAQS 2000) an informal airborne intercomparison has been conducted to evaluate the state-of-the-art of fast-response, in-situ methods for analyzing Volatile Organic Compounds (VOCs) and peroxyacetyl nitrate (PAN). Instrumentation included a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS), the Tropospheric Airborne Chromatograph for Oxy-hydrocarbons and Hydrocarbons (TACOH) and a gas chromatograph for PAN detection using electron capture (GC/ECD). The measurements were made in the Greater Houston area and East Texas in August/September 2000 during 13 flights with the NSF/NCAR ELECTRA aircraft. The intercomparison was conducted mainly in the boundary layer but included some encounters with air masses from the free troposphere. Final results from the intercomparison show that measurements of acetaldehyde, isoprene, the sum\\textsuperscript{*} of acetone and propanal, the sum\\textsuperscript{*} methyl vinyl ketone and methacrolein (\\textsuperscript{*} PTR-MS does not distinguish between isobaric species) and toluene agree very well. Poor agreement was achieved in the case of methanol and the underlying sensitivity problem in the PTR-MS or TACOH system is under investigation. The results of the PAN intercomparison indicate that the PTR-MS technique suffered from an interference most likely associated with the presence of peracetic acid in photochemically aged air. If this interfering signal was traced by periodically inserting a selective PAN scrubber (thermal decomposition) into the sample air stream and subtracted from the original signal, the corrected PTR-MS PAN data are in very good agreement with the GC/ECD results.

  14. Infrared heterodyne radiometer for airborne atmospheric transmittance measurements

    NASA Technical Reports Server (NTRS)

    Wolczok, J. M.; Lange, R. A.; Dinardo, A. J.

    1980-01-01

    An infrared heterodyne radiometer (IHR) was used to measure atmospheric transmittance at selected hydrogen fluoride (2.7 micrometer) and deuterium fluoride (3.8 micrometer) laser transitions. The IHR was installed aboard a KC-135 aircraft for an airborne atmospheric measurements program that used the sun as a backlighting source for the transmission measurements. The critical components are: a wideband indium antimonide (1nSb) photomixer, a CW HF/DF laser L0, a radiometric processor, and a 1900 K blackbody reference source. The measured heterodyne receiver sensitivity (NEP) is 1.3 x 10 to the -19th power W/Hz, which yields a calculated IHR temperature resolution accuracy of delta I sub S/-3 sub S = 0.005 for a source temperature of 1000 K and a total transmittance of 0.5. Measured atmospheric transmittance at several wavelengths and aircraft altitudes from 9.14 km (30,000 ft) to 13.72 km (45,000 ft) were obtained during the measurements program and have been compared with values predicted by the AFGL Atmospheric Line Parameter Compilation.

  15. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  16. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  17. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  18. Carbon content of common airborne fungal species and fungal contribution to aerosol organic carbon in a subtropical city

    NASA Astrophysics Data System (ADS)

    Cheng, Jessica Y. W.; Chan, Chak K.; Lee, C.-T.; Lau, Arthur P. S.

    Interest in the role and contribution of fungi to atmospheric aerosols and processes grows in the past decade. Substantial data or information such as fungal mass or carbon loading to ambient aerosols is however still lacking. This study aimed to quantify the specific organic carbon content (OC per spore) of eleven fungal species commonly found airborne in the subtropics, and estimated their contribution to organic carbon in aerosols. The specific OC contents showed a size-dependent relationship ( r = 0.64, p < 0.05) and ranged from 3.6 to 201.0 pg carbon per spore or yeast cell, giving an average of 6.0 pg carbon per spore (RSD 51%) for spore or cell size less than 10 μm. In accounting for natural variations in the composition and abundance of fungal population, weighted-average carbon content for field samples was adopted using the laboratory determined specific OC values. An average of 5.97 pg carbon per spore (RSD 3.8%) was enumerated from 28 field samples collected at the university campus. The mean fungal OC concentration was 3.7, 6.0 and 9.7 ng m -3 in PM 2.5, PM 2.5-10 and PM 10, respectively. These corresponded to 0.1%, 1.2% and 0.2% of the total OC in PM 2.5, PM 2.5-10 and PM 10, respectively. In the study period, rain provided periods with low total OC but high fungal prevalence and fungi contributed 7-32% OC in PM 2.5-10 or 2.4-7.1% OC in PM 10. More extensive studies are deserved to better understand the spatial-, temporal- and episodic dependency on the fungal OC contribution to the atmospheric aerosols.

  19. Airborne Measurements of Scattering and Absorption Coefficients in the Planetary Boundary Layer above the Po Valley, Italy, during the PEGASOS Campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Weingartner, E.; Gysel, M.; Tillmann, R.; Mentel, T. F.; Decesari, S.; Marinoni, A.; Gobbi, G. P.; Fierli, F.; Cairo, F.; Bucci, S.; Zanatta, M.; Größ, J.; Baltensperger, U.

    2014-12-01

    Aerosol particles influence the Earth's radiation budget by interacting with the incoming sunlight. The chemical composition and size of aerosol particles determine their potential to scatter and absorb radiation as well as their capability to take up water (Zieger et al., 2011). If particles are hygroscopic their optical properties will be altered at enhanced relative humidities (RH) due to the increase in size and change in index of refraction. It is known that RH but also the chemical composition of aerosols change with altitude (Morgan et al., 2010) which makes it very important to investigate optical properties at different heights. Within the Pan-European Gas-Aerosols-climate interaction Study (PEGASOS) a set of instruments was installed on a Zeppelin to investigate changes of light scattering and absorption in the planetary boundary layer. In order to obtain the scattering properties, Mie calculations were performed for size distributions recorded with SMPS (scanning mobility particle sizer) and WELAS (optical size spectrometer). The index of refraction and the hygroscopicity of the aerosol particles were measured with the white-light humidified optical particle spectrometer (WHOPS). These measurements further allowed studying the RH-dependence of the optical properties. Moreover, a seven wavelength portable aethalometer was employed to determine the light absorption properties of the aerosol. In this work we will present vertical profiles of scattering and absorption coefficients measured during Zeppelin flights of the PEGASOS campaigns in Italy in 2012. Additionally comparisons with ground based measurements from nephelometers and aethalometers, as well as remote sensing results will be shown. W.T. Morgan et al., Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: Airborne measurements in North-Western Europe, Atmospheric Chemistry and Physics 10(2010), pp. 8151-8171.P. Zieger et al., Comparison of ambient aerosol

  20. Atmospheric DMS and Biogenic Sulfur aerosol measurements in the Arctic

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Wentworth, G.; Burkart, J.; Leaitch, W. R.; Abbatt, J.; Sharma, S.; Desiree, T. S.

    2014-12-01

    Dimethyl Sulfide (DMS) and its oxidation products were measured on the board of the Canadian Coast Guard Ship (CCGS) Amundsen and above melt ponds in the Arctic during July 2014 in the context of the NETCARE study which seeks to understand the effect of DMS and its oxidation products with respect to aerosol nucleation, as well as its effect on cloud and precipitation properties. The objective of this study is to quantify the role of DMS in aerosol growth and activation in the Arctic atmosphere. Atmospheric DMS samples were collected from different altitudes, from 200 to 9500 feet, aboard the POLAR6 aircraft expedition to determine variations in the DMS concentration and a comparison was made to shipboard DMS measurements and its effects on aerosol size fractions. The chemical and isotopic composition of sulfate aerosol size fractions was studied. Sulfur isotope ratios (34S/32S) offer a way to determine the oceanic DMS contribution to aerosol growth. The results are expected to address the contribution of anthropogenic as well as biogenic sources of aerosols to the growth of the different aerosol size fractions. In addition, aerosol sulfate concentrations were measured at the same time within precipitation and fogs to compare with the characteristics of aerosols in each size fraction with the characteristics of the sulfate in each medium. This measurement is expected to explain the contribution of DMS oxidation in aerosol activation in the Arctic summer. Preliminary results from the measurement campaign for DMS and its oxidation products in air, fog and precipitation will be presented.

  1. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan

    SciTech Connect

    Biraud, S

    2015-12-01

    From October 1 through September 30, 2016, the Atmospheric Radiation Measurement (ARM) Aerial Facility will deploy the Cessna 206 aircraft over the Southern Great Plains (SGP) site, collecting observations of trace-gas mixing ratios over the ARM’s SGP facility. The aircraft payload includes two Atmospheric Observing Systems, Inc., analyzers for continuous measurements of CO2 and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, 14CO2, carbonyl sulfide, and trace hydrocarbon species, including ethane). The aircraft payload also includes instrumentation for solar/infrared radiation measurements. This research is supported by the U.S. Department of Energy’s ARM Climate Research Facility and Terrestrial Ecosystem Science Program and builds upon previous ARM Airborne Carbon Measurements (ARM-ACME) missions. The goal of these measurements is to improve understanding of 1) the carbon exchange at the SGP site, 2) how CO2 and associated water and energy fluxes influence radiative forcing, convective processes and CO2 concentrations over the SGP site, and 3) how greenhouse gases are transported on continental scales.

  2. Spatial Distribution of Aerosols in Four U.S. Regions: Impacts on Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Berkoff, T.; Burton, S. P.; Chen, G.; Corr, C.; Collins, J. E., Jr.; Crumeyrolle, S.; Cook, A. L.; Fenn, M. A.; Ferrare, R. A.; Hair, J. W.; Harper, D. B.; Hostetler, C. A.; Lin, J. J.; Martin, R.; Moore, R.; Rogers, R. R.; Scarino, A. J.; Seaman, S. T.; Shook, M.; Thornhill, K. L., II; Crawford, J. H.; Anderson, B. E.

    2015-12-01

    Aerosol measurements from satellites in geosynchronous orbit allow for a unique opportunity to measure urban air quality at higher spatial and temporal resolution than possible with current ground-based monitoring and satellites in low earth orbit. Geosynchronous satellites will be able to measure air quality throughout the day for a specific region of interest (such as North America for the planned NASA TEMPO satellite). However, a key constraint on satellite measurements is the spatial resolution of the retrieved data products. As the satellite footprint increases, the precision of aerosol properties improves but the ability of the satellite to measure small-scale variations in pollution diminishes. Currently, TEMPO is planned to measure aerosol optical depth (AOD) with a spatial resolution of 36 square-km. In this study, sub-pixel variability is used as a metric of how representative the satellite measurement is of ground-based air quality. Data from the DISCOVER-AQ airborne project are used to determine the sub-pixel variability in AOD, boundary layer extinction and other aerosol properties in four U.S. regions: Baltimore, Maryland, Houston, Texas, Denver, Colorado, and California's San Joaquin Valley. Sub-pixel variability in boundary layer extinction was lowest in Denver (one sigma variability of 3 /Mm at 36 square-km spatial resolution) due to low aerosol loadings and highest in the San Joaquin Valley (19 /Mm) due to variable boundary layer depths and stagnant conditions. Variability in AOD (measured by an airborne high-spectral resolution lidar) was more consistent among the sites (0.017 to 0.035) due to a reduced dependence on changes in the planetary boundary layer. The effects of our analysis will also be discussed in relation to the use of satellite measurements to infer air quality attainment. Larger satellite data footprints reduce the ability of satellites to identify small regions in urban areas with elevated pollution (i.e. hotspots) which was

  3. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    EPA Science Inventory

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. DNPH active-sampling is a method widely used for sampling airborne aldehydes and ketones (carbonyls); ...

  4. How Well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare?

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.; Eilers, J.; Ricci, K.; Hallar, A. G.; Clayton, M.; Michalsky, J.; Smirnov, A.; Holben, B.; Barnard, J.

    2006-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated

  5. Aircraft Measurements of Aerosol Partitioning and Aging during EUCAARI-LONGREX

    NASA Astrophysics Data System (ADS)

    Morgan, W. T.; Allan, J. D.; Bower, K. N.; Coe, H.; Highwood, E. J.; McMeeking, G. R.; Northway, M. J.; Osborne, S. R.; Trembath, J.; Williams, P. I.

    2009-04-01

    The chemical composition of the atmospheric aerosol burden has significant implications for its climate impacts. Specifically, it determines the scattering or absorbing nature of the aerosol and its affinity for water uptake. Measurements of aerosol chemical composition are presented here from the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft from May 2008. The BAe-146 operated out of Oberpfaffenhofen, Germany during the European Integrated Project on Aerosol Cloud Climate Air Quality Interactions (EUCAARI) LONG Range EXperiment (LONGREX). A primary goal of the study was to examine the effects of atmospheric aging on aerosol chemical, physical and optical properties. Science flights were conducted across Northern Europe, during a period of anticyclonic circulation in clear sky conditions. The aircraft employs a suite of aerosol instruments, which measure the chemical composition, microphysical, optical and hygroscopic properties of the in-situ aerosol population. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS) measured the mass of volatile and semi-volatile particulate chemical constituents, as a function of size. These components included organic matter, nitrate, sulphate and ammonium. The spatial distribution and chemical evolution of these components will be presented. The chemical nature of the organic aerosol component is examined via Positive Matrix Factorisation (PMF). The factor analysis of the organic aerosol component revealed the dominance of Oxygenated Organic Aerosol (OOA) over Hydrocarbon-like Organic Aerosol (HOA). OOA is analogous to Secondary Organic Aerosol (SOA), whilst HOA is strongly associated with Primary Organic Aerosol (POA) derived from fossil fuel combustion. Two components were commonly resolved for the OOA component; an aged, more oxidised factor (reflecting the regional organic aerosol background) and a fresher (less aged) component, which exhibited less oxidation than the

  6. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton.

    PubMed

    Churnside, James H; Thorne, Richard E

    2005-09-10

    Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton. PMID:16161666

  7. Measurements of aerosol chemical composition in boreal forest summer conditions

    NASA Astrophysics Data System (ADS)

    ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.

    2012-04-01

    Boreal forests are an important biome, covering vast areas of the northern hemisphere and affecting the global climate change via various feedbacks [1]. Despite having relatively few anthropogenic primary aerosol sources, they always contain a non-negligible aerosol population [2]. This study describes aerosol chemical composition measurements using Aerodyne Aerosol Mass Spectrometer (C-ToF AMS, [3]), carried out at a boreal forest area in Hyytiälä, Southern Finland. The site, Helsinki University SMEAR II measurement station [4], is situated at a homogeneous Scots pine (Pinus sylvestris) forest stand. In addition to the station's permanent aerosol, gas phase and meteorological instruments, during the HUMPPA (Hyytiälä United Measurements of Photochemistry and Particles in Air) campaign in July 2010, a very comprehensive set of atmospheric chemistry measurement instrumentation was provided by the Max Planck Institute for chemistry, Johannes Gutenberg-University, University of California and the Finnish Meteorological institute. In this study aerosol chemical composition measurements from the campaign are presented. The dominant aerosol chemical species during the campaign were the organics, although periods with elevated amounts of particulate sulfates were also seen. The overall AMS measured particle mass concentrations varied from near zero to 27 μg/m observed during a forest fire smoke episode. The AMS measured aerosol mass loadings were found to agree well with DMPS derived mass concentrations (r2=0.998). The AMS data was also compared with three other aerosol instruments. The Marga instrument [5] was used to provide a quantitative semi-online measurement of inorganic chemical compounds in particle phase. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on daily filter samples, enabling the identification and quantification of organic aerosol subspecies. Finally an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI

  8. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  9. New ARM Measurements of Clouds, Aerosols, and the Atmospheric State

    NASA Astrophysics Data System (ADS)

    Mather, J.

    2012-04-01

    The DOE Atmospheric Radiation Measurement (ARM) program has recently enhanced its observational capabilities at its fixed and mobile sites as well as its aerial facility. New capabilities include scanning radars, several types of lidars, an array of aerosol instruments, and in situ cloud probes. All ARM sites have been equipped with dual frequency scanning cloud radars that will provide three-dimensional observations of cloud fields for analysis of cloud field evolution. Sites in Oklahoma, Alaska, and Papua New Guinea have also received scanning centimeter wavelength radars for observing precipitation fields. This combination of radars will provide the means to study the interaction of clouds and precipitation. New lidars include a Raman lidar in Darwin, Australia and High Spectral Resolution Lidars in Barrow and with the second ARM Mobile Facility. Each of these lidars will provide profiles of aerosol extinction while the Raman will also measure profiles of water vapor. ARM has also expanded its capabilities in the realm of aerosol observations. ARM is adding Aerosol Observing Systems to its sites in Darwin and the second mobile facility. These aerosol systems principally provided measurements of aerosol optical properties. In addition, a new Mobile Aerosol Observing System has been developed that includes a variety of instruments to provide information about aerosol chemistry and size distributions. Many of these aerosol instruments are also available for the ARM Aerial Facility. The Aerial Facility also now includes a variety of cloud probes for measuring size distribution and water content. The new array of ARM instruments is intended to build upon the existing ARM capabilities to better study the interactions among aerosol, clouds, and precipitation. Data from these instruments are now available and development of advanced data products is underway.

  10. Airborne microwave Doppler measurements of ocean wave directional spectra

    NASA Technical Reports Server (NTRS)

    Plant, W. J.; Keller, W. C.; Reeves, A. B.; Uliana, E. A.; Johnson, J. W.

    1987-01-01

    A technique is presented for measuring ocean wave directional spectra from aircraft using microwave Doppler radar. The technique involves backscattering coherent microwave radiation from a patch of sea surface which is small compared to dominant ocean wavelengths in the antenna look direction, and large compared to these lengths in the perpendicular (azimuthal) direction. The mean Doppler shift of the return signal measured over short time intervals is proportional to the mean sea surface velocity of the illuminated patch. Variable sea surface velocities induced by wave motion therefore produce time-varying Doppler shifts in the received signal. The large azimuthal dimension of the patch implies that these variations must be produced by surface waves traveling near the horizontal antenna look direction thus allowing determination of the direction of wave travel. Linear wave theory is used to convert the measured velocities into ocean wave spectral densities. Spectra measured simultaneously with this technique and two laser profilometers, and nearly simultaneous with this technique and two laser profilometers, and nearly simultaneous with a surface buoy, are presented. Applications and limitations of this airborne Doppler technique are discussed.

  11. Aerosol size distribution estimation and associated uncertainty for measurement with a Scanning Mobility Particle Sizer (SMPS)

    NASA Astrophysics Data System (ADS)

    Coquelin, L.; Fischer, N.; Motzkus, C.; Mace, T.; Gensdarmes, F.; Le Brusquet, L.; Fleury, G.

    2013-04-01

    Scanning Mobility Particle Sizer (SMPS) is a high resolution nanoparticle sizing system that has long been hailed as the researcher's choice for airborne nanoparticle size characterization for nano applications including nanotechnology research and development. SMPS is widely used as the standard method to measure airborne particle size distributions below 1 μm. It is composed of two devices: a Differential Mobility Analyzer (DMA) selects particle sizes thanks to their electrical mobility and a Condensation Particle Counter (CPC) enlarges particles to make them detectable by common optical counters. System raw data represent the number of particles counted over several classes of mobility diameters. Then, common inversion procedures lead to the estimation of the aerosol size distribution. In this paper, we develop a methodology to compute the uncertainties associated with the estimation of the size distribution when several experiences have been carried out. The requirement to repeat the measure ensures a realistic variability on the simulated data to be generated. The work we present consists in considering both the uncertainties coming from the experimental dispersion and the uncertainties induced by the lack of knowledge on physical phenomena. Experimental dispersion is quantified with the experimental data while the lack of knowledge is modelled via the existing physical theories and the judgements of experts in the field of aerosol science. Thus, running Monte-Carlo simulations give an estimation of the size distribution and its corresponding confidence region.

  12. Relating Hyperspectral Airborne Data to Ground Measurements in a Complex and Discontinuous Canopy

    NASA Astrophysics Data System (ADS)

    Calleja, Javier F.; Hellmann, Christine; Mendiguren, Gorka; Punalekar, Suvarna; Peón, Juanjo; MacArthur, Alasdair; Alonso, Luis

    2015-12-01

    The work described in this paper is aimed at validating hyperspectral airborne reflectance data collected during the Regional Experiments For Land-atmosphere EXchanges (REFLEX) campaign. Ground reflectance data measured in a vineyard were compared with airborne reflectance data. A sampling strategy and subsequent ground data processing had to be devised so as to capture a representative spectral sample of this complex crop. A linear model between airborne and ground data was tried and statistically tested. Results reveal a sound correspondence between ground and airborne reflectance data (R2 > 0.97), validating the atmospheric correction of the latter.

  13. Estimation of aerosol type from airborne hyperspectral data: a new technique designed for industrial plume characterization

    NASA Astrophysics Data System (ADS)

    Deschamps, A.; Marion, R.; Foucher, P.-Y.; Briottet, X.

    2012-11-01

    The determination of the aerosol type in a plume from remotely sensed data without any a priori knowledge is a challenging task. If several methods have already been developed to characterize the aerosols from multi or hyperspectral data, they are not suited for industrial particles, which have specific physical and optical properties, changing quickly and in a complex way with the distance from the source emission. From radiative transfer equations, we have developed an algorithm, based on a Look-Up Table approach, enabling the determination of the type of this kind of particles from hyperspectral data. It consists in the selection of pixels pairs, located at the transitions between two kinds of grounds (or between an illuminated and a shadow area), then in the comparison between normalized estimated Aerosol Optical Thicknesses (AOTs) and pre-calculated AOTs. The application of this algorithm to simulated data leads to encouraging results: the selection of only six pixels pairs allows the algorithm to differentiate aerosols emitted by a metallurgical plant from biomass burning particles, urban aerosols and particles from an oil depot explosion, regardless the size and the aerosol concentration. The algorithm performances are better for a relatively high AOT but the single scattering approximation does not enable the characterization of thick plumes (AOT above 2.0). However, the choice of transitions (type of grounds) does not seem to significantly affect the results.

  14. Characterization of cloud microphysical parameters using airborne measurements by the research scanning polarimeter

    NASA Astrophysics Data System (ADS)

    Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.; Ackerman, Andrew S.; Emde, Claudia

    2013-05-01

    We present the retrievals of cloud droplet size distribution parameters (effective radius and variance) from the Research Scanning Polarimeter (RSP) measurements made during the recent field campaign Development and Evaluation of satellite Validation Tools by Experimenters (DEVOTE, 2011). The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS), which was built for the NASA Glory Mission project. This instrument measures both polarized and total reflectances in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. For cloud droplet size retrievals we utilize the polarized reflectances in the scattering range between 135° and 165° where they exhibit the rainbow, the shape of which is determined mainly by single-scattering properties of the cloud particles. Two different retrieval methods were used: standard fitting of the observations with a model based on pre-assumed gamma distribution shape, and a novel non-parametric technique Rainbow Fourier Transform (RFT), which does not require any a priori assumptions about the droplet size distribution. The RSP measurements over cumulus clouds also allow for estimation of their geometry (cloud length, top and base heights), which, combined with the droplet size, can provide further insight into cloud processes.

  15. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    NASA Astrophysics Data System (ADS)

    Keck, L.; Pesch, M.; Grimm, H.

    2011-07-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeißenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  16. First Airborne Laser Remote Measurements of Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobbs, M. E.; Dobler, J.; Kooi, S.; Choi, Y.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2008-12-01

    A unique, multi-frequency, single-beam, laser absorption spectrometer (LAS) that operates at 1.57 μm has been developed for a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A prototype of the space-based LAS system was developed by ITT, and it has been successfully flight tested in five airborne campaigns conducted in different geographic regions over the last three years. Flight tests were conducted over Oklahoma, Michigan, New Hampshire, and Virginia under a wide range of atmospheric conditions. Remote LAS measurements were compared to high-quality in situ measurements obtained from instrumentation on the same aircraft on spirals under the ground track of the LAS. LAS flights were conducted over a wide range of land and water reflectances and in the presence of scattered clouds. An extensive data set of CO2 measurements has been obtained for evaluating the LAS performance. LAS CO2 measurements with a signal-to-noise in excess of 250 were obtained for a 1-s average over land and for a 10-s average over water. Absolute comparisons of CO2 remote and in situ measurements showed agreement over a range of altitudes to better than 2 percent. LAS oxygen (O2) measurements, which are needed to convert LAS CO2 density measurements to CO2 mixing ratios (XCO2), have been made in the 1.26-μm region in horizontal ground-based experiments and in initial flight tests. Details of flight test campaigns and measured versus modeled results are presented in this paper.

  17. Aerosol classification using EARLINET measurements for an intensive observational period

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Pappalardo, Gelsomina

    2016-04-01

    ACTRIS (Aerosols, Clouds and Trace gases Research Infrastructure Network) organized an intensive observation period during summer 2012. This campaign aimed at the provision of advanced observations of physical and chemical aerosol properties, at the delivery of information about the 3D distribution of European atmospheric aerosols, and at the monitoring of Saharan dust intrusions events. EARLINET (European Aerosol Research Lidar Network) participated in the ACTRIS campaign through the addition of measurements according to the EARLINET schedule as well as daily lidar-profiling measurements around sunset by 11 selected lidar stations for the period from 8 June - 17 July. EARLINET observations during this almost two-month period are used to characterize the optical properties and vertical distribution of long-range transported aerosol over the broader area of Mediterranean basin. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, Angstrom exponents) are shown to vary with location and aerosol type. A methodology based on EARLINET observations of frequently observed aerosol types is used to classify aerosols into seven separate types. The summertime Mediterranean basin is prone to African dust aerosols. Two major dust events were studied. The first episode occurred from the 18 to 21 of the June and the second one lasted from 28 June to 6 July. The lidar ratio within the dust layer was found to be wavelength independent with mean values of 58±14 sr at 355 nm and 57±11 sr at 532 nm. For the particle linear depolarization ratio, mean values of 0.27±0.04 at 532 nm have been found. Acknowledgements. The financial support for EARLINET in the ACTRIS Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654169 and previously under grant agreement no. 262254 in the Seventh Framework Programme (FP7/2007-2013) is gratefully acknowledged.

  18. Effect of spectral time-lag correlation coefficient and signal averaging on airborne CO2 DIAL measurements

    NASA Astrophysics Data System (ADS)

    Ben-David, Avishai; Vanderbeek, Richard G.; Gotoff, Steven W.; D'Amico, Francis M.

    1997-10-01

    The effects of flight geometry, signal averaging and time- lag correlation coefficient on airborne CO2 dial lidar measurements are shown in simulations and field measurements. These factors have implications for multi- vapor measurements and also for measuring a shingle vapor with a wide absorption spectra for which one would like to make DIAL measurements at many wavelengths across the absorption spectra of the gas. Thus it is of interest to know how many wavelengths and how many groups of wavelengths can be used effectively in DIAL measurements. Our data indicate that for our lidar about 80 wavelengths can be used for DIAL measurements of a stationary vapor. The lidar signal is composed of fluctuations with three time scales: a very short time scale due to system noise which is faster than the data acquisition sampling rate of the receiver, a medium time scale due to atmospheric turbulence, and a long time scale due to slow atmospheric transmission drift from aerosol in homogeneities. The decorrelation time scale of fluctuations for airborne lidar measurements depends on the flight geometry.

  19. Using an A-10 Aircraft for Airborne measurements of TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Christian, Hugh, J.; Blakeslee, Richard J.; Grove, J. Eric; Chektman, Alexandre; Jonsson, Haflidi; Detwiler, Andrew G.

    2012-01-01

    Plans are underway to convert an A-10 combat attack aircraft into a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft would be terrestrial gamma ]ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x-and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into this TGF production mechanism. The A -10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  20. Using an A-10 Aircraft for Airborne Measurements of TGFs

    NASA Astrophysics Data System (ADS)

    Fishman, G. J.; Christian, H. J.; Blakeslee, R. J.; Grove, J.; Chekhtman, A.; Jonsson, H.; Detwiler, A. G.

    2012-12-01

    Work is underway to modify an A-10 combat attack aircraft to become a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft will be terrestrial gamma-ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x- and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into the TGF production mechanism. The A-10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  1. A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements

    SciTech Connect

    Brown, G.S. ); Weiss, R.E. )

    1990-08-01

    Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.

  2. Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Climate Research Facility measurements

    SciTech Connect

    Schmid, Beat; Flynn, Connor J.; Newsom, Rob K.; Turner, David D.; Ferrare, Richard; Clayton, Marian F.; Ogren, John A.; Russell, P. B.; Gore, W.; Dominguez, Roseanne

    2009-11-26

    The accuracy with which vertical profiles of aerosol extinction σep(λ) can be retrieved from ARM Climate Research Facility (ACRF) routine measurements was assessed using data from two airborne field campaigns, the ARM Aerosol Intensive Operation Period (AIOP, May 2003), and the Aerosol Lidar Validation Experiment (ALIVE, September 2005). This assessment pertains to the aerosol at its ambient concentration and thermodynamic state (i.e. σep(λ) either free of or corrected for sampling artifacts) and includes the following ACRF routine methods: Raman Lidar, Micro Pulse Lidar (MPL) and in-situ aerosol profiles (IAP) with a small aircraft. Profiles of aerosol optical depth τp(λ), from which the profiles of σep(λ)are derived through vertical differentiation, were measured by the NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14); these data were used as truth in this evaluation. The ACRF IAP σep(550 nm) were lower by 16% (during AIOP) and higher by 10% (during ALIVE) when compared to AATS-14. The ACRF MPL σep(523 nm) were higher by 24% (AIOP) and 19%-21% (ALIVE) compared to AATS-14 but the correlation improved significantly during ALIVE. In the AIOP a second MPL operated by NASA showed a smaller positive bias (13%) with respect to AATS-14. The ACRF Raman Lidar σep(355 nm) were higher by 54% (AIOP) and higher by 6% (ALIVE) compared to AATS-14. The large bias in AIOP stemmed from a gradual loss of the sensitivity of the Raman Lidar starting about the end of 2001 going unnoticed until after AIOP. A major refurbishment and upgrade of the instrument and improvements to a data-processing algorithm led to the significant improvement and very small bias in ALIVE. Finally we find that during ALIVE the Raman Lidar water vapor densities ρw are higher by 8% when compared to AATS-14, whereas comparisons between AATS-14 and in-situ measured ρw aboard two different aircraft showed small negative biases (0 to

  3. Measurements of volcanic aerosols during the Holuhraun eruption in Iceland

    NASA Astrophysics Data System (ADS)

    María Sigurðardóttir, Guðmunda; von Löwis, Sibylle; Bergson, Baldur; Þorsteinsson, Þröstur; Jóhannsson, Þorsteinn

    2015-04-01

    Measurements of airborne particles have been made with an Optical Particle Counter (OPC) since early September 2014 in the vicinity of the volcanic lava eruption in Holuhraun, N of Vatnajökull, in NE-Iceland. Measurements close to the eruption site were made between 1 - 4 September, 19 September - 1 October, and 3 - 6 October 2014. On 12 September another OPC was installed in Möðrudalur, ~70 km NE of the eruption site, which has measured since, nearly continuously, the aerosol particle number concentration. The data from both locations, Holuhraun and Möðrudalur, show several particle concentration peaks. However, since the eruption site is located in one of Iceland's largest sandy deserts, known for large-scale dust events, it is difficult to distinguish between particles emitted by the eruption or from the sandy area. From the measurements of the SO2 concentrations in Northern and Eastern Iceland, made by the Environmental Agency of Iceland, it can be seen that enhanced particle number concentrations are correlated with high concentrations of SO2. This correlation can help to distinguish between particles originated by dust events and those with volcanic origin. The farm Svartárkot, ~ 60 km NV of the eruption site, is frequently affected by dust re-suspended from the sandy desert N of Vatnajökull. OPC data over a two month period in summer 2013 were collected in Svartárkot and will be used for comparison. Using particle size distribution and total particle number, as a function of wind direction, wind speed and precipitation, and comparing it with Möðrudalur and Holuhraun data, enables the particle origin to be estimated. In addition to the measurements close to the eruption site OPC measurements are on-going in Reykjavík, ~ 260 km SW of Holuhraun, since the 6 October 2014. First comparisons have also shown a strong correlation between increased SO2 concentration and particle number. Therefore, it may be assumed that these particles are build by gas

  4. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James; Dawsey, Martha; Ramanathan, Anand

    2012-01-01

    We report on an initial airborne demonstration of atmospheric methane column measurements at 1.65 micrometers using a widely tunable, seeded optical parametric amplifier (OPA) lidar and a photon counting detector. Methane is an important greenhouse gas and accurate knowledge of its sources and sinks is needed for climate modeling. Our lidar system uses 20 pulses at increasing wavelengths and integrated path differential absorption (IPDA) to map a methane line at 1650.9 nanometers. The wavelengths are generated by using a Nd:YAG pump laser at 1064.5 nanometers and distributed feedback diode laser at 1650.9 nanometers and a periodically-poled lithium niobate (PPLN) crystal. The pulse width was 3 nanoseconds and the pulse repetition rate was 6.28 KHz. The outgoing energy was approximately 13 microJoules/pulse. A commercial 20 nanometer diameter fiber-coupled telescope with a photon counting detector operated in analog mode with a 0.8 nanometer bandpass filter was used as the lidar receiver. The lidar system was integrated on NASA's DC-8 flying laboratory, based at Dryden Airborne operations Facility (DAOF) in Palmdale CA. Three flights were performed in the central valley of California. Each flight lasted about 2.5 hours and it consisted of several flight segments at constant altitudes at approximately 3, 4.5, 6, 7.6, 9.1, 10.6 km (l0, 15, 20, 25, 30, 35 kft). An in-situ cavity ring down spectrometer made by Picarro Inc. was flown along with the lidar instrument provided us with the "truth" i.e. the local CH4, CO2 and H2O concentrations at the constant flight altitude segments. Using the aircraft's altitude, GPS, and meteorological data we calculated the theoretical differential optical depth of the methane absorption at increasing altitudes. Our results showed good agreement between the experimentally derived optical depth measurements from the lidar instrument and theoretical calculations as the flight altitude was increased from 3 to 10.6 kilometers, assuming a

  5. Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Kondratyev, V.; Brus, D.; Laurila, T.; Lihavainen, H.; Backman, J.; Vakkari, V.; Aurela, M.; Hatakka, J.; Viisanen, Y.; Uttal, T.; Ivakhov, V.; Makshtas, A.

    2015-07-01

    Four years of continuous aerosol number size distribution measurements from an Arctic Climate Observatory in Tiksi Russia are analyzed. Source region effects on particle modal features, and number and mass concentrations are presented for different seasons. The monthly median total aerosol number concentration in Tiksi ranges from 184 cm-3 in November to 724 cm-3 in July with a local maximum in March of 481 cm-3. The total mass concentration has a distinct maximum in February-March of 1.72-2.38 μg m-3 and two minimums in June of 0.42 μg m-3 and in September-October of 0.36-0.57 μg m-3. These seasonal cycles in number and mass concentrations are related to isolated aerosol sources such as Arctic haze in early spring which increases accumulation and coarse mode numbers, and biogenic emissions in summer which affects the smaller, nucleation and Aitken mode particles. The impact of temperature dependent natural emissions on aerosol and cloud condensation nuclei numbers was significant. Therefore, in addition to the precursor emissions of biogenic volatile organic compounds, the frequent Siberian forest fires, although far are suggested to play a role in Arctic aerosol composition during the warmest months. During calm and cold months aerosol concentrations were occasionally increased by nearby aerosol sources in trapping inversions. These results provide valuable information on inter-annual cycles and sources of Arctic aerosols.

  6. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-12-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NOx conditions) secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder.

  7. The Cloud-Aerosol Transport System (CATS): Demonstrating New Techniques for Cloud and Aerosol Measurements

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Palm, S. P.; Hlavka, D. L.; Nowottnick, E. P.; Selmer, P. A.

    2015-12-01

    The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar that provides vertical profiles of cloud and aerosol properties. The CATS payload has been operating since early February 2015 from the International Space Station (ISS). CATS was designed to operate for six months, and up to three years, providing a combination of operational science, in-space technology demonstration, and technology risk reduction for future Earth Science missions. One of the primary project goals of CATS is to demonstrate technology in support of future space-based lidar mission development. The CATS instrument has been demonstrating the high repetition rate laser and photon counting detection approach to lidar observations, in contrast to the low repetition rate, high energy technique employed by CALIPSO. Due to this technique, cloud and aerosol profile data exhibit high spatial and temporal resolution, which was never before possible from a space-based platform. Another important science goal of the CATS-FO project is accurate determination of aerosol type on a global scale. CATS provided the first space-based depolarization measurements at multiple wavelengths (532 and 1064 nm), and first measurements at 1064 nm from space. The ratio of the depolarization measurements at these two wavelengths enables significant improvement in aerosol typing. The CATS retrievals at 1064 nm also provide improvements to detecting aerosols above clouds. The CATS layer identification algorithm is a threshold-based layer detection method that uses the 1064 nm attenuated scattering ratio and also includes a routine to identify clouds embedded within aerosol layers. This technique allows CATS to detect the full extent of the aerosol layers above the cloud, and differentiate these two layers so that the optical properties can be more accurately determined.

  8. Surface and airborne measurements of organosulfur and methanesulfonate over the western United States and coastal areas

    NASA Astrophysics Data System (ADS)

    Sorooshian, Armin; Crosbie, Ewan; Maudlin, Lindsay C.; Youn, Jong-Sang; Wang, Zhen; Shingler, Taylor; Ortega, Amber M.; Hersey, Scott; Woods, Roy K.

    2015-08-01

    This study reports on ambient measurements of organosulfur (OS) and methanesulfonate (MSA) over the western United States and coastal areas. Particulate OS levels are highest in summertime and generally increase as a function of sulfate (a precursor) and sodium (a marine tracer) with peak levels at coastal sites. The ratio of OS to total sulfur is also highest at coastal sites, with increasing values as a function of normalized difference vegetation index and the ratio of organic carbon to elemental carbon. Correlative analysis points to significant relationships between OS and biogenic emissions from marine and continental sources, factors that coincide with secondary production, and vanadium due to a suspected catalytic role. A major OS species, methanesulfonate (MSA), was examined with intensive field measurements, and the resulting data support the case for vanadium's catalytic influence. Mass size distributions reveal a dominant MSA peak between aerodynamic diameters of 0.32-0.56 µm at a desert and coastal site with nearly all MSA mass (≥84%) in submicrometer sizes; MSA:non-sea-salt sulfate ratios vary widely as a function of particle size and proximity to the ocean. Airborne data indicate that relative to the marine boundary layer, particulate MSA levels are enhanced in urban and agricultural areas and also the free troposphere when impacted by biomass burning. Some combination of fires and marine-derived emissions leads to higher MSA levels than either source alone. Finally, MSA differences in cloud water and out-of-cloud aerosol are discussed.

  9. Detecting tropical forest biomass dynamics from repeated airborne Lidar measurements

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Saatchi, S. S.; Chave, J.; Dalling, J.; Bohlman, S.; Fricker, G. A.; Robinson, C.; Neumann, M.

    2013-02-01

    Reducing uncertainty of terrestrial carbon cycle depends strongly on the accurate estimation of changes of global forest carbon stock. However, this is a challenging problem from either ground surveys or remote sensing techniques in tropical forests. Here, we examine the feasibility of estimating changes of tropical forest biomass from two airborne Lidar measurements acquired about 10 yr apart over Barro Colorado Island (BCI), Panama from high and medium resolution airborne sensors. The estimation is calibrated with the forest inventory data over 50 ha that was surveyed every 5 yr during the study period. We estimated the aboveground forest biomass and its uncertainty for each time period at different spatial scales (0.04, 0.25, 1.0 ha) and developed a linear regression model between four Lidar height metrics and the aboveground biomass. The uncertainty associated with estimating biomass changes from both ground and Lidar data was quantified by propagating measurement and prediction errors across spatial scales. Errors associated with both the mean biomass stock and mean biomass change declined with increasing spatial scales. Biomass changes derived from Lidar and ground estimates were largely (36 out 50 plots) in the same direction at the spatial scale of 1 ha. Lidar estimation of biomass was accurate at the 1 ha scale (R2 = 0.7 and RMSEmean = 28.6 Mg ha-1). However, to predict biomass changes, errors became comparable to ground estimates only at about 10-ha or more. Our results indicate that the 50-ha BCI plot lost a~significant amount of biomass (-0.8 ± 2.2 Mg ha-1 yr-1) over the past decade (2000-2010). Over the entire island and during the same period, mean AGB change is -0.4 ± 3.7 Mg ha-1 yr-1. Old growth forests lost biomass (-0.7 ± 3.5 Mg ha-1 yr-1), whereas the secondary forests gained biomass (+0.4 ± 3.4 Mg ha-1 yr-1). Our analysis demonstrates that repeated Lidar surveys, even with two different sensors, is able to estimate biomass changes in old

  10. Aerosol Measurements from Current and Future EUMETSAT Satellites

    NASA Astrophysics Data System (ADS)

    Lang, Ruediger; Munro, Rosemary; Kokhanovsky, Alexander; Grzegorski, Michael; Poli, Gabriele; Holdak, Andriy; Retscher, Christian; Marbach, Thierry

    2014-05-01

    EUMETSAT supports the operational monitoring and forecasting of atmospheric composition including various aerosol optical properties through specific products from its geostationary and polar-orbiting satellites. Meteosat imagery is used to characterise aerosols in the atmosphere, including volcanic ash and dust storms at high temporal resolution, while the GOME-2, AVHRR and IASI and instruments on Metop observe aerosol optical properties from the UV/vis to the infra-red spectral region from a polar morning orbit. The role of EUMETSAT in observing aerosol optical properties will expand further towards the 2020 timeframe when EUMETSAT also becomes the operator of the Copernicus Sentinel-3, 4 and 5 missions. This expanding role will be realised through additional atmospheric composition sounding instruments such as the UVN/Sentinel-4 on the Meteosat Third Generation (MTG) geostationary platforms and the 3MI, METimage, and Sentinel-5 instruments on the EPS Second Generation (EPS-SG) satellites. The synergistic use of imager, spectrometer and interferometer data will, with the availability of this new generation of instrumentation and with the need for measuring aerosol optical properties at short-time scales, high spatial resolution and over a broad spectra region, play and increasingly important role in the field of aerosol remote sensing. With its new Polar Multi-mission Aerosol optical properties (PMAp) product, providing aerosol and cloud optical depth information, as well as fine mode, dust and volcanic ash characterisation over ocean and in the future also over land, EUMETSAT has recently been implementing the first framework for such synergistic retrievals for the remote sensing of aerosol optical properties from GOME-2, AVHRR and IASI instruments on Metop. We will present an overview of the ongoing and the future developments at EUMETSAT concerning aerosol remote sensing from Metop as well as from the current MSG geostationary platforms and from the future

  11. Airborne flux measurements of Biogenic Isoprene over California

    SciTech Connect

    Misztal, P.; Karl, Thomas G.; Weber, Robin; Jonsson, H. H.; Guenther, Alex B.; Goldstein, Allen H.

    2014-10-10

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK+MAC, methanol, monoterpenes, and MBO over ~10,000-km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z/zi). Fluxes were generally measured by flying consistently 1 at 400 m ±50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  12. Airflow measurement inaccuracies in aerosol imaging

    SciTech Connect

    Sirr, S.A.; Miltz-Miller, S.; Notman, D.N.; Boyle, M.J.; Boudreau, R.J.; Loken, M.K.

    1986-04-01

    Aerosol production using inclined compressed air tanks may be subject to error caused by airflow meter variability and by the degree of inclination of the air-flow meter. Since most of these tanks are used in an inclined position, it is important for clinicians to be aware of these errors.

  13. Airflow measurement inaccuracies in aerosol imaging.

    PubMed

    Sirr, S A; Miltz-Miller, S; Notman, D N; Boyle, M J; Boudreau, R J; Loken, M K

    1986-04-01

    Aerosol production using inclined compressed air tanks may be subject to error caused by airflow meter variability and by the degree of inclination of the air-flow meter. Since most of these tanks are used in an inclined position, it is important for clinicians to be aware of these errors. PMID:3952316

  14. Coordinated airborne and satellite measurements of equatorial plasma depletions

    SciTech Connect

    Weber, E.J.; Brinton, H.C.; Buchau, J.; Moore, J.G.

    1982-12-01

    A series of experiments was conducted in December 1979 to investigate the structure of plasma depletions in the low latitude, nightime ionosphere. The measurements included all sky imaging photometer (ASIP), ionosonde and amplitude scintillation observations from the AFGL Airborne Ionospheric Observatory (AIO), and in situ ion density measurements from the Atmosphere Explorer (AE-E) Bennett Ion Mass Spectrometer (BIMS). The AIO performed two flights along the Ascension Island (-18/sup 0/ MLAT) magnetic meridian: one in the southern hemisphere and one near the Ascension conjugate point in the northern hemisphere. During these flights, measurements from the AE-E satellite at 434 km altitude are compared with simultaneous remote ionospheric measurements from the AIO. Density biteouts of approximately one order of magnitude in the dominant ion O/sup +/, were mapped to lower altitudes along magnetic field lines for comparison with 6300-A and 7774-A O I airglow depletions. Because of the different airglow production mechanisms (dissociative recombination of O/sup +//sub 2/ for 6300 A and radiative recombination of O/sup +/ for 7774 A) the 6300-A depletions reflect plasma depletions near the bottomside of the F layer, while those at 7774 A are located near the peak of the layer. The O/sup +/ biteouts map directly into the 7774-A airglow depletions in the same hemisphere and also when traced into the opposite hemisphere, which indicates magnetic flux tube alignment over north-south distances of approx.2220 km. The 6300-A (bottomside) depletions are wider in longitude than the 7774-A (F-peak) depletions near the equatorward edge of the Appleton anomaly. This difference in topside and bottomside structure is used to infer large-scale structure near the anomaly and to relate this to structure, commonly observed near the magnetic equator by the ALTAIR radar.

  15. Water depth measurement using an airborne pulsed neon laser system

    SciTech Connect

    Hoge, F.E.; Swift, R.N.; Frederick, E.B.

    1980-03-15

    Initial base-line field test performance results of the National Aeronautics and Space Administration's airborne oceanographic lidar (AOL) in the bathymetry mode are presented. Flight tests over the Atlantic Ocean yielded water depth measurements to 10 m. Water depths to 4.6 m were measured in the more turbid Chesapeake Bay. Water-truth measurements of depth and beam attenuation coefficients by boat were taken at the same time as the air craft overflights to aid in determining the system's operational performance. Beam attenuation coefficient and depth d product d was established early in the program as the performance criterion index. A performance product of 6 was determined to be the goal. This performance goal was successfully met or exceeded in the large number of field tests executed. Included are selected data from nadir-angle tests conducted at 0, 5, 10, and 15. Field-of-view data chosen from the 2-, 5-, 10-, and 20-mrad tests are also presented. Depth measurements obtained to altitudes of 456 m are given for additional comparison. This laser bathymetry system represents a significant improvement over prior models in that (1) the complete surface-to-bottom pulse waveform is digitally recorded on magnetic tape at a rate of 400 pulse waveforms/sec, and (2) wide-swath mapping data may be routinely acquired using the 30 full-angle conical scanner. Space does not allow all the 5,000,000 laser soundings to be included. Qualified interested users may obtain complete data sets for their own in-depth analysis. 15 references, 9 figures, 1 table.

  16. Measuring Aerosol Optical Properties with the Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Torres, O.; Syniuk, A.; Decae, R.; deLeeuw, G.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to the NASA EOS-Aura mission scheduled for launch in January 2004. OM1 is an imaging spectrometer that will measure the back-scattered Solar radiance between 270 an 500 nm. With its relatively high spatial resolution (13x24 sq km at nadir) and daily global coverage. OM1 will make a major contribution to our understanding of atmospheric chemistry and to climate research. OM1 will provide data continuity with the TOMS instruments. One of the pleasant surprises of the TOMS data record was its information on aerosol properties. First, only the absorbing aerosol index, which is sensitive to elevated lay- ers of aerosols such as desert dust and smoke aerosols, was derived. Recently these methods were further improved to yield aerosol optical thickness and single scattering albedo over land and ocean for 19 years of TOMS data (1979-1992,1997-2002), making it one of the longest and most valuable time series for aerosols presently available. Such long time series are essential to quantify the effect of aerosols on the Earth& climate. The OM1 instrument is better suited to measure aerosols than the TOMS instruments because of the smaller footprint, and better spectral coverage. The better capabilities of OMI will enable us to provide an improved aerosol product, but the knowledge will also be used for further analysis of the aerosol record from TOMS. The OM1 aerosol product that is currently being developed for OM1 combines the TOMS experience and the multi-spectral techniques that are used in the visible and near infrared. The challenge for this new product is to provide aerosol optical thickness and single scattering albedo from the near ultraviolet to the visible (330-500 nm) over land and ocean. In this presentation the methods for deriving the OM1 aerosol product will be presented. Part of these methods developed for OM1 can already be applied to TOMS data and results of such analysis will be shown.

  17. Using airborne LIDAR to measure tides and river slope

    NASA Astrophysics Data System (ADS)

    Talke, S. A.; Hudson, A.; Chickadel, C. C.; Farquharson, G.; Jessup, A. T.

    2014-12-01

    The spatial variability of tides and the tidally-averaged water-level is often poorly resolved in shallow waters, despite its importance in validating models and interpreting dynamics. In this contribution we explore using airborne LIDAR to remotely observe tides and along-river slope in the Columbia River estuary (CRE). Using an airplane equipped with LIDAR, differential GPS, and an infra-red camera, we flew 8 longitudinal transects over a 50km stretch of the CRE over a 14 hour period in June 2013. After correcting for airplane elevation, pitch and roll and median filtering over 1km blocks, a spatially-resolved data set of relative water level was generated. Results show the tide (amplitude 2m) propagating upstream at the expected phase velocity. A sinusoid with 2 periods (12.4 and 24 hours) was next fit to data to produce a smooth tide and extract the mean slope. Comparison with 4 tide gauges indicates first order agreement with measured tides (rms error 0.1m), and confirms that a substantial sub-tidal gradient exists in the CRE. This proof-of-concept experiment indicates that remote sensing of tides in coastal areas is feasible, with possible applications such as improving bathymetric surveys or inferring water depths.

  18. Mapping methane emission sources over California based on airborne measurements

    NASA Astrophysics Data System (ADS)

    Karl, T.; Guha, A.; Peischl, J.; Misztal, P. K.; Jonsson, H.; Goldstein, A. H.; Ryerson, T. B.

    2011-12-01

    The California Global Warming Solutions Act of 2006 (AB 32) has created a need to accurately characterize the emission sources of various greenhouse gases (GHGs) and verify the existing state GHG inventory. Methane (CH4) is a major GHG with a global warming potential of 20 times that of CO2 and currently constitutes about 6% of the total statewide GHG emissions on a CO2 equivalent basis. Some of the major methane sources in the state are area sources where methane is biologically produced (e.g. dairies, landfills and waste treatment plants) making bottom-up estimation of emissions a complex process. Other potential sources include fugitive emissions from oil extraction processes and natural gas distribution network, emissions from which are not well-quantified. The lack of adequate field measurement data to verify the inventory and provide independently generated estimates further contributes to the overall uncertainty in the CH4 inventory. In order to gain a better perspective of spatial distribution of major CH4 sources in California, a real-time measurement instrument based on Cavity Ring Down Spectroscopy (CRDS) was installed in a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of airborne CH4 and CO2 measurements during eight unique flights which covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. The coincident VOC measurements, obtained through a high frequency proton transfer reaction mass spectrometer (PTRMS), aid in CH4 source identification. High mixing ratios of CH4 (> 2000 ppb) are observed consistently in all the flight transects above the Central Valley. These high levels of CH4 are accompanied by high levels of methanol which is an important

  19. Influence of the aerosol vertical distribution on the retrievals of aerosol optical depth from satellite radiance measurements

    NASA Astrophysics Data System (ADS)

    Quijano, Ana Lía; Sokolik, Irina N.; Toon, Owen B.

    2000-11-01

    We investigate the importance of the layered vertical distribution of absorbing and non-absorbing tropospheric aerosols for the retrieval of the aerosol optical depth from satellite radiances measured at visible wavelengths at a single viewing angle. We employ lidar and in-situ measurements of aerosol extinction coefficients and optical depths to model radiances which would have been observed by a satellite. Then, we determine the aerosol optical depth that would produce the observed radiance under various sets of assumptions which are often used in current retrieval algorithms. We demonstrate that, in the presence of dust or other absorbing aerosols, the retrieved aerosol optical depth can underestimate or overestimate the observed optical depth by a factor of two or more depending on the choice of an aerosol optical model and the relative position of different aerosol layers. The presence of undetected clouds provides a further complication.

  20. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  1. Alexandrite laser transmitter development for airborne water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas H.; Ponsardin, Patrick; Higdon, Noah S.; DeYoung, Russell J.; Browell, Edward V.

    1995-01-01

    In the DIAL technique, the water vapor concentration profile is determined by analyzing the lidar backscatter signals for laser wavelengths tuned 'on' and 'off' a water vapor absorption line. Desired characteristics of the on-line transmitted laser beam include: pulse energy greater than or equal to 100 mJ, high-resolution tuning capability (uncertainty less than 0.25 pm), good spectral stability (jitter less than 0.5 pm about the mean), and high spectral purity (greater than 99 percent). The off-line laser is generally detuned less than 100 pm away from the water vapor line. Its spectral requirements are much less stringent. In our past research, we developed and demonstrated the airborne DIAL technique for water vapor measurements in the 720-nm spectral region using a system based on an alexandrite laser as the transmitter for the on-line wavelength and a Nd:YAG laser-pumped dye laser for the off-line wavelength. This off-line laser has been replaced by a second alexandrite laser. Diode lasers are used to injection seed both lasers for frequency and linewidth control. This eliminates the need for the two intracavity etalons utilized in our previous alexandrite laser and thereby greatly reduces the risk of optical damage. Consequently, the transmitted pulse energy can be substantially increased, resulting in greater measurement range, higher data density, and increased measurement precision. In this paper, we describe the diode injection seed source, the two alexandrite lasers, and the device used to line lock the on-line seed source to the water vapor absorption feature.

  2. Aerosol effect on Umkehr ozone profiles using Stratospheric Aerosol and Gas Experiment II measurements

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Cunnold, D. M.

    1994-01-01

    This study examines 1211 cases of coincident ozone profiles derived from 1164 Umkehrs and 928 Stratospheric Aerosol and Gas Experiment II (SAGE II) profiles within 1000 km and 12 hours between October 1984 and April 1989 to study the stratospheric-aerosol effect on Umkehr ozone profiles. Because of the close correspondence of stratospheric aerosol optical depth at the SAGE II-measured 0.525-micrometer wavelength and the extrapolated 0.32 Umkehr wavelength determined in this study we use the 0.525-micrometer data to determine the aerosol effect on Umkehr profiles. At the 95% confidence level, we find the following errors to the Umkehr ozone amounts: in Umkehr layer 9 (-2.9 +/- 2.1), layer 8 (-2.3 +/- 1.1), layer 7 (0.1 +/- 1.1), layer 6 (2.2 +/- 1.0), layer 5 (-1.5 +/- 0.8), and layer 4 (-2.4 +/- 1.7) in percent ozone amount per 0.01 stratospheric aerosol optical depth. These results agree with previous theoretical and empirical studies within their respective error bounds in layers 9, 8, and 7. The results in layers 6, 5, and 4 differ significantly from those in previous works. Using only those eight stations with more than 47 coincidences results in mean aerosol effects that are not significantly different from the 14-station results. Because SAGE II and Umkehr produce different ozone retrievals in layer 9 and because the intralayer correlation of SAGE II ozone and aerosol in layer 9 is nonzero, one must exercise some caution in attributing the entire SAGE II-Umkehr difference in this layer to an aerosol effect.

  3. Airborne minerals and related aerosol particles: Effects on climate and the environment

    PubMed Central

    Buseck, Peter R.; Pósfai, Mihály

    1999-01-01

    Aerosol particles are ubiquitous in the troposphere and exert an important influence on global climate and the environment. They affect climate through scattering, transmission, and absorption of radiation as well as by acting as nuclei for cloud formation. A significant fraction of the aerosol particle burden consists of minerals, and most of the remainder— whether natural or anthropogenic—consists of materials that can be studied by the same methods as are used for fine-grained minerals. Our emphasis is on the study and character of the individual particles. Sulfate particles are the main cooling agents among aerosols; we found that in the remote oceanic atmosphere a significant fraction is aggregated with soot, a material that can diminish the cooling effect of sulfate. Our results suggest oxidization of SO2 may have occurred on soot surfaces, implying that even in the remote marine troposphere soot provided nuclei for heterogeneous sulfate formation. Sea salt is the dominant aerosol species (by mass) above the oceans. In addition to being important light scatterers and contributors to cloud condensation nuclei, sea-salt particles also provide large surface areas for heterogeneous atmospheric reactions. Minerals comprise the dominant mass fraction of the atmospheric aerosol burden. As all geologists know, they are a highly heterogeneous mixture. However, among atmospheric scientists they are commonly treated as a fairly uniform group, and one whose interaction with radiation is widely assumed to be unpredictable. Given their abundances, large total surface areas, and reactivities, their role in influencing climate will require increased attention as climate models are refined. PMID:10097046

  4. Measurement of airborne particle concentrations near the Sunset Crater volcano, Arizona.

    PubMed

    Benke, Roland R; Hooper, Donald M; Durham, James S; Bannon, Donald R; Compton, Keith L; Necsoiu, Marius; McGinnis, Ronald N

    2009-02-01

    Direct measurements of airborne particle mass concentrations or mass loads are often used to estimate health effects from the inhalation of resuspended contaminated soil. Airborne particle mass concentrations were measured using a personal sampler under a variety of surface-disturbing activities within different depositional environments at both volcanic and nonvolcanic sites near the Sunset Crater volcano in northern Arizona. Focused field investigations were performed at this analog site to improve the understanding of natural and human-induced processes at Yucca Mountain, Nevada. The level of surface-disturbing activity was found to be the most influential factor affecting the measured airborne particle concentrations, which increased over three orders of magnitude relative to ambient conditions. As the surface-disturbing activity level increased, the particle size distribution and the majority of airborne particle mass shifted from particles with aerodynamic diameters less than 10 mum (0.00039 in) to particles with aerodynamic diameters greater than 10 mum (0.00039 in). Under ambient conditions, above average wind speeds tended to increase airborne particle concentrations. In contrast, stronger winds tended to decrease airborne particle concentrations in the breathing zone during light and heavy surface-disturbing conditions. A slight increase in the average airborne particle concentration during ambient conditions was found above older nonvolcanic deposits, which tended to be finer grained than the Sunset Crater tephra deposits. An increased airborne particle concentration was realized when walking on an extremely fine-grained deposit, but the sensitivity of airborne particle concentrations to the resuspendible fraction of near-surface grain mass was not conclusive in the field setting when human activities disturbed the bulk of near-surface material. Although the limited sample size precluded detailed statistical analysis, the differences in airborne particle

  5. A Transport Analysis of In Situ Airborne Ozone Measurements from the 2011 DISCOVER-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Arkinson, H. L.; Brent, L. C.; He, H.; Loughner, C.; Stehr, J. W.; Weinheimer, A. J.; Dickerson, R. R.

    2013-12-01

    Baltimore and Washington are currently designated as nonattainment areas with respect to the 2008 EPA National Ambient Air Quality Standard (NAAQS) for 8-hour Ozone (O3). Tropospheric O3 is the dominant component of summertime photochemical smog, and at high levels, has deleterious effects on human health, ecosystems, and materials. The University of Maryland (UMD) Regional Atmospheric Measurement Modeling and Prediction Program (RAMMPP) strives to improve understanding of air quality in the Mid-Atlantic States and to elucidate contributions of pollutants such as O3 from regional transport versus local sources through a combination of modeling and in situ measurements. The NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) project investigates the connection between column measurements and surface conditions to explore the potential of remote sensing observations in diagnosing air quality at ground level where pollutants can affect human health. During the 2011 DISCOVER-AQ field campaign, in situ airborne measurements of trace gases and aerosols were performed along the Interstate 95 corridor between Baltimore and Washington from the NASA P3B aircraft. To augment this data and provide regional context, measurements of trace gases and aerosols were also performed by the RAMMPP Cessna 402B aircraft over nearby airports in Maryland and Virginia. This work presents an analysis of O3 measurements made by the Ultraviolet (UV) Photometric Ambient O3 Analyzer on the RAMMPP Cessna 402B and by the NCAR 4-Channel Chemiluminescence instrument on the NASA P3B. In this analysis, spatial and temporal patterns of O3 data are examined within the context of forward and backward trajectories calculated from 12-km North American Mesoscale (NAM) meteorological data using the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model and from a high resolution Weather Research and

  6. Aspects regarding vertical distribution of greenhouse gases resulted from in situ airborne measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Sorin Vajaiac, Nicolae; Ardelean, Magdalena; Benciu, Silviu Stefan

    2016-04-01

    altitude, this aspect showing a non-uniform mixing of GHG in the lower atmosphere. These results are part of the 2nd campaign of the project AROMAT - Airborne ROmanian Measurements of Aerosols and Trace gases founded by European Space Agency -ESA, whose objective consist in testing the most recent developed instruments able to provide a 3D representation of the state of the atmosphere for the validation of Sentinel 5P and Sentinel 5 observation systems.

  7. Cloud shortwave radiative effect and cloud properties estimated from airborne measurements of transmitted and reflected light

    NASA Astrophysics Data System (ADS)

    LeBlanc, Samuel E.; Redemann, Jens; Segal-Rosenheimer, Michal; Kacenelenbogen, Meloë; Shinozuka, Yohei; Flynn, Connor; Russell, Philip; Schmid, Beat; Schmidt, K. Sebastian; Pilewskie, Peter; Song, Shi

    2015-04-01

    Surface cloud radiative effect, or the perturbation of sunlight by clouds, is often estimated by cloud properties retrieved from reflected sunlight, however transmission-based retrievals may lead to a more representative surface radiative effect than reflection-based counterparts. Transmitted light interacts with cloud particles throughout the vertical extent of the cloud, while reflected light, commonly used for satellite remote sensing of clouds, is more influenced by the top-most cloud particles. We showcase the difference in measurement-based estimates of cloud radiative effect at the surface when using transmitted light instead of reflected light for particular cases during recent field missions. Along with cloud radiative effect, we present the retrieved cloud properties based on light transmitted and reflected by clouds in the Gulf of Mexico, sampled during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), and in the Gulf of Maine, sampled during the Two-Column Aerosol Project (TCAP). To quantify cloud properties from transmitted shortwave radiation, a new retrieval utilizing spectrally resolved measurements is employed. Spectral features in shortwave radiation transmitted through clouds are sensitive to changes in cloud properties including cloud optical thickness, effective radius, and thermodynamic phase. The absorption and scattering of light by liquid water and ice clouds result in shifts in spectral slopes, curvatures, maxima, and minima of cloud-transmitted radiance. A new framework is introduced to quantify these spectral features that are observed in measured and modeled transmittance. This new framework consists of 15 parameters that are independent of spectrally neutral variations in radiometric calibration quantifying spectral slopes, derivatives, spectral curvature calculations, and ratios. These parameters are used to retrieve cloud properties from measurements of zenith radiance

  8. Airborne measurement of peroxy radicals in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Andrés Hernández, Maria Dolores; Horstjann, Markus; Kartal, Deniz; Krebsbach, Marc; Linke, Christian; Lichtenstern, Michael; Andrey, Javier; Burrows, John P.

    2013-04-01

    The importance of peroxy radicals in the tropospheric chemistry is well recognized in the scientific literature. Hydroxy- and organic peroxy radicals (HO2 and RO2, R being an organic chain) are key intermediates in the OH radical initiated oxidation of CO and SO2, of volatile organic compounds (VOC), in the ozonolysis of alkenes and photo-oxidation of carbonyl species. Peroxy radicals are responsible for the ozone production in the troposphere, the formation of peroxides and other oxidants. Although radical chemistry in the troposphere has been subject of intensive research in the past three decades, it is still very few known about the vertical distribution of peroxy radicals. Airborne observations are scarce in spite of their particular importance to improve the understanding of the tropospheric chemistry and the oxidising capacity of the atmosphere at different altitudes. In situ trace gas measurements were carried out in summer 2010 on board of the INTA (Instituto Nacional de Técnicas Aeroespaciales) C212 aircraft over Spain in the frame of the EUFAR project VERDRILLT (VERtical Distribution of Radicals In the Lower Layers of the Troposphere), and in cooperation with the DLR (Deutsches Zentrum für Luft- und Raumfahrt), the University of Wuppertal, the CEAM (Centro de Estudios Ambientales del Mediterráneo) and the UPV-EHU University in Bilbao. VERDRILLT aimed at getting a deeper understanding of the vertical distribution of peroxy radicals in the lower layers of the troposphere. Measurements were taken over urban areas and extensions of different vegetation under meteorological conditions favouring active photochemistry and convection from the ground into close atmospheric layers. Results and main findings will be presented and discussed.

  9. Airborne particle concentrations at schools measured at different spatial scales

    NASA Astrophysics Data System (ADS)

    Buonanno, G.; Fuoco, F. C.; Morawska, L.; Stabile, L.

    2013-03-01

    Potential adverse effects on children health may result from school exposure to airborne particles. To address this issue, measurements in terms of particle number concentration, particle size distribution and black carbon (BC) concentrations were performed in three school buildings in Cassino (Italy) and its suburbs, outside and inside of the classrooms during normal occupancy and use. Additional time resolved information was gathered on ventilation condition, classroom activity, and traffic count data around the schools were obtained using a video camera. Across the three investigated school buildings, the outdoor and indoor particle number concentration monitored down to 4 nm and up to 3 μm ranged from 2.8 × 104 part cm-3 to 4.7 × 104 part cm-3 and from 2.0 × 104 part cm-3 to 3.5 × 104 part cm-3, respectively. The total particle concentrations were usually higher outdoors than indoors, because no indoor sources were detected. I/O measured was less than 1 (varying in a relatively narrow range from 0.63 to 0.74), however one school exhibited indoor concentrations higher than outdoor during the morning rush hours. Particle size distribution at the outdoor site showed high particle concentrations in different size ranges, varying during the day; in relation to the starting and finishing of school time two modes were found. BC concentrations were 5 times higher at the urban school compared with the suburban and suburban-to-urban differences were larger than the relative differences of ultrafine particle concentrations.

  10. The Finokalia Aerosol Measurement Experiment - 2008 (FAME-08): an overview

    NASA Astrophysics Data System (ADS)

    Pikridas, M.; Bougiatioti, A.; Hildebrandt, L.; Engelhart, G. J.; Kostenidou, E.; Mohr, C.; Prévôt, A. S. H.; Kouvarakis, G.; Zarmpas, P.; Burkhart, J. F.; Lee, B.-H.; Psichoudaki, M.; Mihalopoulos, N.; Pilinis, C.; Stohl, A.; Baltensperger, U.; Kulmala, M.; Pandis, S. N.

    2010-07-01

    A month (4 May to 8 June 2008) of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08) was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and particle optical properties (light scattering and absorption). Statistical analysis of the aerosol mass concentration variations revealed the absence of diurnal patterns suggesting the lack of strong local sources. Sulfates accounted for approximately half of the particulate matter less than 1 micrometer in diameter (PM1) and organics for 28%. The PM1 organic aerosol fraction was highly oxidized with 80% water soluble. The supermicrometer particles were dominated by crustal components (50%), sea salt (24%) and nitrates (16%). The organic carbon to elemental carbon (OC/EC) ratio correlated with ozone measurements but with a one-day lag. The average OC/EC ratio for the study period was equal to 5.4. For three days air masses from North Africa resulted in a 6-fold increase of particulate matter less than 10 micrometers in diameter (PM10) and a decrease of the OC/EC ratio by a factor of 2. Back trajectory analysis, based on FLEXPART footprint plots, identified five source regions (Athens, Greece, Africa, other continental and marine), each of which influenced the PM1 aerosol composition and properties. Marine air masses had the lowest PM1 concentrations and air masses from the Balkans, Turkey and Eastern Europe the highest.

  11. The Finokalia Aerosol Measurement Experiment - 2008 (FAME-08): an overview

    NASA Astrophysics Data System (ADS)

    Pikridas, M.; Bougiatioti, A.; Hildebrandt, L.; Engelhart, G. J.; Kostenidou, E.; Mohr, C.; Prevot, A. S. H.; Kouvarakis, G.; Zarmpas, P.; Burkhart, J. F.; Lee, B.-H.; Psichoudaki, M.; Mihalopoulos, N.; Pilinis, C.; Stohl, A.; Baltensperger, U.; Kulmala, M.; Pandis, S. N.

    2010-03-01

    A month (4 May to 8 June 2008) of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08) was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and particle optical properties (light scattering and absorption). Statistical analysis of the aerosol mass concentration variations revealed the absence of diurnal patterns suggesting the lack of strong local sources. Sulfates accounted for approximately half of the particulate matter less than 1 micrometer in diameter (PM1) and organics for 26%. The PM1 organic aerosol fraction was highly oxidized with 80% water soluble. The supermicrometer particles were dominated by crustal components (50%), sea salt (24%) and nitrates (16%). The organic carbon to elemental carbon (OC/EC) ratio correlated with ozone measurements but with a one-day lag. The average OC/EC ratio for the study period was equal to 5.4. For three days air masses from North Africa resulted in a 6-fold increase of particulate matter less than 10 micrometers in diameter (PM10) and a decrease of the OC/EC ratio by a factor of 2. Back trajectory analysis, based on FLEXPART footprint plots, identified five source regions (Athens, Greece, Africa, other continental and marine), each of which influenced the PM1 aerosol composition and properties. Marine air masses had the lowest PM1 concentrations and air masses from the Balkans, Turkey and Eastern Europe the highest.

  12. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-01-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross-sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross-sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross-sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (±0.03) + 0.19 (±0.08) i at 360 nm and 1.53 (±0.03) + 0.21 (±0.05) i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (±0.02) + 0.07 (±0.06) i at 360 nm and 1.66 (±0.02) + 0.06 (±0.04) i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross-section, and complex refractive index as a function of wavelength.

  13. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-04-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03) + 0.19 (± 0.08)i at 360 nm and 1.63 (± 0.03) + 0.21 (± 0.05)i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02) + 0.07 (± 0.06)i at 360 nm and 1.66 (± 0.02) + 0.06 (± 0.04)i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  14. Aircraft measurement of organic aerosols over China.

    PubMed

    Wang, Gehui; Kawamura, Kimitaka; Hatakeyama, Shiro; Takami, Akinori; Li, Hong; Wang, Wei

    2007-05-01

    Lower to middle (0.5-3.0 km altitude) tropospheric aerosols (PM2.5) collected by aircraft over inland and east coastal China were, for the first time, characterized for organic molecular compositions to understand anthropogenic, natural, and photochemical contribution to the air quality. n-Alkanes, fatty acids, sugars, polyacids are detected as major compound classes, whereas lignin and resin products, sterols, polycyclic aromatic hydrocarbons, and phthalic acids are minor species. Average concentrations of all the identified compounds excluding malic acid correspond to 40-50% of those reported on the ground sites. Relative abundances of secondary organic aerosol (SOA) components such as malic acid are much higher in the aircraft samples, suggesting an enhanced photochemical production over China. Organic carbon (OC) concentrations in summer (average, 24.3 microg m(-3)) were equivalent to those reported on the ground sites. Higher OC/EC (elemental carbon) ratios in the summer aircraft samples also support a significant production of SOA over China. High loadings of organic aerosols in the Chinese troposphere may be responsible to an intercontinental transport of the pollutants and potential impact on the regional and global climate changes. PMID:17539513

  15. Airborne flux measurements of biogenic isoprene over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-10-01

    Biogenic isoprene fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne Biogenic volatile organic compound (BVOC) Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a proton transfer reaction mass spectrometer (PTR-MS) and a wind radome probe to directly determine fluxes of isoprene over 7400 km of flight paths focusing on areas of California predicted to have the largest emissions. The fast Fourier transform (FFT) approach was used to calculate fluxes of isoprene over long transects of more than 15 km, most commonly between 50 and 150 km. The continuous wavelet transformation (CWT) approach was used over the same transects to also calculate instantaneous isoprene fluxes with localization of both frequency and time independent of non-stationarities. Fluxes were generally measured by flying consistently at 400 m ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence determined in the racetrack-stacked profiles. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to basal emission factor (BEF) land-cover data sets used to drive BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. Even though the isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, observations at the Walnut Grove tower south of Sacramento demonstrate that isoprene oxidation products from the high emitting regions in the surrounding oak woodlands accumulate at night in

  16. Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: using thermo-couple.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2014-03-01

    Vibration amplitude of transducer's elements is the influential parameters in the performance of high power airborne ultrasonic transducers to control the optimum vibration without material yielding. The vibration amplitude of elements of provided high power airborne transducer was determined by measuring temperature of the provided high power airborne transducer transducer's elements. The results showed that simple thermocouples can be used both to measure the vibration amplitude of transducer's element and an indicator to power transmission to the air. To verify our approach, the power transmission to the air has been investigated by other common method experimentally. The experimental results displayed good agreement with presented approach. PMID:24246149

  17. Global distribution of stratospheric aerosols by satellite measurements

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.

    1982-01-01

    A description is given of the first-ever global stratospheric aerosol climatology which is being developed by the earth-orbiting SAM II and SAGE satellite-based sensors. These sensors use the technique of solar occulation; that is, for every spacecraft sunrise and sunset, the modulation of solar intensity caused by the intervening earth-limb is measured. These data are mathematically inverted to yield vertical profiles of aerosol extinction coefficients with 1 km resolution. The data show seasonal variations which are similar in each hemisphere, with strong correlation between aerosol extinction and the corresponding temperature field. Typical values of extinction in the stratosphere are found to be about 0.0001 to 0.0002 per km at 1 micrometer; stratospheric optical depths at this wavelength are about 0.002. The peak extinction in the stratospheric aerosol layer follows the tropopause with altitude, with peak extinction ratios about 10 km above the local tropopause.

  18. Airborne studies of submicron aerosol in the troposphere over West Siberia

    SciTech Connect

    Panchenko, M.V.; Zuev, V.E.; Belan, B.D.; Terpugova, S.A.

    1996-04-01

    Submicron fraction particles that have the longest lifespan and are included in almost all atmospheric processes are of special importance among the great variety of sizes of particles present in the atmosphere. Submicron particles mainly determine the opticle state of the atmosphere in the visible spectral range, essentially cause the absorption of infrared radiation and, since they are the products and participants in all aerosol-to-gas transformations, accumulate of a lot of various chemical compounds and transfer them to large distances. Investigation of the processes of the spatial-temporal variability of aerosol particles for different climatic zones of the earth is the experimental base for studying their effect on climatically and ecologically significant factors and estimating their unfavorable tendencies. The increasing anthropogenic loading of the earth`s atmosphere is creating an urgency for aerosol research. Regardless of how perfect the analytical and numerical methods of solving radiation problems may be, success in forecasting climatic change is mainly determined by the reliability of the experimental data on optical parameters of the atmosphere and of the description of their variability under the effect of external factors.

  19. Calculating Capstone depleted uranium aerosol concentrations from beta activity measurements.

    PubMed

    Szrom, Frances; Falo, Gerald A; Parkhurst, Mary Ann; Whicker, Jeffrey J; Alberth, David P

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the DU source term for the subsequent Human Health Risk Assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short-lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Values for the equilibrium fraction ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92. This paper describes the process used and adjustments necessary to calculate uranium mass from proportional counting measurements. PMID:19204483

  20. Trace gas and aerosol measurements at Whiteface Mountain, New York

    SciTech Connect

    Kelly, T.J.

    1985-09-01

    This report presents the results of a 12-month program of atmospheric chemical measurements performed at Whiteface Mountain, New York. The purpose of this program was to study the concentrations and seasonal variability of several atmospheric chemical species which are of importance in the acid deposition issue. Whiteface Mountain (WFM) was chosen as the site of these measurements because it lies in the Adirondack Mountains of New York State, one of the areas considered susceptible to ecological damage from acid deposition. These measurements were the first long term study of atmospheric chemistry in the Adirondacks. Continuous real-time measurements of SO/sub 2/ and NO/sub x/ were made with commercial instruments modified for increased sensitivity and stability, and aerosol composition, HNO/sub 3/ and SO/sub 2/ were measured with a three-stage filter pack. The main conclusions of this work are (1) that concentrations of gaseous SO/sub 2/ and NO/sub x/ are highest in the winter months, whereas their oxidation products SO/sub 4//sup 2 -/ and HNO/sub 3/ were highest in summer; (2) that aerosol acidity is closely associated with SO/sub 4//sup 2 -/, aerosol NO/sub 3//sup -/ concentrations being very low in all seasons; (3) and that the relative importance of aerosol acidity and HNO/sub 3/ vary with season, because the strong seasonal variation in SO/sub 4//sup 2 -/ results in a very strong seasonal variation in aerosol acidity.

  1. Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Herrmann, E.; Bucci, S.; Fierli, F.; Cairo, F.; Gysel, M.; Tillmann, R.; Größ, J.; Gobbi, G. P.; Di Liberto, L.; Di Donfrancesco, G.; Wiedensohler, A.; Weingartner, E.; Virtanen, A.; Mentel, T. F.; Baltensperger, U.

    2015-07-01

    Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50-800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time) before the mixed layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are

  2. First Airborne PTR-ToF-MS Measurements of VOCs in a Biomass Burning Plume: Primary Emissions and Aging

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Eichler, Philipp; Mikoviny, Tomas; Beyersdorf, Andreas J.; Crawford, James H.; Diskin, Glenn S.; Yang, Melissa; Yokelson, Robert; Weinheimer, Andrew; Fried, Alan; Wisthaler, Armin

    2015-04-01

    The NASA DISCOVER-AQ mission saw the first airborne deployment of a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The newly developed instrument records full mass spectra at 10 Hz and resolves pure hydrocarbons from their oxygenated isobars (e.g. isoprene and furan). Airborne measurements of volatile organic compounds (VOCs) at high spatio-temporal resolution (0.1 s or 10 m) improve our capabilities in characterizing primary emissions from fires and in studying chemical transformations in aging plumes. A biomass-burning plume from a forest understory fire was intercepted by the NASA P-3B near Dublin, GA, USA on September 29, 2013. VOCs were measured at high time resolution along with CO, CO2, NOx, O3, HCHO, aerosols and other air quality and meteorological parameters. Repeated measurements in the immediate proximity of the fire were used to determine VOC emission ratios and their temporal variations. Repeated longitudinal and transversal plume transects were carried out to study plume aging within the first hour of emission. We will discuss the observed OH-NOx-VOC chemistry (including O3 formation), the observed changes in the elemental composition of VOCs (e.g. O:C ratios) and the observed formation of SOA.

  3. First Airborne PTR-ToF-MS Measurements of VOCs in a Biomass Burning Plume: Primary Emissions and Aging

    NASA Astrophysics Data System (ADS)

    Wisthaler, A.; Müller, M.; Eichler, P.; Mikoviny, T.; Beyersdorf, A. J.; Crawford, J. H.; Diskin, G. S.; Yang, M. M.; Yokelson, R. J.; Weinheimer, A. J.; Fried, A.

    2014-12-01

    The NASA DISCOVER-AQ mission saw the first airborne deployment of a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The newly developed instrument records full mass spectra at 10 Hz and resolves pure hydrocarbons from their oxygenated isobars (e.g. isoprene and furan). Airborne measurements of volatile organic compounds (VOCs) at high spatio-temporal resolution (0.1 s or 10 m) improve our capabilities in characterizing primary emissions from fires and in studying chemical transformations in aging plumes. A biomass-burning plume from a forest understory fire was intercepted by the NASA P-3B near Dublin, GA, USA on September 29, 2013. VOCs were measured at high time resolution along with CO, CO2, NOx, O3, HCHO, aerosols and other air quality and meteorological parameters. Repeated measurements in the immediate proximity of the fire were used to determine VOC emission ratios and their temporal variations. Repeated longitudinal and transversal plume transects were carried out to study plume aging within the first hour of emission. We will discuss the observed OH-NOx-VOC chemistry (including O3 formation), the observed changes in the elemental composition of VOCs (e.g. O:C ratios) and the observed formation of SOA.

  4. Airborne MAX-DOAS Measurements Over California: Testing the NASA OMI Tropospheric NO2 Product

    NASA Technical Reports Server (NTRS)

    Oetjen, Hilke; Baidar, Sunil; Krotkov, Nickolay A.; Lamsal, Lok N.; Lechner, Michael; Volkamer, Rainer

    2013-01-01

    Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS) measurements of NO2 tropospheric vertical columns were performed over California for two months in summer 2010. The observations are compared to the NASA Ozone Monitoring Instrument (OMI) tropospheric vertical columns (data product v2.1) in two ways: (1) Median data were compared for the whole time period for selected boxes, and the agreement was found to be fair (R = 0.97, slope = 1.4 +/- 0.1, N= 10). (2) A comparison was performed on the mean of coincident AMAX-DOAS measurements within the area of the corresponding OMI pixels with the tropospheric NASA OMI NO2 assigned to that pixel. The effects of different data filters were assessed. Excellent agreement and a strong correlation (R = 0.85, slope = 1.05 +/- 0.09, N= 56) was found for (2) when the data were filtered to eliminate large pixels near the edge of the OMI orbit, the cloud radiance fraction was<50%, the OMI overpass occurred within 2 h of the AMAX-DOAS measurements, the flight altitude was>2 km, and a representative sample of the footprint was taken by the AMAX-DOAS instrument. The AMAX-DOAS and OMI data sets both show a reduction of NO2 tropospheric columns on weekends by 38 +/- 24% and 33 +/- 11%, respectively. The assumptions in the tropospheric satellite air mass factor simulations were tested using independent measurements of surface albedo, aerosol extinction, and NO2 profiles for Los Angeles for July 2010 indicating an uncertainty of 12%.

  5. The East and Southeast Asia Initiatives: Aerosol Column Measurements

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, Christina N.; Li, Zhanqing

    2003-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during spring- time. However, with the economical growth in China, increases in the emission of air pollutants generated from industrial and vehicular sources will not only impact the radiation balance, but adverse health effects to humans all year round. In addition, both of these dust and air pollution clouds can transport swiftly across the Pacific reaching North America within a few days, possessing an even larger scale effect. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network. Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3,Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth- atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Two new initiatives, EAST-AIRE (East

  6. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  7. Three optical methods for remotely measuring aerosol size distributions.

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Herman, B. M.

    1971-01-01

    Three optical probing methods for remotely measuring atmospheric aerosol size distributions are discussed and contrasted. The particular detection methods which are considered make use of monostatic lidar (laser radar), bistatic lidar, and solar radiometer sensing techniques. The theory of each of these measurement techniques is discussed briefly, and the necessary constraints which must be applied to obtain aerosol size distribution information from such measurements are pointed out. Theoretical and/or experimental results are also presented which demonstrate the utility of the three proposed probing methods.

  8. Size-resolved airborne particulate oxalic and related secondary organic aerosol species in the urban atmosphere of Chengdu, China

    NASA Astrophysics Data System (ADS)

    Cheng, Chunlei; Wang, Gehui; Meng, Jingjing; Wang, Qiyuan; Cao, Junji; Li, Jianjun; Wang, Jiayuan

    2015-07-01

    Size-segregated (9-stages) airborne particles during winter in Chengdu city of China were collected on a day/night basis and determined for dicarboxylic acids (diacids), ketocarboxylic acids (ketoacids), α-dicarbonyls, inorganic ions, and water-soluble organic carbon and nitrogen (WSOC and WSON). Diacid concentration was higher in nighttime (1831 ± 607 ng m- 3) than in daytime (1532 ± 196 ng m- 3), whereas ketoacids and dicarbonyls showed little diurnal difference. Most of the organic compounds were enriched in the fine mode (< 2.1 μm) with a peak at the size range of 0.7-2.1 μm. In contrast, phthalic acid (Ph) and glyoxal (Gly) presented two equivalent peaks in the fine and coarse modes, which is at least in part due to the gas-phase oxidation of precursors and a subsequent partitioning into pre-existing particles. Liquid water content (LWC) of the fine mode particles was three times higher in nighttime than in daytime. The calculated in-situ pH (pHis) indicated that all the fine mode aerosols were acidic during the sampling period and more acidic in daytime than in nighttime. Robust correlations of the ratios of glyoxal/oxalic acid (Gly/C2) and glyoxylic acid/oxalic acid (ωC2/C2) with LWC in the samples suggest that the enhancement of LWC is favorable for oxidation of Gly and ωC2 to produce C2. Abundant K+ and Cl- in the fine mode particles and the strong correlations of K+ with WSOC, WSON and C2 indicate that secondary organic aerosols in the city are significantly affected by biomass burning emission.

  9. How Cities Breathe: Ground-Referenced, Airborne Hyperspectral Imaging Precursor Measurements To Space-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Leifer, Ira; Tratt, David; Quattrochi, Dale; Bovensmann, Heinrich; Gerilowski, Konstantin; Buchwitz, Michael; Burrows, John

    2013-01-01

    the complex and often aerosol laden, humid, urban microclimates, atmospheric transport and profile monitoring, spatial resolution, temporal cycles (diurnal and seasonal which involve interactions with the surrounding environment diurnal and seasonal cycles) and representative measurement approaches given traffic realities. Promising approaches incorporate contemporaneous airborne remote sensing and in situ measurements, nocturnal surface surveys, with ground station measurement

  10. Airborne measurements of the photolysis frequency of NO2

    NASA Astrophysics Data System (ADS)

    Volz-Thomas, Andreas; Lerner, Ansgar; PäTz, Hans-Werner; Schultz, Martin; McKenna, Daniel S.; Schmitt, Rainer; Madronich, Sasha; RöTh, Ernst Peter

    1996-08-01

    A set of photoelectric detectors for airborne measurements of the photolysis frequency of NO2, i.e., JNO2, was developed and integrated aboard the research aircraft Hercules C-130 operated by the U.K. Meteorological Office. The instrument consists of two separate sensors, each of which provides an isotropic response over a solid angle of 2π steradian (sr). The sensors are mounted on top and below the aircraft, respectively, to obtain a field of view of 4π sr, and permit the discrimination of the upwelling and downwelling components of the actinic flux. From experimental tests and model calculations it is demonstrated that small differences between the spectral sensitivity of the sensors and the spectral response of JNO2 can lead to significant errors in the determination of JNO2, especially under cloudy conditions. We present correction factors for clear sky conditions and suggest the use of a new filter combination in the sensors which requires only small corrections and provides acceptable accuracy, even under cloudy conditions. A climatology of JNO2 values is presented from a series of flights made in 1993 at latitudes of 36°-59°N. For clear sky conditions and solar zenith angles of 33°-35°, JNO2 was 8.3 × 10-3 s-1 at sea level and increased with altitude to values of 13 × 10-3 s-1 at 7.5 km altitude. Above clouds, JNO2 reached maximum values of 24 × 10-3 s-1, and peak values of 29 × 10-3 s-1 were observed for very short periods in the uppermost layers of clouds. Enhancement of the actinic flux due to light scattered from clouds was also observed at altitudes below 0.5 km. Comparison of the clear sky data with predictions from different radiative transfer models reveals the best agreement for models of higher angular resolution. The Delta Eddington method underpredicts the measurements significantly, whereas the JNO2 values predicted by the discrete ordinate method and multidirectional model are only about 5% smaller than our measurements, a difference

  11. Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements

    SciTech Connect

    Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

  12. Remote sensing of large scale methane emission sources with the Methane Airborne MAPper (MAMAP) instrument over the Kern River and Kern Front Oil fields and validation through airborne in-situ measurements - Initial results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, K.; Krautwurst, S.; Kolyer, R.; Jonsson, H.; Krings, T.; Horstjann, M.; Leifer, I.; Schuettemeyer, D.; Fladeland, M. M.; Burrows, J. P.; Bovensmann, H.

    2014-12-01

    During three flights performed with the MAMAP (Methane Airborne MAPper) airborne remote sensing instrument in the framework of the CO2 and MEthane Experiment (COMEX) - a NASA and ESA funded campaign in support of HyspIRI and CarbonSat mission definition activities - large scale methane plumes were detected over the Kern River and Kern Front Oil fields in the period between June 3 and 13, 2014. MAMAP was installed for these flights aboard of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with a Picarro fast in-situ greenhouse gas (GHG) analyzer (operate by the Ames Research Center, ARC), a 5 hole turbulence probe as well as a atmospheric measurement package (operated by CIRPAS), measuring aerosols, temperature, dew-point and other atmospheric parameters. Data collected with the in-situ GHG analyzer will be used for validation of MAMAP remotely sensed data by acquiring vertical cross sections of the discovered plumes at a fixed downwind distance. Precise airborne wind information from the turbulence probe together with ground based wind data from the nearby airport will be used to estimate emission rates from the remote sensed and in-situ measured data. Remote sensed and in-situ data as well as initial flux estimates for the three flights will be presented.

  13. Shipboard Sunphotometer Measurements of Aerosol Optical Depth Spectra and Columnar Water Vapor During ACE-2 and Comparison with Selected Land, Ship, Aircraft, and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Kapustin, Vladimir N.; Schmid, Beat; Russell, Philip B.; Quinn, Patricia K.; Bates, Timothy S.; Durkee, Philip A.; Smith, Peter J.; Freudenthaler, Volker; Wiegner, Matthias; Covert, Dave S.; Gasso, Santiago; Hegg, Dean; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Vitale, Vito; Tomasi, Claudio

    2000-01-01

    Analyses of aerosol optical depth (AOD) and colurnmn water vapor (CWV) measurements acquired with NASA Ames Research Center's 6-channel Airborne Tracking Sunphotometer (AATS-6) operated aboard the R/V Professor Vodyanitskiy during the 2nd Aerosol Characterization Experiment (ACE-2) are discussed. Data are compared with various in situ and remote measurements for selected cases. The focus is on 10 July, when the Pelican airplane flew within 70 km of the ship near the time of a NOAA-14/AVHRR satellite overpass and AOD measurements with the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) above the marine boundary layer (MBL) permitted calculation of AOD within the MBL from the AATS-6 measurements. A detailed column closure test is performed for MBL AOD on 10 July by comparing the AATS-6 MBL AODs with corresponding values calculated by combining shipboard particle size distribution measurements with models of hygroscopic growth and radiosonde humidity profiles (plus assumptions on the vertical profile of the dry particle size distribution and composition). Large differences (30-80% in the mid-visible) between measured and reconstructed AODs are obtained, in large part because of the high sensitivity of the closure methodology to hygroscopic growth models, which vary considerably and have not been validated over the necessary range of particle size/composition distributions. The wavelength dependence of AATS-6 AODs is compared with the corresponding dependence of aerosol extinction calculated from shipboard measurements of aerosol size distribution and of total scattering mearured by a shipboard integrating nephelometer for several days. Results are highly variable, illustrating further the great difficulty of deriving column values from point measurements. AATS-6 CWV values are shown to agree well with corresponding values derived from radiosonde measurements during 8 soundings on 7 days and also with values calculated from measurements taken on 10 July with

  14. RADIOCARBON MEASUREMENTS ON PM-2.5 AMBIENT AEROSOL

    EPA Science Inventory

    Radiocarbon (14C) measurements provide an estimate of the fraction of carbon in a sample that is biogenic. The methodology has been extensively used in past wintertime studies to quantify the contribution of wood smoke to ambient aerosol. In summertime such measurements can p...

  15. Airborne measurements of peroxy radicals using the PERCA technique.

    PubMed

    Green, Timothy J; Reeves, Claire E; Brough, Neil; Edwards, Gavin D; Monks, Paul S; Penkett, Stuart A

    2003-02-01

    The Peroxy Radical Chemical Amplifier (PERCA) technique is a proven method for measurement of ambient levels of peroxy radicals at ground level, but there are no published instances of the technique being used on an aerial platform. Here we describe deployment of a PERCA on the former UK Meteorological Office C-130 Hercules research aircraft. The instrument uses the established method of chemical amplification and conversion of peroxy radicals to nitrogen dioxide (NO2) by doping the sample air-flow matrix with CO and NO, subsequently measuring the NO2 yield with an improved 'Luminox' LMA-3 NO2 detector. NO2 from the amplification chemistry is distinguished from other sources of NO2 reaching the detector by periodically injecting CO approximately 1 s downstream of the NO injection point (termination mode). Chain lengths (CL's) for the amplification chemistry were typically approximately 260 (ground level) to approximately 200 (7,000 m). This variation with altitude is less than the variation associated with the 'age' of the PFA inlet material where the amplification chemistry occurs; CL's of approximately 200 with old tubing to approximately 300 with new clean tubing were typical (ground level values). The CL determinations were made in-flight using an onboard calibration unit based on the 254 nm photolysis of 7.5 to 10 parts per billion (by volume, ppbv) of CH3I in air, producing CH3O2 in a quantitative manner. The noise-equivalent detection limit for peroxy radicals (HO2 + RO2) is 2 parts per trillion (by volume, pptv) at 3,650 m when the background ambient ozone levels are stable, based on a 5 min average of five 30 s amplification cycles and five 30 s termination cycles. This detection limit is a function of several factors but is most seriously degraded when there is large variability in the ambient ozone concentration. This paper describes the instrument design, considers its performance and proposes design improvements. It concludes that the performance of an

  16. A New Stratospheric Aerosol Product from CALIPSO Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Kar, J.; Vaughan, M.; Trepte, C. R.; Winker, D. M.; Vernier, J. P.; Pitts, M. C.; Young, S. A.; Liu, Z.; Lucker, P.; Tackett, J. L.; Omar, A. H.

    2014-12-01

    Stratospheric aerosols are derived from precursor SO2 and OCS gases transported from the lower troposphere. Volcanic injections can also enhance aerosol loadings far above background levels. The latter can exert a significant influence on the Earth's radiation budget for major and even minor eruptions. Careful measurements are needed, therefore, to monitor the distribution and evolution of stratospheric aerosols for climate related studies. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been acquiring profile measurements of clouds and aerosols since 2006, leading to major advances in our understanding of tropospheric aerosol and cloud properties and the processes that control them. The CALIPSO products have also enabled new insights into polar stratospheric clouds and stratospheric aerosols. Vernier et al (2009,JGR,114,D00H10) reported on the construction of a modified CALIPSO lidar product that corrected minor artifacts with the original lidar calibration that affected stratospheric aerosol investigations. A significantly improved CALIPSO Lidar Version 4 Level 1 product has been recently released addressing these calibration issues and has resulted in enhanced signal levels and a highly stable record over the span of the mission. Based on this product, a new 3D gridded stratospheric CALIPSO data product is under development and being targeted for release in 2015. A key emphasis of this new product is to bridge the measurement gap between the SAGE II and SAGE III data record (1984-2005) and the start of measurements from the new SAGE III instrument to be deployed on the International Space Station in 2016. The primary parameters delivered in the CALIPSO stratospheric data products will be attenuated scattering ratio and aerosol extinction profiles, both averaged over one month intervals and binned into an equal angle grid of constant latitude and longitude with a vertical resolution of 900m. We will present the overall

  17. The Tropical Forest and fire emissions experiment: overview and airborne fire emission factor measurements

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Karl, T.; Artaxo, P.; Blake, D. R.; Christian, T. J.; Griffith, D. W. T.; Guenther, A.; Hao, W. M.

    2007-05-01

    The Tropical Forest and Fire Emissions Experiment (TROFFEE) used laboratory measurements followed by airborne and ground based field campaigns during the 2004 Amazon dry season to quantify the emissions from pristine tropical forest and several plantations as well as the emissions, fuel consumption, and fire ecology of tropical deforestation fires. The airborne campaign used an Embraer 110B aircraft outfitted with whole air sampling in canisters, mass-calibrated nephelometry, ozone by uv absorbance, Fourier transform infrared spectroscopy (FTIR), and proton-transfer mass spectrometry (PTR-MS) to measure PM10, O3, CO2, CO, NO, NO2, HONO, HCN, NH3, OCS, DMS, CH4, and up to 48 non-methane organic compounds (NMOC). The Brazilian smoke/haze layers extended to 2-3 km altitude, which is much lower than the 5-6 km observed at the same latitude, time of year, and local time in Africa in 2000. Emission factors (EF) were computed for the 19 tropical deforestation fires sampled and they largely compare well to previous work. However, the TROFFEE EF are mostly based on a much larger number of samples than previously available and they also include results for significant emissions not previously reported such as: nitrous acid, acrylonitrile, pyrrole, methylvinylketone, methacrolein, crotonaldehyde, methylethylketone, methylpropanal, "acetol plus methylacetate," furaldehydes, dimethylsulfide, and C1-C4 alkyl nitrates. Thus, we recommend these EF for all tropical deforestation fires. The NMOC emissions were ~80% reactive, oxygenated volatile organic compounds (OVOC). Our EF for PM10 (17.8±4 g/kg) is ~25% higher than previously reported for tropical forest fires and may reflect a trend towards, and sampling of, larger fires than in earlier studies. A large fraction of the total burning for 2004 likely occurred during a two-week period of very low humidity. The combined output of these fires created a massive "mega-plume" >500 km across that we sampled on September 8. The mega

  18. AEROSOL MEASUREMENTS IN THE SUBMICRON SIZE RANGE, STUDIES WITH AN AEROSOL CENTRIFUGE, A NEW DIFFUSION BATTERY, A LOW PRESSURE IMPACTOR AND AN ADVANCED CONDENSATION NUCLEI COUNTER

    EPA Science Inventory

    The report summarizes the investigations of four aerosol classifiers which cover finite, but overlapping ranges of the aerosol particle size spectrum. The first part is concerned with a cylindrical aerosol centrifuge, which measures aerodynamic equivalent diameters precisely. Thi...

  19. Characterisation of indoor airborne particles by using real-time aerosol mass spectrometry.

    PubMed

    Dall'Osto, Manuel; Harrison, Roy M; Charpantidou, E; Loupa, G; Rapsomanikis, S

    2007-10-01

    An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS; TSI 3800) was deployed to Athens (Greece) during August 2003. The instrument provides information on a polydisperse aerosol, acquiring precise aerodynamic diameter (+/-1%) within the range 0.3 to 3 mum and individual particle positive and negative mass spectral data in real time. Sampling was carried out indoors and outdoors at an office in a building on a minor road in the city centre and various outdoor and indoor sources were identified. Specific outdoor particles such as dust and carbon particles were detected in indoor air. The generation of particles from indoor sources was studied and several different types of particle were found to be present in environmental tobacco smoke (ETS): three were potassium-rich (with differing proportions of carbon) emitted directly in the exhaled mainstream smoke. Two other types arose mainly when the cigarette was left smouldering on an ash-tray. Another particle type exhibited a strong signal at m/z 84, most likely due to a nicotine fragment. The temporal trend of this specific particle type showed likely condensation of semi-volatile constituents on existing potassium-rich particles. A release of insect repellent in the room was also successfully monitored. PMID:17628640

  20. Reconciliation of coarse mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site

    NASA Astrophysics Data System (ADS)

    Reid, Jeffrey S.; Brooks, Barbara; Crahan, Katie K.; Hegg, Dean A.; Eck, Thomas F.; O'Neill, Norm; de Leeuw, Gerrit; Reid, Elizabeth A.; Anderson, Kenneth D.

    2006-01-01

    In August/September of 2001, the R/P FLIP and CIRPAS Twin Otter research aircraft were deployed to the eastern coast of Oahu, Hawaii, as part of the Rough Evaporation Duct (RED) experiment. Goals included the study of the air/sea exchange, turbulence, and sea-salt aerosol particle characteristics at the subtropical marine Pacific site. Here we examine coarse mode particle size distributions. Similar to what has been shown for airborne dust, optical particle counters such as the Forward Scattering Spectrometer Probe (FSSP), Classical Scattering Aerosol Spectrometer Probe (CSASP) and the Cloud Aerosol Spectrometer (CAS) within the Cloud Aerosol and Precipitation Spectrometer (CAPS) instrument systematically overestimate particle size, and consequently volume, for sea salt particles. Ground-based aerodynamic particle sizers (APS) and AERONET inversions yield much more reasonable results. A wing pod mounted APS gave mixed results and may not be appropriate for marine boundary layer studies. Relating our findings to previous studies does much to explain the bulk of the differences in the literature and leads us to conclude that the largest uncertainty facing flux and airborne cloud/aerosol interaction studies is likely due to the instrumentation itself. To our knowledge, there does not exist an in situ aircraft system that adequately measures the ambient volume distribution of coarse mode sea salt particles. Most empirically based sea salt flux parameterizations can trace their heritage to a clearly biased measurement technique. The current "state of the art" in this field prevents any true form of clear sky radiative "closure" for clean marine environments.

  1. Simultaneous Measurements of direct, semi-direct and indirect aerosol forcing with Stacked Autonomous UAVs: A New Observing Platform

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Roberts, G.; Ramana, M. V.; Corrigan, C.; Nguyen, H.

    2006-12-01

    We report here first time demonstration with three autonomously flying Unmanned Aerial Vehicles (UAVs) of cloudy sky albedo, transmission atmospheric solar absorption, aerosol and cloud droplet concentrations and number densities. From these direct measurements we derive the direct, semi-direct and the first indirect aerosol forcing. The observing system consisted of 3 light weight UAVs, instrumented with miniaturized instruments (Roberts et al, 2006; Ramana et al, 2006; Corrigan et al 2006) for measuring aerosol concentrations and size distribution, cloud microphysical properties, black carbon concentration and broad band and narrow band solar fluxes. The airborne measurements were validated and augmented by the Atmospheric Brown Clouds Maldives Climate Observatory (ABC_MCO) in the island of Hanimaadhoo in the N. Indian Ocean (Corrigan et al, 2006; Ramana and Ramanathan 2006). The campaign was conducted during March and early April of 2006 when this region is subject to long range transport of pollution from S. Asia. In the stacked 3_UAV configuration, one flew in the boundary layer below clouds to characterize the aerosols feeding the clouds and the transmission of solar radiation by the absorbing aerosol layer and clouds above; the second inside the trade cumulus clouds to directly observe the fully nucleated cloud drop size and concentrations and total liquid water content; and the third above the cloud to determine the incoming solar and the reflected solar radiation. The 3-UAVs were programmed to sample the same region(or clouds) within seconds of each other, thus providing unique insights into how aerosols and boundary layer dynamics modulate the cloud microphysics and thus the albedo and solar absorption of cloudy skies in the planet. The period of observations also included a major dust-soot event which revealed a large increase in atmospheric solar absorption. We will present results on how 3- dimensional clouds with absorbing aerosols modulate

  2. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  3. Application of HARLIE Measurements in Mesoscale Studies: Measurements of Aerosol Backscatter and Winds During A Gust Front

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Miller, David; Schwemmer, Geary; Starr, David OC (Technical Monitor)

    2001-01-01

    Lidar atmospheric systems have required large telescope for receiving atmospheric backscatter signals. Thus, the relative complexity in size and ease of operation has limited their wider use in the atmospheric science and meteorology community. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) uses a scanning holographic receiver and demonstrates that these issues can be overcome. HARLIE participated at the DOE-ARM Southern Great Plains site (CART) during the Water Vapor Intensive Operation Period (WVIOP2000) held September-October 2000. It provided exceptional high temporal and spatial resolution measurements of aerosol and cloud backscatter in three dimensions. HARLIE recorded over 110 hours of data were recorded on 16 days between 17 September and 6 October 2000. Placed in a ground-based trailer for upward looking scanning measurements of clouds and aerosols, HARLIE provided a unique record of time-resolved atmospheric backscatter at 1-micron wavelength. The conical scanning lidar measures atmospheric backscatter on the surface of an inverted 90 degree (full angle) cone up to an altitude of 20 km, 360-degree scans having spatial resolutions of 20 meters in the vertical and 1 degree in azimuth were obtained every 36 seconds during the daily, operating period. In this study we present highlights of HARLIE-based measurements of the boundary layer and cloud parameters as well as atmospheric wind vectors where there is sufficiently resolved structure in the backscatter. In particular we present data and discussions from a bore-front case observed on 23 September 2000.

  4. Vertical Profiles of Cloud Condensation Nuclei, Condensation Nuclei, Optical Aerosol, Aerosol Optical Properties, and Aerosol Volatility Measured from Balloons

    NASA Technical Reports Server (NTRS)

    Deshler, T.; Snider, J. R.; Vali, G.

    1998-01-01

    Under the support of this grant a balloon-borne gondola containing a variety of aerosol instruments was developed and flown from Laramie, Wyoming, (41 deg N, 105 deg W) and from Lauder, New Zealand (45 deg S, 170 deg E). The gondola includes instruments to measure the concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), optically detectable aerosol (OA.) (r greater than or equal to 0.15 - 2.0 microns), and optical scattering properties using a nephelometer (lambda = 530 microns). All instruments sampled from a common inlet which was heated to 40 C on ascent and to 160 C on descent. Flights with the CN counter, OA counter, and nephelometer began in July 1994. The CCN counter was added in November 1994, and the engineering problems were solved by June 1995. Since then the flights have included all four instruments, and were completed in January 1998. Altogether there were 20 flights from Laramie, approximately 5 per year, and 2 from Lauder. Of these there were one or more engineering problems on 6 of the flights from Laramie, hence the data are somewhat limited on those 6 flights, while a complete data set was obtained from the other 14 flights. Good CCN data are available from 12 of the Laramie flights. The two flights from Lauder in January 1998 were successful for all measurements. The results from these flights, and the development of the balloon-bome CCN counter have formed the basis for five conference presentations. The heated and unheated CN and OA measurements have been used to estimate the mass fraction of the aerosol volatile, while comparisons of the nephelometer measurements were used to estimate the light scattering, associated with the volatile aerosol. These estimates were calculated for 0.5 km averages of the ascent and descent data between 2.5 km and the tropopause, near 11.5 km.

  5. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  6. Towards an improved aerosol product from SCIAMACHY limb measurements

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Burrows, John; Hommel, Rene

    2015-04-01

    Stratospheric aerosols are of a great scientific interest because of their crucial role in the Earth's radiative budget as well as their contribution to chemical processes resulting in ozone depletion. While the permanent aerosol background in the stratosphere is determined by the tropical injection of SO2, COS and sulphate particles from the troposphere, major perturbations of the stratospheric aerosol layer result form an uplift of SO2 after strong volcanic eruptions. Satellite measurements in the visible spectral range represent one of the most important sources of information about the vertical distribution of the stratospheric aerosol on the global scale. This study employs measurements of the scattered solar light performed in the limb viewing geometry from the space borne spectrometer SCIAMACHY, which operated onboard the ENVISAT satellite from August 2002 to April 2012. A progress in the development of SCIAMACHY aerosol data product within the ROSA/ROMIC project including the improvements in the extinction coefficient data base and steps towards the retrieval of particle size distribution parameters is reported.

  7. Surface and Airborne Measurements of Organosulfur and Methanesulfonate Over the Western United States and Coastal Areas

    PubMed Central

    Sorooshian, Armin; Crosbie, Ewan; Maudlin, Lindsay C.; Youn, Jong-Sang; Wang, Zhen; Shingler, Taylor; Ortega, Amber M.; Hersey, Scott; Woods, Roy K.

    2015-01-01

    This study reports on ambient measurements of organosulfur (OS) and methanesulfonate (MSA) over the western United States and coastal areas. Particulate OS levels are highest in summertime, and generally increase as a function of sulfate (a precursor) and sodium (a marine tracer) with peak levels at coastal sites. The ratio of OS to total sulfur (TS) is also highest at coastal sites, with increasing values as a function of Normalized Difference Vegetation Index (NDVI) and the ratio of organic carbon to elemental carbon. Correlative analysis points to significant relationships between OS and biogenic emissions from marine and continental sources, factors that coincide with secondary production, and vanadium due to a suspected catalytic role. A major OS species, methanesulfonate (MSA), was examined with intensive field measurements and the resulting data support the case for vanadium’s catalytic influence. Mass size distributions reveal a dominant MSA peak between aerodynamic diameters of 0.32—0.56 μm at a desert and coastal site with nearly all MSA mass (≥ 84%) in sub-micrometer sizes; MSA:non-sea salt sulfate ratios vary widely as a function of particle size and proximity to the ocean. Airborne data indicate that relative to the marine boundary layer, particulate MSA levels are enhanced in urban and agricultural areas, and also the free troposphere when impacted by biomass burning. Some combination of fires and marine-derived emissions leads to higher MSA levels than either source alone. Finally, MSA differences in cloud water and out-of-cloud aerosol are discussed. PMID:26413434

  8. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the