Science.gov

Sample records for airborne aerosol sampling

  1. Towards understanding of shatter artifacts in airborne sampling inlets: Analysis of aerosol-cloud measurements

    NASA Astrophysics Data System (ADS)

    Craig, Lucas

    different sampling systems have different responses to the presence of cloud droplets, with NCAR's SMAI and Clarkson's Hi-CAS particularly effective in sampling aerosols in warm clouds. The virtual blunt body design of the inlets results in decelerating the flow directed towards the inlet and in reducing droplet impaction velocities and minimizing artifact particle generation. In addition, these inlets have a perpendicular sub-sampling tube with a cut-size that largely eliminates the sampling of super-micron shattered droplets from entering the sample volume, further reducing droplet shatter contribution to aerosol measurements in clouds. Analysis of out-of-cloud data obtained with these inlets shows that their sampling performance is comparable to that of conventional diffuser-type inlets sampling isokinetically when the particles are largely in the sub-micron size range. A simple model of a virtual-blunt-body type sampler is used to relate its in-cloud sampling characteristics to the different inlet design parameters. From analysis of model results, design of an optimal inlet for in-cloud sampling is presented. The optimal inlet design is applicable for a wide-range of airborne platforms and the eventual deployment of such inlets will greatly aid us in comprehensively understanding aerosol-cloud systems.

  2. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  3. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  4. Methods for Sampling of Airborne Viruses

    PubMed Central

    Verreault, Daniel; Moineau, Sylvain; Duchaine, Caroline

    2008-01-01

    Summary: To better understand the underlying mechanisms of aerovirology, accurate sampling of airborne viruses is fundamental. The sampling instruments commonly used in aerobiology have also been used to recover viruses suspended in the air. We reviewed over 100 papers to evaluate the methods currently used for viral aerosol sampling. Differentiating infections caused by direct contact from those caused by airborne dissemination can be a very demanding task given the wide variety of sources of viral aerosols. While epidemiological data can help to determine the source of the contamination, direct data obtained from air samples can provide very useful information for risk assessment purposes. Many types of samplers have been used over the years, including liquid impingers, solid impactors, filters, electrostatic precipitators, and many others. The efficiencies of these samplers depend on a variety of environmental and methodological factors that can affect the integrity of the virus structure. The aerodynamic size distribution of the aerosol also has a direct effect on sampler efficiency. Viral aerosols can be studied under controlled laboratory conditions, using biological or nonbiological tracers and surrogate viruses, which are also discussed in this review. Lastly, general recommendations are made regarding future studies on the sampling of airborne viruses. PMID:18772283

  5. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  6. Determination of airborne trialkyl and triaryl organophosphates originating from hydraulic fluids by gas chromatography-mass spectrometry. Development of methodology for combined aerosol and vapor sampling.

    PubMed

    Solbu, K; Thorud, S; Hersson, M; Ovrebø, S; Ellingsen, D G; Lundanes, E; Molander, P

    2007-08-17

    Methodology for personal occupational exposure assessment of airborne trialkyl and triaryl organophosphates originating from hydraulic fluids by active combined aerosol and vapor sampling at 1.5L/min is presented. Determination of the organophosphates was performed by gas chromatography-mass spectrometry. Combinations of adsorbents (Anasorb 747, Anasorb CSC, Chromosorb 106, XAD-2 and silica gel) with an upstream cassette with glass fiber or PTFE filters and different desorption/extraction solvents (CS(2), CS(2)-dimethylformamide (50:1, v/v), toluene, dichloromethane, methyl-t-butyl ether and methanol) have been evaluated for optimized combined vapor and aerosol air sampling of the organophosphates tri-isobutyl, tri-n-butyl, triphenyl, tri-o-cresyl, tri-m-cresyl and tri-p-cresyl phosphates. The combination of Chromosorb 106 and 37 mm filter cassette with glass fiber filter and dichloromethane as desorption/extraction solvent was the best combination for mixed phase air sampling of the organophosphates originating from hydraulic fluids. The triaryl phosphates were recovered solely from the filter, while the trialkyl phosphates were recovered from both the filter and the adsorbent. The total sampling efficiency on the combined sampler was in the range 92-101% for the studied organophosphates based on spiking experiments followed by pulling air through the sampler. Recoveries after 28 days storage were 98-102% and 99-101% when stored at 5 and -20 degrees C, respectively. The methodology was further evaluated in an exposure chamber with generated oil aerosol atmospheres with both synthetic and mineral base oils with added organophosphates in various concentrations, yielding total sampling efficiencies in close comparison to the spiking experiments. The applicability of the method was demonstrated by exposure measurements in a mechanical workshop where system suitability tests are performed on different aircraft components in a test bench, displaying tricresyl phosphate

  7. NASA's Aerosol Sampling Experiment Summary

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  8. Airborne Aerosol Closure Studies During PRIDE

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Livingston, John M.; Russell, Philip B.; Schmid, Beat; Reid, Jeff

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during June/July of 2000 to study the properties of Saharan dust aerosols transported across the Atlantic Ocean to the Caribbean Islands. During PRIDE, the NASA Ames Research Center six-channel (380 - 1020 nm) airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane alongside a suite of in situ aerosol instruments. The in situ aerosol instrumentation relevant to this paper included a Forward Scattering Spectrometer Probe (FSSP-100) and a Passive Cavity Aerosol Spectrometer Probe (PCASP), covering the radius range of approx. 0.05 to 10 microns. The simultaneous and collocated measurement of multi-spectral aerosol optical depth and in situ particle size distribution data permits a variety of closure studies. For example, vertical profiles of aerosol optical depth obtained during local aircraft ascents and descents can be differentiated with respect to altitude and compared to extinction profiles calculated using the in situ particle size distribution data (and reasonable estimates of the aerosol index of refraction). Additionally, aerosol extinction (optical depth) spectra can be inverted to retrieve estimates of the particle size distributions, which can be compared directly to the in situ size distributions. In this paper we will report on such closure studies using data from a select number of vertical profiles at Cabras Island, Puerto Rico, including measurements in distinct Saharan Dust Layers. Preliminary results show good agreement to within 30% between mid-visible aerosol extinction derived from the AATS-6 optical depth profiles and extinction profiles forward calculated using 60s-average in situ particle size distributions and standard Saharan dust aerosol refractive indices published in the literature. In agreement with tendencies observed in previous studies, our initial results show an underestimate of aerosol extinction calculated based on the in situ size distributions

  9. Asthmatic responses to airborne acid aerosols

    SciTech Connect

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. )

    1991-06-01

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

  10. Airborne Measurements of Aerosol Size Distributions During PACDEX

    NASA Astrophysics Data System (ADS)

    Rogers, D. C.; Gandrud, B.; Campos, T.; Kok, G.; Stith, J.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) is an airborne project that attempts to characterize the indirect aerosol effect by tracing plumes of dust and pollution across the Pacific Ocean. This project occurred during April-May 2007 and used the NSF/NCAR HIAPER research aircraft. When a period of strong generation of dust particles and pollution was detected by ground-based and satellite sensors, then the aircraft was launched from Colorado to Alaska, Hawaii, and Japan. Its mission was to intercept and track these plumes from Asia, across the Pacific Ocean, and ultimately to the edges of North America. For more description, see the abstract by Stith and Ramanathan (this conference) and other companion papers on PACDEX. The HIAPER aircraft carried a wide variety of sensors for measuring aerosols, cloud particles, trace gases, and radiation. Sampling was made in several weather regimes, including clean "background" air, dust and pollution plumes, and regions with cloud systems. Altitude ranges extended from 100 m above the ocean to 13.4 km. This paper reports on aerosol measurements made with a new Ultra-High Sensitivity Aerosol Spectrometer (UHSAS), a Radial Differential Mobility Analyzer (RDMA), a water-based CN counter, and a Cloud Droplet Probe (CDP). These cover the size range 10 nm to 10 um diameter. In clear air, dust was detected with the UHSAS and CDP. Polluted air was identified with high concentrations of carbon monoxide, ozone, and CN. Aerosol size distributions will be presented, along with data to define the context of weather regimes.

  11. Aerosol Classification using Airborne High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R.; Butler, C. F.; Cook, A.; Harper, D.; Froyd, K. D.

    2011-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical thickness (AOT) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of aerosol optical thickness and inferences of aerosol types are used to apportion aerosol optical thickness to aerosol type; results of this analysis are shown for several experiments.

  12. Airborne High Spectral Resolution Lidar Measurements of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Ferrare, R.; Hostetler, C.; Hair, J.; Cook, A.; Harper, D.; Kleinman, L.; Clarke, A.; Russell, P.; Redemann, J.; Livingston, J.; Szykman, J.; Al-Saadi, J.

    2007-05-01

    NASA Langley Research Center (LaRC) recently developed an airborne High Spectral Resolution Lidar (HSRL) to measure aerosol distributions and optical properties. The HSRL technique takes advantage of the spectral distribution of the lidar return signal to discriminate aerosol and molecular signals and thereby measure aerosol extinction and backscatter independently. The LaRC instrument employs the HSRL technique to measure aerosol backscatter and extinction profiles at 532 nm and the standard backscatter lidar technique to measure aerosol backscatter profiles at 1064 nm. Depolarization profiles are measured at both wavelengths. Since March 2006, the airborne HSRL has acquired over 215 flight hours of data deployed on the NASA King Air B200 aircraft during several field experiments. Most of the flights were conducted during two major field experiments. The first major experiment was the joint Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX B) experiment that was conducted during March 2006 to investigate the evolution and transport of pollution from Mexico City. The second major experiment was the Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) that was conducted during August and September 2006 to investigate climate and air quality in the Houston/Gulf of Mexico region. Several flights were also conducted to help validate the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) lidar on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) satellite. In February 2007, several flights were carried out as part of an Environmental Protection Agency (EPA) experiment to assess air quality in central California. Airborne HSRL data acquired during these missions were used to quantify aerosol extinction and optical thickness contributed by various aerosol types

  13. Sampling stratospheric aerosols with impactors

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.

    1989-01-01

    Derivation of statistically significant size distributions from impactor samples of rarefield stratospheric aerosols imposes difficult sampling constraints on collector design. It is shown that it is necessary to design impactors of different size for each range of aerosol size collected so as to obtain acceptable levels of uncertainty with a reasonable amount of data reduction.

  14. Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Andreae, T. W.; Annegarn, H.; Beer, J.; Cachier, H.; Le Canut, P.; Elbert, W.; Maenhaut, W.; Salma, I.; Wienhold, F. G.; Zenker, T.

    1998-12-01

    We investigated smoke emissions from fires in savanna, forest, and agricultural ecosystems by airborne sampling of plumes close to prescribed burns and incidental fires in southern Africa. Aerosol samples were collected on glass fiber filters and on stacked filter units, consisting of a Nuclepore prefilter for particles larger than ˜1-2 μm and a Teflon second filter stage for the submicron fraction. The samples were analyzed for soluble ionic components, organic carbon, and black carbon. Onboard the research aircraft, particle number and volume distributions as a function of size were determined with a laser-optical particle counter and the black carbon content of the aerosol with an aethalometer. We determined the emission ratios (relative to CO2 and CO) and emission factors (relative to the amount of biomass burnt) for the various aerosol constituents. The smoke aerosols were rich in organic and black carbon, the latter representing 10-30% of the aerosol mass. K+ and NH4+ were the dominant cationic species in the smoke of most fires, while Cl- and SO42- were the most important anions. The aerosols were unusually rich in Cl-, probably due to the high Cl content of the semiarid vegetation. Comparison of the element budget of the fuel before and after the fires shows that the fraction of the elements released during combustion is highly variable between elements. In the case of the halogen elements, almost the entire amount released during the fire is present in the aerosol phase, while in the case of C, N, and S, only a small proportion ends up as particulate matter. This suggests that the latter elements are present predominantly as gaseous species in the fresh fire plumes studied here.

  15. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  16. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  17. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  18. Aerosol sampling system

    DOEpatents

    Masquelier, Donald A.

    2004-02-10

    A system for sampling air and collecting particulate of a predetermined particle size range. A low pass section has an opening of a preselected size for gathering the air but excluding particles larger than the sample particles. An impactor section is connected to the low pass section and separates the air flow into a bypass air flow that does not contain the sample particles and a product air flow that does contain the sample particles. A wetted-wall cyclone collector, connected to the impactor section, receives the product air flow and traps the sample particles in a liquid.

  19. AMALi - the Airborne Mobile Aerosol Lidar for Arctic research

    NASA Astrophysics Data System (ADS)

    Stachlewska, I. S.; Neuber, R.; Lampert, A.; Ritter, C.; Wehrle, G.

    2010-03-01

    The Airborne Mobile Aerosol Lidar (AMALi) is an instrument developed at the Alfred Wegener Institute for Polar and Marine Research for reliable operation under the challenging weather conditions at the Earth's polar regions. Since 2003 the AMALi has been successfully deployed for measurements in ground-based installation and zenith- or nadir-pointing airborne configurations during several scientific campaigns in the Arctic. The lidar provides backscatter profiles at two wavelengths (355/532 nm or 1064/532 nm) together with the linear depolarization at 532 nm, from which aerosol and cloud properties can be derived. This paper presents the characteristics and capabilities of the AMALi system and gives examples of its usage for airborne and ground-based operations in the Arctic. As this backscatter lidar normally does not operate in aerosol-free layers special evaluation schemes are discussed, the nadir-pointing iterative inversion for the case of an unknown boundary condition and the two-stream approach for the extinction profile calculation if a second lidar system probes the same air mass. Also an intercomparison of the AMALi system with an established ground-based Koldewey Aerosol Raman Lidar (KARL) is given.

  20. Aerosol Sampling with Low Wind Sensitivity.

    NASA Astrophysics Data System (ADS)

    Kalatoor, Suresh

    Occupational exposure to airborne particles is generally evaluated by wearing a personal sampler that collects aerosol particles from the worker's breathing zone during the work cycle. The overall sampling efficiency of most currently available samplers is sensitive to wind velocity and direction. In addition, most samplers have internal losses due to gravitational settling, electrostatic interactions, and internal turbulence. A new sampling technique has been developed, theoretically and experimentally evaluated, and compared to existing techniques. The overall sampling efficiency of the protoype sampler was compared to that of a commonly used sampler, 25 mm closed-face cassette. Uranine was used as the challange aerosol with particle physical diameters 13.5, 20 and 30 mum. The wind velocity ranged from 100 to 300 cm s^ {-1}. It was found to have less internal losses and less dependence on wind velocity and direction. It also yielded better uniformity in the distribution of large particles on the filter surface, an advantage for several types of analysis. A new general equation for sharp-edged inlets was developed that predicts the sampling efficiency of sharp-edged (or thin-walled) inlets in most occupational environments that are weakly disturbed with air motions that cannot be strictly classified as calm-air or fast -moving air. Computational analysis was carried out using the new general equation and was applied to situations when the wind velocity vector is not steady, but fluctuates around predominant average values of its magnitude and orientation. Two sampling environments, horizontal aerosol flow (ambient atmosphere) and vertical aerosol flow (industrial stacks) have been considered. It was found, that even for small fluctuations in wind direction the sampling efficiency may be significantly less than that obtained for the mean wind direction. Time variations in wind magnitude at a fixed wind direction were found to affect the sampling efficiency to a

  1. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; Harper, David B.

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  2. Aerosol Backscatter from Airborne Continuous Wave CO2 Lidars Over Western North America and the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1999-01-01

    Atmospheric aerosol backscatter, beta, variability gives a direct indication of aerosol loading. Since aerosol variability is governed by regional sources and sinks as well as affected by its transport due to meteorological conditions, it is important to characterize this loading at different locations and times. Lidars are sensitive instruments that can effectively provide high-resolution, large-scale sampling of the atmosphere remotely by measuring aerosol beta, thereby capturing detailed temporal and spatial variability of aerosol loading, Although vertical beta profiles are usually obtained by pulsed lidars, airborne-focused CW lidars, with high sensitivity and short time integration, can provide higher resolution sampling in the vertical, thereby revealing detailed structure of aerosol layers. During the 1995 NASA Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission, NASA MSFC airborne-focused CW CO2 Doppler lidars, operating at 9.1 and 10.6-micrometers wavelength, obtained high resolution in situ aerosol beta measurements to characterize aerosol variability. The observed variability in beta at 9.1-micrometers wavelength with altitude is presented as well as comparison with some pulsed lidar profiles.

  3. The Callaway Plant's airborne tritium sampling cart

    SciTech Connect

    Graham, C.C.; Roselius, R.R. )

    1986-07-01

    The water vapor condensation method for sampling airborne tritium offers significant advantages over other methods, including minimal sample preparation, high sensitivity, and independence from collection efficiency and sample flow rate. However, it does have disadvantages that must be overcome in the design of a sampler. This article describes a cart-mounted, portable airborne tritium sampler used at the Callaway Nuclear Plant that incorporates the advantages of the condensation technique while minimizing its shortcomings. The key elements in the design of the sampler are the use of a refrigerated bath to cool a series of three water vapor collection traps and the use of an optical condensation dew point hygrometer to measure the moisture content of the sample. Design considerations for the proper operation of dew point hygrometers are presented, and the method used to convert due point readings to water vapor content is described.

  4. Miniature aerosol lidar for automated airborne application

    NASA Astrophysics Data System (ADS)

    Matthey, Renaud; Mitev, Valentin; Mileti, Gaetano; Makarov, Vladislav S.; Turin, Alexander V.; Morandi, Marco; Santacesaria, Vincenzo

    2000-09-01

    The Russian Mjasishchev 55 (M-55) <> high altitude aircraft is dedicated to atmospheric science research. It carries onboard a set of mutually complementary instruments for in- situ and remote sensing. The Green Miniature Aerosol Lidar (GMAL) has been developed to operate automatically on this platform. It is a short-range, zenith-looking, depolarization elastic-backscatter lidar based on a 532 nm micro-chip Nd-YAG laser. Compact, low-power consuming, it stands in a 27-litre isolating and warmed hermetic box. The device participated successfully to an extended test campaign in Italy during December 1998 and January 1999, and to the APE/THESEO campaign in the Indian Ocean during February-March 1999. It also showed capabilities for unattended measurement of the low troposphere from the ground. Description of the instrument and preliminary results are presented.

  5. Aerosol Remote Sensing Applications for Airborne Multiangle, Multispectral Shortwave Radiometers

    NASA Astrophysics Data System (ADS)

    von Bismarck, Jonas; Ruhtz, Thomas; Starace, Marco; Hollstein, André; Preusker, René; Fischer, Jürgen

    2010-05-01

    Aerosol particles have an important impact on the surface net radiation budget by direct scattering and absorption (direct aerosol effect) of solar radiation, and also by influencing cloud formation processes (semi-direct and indirect aerosol effects). To study the former, a number of multispectral sky- and sunphotometers have been developed at the Institute for Space Sciences of the Free University of Berlin in the past two decades. The latest operational developments were the multispectral aureole- and sunphotometer FUBISS-ASA2, the zenith radiometer FUBISS-ZENITH, and the nadir polarimeter AMSSP-EM, all designed for a flexible use on moving platforms like aircraft or ships. Currently the multiangle, multispectral radiometer URMS/AMSSP (Universal Radiation Measurement System/ Airborne Multispectral Sunphotometer and Polarimeter) is under construction for a Wing-Pod of the high altitude research aircraft HALO operated by DLR. The system is expected to have its first mission on HALO in 2011. The algorithms for the retrieval of aerosol and trace gas properties from the recorded multidirectional, multispectral radiation measurements allow more than deriving standard products, as for instance the aerosol optical depth and the Angstrom exponent. The radiation measured in the solar aureole contains information about the aerosol phasefunction and therefore allows conclusions about the particle type. Furthermore, airborne instrument operation allows vertically resolved measurements. An inversion algorithm, based on radiative transfer simulations and additionally including measured vertical zenith-radiance profiles, allows conclusions about the aerosol single scattering albedo and the relative soot fraction in aerosol layers. Ozone column retrieval is performed evaluating measurements from pixels in the Chappuis absorption band. A retrieval algorithm to derive the water-vapor column from the sunphotometer measurements is currently under development. Of the various airborne

  6. Airborne Sunphotometer Studies of Aerosol Properties and Effects, Including Closure Among Satellite, Suborbital Remote, and In situ Measurements

    NASA Technical Reports Server (NTRS)

    Russlee, Philip B.; Schmid, B.; Redemann, J.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Airborne sunphotometry has been used to measure aerosols from North America, Europe, and Africa in coordination with satellite and in situ measurements in TARFOX (1996), ACE-2 (1997), PRIDE (2000), and SAFARI 2000. Similar coordinated measurements of Asian aerosols are being conducted this spring in ACE-Asia and are planned for North American aerosols this summer in CLAMS. This paper summarizes the approaches used, key results, and implications for aerosol properties and effects, such as single scattering albedo and regional radiative forcing. The approaches exploit the three-dimensional mobility of airborne sunphotometry to access satellite scenes over diverse surfaces (including open ocean with and without sunglint) and to match exactly the atmospheric layers sampled by airborne in situ measurements and other radiometers. These measurements permit tests of the consistency, or closure, among such diverse measurements as aerosol size-resolved chemical composition; number or mass concentration; light extinction, absorption, and scattering (total, hemispheric back and 180 deg.); and radiative fluxes. In this way the airborne sunphotometer measurements provide a key link between satellite and in situ measurements that helps to understand any discrepancies that are found. These comparisons have led to several characteristic results. Typically these include: (1) Better agreement among different types of remote measurements than between remote and in situ measurements. (2) More extinction derived from transmission measurements than from in situ measurements. (3) Larger aerosol absorption inferred from flux radiometry than from in situ measurements. Aerosol intensive properties derived from these closure studies have been combined with satellite-retrieved fields of optical depth to produce fields of regional radiative forcing. We show results for the North Atlantic derived from AVHRR optical depths and aerosol intensive properties from TARFOX and ACE-2. Companion papers

  7. A new tool for sampling airborne isocyanates

    SciTech Connect

    Sesana, G.; Nano, G.; Baj, A. )

    1991-05-01

    A new sampling system is presented that uses solid sorbent media contained in a tube for the determination of airborne isocyanates (2.4-2.6 toluene diisocyanate, hexamethylene diisocyanate, and 4.4' diaminodiphenylmethane diisocyanate). The method is compared with the National Institute for Occupational Safety and Health (NIOSH) Method P CAM 5505 (Revision {number sign}1). Experimental tests yielded results that were highly concordant with the NIOSH method.

  8. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  9. Airborne UV DIAL Measurements of Ozone and Aerosols

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.

    2000-01-01

    The NASA Langley Research Center's airborne UV Differential Absorption Lidar (DIAL) system measures vertical profiles of ozone and aerosols above and below the aircraft along its flight track. This system has been used in over 20 airborne field missions designed to study the troposphere and stratosphere since 1980. Four of these missions involved tropospheric measurement programs in the Pacific Ocean with two in the western North Pacific and two in the South Pacific. The UV DIAL system has been used in these missions to study such things as pollution outflow, long-range transport, and stratospheric intrusions; categorize the air masses encountered; and to guide the aircraft to altitudes where interesting features can be studied using the in situ instruments. This paper will highlight the findings with the UV DIAL system in the Pacific Ocean field programs and introduce the mission planned for the western North Pacific for February-April 2001. This will be an excellent opportunity for collaboration between the NASA airborne mission and those with ground-based War systems in Asia Pacific Rim countries to make a more complete determination of the transport of air from Asia to the western Pacific.

  10. Spectral aerosol direct radiative forcing from airborne radiative measurements during CalNex and ARCTAS

    NASA Astrophysics Data System (ADS)

    Leblanc, Samuel E.; Schmidt, K. S.; Pilewskie, P.; Redemann, J.; Hostetler, C.; Ferrare, R.; Hair, J.; Langridge, J. M.; Lack, D. A.

    2012-09-01

    This study presents the aerosol radiative forcing derived from airborne measurements of shortwave spectral irradiance during the 2010 Research at the Nexus of Air Quality and Climate Change (CalNex). Relative forcing efficiency, the radiative forcing normalized by aerosol optical thickness and incident irradiance, is a means of comparing the aerosol radiative forcing for different conditions. In this study, it is used to put the aerosol radiative effects of an air mass in the Los Angeles basin in context with case studies from three field missions that targeted other regions and aerosol types, including a case study from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). For CalNex, we relied on irradiance measurements onboard the NOAA P-3 aircraft during a flight on 19 May 2010 over a ground station. CalNex presented a difficulty for determining forcing efficiency since one of the input parameters, optical thickness, was not available from the same aircraft. However, extinction profiles were available from a nearby aircraft. An existing retrieval algorithm was modified to use those measurements as initial estimate for the missing optical thickness. In addition, single scattering albedo and asymmetry parameter (secondary products of the method), were compared with CalNex in situ measurements. The CalNex relative forcing efficiency spectra agreed with earlier studies that found this parameter to be constrained at each wavelength within 20% per unit of aerosol optical thickness at 500 nm regardless of aerosol type and experiment, except for highly absorbing aerosols sampled near Mexico City. The diurnally averaged below-layer forcing efficiency integrated over the wavelength range of 350-700 nm for CalNex is estimated to be -58.6 ± 13.8 W/m2, whereas for the ARCTAS case it is -48.7 ± 11.5 W/m2.

  11. Multi-Sensor Aerosol Products Sampling System

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  12. Airborne Sunphotometry of African Dust and Marine Boundary Layer Aerosols in PRIDE

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Redemann, Jens; Russell, Philip; Schmid, Beat; Reid, Jeff; Pilewskie, Peter; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during summer 2000 to study the radiative, microphysical and transport properties of Saharan dust in the Caribbean region. During PRIDE, NASA Ames Research Center's six-channel airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane based at Roosevelt Roads Naval Station on the northeast coast of Puerto Rico. AATS-6 measurements were taken during 21 science flights off the coast of Puerto Rico in the western Caribbean. Data were acquired within and above the Marine Boundary Layer (MBL) and the Saharan Aerosol Layer (SAL) up to 5.5 km altitude tinder a wide range of dust loadings. Aerosol optical depth (AOD) spectra and columnar water vapor (CWV) values have been calculated from the AATS-6 measurements by using sunphotometer calibration data obtained at Mauna Loa Observatory (3A kin ASL) before (May) and after (October) PRIDE. Mid-visible AOD values measured near the surface during PRIDE ranged from 0.07 on the cleanest day to 0.55 on the most turbid day. Values measured above the MBL were as high as 0.35; values above the SAL were as low as 0.01. The fraction of total column AOD due to Saharan dust cannot be determined precisely from AATS-6 AOD data alone due to the uncertainty in the extent of vertical mixing of the dust down through the MBL. However, analyses of ground-based and airborne in-situ aerosol sampling measurements and ground-based aerosol lidar backscatter data should yield accurate characterization of the vertical mixing that will enable calculation of the Saharan dust AOD component from the sunphotometer data. Examples will be presented showing measured AATS-6 AOD spectra, calculated aerosol extinction and water vapor density vertical profiles, and aerosol size distributions retrieved by inversion of the AOD spectra. Near sea-surface AOD spectra acquired by AATS-6 during horizontal flight legs at 30 m ASL are available for validation of AOD derived from coincident

  13. Ground and Airborne Aerosol Composition Measurements of California Coastal Chaparral Smoke Emissions

    NASA Astrophysics Data System (ADS)

    Craven, J. S.; Sorooshian, A.; Hersey, S. P.; Metcalf, A. R.; Schilling-Fahnestock, K.; Newman, S.; Akagi, S. K.; Taylor, J.; McMeeking, G.; Coe, H.; Tang, P.; Cocker, D. R., III; Yokelson, R. J.; Flagan, R. C.; Seinfeld, J.

    2014-12-01

    Wildfire smoke has large local to global pollution impacts. We present aerosol composition data from two fires in southern California. We measured organic aerosol (OA) of nascent and aged (4 h) smoke from the Williams Fire during the 2009 airborne San Luis Obispo Biomass Burning Campaign (SLOBB). The net ΔOA/ΔCO2 decreased by ~20%; however, positive matrix factorization (PMF) analysis of the organic mass spectra supports two factors that enable the OA emissions to be separated into fresh and oxidized OA. The Δfresh BBOA/ΔCO2 had a steeper decline than the ΔOA/ΔCO2 consistent with outgassing of semi-voltile organic compounds (SVOCs) due to dilution, whereas the Δoxidized BBOA/ΔCO2 increased from its initial value, consist with formation of secondary organic aerosol (SOA). We compare these fresh and oxidized mass spectral signatures, along with chaparral smoke samples measured in the Missoula Fire Lab, to ground-based aerosol measurements made during the Station Fire that occurred one month earlier than the Williams Fire during the Pasadena Aerosol Characterization Observatory Campaign (PACO). Night and daytime aerosol smoke emissions were sampled for one week during the Station Fire. Daytime organic aerosol smoke emissions exhibited larger variability both in mass concentration and composition than nighttime smoke emissions. Both levoglucosan and potassium, known biomass burning tracers, were measured and had distinct time series, supporting diversity in the flaming vs. smoldering initial burning conditions. Similar to the Williams Fire, PMF of the Station Fire mass spectra also reveal two biomass burning factors, one that is less oxidized and correlates strongly with levoglucosan measurements and one that is heavily oxidized and correlates in time with the potassium signal. These two campaigns have allowed us to probe fresh and oxidized smoke in both night and daytime conditions, and PMF results have revealed that at least two emission factors are useful to

  14. Direct impact aerosol sampling by electrostatic precipitation

    SciTech Connect

    Braden, Jason D.; Harter, Andrew G.; Stinson, Brad J.; Sullivan, Nicholas M.

    2016-02-02

    The present disclosure provides apparatuses for collecting aerosol samples by ionizing an air sample at different degrees. An air flow is generated through a cavity in which at least one corona wire is disposed and electrically charged to form a corona therearound. At least one grounded sample collection plate is provided downstream of the at least one corona wire so that aerosol ions generated within the corona are deposited on the at least one grounded sample collection plate. A plurality of aerosol samples ionized to different degrees can be generated. The at least one corona wire may be perpendicular to the direction of the flow, or may be parallel to the direction of the flow. The apparatus can include a serial connection of a plurality of stages such that each stage is capable of generating at least one aerosol sample, and the air flow passes through the plurality of stages serially.

  15. 10 Years of Studies Comparing Airborne Sunphotometer and Satellite Views of Aerosols Over the Ocean

    NASA Astrophysics Data System (ADS)

    Russell, P.; Livingston, J.; Schmid, B.; Redemann, J.; Ramirez, S.; Zhang, Q.

    2006-12-01

    In 1996 the NASA Ames Airborne Tracking Sunphotometers (AATS) began a decade of campaigns with major focus on tropospheric aerosols over the oceans, including comparisons to spaceborne retrievals. (This followed an 11-year period starting in 1985 that focused primarily on studies of stratospheric aerosols, smoke plumes, and atmospheric correction of land imagery.) Bridging the gap between coastal, surface-based or shipborne measurements, and satellite observations, the airborne sunphotometer measurements have provided important insights into the spectral properties of aerosols and their spatial distribution, often with an emphasis on observations over the dark ocean. Among the many contributions afforded by the airborne sunphotometer data alone are measurements of the vertical structure of spectral aerosol extinction derived from vertical profiles of aerosol optical depth, validation of over-ocean satellite retrievals of aerosol properties and studies of the spatial variability of aerosols at varying spatial scales down to a few hundred meters. In conjunction with other airborne sensors, the sunphotometer data have been used to assess aerosol absorbing properties and the direct aerosol radiative forcing of climate. In recent field campaigns, the airborne sunphotometer observations have been increasingly coordinated with satellite observations, providing among other things a dual view of oceanic aerosols in regions not usually accessible to other measurement techniques. In this paper, we will provide an overview of the AATS-based findings regarding aerosols over the ocean in field campaigns such as TARFOX, ACE-2, ACE-Asia, SAFARI, CLAMS, EVE, INTEX-A and INTEX-B. We will focus on those AATS observations that either validated or complemented satellite-based aerosol retrievals for a specific science objective, thereby shedding light on the question of consistency between suborbital and spaceborne aerosol observations over the ocean.

  16. Comparative study of aerosols observed by YAG lidar and airborne detectors

    NASA Technical Reports Server (NTRS)

    Hirono, M.; Fujiwara, M.; Shibata, T.

    1985-01-01

    The causal relationships of very large (tropical) volcanic eruptions and El Nino Southern Oscillations (ENSO) based on the unequal atmospheric heating by aerosols observed by lidar and airborne detectors are discussed.

  17. Airborne Lidar Observations of Tropospheric Aerosols during the GLOBE Pacific Circumnavigation Missions of 1989 and 1990

    NASA Technical Reports Server (NTRS)

    Menzies, R.; Tratt, D.

    1995-01-01

    Tropospheric and lower stratospheric aerosol backscatter profiles were obtained with an airborne backscatter lidar during the NASA Globe Backscatter Experiment (GLOBE) missions in November 1989 and May/June 1990.

  18. Validation of LIRIC aerosol concentration retrievals using airborne measurements during a biomass burning episode over Athens

    NASA Astrophysics Data System (ADS)

    Kokkalis, Panagiotis; Amiridis, Vassilis; Allan, James D.; Papayannis, Alexandros; Solomos, Stavros; Binietoglou, Ioannis; Bougiatioti, Aikaterini; Tsekeri, Alexandra; Nenes, Athanasios; Rosenberg, Philip D.; Marenco, Franco; Marinou, Eleni; Vasilescu, Jeni; Nicolae, Doina; Coe, Hugh; Bacak, Asan; Chaikovsky, Anatoli

    2017-01-01

    In this paper we validate the Lidar-Radiometer Inversion Code (LIRIC) retrievals of the aerosol concentration in the fine mode, using the airborne aerosol chemical composition dataset obtained over the Greater Athens Area (GAA) in Greece, during the ACEMED campaign. The study focuses on the 2nd of September 2011, when a long-range transported smoke layer was observed in the free troposphere over Greece, in the height range from 2 to 3 km. CIMEL sun-photometric measurements revealed high AOD ( 0.4 at 532 nm) and Ångström exponent values ( 1.7 at 440/870 nm), in agreement with coincident ground-based lidar observations. Airborne chemical composition measurements performed over the GAA, revealed increased CO volume concentration ( 110 ppbv), with 57% sulphate dominance in the PM1 fraction. For this case, we compare LIRIC retrievals of the aerosol concentration in the fine mode with the airborne Aerosol Mass Spectrometer (AMS) and Passive Cavity Aerosol Spectrometer Probe (PCASP) measurements. Our analysis shows that the remote sensing retrievals are in a good agreement with the measured airborne in-situ data from 2 to 4 km. The discrepancies observed between LIRIC and airborne measurements at the lower troposphere (below 2 km), could be explained by the spatial and temporal variability of the aerosol load within the area where the airborne data were averaged along with the different time windows of the retrievals.

  19. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Water Vapor in ACE-Asia and Their Comparisons to Correlative Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Livingston, J.; Russell, P.; Hegg, D.; Wang, J.; Kahn, R.; Hsu, C.; Masonis, S.; Murayama, T.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    In the Spring 2001 phase of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the 6-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) operated on 15 of the 19 research flights of the NCAR C-130, while its 14-channel counterpart (AATS-14) flew successfully on all 19 research flights of the CIRPAS Twin Otter. ACE-Asia studied aerosol outflow from the Asian continent to the Pacific basin. It was designed to integrate suborbital and satellite measurements and models to reduce the uncertainty in calculations of the climate forcing due to aerosols. AATS-6 and AATS-14 measured solar beam transmission at six and 14 wavelengths (380-1021 and 354-1558 nm, respectively), yielding aerosol optical depth (AOD) spectra and columnar water vapor (CWV). Vertical differentiation in profiles yielded aerosol extinction spectra and water vapor concentration. In this paper, we plan to present examples of the following, preliminary findings that are based in part on our airborne sunphotometer measurements: (1) The wavelength dependence of sunphotometer-derived AOD and extinction indicates that supermicron dust was often a major component of the aerosol, frequently extending to high altitudes. The percentage of full-column AOD (525 nm) that Jay above 3 km was typically 34+/-13%. In contrast, the analogous percentage of columnar water vapor was only 10+/-4%; (2) Initial comparison studies between AOD data obtained by AATS-6 and AATS-14 during coordinated low-level flight legs show agreement well within the instruments' error bars; (3) Aerosol extinction has been derived from airborne in situ measurements of scattering (nephelometers) and absorption (particle soot/ absorption photometer, PSAP) or calculated from particle size distribution measurements (mobility analyzers and aerodynamic particle sizers). Comparison with corresponding extinction values derived from the Ames airborne sunphotometer measurements shows good agreement for the vertical distribution

  20. Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.

    2012-01-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical depth (AOD) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, and spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of AOD and inferences of aerosol types are used to apportion AOD to aerosol type; results of this analysis are shown for several experiments.

  1. Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.

    2011-09-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical thickness (AOT) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, and spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of AOT and inferences of aerosol types are used to apportion AOT to aerosol type; results of this analysis are shown for several experiments.

  2. Sampling and detection of airborne influenza virus towards point-of-care applications

    PubMed Central

    Ladhani, Laila; Meeuws, Hanne; van Wesenbeeck, Liesbeth; Schmidt, Kristiane; Stuyver, Lieven; van der Wijngaart, Wouter

    2017-01-01

    Airborne transmission of the influenza virus contributes significantly to the spread of this infectious pathogen, particularly over large distances when carried by aerosol droplets with long survival times. Efficient sampling of virus-loaded aerosol in combination with a low limit of detection of the collected virus could enable rapid and early detection of airborne influenza virus at the point-of-care setting. Here, we demonstrate a successful sampling and detection of airborne influenza virus using a system specifically developed for such applications. Our system consists of a custom-made electrostatic precipitation (ESP)-based bioaerosol sampler that is coupled with downstream quantitative polymerase chain reaction (qPCR) analysis. Aerosolized viruses are sampled directly into a miniaturized collector with liquid volume of 150 μL, which constitutes a simple and direct interface with subsequent biological assays. This approach reduces sample dilution by at least one order of magnitude when compared to other liquid-based aerosol bio-samplers. Performance of our ESP-based sampler was evaluated using influenza virus-loaded sub-micron aerosols generated from both cultured and clinical samples. Despite the miniaturized collection volume, we demonstrate a collection efficiency of at least 10% and sensitive detection of a minimum of 3721 RNA copies. Furthermore, we show that an improved extraction protocol can allow viral recovery of down to 303 RNA copies and a maximum sampler collection efficiency of 47%. A device with such a performance would reduce sampling times dramatically, from a few hours with current sampling methods down to a couple of minutes with our ESP-based bioaerosol sampler. PMID:28350811

  3. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  4. Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Doughty, David C.; Hill, Steven C.

    2017-02-01

    Raman spectroscopy (RS) is useful in characterizing atmospheric aerosol. It is not commonly used in studying ambient particles partly because automated instrumentation for aerosol RS has not been available. Battelle (Columbus, Ohio, USA) has developed the Resource Effective Bioidentification System (REBS) for automated detection of airborne bioagents based on RS. We use a version of the REBS that measures Raman spectra of one set of particles while the next set of particles is collected from air, then moves the newly collected particles to the analysis region and repeats. Here we investigate the use of the REBS as the core of a general-purpose automated Aerosol Raman Spectrometer (ARS) for atmospheric applications. This REBS-based ARS can be operated as a line-scanning Raman imaging spectrometer. Spectra measured by this ARS for single particles made of polystyrene, black carbon, and several other materials are clearly distinguishable. Raman spectra from a 15 min ambient sample (approximately 35-50 particles, 158 spectra) were analyzed using a hierarchical clustering method to find that the cluster spectra are consistent with soot, inorganic aerosol, and other organic compounds. The ARS ran unattended, collecting atmospheric aerosol and measuring spectra for a 7 hr period at 15-min intervals. A total of 32,718 spectra were measured; 5892 exceeded a threshold and were clustered during this time. The number of particles exhibiting the D-G bands of amorphous carbon plotted vs time (at 15-min intervals) increases during the morning commute, then decreases. This data illustrates the potential of the ARS to measure thousands of time resolved aerosol Raman spectra in the ambient atmosphere over the course of several hours. The capability of this ARS for automated measurements of Raman spectra should lead to more extensive RS-based studies of atmospheric aerosols.

  5. Aerosol properties derived from airborne sky radiance and direct beam measurements in recent NASA and DoE field campaigns

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S. E.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-12-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and airmass characterization studies made possible by the combined 4STAR direct beam and sky radiance observations.

  6. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  7. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, P.F.; Herceg, J.E.; Klocksieben, R.H.

    1984-04-11

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage t

  8. Lidar measurements of ozone and aerosol distributions during the 1992 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Carter, Arlen F.

    1994-01-01

    The NASA Langley airborne differential absorption lidar system was operated from the NASA Ames DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition to investigate the distribution of stratospheric aerosols and ozone (O3) across the Arctic vortex from January to March 1992. Aerosols from the Mt. Pinatubo eruption were found outside and inside the Arctic vortex with distinctly different scattering characteristics and spatial distributions in the two regions. The aerosol and O3 distributions clearly identified the edge of the vortex and provided additional information on vortex dynamics and transport processes. Few polar stratospheric clouds were observed during the AASE-2; however, those that were found had enhanced scattering and depolarization over the background Pinatubo aerosols. The distribution of aerosols inside the vortex exhibited relatively minor changes during the AASE-2. Ozone depletion inside the vortex as limited to less than or equal to 20 percent in the altitude region from 15-20 km.

  9. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  10. Los Angeles Basin airborne organic aerosol characterization during CalNex

    NASA Astrophysics Data System (ADS)

    Craven, J. S.; Metcalf, A. R.; Bahreini, R.; Middlebrook, A.; Hayes, P. L.; Duong, H. T.; Sorooshian, A.; Jimenez, J. L.; Flagan, R. C.; Seinfeld, J. H.

    2013-10-01

    We report airborne organic aerosol (OA) measurements over Los Angeles carried out in May 2010 as part of the CalNex field campaign. The principal platform for the airborne data reported here was the CIRPAS Twin Otter (TO); airborne data from NOAA WP-3D aircraft and Pasadena CalNex ground-site data acquired during simultaneous TO flybys are also presented. Aerodyne aerosol mass spectrometer measurements constitute the main source of data analyzed. The increase in organic aerosol oxidation from west to east in the basin was sensitive to OA mass loading, with a greater spatial trend in O:C associated with lower mass concentration. Three positive matrix factorization (PMF) components (hydrocarbon-like organic aerosol (HOA), semi-volatile oxidized organic aerosol (SVOOA), and low volatility oxidized organic aerosol (LVOOA)) were resolved for the one flight that exhibited the largest variability in estimated O:C ratio. Comparison of the PMF factors with two optical modes of refractory black carbon (rBC)-containing aerosol revealed that the coating of thinly coated rBC-containing aerosol, dominant in the downtown region, is likely composed of HOA, whereas more thickly coated rBC-containing aerosol, dominant in the Banning pass outflow, is composed of SVOOA and LVOOA. The correlation of water-soluble organic mass to oxidized organic aerosol (OOA) is higher in the outflows than in the basin due to the higher mass fraction of OOA/OA in the outflows. By comparison, the average OA concentration over Mexico City MILAGRO (Megacity Initiative: Local and Global Research Observations) campaign was ˜7 times higher than the airborne average during CalNex.

  11. Airborne Observations of Regional Variations in Fluorescent Aerosol Across the U.S.

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Schwarz, J. P.; Baumgardner, D.; Hernandez, M.; Spracklen, D. V.; Heald, C. L.; Gao, R. S.; Kok, G. L.; McMeeking, G.; McQuaid, J. B.; Fahey, D. W.

    2014-12-01

    Airborne observations of fluorescent aerosol were made aboard an airship during CloudLab, a series of flights that took place in September and October of 2013 and covered a wide band of longitude across the continental US between Florida and California between 28 and 37N latitude. Sampling occurred from near the surface to 1000 m above the ground. A Wide-band Integrated Bioaerosol Sensor (WIBS-4) measured concentrations of supermicron fluorescent particles with average regional concentrations ranging from 1.4±0.7 to 6.8±1.4 x 104 particles m-3 and representing up to 24% of total supermicron particle number. We observed distinct variations in size distributions and fluorescent characteristics in different regions, and attribute these to geographically diverse bioaerosol populations. Fluorescent aerosol signatures detected in the east is largely consistent with those of mold spores observed in a laboratory setting. A shift to larger sizes associated with different fluorescent patterns is observed in the west. Loadings in the desert west were nearly as high as those near the Gulf of Mexico, indicating that bioaerosol is a substantial component of supermicron aerosol both of these humid and arid environments. The observations are compared to simulated fungal and bacterial loadings. Good agreement in both particle size and concentrations is observed in the east. In the west the model underestimates observed concentrations by a factor of 2 to 3 and the prescribed particle sizes are smaller than the observed bioaerosol.

  12. Airborne measurements of biomass burning aerosol distribution and composition in the springtime Arctic 2008

    NASA Astrophysics Data System (ADS)

    Thornberry, T.; Froyd, K. D.; Murphy, D. M.; Thomson, D. S.; Brock, C. A.; Cozic, J.; Warneke, C.; Degouw, J.; Middlebrook, A. M.; Bahreini, R.; Brioude, J.

    2008-12-01

    The springtime Arctic troposphere in 2008 was characterized by high concentrations of biomass burning aerosol. During the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) campaign, airborne measurements of aerosol composition by the NOAA single particle mass spectrometer instrument (PALMS) identified biomass burning particles using an established composition tracer. Fires in northern Asia produced biomass burning aerosol that were transported to the Arctic within 3-12 days. Concentrations of biomass burning aerosols were elevated not only within well defined plumes, but also regionally throughout the Arctic. Above the boundary layer, biomass burning particles dominated the total aerosol volume and were largely responsible for the Arctic Haze observed during the period of study. The composition of plume aerosols varied according to source region, transport time, and anthropogenic influence.

  13. A Technique for Airborne Aerobiological Sampling

    ERIC Educational Resources Information Center

    Mill, R. A.; And Others

    1972-01-01

    Report of a study of airborne micro-organisms collected over the Oklahoma City Metropolitan area and immediate environments, to investigate the possibility that a cloud of such organisms might account for the prevalence of some respiratory diseases in and around urban areas. (LK)

  14. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  15. Airborne Cavity Ring-Down Measurement of Aerosol Extinction and Scattering During the Aerosol IOP

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Ricci, K.; Provencal, R.; Schmid, B.; Covert, D.; Elleman, R.; Arnott, P.

    2003-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Min-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects.= We present comparisons between the Cadenza measurements and those friom a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  16. Comparison of Aerosol Classification from Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Omar, A. H.; Hostetler, C. A.; Hair, J. W.; Rogers, R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.

    2012-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 349 science flights in 19 field missions across North America since 2006. The extinction-to-backscatter ratio ("lidar ratio"), aerosol depolarization ratios, and backscatter color ratio measurements from HSRL-1 are scale-invariant parameters that depend on aerosol type but not concentration. These four aerosol intensive parameters are combined to qualitatively classify HSRL aerosol measurements into eight separate composition types. The classification methodology uses models formed from "training cases" with known aerosol type. The remaining measurements are then compared with these models using the Mahalanobis distance. Aerosol products from the CALIPSO satellite include aerosol type information as well, which is used as input to the CALIPSO aerosol retrieval. CALIPSO aerosol types are inferred using a mix of aerosol loading-dependent parameters, estimated aerosol depolarization, and location, altitude, and surface type information. The HSRL instrument flies beneath the CALIPSO satellite orbit track, presenting the opportunity for comparisons between the HSRL aerosol typing and the CALIPSO Vertical Feature Mask Aerosol Subtype product, giving insight into the performance of the CALIPSO aerosol type algorithm. We find that the aerosol classification from the two instruments frequently agree for marine aerosols and pure dust, and somewhat less frequently for pollution and smoke. In addition, the comparison suggests that the CALIPSO polluted dust type is overly inclusive, encompassing cases of dust combined with marine aerosol as well as cases without much evidence of dust. Qualitative classification of aerosol type combined with quantitative profile measurements of aerosol backscatter and extinction has many useful

  17. Airborne measurements of aerosols from burning biomass in Brazil related to the TRACE A experiment

    NASA Astrophysics Data System (ADS)

    Pereira, E. B.; Setzer, A. W.; Gerab, F.; Artaxo, P. E.; Pereira, M. C.; Monroe, G.

    1996-10-01

    Results are reported from an airborne campaign to investigate the impacts of burning biomass upon the loading of lower-tropospheric aerosols and its composition over the Brazilian tropics. The flights, conducted as part of the NASA/Transport and Atmospheric Chemistry Near the Equator-Atlantic (TRACE A) mission, started on September 1, 1992, when the dry (fire) season still prevailed in the central part of Brazil, and ended on September 29. Of the total number of burnings detected in Brazil by the advanced very high resolution radiometer (AVHRR)/NOAA satellite sensor, 74% were concentrated in the states of Amazonas, Maranhão, Mato Grosso, Pará, Roraima, and Tocantins during this period. Aerosol particles were sampled from a twin-engine aircraft in transit and vertical profile flights were made up to 4,000 m altitude. Black carbon measurements made in real time and in areas of burning biomass peaked at ˜2,500 m above the ground, increasing to ˜12,000 ng/m3. In other areas these values were lower by 1 order of magnitude. A condensation nuclei counter measuring small particles (>0.014 μm) produced values ranging from 2,000 to 16,000/cm3 for areas with low and high burning biomass, respectively. Deposition filters in a two-stage cascade impactor, and Nuclepore filters collected aerosols for analysis of 13 elements through particle-induced X ray emissions (PIXE). Primary elements associated with soil dust (Al, Si, Mn, Fe, Ni) prevailed in the aerosol coarse mode (>1 μm) while the fine mode aerosols were enriched in S, K, Br, and Rb, which are tracers normally associated with burning of biomass. The good correlation between fire spot counts, obtained via AVHRR aboard NOAA satellites, and black carbon, counts of small particles and total aerosol mass, suggests the determining of local concentrations of fire-derived aerosol fire emissions by satellite to be a new and useful approach.

  18. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, Patrick F.; Herceg, Joseph E.; Klocksieben, Robert H.

    1986-01-01

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  19. Ozone and aerosol changes during the 1991-1992 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Buller, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Schoeberl, Mark R.; Toon, Owen B.; Loewenstein, Max; Podolske, James R.

    1993-01-01

    Stratospheric ozone and aerosol distributions were measured across the wintertime Arctic vortex from January to March 1992 with an airborne lidar system as part of the 1992 Airborne Arctic Stratospheric Expedition (AASE II). Aerosols from the Mount Pinatubo eruption were found outside and inside the vortex with distinctly different distributions that clearly identified the dynamics of the vortex. Changes in aerosols inside the vortex indicated advection of air from outside to inside the vortex below 16 kilometers. No polar stratospheric clouds were observed and no evidence was found for frozen volcanic aerosols inside the vortex. Between January and March, ozone depletion was observed inside the vortex from 14 to 20 kilometers with a maximum average loss of about 23 percent near 18 kilometers.

  20. Vertical Aerosol Backscatter Variability from an Airborne Focused Continuous Wave CO2 Lidar

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1998-01-01

    Atmospheric aerosol backscatter measurements using a continuous wave focused Doppler lidar at 9.1 micron wavelength were obtained over western North America and the Pacific Ocean during 13 - 26 September, 1995 as part of National Aeronautics and Space Administration's (NASA) Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on board the NASA DC8 aircraft. Backscatter variability was measured for approximately 52 flight hours, covering equivalent horizontal distance of approximately 25,000 km in the troposphere. Quasi-vertical backscatter profiles were also obtained during various ascents and descents which ranged between approximately 0.1 to 12.0 km altitude. Aerosol haze layers were encountered at different altitudes. Similarities and differences for aerosol loading over land and over ocean were observed. A mid-tropospheric aerosol backscatter background mode was found with modal value approximately 1O(exp -10)/m/sr, consistent with previous airborne and ground-based datasets.

  1. Ozone and aerosol changes during the 1991-1992 Airborne Arctic Stratospheric Expedition

    SciTech Connect

    Browell, E.V.; Grant, W.B.; Ismail, S. ); Butler, C.F.; Fenn, M.A. ); Schoeberl, M.R. ); Toon, O.B.; Loewenstein, M.; Podolske, J.R. )

    1993-08-27

    Stratospheric ozone and aerosol distributions were measured across the wintertime Arctic vortex from January to March 1992 with an airborne lidar system as part of the 1992 Airborne Arctic Stratospheric Expedition (AASE II). Aerosols from the Mount Pinatubo eruption were found outside and inside the vortex with distinctly different distributions that clearly identified the dynamics of the vortex. Changes in aerosols inside the vortex indicated advection of air from outside to inside the vortex below 16 kilometers. No polar stratospheric clouds were observed and no evidence was found for frozen volcanic aerosols inside the vortex. Between January and March, ozone depletion was observed inside the vortex from 14 to 20 kilometers with a maximum average loss of about 23 percent near 18 kilometers.

  2. Airborne observations of regional variation in fluorescent aerosol across the United States

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Schwarz, J. P.; Baumgardner, D.; Hernandez, M. T.; Spracklen, D. V.; Heald, C. L.; Gao, R. S.; Kok, G.; McMeeking, G. R.; McQuaid, J. B.; Fahey, D. W.

    2015-02-01

    Airborne observations of fluorescent aerosol were made aboard an airship during CloudLab, a series of flights that took place in September and October of 2013 and covered a wideband of longitude across the continental U.S. between Florida and California and between 28 and 37 N latitudes. Sampling occurred from near the surface to 1000 m above the ground. A Wideband Integrated Bioaerosol Sensor (WIBS-4) measured average concentrations of supermicron fluorescent particles aloft (1 µm to 10 µm), revealing number concentrations ranging from 2.1 ± 0.8 to 8.7 ± 2.2 × 104 particles m-3 and representing up to 24% of total supermicron particle number. We observed distinct variations in size distributions and fluorescent characteristics in different regions, and attribute these to geographically diverse bioaerosol. Fluorescent aerosol detected in the east is largely consistent with mold spores observed in a laboratory setting, while a shift to larger sizes associated with different fluorescent patterns is observed in the west. Fluorescent bioaerosol loadings in the desert west were as high as those near the Gulf of Mexico, suggesting that bioaerosol is a substantial component of supermicron aerosol both in humid and arid environments. The observations are compared to model fungal and bacterial loading predictions, and good agreement in both particle size and concentrations is observed in the east. In the west, the model underestimated observed concentrations by a factor between 2 and 4 and the prescribed particle sizes are smaller than the observed fluorescent aerosol. A classification scheme for use with WIBS data is also presented.

  3. Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: considerations for a new infectious virus aerosol sampler

    PubMed Central

    Fabian, P.; McDevitt, J. J.; Houseman, E. A.; Milton, D. K.

    2013-01-01

    As a first step in conducting studies of airborne influenza transmission, we compared the collection performance of an SKC Biosampler, a compact cascade impactor (CCI), Teflon filters, and gelatin filters by collecting aerosolized influenza virus in a one-pass aerosol chamber. Influenza virus infectivity was determined using a fluorescent focus assay and influenza virus nucleic acid (originating from viable and non-viable viruses) was measured using quantitative PCR. The results showed that the SKC Biosampler recovered and preserved influenza virus infectivity much better than the other samplers – the CCI, Teflon, and gelatin filters recovered only 7–22% of infectious viruses compared with the Biosampler. Total virus collection was not significantly different among the SKC Biosampler, the gelatin, and Teflon filters, but was significantly lower in the CCI. Results from this study show that a new sampler is needed for virus aerosol sampling, as commercially available samplers do not efficiently collect and conserve virus infectivity. Applications for a new sampler include studies of airborne disease transmission and bioterrorism monitoring. Design parameters for a new sampler include high collection efficiency for fine particles and liquid sampling media to preserve infectivity. PMID:19689447

  4. Airborne Bistatic Radar Limitations and Sample Calculations

    DTIC Science & Technology

    1985-12-01

    Any parameter which maximizes the viewing area of the receiver platform is a prime candidate for change if the transmitter wishes to deny or decrease...AES-19, NO. 4, 513-520 (July 1983) 4. Lorti , D. "Airborne Bistatic RadaL Operation With Non-Cooperative Transmitters," Aeronautical Systems Divi- ’V...nology Center. Contract DASG60-82-C-0014 with McDonnell Douglas Research Labs. Huntsville AL. July 1982. 7. Moreno, C, and D. Lorti . "Tactical

  5. Retrieval of Aerosol Within Cloud Fields Using the MODIS Airborne Simulator (MAS)

    NASA Astrophysics Data System (ADS)

    Munchak, L. A.; Levy, R. C.; Mattoo, S.; Patadia, F.; Wilcox, E. M.; Marshak, A.

    2015-12-01

    Passive satellite remote sensing has become essential for obtaining global information about aerosol properties, including aerosol optical depth (AOD) and aerosol fine mode fraction (FMF). However, due to the spatial resolution of satellite aerosol products (typically 3 km and larger), observing aerosol within dense partly cloudy fields is difficult from space. Here, we apply an adapted version of the MODIS Collection 6 dark target algorithm to the 50-meter MODIS airborne simulator retrieved reflectances measured during the SEAC4RS campaign during 2013 to robustly retrieve aerosol with a 500 m resolution. We show good agreement with AERONET and MODIS away from cloud, suggesting that the algorithm is working as expected. However, closer to cloud, significant AOD increases are observed. We investigate the cause of these AOD increases, including examining the potential for undetected cloud contamination, reflectance increases due to unconsidered 3D radiative effects, and the impact of humidification on aerosol properties. In combination with other sensors that flew in SEAC4RS, these high-resolution observations of aerosol in partly cloudy fields can be used to characterize the radiative impact of the "twilight zone" between cloud and aerosol which is typically not considered in current estimates of direct aerosol radiative forcing.

  6. Airborne lidar measurements of ozone and aerosols during the pacific exploratory mission-tropics A

    NASA Technical Reports Server (NTRS)

    Fenn, Marta A.; Browell, Edward V.; Grant, William B.; Butler, Carolyn F.; Kooi, Susan A.; Clayton, Marian B.; Brackett, Vincent G.; Gregory, Gerald L.

    1998-01-01

    Airborne lidar measurements of aerosol and ozone distributions from the surface to above the tropopause over the South Pacific Ocean are presented. The measurements illustrate large-scale features of the region, and are used to quantify the relative contributions of different ozone sources to the tropospheric ozone budget in this remote region.

  7. Contribution of airborne microbes to bacterial production and N2 fixation in seawater upon aerosol deposition

    NASA Astrophysics Data System (ADS)

    Rahav, Eyal; Ovadia, Galit; Paytan, Adina; Herut, Barak

    2016-01-01

    Aerosol deposition may supply a high diversity of airborne microbes, which can affect surface microbial composition and biological production. This study reports a diverse microbial community associated with dust and other aerosol particles, which differed significantly according to their geographical air mass origin. Microcosm bioassay experiments, in which aerosols were added to sterile (0.2 µm filtered and autoclaved) SE Mediterranean Sea (SEMS) water, were performed to assess the potential impact of airborne bacteria on bacterial abundance, production, and N2 fixation. Significant increase was observed in all parameters within a few hours, and calculations suggest that airborne microbes can account for one third in bacterial abundance and 50-100% in bacterial production and N2-fixation rates following dust/aerosol amendments in the surface SEMS. We show that dust/aerosol deposition can be a potential source of a wide array of microorganisms, which may impact microbial composition and food web dynamics in oligotrophic marine systems such as the SEMS.

  8. Airborne Sunphotometer, Airborne in-situ, Space-borne, and Ground-Based Measurements of Troposoheric Aerosol in Ace-2

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Collins, D.; Gasso, S.; Ostrom, E.; Powell, D.; Welton, E.; Durkee, P.; Livingstron, J.; Russell, P.; Flagan, R.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    We report on clear-sky column closure experiments performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present results obtained by combining airborne sunphotometer and in-situ aerosol measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and African mineral dust. During !he two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. We found that the presence of the elevated dust layer removes the good agreement between satellite and sunphotometer AOD usually found in the absence of the dust layer. Using size-resolved composition information we have computed optical properties of the ambient aerosol from the in-situ measurements and subsequently compared those to the sunphotometer results. In the dust, the agreement in layer aerosol optical depth (380-1060 nm) is 3-8%. In the MBL there is tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at 525 nm), but these differences are within the combined error bars of the measurements and computations.

  9. AROTEL - An Airborne Ozone, Aerosol and Temperature Lidar

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Burris, John F.; Hoegy, Walter; Heaps, William; Silbert, Donald; Twigg, Laurence; Sumnicht, Grant; Nueber, Roland; Schmidt, Thomas; Hostetler, Chris

    2000-01-01

    The AROTEL instrument is a collaboration between scientists at NASA, Goddard Space Flight Center and NASA Langley Research Center. The instrument was designed and constructed to be flown on the NASA DC-8, and to measure vertical profiles of ozone, temperature and aerosol. The instrument transmits radiation at 308, 355, 532, and 1064 nm. Depolarization is measured at 532 nm. In addition to the transmitted wavelengths, Raman scattered signals at 332 nm and 387 nm are also collected. The instrument was installed aboard the DC-8 for the SAGE III Ozone Loss and Validation Experiment (SOLVE) which deployed from Kiruna, Sweden, during the winter of 1999-2000 to study the polar stratosphere. During this time, profile measurements of polar stratospheric clouds, ozone and temperature were made. This paper provides an instrumental overview as an introduction to several data papers to be presented in the poster sessions. In addition to samples of the measurements, examples will be given to establish the quality of the various data products.

  10. Aerosol Optical Depth Measurements by Airborne Sun Photometer in SOLVE II: Comparisons to SAGE III, POAM III and Airborne Spectrometer Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Ramirez, S.; Yee, J-H.; Swartz, W.; Shetter, R.

    2004-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) measured solar-beam transmission on the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II). This paper presents AATS-14 results for multiwavelength aerosol optical depth (AOD), including its spatial structure and comparisons to results from two satellite sensors and another DC-8 instrument. These are the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Polar Ozone and Aerosol Measurement III (POAM III) and the Direct beam Irradiance Airborne Spectrometer (DIAS).

  11. A Novel Size-Selective Airborne Particle Sampling Instrument (Wras) for Health Risk Evaluation

    NASA Astrophysics Data System (ADS)

    Gnewuch, H.; Muir, R.; Gorbunov, B.; Priest, N. D.; Jackson, P. R.

    Health risks associated with inhalation of airborne particles are known to be influenced by particle sizes. A reliable, size resolving sampler, classifying particles in size ranges from 2 nm—30 μm and suitable for use in the field would be beneficial in investigating health risks associated with inhalation of airborne particles. A review of current aerosol samplers highlighted a number of limitations. These could be overcome by combining an inertial deposition impactor with a diffusion collector in a single device. The instrument was designed for analysing mass size distributions. Calibration was carried out using a number of recognised techniques. The instrument was tested in the field by collecting size resolved samples of lead containing aerosols present at workplaces in factories producing crystal glass. The mass deposited on each substrate proved sufficient to be detected and measured using atomic absorption spectroscopy. Mass size distributions of lead were produced and the proportion of lead present in the aerosol nanofraction calculated and varied from 10% to 70% by weight.

  12. The hydrological assessment of aerosol effects by the idealized airborne cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, B.; Chae, S.; Lee, C.; Choi, Y.

    2012-12-01

    The main source of aerosols over East Asia including the Korean Peninsula is the anthropogenic emission of atmospheric pollutants transported from Chinese industrial areas. For this reason, the researches of aerosol effects are very active in East Asian countries. In case of South Korea, aircraft measurement campaigns and airborne cloud seeding experiments for the meteorological and environmental research have been conducted over the local area of Korean Peninsula since the year of 2010. This project is related with the weather modification research to build up strategies for the regulation or enhancement of precipitation and snowpack for a severe drought in South Korea during a winter season. For this study, the aerosol effect on precipitation by the airborne cloud seeding was simulated using WRF-CHEM model with RADM2/MADE,SORGAM modules. Emission data of 10000μg/(m2s) of unspeciated primary PM2.5 were input at 0.5km altitude for aerosol scenario cases which is the height of airborne cloud seeding experiment. For the control run, the original WRF model with no chemistry/aerosol modules was used. Also, the hydrological model, SWAT (Soil and Water Assessment Tool, USDA/ARS) is incorporated to evaluate this aerosol effects hydrologically for the enhancement of precipitation or snowfall from the results of WRF-CHEM model. The target area is the Andong dam basin (1,584 km2) which is known as one of the important water resources in southern part of South Korea. The date was chosen based on the conditions of airborne cloud seeding experiment (RH>50%, Low Temp.<-3°C, Wind Speeds<5m/s, etc). During the 24 forecasting hour, the aerosol scenario case showed more amounts of accumulated precipitation (about 12%) than those of control run. According to the analysis of SWAT, the enhancement of precipitation in aerosol scenario cases of WRF-CHEM model could influence the increase of about 1.0×106m3 water resources when we assumed the 10% of effective area over the Andong dam

  13. Lidar Measurements of Aerosol and Ozone Distributions During the 1992 Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Butler, C. F.; Fenn, M. A.; Grant, W. B.; Carter, A. F.

    1992-01-01

    The LaRC airborne lidar system was operated from the ARC DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition (ASEE-2) to investigate the distribution of stratospheric aerosols and O3 across the Arctic vortex from Jan. to Mar. 1992. Monthly flights were made across the Arctic vortex from Anchorage, Alaska, to Stavanger, Norway, and then back to Bangor, Maine, and additional round-trip flights north into the vortex were made each month from either Stavanger or Bangor depending on the location of the vortex that month. The airborne lidar system uses the differential absorption lidar (DIAL) technique at laser wavelengths of 301.5 and 310.8 nm to measure O3 profiles above the DC-8 over the 12-25 km altitude range. Lidar measurements of aerosol backscatter and depolarization profiles over the 12-30 km altitude range are made simultaneously with the O3 measurements using infrared (IR) and visible (VIS) laser wavelengths of 603 and 1064 nm, respectively. The measurements of Pinatubo aerosols, polar stratospheric clouds, and O3 made with the airborne DIAL system during the AASE-2 expedition and to chemical and dynamical process that contribute to O3 depletion in the wintertime Arctic stratosphere.

  14. Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples

    NASA Astrophysics Data System (ADS)

    An, Hey Reoun; Mainelis, Gediminas; White, Lori

    This manuscript describes the coupling of bioaerosol collection and the use of real-time PCR (RT-PCR) to quantify the airborne bacteria. The quantity of collected bacteria determined by RT-PCR is compared with conventional quantification techniques, such as culturing, microscopy and airborne microorganism counting by using optical particle counter (OPC). Our data show that an experimental approach used to develop standard curves for use with RT-PCR is critical for accurate sample quantification. Using universal primers we generated 12 different standard curves which were used to quantify model organism Escherichia coli (Migula) Catellani from air samples. Standard curves prepared using a traditional approach, where serially diluted genomic DNA extracted from pure cultured bacteria were used in PCR reaction as a template DNA yielded significant underestimation of sample quantities compared to airborne microorganism concentration as measured by an OPC. The underestimation was especially pronounced when standard curves were built using colony forming units (CFUs). In contrast, the estimate of cell concentration in an air sample by RT-PCR was more accurate (˜60% compared to the airborne microorganism concentration) when the standard curve was built using aerosolized E. coli. The accuracy improved even further (˜100%) when air samples used to build the standard curves were diluted first, then the DNA extracted from each dilution was amplified by the RT-PCR—to mimic the handling of air samples with unknown and possibly low concentration. Therefore, our data show that standard curves used for quantification by RT-PCR needs to be prepared using the same environmental matrix and procedures as handling of the environmental sample in question. Reliance on the standard curves generated with cultured bacterial suspension (a traditional approach) may lead to substantial underestimation of microorganism quantities in environmental samples.

  15. An evaluation of analytical methods, air sampling techniques, and airborne occupational exposure of metalworking fluids.

    PubMed

    Verma, Dave K; Shaw, Don S; Shaw, M Lorraine; Julian, Jim A; McCollin, Shari-Ann; des Tombe, Karen

    2006-02-01

    This article summarizes an assessment of air sampling and analytical methods for both oil and water-based metalworking fluids (MWFs). Three hundred and seventy-four long-term area and personal airborne samples were collected at four plants using total (closed-face) aerosol samplers and thoracic samplers. A direct-reading device (DustTrak) was also used. The processes sampled include steel tube making, automotive component manufacturing, and small part manufacturing in a machine shop. The American Society for Testing and Materials (ASTM) Method PS42-97 of analysis was evaluated in the laboratory. This evaluation included sample recovery, determination of detection limits, and stability of samples during storage. Results of the laboratory validation showed (a) the sample recovery to be about 87%, (b) the detection limit to be 35 microg, and (c) sample stability during storage at room temperature to decline rapidly within a few days. To minimize sample loss, the samples should be stored in a freezer and analyzed within a week. The ASTM method should be the preferred method for assessing metalworking fluids (MWFs). The ratio of thoracic aerosol to total aerosol ranged from 0.6 to 0.7. A similar relationship was found between the thoracic extractable aerosol and total extractable aerosol. The DustTrak, with 10-microm sampling head, was useful in pinpointing the areas of potential exposure. MWF exposure at the four plants ranged from 0.04 to 3.84 mg/m3 with the geometric mean ranging between 0.22 to 0.59 mg/m3. Based on this data and the assumption of log normality, MWF exposures are expected to exceed the National Institute for Occupational Safety and Health recommended exposure limit of 0.5 mg/m3 as total mass and 0.4 mg/m3 as thoracic mass about 38% of the time. In addition to controlling airborne MWF exposure, full protection of workers would require the institution of programs for fluid management and dermal exposure prevention.

  16. A three-dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAM-ARCMIP, April 2009

    NASA Astrophysics Data System (ADS)

    Stone, R. S.; Herber, A.; Vitale, V.; Mazzola, M.; Lupi, A.; Schnell, R. C.; Dutton, E. G.; Liu, P. S. K.; Li, S.-M.; Dethloff, K.; Lampert, A.; Ritter, C.; Stock, M.; Neuber, R.; Maturilli, M.

    2010-07-01

    The Arctic climate is modulated, in part, by atmospheric aerosols that affect the distribution of radiant energy passing through the atmosphere. Aerosols affect the surface-atmosphere radiation balance directly through interactions with solar and terrestrial radiation and indirectly through interactions with cloud particles. Better quantification of the radiative forcing by different types of aerosol is needed to improve predictions of future climate. During April 2009, the airborne campaign Pan-Arctic Measurements and Arctic Regional Climate Model Inter-comparison Project (PAM-ARCMIP) was conducted. The mission was organized by Alfred Wegener Institute for Polar and Marine Research of Germany and utilized their research aircraft, Polar-5. The goal was to obtain a snapshot of surface and atmospheric conditions over the central Arctic prior to the onset of the melt season. Characterizing aerosols was one objective of the campaign. Standard Sun photometric procedures were adopted to quantify aerosol optical depth AOD, providing a three-dimensional view of the aerosol, which was primarily haze from anthropogenic sources. Independent, in situ measurements of particle size distribution and light extinction, derived from airborne lidar, are used to corroborate inferences made using the AOD results. During April 2009, from the European to the Alaskan Arctic, from sub-Arctic latitudes to near the pole, the atmosphere was variably hazy with total column AOD at 500 nm ranging from ˜0.12 to >0.35, values that are anomalously high compared with previous years. The haze, transported primarily from Eurasian industrial regions, was concentrated within and just above the surface-based temperature inversion layer. Extinction, as measured using an onboard lidar system, was also greatest at low levels, where particles tended to be slightly larger than at upper levels. Black carbon (BC) (soot) was observed at all levels sampled, but at moderate to low concentrations compared with

  17. Prospecting by sampling and analysis of airborne particulates and gases

    DOEpatents

    Sehmel, G.A.

    1984-05-01

    A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

  18. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  19. Using High-Resolution Airborne Remote Sensing to Study Aerosol Near Clouds

    NASA Technical Reports Server (NTRS)

    Levy, Robert; Munchak, Leigh; Mattoo, Shana; Marshak, Alexander; Wilcox, Eric; Gao, Lan; Yorks, John; Platnick, Steven

    2016-01-01

    The horizontal space in between clear and cloudy air is very complex. This so-called twilight zone includes activated aerosols that are not quite clouds, thin cloud fragments that are not easily observable, and dying clouds that have not quite disappeared. This is a huge challenge for satellite remote sensing, specifically for retrieval of aerosol properties. Identifying what is cloud versus what is not cloud is critically important for attributing radiative effects and forcings to aerosols. At the same time, the radiative interactions between clouds and the surrounding media (molecules, surface and aerosols themselves) will contaminate retrieval of aerosol properties, even in clear skies. Most studies on aerosol cloud interactions are relevant to moderate resolution imagery (e.g. 500 m) from sensors such as MODIS. Since standard aerosol retrieval algorithms tend to keep a distance (e.g. 1 km) from the nearest detected cloud, it is impossible to evaluate what happens closer to the cloud. During Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), the NASA ER-2 flew with the enhanced MODIS Airborne Simulator (eMAS), providing MODIS-like spectral observations at high (50 m) spatial resolution. We have applied MODIS-like aerosol retrieval for the eMAS data, providing new detail to characterization of aerosol near clouds. Interpretation and evaluation of these eMAS aerosol retrievals is aided by independent MODIS-like cloud retrievals, as well as profiles from the co-flying Cloud Physics Lidar (CPL). Understanding aerosolcloud retrieval at high resolution will lead to better characterization and interpretation of long-term, global products from lower resolution (e.g.MODIS) satellite retrievals.

  20. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  1. Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Radke, L. F.; Langer, G.; Hindman, E. E., II

    1978-01-01

    Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.

  2. Real-Time Investigation of Tuberculosis Transmission: Developing the Respiratory Aerosol Sampling Chamber (RASC)

    PubMed Central

    Wood, Robin; Morrow, Carl; Barry, Clifton E.; Bryden, Wayne A.; Call, Charles J.; Hickey, Anthony J.; Rodes, Charles E.; Scriba, Thomas J.; Blackburn, Jonathan; Issarow, Chacha; Mulder, Nicola; Woodward, Jeremy; Moosa, Atica; Singh, Vinayak; Mizrahi, Valerie; Warner, Digby F.

    2016-01-01

    Knowledge of the airborne nature of respiratory disease transmission owes much to the pioneering experiments of Wells and Riley over half a century ago. However, the mechanical, physiological, and immunopathological processes which drive the production of infectious aerosols by a diseased host remain poorly understood. Similarly, very little is known about the specific physiological, metabolic and morphological adaptations which enable pathogens such as Mycobacterium tuberculosis (Mtb) to exit the infected host, survive exposure to the external environment during airborne carriage, and adopt a form that is able to enter the respiratory tract of a new host, avoiding innate immune and physical defenses to establish a nascent infection. As a first step towards addressing these fundamental knowledge gaps which are central to any efforts to interrupt disease transmission, we developed and characterized a small personal clean room comprising an array of sampling devices which enable isolation and representative sampling of airborne particles and organic matter from tuberculosis (TB) patients. The complete unit, termed the Respiratory Aerosol Sampling Chamber (RASC), is instrumented to provide real-time information about the particulate output of a single patient, and to capture samples via a suite of particulate impingers, impactors and filters. Applying the RASC in a clinical setting, we demonstrate that a combination of molecular and microbiological assays, as well as imaging by fluorescence and scanning electron microscopy, can be applied to investigate the identity, viability, and morphology of isolated aerosolized particles. Importantly, from a preliminary panel of active TB patients, we observed the real-time production of large numbers of airborne particles including Mtb, as confirmed by microbiological culture and polymerase chain reaction (PCR) genotyping. Moreover, direct imaging of captured samples revealed the presence of multiple rod-like Mtb organisms whose

  3. The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-03-01

    The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ɛ, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  4. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  5. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  6. Efficiency of Airborne Sample Analysis Platform (ASAP) bioaerosol sampler for pathogen detection

    PubMed Central

    Sharma, Anurag; Clark, Elizabeth; McGlothlin, James D.; Mittal, Suresh K.

    2015-01-01

    The threat of bioterrorism and pandemics has highlighted the urgency for rapid and reliable bioaerosol detection in different environments. Safeguarding against such threats requires continuous sampling of the ambient air for pathogen detection. In this study we investigated the efficacy of the Airborne Sample Analysis Platform (ASAP) 2800 bioaerosol sampler to collect representative samples of air and identify specific viruses suspended as bioaerosols. To test this concept, we aerosolized an innocuous replication-defective bovine adenovirus serotype 3 (BAdV3) in a controlled laboratory environment. The ASAP efficiently trapped the surrogate virus at 5 × 103 plaque-forming units (p.f.u.) [2 × 105 genome copy equivalent] concentrations or more resulting in the successful detection of the virus using quantitative PCR. These results support the further development of ASAP for bioaerosol pathogen detection. PMID:26074900

  7. Airborne Detection and Quantification of Swine Influenza A Virus in Air Samples Collected Inside, Outside and Downwind from Swine Barns

    PubMed Central

    Corzo, Cesar A.; Culhane, Marie; Dee, Scott; Morrison, Robert B.; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m3 of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m3 of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m3. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions. PMID:23951164

  8. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    SciTech Connect

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-15

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  9. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  10. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments.

    PubMed

    Gopalakrishnan, V; Subramanian, V; Baskaran, R; Venkatraman, B

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  11. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  12. The Influence of Aerosol Composition on Photolysis Rates Based on Airborne Observations

    NASA Astrophysics Data System (ADS)

    Corr, C.; Barrick, J. D. W.; Beyersdorf, A. J.; Chen, G.; Crawford, J. H.; Jordan, C. E.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Ziemba, L. D.; Madronich, S.; Anderson, B. E.

    2015-12-01

    The potential variability in modeled photolysis rates introduced by aerosol optical properties measured at visible wavelengths is presented here. Aerosol scattering and absorption were measured aboard the NASA P-3B aircraft during the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) using a TSI Nephelometer and a Radiance Research Particle Soot Absorption Photometer (PSAP), respectively. To isolate the effect of aerosols on photolysis rates, cloud-free case studies were identified using aircraft videos for the four DISCOVER-AQ deployments: Baltimore, MD-Washington, D.C. in July 2011, the California Central Valley in January/February 2013, Houston, TX in September 2013, and Denver, CO in July 2014. For these case studies, absorption measurements at 470 and 532 nm were extrapolated to the Nephelometer wavelengths (450 and 550nm) using the 470-532nm absorption Angstrom exponent (AAE470-532) to calculate aerosol extinction and SSAs at these wavelengths. Photolysis rates were modeled using the Tropospheric Ultraviolet model version 5.2 (TUV 5.2) for three scenarios: 1) an aerosol-free case, 2) using a spectrally-flat SSA at 550nm and 3) using a spectrally-dependent SSA derived from scattering and absorption measurements. Modeled photolysis rates were compared to those measured aboard the P-3B during DISCOVER-AQ. The relationship between airborne measurements of water soluble organic carbon (WSOC) made by a Particle-Into-Liquid-Sampler (PILS), AAE470-532 and model/measurement discrepancies were explored to assess the influence of aerosol composition on photolysis rates. Additional comparisons between photolysis rates modeled with vertically-resolved aerosol optical properties and those modeled using column-average values were performed to assess the influence of aerosol vertical distribution on photolysis rates.

  13. The Perils of Paul: Near Disasters in Airborne Radiochemical Sampling

    SciTech Connect

    Meade, Roger Allen

    2016-09-28

    Beginning with the Trinity test in July 1945, Laboratory radiochemists have collected debris from nuclear tests by various means. At Trinity, two United States Army Sherman tanks were used. Beginning with Operation Crossroads and continuing throughout atmospheric testing, aircraft were used to fly in and around mushroom clouds to collect debris. Paul Guthals, the LASL project leader for sampling operations, flew on many of the B-57 sampling missions. Two such missions, one flown over the Nevada Test and one in the skies near Johnston Atoll, again proved the dangers involved in collecting airborne test debris. The events of these two missions are briefly recounted.

  14. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  15. Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land.

    PubMed

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550 nm (τ(550)) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ(550) with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ(550) and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ(550) retrieved by Module A (r(2) = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r(2) ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness.

  16. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  17. Coordinated Airborne, Spaceborne and Ground-based Measurements of Massive Thick Aerosol Layers during the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).

  18. Unique airborne measurements at the tropopause of Fukushima Xe-133, aerosol, and aerosol precursors indicate aerosol formation via homogeneous and cosmic ray induced nucleation

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinfried; Minikin, Andreas; Baumann, Robert; Simgen, Hardy; Lindemann, Stefan; Rauch, Ludwig; Kaether, Frank; Pirjola, Liisa; Schumann, Ulrich

    2014-05-01

    We report unique airborne measurements, at the tropopause, of the Fukushima radio nuclide Xe-133, aerosol particles (size, shape, number concentration, volatility), aerosol precursor gases (particularly SO2, HNO3, H2O). Our measurements and accompanying model simulations indicate homogeneous and cosmic ray induced aerosol formation at the tropopause. Using an extremely sensitive detection method, we managed to detect Fukushima Xe-133, an ideal transport tracer, at and even above the tropopause. To our knowledge, these airborne Xe-133 measurements are the only of their kind. Our investigations represent a striking example how a pioneering measurement of a Fukshima radio nuclide, employing an extremely sensitive method, can lead to new insights into an important atmospheric process. After the Fukushima accidential Xe-133 release (mostly during 11-15 March 2011), we have conducted two aircraft missions, which took place over Central Europe, on 23 March and 11 April 2011. In the air masses, encountered by the research aircraft on 23 March, we have detected Fukushima Xe-133 by an extremely sensitive method, at and even above the tropopause. Besides increased concentrations of Xe-133, we have detected also increased concentrations of the gases SO2, HNO3, and H2O. The Xe-133 data and accompanying transport model simulations indicate that a West-Pacific Warm Conveyor Belt (WCB) lifted East-Asian planetary boundary layer air to and even above the tropopause, followed by relatively fast quasi-horizontal advection to Europe. Along with Xe-133, anthropogenic SO2, NOx (mostly released from East-Asian ground-level combustion sources), and warer vapour were also lifted by the WCB. After the lift, SO2 and NOx experienced efficient solar UV-radiation driven conversion to the important aerosol precursors gases H2SO4 and HNO3. Our investigations indicate that, increased concentrations of the gases SO2, HNO3, and H2O promoted homogeneous and cosmic ray induced aerosol formation at and

  19. Airborne polarimeter intercomparison for the NASA Aerosol-Cloud-Ecosystem (ACE) mission

    NASA Astrophysics Data System (ADS)

    Knobelspiesse, K. D.; Redemann, J.

    2014-12-01

    The Aerosol-Cloud-Ecosystem (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeter prototypes, including the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  20. Progress in Airborne Polarimeter Inter Comparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Redemann, Jens

    2014-01-01

    The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multiangle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  1. Airborne Polarimeter Intercomparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Redemann, Jens

    2014-01-01

    The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  2. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  3. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    yields, we were able to predict ~50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA and have an impact on aerosol composition on a regional scale.

  4. Airborne lidar measurements of El Chichon stratospheric aerosols, January 1984

    NASA Technical Reports Server (NTRS)

    Mccormick, M. Patrick; Osborn, M. T.

    1987-01-01

    A lidar-equipped NASA Electra aircraft was flown in January 1984 between the latitude of 38 and 90 deg N. One of the primary purposes of this mission was to determine the spatial distribution and aerosol characteristics of El Chichon produced stratospheric material. Lidar data from that portion of the flight mission between 38 deg N and 77 deg N is presented. Representative profiles of lidar backscatter ratio, a plot of the integral backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are applied for each profile. These data clearly show that material produced by the El Chichon eruptions of late March-early April 1982 had spread throughout the latitudes covered by this mission, and that the most massive portion of the material resided north of 55 deg N and was concentrated below 17 km in a layer that peaked at 13 to 15 km. In this latitude region, peak backscatter ratios at a wavelength of 0.6943 microns were approximately 3 and the peak integrated backscattering function was about 15 X 10 to the -4/sr corresponding to a peak optical depth of approximately 0.07. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies.

  5. Airborne lidar measurements of El Chichon stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Osborn, M. T.

    1985-01-01

    A NASA Electra airplane, outfitted with a lidar system, was flown in January to February 1983 between the latitudes of 27 deg N and 76 deg N. One of the primary purposes of this mission was to determine the spatial distribution and aerosol characteristics of the El Chichon-produced stratospheric material. This report presents the lidar data from that flight mission. Representative profiles of lidar backscatter ratio, plots of the integrated backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. It addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are supplied for each profile. The largest amount of material produced by the El Chichon eruptions of late March to early April 1982, which was measured by this flight, resided between 35 deg N and 52 deg N. Peak backscatter ratios at a wavelength of 0.6943 micro m decreased from 8 to 10 at the lower latitudes to 3 at the higher latitudes. Backscatter ratio profiles taken while crossing the polar vortex show that the high-altitude material from El Chichon arrived at the north polar region sometime after the winter polar vortex was established. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies.

  6. Advanced Aerosol Sampling Technologies For Point Biodetection

    DTIC Science & Technology

    2004-11-17

    Impaction Aerosol Particle Behavior TAKE-HOME MESSAGE: Aerosols are NOT gases. Their inertia gives us a handle on them. Their inertia can confound...tubing to collector without wall losses0 25 50 75 100 0 2 4 6 8 10 Particle Size (m) S a m p l i n g E f f i c i e n c y , % Typical sampler ...efficiency data 10 Aerosol Sampler Technology Challenges Description Goals • High efficiency inlets for 1-10 micron particles and wind speeds

  7. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a

  8. Lidar System for Airborne Measurement of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley; Izquierdo, Luis Ramos; Marzouk, Joe

    2008-01-01

    A lidar system for measuring optical properties of clouds and aerosols at three wavelengths is depicted. The laser transmitter is based on a Nd:YVO4 laser crystal pumped by light coupled to the crystal via optical fibers from laser diodes that are located away from the crystal to aid in dissipating the heat generated in the diodes and their drive circuits. The output of the Nd:YVO4 crystal has a wavelength of 1064 nm, and is made to pass through frequency-doubling and frequency-tripling crystals. As a result, the net laser output is a collinear superposition of beams at wavelengths of 1064, 532, and 355 nm. The laser operates at a pulse-repetition rate of 5 kHz, emitting per-pulse energies of 50 microJ at 1064 nm, 25 microJ at 532 nm and 50 microJ at 355 nm. An important feature of this system is an integrating sphere located between the laser output and the laser beam expander lenses. The integrating sphere collects light scattered from the lenses. Three energy-monitor detectors are located at ports inside the integrating sphere. Each of these detectors is equipped with filters such that the laser output energy is measured independently for each wavelength. The laser output energy is measured on each pulse to enable the most accurate calibration possible. The 1064-nm and 532-nm photodetectors are, more specifically, single photon-counting modules (SPCMs). When used at 1064 nm, these detectors have approximately 3% quantum efficiency and low thermal noise (fewer than 200 counts per second). When used at 532 nm, the SPCMs have quantum efficiency of about 60%. The photodetector for the 355-nm channel is a photon-counting photomultiplier tube having a quantum efficiency of about 20%. The use of photon-counting detectors is made feasible by the low laser pulse energy. The main advantage of photon-counting is ease of inversion of data without need for complicated calibration schemes like those necessary for analog detectors. The disadvantage of photon-counting detectors

  9. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

  10. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; Omar, A.

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  11. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-07-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  12. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  13. Advances in Quantifying the Radiative Effects of Aerosol Particles on Climate from Airborne Field Studies

    NASA Astrophysics Data System (ADS)

    Pilewskie, P.; Schmidt, K. S.; Coddington, O.; Bergstrom, R.; Redemann, J.

    2007-12-01

    In the fourth assessment report of the Intergovernmental Panel on Climate Change, large uncertainties persist in estimates of climate forcing by aerosol particles. One contributor to this uncertainty is the poorly quantified vertical distribution of solar radiation absorbed by aerosol particles, from the regional to global scale. Another is the spectral and spatial variability of surface albedo, an effect that can dominate the top-of-atmosphere perturbations due to aerosol scattering and absorption, particularly over land. Over the past three years a number of intensive airborne field experiments (ICARTT, MILAGRO, GoMACCS) have contributed significantly to our understanding of the impact of pollution outflow from urban-industrial centers on radiative forcing, using spectrally resolved radiometric measurements and novel observationally-based methods to derive forcing efficiency and flux divergence. We present an overview of some of the most significant advances in direct radiative forcing realized by these studies, and recommendations on where the greatest challenges remain. In addition we present findings from these experiments on the influence of aerosol particles on cloud radiative properties, a potentially greater effect but even more uncertain than direct radiative forcing.

  14. Aerosol Spectral Radiative Forcing Efficiency from Airborne Measurements During Multiple Field Missions

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Leblanc, S. E.; Pilewskie, P.; Redemann, J.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.

    2012-12-01

    Measurements of shortwave spectral irradiance in conjunction with measurements of aerosol optical depth are used to determine the direct aerosol radiative forcing for various different regions and missions. To better compare cases with different air masses and solar geometry, we use the concept of top-of-layer and bottom-of-layer relative forcing efficiency. The aerosol layers were sampled from aircraft during several field campaigns, including the Megacity Initiative: Local and Global Research Observations (MILAGRO, Mexico, 2006); the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, Alaska and Alberta, 2008), Research at the Nexus of Air Quality and Climate Change (CalNex, California, 2010); and the Deep Convective Clouds and Chemistry Experiment (DC3, central US, 2012). We show that the spectral shape of the relative forcing efficiency is similar for these aerosol layers regardless of the aerosol type. The spectral relative forcing efficiency at any one wavelength for the majority of the cases is constrained within a span of 20% per unit of midvisible aerosol optical depth. Single scattering albedo, asymmetry parameter, and surface albedo are secondary products for the various methods used to determine aerosol radiative forcing. Using these, we determine the diurnally averaged spectral and broadband top-of-atmosphere and surface radiative forcing efficiency for the various different aerosol types and surface conditions.

  15. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  16. Aerosol Sampling and Analysis for the GEOTRACES Program

    NASA Astrophysics Data System (ADS)

    Landing, W. M.

    2008-12-01

    The GEOTRACES Science Plan emphasizes the importance of atmospheric deposition on the budgets and biogeochemistry of trace elements and isotopes in the world's oceans. With funding from the National Science Foundation, an aerosol and rainfall sampling program is being developed for use on future GEOTRACES cruises. This includes preparation and testing of dual high-volume TISCH 5170-VBL aerosol samplers for inorganic trace elements and isotopes, major ions, organic material, and isotopes of nitrogen and oxygen. A third 5170-VBL aerosol sampler is equipped with a 5-stage Sierra-style slotted impactor to collect size-fractionated aerosols for chemical measurements. The aerosol samplers will be operated using wind speed and wind sector control to avoid contamination from ship's exhaust. Duplicate automated rain samplers have also been developed to collect unfiltered and filtered rain samples. Rainfall will be filtered immediately (during collection) to avoid re-adsorption artifacts. Two intercalibration experiments are planned where aerosol and rainfall subsamples will be distributed to the community for testing and validation of analytical methods. The first experiment is being conducted in early September 2008 on the roof at RSMAS/University of Miami. Results from the GEOTRACES aerosol samplers will be compared to a multi-channel aerosol sampling system (using 47mm PCTE filters), and with ongoing aerosol collections at RSMAS. The second experiment is planned for the atmospheric sampling tower at Bellows AFB (Oahu, HI) in summer 2009. Details of the sampling equipment and sample collection methods will be discussed, along with preliminary results from the first intercalibration experiment. Community input will be solicited for planning the second intercalibration experiment.

  17. Characteristics and Sampling Efficiencies of OMNI 3000 Aerosol Samplers

    DTIC Science & Technology

    2006-10-01

    they impact on walls and on the slit and not reaching the inside of the contactor, compared to PSL particles that bounce off surfaces. The Omni...SAMPLING EFFICIENCIES OF OMNI 3000 AEROSOL SAMPLERS Jana S. Kesavan RESEARCH AND TECHNOLOGY DIRECTORATE Deborah R. Schepers MITRETEK SYSTEMS, INC. Falls...2006 Final Feb 2006 - Mar 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Characteristics and Sampling Efficiencies of Omni 3000 Aerosol Samplers 5b

  18. The analysis of in situ and retrieved aerosol properties measured during three airborne field campaigns

    NASA Astrophysics Data System (ADS)

    Corr, Chelsea A.

    Aerosols can directly influence climate, visibility, and photochemistry by scattering and absorbing solar radiation. Aerosol chemical and physical properties determine how efficiently a particle scatters and/or absorbs incoming short-wave solar radiation. Because many types of aerosol can act as nuclei for cloud droplets (CCN) and a smaller population of airborne particles facilitate ice crystal formation (IN), aerosols can also alter cloud-radiation interactions which have subsequent impacts on climate. Thus aerosol properties determine the magnitude and sign of both the direct and indirect impacts of aerosols on radiation-dependent Earth System processes. This dissertation will fill some gaps in our understanding of the role of aerosol properties on aerosol absorption and cloud formation. Specifically, the impact of aerosol oxidation on aerosol spectral (350nm < lambda< 500nm) absorption was examined for two biomass burning plumes intercepted by the NASA DC-S aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission in Spring and Summer 2008. Spectral aerosol single scattering albedo (SSA) retrieved using actinic flux measured aboard the NASA DC-8 was used to calculate the aerosol absorption Angstrom exponents (AAE) for a 6-day-old plume on April 17 th and a 3-hour old plume on June 29th. Higher AAE values for the April 17th plume (6.78+/-0.38) indicate absorption by aerosol was enhanced in the ultraviolet relative to the visible portion of the short-wave spectrum in the older plume compared to the fresher plume (AAE= 3.34 0.11). These differences were largely attributed to the greater oxidation of the organic aerosol in the April 17th plume which can arise either from the aging of primary organic aerosol or the formation of spectrally-absorbing secondary organic aerosol. The validity of the actinic flux retrievals used above were also evaluated in this work by the comparison of SSA retrieved using

  19. Volcanic Aerosol Evolution: Model vs. In Situ Sampling

    NASA Astrophysics Data System (ADS)

    Pfeffer, M. A.; Rietmeijer, F. J.; Brearley, A. J.; Fischer, T. P.

    2002-12-01

    Volcanoes are the most significant non-anthropogenic source of tropospheric aerosols. Aerosol samples were collected at different distances from 92°C fumarolic source at Poás Volcano. Aerosols were captured on TEM grids coated by a thin C-film using a specially designed collector. In the sampling, grids were exposed to the plume for 30-second intervals then sealed and frozen to prevent reaction before ATEM analysis to determine aerosol size and chemistry. Gas composition was established using gas chromatography, wet chemistry techniques, AAS and Ion Chromatography on samples collected directly from a fumarolic vent. SO2 flux was measured remotely by COSPEC. A Gaussian plume dispersion model was used to model concentrations of the gases at different distances down-wind. Calculated mixing ratios of air and the initial gas species were used as input to the thermo-chemical model GASWORKS (Symonds and Reed, Am. Jour. Sci., 1993). Modeled products were compared with measured aerosol compositions. Aerosols predicted to precipitate out of the plume one meter above the fumarole are [CaSO4, Fe2.3SO4, H2SO4, MgF2. Na2SO4, silica, water]. Where the plume leaves the confines of the crater, 380 meters distant, the predicted aerosols are the same, excepting FeF3 replacing Fe2.3SO4. Collected aerosols show considerable compositional differences between the sampling locations and are more complex than those predicted. Aerosols from the fumarole consist of [Fe +/- Si,S,Cl], [S +/- O] and [Si +/- O]. Aerosols collected on the crater rim consist of the same plus [O,Na,Mg,Ca], [O,Si,Cl +/- Fe], [Fe,O,F] and [S,O +/- Mg,Ca]. The comparison between results obtained by the equilibrium gas model and the actual aerosol compositions shows that an assumption of chemical and thermal equilibrium evolution is invalid. The complex aerosols collected contrast the simple formulae predicted. These findings show that complex, non-equilibrium chemical reactions take place immediately upon volcanic

  20. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    NASA Astrophysics Data System (ADS)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  1. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  2. An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Pitts, Michael; Hostetler, Chris; Poole, Lamont; Holden, Carl; Rault, Didier

    2000-01-01

    Atmospheric remote sensing with the O2 A-band has a relatively long history, but most of these studies were attempting to estimate surface pressure or cloud-top pressure. Recent conceptual studies have demonstrated the potential of spaceborne high spectral resolution O2 A-band spectrometers for retrieval of aerosol and cloud optical properties. The physical rationale of this new approach is that information on the scattering properties of the atmosphere is embedded in the detailed line structure of the O2 A-band reflected radiance spectrum. The key to extracting this information is to measure the radiance spectrum at very high spectral resolution. Instrument performance requirement studies indicate that, in addition to high spectral resolution, the successful retrieval of aerosol and cloud properties from A-band radiance spectra will also require high radiometric accuracy, instrument stability, and high signal-to-noise measurements. To experimentally assess the capabilities of this promising new remote sensing application, the NASA Langley Research Center is developing an airborne high spectral resolution A-band spectrometer. The spectrometer uses a plane holographic grating with a folded Littrow geometry to achieve high spectral resolution (0.5 cm-1) and low stray light in a compact package. This instrument will be flown in a series of field campaigns beginning in 2001 to evaluate the overall feasibility of this new technique. Results from these campaigns should be particularly valuable for future spaceborne applications of A-band spectrometers for aerosol and cloud retrievals.

  3. PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael

    2014-09-01

    We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 μm), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 μm) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.

  4. A direct method for e-cigarette aerosol sample collection.

    PubMed

    Olmedo, Pablo; Navas-Acien, Ana; Hess, Catherine; Jarmul, Stephanie; Rule, Ana

    2016-08-01

    E-cigarette use is increasing in populations around the world. Recent evidence has shown that the aerosol produced by e-cigarettes can contain a variety of toxicants. Published studies characterizing toxicants in e-cigarette aerosol have relied on filters, impingers or sorbent tubes, which are methods that require diluting or extracting the sample in a solution during collection. We have developed a collection system that directly condenses e-cigarette aerosol samples for chemical and toxicological analyses. The collection system consists of several cut pipette tips connected with short pieces of tubing. The pipette tip-based collection system can be connected to a peristaltic pump, a vacuum pump, or directly to an e-cigarette user for the e-cigarette aerosol to flow through the system. The pipette tip-based system condenses the aerosol produced by the e-cigarette and collects a liquid sample that is ready for analysis without the need of intermediate extraction solutions. We tested a total of 20 e-cigarettes from 5 different brands commercially available in Maryland. The pipette tip-based collection system condensed between 0.23 and 0.53mL of post-vaped e-liquid after 150 puffs. The proposed method is highly adaptable, can be used during field work and in experimental settings, and allows collecting aerosol samples from a wide variety of e-cigarette devices, yielding a condensate of the likely exact substance that is being delivered to the lungs.

  5. Aircraft studies of size-dependent aerosol sampling through inlets

    NASA Technical Reports Server (NTRS)

    Porter, J. N.; Clarke, A. D.; Ferry, G.; Pueschel, R. F.

    1992-01-01

    Representative measurement of aerosol from aircraft-aspirated systems requires special efforts in order to maintain near isokinetic sampling conditions, estimate aerosol losses in the sample system, and obtain a measurement of sufficient duration to be statistically significant for all sizes of interest. This last point is especially critical for aircraft measurements which typically require fast response times while sampling in clean remote regions. This paper presents size-resolved tests, intercomparisons, and analysis of aerosol inlet performance as determined by a custom laser optical particle counter. Measurements discussed here took place during the Global Backscatter Experiment (1988-1989) and the Central Pacific Atmospheric Chemistry Experiment (1988). System configurations are discussed including (1) nozzle design and performance, (2) system transmission efficiency, (3) nonadiabatic effects in the sample line and its effect on the sample-line relative humidity, and (4) the use and calibration of a virtual impactor.

  6. Temporal variability of MODIS aerosol optical depth and chemical characterization of airborne particulates in Varanasi, India.

    PubMed

    Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, T

    2015-01-01

    Temporal variation of airborne particulate mass concentration was measured in terms of toxic organics, metals and water-soluble ionic components to identify compositional variation of particulates in Varanasi. Information-related fine particulate mass loading and its compositional variation in middle Indo-Gangetic plain were unique and pioneering as no such scientific literature was available. One-year ground monitoring data was further compared to Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 retrieved aerosol optical depth (AOD) to identify trends in seasonal variation. Observed AOD exhibits spatiotemporal heterogeneity during the entire monitoring period reflecting monsoonal low and summer and winter high. Ground-level particulate mass loading was measured, and annual mean concentration of PM2.5 (100.0 ± 29.6 μg/m(3)) and PM10 (176.1 ± 85.0 μg/m(3)) was found to exceed the annual permissible limit (PM10: 80 %; PM2.5: 84 %) and pose a risk of developing cardiovascular and respiratory diseases. Average PM2.5/PM10 ratio of 0.59 ± 0.18 also indicates contribution of finer particulates to major variability of PM10. Particulate sample was further processed for trace metals, viz. Ca, Fe, Zn, Cu, Pb, Co, Mn, Ni, Cr, Na, K and Cd. Metals originated mostly from soil/earth crust, road dust and re-suspended dust, viz. Ca, Fe, Na and Mg were found to constitute major fractions of particulates (PM2.5: 4.6 %; PM10: 9.7 %). Water-soluble ionic constituents accounted for approximately 27 % (PM10: 26.9 %; PM2.5: 27.5 %) of the particulate mass loading, while sulphate (8.0-9.5 %) was found as most dominant species followed by ammonium (6.0-8.2 %) and nitrate (5.5-7.0 %). The concentration of toxic organics representing both aliphatic and aromatic organics was determined by organic solvent extraction process. Annual mean toxic organic concentration was found to be 27.5 ± 12.3 μg/m(3) (n = 104) which constitutes significant proportion of

  7. In situ airborne measurements of aerosol optical properties during photochemical pollution events

    NASA Astrophysics Data System (ADS)

    Mallet, M.; van Dingenen, R.; Roger, J. C.; Despiau, S.; Cachier, H.

    2005-02-01

    Dry aerosol optical properties (scattering, absorbing coefficients, and single scattering albedo) were derived from in situ airborne measurements during two photochemical pollution events (25 and 26 June) observed during the Experience sur Site pour Contraindre les Modeles de Pollution atmospherique et de Transport d'Emissions (ESCOMPTE) experiment. Two flights were carried out during daytime (one during the morning and one at noon) over a domain, allowing the investigation of how an air pollution event affects the particle optical properties. Both horizontal distribution and vertical profiles are presented. Results from the horizontal mapping show that plumes of enhanced scattering and absorption are formed in the planetary boundary layer (PBL) during the day in the sea breeze-driven outflow of the coastal urban-industrial area of Marseille-Fos de Berre. The domain-averaged scattering coefficient (at 550 nm) over land σs changes from 35 (28) Mm-1 during land breeze to 63 (43) Mm-1 during sea breeze on 25 June (26 June), with local maxima reaching > 100 Mm-1. The increase in the scattering coefficient is associated with new particle formation, indicative of secondary aerosol formation. Simultaneously, the domain-averaged absorption coefficient increases from 5.6 (3.4) Mm-1 to 9.3 (8.0) Mm-1. The pollution plume leads to strong gradients in the single scattering albedo ωo over the domain studied, with local values as low as 0.73 observed inside the pollution plume. The role of photochemistry and secondary aerosol formation during the 25 June case is shown to increase ωo and to make the aerosol more `reflecting' while the plume moves away from the sources. The lower photochemical activity, observed in the 26 June case, induces a relatively higher contribution of black carbon, making the aerosol more absorbing. Results from vertical profiles at a single near-urban location in the domain indicate that the changes in optical properties happen almost entirely within

  8. PIXE Analysis of Atmospheric Aerosol Samples in an Urban Area in Upstate NY

    NASA Astrophysics Data System (ADS)

    Nadareski, Benjamin; Ali, Salina; Yoskowitz, Josh; Vineyard, Michael; Labrake, Scott

    2014-09-01

    Extremely fine particles (PM2.5) are found to penetrate deep into the lungs and hence, are found to have harmful health effects on humans. Atmospheric aerosol samples collected in Schenectady, NY were analyzed for evidence for air pollution; specifically lead pollution over the past 12 months. Air samples were collected on 7 μm Kapton foils using a nine-stage cascade impactor that separates the particulate matter by aerodynamic size. A 2.2 MeV proton beam impacts the target samples. X-ray intensity versus energy spectra was produced using an Amptek silicon drift detector. Proton-induced x-ray emission (PIXE) techniques were used to analyze the energy spectra and we determined a range of 16 elements present in the aerosol samples including, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, and Pb. The elemental composition and concentrations of these elements were determined using GUPIX. Many of the elements suggest airborne soils, however we see trace amounts of lead concentrations only at the minimal level of detection around 1 ng / m3. Preliminary results suggest that lead pollution is not significant however; we believe that the trace amounts of lead detected are due to fuel emissions from small aircraft due to the sampling site near an airport. Extremely fine particles (PM2.5) are found to penetrate deep into the lungs and hence, are found to have harmful health effects on humans. Atmospheric aerosol samples collected in Schenectady, NY were analyzed for evidence for air pollution; specifically lead pollution over the past 12 months. Air samples were collected on 7 μm Kapton foils using a nine-stage cascade impactor that separates the particulate matter by aerodynamic size. A 2.2 MeV proton beam impacts the target samples. X-ray intensity versus energy spectra was produced using an Amptek silicon drift detector. Proton-induced x-ray emission (PIXE) techniques were used to analyze the energy spectra and we determined a range of 16 elements present in

  9. Analysis of inorganic mercury species associated with airborne particulate matter/aerosols: method development.

    PubMed

    Feng, Xinbin; Lu, Julia Y; Grègoire, D Conrad; Hao, Yingjie; Banic, Catharine M; Schroeder, William H

    2004-10-01

    This paper describes a method for speciation of Hg associated with airborne particulate matter. This method uses a mini-sampler for sample collection and analysis, thermal desorption for separating Hg species, and inductively coupled plasma mass spectrometry (ICP-MS) for identification and quantification of Hg. Coal fly ash spiked with different Hg compounds (e.g. Hg0, HgCl2, HgO, and HgS) was used for qualitative calibration. A standard reference material with a certified value for Hg concentration was used to evaluate the method. When the temperature of the furnace was programmed at a linear rate of increase of 50 degrees min(-1), different Hg compounds could clearly be separated. Three airborne particulate matter samples were collected in parallel in Toronto, ON, Canada and analyzed using this method. Reproducible results were obtained and Hg0, HgCl2, HgO, and HgS species from these samples were detected.

  10. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.; Russell, P.; Livingston, J.; Schmid, B.; Holben, B.; Remer, L.; Smirnov, A.; Hobbs, P. V.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and Sun photometers during TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment). Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA/GSFC Scanning Raman Lidar (SRL) system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W), are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and rms differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a)=60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements.

  11. Diesel Aerosol Sampling in the Atmosphere

    SciTech Connect

    David Kittelson; Jason Johnson; Winthrop Watts; Qiang Wei; Marcus Drayton; Dwane Paulsen; Nicolas Bukowiecki

    2000-06-19

    The University of Minnesota Center for Diesel Research along with a research team including Caterpillar, Cummins, Carnegie Mellon University, West Virginia University (WVU), Paul Scherrer Institute in Switzerland, and Tampere University in Finland have performed measurements of Diesel exhaust particle size distributions under real-world dilution conditions. A mobile aerosol emission laboratory (MEL) equipped to measure particle size distributions, number concentrations, surface area concentrations, particle bound PAHs, as well as CO 2 and NO x concentrations in real time was built and will be described. The MEL was used to follow two different Cummins powered tractors, one with an older engine (L10) and one with a state-of-the-art engine (ISM), on rural highways and measure particles in their exhaust plumes. This paper will describe the goals and objectives of the study and will describe representative particle size distributions observed in roadway experiments with the truck powered by the ISM engine.

  12. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  13. Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.

  14. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, A.K.

    1984-09-07

    This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

  15. An Empirical Function for Bidirectional Reflectance Characterization for Smoke Aerosols Using Multi-angular Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Poudyal, R.; Singh, M. K.; Gatebe, C. K.; Gautam, R.; Varnai, T.

    2015-12-01

    Using airborne Cloud Absorption Radiometer (CAR) reflectance measurements of smoke, an empirical relationship between reflectances measured at different sun-satellite geometry is established, in this study. It is observed that reflectance of smoke aerosol at any viewing zenith angle can be computed using a linear combination of reflectance at two viewing zenith angles. One of them should be less than 30° and other must be greater than 60°. We found that the parameters of the linear combination computation follow a third order polynomial function of the viewing geometry. Similar relationships were also established for different relative azimuth angles. Reflectance at any azimuth angle can be written as a linear combination of measurements at two different azimuth angles. One must be in the forward scattering direction and the other in backward scattering, with both close to the principal plane. These relationships allowed us to create an Angular Distribution Model (ADM) for smoke, which can estimate reflectances in any direction based on measurements taken in four view directions. The model was tested by calculating the ADM parameters using CAR data from the SCAR-B campaign, and applying these parameters to different smoke cases at three spectral channels (340nm, 380nm and 470nm). We also tested our modelled smoke ADM formulas with Absorbing Aerosol Index (AAI) directly computed from the CAR data, based on 340nm and 380nm, which is probably the first study to analyze the complete multi-angular distribution of AAI for smoke aerosols. The RMSE (and mean error) of predicted reflectance for SCAR-B and ARCTAS smoke ADMs were found to be 0.002 (1.5%) and 0.047 (6%), respectively. The accuracy of the ADM formulation is also tested through radiative transfer simulations for a wide variety of situations (varying smoke loading, underlying surface types, etc.).

  16. Size-resolved airborne particulate oxalic and related secondary organic aerosol species in the urban atmosphere of Chengdu, China

    NASA Astrophysics Data System (ADS)

    Cheng, Chunlei; Wang, Gehui; Meng, Jingjing; Wang, Qiyuan; Cao, Junji; Li, Jianjun; Wang, Jiayuan

    2015-07-01

    Size-segregated (9-stages) airborne particles during winter in Chengdu city of China were collected on a day/night basis and determined for dicarboxylic acids (diacids), ketocarboxylic acids (ketoacids), α-dicarbonyls, inorganic ions, and water-soluble organic carbon and nitrogen (WSOC and WSON). Diacid concentration was higher in nighttime (1831 ± 607 ng m- 3) than in daytime (1532 ± 196 ng m- 3), whereas ketoacids and dicarbonyls showed little diurnal difference. Most of the organic compounds were enriched in the fine mode (< 2.1 μm) with a peak at the size range of 0.7-2.1 μm. In contrast, phthalic acid (Ph) and glyoxal (Gly) presented two equivalent peaks in the fine and coarse modes, which is at least in part due to the gas-phase oxidation of precursors and a subsequent partitioning into pre-existing particles. Liquid water content (LWC) of the fine mode particles was three times higher in nighttime than in daytime. The calculated in-situ pH (pHis) indicated that all the fine mode aerosols were acidic during the sampling period and more acidic in daytime than in nighttime. Robust correlations of the ratios of glyoxal/oxalic acid (Gly/C2) and glyoxylic acid/oxalic acid (ωC2/C2) with LWC in the samples suggest that the enhancement of LWC is favorable for oxidation of Gly and ωC2 to produce C2. Abundant K+ and Cl- in the fine mode particles and the strong correlations of K+ with WSOC, WSON and C2 indicate that secondary organic aerosols in the city are significantly affected by biomass burning emission.

  17. Application of the LIRIC algorithm for the characterization of aerosols during the Airborne Romanian Measurements of Aerosols and Trace gases (AROMAT) campaign

    NASA Astrophysics Data System (ADS)

    Stefanie, Horatiu; Nicolae, Doina; Nemuc, Anca; Belegante, Livio; Toanca, Florica; Ajtai, Nicolae; Ozunu, Alexandru

    2015-04-01

    The ESA/ESTEC AROMAT campaign (Airborne Romanian Measurements of Aerosols and Trace gases) was held between 1st and 14th of September 2014 with the purpose to test and inter-compare newly developed airborne and ground-based instruments dedicated to air quality studies in the context of validation programs of the forthcoming European Space Agency satellites (Sentinel 5P, ADM-Aeolus and EarthCARE). Ground-based remote sensing and airborne in situ measurements were made in southern Romania in order to assess the level and the variability of NO2 and particulate matter, focusing on two areas of interest: SW (Turceni), where many coal based power plants are operating, and SE (Bucharest), affected by intense traffic and partially by industrial pollution. In this paper we present the results obtained after the application of the Lidar - Radiometer Inversion Code (LIRIC) algorithm on combined lidar and sunphotometer data collected at Magurele, 6 km South Bucharest. Full lidar data sets in terms of backscatter signals at 355, 532 and 1064 nm, as well as depolarization at 532 nm were used and combined with Aerosol Robotic Network (AERONET) data, in order to retrieve the profiles of aerosol volume concentrations, separated as fine, spherical and spheroidal coarse modes. Preliminary results showed that aerosols generated by traffic and industrial activities were present in the Planetary Boundary Layer, while biomass burning aerosols transported from the Balkan Peninsula were detected in the upper layers. Acknowledgements: ***This work has been supported by Programme for Research- Space Technology and Advanced Research - STAR, project number 55/2013 - CARESSE. ***The financial support by the European Community's FP7 - PEOPLE 2011 under ITaRS Grant Agreement n° 289923 is gratefully acknowledged.

  18. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices.

    PubMed

    Godish, Diana; Godish, Thad

    2008-02-01

    This study was conducted to evaluate (i) procedures used to collect, prepare, and count total airborne mold spore/particle concentrations, and (ii) the relative field performance of three commercially available total airborne mold spore/particle sampling devices. Differences between factory and laboratory airflow calibration values of axial fan-driven sampling instruments (used in the study) indicated a need for laboratory calibration using a mass flow meter to ensure that sample results were accurately calculated. An aniline blue-amended Calberla's solution adjusted to a pH of 4.2-4.4 provided good sample mounting/counting results using Dow Corning high vacuum grease, Dow Corning 280A adhesive, and Dow Corning 316 silicone release spray for samples collected using mini-Burkard and Allergenco samplers. Count variability among analysts was most pronounced in 5% counts of relatively low mold particle deposition density samples and trended downward with increased count percentage and particle deposition density. No significant differences were observed among means of 5, 10, and 20% counts and among analysts; a significant interaction effect was observed between analysts' counts and particle deposition densities. Significantly higher mini-Burkard and Air-O-Cell total mold spore/particle counts for 600x vs. 400x (1.9 and 2.3 x higher, respectively), 1000x vs. 600x (1.9 and 2.2 x higher, respectively) and 1000x vs. 400x (3.6 and 4.6 x higher, respectively) comparisons indicated that 1000x magnification counts best quantified total airborne mold spore/particles using light microscopy, and that lower magnification counts may result in unacceptable underreporting of airborne mold spore/particle concentrations. Modest but significantly higher (1.2x) total mold spore concentrations were observed with Allergenco vs. mini-Burkard samples collected in co-located, concurrently operated sampler studies; moderate but significantly higher mini-Burkard count values (1.4x) were

  19. First Transmitted Hyperspectral Light Measurements and Cloud Properties from Recent Field Campaign Sampling Clouds Under Biomass Burning Aerosol

    NASA Technical Reports Server (NTRS)

    Leblanc, S.; Redemann, Jens; Shinozuka, Yohei; Flynn, Connor J.; Segal Rozenhaimer, Michal; Kacenelenbogen, Meloe Shenandoah; Pistone, Kristina Marie Myers; Schmidt, Sebastian; Cochrane, Sabrina

    2016-01-01

    We present a first view of data collected during a recent field campaign aimed at measuring biomass burning aerosol above clouds from airborne platforms. The NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign recently concluded its first deployment sampling clouds and overlying aerosol layer from the airborne platform NASA P3. We present results from the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), in conjunction with the Solar Spectral Flux Radiometers (SSFR). During this deployment, 4STAR sampled transmitted solar light either via direct solar beam measurements and scattered light measurements, enabling the measurement of aerosol optical thickness and the retrieval of information on aerosol particles in addition to overlying cloud properties. We focus on the zenith-viewing scattered light measurements, which are used to retrieve cloud optical thickness, effective radius, and thermodynamic phase of clouds under a biomass burning layer. The biomass burning aerosol layer present above the clouds is the cause of potential bias in retrieved cloud optical depth and effective radius from satellites. We contrast the typical reflection based approach used by satellites to the transmission based approach used by 4STAR during ORACLES for retrieving cloud properties. It is suspected that these differing approaches will yield a change in retrieved properties since light transmitted through clouds is sensitive to a different cloud volume than reflected light at cloud top. We offer a preliminary view of the implications of these differences in sampling volumes to the calculation of cloud radiative effects (CRE).

  20. Water-soluble inorganic ions in airborne particulates from the nano to coarse mode: a case study of aerosol episodes in southern region of Taiwan.

    PubMed

    Chang, Li-Peng; Tsai, Jiun-Horng; Chang, Kai-Lun; Lin, Jim Juimin

    2008-06-01

    In 2004, airborne particulate matter (PM) was collected for several aerosol episodes occurring in the southern region of Taiwan. The particulate samples were taken using both a MOUDI (Micro-orifice Uniform Deposit Impactor) and a nano-MOUDI sampler. These particulate samples were analyzed for major water-soluble ionic species with an emphasis to characterize the mass concentrations and distributions of these ions in the ambient ultrafine (PM0.1, diameter <0.1 microm) and nano mode (PMnano, diameter <0.056 microm) particles. Particles collected at the sampling site (the Da-Liao station) on the whole exhibited a typical tri-modal size distribution on mass concentration. The mass concentration ratios of PMnano/PM2.5, PM0.1/PM2.5, and PM1/PM2.5 on average were 1.8, 2.9, and 71.0%, respectively. The peak mass concentration appeared in the submicron particle mode (0.1 microm < diameter <1.0 microm). Mass fractions (percentages) of the three major water-soluble ions (nitrate, sulfate, and ammonium) as a group in PMnano, PM0.1, PM1, and PM2.5 were 18.4, 21.7, 50.0, and 50.7%, respectively. Overall, results from this study supported the notion that secondary aerosols played a significant role in the formation of ambient submicron particulates (PM0.1-1). Particles smaller than 0.1 microm were essentially basic, whereas those greater than 2.5 microm were neutral or slightly acidic. The neutralization ratio (NR) was close to unity for airborne particles with diameters ranging from 0.18 to 1 microm. The NRs of these airborne particles were found strongly correlated with their sizes, at least for samples taken during the aerosol episodes under study. Insofar as this study is exploratory in nature, as only a small number of particulate samples were used, there appears to be a need for further research into the chemical composition, source contribution, and formation of the nano and ultrafine mode airborne particulates.

  1. Study on dicarboxylic acids in aerosol samples with capillary electrophoresis.

    PubMed

    Adler, Heidi; Sirén, Heli

    2014-01-01

    The research was performed to study the simultaneous detection of a homologous series of α , ω -dicarboxylic acids (C2-C10), oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages) from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE) before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50  μ L. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2-C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m(3).

  2. A Characterization of Arctic Aerosols as Derived from Airborne Observations and their Influence on the Surface Radiation Budget

    NASA Astrophysics Data System (ADS)

    Herber, A.; Stone, R.; Liu, P. S.; Li, S.; Sharma, S.; Neuber, R.; Birnbaumn, G.; Vitale, V.

    2011-12-01

    Arctic climate is influenced by aerosols that affect the radiation balance at the surface and within the atmosphere. Impacts depend on the composition and concentration of aerosols that determine opacity, which is quantified by the measure of aerosol optical depth (AOD). During winter and spring, aerosols are transported into the Arctic from lower latitude industrial regions. Trans-Arctic flight missions PAMARCMiP (Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project) of the German POLAR 5 during spring 2009 and spring 2011 provided opportunities to collect a comprehensive data set from which properties of the aerosol were derived, including AOD. Measurements were made from near the surface to over 4 km in altitude during flights between Svalbard, Norway and Pt. Barrow, Alaska. These, along with measurements of particle size and concentration, and black carbon content (BC) provide a three-dimensional characterization of the aerosols encountered along track. The horizontal and vertical distribution of Arctic haze, in particular, was evaluated. During April 2009, the Arctic atmosphere was variably turbid with total column AOD (at 500 nm) ranging from ~ 0.12 to > 0.35, where clean background values are typically < 0.06 (Stone et al., 2010). The haze was concentrated within and just above the surface-based temperature inversion layer. Few, distinct elevated aerosol layers were observed, also with an aerosol airborne Lidar. The presence of these haze layers in the Arctic atmosphere during spring reduced the diurnally averaged net shortwave irradiance, which can cause cooling of the surface, depending on its Albedo (reflectivity). An overview of both campaigns will be given with results presented in the context of historical observations and current thinking about the impact aerosols have on the Arctic climate. Stone, R.S., A. Herber, V. Vitale, M. Mazzola, A. Lupi, R. Schnell, E.G. Dutton, P. Liu, S.M. Li, K. Dethloff, A. Lampert, C. Ritter

  3. Comparison of three sampling and analytical methods for the determination of airborne hexavalent chromium.

    PubMed

    Boiano, J M; Wallace, M E; Sieber, W K; Groff, J H; Wang, J; Ashley, K

    2000-08-01

    A field study was conducted with the goal of comparing the performance of three recently developed or modified sampling and analytical methods for the determination of airborne hexavalent chromium (Cr(VI)). The study was carried out in a hard chrome electroplating facility and in a jet engine manufacturing facility where airborne Cr(VI) was expected to be present. The analytical methods evaluated included two laboratory-based procedures (OSHA Method ID-215 and NIOSH Method 7605) and a field-portable method (NIOSH Method 7703). These three methods employ an identical sampling methodology: collection of Cr(VI)-containing aerosol on a polyvinyl chloride (PVC) filter housed in a sampling cassette, which is connected to a personal sampling pump calibrated at an appropriate flow rate. The basis of the analytical methods for all three methods involves extraction of the PVC filter in alkaline buffer solution, chemical isolation of the Cr(VI) ion, complexation of the Cr(VI) ion with 1,5-diphenylcarbazide, and spectrometric measurement of the violet chromium diphenylcarbazone complex at 540 nm. However, there are notable specific differences within the sample preparation procedures used in three methods. To assess the comparability of the three measurement protocols, a total of 20 side-by-side air samples were collected, equally divided between a chromic acid electroplating operation and a spray paint operation where water soluble forms of Cr(VI) were used. A range of Cr(VI) concentrations from 0.6 to 960 microg m(-3), with Cr(VI) mass loadings ranging from 0.4 to 32 microg, was measured at the two operations. The equivalence of the means of the log-transformed Cr(VI) concentrations obtained from the different analytical methods was compared. Based on analysis of variance (ANOVA) results, no statistically significant differences were observed between mean values measured using each of the three methods. Small but statistically significant differences were observed between

  4. Airborne Measurements of Carbonaceous Aerosols in Southern Africa during the Dry Biomass Burning Season

    NASA Technical Reports Server (NTRS)

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2003-01-01

    Particulate matter collected aboard the University of Washington's (UW) Convair-580 research aircrafi over southem Afiica during the dry biomass burning season was analyzed for total carbon (TC), organic carbon (OC), and black carbon (BC) contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the TC collected. Consequently, conclusions derived from the data are greatly dependent on whether or not OC concentrations are corrected for this artifact. For example, the estimated aerosol coalbedo (1 - single scattering albedo (SSA)), which is a measure of aerosol absorption, of the biomass smoke samples is 60% larger using corrected OC concentrations. Thus, the corrected data imply that the biomass smoke is 60% more absorbing than do the uncorrected data. The BC to (corrected) OC mass ratio (BC/OC) of smoke plume samples (0.18 plus or minus 0.06) is lower than that of samples collected in the regional haze (0.25 plus or minus 0.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three quarters of the aerosol burden in the regional haze, while other souxes (e.g., fossil fuel burning) contribute the remainder.

  5. Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season

    SciTech Connect

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2002-06-17

    Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

  6. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Di Liberto, Luca; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs

    2016-04-01

    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ˜ 50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ˜ 10:00 LT - local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ˜ 12:00 LT) the ML was fully developed, resulting in

  7. Simultaneous observations of lower tropospheric continental aerosols with a ground-based, an airborne, and the spaceborne CALIOP lidar system

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Raut, J.-C.; Dulac, F.; Berthier, S.; Kim, S.-W.; Royer, P.; Sanak, J.; Loaëc, S.; Grigaut-Desbrosses, H.

    2010-08-01

    We present an original experiment with multiple lidar systems operated simultaneously to study the capability of the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the Cloud-Aerosol Lidar Pathfinder Satellite Observation (CALIPSO), to infer aerosol optical properties in the lower troposphere over a midlatitude continental site where the aerosol load is low to moderate. The experiment took place from 20 June to 10 July 2007 in southern France. The results are based on three case studies with measurements coincident to CALIOP observations: the first case study illustrates a large-scale pollution event with an aerosol optical thickness at 532 nm (τa532) of ˜0.25, and the two other case studies are devoted to background conditions due to aerosol scavenging by storms with τa532 <0.1. Our experimental approach involved ground-based and airborne lidar systems as well as Sun photometer measurements when the conditions of observation were favorable. Passive spaceborne instruments, namely the Spinning Enhanced Visible and Infrared Imager (SEVERI) and the Moderate-resolution Imaging Spectroradiometer (MODIS), are used to characterize the large-scale aerosol conditions. We show that complex topographical structures increase the complexity of the aerosol analysis in the planetary boundary layer by CALIOP when τa532 is lower than 0.1 because the number of available representative profiles is low to build a mean CALIOP profile with a good signal-to-noise ratio. In a comparison, the aerosol optical properties inferred from CALIOP and those deduced from the other active and passive remote sensing observations in the pollution plume are found to be in reasonable agreement. Level-2 aerosol products of CALIOP are consistent with our retrievals.

  8. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, Arlin K.

    1986-01-01

    A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

  9. Physical and Chemical Characterization of Particles in the Upper Troposphere and Lower Stratosphere: Microanalysis of Aerosol Impactor Samples

    NASA Technical Reports Server (NTRS)

    Sheridan, Patrick J.

    1999-01-01

    Herein is reported activities to support the characterization of the aerosol in the upper troposphere (UT) and lower stratosphere (LS) collected during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) missions in 1994. Through a companion proposal, another group was to measure the size distribution of aerosols in the 0.008 to 2 micrometer diameter range and to collect for us impactor samples of particles larger than about 0.02 gm. In the first year, we conducted laboratory studies related to particulate deposition patterns on our collection substrates, and have performed the analysis of many ASHOE/MAESA aerosol samples from 1994 using analytical electron microscopy (AEM). We have been building an "aerosol climatology" with these data that documents the types and relative abundances of particles observed at different latitudes and altitudes. The second year (and non-funded extension periods) saw continued analyses of impactor aerosol samples, including more ASHOE/MAESA samples, some northern hemisphere samples from the NASA Stratospheric Photochemistry Aerosols and Dynamics Expedition (SPADE) program for comparison, and a few aerosol samples from the NASA Stratospheric TRacers of Atmospheric Transport (STRAT) program. A high-resolution field emission microscope was used for the analysis and re-analysis of a number of samples to determine if this instrument was superior in performance to our conventional electron microscope. In addition, some basic laboratory studies were conducted to determine the minimum detectable and analyzable particle size for different types of aerosols. In all, 61 aerosol samples were analyzed, with a total of over 30,000 individual particle analyses. In all analyzed samples, sulfate particles comprised the major aerosol number fraction. It must be stressed that particles composed of more than one species, for example sulfate and organic carbon, were classified

  10. Clear-Sky Closure Studies of Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Collins, Donald R.; Gasso, Santiago; Oestroem, Elisabeth; Powell, Donna M.; Welton, Ellsworth J.; Durkee, Philip A.; Livingston, John M.; Russell, Philip B.; Flagan, Richard C.; Seinfeld, John H.; Hegg, Dean A.; Noone, Kevin J.; Voss, Kenneth J.; Gordon, Howard R.; Reagan, John A.; Spinhirne, James D.

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (a differential mobility analyzer, three optical particle counters, three nephelometers, and one absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars. A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and (although less frequently than expected) African mineral dust. During the two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. Based on size-resolved composition information we have established an aerosol model that allows us to compute optical properties of the ambient aerosol using the optical particle counter results. In the dust, the agreement in layer AOD (lambda=380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda=525 nm), but these differences are within the combined error bars of the measurements and computations. Aerosol size-distribudon closure based on in-situ size distributions and inverted sunphotometer extinction spectra has been achieved in the MBL (total surface area and volume agree within 0.2, and 7%, respectively) but not in the dust layer. The fact that the three nephelometers operated at three different relative humidities (RH) allowed to parameterize hygroscopic growth and to therefore estimate optical properties at ambient RH. The parameters derived for different aerosol types are themselves useful for the aerosol modeling

  11. Measurements of Ultra-fine and Fine Aerosol Particles over Siberia: Large-scale Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail; Paris, Jean-Daniel; Stohl, Andreas; Belan, Boris; Ciais, Philippe; Nédélec, Philippe

    2010-05-01

    In this paper we discuss the results of in-situ measurements of ultra-fine and fine aerosol particles carried out in the troposphere from 500 to 7000 m in the framework of several International and Russian State Projects. Number concentrations of ultra-fine and fine aerosol particles measured during intensive airborne campaigns are presented. Measurements carried over a great part of Siberia were focused on particles with diameters from 3 to 21 nm to study new particle formation in the free/upper troposphere over middle and high latitudes of Asia, which is the most unexplored region of the Northern Hemisphere. Joint International airborne surveys were performed along the following routes: Novosibirsk-Salekhard-Khatanga-Chokurdakh-Pevek-Yakutsk-Mirny-Novosibirsk (YAK-AEROSIB/PLARCAT2008 Project) and Novosibirsk-Mirny-Yakutsk-Lensk-Bratsk-Novosibirsk (YAK-AEROSIB Project). The flights over Lake Baikal was conducted under Russian State contract. Concentrations of ultra-fine and fine particles were measured with automated diffusion battery (ADB, designed by ICKC SB RAS, Novosibirsk, Russia) modified for airborne applications. The airborne ADB coupled with CPC has an additional aspiration unit to compensate ambient pressure and changing flow rate. It enabled to classify nanoparticles in three size ranges: 3-6 nm, 6-21 nm, and 21-200 nm. To identify new particle formation events we used similar specific criteria as Young et al. (2007): (1) N3-6nm >10 cm-3, (2) R1=N3-6/N621 >1 and R2=N321/N21200 >0.5. So when one of the ratios R1 or R2 tends to decrease to the above limits the new particle formation is weakened. It is very important to notice that space scale where new particle formation was observed is rather large. All the events revealed in the FT occurred under clean air conditions (low CO mixing ratios). Measurements carried out in the atmospheric boundary layer over Baikal Lake did not reveal any event of new particle formation. Concentrations of ultra

  12. Culturability of Bacillus spores on aerosol collection filters exposed to airborne combustion products of Al, Mg, and B·Ti.

    PubMed

    Adhikari, Atin; Yermakov, Michael; Indugula, Reshmi; Reponen, Tiina; Driks, Adam; Grinshpun, Sergey A

    2016-05-01

    Destruction of bioweapon facilities due to explosion or fire could aerosolize highly pathogenic microorganisms. The post-event air quality assessment is conducted through air sampling. A bioaerosol sample (often collected on a filter for further culture-based analysis) also contains combustion products, which may influence the microbial culturability and, thus, impact the outcome. We have examined the interaction between spores deposited on collection filters using two simulants of Bacillus anthracis [B. thuringiensis (Bt) and B. atrophaeus (referred to as BG)] and incoming combustion products of Al as well as Mg and B·Ti (common ingredient of metalized explosives). Spores extracted from Teflon, polycarbonate, mixed cellulose ester (MCE), and gelatin filters (most common filter media for bioaerosol sampling), which were exposed to combustion products during a short-term sampling, were analyzed by cultivation. Surprisingly, we observed that aluminum combustion products enhanced the culturability of Bt (but not BG) spores on Teflon filters increasing the culturable count by more than an order of magnitude. Testing polycarbonate and MCE filter materials also revealed a moderate increase of culturability although gelatin did not. No effect was observed with either of the two species interacting on either filter media with products originated by combustion of Mg and B·Ti. Sample contamination, spore agglomeration, effect of a filter material on the spore survival, changes in the spore wall ultrastructure and germination, as well as other factors were explored to interpret the findings. The study raises a question about the reliability of certain filter materials for collecting airborne bio-threat agents in combustion environments.

  13. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

    PubMed Central

    Chen, Bean T.; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L.; Friend, Sherri; Porter, Dale W.; Castranova, Vincent; Frazer, David G.

    2015-01-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol. PMID:23033994

  14. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  15. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  16. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  17. New generation of airborne lidar for forest canopy sampling

    NASA Astrophysics Data System (ADS)

    Cuesta, J.; Chazette, P.; Allouis, T.; Sanak, J.; Genou, P.; Flamant, P. H.; Durrieu, S.; Toussaint, F.

    2009-04-01

    Cuesta J. (1,2), Chazette P. (1,3), Allouis T. (4), Sanak J. (1,3), Genau P. (2), Flamant P.H. (1), Durrieu S. (4) and Toussaint F. Biomass in forest cover is an essential actor in climate regulation. It is one of the principal sinks of atmospheric CO2 and a major water cycle regulator. In the coming years, climate change may generate an increase in the frequency of fires in the ecosystems, which are already affected in regions as southern Europe, near the Mediterranean basin. For a better understanding and prevention of the risks created by the propagation and intensity of fires, one requires a detailed characterization of the structural parameters of the forest canopy. Such description is as well essential for a proper management and sustainable use of forest resources and the characterization of the evolution of bio-diversity. These environmental and socio-economical issues motivate the development of new remote sensing instruments and methodology, particularly active remote sensing by lidar. These tools should be evaluated in order to achieve a global survey of the forest cover by satellite observation. In this framework, a French effort of the Institut Pierre Simon Laplace (LMD, LSCE and LATMOS) and the CEMAGREF has led to the deployment of a new airborne lidar prototype to study the vertical distribution of the forest canopy in the Landes region in France, around the Arcachon basin and Mimizan. The measuring system is the ultra-violet new generation lidar LAUVA (Lidar Aérosol UtraViolet (Aéroporté), Chazette et al., EST 2007), onboard an Ultra-Light Airplane (ULA). This system was developed by the Comissarait pour l'Energie Atomique and the Centre National de Recherches Scientifiques, originally for atmospheric applications, and it was successfully used in West Africa in the framework of the African Monsoon Multidisciplinary Analyses. After a proper adaptation, this compact and polyvalent lidar onboard an ULA is capable of measuring the forest canopy with

  18. Airborne measurements of hygroscopicity and mixing state of aerosols in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Weingartner, Ernest; Gysel, Martin; Rubach, Florian; Mentel, Thomas; Baltensperger, Urs

    2014-05-01

    properties and mixing state. By combining these results with measurements from an aerosol mass spectrometer (AMS) and an aethalometer, insights can be gathered to explain their hygroscopicity. In this work we will present vertical profiles of the hygroscopic growth and mixing state of aerosol particles measured during Zeppelin flights of the PEGASOS campaigns in the Netherlands, Italy and Finland. Results from ground measurements will also be included to compare the aerosol directly at the surface with different heights. W.T. Morgan et al., Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: Airborne measurements in North-Western Europe, Atmospheric Chemistry and Physics 10(2010), pp. 8151-8171. P. Zieger et al., Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw, Atmospheric Chemistry and Physics 11(2011), pp. 2603-2624.

  19. The CU Airborne MAX-DOAS instrument: ground based validation, and vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2012-09-01

    The University of Colorado Airborne Multi Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light remote sensing to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (360 nm, 477 nm, 577 nm and 632 nm) simultaneously, and sensitively in the open atmosphere. The instrument is unique, in that it presents the first systematic implementation of MAX-DOAS on research aircraft, i.e. (1) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system, and (2) features a motion compensation system that decouples the telescope field of view (FOV) from aircraft movements in real-time (< 0.35° accuracy). Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex and CARES air quality field campaigns is presented. Horizontal distributions of NO2 VCDs (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground based CU MAX-DOAS instruments (slope 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O mixing ratios and aerosol extinction coefficients, ɛ, at 477nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  20. PIXE Analysis of Atmospheric Aerosol Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Josh; Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Smith, Jeremy; Labrake, Scott; Vineyard, Michael

    2013-10-01

    We have performed an elemental analysis of atmospheric aerosol samples collected at Piseco Lake in Upstate New York using proton induced x-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the samples and distribute the particulate matter onto Kapton foils by particle size. The PIXE experiments were performed with 2.2-MeV proton beams from the 1.1-MV pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. X-Ray energy spectra were measured with a silicon drift detector and analyzed with GUPIX software to determine the elemental concentrations of the aerosols. A broad range of elements from silicon to zinc were detected with significant sulfur concentrations measured for particulate matter between 0.25 and 0.5 μm in size. The PIXE analysis will be described and preliminary results will be presented.

  1. Airborne Sun Photometer Measurements of Aerosol Optical Depth during SOLVE II: Comparison with SAGE III and POAM III Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Zawodny, J.

    2003-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II) and obtained successful measurements during the sunlit segments of eight science flights. These included six flights out of Kiruna, Sweden, one flight out of NASA Dryden Flight Research Center (DFRC), and the Kiruna-DFRC return transit flight. Values of spectral aerosol optical depth (AOD), columnar ozone and columnar water vapor have been derived from the AATS-14 measurements. In this paper, we focus on AATS-14 AOD data. In particular, we compare AATS-14 AOD spectra with temporally and spatially near-coincident measurements by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement III (POAM III) satellite sensors. We examine the effect on retrieved AOD of uncertainties in relative optical airmass (the ratio of AOD along the instrument-to-sun slant path to that along the vertical path) at large solar zenith angles. Airmass uncertainties result fiom uncertainties in requisite assumed vertical profiles of aerosol extinction due to inhomogeneity along the viewing path or simply to lack of available data. We also compare AATS-14 slant path solar transmission measurements with coincident measurements acquired from the DC-8 by the NASA Langley Research Center Gas and Aerosol Measurement Sensor (GAMS).

  2. Aerosol Optical Thickness comparisons between NASA LaRC Airborne HSRL and AERONET during the DISCOVER-AQ field campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Hoff, R. M.; Holben, B. N.; Schafer, J.; McGill, M. J.; Yorks, J. E.; Lantz, K. O.; Michalsky, J. J.; Hodges, G.

    2013-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD and during January and February 2013 over the San Joaquin Valley (SJV) of California and also a scheduled deployment during September 2013 over Houston, TX. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the Mixing Layer Height (MLH). HSRL AOT is compared to AOT measured by the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) and long-term AERONET sites. For the 2011 campaign, comparisons of AOT at 532nm between HSRL-1 and AERONET showed excellent agreement (r = 0.98, slope = 1.01, intercept = 0.037) when the King Air flights were within 2.5 km of the ground site and 10 min from the retrieval time. The comparison results are similar for the 2013 DISCOVER-AQ campaign in the SJV. Additional ground-based (MPL) and airborne (CPL) lidar data were used to help screen for clouds in the AERONET observations during the SJV portion. AOT values from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) located at the Porterville, CA site during the SJV campaign are also compared to HSRL-2 AOT. Lastly, using the MLH retrieved from HSRL aerosol backscatter profiles, we describe the distribution of AOT relative to the MLH.

  3. The Airborne Cloud-Aerosol Transport System. Part I; Overview and Description of the Instrument and Retrival Algorithms

    NASA Technical Reports Server (NTRS)

    Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick

    2014-01-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.

  4. Application of the focused ion beam technique in aerosol science: detailed investigation of selected, airborne particles.

    PubMed

    Kaegi, R; Gasser, Ph

    2006-11-01

    The focused ion beam technique was used to fabricate transmission electron microscope lamellas of selected, micrometre-sized airborne particles. Particles were sampled from ambient air on Nuclepore polycarbonate filters and analysed with an environmental scanning electron microscope. A large number of particles between 0.6 and 10 microm in diameter (projected optical equivalent diameter) were detected and analysed using computer-controlled scanning electron microscopy. From the resulting dataset, where the chemistry, morphology and position of each individual particle are stored, two particles were selected for a more detailed investigation. For that purpose, the particle-loaded filter was transferred from the environmental scanning electron microscope to the focused ion beam, where lamellas of the selected particles were fabricated. The definition of a custom coordinate system enabled the relocation of the particles after the transfer. The lamellas were finally analysed with an analytical transmission electron microscope. Internal structure and elemental distribution maps of the interior of the particles provided additional information about the particles, which helped to assign the particles to their sources. The combination of computer-controlled scanning electron microscopy, focused ion beam and transmission electron microscopy offers new possibilities for characterizing airborne particles in great detail, eventually enabling a detailed source apportionment of specific particles. The particle of interest can be selected from a large dataset (e.g. based on chemistry and/or morphology) and then investigated in more detail in the transmission electron microscope.

  5. Laboratory experiments on membrane filter sampling of airborne mycotoxins produced by Stachybotrys atra corda

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Nikulin, M.; Tuomainen, M.; Berg, S.; Parikka, P.; Hintikka, E.-L.

    A membrane filter method for sampling of airborne stachybotrystoxins was studied in the laboratory. Toxigenic strains of Stachybotrys atra on wallpaper, grain, hay and straw were used as toxin sources in the experiments. Air samples were collected on cellulose nitrate and polycarbonate membrane filters at air flow rates of 10-20 ℓ min -1. After the filter sampling, the air was passed through methanol. The results showed that stachybotrystoxins (trichothecenes) were concentrated in airborne fungal propagules, and thus can be collected on filters. Polycarbonate filters with a pore size of 0.2 μm collected the highest percentage of toxic samples. The laboratory experiments indicated that polycarbonate filter sampling for the collection of airborne mycotoxins is a promising method for extension to field measurements.

  6. ACE-Asia Aerosol Optical Depth and Water Vapor Measured by Airborne Sunphotometers and Related to Other Measurements and Calculations

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Russell, P. B.; Schmid, B.; Redemann, J.; Eilers, J. A.; Ramirez, S. A.; Kahn, R.; Hegg, D.; Pilewskie, P.; Anderson, T.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    In the Spring 2001 phase of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the 6-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) operated on 15 of the 19 research flights of the NCAR C-130, while its 14-channel counterpart (AATS- 14) flew successfully on all 18 research flights of the CIRPAS Twin Otter. ACE-Asia studied aerosol outflow from the Asian continent to the Pacific basin. It was designed to integrate suborbital and satellite measurements and models so as to reduce the uncertainty in calculations of the climate forcing due to aerosols. AATS-6 and AATS-14 measured solar beam transmission at 6 and 14 wavelengths (380-1021 and 354-1558 nm, respectively), yielding aerosol optical depth (AOD) spectra and column water vapor (CWV). Vertical differentiation in profiles yielded aerosol extinction spectra and water vapor concentration. The wavelength dependence of these AOD and extinction spectra indicates that supermicron dust was often a major component of the ACE-Asia aerosol. Frequently this dust-containing aerosol extended to high altitudes. For example, in AATS- 14 profiles analyzed to date, 36% of full-column AOD at 525 nm was above 3 km. In contrast, only 10% of CWV was above 3 km. Analyses and applications of AATS-6 and AATS-14 data to date include comparisons to (i) extinction products derived using in situ measurements, (ii) extinction profiles derived from lidar measurements, and (iii) AOD retrievals from the Multi-angle Imaging Spectro-Radiometer (MISR) aboard the TERRA satellite. Other planned collaborative studies include comparisons to results from size spectrometers, chemical measurements, other satellite sensors, flux radiometers, and chemical transport models. Early results of these studies will be presented.

  7. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust

    PubMed Central

    Barone, T. L.; Patts, J. R.; Janisko, S. J.; Colinet, J. F.; Patts, L. D.; Beck, T. W.; Mischler, S. E.

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine. PMID:26618374

  8. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.

    PubMed

    Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine.

  9. Rapid cleanup of bacterial DNA from samples containing aerosol contaminants

    NASA Astrophysics Data System (ADS)

    Menking, Darrell E.; Kracke, Suzanne K.; Emanuel, Peter A.; Valdes, James J.

    1999-01-01

    Polymerase Chain Reaction (PCR) is an in vitro enzymatic, synthetic method used to amplify specific DNA sequences from organisms. Detection of DNA using gene probes allows for absolute identification not only of specific organisms, but also of genetic material in recombinant organisms. PCR is an exquisite biological method for detecting bacteria in aerosol samples. A major challenge facing detection of DNA from field samples is that they are almost sure to contain impurities, especially impurities that inhibit amplification through PCR. DNA is being extracted from air, sewage/stool samples, food, sputum, a water and sediment; however, multi- step, time consuming methods are required to isolate the DNA from the surrounding contamination. This research focuses on developing a method for rapid cleanup of DNA which combines extraction and purification of DNA while, at the same time, removing inhibitors from 'dirty samples' to produce purified, PCR-ready DNA. GeneReleaser produces PCR-ready DNA in a rapid five-minute protocol. GeneReleaser resin was able to clean up sample contain micrograms of typical aerosol and water contaminants. The advantages of using GR are that it is rapid, inexpensive, requires one-step, uses no hazardous material and produces PCR-ready DNA.

  10. Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook's tour of mature and emerging technology

    NASA Astrophysics Data System (ADS)

    Baumgardner, D.; Brenguier, J. L.; Bucholtz, A.; Coe, H.; DeMott, P.; Garrett, T. J.; Gayet, J. F.; Hermann, M.; Heymsfield, A.; Korolev, A.; Krämer, M.; Petzold, A.; Strapp, W.; Pilewskie, P.; Taylor, J.; Twohy, C.; Wendisch, M.; Bachalo, W.; Chuang, P.

    2011-10-01

    An overview is presented of airborne systems for in situ measurements of aerosol particles, clouds and radiation that are currently in use on research aircraft around the world. Description of the technology is at a level sufficient for introducing the basic principles of operation and an extensive list of references for further reading is given. A number of newer instruments that implement emerging technology are described and the review concludes with a description of some of the most important measurement challenges that remain. This overview is a synthesis of material from a reference book that is currently in preparation and that will be published in 2012 by Wiley.

  11. Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar measurements. I - Algorithm description

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Bowdle, David A.; Vaughan, Michael; Brown, Derek W.; Woodfield, Alan A.

    1991-01-01

    Since 1981 the Royal Signals and Radar Establishment and the Royal Aircraft Establishment, United Kindom, have made vertical and horizontal sounding measurements of aerosol backscatter coefficients at 10.6 microns, using an airborne continuous-wave-focused CO2 Doppler lidar, the Laser True Airspeed System (LATAS). In this paper, the heterodyne signal from the LATAS detector is spectrally analyzed. Then, in conjunction with aircraft flight parameters, the data are processed in a six-stage computer algorithm: set search window, search for peak signal, test peak signal, measure total signal, calculate signal-to-noise ratio, and calculate backscatter coefficient.

  12. Setup and first airborne application of an aerosol optical properties package for the In-service Aircraft Global Observing System IAGOS.

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Freedman, Andrew; Herber, Andreas; Mattis, Ina; Berg, Marcel; De Faira, Julia; Petzold, Andreas

    2016-04-01

    The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical and optical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The prototype of the IAGOS Aerosol Package (IAGOS-P2E) consists of two modified CAPS (Cavity Attenuated Phase Shift) instruments from Aerodyne Research, Inc. and one optical particle counter (Model Grimm Sky OPC 1.129). The CAPS PMex monitor provides a measurement of the optical extinction (the sum of scattering and absorption) of an ambient sample of particles. There is a choice of 5 different wavelengths - blue (450 nm), green (530 nm), red (630 nm), far red (660 nm) and near infrared (780 nm) - which match the spectral bands of most other particle optical properties measurement equipment. In our prototype setup we used the instrument operating at 630nm wavelength (red). The second CAPS instrument we have chosen is the CAPS NO2 monitor. This instrument provides a direct absorption measurement of nitrogen dioxide in the blue region of the electromagnetic spectrum (450 nm). Unlike standard chemiluminescence-based monitors, the instrument requires no conversion of NO2 to another species and thus is not sensitive to other nitro-containing species. In the final IAGOS Setup, up to 4 CAPS might be used to get additional aerosol properties using the

  13. Validating MODIS above-cloud aerosol optical depth retrieved from "color ratio" algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors

    NASA Astrophysics Data System (ADS)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob

    2016-10-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.

  14. Aerosol Monitoring during Carbon Nanofiber Production: Mobile Direct-Reading Sampling

    PubMed Central

    Evans, Douglas E.; Ku, Bon Ki; Birch, M. Eileen; Dunn, Kevin H.

    2010-01-01

    Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO2 were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 × 106 cm−3, were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m−3, were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control recommendations

  15. Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling.

    PubMed

    Evans, Douglas E; Ku, Bon Ki; Birch, M Eileen; Dunn, Kevin H

    2010-07-01

    Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO(2) were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 x 10(6) cm(-3), were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m(-3), were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control

  16. Assessing sources of airborne mineral dust and other aerosols, in Iraq

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Johann P.; Jayanty, R. K. M.

    2013-06-01

    Most airborne particulate matter in Iraq comes from mineral dust sources. This paper describes the statistics and modeling of chemical results, specifically those from Teflon® filter samples collected at Tikrit, Balad, Taji, Baghdad, Tallil and Al Asad, in Iraq, in 2006/2007. Methodologies applied to the analytical results include calculation of correlation coefficients, Principal Components Analysis (PCA), and Positive Matrix Factorization (PMF) modeling. PCA provided a measure of the covariance within the data set, thereby identifying likely point sources and events. These include airborne mineral dusts of silicate and carbonate minerals, gypsum and salts, as well as anthropogenic sources of metallic fumes, possibly from battery smelting operations, and emissions of leaded gasoline vehicles. Five individual PMF factors (source categories) were modeled, four of which being assigned to components of geological dust, and the fifth to gasoline vehicle emissions together with battery smelting operations. The four modeled geological components, dust-siliceous, dust-calcic, dust-gypsum, and evaporate occur in variable ratios for each site and size fraction (TSP, PM10, and PM2.5), and also vary by season. In general, Tikrit and Taji have the largest and Al Asad the smallest percentages of siliceous dust. In contrast, Al Asad has the largest proportion of gypsum, in part representing the gypsiferous soils in that region. Baghdad has the highest proportions of evaporite in both size fractions, ascribed to the highly salinized agricultural soils, following millennia of irrigation along the Tigris River valley. Although dust storms along the Tigris and Euphrates River valleys originate from distal sources, the mineralogy bears signatures of local soils and air pollutants.

  17. Airborne measurements of spectral direct aerosol radiative forcing in INTEX/ICARTT (2004) and comparisons to previous campaigns

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Pilewskie, P.; Russell, P.; Livingston, J.; Howard, S.; Schmid, B.; Pommier, J.; Gore, W.; Eilers, J.; Wendisch, M.; Bush, B.; Valero, F.

    2005-12-01

    As part of the INTEX-NA (INtercontinental chemical Transport EXperiment-North America) and ITCT (Intercontinental Transport and Chemical Transformation of anthropogenic pollution) field studies, the NASA Ames 14-channel Airborne Tracking Sunphotometer (AATS-14) and a pair of Solar Spectral Flux Radiometers (SSFR) took measurements from aboard a Jetstream 31 (J31) aircraft during 19 science flights (~ 53 flight hours) over the Gulf of Maine between 12 July and 8 August 2004. AATS-14 measures the direct solar beam transmission at 14 discrete wavelengths (354-2138 nm), yielding aerosol optical depth (AOD) spectra, while the SSFR system yields down- and upwelling solar irradiance at a spectral resolution of ~ 8-12 nm over the wavelength range 300-1700 nm. The combination of simultaneous AATS and SSFR measurements yields plots of net spectral irradiance as a function of aerosol optical depth as measured along horizontal flight legs. From the slope of these plots we determine the instantaneous aerosol-induced change in net radiative flux per change in AOD. By normalization to an aerosol optical depth change of unity we derive the spectral aerosol radiative forcing efficiency [W m-2 nm-1]. Numerical integration of the irradiance measurements over a given spectral range yields the broadband aerosol radiative forcing efficiency [W m-2]. In INTEX/ITCT, we observed a total of 16 horizontal AOD gradients, with 10 gradients well suited for our analysis because of the small changes in solar zenith angle. Within the 10 case studies we found a high variability in the derived instantaneous aerosol forcing efficiencies for the visible wavelength range (350-700 nm), with a mean of -79.6 W m-2 and a standard deviation of 21.8 W m-2 (27%). The mean instantaneous forcing efficiency for the visible plus near-IR wavelength range (350-1670 nm) was derived to be 135.3 W m-2 with a standard deviation of 36.0 W m-2 (27%). An analytical conversion of the instantaneous forcing efficiencies to

  18. Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols.

    PubMed

    Shen, Fangxia; Tan, Miaomiao; Wang, Zhenxing; Yao, Maosheng; Xu, Zhenqiang; Wu, Yan; Wang, Jindong; Guo, Xuefeng; Zhu, Tong

    2011-09-01

    Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.

  19. Quantitative x-ray diffraction phase analysis of coarse airborne particulate collected by cascade impactor sampling

    NASA Astrophysics Data System (ADS)

    Esteve, V.; Rius, J.; Ochando, L. E.; Amigó, J. M.

    Mineralogical composition of Castellon (Spanish Mediterranean coast) atmospheric aerosol was studied by X-ray diffraction by sampling with a cascade impactor without filters. Quantitative phase analysis of natural phases present in the atmospheric coarse aerosol was performed using a modified version of the computer program MENGE, that uses the standardless X-ray method developed by Rius for the quantitative analysis of multiphase mixtures, adapted for PC running. Presence of quartz, calcite and gypsum was identified in the atmospheric aerosol and we have quantified their amounts using the standardless method.

  20. Elastic back-scattering patterns via particle surface roughness and orientation from single trapped airborne aerosol particles

    NASA Astrophysics Data System (ADS)

    Fu, Richard; Wang, Chuji; Muñoz, Olga; Videen, Gorden; Santarpia, Joshua L.; Pan, Yong-Le

    2017-01-01

    We demonstrate a method for simultaneously measuring the back-scattering patterns and images of single laser-trapped airborne aerosol particles. This arrangement allows us to observe how the back-scattering patterns change with particle size, shape, surface roughness, orientation, etc. The recoded scattering patterns cover the angular ranges of θ=167.7-180° (including at 180° exactly) and ϕ=0-360° in spherical coordinates. The patterns show that the width of the average speckle intensity islands or rings is inversely proportional to particle size and how the shape of these intensity rings or islands also depends on the surface roughness. For an irregularly shaped particle with substantial roughness, the back-scattering patterns are formed with speckle intensity islands, the size and orientations of these islands depend more on the overall particle size and orientation, but have less relevance to the fine alteration of the surface structure and shapes. The back-scattering intensity at 180° is very sensitive to the particle parameters. It can change from a maximum to a minimum with a change of 0.1% in particle size or refractive index. The method has potential use in characterizing airborne aerosol particles, and may be used to provide back-scattering information for LIDAR applications.

  1. Ambient airborne solids concentrations including volcanic ash at Hanford, Washington sampling sites subsequent to the Mount St. Helens eruption

    NASA Technical Reports Server (NTRS)

    Sehmel, G. A.

    1982-01-01

    Airborne solids concentrations were measured on a near daily basis at two Hanford, Washington sites after the eruption of Mount St. Helens on May 18, 1980. These sites are about 211 km east of Mount St. Helens. Collected airborne solids included resuspended volcanic ash plus normal ambient solids. Average airborne solids concentrations were greater at the Hanford meteorological station sampling site which is 24 km northwest of the Horn Rapids dam sampling site. These increased concentrations reflect the sampling site proximity to greater ash fallout depths. Both sites are in low ash fallout areas although the Hanford meteorological station site is closer to the greater ash fallout areas. Airborne solids concentrations were decreased by rain, but airborne solids concentrations rapidly increased as surfaces dried. Airborne concentrations tended to become nearly the same at both sampling sites only for July 12 and 13.

  2. Airborne DIAL Ozone and Aerosol Trends Observed at High Latitudes Over North America from February to May 2000

    NASA Technical Reports Server (NTRS)

    Hair, Jonathan W.; Browell, Edward V.; Butler, Carolyn F.; Grant, William B.; DeYoung, Russell J.; Fenn, Marta A.; Brackett, Vince G.; Clayton, Marian B.; Brasseur, Lorraine

    2002-01-01

    Ozone (O3) and aerosol scattering ratio profiles were obtained from airborne lidar measurements on thirty-eight aircraft flights over seven aircraft deployments covering the latitudes of 40 deg.-85 deg.N between 4 February and 23 May 2000 as part of the TOPSE (Tropospheric Ozone Production about the Spring Equinox) field experiment. The remote and in situ O3 measurements were used together to produce a vertically-continuous O3 profile from near the surface to above the tropopause. Ozone, aerosol, and potential vorticity (PV) distributions were used together to identify the presence of pollution plumes and stratospheric intrusions. The number of observed pollution plumes was found to increase into the spring along with a significant increase in aerosol loading. Ozone was found to increase in the middle free troposphere (4-6 km) at high latitudes (60 deg.-85 deg. N) by an average of 4.3 ppbv/mo from about 55 ppbv in early February to over 72 ppbv in mid-May. The average aerosol scattering ratios in the same region increased at an average rate of 0.37/mo from about 0.35 to over 1.7. Ozone and aerosol scattering were highly correlated over entire field experiment. Based on the above results and the observed aircraft in-situ measurements, it was estimated that stratospherically-derived O3 accounted for less than 20% of the observed increase in mid tropospheric O3 at high latitudes. The primary cause of the observed O3 increase was found to be the photochemical production of O3 in pollution plumes.

  3. Airborne radiological sampling of Mount St. Helens plumes

    SciTech Connect

    Andrews, V.E.

    1981-04-01

    Particulate and gaseous samples for radiologial analyses were collected from the plumes created by eruptions of Mount St. Helens. The sampling aircraft and equipment used are routinely employed in aerial radiological surveillance at the Nevada Test Site by the Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas, Nevada. An initial sample set was collected on April 4, 1980, during the period of recurring minor eruptions. Samples were collected again on May 19 and 20 following the major eruption of May 18. The Environmental Protection Agency's Office of Radiation Programs analyzed the samples for uranium and thorium isotopes, radium-226, lead-210, polonium-210, and radon-222. Other laboratories analyzed samples to determine particle size distribution and elemental composition. The only samples containing radioactivity above normal ambient levels were collected on May 20. Polonium-210 concentrations in the plume, determined from a sample collected between 5 and 30 km from the crater, were approximately an order of magnitude above background. Radon-222 concentrations in samples collected from the plume centerline at a distance of 15 km averaged approximately four times the average surface concentrations. The small increases in radioactivity would cause no observable adverse health effects.

  4. Ozone and aerosol distributions measured by airborne lidar during the 1988 Arctic Boundary Layer Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Consideration is given to O3 and aerosol distributions measured from an aircraft using a DIAL system in order to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during summer 1988. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere.

  5. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    EPA Science Inventory

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  6. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    SciTech Connect

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-15

    Radioactive fission product {sup 131}I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, {sup 134}Cs and {sup 137}Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m{sup -3} in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of {sup 134}Cs and {sup 137}Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m{sup -3}) variation of stable cesium ({sup 133}Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  7. Airborne Fungi in Sahara Dust Aerosols Reaching the Eastern Caribbean: I. Taxonomic Characterization by Morphological Features

    NASA Astrophysics Data System (ADS)

    Rivera-Denizard, O.; Betancourt, C.; Armstrong, R. A.; Detres, Y.

    2003-12-01

    A wide variety of microorganisms are dispersed into the Caribbean region due to the input of Saharan dust aerosols during the summer months. These microorganisms can cause diseases in plants and animals, and might be responsible for an increase incidence of asthma and respiratory diseases in this region. A PM 2.5 air sampling station was installed in Castle Bruce, Dominica from March through July of 2002. Fourteen filters were obtained by running the air sampler continuously for 24 hour periods. The samples were collected in sterile Teflon filters (47 mm in diameter, 0.2 um pore size), inoculated in Malt Extract Agar (MEA) with lactic acid and incubated at 29° C. Colonies were counted, isolated and cultured on separate Petri dishes. Fungal classification to the genus level used macroscopic features and microscopic evaluation. The Nomarski light microscopy technique was used for identification of reproductive structures. A total of 105 colonies were isolated. Six genera including Aspergillus, Penicillium, Cladosporium, Fusarium, Curvularia,and Nigrospora were identified. The protocol for the molecular characterization to species level is presented as the second part of this work.

  8. Aerosol and gas re-distribution by shallow cumulus clouds: An investigation using airborne measurements

    NASA Astrophysics Data System (ADS)

    Wonaschuetz, Anna; Sorooshian, Armin; Ervens, Barbara; Chuang, Patrick Y.; Feingold, Graham; Murphy, Shane M.; de Gouw, Joost; Warneke, Carsten; Jonsson, Haflidi H.

    2012-09-01

    Aircraft measurements during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) are used to examine the influence of shallow cumulus clouds on vertical profiles of aerosol chemical composition, size distributions, and secondary aerosol precursor gases. The data show signatures of convective transport of particles, gases and moisture from near the surface to higher altitudes, and of aqueous-phase production of aerosol mass (sulfate and organics) in cloud droplets and aerosol water. In cloudy conditions, the average aerosol volume concentration at an altitude of 2850 m, above typical cloud top levels, was found to be 34% of that at 450 m; for clear conditions, the same ratio was 13%. Both organic and sulfate mass fractions were on average constant with altitude (around 50%); however, the ratio of oxalate to organic mass increased with altitude (from 1% at 450 m to almost 9% at 3450 m), indicative of the influence of in-cloud production on the vertical abundance and characteristics of secondary organic aerosol (SOA) mass. A new metric termed "residual cloud fraction" is introduced as a way of quantifying the "cloud processing history" of an air parcel. Results of a parcel model simulating aqueous phase production of sulfate and organics reproduce observed trends and point at a potentially important role of SOA production, especially oligomers, in deliquesced aerosols. The observations emphasize the importance of shallow cumulus clouds in altering the vertical distribution of aerosol properties that influence both their direct and indirect effect on climate.

  9. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins,D. R.; Knapp, D.; Weinheimer, A. J.; Montzka,D. D.; Campos,T.; Jimenez, J. L.

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  10. Involvement of multiple stressors induced by non-thermal plasma-charged aerosols during inactivation of airborne bacteria

    PubMed Central

    Vaze, Nachiket D.; Park, Sin; Brooks, Ari D.; Fridman, Alexander; Joshi, Suresh G.

    2017-01-01

    A lab-scale, tunable, single-filament, point-to-point nonthermal dieletric-barrier discharge (DBD) plasma device was built to study the mechanisms of inactivation of aerosolized bacterial pathogens. The system inactivates airborne antibiotic-resistant pathogens efficiently. Nebulization mediated pre-optimized (4 log and 7 log) bacterial loads were challenged to plasma-charged aerosols, and lethal and sublethal doses determined using colony assay, and cell viability assay; and the loss of membrane potential and cellular respiration were determined using cell membrane potential assay and XTT assay. Using the strategies of Escherichia coli wildtype, over-expression mutant, deletion mutants, and peroxide and heat stress scavenging, we analyzed activation of intracellular reactive oxygen species (ROS) and heat shock protein (hsp) chaperons. Superoxide dismutase deletion mutants (ΔsodA, ΔsodB, ΔsodAΔsodB) and catalase mutants ΔkatG and ΔkatEΔkatG did not show significant difference from wildtype strain, and ΔkatE and ΔahpC was found significantly more susceptible to cell death than wildtype. The oxyR regulon was found to mediate plasma-charged aerosol-induced oxidative stress in bacteria. Hsp deficient E. coli (ΔhtpG, ΔgroEL, ΔclpX, ΔgrpE) showed complete inactivation of cells at ambient temperature, and the treatment at cold temperature (4°C) significantly protected hsp deletion mutants and wildtype cells, and indicate a direct involvement of hsp in plasma-charged aerosol mediated E. coli cell death. PMID:28166240

  11. Personal sampling of airborne particles: method performance and data quality.

    PubMed

    Janssen, N A; Hoek, G; Harssema, H; Brunekreef, B

    1998-01-01

    A study of personal exposure to respirable particles (PM10) and fine particles (FP) was conducted in groups of 50-70 year-old adults and primary school children in the Netherlands. Four to eight personal measurements per subject were conducted, on weekdays only. Averaging time was 24 hours. Method performance was evaluated regarding compliance, flow, weighing procedure, field blanks and co-located operation of the personal samplers with stationary methods. Furthermore, the possibility that subjects change their behavior due to the wearing of personal sampling equipment was studied by comparing time activity on days of personal sampling with time activity other weekdays. Compliance was high; 95% of the subjects who agreed to continue participating after the first measurement, successfully completed the study, and, expect for the first two days of FP sampling, over 90% of all personal measurements were successful. All pre and post sampling flow readings were within 10% of the required flow rate of 4 L/min. For PM10 precision of the gravimetric analyses was 2.8 microgram/m3 and 0.7 micrograms/m3 for filters weighted on an analytical and a micro-balance respectively. The detection limit was 10.8 micrograms/m3 and 8.6 micrograms/m3 respectively. For FP, weighing precision was 0.4 micrograms/m3 and the detection limit was 5.3 micrograms/m3. All measurements were above the detection limit. Co-located operation of the personal sampler with stationary samplers gave highly correlated concentration (R > 0.90). Outdoor PM10 concentrations measured with the personal sampler were on average 4% higher compared to a Sierra Anderson (SA) inlet and 9% higher compared to a PM10 Harvard Impactor (HI). With the FP cyclone 6% higher classroom concentrations were measured compared to a PM2.5 HI. Adults spent significantly less time outdoor (0.5 hour) and more time at home (0.9 hour) on days of personal sampling compared to other weekdays. For children no significant differences in time

  12. Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain).

    PubMed

    Vallés, I; Camacho, A; Ortega, X; Serrano, I; Blázquez, S; Pérez, S

    2009-02-01

    Results for naturally occurring (7)Be, (210)Pb, (40)K, (214)Bi, (214)Pb, (212)Pb, (228)Ac and (208)Tl and anthropogenic (137)Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The (212)Pb and (208)Tl, (214)Bi and (214)Pb, (7)Be and (210)Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The (7)Be and (210)Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the (7)Be, (210)Pb, (40)K and (137)Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides.

  13. Airborne LIDAR Measurements of Aerosol and Ozone Above the Alberta Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Aggarwal, M.; Whiteway, J. A.; Seabrook, J.; Gray, L. H.

    2014-12-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. The field campaign was carried out with a total of five flights out of Fort McMurray, Alberta during the period between August 22 and August 26, 2013. Significant amounts of aerosol were observed within the boundary layer, up to a height of 1.6 km, but the ozone concentration remained at or below background levels. On August 24th the lidar observed a separated layer of aerosol above the boundary layer, at a height of 1.8 km, in which the ozone mixing ratio increased to 70 ppbv. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, in the pollution from the oil sands industry, the measured ozone mixing ratio was lower than the background levels (≤35 ppbv).

  14. DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES

    SciTech Connect

    Sexton, L.

    2012-06-06

    Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity to collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office

  15. Airborne Coarse Mode Aerosol Measurements with the CAS-DPOL Instrument: Effects of Particle Shape and Refractive Index and Implications for Radiative Transfer Estimate

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gasteiger, J.; Spanu, A.; Freudenthaler, V.; Gross, S.

    2015-12-01

    Each year huge amounts of mineral dust are mobilized in deserts and arid regions of the world and transported over large distances forming thick elevated aerosol layers with a substantial fraction of coarse mode particles. Optical properties of mineral dust, including the absorptive refractive index of some components, cause a significant effect on the atmospheric radiative energy balance from optical to infrared wavelengths. The aerosol characteristics, in particular its coarse mode size distribution, are modified during long-range transport by aging and deposition processes. This also affects the aerosol optical properties and therefore the effect on the atmospheric radiative energy budget. In-situ measurements of aerosol microphysical properties are essential to characterize those effects in order to be implemented in global climate models in parametrized form. However, in-situ measurements of airborne coarse mode aerosols such as mineral dust and volcanic ash are challenging and the measurements are usually affected by substantial uncertainties. In this work we use airborne measurements of mineral dust from our optical light-scattering spectrometer CAS-DPOL during SALTRACE 2013 to discuss the analysis of such data. We cover the effects of varying refractive index and particle shapes and develop recommendations for the configuration of the CAS-DPOL for aerosol studies. We also present an inversion method to derive coarse mode size distributions from light-scattering probes for mixtures of non-spherical, absorbing aerosols. The size distributions retrieved from the in-situ measurements are then validated using an independent analysis with a combination of sun-photometer and lidar data. We apply these methods to investigate the Saharan mineral dust particle size distributions measured on both sides of the Atlantic Ocean and discuss the influence of aerosol aging on the atmospheric radiative energy budget. With this example we also assess how the uncertainties

  16. Airborne environmental endotoxin: a cross-validation of sampling and analysis techniques.

    PubMed Central

    Walters, M; Milton, D; Larsson, L; Ford, T

    1994-01-01

    A standard method for measurement of airborne environmental endotoxin was developed and field tested in a fiberglass insulation-manufacturing facility. This method involved sampling with a capillary-pore membrane filter, extraction in buffer using a sonication bath, and analysis by the kinetic-Limulus assay with resistant-parallel-line estimation (KLARE). Cross-validation of the extraction and assay method was performed by comparison with methanolysis of samples followed by 3-hydroxy fatty acid (3-OHFA) analysis by gas chromatography-mass spectrometry. Direct methanolysis of filter samples and methanolysis of buffer extracts of the filters yielded similar 3-OHFA content (P = 0.72); the average difference was 2.1%. Analysis of buffer extracts for endotoxin content by the KLARE method and by gas chromatography-mass spectrometry for 3-OHFA content produced similar results (P = 0.23); the average difference was 0.88%. The source of endotoxin was gram-negative bacteria growing in recycled washwater used to clean the insulation-manufacturing equipment. The endotoxin and bacteria become airborne during spray cleaning operations. The types of 3-OHFAs in bacteria cultured from the washwater, present in the washwater and in the air, were similar. Virtually all of the bacteria cultured from air and water were gram negative composed mostly of two species, Deleya aesta and Acinetobacter johnsonii. Airborne countable bacteria correlated well with endotoxin (r2 = 0.64). Replicate sampling showed that results with the standard sampling, extraction, and Limulus assay by the KLARE method were highly reproducible (95% confidence interval for endotoxin measurement +/- 0.28 log10). These results demonstrate the accuracy, precision, and sensitivity of the standard procedure proposed for airborne environmental endotoxin. PMID:8161191

  17. The Multi-Sensor Aerosol Products Sampling System (MAPSS) for Integrated Analysis of Satellite Retrieval Uncertainties

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory

    2010-01-01

    Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood ', there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource,., an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainty analysis of aerosol products from multiple satellite sensors.

  18. Airborne Measurements of Aerosol Emissions From the Alberta Oil Sands Complex

    NASA Astrophysics Data System (ADS)

    Howell, S. G.; Clarke, A. D.; McNaughton, C. S.; Freitag, S.

    2012-12-01

    The Alberta oil sands contain a vast reservoir of fossil hydrocarbons. The extremely viscous bitumen requires significant energy to extract and upgrade to make a fluid product suitable for pipelines and further refinement. The mining and upgrading process constitute a large industrial complex in an otherwise sparsely populated area of Canada. During the ARCTAS project in June/July 2008, while studying forest fire plumes, the NASA DC-8 and P-3B flew through the plume a total of 5 times. Once was a coordinated visit by both aircraft; the other 3 were fortuitous passes downwind. One study has been published about gas emissions from the complex. Here we concentrate on aerosol emissions and aging. As previously reported, there appear to be at least 2 types of plumes produced. One is an industrial-type plume with vast numbers of ultrafine particles, SO2, sulfate, black carbon (BC), CO, and NO2. The other, probably from the mining, has more organic aerosol and BC together with dust-like aerosols at 3 μm and a 1 μm mode of unknown origin. The DC-8 crossed the plume about 10 km downwind of the industrial site, giving time for the boundary layer to mix and enabling a very crude flux calculation suggesting that sulfate and organic aerosols were each produced at about 500 g/s (estimated errors are a factor of 2, chiefly due to concerns about vertical mixing). Since this was a single flight during a project dedicated to other purposes and operating conditions and weather may change fluxes considerably, this may not be a typical flux. As the plume progresses downwind, the ultrafine particles grow to sizes effective as cloud condensation nucei (CCN), SO2 is converted to sulfate, and organic aerosol is produced. During fair weather in the summer, as was the case during these flights, cloud convection pumps aerosol above the mixed layer. While the aerosol plume is difficult to detect from space, NO2 is measured by the OMI instrument an the Aura satellite and the oil sands plume

  19. Joint aerosol and water-leaving radiance retrieval from Airborne Multi-angle SpectroPolarimeter Imager

    NASA Astrophysics Data System (ADS)

    Xu, F.; Dubovik, O.; Zhai, P.; Kalashnikova, O. V.; Diner, D. J.

    2015-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) [1] has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI typically acquires observations of a target area at 9 view angles between ±67° off the nadir. Its spectral channels are centered at 355, 380, 445, 470*, 555, 660*, and 865* nm, where the asterisk denotes the polarimetric bands. In order to retrieve information from the AirMSPI observations, we developed a efficient and flexible retrieval code that can jointly retrieve aerosol and water leaving radiance simultaneously. The forward model employs a coupled Markov Chain (MC) [2] and adding/doubling [3] radiative transfer method which is fully linearized and integrated with a multi-patch retrieval algorithm to obtain aerosol and water leaving radiance/Chl-a information. Various constraints are imposed to improve convergence and retrieval stability. We tested the aerosol and water leaving radiance retrievals using the AirMSPI radiance and polarization measurements by comparing to the retrieved aerosol concentration, size distribution, water-leaving radiance, and chlorophyll concentration to the values reported by the USC SeaPRISM AERONET-OC site off the coast of Southern California. In addition, the MC-based retrievals of aerosol properties were compared with GRASP ([4-5]) retrievals for selected cases. The MC-based retrieval approach was then used to systematically explore the benefits of AirMSPI's ultraviolet and polarimetric channels, the use of multiple view angles, and constraints provided by inclusion of bio-optical models of the water-leaving radiance. References [1]. D. J. Diner, et al. Atmos. Meas. Tech. 6, 1717 (2013). [2]. F. Xu et al. Opt. Lett. 36, 2083 (2011). [3]. J. E. Hansen and L.D. Travis. Space Sci. Rev. 16, 527 (1974). [4]. O. Dubovik et al. Atmos. Meas. Tech., 4, 975 (2011). [5]. O. Dubovik et al. SPIE: Newsroom, DOI:10.1117/2.1201408.005558 (2014).

  20. Aerosol Sample Inhomogeneity with Debris from the Fukushima Daiichi Nuclear Accident

    SciTech Connect

    Gomez, Reynaido; Biegalski, Steven R.; Woods, Vincent T.

    2014-09-01

    Radionuclide aerosol sampling is a vital component in the detection of nuclear explosions, nuclear accidents, and other radiation releases. This was proven by the detection and tracking of emissions from the Fukushima Daiichi incident across the globe by IMS stations. Two separate aerosol samplers were operated in Richland, WA following the event and debris from the accident were measured at levels well above detection limits. While the atmospheric activity concentration of radionuclides generally compared well between the two stations, they did not agree within uncertainties. This paper includes a detailed study of the aerosol sample homogeneity of 134Cs and 137Cs, then relates it to the overall uncertainty of the original measurement. Our results show that sample inhomogeneity adds an additional 5–10% uncertainty to each aerosol measurement and that this uncertainty is in the same range as the discrepancies between the two aerosol sample measurements from Richland, WA.

  1. Nanoscale Images of Airborne PM2.5: Aerosol Dynamics with the LCLS X-ray Laser

    NASA Astrophysics Data System (ADS)

    Bogan, M. J.

    2012-12-01

    It is now possible to capture images of individual airborne PM2.5 particles - including soot, NaCl particles and engineered nanoparticles - with 20-40 nm resolution (Loh et al Nature 2012). Ions released during the imaging process provide information on the chemical content of the isolated particles. The scattering signal used to compose the image also provides the fractal dimension of individual particles. This new paradigm of aerosol dynamics is enabled by the incredible brightness and ultrashort pulses available at X-ray free electron laser (FEL) facilities, such as the Linac Coherent Light Source (LCLS) and the FLASH FEL facility in Hamburg. Femtosecond long x-ray pulses deliver sufficient photons (10^12 per pulse) to detect scattered X-rays off individual particles injected at >100 m/s into vacuum through an aerodynamic lens stack. The intensity of the scattered X-rays measured by an area detector is fed into lensless imaging algorithms to reconstruct an image of the particle that caused the scattering. X-ray FELs can peer inside the individual airborne particles and are a sensitive probe of particle crystallinity. The development of this method and applications to imaging micron-sized soot, water droplets and biological aerosols will be discussed. A primary long-term goal of the research is to take snapshots of airborne particles as they change their size, shape and chemical make-up in response to their environment. "Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight" ND Loh, C Hampton, A Martin, D Starodub, R Sierra, A Barty, A Aquila, J Schulz, L Lomb, J Steinbrener, R Shoeman, S Kassemeyer, C Bostedt, J. Bozek, S Epp, B. Erk, R Hartmann, D Rolles, A Rudenko, B Rudek, L Foucar, N Kimmel, G Weidenspointner, G Hauser, P Holl, E. Pedersoli, M Liang, M Hunter, L Gumprecht, N Coppola, C Wunderer, H Graafsma, F Maia, T Ekeberg, M Hantke, H Fleckenstein, H. Hirsemann, K Nass, T White, H Tobias, G Farquar, W Benner, S Hau

  2. A Compact Airborne High Spectral Resolution Lidar for Observations of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Hair, John W.; Cook, Anthony L.

    2002-01-01

    We are in the process of developing a nadir-viewing, aircraft-based high spectral resolution lidar (HSRL) at NASA Langley Research Center. The system is designed to measure backscatter and extinction of aerosols and tenuous clouds. The primary uses of the instrument will be to validate spaceborne aerosol and cloud observations, carry out regional process studies, and assess the predictions of chemical transport models. In this paper, we provide an overview of the instrument design and present the results of simulations showing the instrument's capability to accurately measure extinction and extinction-to-backscatter ratio.

  3. Airborne Aerosol In situ Measurements during TCAP: A Closure Study of Total Scattering

    SciTech Connect

    Kassianov, Evgueni I.; Berg, Larry K.; Pekour, Mikhail S.; Flynn, Connor J.; Tomlinson, Jason M.; Chand, Duli; Shilling, John E.; Ovchinnikov, Mikhail; Barnard, James C.; Sedlacek, Art; Schmid, Beat

    2015-07-31

    We present here a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. The synergistically employed aircraft data involve aerosol microphysical, chemical, and optical components and ambient relative humidity measurements. Our framework is developed emphasizing the explicit use of the complementary chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total aerosol scattering is demonstrated for different ambient conditions with a wide range of relative humidities (from 5 to 80%) using three types of data collected by the U.S. Department of Energy (DOE) G-1 aircraft during the recent Two-Column Aerosol Project (TCAP). Namely, these three types of data employed are: (1) size distributions measured by an Ultra High Sensitivity Aerosol Spectrometer (UHSAS; 0.06-1 µm), a Passive Cavity Aerosol Spectrometer (PCASP; 0.1-3 µm) and a Cloud and Aerosol Spectrometer (CAS; 0.6- >10 µm), (2) chemical composition data measured by an Aerosol Mass Spectrometer (AMS; 0.06-0.6 µm) and a Single Particle Soot Photometer (SP2; 0.06-0.6 µm), and (3) the dry total scattering coefficient measured by a TSI integrating nephelometer at three wavelengths (0.45, 0.55, 0.7 µm) and scattering enhancement factor measured with a humidification system at three RHs (near 45%, 65% and 90%) at a single wavelength (0.525 µm). We demonstrate that good agreement (~10% on average) between the observed and calculated scattering at these three wavelengths can be obtained using the best available chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction and using non-representative RI values can cause a substantial underestimation (~40

  4. Validating Above-cloud Aerosol Optical Depth Retrieved from MODIS using NASA Ames Airborne Sun-Tracking Photometric and Spectrometric (AATS and 4STAR) Measurements

    NASA Astrophysics Data System (ADS)

    Jethva, H. T.; Torres, O.; Remer, L. A.; Redemann, J.; Dunagan, S. E.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.

    2014-12-01

    Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay the lower level cloud decks as evident in the satellite images. In contrast to the cloud-free atmosphere, in which aerosols generally tend to cool the atmosphere, the presence of absorbing aerosols above cloud poses greater potential of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. In recent years, development of algorithms that exploit satellite-based passive measurements of ultraviolet (UV), visible, and polarized light as well as lidar-based active measurements constitute a major breakthrough in the field of remote sensing of aerosols. While the unprecedented quantitative information on aerosol loading above cloud is now available from NASA's A-train sensors, a greater question remains ahead: How to validate the satellite retrievals of above-cloud aerosols (ACA)? Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. In this study, we validate the ACA optical depth retrieved using the 'color ratio' (CR) method applied to the MODIS cloudy-sky reflectance by using the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS-2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (root-mean-square-error<0.1 for Aerosol Optical Depth (AOD) at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals (-10% to +50%). An extensive validation of

  5. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  6. Airborne minerals and related aerosol particles: Effects on climate and the environment

    PubMed Central

    Buseck, Peter R.; Pósfai, Mihály

    1999-01-01

    Aerosol particles are ubiquitous in the troposphere and exert an important influence on global climate and the environment. They affect climate through scattering, transmission, and absorption of radiation as well as by acting as nuclei for cloud formation. A significant fraction of the aerosol particle burden consists of minerals, and most of the remainder— whether natural or anthropogenic—consists of materials that can be studied by the same methods as are used for fine-grained minerals. Our emphasis is on the study and character of the individual particles. Sulfate particles are the main cooling agents among aerosols; we found that in the remote oceanic atmosphere a significant fraction is aggregated with soot, a material that can diminish the cooling effect of sulfate. Our results suggest oxidization of SO2 may have occurred on soot surfaces, implying that even in the remote marine troposphere soot provided nuclei for heterogeneous sulfate formation. Sea salt is the dominant aerosol species (by mass) above the oceans. In addition to being important light scatterers and contributors to cloud condensation nuclei, sea-salt particles also provide large surface areas for heterogeneous atmospheric reactions. Minerals comprise the dominant mass fraction of the atmospheric aerosol burden. As all geologists know, they are a highly heterogeneous mixture. However, among atmospheric scientists they are commonly treated as a fairly uniform group, and one whose interaction with radiation is widely assumed to be unpredictable. Given their abundances, large total surface areas, and reactivities, their role in influencing climate will require increased attention as climate models are refined. PMID:10097046

  7. DEVELOPMENT OF AN RH -DENUDED MIE ACTIVE SAMPLING SYSTEM AND TARGETED AEROSOL CALIBRATION

    EPA Science Inventory

    The MIE pDR 1200 nephelometer provides time resolved aerosol concentrations during personal and fixed-site sampling. Active (pumped) operation allows defining an upper PM2.5 particle size, however, this dramatically increases the aerosol mass passing through the phot...

  8. Tropospheric ozone and aerosol variability observed at high latitudes with an airborne lidar

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Fenn, Marta A.; Kooi, Susan A.; Grant, William B.

    1994-01-01

    Large-scale summertime (July-August) distributions of O3 and aerosols were observed in a broad range of atmosphere conditions over the tundra, ice, and ocean regions near Alaska in 1988 and over the lowlands and boreal forests of Canada in 1990. The tropospheric O3 budget in the high-latitude regions was found to be strongly influenced by stratospheric intrusions, and deposition at the surface was found to be the main sink for O3 in the troposphere. Enhanced levels of O3 were observed in plumes from fires in Alaska and Canada. This paper discusses the large-scale variability of O3 and aerosols observed in the high-latitude regions during these field experiments.

  9. Aerosol, surface, and cloud optical parameters derived from airborne spectral actinic flux: measurement comparison with other methods

    NASA Astrophysics Data System (ADS)

    Stark, H.; Bierwirth, E.; Schmidt, S.; Kindel, B. C.; Pilewskie, P.; Lack, D. A.; Madronich, S.; Parrish, D. D.

    2009-12-01

    Optical parameters of aerosols, surfaces, and clouds are essential for an accurate description of Earth’s radiative balance. We will present values for such parameters derived from spectral actinic flux measured on board the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study in April 2008. We will compare these measurements to results obtained from other instruments on board the same aircraft, such as the Solar Spectral Flux Radiometer (SSFR) for irradiance measurements and aerosol extinction and absorption measurements by cavity ring-down and Particle Soot Absorption Photometer (PSAP). Actinic flux is sensitive to these parameters and can be used to measure them directly in the atmosphere without in-situ sampling methods required. We will describe the specifics of the actinic flux measurements, show advantages and disadvantages of this measurement technique, and compare results with other techniques. Furthermore, we will compare our measurements with model calculations from radiative transfer models such as the Tropospheric Ultraviolet and Visible (TUV) radiation model, the widely used library of radiative transfer (libradtran) model, and a Monte-Carlo radiation model (GRIMALDI). Also, we will investigate satellite measurements to constrain the radiation measurements to general radiation conditions in the arctic and to compare the results to aerosol optical depth retrievals. In particular, we will show results for surface albedo of the Arctic Ocean ice surface, extinction and absorption of Arctic haze layers, and optical thickness and albedo measurements of clouds.

  10. Airborne In-Situ Measurements of Aerosol and Cloud Microphysical Properties in Mixed-Phase Clouds Under Varying Conditions

    NASA Astrophysics Data System (ADS)

    Comstock, J. M.; Fan, J.; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Schmid, B.

    2014-12-01

    Cloud microphysical properties impact the interaction of clouds and radiation in the atmosphere, and can influence atmospheric circulations through changes in cloud phase. Characterizing the conditions that control phase changes and the microphysical properties of mixed-phase clouds is important for improving understanding of physical processes that influence cloud phase. We characterize the aerosol and cloud microphysical properties in relation to the atmospheric dynamic and thermodynamic conditions observed in mixed-phase clouds during several aircraft-based field experiments. The Department of Energy Atmospheric Radiation Measurement program's Gulfstream-1 aircraft was used to sample aerosol and cloud properties in warm and cold clouds during several recent field experiments. We analyze in-situ observations from the CalWater and TCAP field campaigns to examine the variability of cloud properties (phase, hydrometeor size, ice and liquid water content, particle habit) with changes in aerosol, vertical velocity, and temperature. These measurements indicate that in addition to aerosol concentration, vertical velocity strength has important influence on cloud phase in mixed-phase cloud regimes.

  11. Airborne studies of submicron aerosol in the troposphere over West Siberia

    SciTech Connect

    Panchenko, M.V.; Zuev, V.E.; Belan, B.D.; Terpugova, S.A.

    1996-04-01

    Submicron fraction particles that have the longest lifespan and are included in almost all atmospheric processes are of special importance among the great variety of sizes of particles present in the atmosphere. Submicron particles mainly determine the opticle state of the atmosphere in the visible spectral range, essentially cause the absorption of infrared radiation and, since they are the products and participants in all aerosol-to-gas transformations, accumulate of a lot of various chemical compounds and transfer them to large distances. Investigation of the processes of the spatial-temporal variability of aerosol particles for different climatic zones of the earth is the experimental base for studying their effect on climatically and ecologically significant factors and estimating their unfavorable tendencies. The increasing anthropogenic loading of the earth`s atmosphere is creating an urgency for aerosol research. Regardless of how perfect the analytical and numerical methods of solving radiation problems may be, success in forecasting climatic change is mainly determined by the reliability of the experimental data on optical parameters of the atmosphere and of the description of their variability under the effect of external factors.

  12. Airborne Measurements of Hydrocarbons and Aerosols in the Puget Sound Airshed

    NASA Astrophysics Data System (ADS)

    Jobson, T.; Laulainen, N.; Laskin, A.; Cowin, J.; Barchet, R.; Barrie, L.; Westberg, H.; Covert, D.; Alexander, M.; Spicer, C.; Joseph, D.

    2002-12-01

    In August 2001, a gas and aerosol measurement campaign was undertaken in Puget Sound from south of Seattle north to the Canadian border. The US DOE Gulfstream 1 aircraft was used to measure meteorological parameters, aerosols and their gaseous precursors. The objectives of this study were to better understand the transport and formation of ozone and particulate matter in the Puget Sound airshed and to develop air quality and meteorological databases for evaluating air quality models used in predicting air quality within this area. The study was coordinated with the Canadian Pacific 2001 study. Real time measurements were made of aerosol number distributions from 3 to 3000 nm diameter and of selected gaseous precursors using standard instrumentation as well as a new proton transfer reaction mass spectrometer. Reactive hydrocarbon compounds, nitrogen oxides, sulphur dioxide, carbon monoxide and ozone were measured on horizontal transects and vertical profiles around Puget Sound in morning and afternoon. Using these observations, this paper will highlight common air quality features as well as some of the complexities related to air quality in a mountain-ringed basin.

  13. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    SciTech Connect

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; Tomlinson, Jason; Fast, Jerome

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by a suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.

  14. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    DOE PAGES

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; ...

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by amore » suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.« less

  15. Backscatter Modeling at 2.1 Micron Wavelength for Space-Based and Airborne Lidars Using Aerosol Physico-Chemical and Lidar Datasets

    NASA Technical Reports Server (NTRS)

    Srivastava, V.; Rothermel, J.; Jarzembski, M. A.; Clarke, A. D.; Cutten, D. R.; Bowdle, D. A.; Spinhirne, J. D.; Menzies, R. T.

    1999-01-01

    Space-based and airborne coherent Doppler lidars designed for measuring global tropospheric wind profiles in cloud-free air rely on backscatter, beta from aerosols acting as passive wind tracers. Aerosol beta distribution in the vertical can vary over as much as 5-6 orders of magnitude. Thus, the design of a wave length-specific, space-borne or airborne lidar must account for the magnitude of 8 in the region or features of interest. The SPAce Readiness Coherent Lidar Experiment under development by the National Aeronautics and Space Administration (NASA) and scheduled for launch on the Space Shuttle in 2001, will demonstrate wind measurements from space using a solid-state 2 micrometer coherent Doppler lidar. Consequently, there is a critical need to understand variability of aerosol beta at 2.1 micrometers, to evaluate signal detection under varying aerosol loading conditions. Although few direct measurements of beta at 2.1 micrometers exist, extensive datasets, including climatologies in widely-separated locations, do exist for other wavelengths based on CO2 and Nd:YAG lidars. Datasets also exist for the associated microphysical and chemical properties. An example of a multi-parametric dataset is that of the NASA GLObal Backscatter Experiment (GLOBE) in 1990 in which aerosol chemistry and size distributions were measured concurrently with multi-wavelength lidar backscatter observations. More recently, continuous-wave (CW) lidar backscatter measurements at mid-infrared wavelengths have been made during the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment in 1995. Using Lorenz-Mie theory, these datasets have been used to develop a method to convert lidar backscatter to the 2.1 micrometer wavelength. This paper presents comparison of modeled backscatter at wavelengths for which backscatter measurements exist including converted beta (sub 2.1).

  16. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various

  17. Modeling long distance dispersal of airborne foot-and-mouth disease virus as a polydisperse aerosol - Application to the emergence of a new strain from Egypt to Israel

    NASA Astrophysics Data System (ADS)

    Klausner, Ziv; Klement, Eyal; Fattal, Eyal

    2015-12-01

    Long distance dispersal (LDD) of airborne aerosol of foot-and-mouth disease (FMD) virus was extensively modeled in the literature. Most studies modeled this aerosol in simplistic approach as a passive tracer, neglecting physical and biological mechanisms that affect bio-aerosols such as the FMD aerosol. This approach was justified either because under persistent wind these mechanisms lower the extant of downwind hazard or on the grounds that the effect of some of the physical mechanisms on particles as small as the FMD particles (0.015-20 μm) is supposed to be negligible compared to the effect of atmospheric turbulence. Even when the FMD aerosol was treated as aerosol, it was assumed that it is monodisperse, i.e., all its particles are of the same size. The aim of the study is to examine whether these simplistic approaches are indeed justified when dealing with LDD of a bio-aerosol under actual atmospheric conditions. In order to do so, the influence of a more realistic modeling of the FMD aerosol as a polydisperse aerosol was compared to passive tracer and to monodisperse aerosol. The comparison refers to a case of a widespread FMD outbreak that occurred in 2012 in Egypt. This outbreak involved the emergence of a new serotype in Egypt, SAT2 and concern was raised that this serotype will advance further to Asia and Europe. Israel is located on the land bridge between Africa, Asia and Europe, and shares a long desert border with Egypt as well as a long Mediterranean shore adjacent to Egypt's shore. This unique location as well as the fact that Israel does not have any cattle trade with its neighboring countries make Israel an interesting test case for the examination of the necessary conditions for the long distance dispersal (LDD) of a new FMD strains from Africa to Europe. The analysis in this study shows that under quasi-stationary wind conditions modeling FMD dispersal as a passive tracer results in a significantly longer hazard distance. Under non

  18. Size-separated sampling and analysis of isocyanates in workplace aerosols. Part I. Denuder--cascade impactor sampler.

    PubMed

    Dahlin, Jakob; Spanne, Mårten; Karlsson, Daniel; Dalene, Marianne; Skarping, Gunnar

    2008-07-01

    Isocyanates in the workplace atmosphere are typically present both in gas and particle phase. The health effects of exposure to isocyanates in gas phase and different particle size fractions are likely to be different due to their ability to reach different parts in the respiratory system. To reveal more details regarding the exposure to isocyanate aerosols, a denuder-impactor (DI) sampler for airborne isocyanates was designed. The sampler consists of a channel-plate denuder for collection of gaseous isocyanates, in series with three-cascade impactor stages with cut-off diameters (d(50)) of 2.5, 1.0 and 0.5 mum. An end filter was connected in series after the impactor for collection of particles smaller than 0.5 mum. The denuder, impactor plates and the end filter were impregnated with a mixture of di-n-butylamine (DBA) and acetic acid for derivatization of the isocyanates. During sampling, the reagent on the impactor plates and the end filter is continuously refreshed, due to the DBA release from the impregnated denuder plates. This secures efficient derivatization of all isocyanate particles. The airflow through the sampler was 5 l min(-1). After sampling, the samples containing the different size fractions were analyzed using liquid chromatography-mass spectrometry (LC-MS)/MS. The DBA impregnation was stable in the sampler for at least 1 week. After sampling, the DBA derivatives were stable for at least 3 weeks. Air sampling was performed in a test chamber (300 l). Isocyanate aerosols studied were thermal degradation products of different polyurethane polymers, spraying of isocyanate coating compounds and pure gas-phase isocyanates. Sampling with impinger flasks, containing DBA in toluene, with a glass fiber filter in series was used as a reference method. The DI sampler showed good compliance with the reference method, regarding total air levels. For the different aerosols studied, vast differences were revealed in the distribution of isocyanate in gas and

  19. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    PubMed

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments.

  20. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  1. Observing and quantifying airflows in the infection control of aerosol- and airborne-transmitted diseases: an overview of approaches.

    PubMed

    Tang, J W; Noakes, C J; Nielsen, P V; Eames, I; Nicolle, A; Li, Y; Settles, G S

    2011-03-01

    With concerns about the potential for the aerosol and airborne transmission of infectious agents, particularly influenza, more attention is being focused on the effectiveness of infection control procedures to prevent hospital-acquired infections by this route. More recently a number of different techniques have been applied to examine the temporal-spatial information about the airflow patterns and the movement of related, suspended material within this air in a hospital setting. Closer collaboration with engineers has allowed clinical microbiologists, virologists and infection control teams to assess the effectiveness of hospital isolation and ventilation facilities. The characteristics of human respiratory activities have also been investigated using some familiar engineering techniques. Such studies aim to enhance the effectiveness of such preventive measures and have included experiments with human-like mannequins using various tracer gas/particle techniques, real human volunteers with real-time non-invasive Schlieren imaging, numerical modelling using computational fluid dynamics, and small scale physical analogues with water. This article outlines each of these techniques in a non-technical manner, suitable for a clinical readership without specialist airflow or engineering knowledge.

  2. Airborne measurements of cloud-forming nuclei and aerosol particles in stabilized ground clouds produced by solid rocket booster firings

    NASA Technical Reports Server (NTRS)

    Hindman, E. E., II; Ala, G. G.; Parungo, F. P.; Willis, P. T.; Bendura, R. J.; Woods, D.

    1978-01-01

    Airborne measurements of cloud volumes, ice nuclei and cloud condensation nuclei, liquid particles, and aerosol particles were obtained from stabilized ground clouds (SGCs) produced by Titan 3 launches at Kennedy Space Center, 20 August and 5 September 1977. The SGCs were bright, white, cumulus clouds early in their life and contained up to 3.5 g/m3 of liquid in micron to millimeter size droplets. The measured cloud volumes were 40 to 60 cu km five hours after launch. The SGCs contained high concentrations of cloud condensation nuclei active at 0.2%, 0.5%, and 1.0% supersaturation for periods of three to five hours. The SGCs also contained high concentrations of submicron particles. Three modes existed in the particle population: a 0.05 to 0.1 micron mode composed of aluminum-containing particles, a 0.2 to 0.8 micron mode, and a 2.0 to 10 micron mode composed of particles that contained primarily aluminum.

  3. Airborne lidar measurements of El Chichon stratospheric aerosols, October 1982 to November 1982

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Osborn, M. T.

    1985-01-01

    A coordinated flight mission to determine the spatial distribution and aerosol characteristics of the El Chichon produced stratospheric aerosol was flown in October to November 1982. The mission covered 46 deg N to 46 deg S and included rendezvous between balloon-, airplane-, and satellite-borne sensors. The lidar data from the flight mission are presented. Representative profiles of lidar backscatter ratio, plots of the integrated backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering functions versus altitude are supplied for each profile. The bulk of the material produced by the El Chichon eruptions of late March 10 to early April 1982 resided between latitudes from 5 to 7 deg S to 35 to 37 deg N and was concentrated above 21 km in a layer that peaked at 23 to 25 km. In this latitude region, peak scattering ratios at a wavelength of 0.6943 micron were approximately 24. The results of this mission are presented in a ready-to-use format for atmospheric and climatic studies.

  4. Sampling the Vertical Moisture Structure of an Atmospheric River Event Using Airborne GPS Radio Occultation Profiling

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Malloy, K.; Murphy, B.; Sussman, J.; Zhang, W.

    2015-12-01

    Atmospheric rivers (ARs) are of high concern in California, bringing significant rain to the region over extended time periods of up to 5 days, potentially causing floods, and more importantly, contributing to the Sierra snowpack that provides much of the regional water resources. The CalWater project focuses on predicting the variability of the West Coast water supply, including improving AR forecasting. Unfortunately, data collection over the ocean remains a challenge and impacts forecasting accuracy. One novel technique to address this issue includes airborne GPS radio occultation (ARO), using broadcast GPS signals from space to measure the signal ray path bending angle and refractivity to retrieve vertical water vapor profiles. The Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) system was developed for this purpose for recording and processing high-sample rate (10MHz) signals in the lower troposphere. Previous studies (Murphy et al, 2014) have shown promising results in acquiring airborne GPS RO data, comparing it to dropsondes and numerical weather models. CalWater launched a field campaign in the beginning of 2015 which included testing GISMOS ARO on the NOAA GIV aircraft for AR data acquisition, flying into the February 6th AR event that brought up to 35 cm of rain to central California. This case study will compare airborne GPS RO refractivity profiles to the NCEP-NCAR final reanalysis model and dropsonde profiles. We will show the data distribution and explain the sampling characteristics, providing high resolution vertical information to the sides of the aircraft in a manner complementary to dropsondes beneath the flight track. We will show how this method can provide additional reliable data during the development of AR storms.

  5. Clear-Sky Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.; Jonsson, Haflidi H.; Collins, Donald R.; Flagan, Richard C.; Seinfield, John H.; Gasso, Santiago; Hegg, Dean A.

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud-free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in-situ aerosol size-distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (lambda = 380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda = 525 nm), but these differences are within the combined error bars of the measurements and computations.

  6. Aerosols: unexpected disequilibrium phenomena between airborne radio activities of lead-210 and its progenies bismuth-210 and polonium-210

    NASA Astrophysics Data System (ADS)

    Wallner, Gabriele; Berner, Axel; Irlweck, Karl

    2002-11-01

    For the first time, concentrations of the long lived radon progenies 210Pb, 210Bi and 210Po were measured in the mine atmosphere of the so called "healing gallery" in Badgastein, Austria, a region famous for its radioactive springs. These investigations were performed in order to study the radioactive equilibrium between the 210Pb-210Bi and the 210Pb-210Po pairs so as to gain more information about the aerosol-forming processes in the mine. The particle size distribution of the aerosols was determined under different ventilation conditions. Six-stage and eight-stage cascade impactors with working ranges from 0.15 to5 µm and from 0.063 to 8 µm, respectively, were used to collect the mine aerosols. These samples were analysed in the laboratory and measured by liquid scintillation spectrometry. The most surprising results were found under full ventilation, when the total activity concentrations of 210Pb, 210Bi and 210Po were 4.6, 2.0 and 16.5 mBq/m3, respectively. In this case 210Po/210Pb activity ratios ranged between 1.8+/-0.3 and 4.3+/-0.3. These unexpected results were confirmed by the eight-stage impactor samples. For the smallest particles, between 0.062 and 0.125 µm, an even higher value of 7.5 was observed. As outside sources could be excluded, such 210Po enrichments must occur during the aerosol-forming process itself inside the mine.

  7. Aerosols: unexpected disequilibrium phenomena between airborne radio activities of lead-210 and its progenies bismuth-210 and polonium-210.

    PubMed

    Wallner, Gabriele; Berner, Axel; Irlweck, Karl

    2002-12-01

    For the first time, concentrations of the long lived radon progenies (210)Pb, (210)Bi and (210)Po were measured in the mine atmosphere of the so called "healing gallery" in Badgastein, Austria, a region famous for its radioactive springs. These investigations were performed in order to study the radioactive equilibrium between the (210)Pb-(210)Bi and the (210)Pb-(210)Po pairs so as to gain more information about the aerosol-forming processes in the mine. The particle size distribution of the aerosols was determined under different ventilation conditions. Six-stage and eight-stage cascade impactors with working ranges from 0.15 to 5 micro m and from 0.063 to 8 micro m, respectively, were used to collect the mine aerosols. These samples were analysed in the laboratory and measured by liquid scintillation spectrometry. The most surprising results were found under full ventilation, when the total activity concentrations of (210)Pb, (210)Bi and (210)Po were 4.6, 2.0 and 16.5 mBq/m(3), respectively. In this case (210)Po/(210)Pb activity ratios ranged between 1.8+/-0.3 and 4.3+/-0.3. These unexpected results were confirmed by the eight-stage impactor samples. For the smallest particles, between 0.062 and 0.125 micro m, an even higher value of 7.5 was observed. As outside sources could be excluded, such (210)Po enrichments must occur during the aerosol-forming process itself inside the mine.

  8. Aerosol Sampling System for Collection of Capstone Depleted Uranium Particles in a High-Energy Environment

    SciTech Connect

    Holmes, Thomas D.; Guilmette, Raymond A.; Cheng, Yung-Sung; Parkhurst, MaryAnn; Hoover, Mark D.

    2009-03-01

    The Capstone Depleted Uranium Aerosol Study was undertaken to obtain aerosol samples resulting from a kinetic-energy cartridge with a large-caliber depleted uranium (DU) penetrator striking an Abrams or Bradley test vehicle. The sampling strategy was designed to (1) optimize the performance of the samplers and maintain their integrity in the extreme environment created during perforation of an armored vehicle by a DU penetrator, (2) collect aerosols as a function of time post-impact, and (3) obtain size-classified samples for analysis of chemical composition, particle morphology, and solubility in lung fluid. This paper describes the experimental setup and sampling methodologies used to achieve these objectives. Custom-designed arrays of sampling heads were secured to the inside of the target in locations approximating the breathing zones of the vehicle commander, loader, gunner, and driver. Each array was designed to support nine filter cassettes and nine cascade impactors mounted with quick-disconnect fittings. Shielding and sampler placement strategies were used to minimize sampler loss caused by the penetrator impact and the resulting fragments of eroded penetrator and perforated armor. A cyclone train was used to collect larger quantities of DU aerosol for chemical composition and solubility. A moving filter sample was used to obtain semicontinuous samples for depleted uranium concentration determination. Control for the air samplers was provided by five remotely located valve control and pressure monitoring units located inside and around the test vehicle. These units were connected to a computer interface chassis and controlled using a customized LabVIEW engineering computer control program. The aerosol sampling arrays and control systems for the Capstone study provided the needed aerosol samples for physicochemical analysis, and the resultant data were used for risk assessment of exposure to DU aerosol.

  9. Aerosol sampling system for collection of Capstone depleted uranium particles in a high-energy environment.

    PubMed

    Holmes, Thomas D; Guilmette, Raymond A; Cheng, Yung Sung; Parkhurst, Mary Ann; Hoover, Mark D

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study was undertaken to obtain aerosol samples resulting from a large-caliber DU penetrator striking an Abrams or Bradley test vehicle. The sampling strategy was designed to (1) optimize the performance of the samplers and maintain their integrity in the extreme environment created during perforation of an armored vehicle by a DU penetrator, (2) collect aerosols as a function of time post perforation, and (3) obtain size-classified samples for analysis of chemical composition, particle morphology, and solubility in lung fluid. This paper describes the experimental setup and sampling methodologies used to achieve these objectives. Custom-designed arrays of sampling heads were secured to the inside of the target in locations approximating the breathing zones of the crew locations in the test vehicles. Each array was designed to support nine filter cassettes and nine cascade impactors mounted with quick-disconnect fittings. Shielding and sampler placement strategies were used to minimize sampler loss caused by the penetrator impact and the resulting fragments of eroded penetrator and perforated armor. A cyclone train was used to collect larger quantities of DU aerosol for measurement of chemical composition and solubility. A moving filter sample was used to obtain semicontinuous samples for DU concentration determination. Control for the air samplers was provided by five remotely located valve control and pressure monitoring units located inside and around the test vehicle. These units were connected to a computer interface chassis and controlled using a customized LabVIEW engineering computer control program. The aerosol sampling arrays and control systems for the Capstone study provided the needed aerosol samples for physicochemical analysis, and the resultant data were used for risk assessment of exposure to DU aerosol.

  10. Ambient airborne-solids concentrations including volcanic ash at Hanford, Washington sampling sites subsequent to the Mount St. Helens eruption

    SciTech Connect

    Sehmel, G.A.

    1981-06-01

    A major eruption of Mount St. Helens, state of Washington, USA, occurred on May 18, 1980. The resulting volcanic ash plume was transported to the east. The Hanford area, northwest of Richland, Washington, was within the southern edge of the fallout plume. Airborne solid concentrations and airborne particle size distributions were measured at two sites in the Hanford area, a southern and northern site. During the initial sampling day (May 19), the average concentration for respirable particles, < 5.5-..mu..m diameter, was 1430-..mu..g/m/sup 3/ at the southern site; the total collection was 2610-..mu..g/m/sup 3/. The respirable content of the total airborne solids was 55%. At both sites average airborne solid concentrations decreased to 10- to 20-..mu..g/m/sup 3/ in December.

  11. Field evaluation of a sampling and analytical method for environmental levels of airborne hexavalent chromium.

    PubMed

    Sheehan, P; Ricks, R; Ripple, S; Paustenbach, D

    1992-01-01

    Hexavalent chromium, Cr(VI), has been classified as a human respiratory carcinogen. Airborne Cr(VI) emissions are associated with a number of industrial sources including metal plating, tanning, chromite ore processing, and spray painting operations; combustion sources such as automobiles and incinerators; and fugitive dusts from contaminated soil. There has been considerable interest within industry and the regulatory community to assess the potential cancer risks of workers exposed to Cr(VI) at levels substantially below the threshold limit value (TLV) of 50 micrograms/m3. To date, only the workplace sampling and analytical method (National Institute for Occupational Safety and Health [NIOSH] Method 7600) has been validated for measuring airborne Cr(VI), and it can accurately measure concentrations only as low as 500 ng/m3. This paper describes the field evaluation of a sampling and analytical method for the quantitation of airborne Cr(VI) at concentrations 5000 times lower than the current standard method (as low as 0.1 ng/m3). The collection method uses three 500-mL Greenberg-Smith impingers in series, operated at 15 Lpm for 24 hr. All three impingers are filled with 200 mL of a slightly alkaline (pH approximately 8) sodium bicarbonate buffer solution. The results of validation tests showed that both Cr(VI) and trivalent chromium, Cr(III), were stable in the collection medium and that samples may be stored for up to 100 days without appreciable loss of Cr(VI). Method precision based on the pooled coefficient of variation for replicate samples was 10.4%, and method accuracy based on the mean percent recovery of spiked samples was 94%. Both the precision and accuracy of the impinger method were within NIOSH criteria. This method could be used to measure ambient concentrations of Cr(VI) in the workplace caused by fugitive emissions from manufacturing processes or chromium-contaminated soils at workplace concentrations well below the current TLV (50 micrograms/m3

  12. PIXE-PIGE analysis of size-segregated aerosol samples from remote areas

    NASA Astrophysics Data System (ADS)

    Calzolai, G.; Chiari, M.; Lucarelli, F.; Nava, S.; Taccetti, F.; Becagli, S.; Frosini, D.; Traversi, R.; Udisti, R.

    2014-01-01

    The chemical characterization of size-segregated samples is helpful to study the aerosol effects on both human health and environment. The sampling with multi-stage cascade impactors (e.g., Small Deposit area Impactor, SDI) produces inhomogeneous samples, with a multi-spot geometry and a non-negligible particle stratification.

  13. Sampling and composition of airborne particulate matter (PM10) from two locations of Mexico City.

    PubMed

    Chirino, Yolanda I; Sánchez-Pérez, Yesennia; Osornio-Vargas, Álvaro Román; Rosas, Irma; García-Cuellar, Claudia María

    2015-09-01

    The PM10 airborne particulate matter with an aerodynamic diameter ≤10 µm is considered as a risk factor of various adverse health outcomes, including lung cancer. Here we described the sampling and composition of PM10 collected from an industrial zone (IZ), and a commercial zone (CZ) of Mexico City. The PM10 was collected with a high-volume sampler in the above mentioned locations and both types of PM10 sampled were characterized by the content of polycyclic aromatic hydrocarbons (PAHs), metals, and endotoxin. The endotoxin PM10 content from IZ and CZ displayed 138.4 UE/mg and 170.4 UE/mg of PM10, respectively.

  14. Altitude Differentiated Aerosol Extinction Over Tenerife (North Atlantic Coast) During ACE-2 by Means of Ground and Airborne Photometry and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Formenti, P.; Elias, T.; Welton, J.; Diaz, J. P.; Exposito, F.; Schmid, B.; Powell, D.; Holben, B. N.; Smirnov, A.; Andreae, M. O.; Devaux, C.; Voss, K.; Lelieveld, J.; Livingston, J. M.; Russell, P. B.; Durkee, P. A.

    2000-01-01

    Retrievals of spectral aerosol optical depths (tau(sub a)) by means of sun photometers have been undertaken in Tenerife (28 deg 16' N, 16 deg 36' W) during ACE-2 (June-July 1997). Five ground-based sites were located at four different altitudes in the marine boundary layer and in the free troposphere, from 0 to 3570 m asl. The goal of the investigation was to provide estimates of the vertical aerosol extinction over the island, both under clean and turbid conditions. Inversion of spectral tau(sub a) allowed to retrieve size distributions, from which the single scattering albedo omega(sub 0) and the asymmetry factor g could be estimated as a function of altitude. These parameters were combined to calculate aerosol forcing in the column. Emphasis is put on episodes of increased turbidity, which were observed at different locations simultaneously, and attributed to outbreaks of mineral dust from North Africa. Differentiation of tau(sub a) as a function of altitude provided the vertical profile of the extinction coefficient sigma(sub e). For dust outbreaks, aerosol extinction is concentrated in two distinct layers above and below the strong subsidence inversion around 1200 m asl. Vertical profiles of tau(sub a) and sigma(sub e) are shown for July 8. In some occasions, vertical profiles are compared to LIDAR observations, performed both at sea level and in the low free troposphere, and to airborne measurements of aerosol optical depths.

  15. Direct contact test for estimating the ecotoxicity of aerosol samples.

    PubMed

    Kováts, Nora; Acs, András; Kovács, Anikó; Ferincz, Arpád; Turóczi, Beatrix; Gelencsér, András

    2012-03-01

    Atmospheric particulate matter with aerodynamic diameter less than 10 μm (PM10) and 2.5 μm (PM2.5) is now identified as one of the most dangerous pollutants on human health by the EU new directive on air quality (2008/50/CE). Although these primary pollutants are monitored in cities, little information is available on their ecotoxicity. In this paper a 'whole-aerosol' testing protocol is suggested based on the kinetic version of the Vibrio fischeri bioluminescence inhibition test.

  16. Development of unmanned aerial vehicle (UAV) based high altitude balloon (HAB) platform for active aerosol sampling

    NASA Astrophysics Data System (ADS)

    Lateran, S.; Sedan, M. F.; Harithuddin, A. S. M.; Azrad, S.

    2016-10-01

    The knowledge on the abundance and diversity of the minute particles or aerosols in the earth's stratosphere is still in its infancy as aerosol sampling at high-altitude still possess a lot of challenges. Thus far, high-altitude aerosol sampling has been conducted mostly using manned flights, which requires enormous financial and logistical resources. There had been researches for the utilisation of high altitude balloon (HAB) for active and passive aerosol samplings within the stratosphere. However, the gathered samples in the payload were either brought down by controlling the balloon air pressure or were just dropped with a parachute to slow the descend speed in order to reduce the impact upon landing. In most cases, the drop location of the sample are unfavorable such as in the middle of the sea, dense foliage, etc. Hence a system that can actively sample aerosols at high-altitude and improve the delivery method in terms of quality and reliability using unmanned aerial vehicle (UAV) is designed and tested in this study.

  17. Occupational Exposure to Airborne Nanomaterials: An Assessment of Worker Exposure to Aerosolized Metal Oxide Nanoparticles in Semiconductor Wastewater Treatment.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Caglayan, Cihan; Zurbenko, Igor G

    2015-01-01

    This study characterized potential inhalation exposures of workers to nanometal oxides associated with industrial wastewater treatment processes in a semiconductor research and development facility. Exposure assessment methodology was designed to capture aerosolized engineered nanomaterials associated with the chemical mechanical planarization wafer polishing process that were accessible for worker contact via inhalation in the on-site wastewater treatment facility. The research team conducted air sampling using a combination of filter-based capture methods for particle identification and characterization and real-time direct-reading instruments for semi-quantitation of particle number concentration. Filter-based samples were analyzed using electron microscopy and energy-dispersive x-ray spectroscopy while real-time particle counting data underwent statistical analysis. Sampling conducted over 14 months included 5 discrete sampling series events for 7 job tasks in coordination with on-site employees. The number of filter-based samples captured for analysis by electron microscopy was: 5 from personal breathing zone, 4 from task areas, and 3 from the background. Direct-reading instruments collected data for 5 sample collection periods in the task area and the background, and 2 extended background collection periods. Engineered nanomaterials of interest (Si, Al, Ce) were identified by electron microscopy in filter-based samples from all areas of collection, existing as agglomerates (>500 nm) and nanoparticles (100 nm-500 nm). Particle counts showed an increase in number concentration during and after selected tasks above background. While additional data is needed to support further statistical analysis and determine trends, this initial investigation suggests that nanoparticles used or generated by chemical mechanical planarization become aerosolized and may be accessible for inhalation exposures by workers in wastewater treatment facilities. Additional research is

  18. Constraining climate model simulations of aerosol size distributions over the North Pacific and North America using in-situ airborne measurements

    NASA Astrophysics Data System (ADS)

    McNaughton, Cameron Stuart

    The effect of aerosols on climate is poorly understood compared to green house gases. Aerosols can scatter and/or absorb solar radiation (the "direct effect") and modify cloud properties (the "indirect effect"), affecting Earth's radiation balance and hydrological cycle. Aerosol lifetimes vary from minutes to weeks in the Earth's atmosphere, so they are heterogeneously distributed in both time and space. Over longer time scales, aerosols can influence climate through sulfur (e.g. CLAW Hypothesis) and iron (e.g. Iron Hypothesis) biogeochemical cycling. Determination of natural and anthropogenic aerosol effects on past and future climate can only be achieved using global climate models (GCM's). Satellites allow global measurements of the present-day atmosphere, but require calibration/validation by observations in-situ. Ground- and ship-based observations are confined to the surface boundary layer which can be decoupled from overlying layers and the free troposphere. Here I use in-situ aircraft measurements from five NASA and NSF airborne field campaigns conducted over the North Pacific and North America between 2001 and 2006 to establish a reduced set of airmass types that are stratified vertically, by source region and according to processes governing their characteristics. For each airmass type the aerosol size distribution, mixing state, optical properties and chemical composition are summarized and discussed. In this study I found, (i) parameterizations of background free troposphere aerosol overestimate extinction by ˜50%, minimizing the differences between pre-industrial versus contemporary radiative forcing, (i) meteorological model errors in water vapour mixing ratio can overwhelm the influence of composition-dependent aerosol hygroscopicity on radiating forcing, (iii) aerosol number in convective cloud outflow over North America in summer were reduced by 1/e after ˜2 days with no detectable increase in aerosol mass or decrease in SO2, illustrating the

  19. Airborne measurements of spectral direct aerosol radiative forcing in the Intercontinental chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution, 2004

    NASA Astrophysics Data System (ADS)

    Redemann, Jens; Pilewskie, Peter; Russell, Philip B.; Livingston, John M.; Howard, Steve; Schmid, Beat; Pommier, John; Gore, Warren; Eilers, James; Wendisch, Manfred

    2006-07-01

    As part of the INTEX-NA (Intercontinental chemical Transport Experiment-North America) and ITCT (Intercontinental Transport and Chemical Transformation of anthropogenic pollution) field studies, the NASA Ames 14-channel Airborne Tracking Sunphotometer (AATS-14) and a pair of Solar Spectral Flux Radiometers (SSFR) took measurements from aboard a Sky Research Jet stream 31 (J31) aircraft during 19 science flights over the Gulf of Maine during 12 July to 8 August 2004. The combination of coincident AATS-14 and SSFR measurements yields plots of net (downwelling minus upwelling) spectral irradiance as a function of aerosol optical depth (AOD) as measured along horizontal flight legs. By definition, the slope of these plots yields the instantaneous change in net irradiance per unit AOD change and is referred to as the instantaneous spectral aerosol radiative forcing efficiency, Ei (W m-2 nm-1). Numerical integration over a given spectral range yields the instantaneous broadband aerosol radiative forcing efficiency (W m-2). This technique for deriving Ei is called the aerosol gradient method. Within 10 case studies considered suitable for our analysis we found a high variability in the derived instantaneous aerosol forcing efficiencies for the visible wavelength range (350-700 nm), with a mean of -79.6 W m-2 and a standard deviation of 21.8 W m-2 (27%). An analytical conversion of the instantaneous forcing efficiencies to 24-hour-average values yielded -45.8 ± 13.1 W m-2 (mean ± std). We present spectrally resolved aerosol forcing efficiencies between 350 and 1670 nm, estimates of the midvisible aerosol single scattering albedo and a comparison of observed broadband forcing efficiencies to previously reported values.

  20. Developing a Scalable Remote Sampling Design for the NEON Airborne Observation Platform (AOP)

    NASA Astrophysics Data System (ADS)

    Musinsky, J.; Wasser, L. A.; Kampe, T. U.; Leisso, N.; Krause, K.; Petroy, S. B.; Cawse-Nicholson, K.; van Aardt, J. A.; Serbin, S.

    2013-12-01

    The National Ecological Observatory Network (NEON) airborne observation platform (AOP) will collect co-registered high-resolution hyperspectral imagery, discrete and waveform LiDAR, and high-resolution digital photography for more than 60 terrestrial and 23 aquatic sites spread across the continental United States, Puerto Rico, Alaska and Hawaii on an annual basis over the next 30 years. These data, to be made freely available to the public, will facilitate the scaling of field-based biological, physical and chemical measurements to regional and continental scales, enabling a better understanding of the relationships between climate variability and change, land use change and invasive species, and their ecological consequences in areas not directly sampled by the NEON facilities. However, successful up-scaling of in situ measurements requires a flight sampling design that captures environmental heterogeneity and diversity (i.e., ecological and topographic gradients), is sensitive to temporal system variation (e.g., phenology), and can respond to major disturbance events. Alignment of airborne campaigns - composed of two payloads for nominal science acquisitions and one payload for PI-driven rapid-response campaigns -- with other ground, airborne (e.g., AVIRIS) and satellite (e.g., Landsat, MODIS) collections will further facilitate scaling between sensors and data sources of varying spatial and spectral resolution and extent. This presentation will discuss the approach, challenges and future goals associated with the development of NEON AOP's sampling design, using examples from the 2013 nominal flight campaigns in the Central Plains (NEON Domain 10) and the Pacific Southwest (Domain 17), and the rapid response flight campaign of the High Park Fire site outside of Fort Collins, CO. Determination of the specific flight coverage areas for each campaign involved analysis of the landscape scale ecological, geophysical and bioclimatic attributes and trends most closely

  1. Improved identification of transition metals in airborne aerosols by SEM-EDX combined backscattered and secondary electron microanalysis.

    PubMed

    Pietrodangelo, A; Pareti, S; Perrino, C

    2014-03-01

    The SEM EDX backscattered electron (BSE) atomic number contrast has been largely used in this work, in combination with conventional secondary electron microanalysis, to investigate the presence of metal particles in airborne particulate collected at three sites (industrial, residential, and rural background) in the Po Valley (Italy). Individual particle x-ray microanalysis was used for this aim. In many cases, the presence of metal particles was not evident by secondary electron imaging and it was instead revealed by BSE detection. Metal particles were observed either as isolated (not clustered to other particles), or gathered together (homogeneous clusters). In addition, the BSE microanalysis put on evidence two main types of association of metals to other particulate components: heterogeneous clusters and metals embedded or enclosed in other materials. In this study, the first association (heterogeneous clusters) was observed mostly between Fe-bearing metallic particles and soot aggregates (or other carbonaceous particles) and it was found in the particulate matter (PM) of all studied sites. The second association, conversely, seems to be characterized by more selective relationships between composition/size of metal particles and type of other particulate components. These associations could be evidenced only when using the BSE Z-contrast and mainly concern three cases: (1) unusual silicate-carbonate mixed aggregates were observed at the industrial site only. In these aggregates, embedded Mn, Cr, Co, Bi, W, and Zr fine particles were selectively observed. (2) Ni and V rich ultrafine particles were only observed as embedded particles in the surface structure of carbon cenospheres. (3) Pb or Pb-Zn bearing fine and ultrafine particles were largely detected only in oxygenated organic aerosols in the ultrafine PM.

  2. Sampling and characterization of aerosols produced under simulated nuclear reactor accident conditions

    SciTech Connect

    Schlenger, B.J.; Horton, E.L.; Herceg, J.E.; Dunn, P.F.

    1986-12-01

    An aerosol sampling system was designed and used in a series of nuclear reactor safety experiments. The system was designed to sample radioactive and chemically reactive aerosols of unknown size distributions and concentrations in high temperature, high pressure steam/hydrogen environments. The aerosol samples are being analyzed posttest to determine their composition and morphology by microanalytical techniques. Main steam particle size distributions and loadings are being computed from particle data generated from SEM micrograph images and collection efficiencies calculated with measured thermal-hydraulic data. The system would be applicable to other types of experiments in which the sampling environment is severe and/or a priori knowledge of the general particle size range and loading are limited.

  3. Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate

    NASA Astrophysics Data System (ADS)

    Abdelhamid, M.; Fortes, F. J.; Fernández-Bravo, A.; Harith, M. A.; Laserna, J. J.

    2013-11-01

    Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2-8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%.

  4. EVALUATION OF MEDIA FOR RECOVERY OF AEROSOLIZED BACTERIA

    EPA Science Inventory

    Disease transmission by airborne bacteria is well known.Bacterial burden in indoor air is estimated by sampling the air and estimating Colony Forming Unites (CFU) using a variety of media.In this study, the recovery of bacteria, after aerosolization in an aerosol chamber, and emp...

  5. First airborne samples of a volcanic plume for δ13C of CO2 determinations

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias P.; Lopez, Taryn M.

    2016-04-01

    Volcanic degassing is one of the main natural sources of CO2 to the atmosphere. Carbon isotopes of volcanic gases enable the determination of CO2 sources including mantle, organic or carbonate sediments, and atmosphere. Until recently, this work required sample collection from vents followed by laboratory analyses. Isotope ratio infrared analyzers now enable rapid analyses of plume δ13C-CO2, in situ and in real time. Here we report the first analyses of δ13C-CO2 from airborne samples. These data combined with plume samples from the vent area enable extrapolation to the volcanic source δ13C. We performed our experiment at the previously unsampled and remote Kanaga Volcano in the Western Aleutians. We find a δ13C source composition of -4.4‰, suggesting that CO2 from Kanaga is primarily sourced from the upper mantle with minimal contributions from subducted components. Our method is widely applicable to volcanoes where remote location or activity level precludes sampling using traditional methods.

  6. Airborne Observation of the Hayabusa Sample Return Capsule Re-Entry

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Jenniskens, Peter; Cassell, Alan M.; Albers, James; Winter, Michael W.

    2011-01-01

    NASA Ames Research Center and the SETI Institute collaborated on an effort to observe the Earth re-entry of the Japan Aerospace Exploration Agency's Hayabusa sample return capsule. Hayabusa was an asteroid exploration mission that retrieved a sample from the near-Earth asteroid Itokawa. Its sample return capsule re-entered over the Woomera Prohibited Area in southern Australia on June 13, 2010. Being only the third sample return mission following NASA's Genesis and Stardust missions, Hayabusa's return was a rare opportunity to collect aerothermal data from an atmospheric entry capsule returning at superorbital speeds. NASA deployed its DC-8 airborne laboratory and a team of international researchers to Australia for the re-entry. For approximately 70 seconds, spectroscopic and radiometric imaging instruments acquired images and spectra of the capsule, its wake, and destructive re-entry of the spacecraft bus. Once calibrated, spectra of the capsule will be interpreted to yield data for comparison with and validation of high fidelity and engineering simulation tools used for design and development of future atmospheric entry system technologies. A brief summary of the Hayabusa mission, the preflight preparations and observation mission planning, mission execution, and preliminary spectral data are documented.

  7. Characterization of Reaerosolization in an Effort to Improve Sampling of Airborne Viruses

    DTIC Science & Technology

    2008-04-01

    bubble to a liquid is very similar to the passage of aerosols through filters (Fuchs 1964; Pich and Schutz 1991). The deposition of aerosols from a...Particles in a New Particle Size Magnifier." Aerosol Sci. Tech., 3(4), 353-366. Pich , J., and Schutz, W. (1991). "On the Theory of Particle Deposition

  8. Characterization of Reaerosolization From Impingers in an Effort to Improve Airborne Virus Sampling

    DTIC Science & Technology

    2009-04-01

    1964; Pich and Schutz 1991). The deposition of aerosols within a filter as a function of particle size will have a clear minimum because large...of ultrafine aerosol particles in a new particle size magnifier. Aerosol Sci. Tech. 3, 353–366. Pich , J., and Schutz, W. (1991) On the theory of

  9. Water Soluble Organic Nitrogen in atmospheric aerosol samples from urban, sub-urban and pristine areas of Venezuela

    NASA Astrophysics Data System (ADS)

    Canelon, R.; Giuliante, A.; Aguiar, G.; Ghneim, T.; Perez, T.

    2007-12-01

    Concentrations of water soluble organic nitrogen (WSON) were determined in atmospheric total suspended particles (TSP) collected between September of 2005 and May of 2006, in an urban continental (Caracas, 10° 29' 09'' N, 66° 53' 48'' W), an urban coastal (Catia la mar, 10° 35' 47'' N, 67° 01' 45'' W), a sub-urban coastal (Osma, 10° 32' N, 67° 28' W), a suburban continental (Altos de Pipe, 10° 23' 41'' N, 63° 59' 10'' W), a pristine coastal (Isla de Aves, 15° 40' N, 63° 36' W) and a pristine continental (La Gran Sabana National Park, 5° 41' 30'' N, 61° 34' 20'' W) areas of Venezuela. TSP samples were collected using a Hi-Vol airborne particle sampler. TSP were impacted on a fiberglass filter pretreated under 400° C for 4 hours to minimize organic nitrogen contamination. Ultra sound water extractions of the sample filters were performed and their NH4+, NO2- and NO3- concentrations were determined by ion exchange liquid chromatography. The water extracts were UV digested and the nitrogen inorganic ions were analyzed after the UV exposure. WSON concentrations were calculated by the difference between the inorganic nitrogen concentrations before and after UV digestion. Ninety five percent of the aerosol samples collected in the suburban and pristine areas showed a WSON concentration range from 0.03 to 0.6 μg/m3 whereas in urban areas the range was 0.21 to 1.09 μg/m3. These concentration values are on the same order of magnitude than the previously found in other tropical and subtropical areas. The contribution of aerosol WSON to the total soluble nitrogen in the coastal urban, sub-urban and pristine areas ranged from 23 to 67%, while in Caracas was smaller (38±8%, n=5). Therefore, aerosol WSON provides an important source of nitrogen to these pristine and suburban ecosystems, which could potentially have implications on the nutrient cycling. There was a statistically significant linear correlation between the aerosol WSON and the water soluble inorganic

  10. Potential artifacts associated with historical preparation of joint compound samples and reported airborne asbestos concentrations.

    PubMed

    Brorby, G P; Sheehan, P J; Berman, D W; Bogen, K T; Holm, S E

    2011-05-01

    Airborne samples collected in the 1970s for drywall workers using asbestos-containing joint compounds were likely prepared and analyzed according to National Institute of Occupational Safety and Health Method P&CAM 239, the historical precursor to current Method 7400. Experimentation with a re-created, chrysotile-containing, carbonate-based joint compound suggested that analysis following sample preparation by the historical vs. current method produces different fiber counts, likely because of an interaction between the different clearing and mounting chemicals used and the carbonate-based joint compound matrix. Differences were also observed during analysis using Method 7402, depending on whether acetic acid/dimethylformamide or acetone was used during preparation to collapse the filter. Specifically, air samples of sanded chrysotile-containing joint compound prepared by the historical method yielded fiber counts significantly greater (average of 1.7-fold, 95% confidence interval: 1.5- to 2.0-fold) than those obtained by the current method. In addition, air samples prepared by Method 7402 using acetic acid/dimethylformamide yielded fiber counts that were greater (2.8-fold, 95% confidence interval: 2.5- to 3.2-fold) than those prepared by this method using acetone. These results indicated (1) there is an interaction between Method P&CAM 239 preparation chemicals and the carbonate-based joint compound matrix that reveals fibers that were previously bound in the matrix, and (2) the same appeared to be true for Method 7402 preparation chemicals acetic acid/dimethylformamide. This difference in fiber counts is the opposite of what has been reported historically for samples of relatively pure chrysotile dusts prepared using the same chemicals. This preparation artifact should be considered when interpreting historical air samples for drywall workers prepared by Method P&CAM 239.

  11. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  12. Airborne Observation of the Hayabusa Sample Return Capsule Re-Entry

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Jenniskens, Peter M.; Cassell, Alan M.; Albers, Jim; Winterm Michael

    2011-01-01

    The Japan Aerospace Exploration Agency (JAXA) recently completed their Hayabusa asteroid exploration mission. Launched in 2003, Hayabusa made contact with, and retrieved a sample from, the near-Earth asteroid Itokawa in 2005. The sample return capsule (SRC) re-entered over the Woomera Test Range (WTR) in southern Australia on June 13, 2010, at approximately 11:21 pm local time (09:51 UTC). The SRC re-entry velocity was 12.2 km/s, making it the second-fastest Earth return velocity behind NASA s Stardust sample return capsule re-entry in 2006. From a space technology development perspective, Hayabusa s re-entry functioned as a rare flight experiment of an entry vehicle and its thermal protection system. In collaboration with the SETI Institute, NASA deployed its DC-8 airborne laboratory and a team of international researchers to Australia to observe the re-entry of the SRC. The use of an airborne platform enables observation above most clouds and weather and greatly diminishes atmospheric absorption of the optical signals. The DC-8 s flight path was engineered and flown to provide a view of the spacecraft that bracketed the heat pulse to the capsule. A suite of imaging instruments on board the DC-8 successfully recorded the luminous portion of the re-entry event. For approximately 70 seconds, the spectroscopic and radiometric instruments acquired images and spectra of the capsule, its wake, and destructive re-entry of the spacecraft bus. Figure 1 shows a perspective view of the WTR, the SRC re-entry trajectory, and the flight path of the DC-8. The SRC was jettisoned from the spacecraft bus approximately 3 hours prior to entry interface. Due to thruster failures on the spacecraft, it could not be diverted from the entry path and followed the trajectory of the SRC, where it burned up in the atmosphere between approximately 100 and 50 km altitude. Fortuitously, the separation distance between the spacecraft and SRC was sufficient to clearly resolve the SRC from the

  13. [Pollution characteristics of microbial aerosols generated from a municipal sewage treatment plant].

    PubMed

    Qiu, Xiong-Hui; Li, Yan-Peng; Niu, Tie-Jun; Li, Mei-Ling; Ma, Zhi-Hui; Miao, Ying; Wang, Xiang-Jun

    2012-07-01

    To characterize the pollution characteristics of microbial aerosols emitted from municipal sewage treatment plants, microbial aerosols were sampled with an Andersen 6-stage impactor at different treatment units of a Xi'an sewage treatment plant between June 2011 and July 2011. The plate-culture and colony-counting methods were employed to determine the concentrations, particle size distributions and median diameters of the airborne bacteria, fungi and actinomycetes. The results showed that the highest concentrations of bacteria (7 866 CFU x m(-3) +/- 960 CFU x m(-3)) and actinomycetes (2 139 CFU x m(-3) +/- 227 CFU x m(-3)) were found in the sludge-dewatering house while the highest fungi concentration (2156 CFU x m(-3) +/- 119 CFU x m(-3)) in the oxidation ditch. The airborne bacteria, fungi and actinomycetes all showed a skewed distribution in particle size. The peaks of bacteria and fungi were in the size range of 2.1-3.3 microm, whereas the peak of airborne actinomycetes was between 1. 1-2.1 microm in size. In general, the order of the median diameters of different microbial aerosols generated from the sewage treatment plant was airborne bacteria > airborne fungi > airborne actinomycetes. In addition, the spatial variation characteristics of microbial aerosols showed that the larger the particle size of the microorganism, the faster the reducing rate of the aerosol concentration. The variations in the reducing rate of concentration with particle sizes can be ordered as airborne bacteria > airborne fungi > airborne actinomycetes.

  14. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  15. An aerosol and gas sampling apparatus for remote observatory use

    NASA Astrophysics Data System (ADS)

    Komhyr, W. D.

    1983-04-01

    An air sampling apparatus is described which standardizes sampling height at a field station at 10 m or more above ground level and which minimizes loss of particles and destruction and contamination of sampled trace atmospheric gases as air is conducted through the apparatus to various monitoring instruments. Basic design features render the apparatus useful for air sampling under widely varying climate conditions, and at station altitudes ranging from sea level to more than 4 km. Four systems have been built, and have been used sucessfully since 1977 at the NOAA Geophysical Monitoring for Climatic Change program baseline stations at Point Barrow, Alaska; Mauna Loa, Hawaii; American Samoa, South Pacific; and South Pole, Antarctica.

  16. Airborne Fungi in Sahara Dust Aerosols Reaching the Eastern Caribbean: II. Species Identification Using Molecular Techniques

    NASA Astrophysics Data System (ADS)

    de La Mota, A.; Betancourt, C.; Detres, Y.; Armstrong, R.

    2003-12-01

    Fungi samples from filters collected in Castle Bruce, Dominica from March through July 2002, were previously purified and identified to genus level using classic macroscopic and microscopic techniques. A total of 105 isolated colonies were cultured in liquid media and the mycelial mats used for DNA extraction. PCR was used to amplify the ITS region of the rDNA using the ITS1 and ITS4 primers. Both strands of the amplified products were sequenced and the final identification to species level was completed by a GenBank search. Fourteen different species and one fungal endophyte were identified from genders Aspergillus,Penicillium, Fusarium, Cladosporium, Curvularia and Phanerochaete. Some of these species such as A. fumigatus, A. japonicus, P. citrinum and C. cladosporoides are known to cause respiratory disorders in humans. A. fumigatus causes an aggressive pulmonary allergic response that might result in allergic bronchopulmonary aspergillosis. Other species such as F. equiseti and C. brachyspora are plant pathogens affecting economically important crops. Sahara dust is an important source of fungal spores of species that are not common in the Caribbean region.

  17. Total reflection X-ray fluorescence (TXRF) for direct analysis of aerosol particle samples.

    PubMed

    Bontempi, E; Zacco, A; Benedetti, D; Borgese, L; Colombi, P; Stosnach, H; Finzi, G; Apostoli, P; Buttini, P; Depero, L E

    2010-04-14

    Atmospheric aerosol particles have a great impact on the environment and on human health. Routine analysis of the particles usually involves only the mass determination. However, chemical composition and phases provide fundamental information about the particles' origins and can help to prevent health risks. For example, these particles may contain heavy metals such as Pb, Ni and Cd, which can adversely affect human health. In this work, filter samples were collected in Brescia, an industrial town located in Northern Italy. In order to identify the chemical composition and the phases of the atmospheric aerosols, the samples were analysed by means of total reflection X-ray fluorescence (TXRF) spectrometry with a laboratory instrument and X-ray microdiffraction at Synchrotron Daresbury Laboratories, Warrington (Cheshire, UK). The results are discussed and correlated to identify possible pollution sources. The novelty of this analytical approach is that filter samples for TXRF were analysed directly and did not require chemical pretreatment to leach elements from the aerosol particulates. The results of this study clearly show that TXRF is a powerful technique for the analysis of atmospheric aerosols on 'as-received' filters, thereby leaving samples intact and unaltered for possible subsequent analyses by other methods. In addition, the low detection limits for many elements (low ng/cm2) indicate that this method may hold promise in various application fields, such as nanotechnology.

  18. Optimized Field Sampling and Monitoring of Airborne Hazardous Transport Plumes; A Geostatistical Simulation Approach

    SciTech Connect

    Chen, DI-WEN

    2001-11-21

    Airborne hazardous plumes inadvertently released during nuclear/chemical/biological incidents are mostly of unknown composition and concentration until measurements are taken of post-accident ground concentrations from plume-ground deposition of constituents. Unfortunately, measurements often are days post-incident and rely on hazardous manned air-vehicle measurements. Before this happens, computational plume migration models are the only source of information on the plume characteristics, constituents, concentrations, directions of travel, ground deposition, etc. A mobile ''lighter than air'' (LTA) system is being developed at Oak Ridge National Laboratory that will be part of the first response in emergency conditions. These interactive and remote unmanned air vehicles will carry light-weight detectors and weather instrumentation to measure the conditions during and after plume release. This requires a cooperative computationally organized, GPS-controlled set of LTA's that self-coordinate around the objectives in an emergency situation in restricted time frames. A critical step before an optimum and cost-effective field sampling and monitoring program proceeds is the collection of data that provides statistically significant information, collected in a reliable and expeditious manner. Efficient aerial arrangements of the detectors taking the data (for active airborne release conditions) are necessary for plume identification, computational 3-dimensional reconstruction, and source distribution functions. This report describes the application of stochastic or geostatistical simulations to delineate the plume for guiding subsequent sampling and monitoring designs. A case study is presented of building digital plume images, based on existing ''hard'' experimental data and ''soft'' preliminary transport modeling results of Prairie Grass Trials Site. Markov Bayes Simulation, a coupled Bayesian/geostatistical methodology, quantitatively combines soft information

  19. Low-level atmospheric radioactivity measurement using a NaI(Tl) spectrometer during aerosol sampling.

    PubMed

    Hýža, Miroslav; Rulík, Petr

    2016-12-22

    In order to increase the early warning ability of the radiation monitoring network of the Czech republic, a high-volume aerosol sampler was upgraded with a NaI(Tl) probe placed directly above the aerosol filter. The paper demonstrates the possibility of using a method based on principal component regression to accurately subtract the complicated natural background caused by radon decay products. This approach yielded minimum detectable activities of 8mBq/m(3), 3mBq/m(3) and 7mBq/m(3) for (131)I, (134)Cs and (137)Cs, respectively, after 24h of sampling.

  20. Sampling, characterization, and remote sensing of aerosols formed in the atmospheric hydrolysis of uranium hexafluoride

    SciTech Connect

    Bostick, W.D.; McCulla, W.H.; Pickrell, P.W.

    1984-05-01

    When gaseous uranium hexafluoride (UF/sub 6/) is released into the atmosphere, it rapidly reacts with ambient moisture to form an aerosol of uranyl fluoride (UO/sub 2/F/sub 2/) and hydrogen fluoride (HF). As part of our Safety Analysis program, we have performed several experimental releases of HF/sub 6/ in contained volumes in order to investigate techniques for sampling and characterizing the aerosol materials. The aggregate particle morphology and size distribution have been found to be dependent upon several conditions, including the temperature of the UF/sub 6/ at the time of its release, the relative humidity of the air into which it is released, and the elapsed time after the release. Aerosol composition and settling rate have been investigated using stationary samplers for the separate collection of UO/sub 2/F/sub 2/ and HF and via laser spectroscopic remote sensing (Mie scatter and infrared spectroscopy). 25 refs., 16 figs., 5 tabs.

  1. Intercomparisons of Airborne Measurements of Aerosol Ionic Chemical Composition during TRACE-P and ACE-Asia

    NASA Technical Reports Server (NTRS)

    Ma, Y.; Weber, R. J.; Maxwell-Meier, K.; Orsini, D. A.; Lee, Y.-N.; Huebert, B. J.; Howell, S. G.; Bertram, T.; Talbot, R. W.

    2003-01-01

    As part of the two field studies, Transport and Chemical Evolution over the Pacific (TRACE-P), and the Asian Aerosol Characterization Experiment (ACEAsia), the inorganic chemical composition of tropospheric aerosols was measured over the western Pacific from three separate aircraft using various methods. Comparisons are made between the rapid online techniques of the Particle Into Liquid Sampler (PILS) for measurement of a suite of fine particle ionic compounds and a mist chamber (MC/IC) measurement of fine sulfate, and the longer time-integrated filter and multi-orifice impactor (MOI) measurements. Comparisons between identical PILS on two separate aircraft flying in formation showed that they were highly correlated (e.g., sulfate r(sup 2) of 0.95), but were systematically different by 10 +/- 5% (linear regression slope and 95% confidence bounds), and had generally higher concentrations on the aircraft with a low turbulence inlet and shorter inlet-to-instrument transmission tubing. Comparisons of PILS and mist chamber measurements of fine sulfate on two different aircraft during formation flying had an 3 of 0.78 and a relative difference of 39% +/- 5%. MOI ionic data integrated to the PILS upper measurement size of 1.3 pm sampling from separate inlets on the same aircraft showed that for sulfate, PILS and MOI were within 14% +/- 6% and correlated with an r(sup 2) of 0.87. Most ionic compounds were within f 30%, which is in the range of differences reported between PILS and integrated samplers from ground-based comparisons. In many cases, direct intercomparison between the various instruments is difficult due to differences in upper-size detection limits. However, for this study, the results suggest that the fine particle mass composition measured from aircraft agree to within 30-40%.

  2. Assessment of increased sampling pump flow rates in a disposable, inhalable aerosol sampler.

    PubMed

    Stewart, Justin; Sleeth, Darrah K; Handy, Rod G; Pahler, Leon F; Anthony, T Renee; Volckens, John

    2017-03-01

    A newly designed, low-cost, disposable inhalable aerosol sampler was developed to assess workers personal exposure to inhalable particles. This sampler was originally designed to operate at 10 L/min to increase sample mass and, therefore, improve analytical detection limits for filter-based methods. Computational fluid dynamics modeling revealed that sampler performance (relative to aerosol inhalability criteria) would not differ substantially at sampler flows of 2 and 10 L/min. With this in mind, the newly designed inhalable aerosol sampler was tested in a wind tunnel, simultaneously, at flows of 2 and 10 L/min flow. A mannequin was equipped with 6 sampler/pump assemblies (three pumps operated at 2 L/min and three pumps at 10 L/min) inside a wind tunnel, operated at 0.2 m/s, which has been shown to be a typical indoor workplace wind speed. In separate tests, four different particle sizes were injected to determine if the sampler's performance with the new 10 L/min flow rate significantly differed to that at 2 L/min. A comparison between inhalable mass concentrations using a Wilcoxon signed rank test found no significant difference in the concentration of particles sampled at 10 and 2 L/min for all particle sizes tested. Our results suggest that this new aerosol sampler is a versatile tool that can improve exposure assessment capabilities for the practicing industrial hygienist by improving the limit of detection and allowing for shorting sampling times.

  3. Aerosol sampling and characterization in the developing US oil-shale industry

    SciTech Connect

    Hargis, K.M.; Tillery, M.I.; Gonzales, M.; Garcia, L.L.

    1981-01-01

    Aerosol sampling and characterization studies of workplace air were conducted at four demonstration-scale oil shale facilities located in northwestern Colorado and northeastern Utah. These facilities consisted of an underground mining/aboveground retorting facility, two modified in situ retorting facilities with associated underground mining, and a true in situ retorting facility. Emphasis was placed on study of the retorting phase of operation at these facilities. Aerosol samples were collected on filter media by high volume air samplers, low volume portable sampling pumps with or without cyclone pre-separators, and cascade impactors. Samples were analyzed to determine total and respirable dust concentrations, particle size distributions, free silica content, total benzene or cyclohexane extractables, and selected polynuclear aromatic hydrocarbons. Total and respirable dust were observed to range from very low to very high concentrations, with significant free silica content. Measurable levels of polynuclear aromatic hydrocarbons were also observed at each of the facilities.

  4. High Volume Air Sampling for Viral Aerosols: A Comparative Approach

    DTIC Science & Technology

    2010-03-01

    low, with the cotton swabbing only recovering 27.7 percent of the BA on the surface (Rose, Jensen, Peterson, Banerjee, & Arduino , 2004). A follow-on...BA were present on the surface (Hodges, Rose, Peterson, Noble-Wang, & Arduino , 2006). These lower sensitivities at low concentrations could be a...monitored during each sample collection period. Ambient pressure data was obtained hourly for Edmonton, AB from the Canadian Weather Service

  5. Single point aerosol sampling: Evaluation of mixing and probe performance in a nuclear stack

    SciTech Connect

    Rodgers, J.C.; Fairchild, C.I.; Wood, G.O.

    1995-02-01

    Alternative Reference Methodologies (ARMs) have been developed for sampling of radionuclides from stacks and ducts that differ from the methods required by the U.S. EPA. The EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative methods are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of the ARMs. Coefficients of variation of the velocity tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed numerical criteria placed upon the coefficients of variation by the ARMs were met at sampling stations located 9 and 14 stack diameters from flow entrance, but not at a location that is 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 {mu}m aerodynamic equivalent diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L/min (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the EPA requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the ARM criteria; however, the isokinetic probes would not.

  6. Simultaneous sampling of indoor and outdoor airborne radioactivity after the Fukushima Daiichi nuclear power plant accident.

    PubMed

    Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Arae, Hideki; Sahoo, Sarata Kumar; Janik, Miroslaw; Hosoda, Masahiro; Tokonami, Shinji

    2014-02-18

    Several studies have estimated inhalation doses for the public because of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Most of them were based on measurement of radioactivity in outdoor air and included the assumption that people stayed outdoors all day. Although this assumption gives a conservative estimate, it is not realistic. The "air decontamination factor" (ratio of indoor to outdoor air radionuclide concentrations) was estimated from simultaneous sampling of radioactivity in both inside and outside air of one building. The building was a workplace and located at the National Institute of Radiological Sciences (NIRS) in Chiba Prefecture, Japan. Aerosol-associated radioactive materials in air were collected onto filters, and the filters were analyzed by γ spectrometry at NIRS. The filter sampling was started on March 15, 2011 and was continued for more than 1 year. Several radionuclides, such as (131)I, (134)Cs, and (137)Cs were found by measuring the filters with a germanium detector. The air decontamination factor was around 0.64 for particulate (131)I and 0.58 for (137)Cs. These values could give implications for the ratio of indoor to outdoor radionuclide concentrations after the FDNPP accident for a similar type of building.

  7. Assessing Aerosol Mixed Layer Heights from the NASA Larc Airborne High Spectral Resolution Lidar (HSRL) during the Discover-AQ Field Campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Sawamura, P.; Collins, J. E., Jr.; Seaman, S. T.; Cook, A. L.; Harper, D. B.; Follette-Cook, M. B.; daSilva, A.; Randles, C. A.

    2014-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD, during January and February 2013 over the San Joaquin Valley of California, during September 2013 over Houston, TX and during July and August 2014 over Denver, CO. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the mixed layer (ML) height. Analysis of the ML height at these four locations is presented, including temporal and horizontal variability and comparisons between land and water, including the Chesapeake Bay and Galveston Bay. Using the ML heights, the distribution of AOT relative to the ML heights is determined, which is relevant for assessing the long-range transport of aerosols. The ML heights are also used to help relate column AOT measurements and extinction profiles to surface PM2.5 concentrations. The HSRL ML heights are also used to evaluate the performance in simulating the temporal and spatial variability of ML heights from both chemical regional models and global forecast models.

  8. Airborne Sun photometer measurements of aerosol optical depth and columnar water vapor during the Puerto Rico Dust Experiment and comparison with land, aircraft, and satellite measurements

    NASA Astrophysics Data System (ADS)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey S.; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; Smirnov, Alexander; Dubovik, Oleg; Welton, Ellsworth J.; Campbell, James R.; Wang, Jun; Christopher, Sundar A.

    2003-10-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km above sea level (asl) reproduce the vertical structure measured by coincident aircraft in situ measurements of total aerosol number concentration. AATS-6 extinction retrievals also agree with corresponding values derived from ground-based lidar measurements for altitudes above the trade inversion. The spectral behavior of AOD within specific layers beneath the top of the aircraft profile is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt, with mean Ångström wavelength exponents of ˜0.20. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in situ measurements agree to within ˜4% (0.13 g/cm2). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low-altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004-0.030 with coincident data obtained with an AERONET Sun/sky radiometer located on Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by ˜21%. AATS-6 AOD values measured during low-altitude aircraft traverses over the ocean are compared with corresponding AOD values retrieved over water from upwelling radiance measurements by the Moderate-Resolution Imaging Spectroradiometer (MODIS), Total Ozone Mapping Spectrometer (TOMS), and GOES 8 Imager satellite sensors, with mixed results.

  9. Bacterial communities in urban aerosols collected with wetted-wall cyclonic samplers and seasonal fluctuations of live and culturable airborne bacteria.

    PubMed

    Ravva, Subbarao V; Hernlem, Bradley J; Sarreal, Chester Z; Mandrell, Robert E

    2012-02-01

    Airborne transmission of bacterial pathogens from point sources (e.g., ranches, dairy waste treatment facilities) to areas of food production (farms) has been suspected. Determining the incidence, transport and viability of extremely low levels of pathogens require collection of high volumes of air and characterization of live bacteria from aerosols. We monitored the numbers of culturable bacteria in urban aerosols on 21 separate days during a 9 month period using high volume cyclonic samplers at an elevation of 6 m above ground level. Culturable bacteria in aerosols fluctuated from 3 CFU to 6 million CFU/L of air per hour and correlated significantly with changes in seasonal temperatures, but not with humidity or wind speed. Concentrations of viable bacteria determined by fluorescence staining and flow cytometry correlated significantly with culturable bacteria. Members of the phylum Proteobacteria constituted 98% of the bacterial community, which was characterized using 16S rRNA gene sequencing using DNA from aerosols. Aquabacterium sp., previously characterized from aquatic environments, represented 63% of all clones and the second most common were Burkholderia sp; these are ubiquitous in nature and some are potential human pathogens. Whole genome amplification prior to sequencing resulted in a substantial decrease in species diversity compared to characterizing culturable bacteria sorted by flow cytometry based on scatter signals. Although 27 isolated colonies were characterized, we were able to culture 38% of bacteria characterized by sequencing. The whole genome amplification method amplified DNA preferentially from Phyllobacterium myrsinacearum, a minor member of the bacterial communities, whereas Variovorax paradoxus dominated the cultured organisms.

  10. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  11. Physicochemical Characterization of Lake Spray Aerosol Generated from Great Lakes Water Samples

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.

    2014-12-01

    Wave breaking across bodies of water releases particles into the air which can impact climate and human health. Similar to sea spray aerosols formed through marine wave breaking, freshwater lakes generate lake spray aerosol (LSA). LSA can impact climate directly through scattering/absorption and indirectly through cloud nucleation. In addition, these LSA are suggested to impact human health through inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Few studies have been conducted to assess the physical and chemical properties of freshwater LSA. Herein, we discuss constructing a LSA generation system and preliminary physical and chemical characterization of aerosol generated from water samples collected at various sites across Lake Erie, Lake Huron, Lake Superior, and Lake Michigan. Information on aerosol size distributions, number concentrations, and chemical composition will be discussed as a function of lake water blue-green algae concentration, dissolved organic carbon concentration, temperature, conductivity, and dissolved oxygen concentration. These studies represent a first step towards evaluating the potential for LSA to impact climate and health in the Great Lakes region.

  12. Measurement of Sulfur Isotope Ratios in Micrometer-Sized Aerosol Samples by NanoSIMS

    NASA Astrophysics Data System (ADS)

    Winterholler, B.; Hoppe, P.; Foley, S.; Andreae, M. O.

    2005-12-01

    The isotopic composition of sulfur in the atmosphere is highly variable and source dependent. Sulfur isotopic ratios are a well established tool for identifying sources of sulfur in the environment, estimating emission factors, and tracing the spread of sulfur from anthropogenic point sources in terrestrial ecosystems. Conventional mass spectrometry needs a minimum of 1 micromol of sulfur to perform one analysis. In the case of atmospheric aerosol particles the results of such an analysis averages the isotopic compositions of millions of aerosol particles, and thus normally includes several different types of sulfur aerosol. The new Cameca NanoSIMS 50 ion microprobe technique permits analysis of individual aerosol particles with volumes down to 0.3 cubic micron and a precision for delta34S of 3-10 (2 sigma). As a result, this technique is able to introduce a new scale into the study of the atmospheric sulfur cycle. Linking the chemical, mineralogical, morphological and isotopic information of individual particles will allow a better understanding of external and internal mixing states by analyzing more than one spot on coarse mode particles. Moreover it will improve source identification by complementing the chemical and isotopic information. First samples have been collected from the Sahara desert, an urban site in central Europe, and a costal site in Western Ireland and show the potentials of this new technique.

  13. Continuous standalone controllable aerosol/cloud droplet dryer for atmospheric sampling

    NASA Astrophysics Data System (ADS)

    Sjogren, S.; Frank, G. P.; Berghof, M. I. A.; Martinsson, B. G.

    2012-08-01

    We describe a general-purpose dryer designed for continuous sampling of atmospheric aerosol, where a specified relative humidity (RH) of the sample flow (lower than the atmospheric humidity) is required. It is often prescribed to measure the properties of dried aerosol, for instance for monitoring networks. The specific purpose of our dryer is to dry highly charged cloud droplets (maximum diameter approximately 25 μm) with minimum losses from the droplet size distribution entering the dryer as well as on the residual dry particle size distribution exiting the dryer. This is achieved by using a straight vertical downwards path from the aerosol inlet mounted above the dryer, and removing humidity to a dry closed loop airflow on the other side of a semi-permeable GORE-TEX membrane (total area 0.134 m2). The water vapour transfer coefficient, k, was measured to 4.6 × 10-7 kg m-2 s-1% RH-1 in the laboratory and is used for design purposes. A net water vapour transfer rate of up to 1.2 × 10-6 kg s-1 was achieved in the field. This corresponds to drying a 5.7 L min-1 (0.35 m3 h-1) aerosol sample flow from 100% RH to 27% RH at 293 K (with a drying air total flow of 8.7 L min-1). The system was used outdoors from 9 May until 20 October 2010, on the mountain Brocken (51.80° N, 10.67° E, 1142 m a.s.l.) in the Harz region in central Germany. Sample air relative humidity of less than 30% was obtained 72% of the time period. The total availability of the measurement system was > 94% during these five months.

  14. Continuous stand-alone controllable aerosol/cloud droplet dryer for atmospheric sampling

    NASA Astrophysics Data System (ADS)

    Sjogren, S.; Frank, G. P.; Berghof, M. I. A.; Martinsson, B. G.

    2013-02-01

    We describe a general-purpose dryer designed for continuous sampling of atmospheric aerosol, where a specified relative humidity (RH) of the sample flow (lower than the atmospheric humidity) is required. It is often prescribed to measure the properties of dried aerosol, for instance for monitoring networks. The specific purpose of our dryer is to dry cloud droplets (maximum diameter approximately 25 μm, highly charged, up to 5 × 102 charges). One criterion is to minimise losses from the droplet size distribution entering the dryer as well as on the residual dry particle size distribution exiting the dryer. This is achieved by using a straight vertical downwards path from the aerosol inlet mounted above the dryer, and removing humidity to a dry, closed loop airflow on the other side of a semi-permeable GORE-TEX membrane (total area 0.134 m2). The water vapour transfer coefficient, k, was measured to be 4.6 × 10-7 kg m-2 s-1% RH-1 in the laboratory (temperature 294 K) and is used for design purposes. A net water vapour transfer rate of up to 1.2 × 10-6 kg s-1 was achieved in the field. This corresponds to drying a 5.7 L min-1 (0.35 m3 h-1) aerosol sample flow from 100% RH to 27% RH at 293 K (with a drying air total flow of 8.7 L min-1). The system was used outdoors from 9 May until 20 October 2010, on the mountain Brocken (51.80° N, 10.67° E, 1142 m a.s.l.) in the Harz region in central Germany. Sample air relative humidity of less than 30% was obtained 72% of the time period. The total availability of the measurement system was >94% during these five months.

  15. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreiss, J.; Maenhaut, W.; Alves, C.; Bossi, R.; Bjerke, A.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Gülcin, A.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2014-07-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC), four used High-Performance Liquid Chromatography (HPLC) or Ultra-Performance Liquid Chromatography (UPLC), and six resorted to Gas Chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e., for 33% of

  16. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreis, J.; Maenhaut, W.; Abbaszade, G.; Alves, C.; Bjerke, A.; Bonnier, N.; Bossi, R.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2015-01-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning (BB) aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wildfire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for BB particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied high-performance anion-exchange chromatography (HPAEC), four used high-performance liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) and six resorted to gas chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 20%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e. for 33% of the

  17. Air sampling of smallpox virus

    PubMed Central

    Thomas, G.

    1974-01-01

    Airborne smallpox virus has been recovered in an isolation hospital using an adhesive surface sampling technique in the presence of very low aerosol concentrations. Previous work in this field is reviewed. Successful recovery of airborne virus depends on sampling large volumes of air with a suitable sampler and thorough investigation of the whole sample taken for the presence of viable virus. More information on the characteristics and behaviour of airborne smallpox virus is needed in particular with regard to the future design and siting of smallpox isolation units. PMID:4371586

  18. Procedure for rapid determination of nickel, cobalt, and chromium in airborne particulate samples

    NASA Technical Reports Server (NTRS)

    Davis, W. F.; Graab, J. W.

    1972-01-01

    A rapid, selective procedure for the determination of 1 to 20 micrograms of nickel, chromium, and cobalt in airborne particulates is described. The method utilizes the combined techniques of low temperature ashing and atomic absorption spectroscopy. The airborne particulates are collected on analytical filter paper. The filter papers are ashed, and the residues are dissolved in hydrochloric acid. Nickel, chromium, and cobalt are determined directly with good precision and accuracy by means of atomic absorption. The effects of flame type, burner height, slit width, and lamp current on the atomic absorption measurements are reported.

  19. Determination of airborne wood dust in Button samples by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).

    PubMed

    Kwon, Cheol-Woong; Chirila, Madalina M; Lee, Taekhee; Harper, Martin; Rando, Roy J

    2013-01-01

    Emerging concerns regarding the toxicity of inhaled wood dust support the need for techniques to quantitate wood content of mixed industrial dusts. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis technique was applied to the determination of wood content of 181 inhalable dust samples (geometric mean concentration: 0.895 mg/m(3); geometric standard deviation: 2.73) collected from six wood product industry factories using 25mm glass fibre filters with the Button aerosol sampler. Prior to direct DRIFTS analysis the filter samples were treated with ethyl acetate and re-deposited uniformly. Standards ranging from 125 μg to 4000 μg were prepared for red oak, southern yellow pine, and red cedar and used for quantitation of samples depending upon the wood materials present at a given factory. The oak standards spectra were quantitated by linear regression of response in Kubelka-Munk units at 1736 cm(-1), whereas the pine standards and the cedar standards spectra were quantitated by polynomial regression of response in log 1/R units at 1734 cm(-1), with the selected wavenumbers corresponding to stretching vibration of free C=O from cellulose and hemicelluloses. For one factory which used both soft- and hardwoods, a separate polynomial standard curve was created by proportionally combining the oak and pine standards polynomial regression equations based on response (log 1/R) at 1734 cm(-1). The analytical limits of detection were approximately 52 μg of oak, 20 μg of pine, 30 μg of cedar, and 16 μg of mixed oak and pine for the factory with mixed woods. Overall, the average of dry wood dust percentage of inhalable dust was approximately 56% and the average dry wood dust weight was 0.572mg for the Button samples. Across factories, there were statistically significant differences (p<0.001) for the percentage of dry wood dust in inhalable dust with factory averages ranging from 33.5 to 97.6%.

  20. Determination of airborne wood dust in Button samples by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)

    PubMed Central

    Kwon, Cheol-Woong; Chirila, Madalina M.; Lee, Taekhee; Harper, Martin; Rando, Roy J.

    2015-01-01

    Emerging concerns regarding the toxicity of inhaled wood dust support the need for techniques to quantitate wood content of mixed industrial dusts. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis technique was applied to the determination of wood content of 181 inhalable dust samples (geometric mean concentration: 0.895 mg/m3; geometric standard deviation: 2.73) collected from six wood product industry factories using 25mm glass fibre filters with the Button aerosol sampler. Prior to direct DRIFTS analysis the filter samples were treated with ethyl acetate and re-deposited uniformly. Standards ranging from 125 μg to 4000 μg were prepared for red oak, southern yellow pine, and red cedar and used for quantitation of samples depending upon the wood materials present at a given factory. The oak standards spectra were quantitated by linear regression of response in Kubelka-Munk units at 1736 cm−1, whereas the pine standards and the cedar standards spectra were quantitated by polynomial regression of response in log 1/R units at 1734 cm−1, with the selected wavenumbers corresponding to stretching vibration of free C=O from cellulose and hemicelluloses. For one factory which used both soft- and hardwoods, a separate polynomial standard curve was created by proportionally combining the oak and pine standards polynomial regression equations based on response (log 1/R) at 1734 cm−1. The analytical limits of detection were approximately 52 μg of oak, 20 μg of pine, 30 μg of cedar, and 16 μg of mixed oak and pine for the factory with mixed woods. Overall, the average of dry wood dust percentage of inhalable dust was approximately 56% and the average dry wood dust weight was 0.572mg for the Button samples. Across factories, there were statistically significant differences (p<0.001) for the percentage of dry wood dust in inhalable dust with factory averages ranging from 33.5 to 97.6%. PMID:26526539

  1. Health-related aerosol measurement: a review of existing sampling criteria and proposals for new ones.

    PubMed

    Vincent, James H

    2005-11-01

    Interest in particle size-selective sampling for aerosols in working and ambient living environments began in the early 1900s when it became apparent that the penetration into-and deposition in-the respiratory tract of aerosol-exposed humans of inhaled particles was dependent on particle size. Coarse particles tended to be filtered out during inhalation and in the upper parts of the respiratory tract, so only progressively smaller particles penetrated down to the deep regions of the lung. Over time, following experimental studies with 'breathing' mannequins in wind tunnels and with human volunteer subjects in the laboratory, a clear picture has emerged of the physical, physiological and anatomical factors that control the extent to which particles may or may not reach certain parts of the respiratory tract. Such understanding has increasingly been the subject of discussions about aerosol standards, in particular the criteria by which exposure might be defined in relation to given classes of aerosol-related health effect-and in to turn aerosol monitoring. The ultimate goal has been to develop a set of criteria by which exposure standards are scientifically relevant to the health effects in question. This paper reviews the scientific basis for such criteria. It discusses the criteria that have already been widely discussed and so are either being applied or are on the threshold of practical application in standards. It also discusses how new advanced knowledge may allow us to extend the list of particle size-selective criteria to fractions that have not yet been widely discussed but which may be of importance in the future.

  2. Lidar measurements of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Li, Guangkun; Philbrick, C. Russell

    2003-03-01

    Raman lidar techniques have been used in remote sensing to measure the aerosol optical extinction in the lower atmosphere, as well as water vapor, temperature and ozone profiles. Knowledge of aerosol optical properties assumes special importance in the wake of studies strongly correlating airborne particulate matter with adverse health effects. Optical extinction depends upon the concentration, composition, and size distribution of the particulate matter. Optical extinction from lidar returns provide information on particle size and density. The influence of relative humidity upon the growth and size of aerosols, particularly the sulfate aerosols along the northeast US region, has been investigated using a Raman lidar during several field measurement campaigns. A particle size distribution model is being developed and verified based on the experimental results. Optical extinction measurements from lidar in the NARSTO-NE-OPS program in Philadelphia PA, during summer of 1999 and 2001, have been analyzed and compared with other measurements such as PM sampling and particle size measurements.

  3. Airborne measurements of black carbon aerosol over the Southeastern U.S. during the Southeast Atmosphere Study (SAS) experiment

    NASA Astrophysics Data System (ADS)

    Markovic, M. Z.; Perring, A. E.; Schwarz, J. P.; Fahey, D. W.; Gao, R.; Watts, L.; Holloway, J.; Graus, M.; Warneke, C.; De Gouw, J. A.; Veres, P. R.; Roberts, J. M.; Middlebrook, A. M.; Welti, A.; Liao, J.

    2013-12-01

    The Southeast Atmosphere Study (SAS) field campaign was a large-scale, collaborative project, which took place in the Southeastern U.S. in June and July of 2013. The goal of the campaign was to investigate the impacts of biogenic and anthropogenic gases and aerosols on the formation of haze and anomalous climate cooling in the region. During SAS, a NOAA Single Particle Soot Photometer (SP2) instrument was utilized onboard NOAA WP-3D research aircraft for measurements of black carbon (BC) aerosol mass and microphysical properties. BC aerosol is emitted into the atmosphere from biomass burning (BB) and incomplete combustion of fossil and biofuel. Hence, BC sources are strongly linked to anthropogenic activity. BC aerosol is currently the second largest anthropogenic climate forcing agent after CO2(g), and its climate impacts, which depend on vertical burden and internal mixing, are not fully understood. In the Southeast, BC aerosol is expected to provide surface area for the condensation of semi-volatile products of VOC oxidation and subsequent formation of secondary organic aerosol (SOA). Hence, BC is expected to impact the haze formation and regional climate. In this work we present an overview of BC measurements during Southeast Nexus (SENEX) study, the NOAA contribution to SAS. Geographical variations in mass mixing ratios, mass size distributions, and mixing state of BC over the Southeast U.S. are discussed. Relationships of BC with carbon monoxide (CO), acetonitrile (ACN) and other trace gases are used to investigate the impacts of urban, BB, natural gas development, and power plant emissions on the distribution and properties of BC aerosol in the region. Among studied urban centers, St. Louis and Atlanta were determined to be the largest source regions of BC. A clear weekend effect in BC mass mixing ratios and microphysical properties was observed in the metropolitan Atlanta region. Compared to BB and urban centers, power plants and natural gas developments

  4. Airborne LIDAR Measurements of Water Vapor, Ozone, Clouds, and Aerosols in the Tropics Near Central America During the TC4 Experiment

    NASA Technical Reports Server (NTRS)

    Kooi, Susan; Fenn, Marta; Ismail, Syed; Ferrare, Richard; Hair, John; Browell, Edward; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Simpson, Steven

    2008-01-01

    Large scale distributions of ozone, water vapor, aerosols, and clouds were measured throughout the troposphere by two NASA Langley lidar systems on board the NASA DC-8 aircraft as part of the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4) over Central and South America and adjacent oceans in the summer of 2007. Special emphasis was placed on the sampling of convective outflow and transport, sub-visible cirrus clouds, boundary layer aerosols, Saharan dust, volcanic emissions, and urban and biomass burning plumes. This paper presents preliminary results from this campaign, and demonstrates the value of coordinated measurements by the two lidar systems.

  5. Evaluation of Airborne Particulate Matter and Metals Data in Personal, Indoor and Outdoor Environments using ED-XRF and ICP-MS and Co-located Duplicate Samples

    EPA Science Inventory

    Factors and sources affecting measurement uncertainty in airborne particulate matter (PM) gravimetric measurements and elemental analyses were investigated as part of the Windsor Ontario Exposure Assessment Study (WOEAS). The assessment was made using co-located duplicate sample...

  6. Transmission Electron Microscopy Analysis of Submicronic Aerosol Particles Sampled at Jungfraujoch, Switzerland (CLACE-4)

    NASA Astrophysics Data System (ADS)

    Grobéty, B.; Lorenzo, R.

    2007-05-01

    Submicronic aerosol particles were collected in two sampling campaigns during CLACE-4 and -5 ("the Cloud and Aerosol Characterisation Experiment in the Free Troposphere") at the high alpine research station on top of Jungfraujoch (altitude: 3580 m.a.s.l.). The particles were deposited directly on transmission electron microscopy (TEM) grids placed in a home-made, calibrated thermophoretic sampling device. The samples were taken during periods of clear skies and temperatures below 0°C. Average sampling time was two days. The primary state of the particles was either solid, mixed solid-liquid or completely liquid. EDS spectra of solid particles without visible traces of a liquid coating contain only carbon and oxygen peaks. Mixed solid-fluid particles, however, have either carbon (C), mixed carbon-silicate (CS) or silicate (S) (probably SiO2) nuclei. The condensates remaining after evaporation of the liquid components contain sulfate (sulfur and oxygen peaks in EDS spectra), but no nitrate was found. The fraction > 500 nm is dominated by C and CS particles, the silicate particles have a narrow size distribution around 100 nm and contain, if at all, only faint sulfur peaks in their EDS spectra. The results are qualitatively consistent with analyses of samples collected during the same campaign (Weinbruch et al., 2005), but during mixed cloud events. There seem to be, however a differrence in the amount of particles with sulfate coatings, which is higher for samples taken under clear sky conditions. Weinbruch, S., Ebert, S., Worringen, A., and Brenker (2005), Identification of the ice forming fraction of the atmospheric aerosol in mixed-phase clouds by environmental scanning electron microscopy. Activity report 2005, International Foundation HFSJG.

  7. Observations Of Cosmogenic 7Be and 22Na In Aerosol Samples in Northern Finland

    NASA Astrophysics Data System (ADS)

    Leppänen, Ari-Pekka; Grinsted, Aslak

    2008-08-01

    Radiation and Nuclear Safety Authority-STUK monitors the amount of airborne radioactivity with three aerosol samplers in Northern Finland. Naturally occurring radioactive nuclei 7Be and 22Na can be seen. A time series was constructed for both nuclei observed at Rovaniemi (lat 66,3° N long 25,4° E). The most consistent time series was found to be from Ivalo (lat 68,64° N long 27,57° E). The time series of 7Be and 22Na were compared and the ratio was plotted. A time series analysis was performed for Ivalo time series to find periodicities. Two periodicities longer than one year was found 4,3 years and 11 years, also 3 periodicities shorter than one years was found 1,7 months, 4 months and 6 months. The annual average 7Be activities at Rovaniemi and Ivalo were also compared with the annual galactic cosmic ray intensity observed with neutron monitor at Oulu (65.05°N, 25.47°E) by Sodankylä Geophysical Observatory.

  8. Solid versus liquid particle sampling efficiency of three personal aerosol samplers when facing the wind.

    PubMed

    Koehler, Kirsten A; Anthony, T Renee; Van Dyke, Michael; Volckens, John

    2012-03-01

    The objective of this study was to examine the facing-the-wind sampling efficiency of three personal aerosol samplers as a function of particle phase (solid versus liquid). Samplers examined were the IOM, Button, and a prototype personal high-flow inhalable sampler head (PHISH). The prototype PHISH was designed to interface with the 37-mm closed-face cassette and provide an inhalable sample at 10 l min(-1) of flow. Increased flow rate increases the amount of mass collected during a typical work shift and helps to ensure that limits of detection are met, particularly for well-controlled but highly toxic species. Two PHISH prototypes were tested: one with a screened inlet and one with a single-pore open-face inlet. Personal aerosol samplers were tested on a bluff-body disc that was rotated along the facing-the-wind axis to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. When compared to published data for facing-wind aspiration efficiency for a mouth-breathing mannequin, the IOM oversampled relative to mannequin facing-the-wind aspiration efficiency for all sizes and particle types (solid and liquid). The sampling efficiency of the Button sampler was closer to the mannequin facing-the-wind aspiration efficiency than the IOM for solid particles, but the screened inlet removed most liquid particles, resulting in a large underestimation compared to the mannequin facing-the-wind aspiration efficiency. The open-face PHISH results showed overestimation for solid particles and underestimation for liquid particles when compared to the mannequin facing-the-wind aspiration efficiency. Substantial (and statistically significant) differences in sampling efficiency were observed between liquid and solid particles, particularly for the Button and screened-PHISH, with a majority of aerosol mass depositing on the screened inlets of these samplers. Our results suggest that large droplets have low penetration efficiencies

  9. Comparison of aerosol backscatter and wind field estimates from the REAL and the SAMPLE

    NASA Astrophysics Data System (ADS)

    Mayor, Shane D.; Dérian, Pierre; Mauzey, Christopher F.; Spuler, Scott M.; Ponsardin, Patrick; Pruitt, Jeff; Ramsey, Darrell; Higdon, Noah S.

    2015-09-01

    Although operating at the same near-infrared 1.5- m wavelength, the Raman-shifted Eye-safe Aerosol Lidar (REAL) and the Scanning Aerosol Micro-Pulse Lidar-Eye-safe (SAMPLE) are very different in how they generate and detect laser radiation. We present results from an experiment where the REAL and the SAMPLE were operated side-by-side in Chico, California, in March of 2015. During the non-continuous, eleven day test period, the SAMPLE instrument was operated at maximum pulse repetition frequency (15 kHz) and integrated over the interpulse period of the REAL (0.1 s). Operation at the high pulse repetition frequency resulted in second trip echoes which contaminated portions of the data. The performance of the SAMPLE instrument varied with background brightness--as expected with a photon counting receiver|--yet showed equal or larger backscatter intensity signal to noise ratio throughout the intercomparison experiment. We show that a modest low-pass filter or smooth applied to the REAL raw waveforms (that have 5x higher range resolution) results in significant increases in raw signal-to-noise ratio and image signal-to-noise ratio--a measure of coherent aerosol feature content in the images resulting from the scans. Examples of wind fields and time series of wind estimates from both systems are presented. We conclude by reviewing the advantages and disadvantages of each system and sketch a plan for future research and development activities to optimize the design of future systems.

  10. Airborne, Balloon-borne and ground network measurements of aerosol BC over Indian region: Current understanding and possible implications

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Krishna Moorthy, K.; Babu, Suresh, S.; Manoj, M. R.; Gogoi, Mukunda

    2012-07-01

    Though the role of BC aerosols in direct and indirect aerosol climate forcing is now well accepted and being extensively investigated, there is a large knowledge gap on its vertical distribution. Large amounts of BC, if present above and within the clouds, could significantly modify the atmospheric heating due to aerosol absorption. In the back drop of some of the recent measurements of strong BC layers in the middle and upper troposphere and even in the stratosphere, the knowledge of vertical distribution of BC becomes all the more relevant, especially over the tropics, with significant solar heating, cloud cover and BC hotspots. With a view to addressing this issue from comprehensive measurements over Indian region, extensive measurements using aircrafts, balloons, and a large network of ground-based observatories have been made as a part of the Regional Aerosol Warming Experiment (RAWEX). These measurements were examined in the light of simulations made using the regional climate model (RegCM of ICTP) to understand the ability and biases of climate models. While the aircraft measurements revealed presence of strong BC layers above the atmospheric boundary layer, within which the BC concentration often exceeded those near the surface. These layers were more elevated and strong along the eastern coast and over Bay of Bengal, rather than on the west. The RegCM simulations were found to underestimate the BC concentrations, especially during the daytime probably owing to inadequate representation of ABL dynamics. The details would be presented and implications would be discussed

  11. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  12. X-ray analysis of aerosol samples from a therapeutic cave

    NASA Astrophysics Data System (ADS)

    Alföldy, B.; Török, Sz.; Kocsonya, A.; Szőkefalvi-Nagy, Z.; Balla, Md. I.

    2001-04-01

    Cave therapy is an efficient therapeutic method to cure asthma, the exact healing effect, however, is not clarified, yet. This study is motivated by the basic assumption that aerosols do play the key role in the cave therapy. This study is based on measurements of single aerosol particles originating from a therapeutic cave of Budapest, Hungary (Szemlőhegyi cave). Aerosol particles have been collected in the regions arranged for the therapeutic treatment. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition. Three particle classes have been detected based on major element concentration: alumino-silicate, quartz and calcium carbonate. Calcium ions have well-known physiological influence: anti-spastic, anti-inflammation and excretion reducing effects. Inflammation, accompanying spasm and extreme excretion production cause the smothering stigma, the so-called asthma. Therefore it could be assumed that calcium ions present in high concentration in the cave's atmosphere is the major cause of the healing effect.

  13. LOAC (Light Optical Particle Counter): a new small aerosol counter with particle characterization capabilities for surface and airborne measurements

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Jégou, Fabrice; Jeannot, Matthieu; Jourdain, Line; Dulac, François; Mallet, Marc; Dupont, Jean-Charles; Thaury, Claire; Tonnelier, Thierry; Verdier, Nicolas; Charpentier, Patrick

    2013-04-01

    The determination of the size distribution of tropospheric and stratospheric aerosols with conventional optical counters is difficult when different natures of particles are present (droplets, soot, mineral dust, secondary organic or mineral particles...). Also, a light and cheap aerosol counter that can be used at ground, onboard drones or launched under all kinds of atmospheric balloons can be very useful during specific events as volcanic plumes, desert dust transport or local pollution episodes. These goals can be achieved thanks to a new generation of aerosol counter, called LOAC (Light Optical Aerosol Counter). The instrument was developed in the frame of a cooperation between French scientific laboratories (CNRS), the Environnement-SA and MeteoModem companies and the French Space Agency (CNES). LOAC is a small optical particle counter/sizer of ~250 grams, having a low electrical power consumption. The measurements are conducted at two scattering angles. The first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.3-100 micrometerers. At such an angle close to forward scattering, the signal is much more intense and the measurements are the least sensitive to the particle nature. The second angle is at 60°, where the scattered light is strongly dependent on the particle refractive index and thus on the nature of the aerosols. The ratio of the measurements at the two angles is used to discriminate between the different types of particles dominating the nature of the aerosol particles in the different size classes. The sensor particularly discriminates wet or liquid particles, soil dust and soot. Since 2011, we have operated LOAC in various environments (Arctic, Mediterranean, urban and peri-urban…) under different kinds of balloons including zero pressure stratospheric, tethered, drifting tropospheric, and meteorological sounding balloons. For the last case, the total weight of the gondola

  14. Technical note: An improved approach to determining background aerosol concentrations with PILS sampling on aircraft

    NASA Astrophysics Data System (ADS)

    Fukami, Christine S.; Sullivan, Amy P.; Ryan Fulgham, S.; Murschell, Trey; Borch, Thomas; Smith, James N.; Farmer, Delphine K.

    2016-07-01

    Particle-into-Liquid Samplers (PILS) have become a standard aerosol collection technique, and are widely used in both ground and aircraft measurements in conjunction with off-line ion chromatography (IC) measurements. Accurate and precise background samples are essential to account for gas-phase components not efficiently removed and any interference in the instrument lines, collection vials or off-line analysis procedures. For aircraft sampling with PILS, backgrounds are typically taken with in-line filters to remove particles prior to sample collection once or twice per flight with more numerous backgrounds taken on the ground. Here, we use data collected during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) to demonstrate that not only are multiple background filter samples are essential to attain a representative background, but that the chemical background signals do not follow the Gaussian statistics typically assumed. Instead, the background signals for all chemical components analyzed from 137 background samples (taken from ∼78 total sampling hours over 18 flights) follow a log-normal distribution, meaning that the typical approaches of averaging background samples and/or assuming a Gaussian distribution cause an over-estimation of background samples - and thus an underestimation of sample concentrations. Our approach of deriving backgrounds from the peak of the log-normal distribution results in detection limits of 0.25, 0.32, 3.9, 0.17, 0.75 and 0.57 μg m-3 for sub-micron aerosol nitrate (NO3-), nitrite (NO2-), ammonium (NH4+), sulfate (SO42-), potassium (K+) and calcium (Ca2+), respectively. The difference in backgrounds calculated from assuming a Gaussian distribution versus a log-normal distribution were most extreme for NH4+, resulting in a background that was 1.58× that determined from fitting a log-normal distribution.

  15. Charge integration in external PIXE-PIGE for the analysis of aerosol samples

    NASA Astrophysics Data System (ADS)

    Li, X. F.; Wang, G. F.; Chu, J. H.; Yu, L. D.

    2012-10-01

    The beam current in an external-beam PIXE-PIGE is difficult to accurately measure due to ionization along the beam path in the atmosphere. Charge integration was measured using a homemade Faraday cup, and assessed by the peak area of Ar Kα X-rays, which were induced by protons near the sample. The X-ray peak integral from a thin Fe reference sample, which was positioned between the exit window and the Faraday cup, was determined to evaluate the performance of the homemade Faraday cup. Moreover, the effects of different membrane filters and samples with different elements on the beam current measurement of the aforementioned methods were studied by placing different blank films or reference standards behind a reference Mn target. The results indicated that the charge measurement of the homemade Faraday cup was reliable for external PIXE-PIGE analysis of aerosol samples.

  16. Quantifying Airborne Allergen Levels Before and After Rain Events Using TRMM/GPM and Ground-Sampled Data

    NASA Technical Reports Server (NTRS)

    Stewart, Randy M.

    2006-01-01

    Allergies affect millions of Americans, increasing health risks and also increasing absenteeism and reducing productivity in the workplace. Outdoor allergens, such as airborne pollens and mold spores, commonly trigger respiratory distress symptoms, but rainfall reduces the quantity of allergens in the air (EPA, 2003). The current NASA Tropical Rainfall Measuring Mission provides accurate information related to rain events. These capabilities will be further enhanced with the future Global Precipitation Measurement mission. This report examines the effectiveness of combining these NASA resources with established ground-based allergen/spore sampling systems to better understand the benefits that rain provides in removing allergens and spores from the air.

  17. Airborne investigation of the aerosols-cloud interactions in the vicinity and within a marine stratocumulus over the North Sea during EUCAARI (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Weigel, R.; Sellegri, K.; Roberts, G.; Gomes, L.; Stohl, A.; Laj, P.; Momboisse, G.; Bourianne, T.; Puygrenier, V.; Burnet, F.; Chosson, F.; Brenguier, J. L.; Etcheberry, J. M.; Villani, P.; Pichon, J. M.; Schwarzenboeck, A.

    2013-12-01

    compounds such as nitrate and organics, compared to non cloud processed particles. Finally, a net overbalance of nitrate aerosol has been revealed by comparing cloud droplet residual and non cloud processed aerosol chemical compositions. Conclusively, this study highlights gaps concerning the sampling strategy that need to be addressed for the future missions.

  18. Atmospheric Sampling of Aerosols to Stratospheric Altitudes using High Altitude Balloons

    NASA Astrophysics Data System (ADS)

    Jerde, E. A.; Thomas, E.

    2010-12-01

    Although carbon dioxide represents a long-lived atmospheric component relevant to global climate change, it is also understood that many additional contributors influence the overall climate of Earth. Among these, short-lived components are more difficult to incorporate into models due to uncertainties in the abundances of these both spatially and temporally. Possibly the most significant of these short-lived components falls under the heading of “black carbon” (BC). There are numerous overlapping definitions of BC, but it is basically carbonaceous in nature and light absorbing. Due to its potential as a climate forcer, an understanding of the BC population in the atmosphere is critical for modeling of radiative forcing. Prior measurements of atmospheric BC generally consist of airplane- and ground-based sampling, typically below 5000 m and restricted in time and space. Given that BC has a residence time on the order of days, short-term variability is easily missed. Further, since the radiative forcing is a result of BC distributed through the entire atmospheric column, aircraft sampling is by definition incomplete. We are in the process of planning a more comprehensive sampling of the atmosphere for BC using high-altitude balloons. Balloon-borne sampling is a highly reliable means to sample air through the entire troposphere and into the lower stratosphere. Our system will incorporate a balloon and a flight train of two modules. One module will house an atmospheric sampler. This sampler will be single-stage (samples all particle sizes together), and will place particles directly on an SEM sample stub for analysis. The nozzle depositing the sample will be offset from the center of the stub, placing the aerosol particles toward the edge. At various altitudes, the stub will be rotated 45 degrees, providing 6-8 sample “cuts” of particle populations through the atmospheric column. The flights will reach approximately 27 km altitude, above which the balloons

  19. The measurement of 129I in ferromanganese crusts and aerosol samples with AMS at CIAE

    NASA Astrophysics Data System (ADS)

    Dong, Kejun; Jiang, Shan; He, Ming; Lin, Min; Ouyang, Yinggen; Wu, Shaoyong; Xie, Linbo; Liu, Guangshan; Ji, Lihong; Li, Qi; Wang, Shilian

    2015-06-01

    The determination of long-lived nuclide 129I in terrestrial formations has many important applications. The AMS measurement method of 129I has been set up for many years at China Institute of Atomic Energy (CIAE). For further exploring the potential applications of 129I, samples of Deep Sea Ferromanganese Crusts (DSFC) and aerosol were analyzed by Accelerator Mass Spectrometry (AMS). The results show that 129I is not only a good tool for dating, but also an ideal nuclide for nuclear safety monitoring. The newest experimental progress and the main results are detailed in this presentation.

  20. A new cascade impactor for aerosol sampling with subsequent PIXE analysis

    NASA Astrophysics Data System (ADS)

    Maenhaut, W.; Hillamo, R.; Mäkelä, T.; Jaffrezo, J.-L.; Bergin, M. H.; Davidson, C. I.

    1996-04-01

    A small deposit area low pressure impactor (abbreviated to SDI) has been developed and tested. The device has been designed specifically to collect size-fractionated aerosol samples in remote locations for subsequent chemical analysis by PIXE. The SDI is a 12-stage, multinozzle device, but the deposit for each stage remains confined to an area with diameter less than 8 mm. It operates at a flow rate of 11 L/min and accepts the same, 25 mm diameter substrate rings as the PIXE International cascade impactor. The experimental cut-points for stages 12 through 1 are 8.50, 4.08, 2.68, 1.66, 1.06, 0.796, 0.591, 0.343, 0.231, 0.153, 0.086 and 0.045 μm equivalent aerodynamic diameter. The SDI has been tested in (and employed for) size-fractionated aerosol sampling in the Finnish Arctic and at Summit in Greenland. The data show that the SDI gives results very similar to those obtained with the PIXE International impactor, but with detection limits that are much lower. This suggests that the SDI can be used with shorter sampling times or in areas where concentrations are smaller to obtain reliable size distribution data. The results also suggest that data for a greater number of elements can be obtained with the SDI.

  1. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Chance, K.; González Abad, G.; Liu, C.; Zoogman, P.; Cole, J.; Delker, T.; Good, W.; Murcray, F.; Ruppert, L.; Soo, D.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Loughner, C. P.; Pickering, K. E.; Herman, J. R.; Beaver, M. R.; Long, R. W.; Szykman, J. J.; Judd, L. M.; Kelley, P.; Luke, W. T.; Ren, X.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a testbed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas in September 2013. Measurements of backscattered solar radiation between 420-465 nm collected on four days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 molecules cm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.91 for the most polluted day). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.84, slope = 0.94). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  2. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.

    2016-06-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  3. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    NASA Astrophysics Data System (ADS)

    Khanh Huynh, Cong; Duc, Trinh Vu

    2009-02-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  4. GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS

    SciTech Connect

    Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.

    2013-11-12

    This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1g cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.

  5. Chemical Characterization and Toxicologic Evaluation of Airborne Mixtures: The Chemical and Physical Characterization of XM819 Red Phosphorus Formulation and the Aerosol Produced by Its Combustion

    DTIC Science & Technology

    1986-02-01

    Composite Infrared Spectre of XR-819 Wedge Plus . Unhardened Epon 828 ........ . ..... . . . 17 S Static 5urn Chamber . ................ 20 6 Aerosol... reflectance fourier transform Infrared spectra were recorded on a Digileb FTS-20C spectromete;. A sample of Epon 828 was received from Shell Chemical...are metal, glass and teflon to minimize artifactual contami- nation of the smoke products. The container has openings whereby air flow is regulated

  6. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  7. Fungal Spore Concentrations and Ergosterol Content in Aerosol Samples in the Caribbean During African Dust Events

    NASA Astrophysics Data System (ADS)

    Santos-Figueroa, G.; Bolaños-Rosero, B.; Mayol-Bracero, O. L.

    2015-12-01

    Fungal spores are a major component of primary biogenic aerosol particles that are emitted to the atmosphere, are ubiquitous, and play an important role in the chemistry and physics of the atmosphere, climate, and public health. Every year, during summer months, African dust (AD) particles are transported to the Caribbean region causing an increase in the concentrations of particulate matter in the atmosphere. AD is one of the most important natural sources of mineral particulate matter at the global scale, and many investigations suggest that it has the ability to transport dust-associated biological particles through long distances. The relationship between AD incursions and the concentration of fungal spores in the Caribbean region is poorly understood. In order to investigate the effects of AD incursions on fungal spore's emissions, fungal spore concentrations were monitored using a Burkard spore trap at the tropical montane cloud forest of Pico del Este at El Yunque National Forest, Puerto Rico. The presence of AD was supported with satellite images of aerosol optical thickness, and with the results from the air masses backward trajectories calculated with the NOAA HYSPLIT model. Basidiospores and Ascospores comprised the major components of the total spore's concentrations, up to a maximum of 98%, during both AD incursions and background days. A considerably decrease in the concentration of fungal spores during AD events was observed. Ergosterol, biomarker for measuring fungal biomass, concentrations were determined in aerosols that were sampled at a marine site, Cabezas de San Juan Nature Reserve, in Fajardo Puerto Rico, and at an urban site, Facundo Bueso building at the University of Puerto Rico. Additional efforts to understand the relationship between the arrival of AD to the Caribbean and a decrease in spore's concentrations are needed in order to investigate changes in local spore's vs the contribution of long-range spores transported within the AD.

  8. Aerosol backscatter measurements at 10.6 microns with airborne and ground-based CO2 Doppler lidars over the Colorado High Plains. I - Lidar intercomparison

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.; Rothermel, Jeffry; Vaughan, J. Michael; Brown, Derek W.; Post, Madison J.

    1991-01-01

    An airborne continuous-wave (CW) focused CO2 Doppler lidar and a ground-based pulsed CO2 Doppler lidar were to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6-micron wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter, the two lidars show good agreement, with differences usually less than about 50 percent near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients, the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  9. Monitoring personal, indoor, and outdoor exposures to metals in airborne particulate matter: Risk of contamination during sampling, handling and analysis

    NASA Astrophysics Data System (ADS)

    Rasmussen, Pat E.; Wheeler, Amanda J.; Hassan, Nouri M.; Filiatreault, Alain; Lanouette, Monique

    Rigorous sampling and quality assurance protocols are required for the reliable measurement of personal, indoor and outdoor exposures to metals in fine particulate matter (PM 2.5). Testing of five co-located replicate air samplers assisted in identifying and quantifying sources of contamination of filters in the laboratory and in the field. A field pilot study was conducted in Windsor, Ont., Canada to ascertain the actual range of metal content that may be obtained on filter samples using low-flow (4 L min -1) 24-h monitoring of personal, indoor and outdoor air. Laboratory filter blanks and NIST certified reference materials were used to assess contamination, instrument performance, accuracy and precision of the metals determination. The results show that there is a high risk of introducing metal contamination during all stages of sampling, handling and analysis, and that sources and magnitude of contamination vary widely from element to element. Due to the very small particle masses collected on low-flow 24-h filter samples (median 0.107 mg for a sample volume of approximately 6 m 3) the contribution of metals from contamination commonly exceeds the content of the airborne particles being sampled. Thus, the use of field blanks to ascertain the magnitude and variability of contamination is critical to determine whether or not a given element should be reported. The results of this study were incorporated into standard operating procedures for a large multiyear personal, indoor and outdoor air monitoring campaign in Windsor.

  10. Airborne Lidar measurements of aerosols, mixed layer heights, and ozone during the 1980 PEPE/NEROS summer field experiment

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Shipley, S. T.; Butler, C. F.; Ismail, S.

    1985-01-01

    A detailed summary of the NASA Ultraviolet Differential Absorption Lidar (UV DIAL) data archive obtained during the EPA Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NEROS) Summer Field Experiment Program (July through August 1980) is presented. The UV dial data set consists of remote measurements of mixed layer heights, aerosol backscatter cross sections, and sequential ozone profiles taken during 14 long-range flights onboard the NASA Wallops Flight Center Electra aircraft. These data are presented in graphic and tabular form, and they have been submitted to the PEPE/NEROS data archive on digital magnetic tape. The derivation of mixing heights and ozone profiles from UV Dial signals is discussed, and detailed intercomparisons with measurements obtained by in situ sensors are presented.

  11. Accumulation and quantitative estimates of airborne lead for a wild plant (Aster subulatus).

    PubMed

    Hu, Xin; Zhang, Yun; Luo, Jun; Xie, Mingjie; Wang, Tijian; Lian, Hongzhen

    2011-03-01

    Foliar uptake of airborne lead is one of the pathways for Pb accumulation in plant organs. However, the approximate contributions of airborne Pb to plant organs are still unclear. In the present study, aerosols (nine-stage size-segregated aerosols and total suspended particulates), a wild plant species (Aster subulatus) and the corresponding soils were collected and Pb contents and isotopic ratios in these samples were analyzed. Average concentration of Pb was 96.5 ± 63.5 ng m(-3) in total suspended particulates (TSP) and 20.4 ± 5.5 ng m(-3) in the fine fractions of size-segregated aerosols (SSA) (<2.1 μm), higher than that in the coarser fractions (>2.1 μm) (6.38 ± 3.71 ng m(-3)). Enrichment factors show that aerosols and soils suffered from anthropogenic inputs and the fine fractions of the size-segregated aerosols enriched more Pb than the coarse fractions. The order of Pb contents in A. subulatus was roots>leaves>stems. The linear relationship of Pb isotope ratios ((206)Pb/(207)Pb and (208)Pb/(206)Pb) among soil, plant and aerosol samples were found. Based on the simple binary Pb isotopic model using the mean (206)Pb/(207)Pb ratios in TSP and in SSA, the approximate contributions of airborne Pb into plant leaves were 72.2% and 65.1%, respectively, suggesting that airborne Pb is the most important source for the Pb accumulation in leaves. So the combination of Pb isotope tracing and the simple binary Pb isotope model can assess the contribution of airborne Pb into plant leaves and may be of interest for risk assessment of the exposure to airborne Pb contamination.

  12. Recovery efficiency and limit of detection of aerosolized Bacillus anthracis Sterne from environmental surface samples.

    PubMed

    Estill, Cheryl Fairfield; Baron, Paul A; Beard, Jeremy K; Hein, Misty J; Larsen, Lloyd D; Rose, Laura; Schaefer, Frank W; Noble-Wang, Judith; Hodges, Lisa; Lindquist, H D Alan; Deye, Gregory J; Arduino, Matthew J

    2009-07-01

    After the 2001 anthrax incidents, surface sampling techniques for biological agents were found to be inadequately validated, especially at low surface loadings. We aerosolized Bacillus anthracis Sterne spores within a chamber to achieve very low surface loading (ca. 3, 30, and 200 CFU per 100 cm(2)). Steel and carpet coupons seeded in the chamber were sampled with swab (103 cm(2)) or wipe or vacuum (929 cm(2)) surface sampling methods and analyzed at three laboratories. Agar settle plates (60 cm(2)) were the reference for determining recovery efficiency (RE). The minimum estimated surface concentrations to achieve a 95% response rate based on probit regression were 190, 15, and 44 CFU/100 cm(2) for sampling steel surfaces and 40, 9.2, and 28 CFU/100 cm(2) for sampling carpet surfaces with swab, wipe, and vacuum methods, respectively; however, these results should be cautiously interpreted because of high observed variability. Mean REs at the highest surface loading were 5.0%, 18%, and 3.7% on steel and 12%, 23%, and 4.7% on carpet for the swab, wipe, and vacuum methods, respectively. Precision (coefficient of variation) was poor at the lower surface concentrations but improved with increasing surface concentration. The best precision was obtained with wipe samples on carpet, achieving 38% at the highest surface concentration. The wipe sampling method detected B. anthracis at lower estimated surface concentrations and had higher RE and better precision than the other methods. These results may guide investigators to more meaningfully conduct environmental sampling, quantify contamination levels, and conduct risk assessment for humans.

  13. Monitoring airborne molecular contamination: a quantitative and qualitative comparison of real-time and grab-sampling techniques

    NASA Astrophysics Data System (ADS)

    Shupp, Aaron M.; Rodier, Dan; Rowley, Steven

    2007-03-01

    Monitoring and controlling Airborne Molecular Contamination (AMC) has become essential in deep ultraviolet (DUV) photolithography for both optimizing yields and protecting tool optics. A variety of technologies have been employed for both real-time and grab-sample monitoring. Real-time monitoring has the advantage of quickly identifying "spikes" and upset conditions, while 2 - 24 hour plus grab sampling allows for extremely low detection limits by concentrating the mass of the target contaminant over a period of time. Employing a combination of both monitoring techniques affords the highest degree of control, lowest detection limits, and the most detailed data possible in terms of speciation. As happens with many technologies, there can be concern regarding the accuracy and agreement between real-time and grab-sample methods. This study utilizes side by side comparisons of two different real-time monitors operating in parallel with both liquid impingers and dry sorbent tubes to measure NIST traceable gas standards as well as real world samples. By measuring in parallel, a truly valid comparison is made between methods while verifying the results against a certified standard. The final outcome for this investigation is that a dry sorbent tube grab-sample technique produced results that agreed in terms of accuracy with NIST traceable standards as well as the two real-time techniques Ion Mobility Spectrometry (IMS) and Pulsed Fluorescence Detection (PFD) while a traditional liquid impinger technique showed discrepancies.

  14. Passive airborne dust sampling with the electrostatic dustfall collector: optimization of storage and extraction procedures for endotoxin and glucan measurement.

    PubMed

    Noss, Ilka; Doekes, Gert; Sander, Ingrid; Heederik, Dick J J; Thorne, Peter S; Wouters, Inge M

    2010-08-01

    We recently introduced a passive dust sampling method for airborne endotoxin and glucan exposure assessment-the electrostatic dustfall collector (EDC). In this study, we assessed the effects of different storage and extraction procedures on measured endotoxin and glucan levels, using 12 parallel EDC samples from 10 low exposed indoor environments. Additionally, we compared 2- and 4-week sampling with the prospect of reaching higher dust yields. Endotoxin concentrations were highest after extraction with pyrogen-free water (pf water) + Tween. Phosphate-buffered saline (PBS)-Tween yielded significantly (44%) lower levels, and practically no endotoxin was detected after extraction in pf water without Tween. Glucan levels were highest after extraction in PBS-Tween at 120 degrees C, whereas extracts made in NaOH at room temperature or 120 degrees C were completely negative. Direct extraction from the EDC cloth or sequential extraction after a preceding endotoxin extraction yielded comparable glucan levels. Sample storage at different temperatures before extraction did not affect endotoxin and glucan concentrations. Doubling the sampling duration yielded similar endotoxin and only 50% higher glucan levels. In conclusion, of the tested variables, the extraction medium was the predominant factor affecting endotoxin and glucan yields.

  15. Impact of culture media and sampling methods on Staphylococcus aureus aerosols.

    PubMed

    Chang, C-W; Wang, L-J

    2015-10-01

    Staphylococcus aureus has been detected indoors and is associated with human infection. Reliable quantification of S. aureus using a sampling technique followed by culture assay helps in assessing the risks of human exposure. The efficiency of five culture media and eight sampling methods in recovering S. aureus aerosols were evaluated. Methods to extract cells from filters were also studied. Tryptic soy agar (TSA) presented greater bacterial recovery than mannitol salt agar (MSA), CHROMagar staph aureus, Chapman stone medium, and Baird-Park agarose (P < 0.05). Moreover, 93 ± 2%-95 ± 2% and 42 ± 1%-49 ± 2% of S. aureus were, respectively, recovered by a 15-min heating of gelatin filters and 2-min vortex of polycarbonate (PC) filters. Evaluation of two filtration (IOM with gelatin filter and cassette with PC filter), two impaction (Andersen 1-STG loaded with TSA and MSA) and four impingement methods [AGI-30 and BioSampler filled with Tween mixture (TM) and phosphate-buffered saline (PBS)] revealed the BioSampler/TM performed best over 30 and 60 min of sampling (P < 0.05), while low recovery efficiencies were associated with the IOM/gelatin, cassette/PC, and AGI-30/PBS combinations (P < 0.05). In addition to BioSampler/TM, collecting S. aureus onto TSA from the Andersen 1-STG is also recommended, as it is the second best method at the 60-min sampling (P < 0.05).

  16. The impact of particle size selective sampling methods on occupational assessment of airborne beryllium particulates.

    PubMed

    Sleeth, Darrah K

    2013-05-01

    In 2010, the American Conference of Governmental Industrial Hygienists (ACGIH) formally changed its Threshold Limit Value (TLV) for beryllium from a 'total' particulate sample to an inhalable particulate sample. This change may have important implications for workplace air sampling of beryllium. A history of particle size-selective sampling methods, with a special focus on beryllium, will be provided. The current state of the science on inhalable sampling will also be presented, including a look to the future at what new methods or technology may be on the horizon. This includes new sampling criteria focused on particle deposition in the lung, proposed changes to the existing inhalable convention, as well as how the issues facing beryllium sampling may help drive other changes in sampling technology.

  17. Chemical Aerosol Characterization Sampling in Santa Ana during the MCMA-2003 Field Campaign

    NASA Astrophysics Data System (ADS)

    Bernabe, R.; Castro, T.; Marquez, C.; Cardenas, B.; Salcedo, D.

    2004-12-01

    Aerosol samples were collected during the intensive MCMA-2003 campaign in Santa Ana (19.1772° N, 98.99° W), Mexico City. This small rural town lies near the southeastern border of Mexico City and on the western rim of a mountain pass that channels the southern outflow of air from the city. Particles smaller than 10 μ m in aerodynamic diameter were collected on aluminum foils using three 8-stage micro orifice uniform deposit impactor (MOUDI), while fine particles (PM2.5) were collected in quartz fiber filters using manual samplers (MiniVol air samplers, Airmetrics). Samples were taken every 3 days starting at 2am in 6 hr intervals (total time 18 hrs for MOUDI and 24 hrs for MiniVol) from April 10-22, 2003. The MOUDI was operated at a flow rate of 30 l/min with calibrated impaction cut-points in the range of 10 - 0.18 μ m; while the MiniVol operation flow rate was 5 l/min. Prior to sampling, the aluminum foils were pre-conditioned (at 450° C) in a furnace for 8 hrs to eliminate impurities. Both types of filters were weighted using an Ultra Microbalance (Cahn, with a sensitivity of 0.1 μ g) for particulate matter under controlled conditions (20° C and 50% relative humidity). The aluminum foils were cut in halves, one half for Total Carbon (TC) determination with a thermal method, Evolved Gas Analysis (EGA), and the other half for analysis of inorganic ions (Cl-, NO3, SO42-, NA+, NH4+, K+, Ca2+ and Mg+) by liquid chromatography and mass spectrometer analytic method. Organic and elemental carbon was done according to the IMPROVE Thermal Protocol. Aerosol measurements made with MOUDI showed that the particle size distribution was bimodal in the three sampling periods. During daylight periods, 75% of the collected samples consisted of particles with aerodynamic diameter < 1 μ m whereas the major mass concentration was dominated by particles > 1 μ m during night. PM2.5 results reveal that the highest and lowest levels were obtained during the afternoon (60.6 μ g

  18. In vitro tests to assess toxic effects of airborne PM(10) samples. Correlation with metals and chlorinated dioxins and furans.

    PubMed

    Roig, Neus; Sierra, Jordi; Rovira, Joaquim; Schuhmacher, Marta; Domingo, José L; Nadal, Martí

    2013-01-15

    Inhalation is an important exposure pathway to airborne pollutants such as heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and particulate matter. Chronic exposure to those chemicals, which form part of complex environmental mixtures, may mean important human health risks. In the present study, the suitability of different in vitro tests to evaluate the toxic effects of air PM(10) pollutants is investigated. In addition, it is also assessed how to distinguish the contribution of chemical pollutants to toxicity. Sixty-three air samples were collected in various areas of Catalonia (Spain), and the levels of ecotoxicity, cytotoxicity and genotoxicity were evaluated. Aqueous acidic extractions of quartz fiber filters, where PM(10) had been retained, were performed. The photo-luminescent bacteria Vibrio fischeri (Microtox®) bioassay was performed to assess ecotoxicity. Moreover, MTT and Comet Assays, both using human lung epithelial cells A549 as target cells, were applied to assess the cytotoxicity and genotoxicity of air samples, respectively. The results show that Microtox® is an excellent screening test to perform a first evaluation of air quality, as it presented a significant correlation with chemical contaminants, contrasting with MTT Assay. Although none of the samples exhibited genotoxicity, a high correlation was found between this in vitro test and carcinogenic agents. Urban samples from traffic-impacted areas would be significantly more toxic. Finally, environmental temperature was identified as a key parameter, as higher values of ecotoxicity were found in winter.

  19. Strategies for minimizing sample size for use in airborne LiDAR-based forest inventory

    USGS Publications Warehouse

    Junttila, Virpi; Finley, Andrew O.; Bradford, John B.; Kauranne, Tuomo

    2013-01-01

    Recently airborne Light Detection And Ranging (LiDAR) has emerged as a highly accurate remote sensing modality to be used in operational scale forest inventories. Inventories conducted with the help of LiDAR are most often model-based, i.e. they use variables derived from LiDAR point clouds as the predictive variables that are to be calibrated using field plots. The measurement of the necessary field plots is a time-consuming and statistically sensitive process. Because of this, current practice often presumes hundreds of plots to be collected. But since these plots are only used to calibrate regression models, it should be possible to minimize the number of plots needed by carefully selecting the plots to be measured. In the current study, we compare several systematic and random methods for calibration plot selection, with the specific aim that they be used in LiDAR based regression models for forest parameters, especially above-ground biomass. The primary criteria compared are based on both spatial representativity as well as on their coverage of the variability of the forest features measured. In the former case, it is important also to take into account spatial auto-correlation between the plots. The results indicate that choosing the plots in a way that ensures ample coverage of both spatial and feature space variability improves the performance of the corresponding models, and that adequate coverage of the variability in the feature space is the most important condition that should be met by the set of plots collected.

  20. Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples.

    PubMed

    El-Zanan, Hazem S; Lowenthal, Douglas H; Zielinska, Barbara; Chow, Judith C; Kumar, Naresh

    2005-07-01

    The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low.

  1. Optical properties of urban aerosol from airborne and ground-based in situ measurements performed during the Etude et Simulation de la Qualité de l'air en Ile de France (ESQUIF) program

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Randriamiarisoa, Hariliva; Sanak, Joseph; Couvert, Pierre; Flamant, Cyrille

    2005-01-01

    Urban aerosol microphysical and optical properties were investigated over the Paris area coupling, for the first time, with dedicated airborne in situ instruments (nephelometer and particle sizers) and active remote sensor (lidar) as well as ground-based in situ instrumentation. The experiment, covering two representative pollution events, was conducted in the framework of the Etude et Simulation de la Qualité de l'air en Ile de France (ESQUIF) program. Pollution plumes were observed under local northerly and southerly synoptic wind conditions on 19 and 31 July 2000, respectively. The 19 July (31 July) event was characterized by north-northwesterly (westerly) advection of polluted (clean) air masses originating from Great Britain (the Atlantic Ocean). The aerosol number size distribution appeared to be composed mainly of two modes in the planetary boundary layer (accumulation and nucleation) and three modes in the surface layer (accumulation, nucleation, and coarse). The characteristics of the size distribution (modal radii and geometric dispersion) were remarkably similar on both days and very coherent with the aerosol optical parameters retrieved from lidar and nephelometer measurements. The city of Paris mainly produces aerosols in the nucleation mode (modal radius of ˜0.03 μm) that have little influence on the aerosol optical properties in the visible spectral range. The latter are largely dominated by the scattering properties of aerosols in the accumulation mode (modal radius of ˜0.12 μm). When the incoming air mass is already polluted (clear), the aerosol in the accumulation mode is shown to be essentially hydrophobic (hydrophilic) in the outgoing air mass.

  2. Dry sampling of gas-phase isocyanates and isocyanate aerosols from thermal degradation of polyurethane.

    PubMed

    Gylestam, Daniel; Riddar, Jakob B; Karlsson, Daniel; Dahlin, Jakob; Dalene, Marianne; Skarping, Gunnar

    2014-01-01

    The performance of a dry sampler, with an impregnated denuder in series with a glass fibre filter, using di-n-butylamine (DBA) for airborne isocyanates (200ml min(-1)) is investigated and compared with an impinger flask with a glass fibre filter in series (1 l min(-1)). An exposure chamber containing 1,6-hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and 2,4- and 2,6-toluene diisocyanate (TDI) in the concentration range of 5-205 μg m(-3) [0.7-33 p.p.b.; relative humidity (RH) 50%], generated by gas- and liquid-phase permeation, was used for the investigation. The precision for the dry sampling for five series with eight samplers were in the range of 2.0-6.1% with an average of 3.8%. During 120-min sampling (n = 4), no breakthrough was observed when analysing samplers in series. Sixty-four exposed samplers were analysed after storage for 0, 7, 14, and 21 days. No breakdown of isocyanate derivatives was observed. Twenty-eight samplers in groups of eight were collecting isocyanates during 0.5-32h. Virtually linear relationships were obtained with regard to sampling time and collected isocyanates with correlation coefficients in the range of 0.998-0.999 with the intercept close to the origin. Pre- or post-exposure to ambient air did not affect the result. Dry sampling (n = 48) with impinger-filter sampling (n = 48) of thermal decomposition product of polyurethane polymers, at RH 20, 40, 60, and 90%, was compared for 11 isocyanate compounds. The ratio between the different isocyanates collected with dry samplers and impinger-filter samplers was in the range of 0.80-1.14 for RH = 20%, 0.8-1.25 for RH = 40%, 0.76-1.4 for RH = 60%, and 0.72-3.7 for RH = 90%. Taking into account experimental errors, it seems clear that isocyanic acid DBA derivatives are found at higher levels in the dry samples compared with impinger-filter samplers at elevated humidity. The dry sampling using DBA as the reagent enables easy and robust sampling without the need of field

  3. Detection of airborne bacteria in a duck production facility with two different personal air sampling devices for an exposure assessment.

    PubMed

    Martin, Elena; Dziurowitz, Nico; Jäckel, Udo; Schäfer, Jenny

    2015-01-01

    Prevalent airborne microorganisms are not well characterized in industrial animal production buildings with respect to their quantity or quality. To investigate the work-related microbial exposure, personal bioaerosol sampling during the whole working day is recommended. Therefore, bioaerosol sampling in a duck hatchery and a duck house with two personal air sampling devices, a filter-based PGP and a NIOSH particle size separator, was performed. Subsequent, quantitative and qualitative analyses were carried out with" culture independent methods. Total cell concentrations (TCC) determined via fluorescence microscopy showed no difference between the two devices. In average, 8 × 10(6) cells/m(3) were determined in the air of the duck hatchery and 5 × 10(7) cells/m(3) in the air of the duck house. A Generated Restriction Fragment Length Polymorphism (RFLP) pattern revealed deviant bacterial compositions comparing samples collected with both devices. Clone library analyses based on 16S rRNA gene sequence analysis from the hatchery's air showed 65% similarity between the two sampling devices. Detailed 16S rRNA gene sequence analyses showed the occurrence of bacterial species like Acinetobacter baumannii, Enterococcus faecalis, Escherichia sp., and Shigella sp.; and a group of Staphylococcus delphini, S. intermedius, and S. pseudintermedius that provided the evidence of potential exposure to risk group 2 bacteria at the hatchery workplace. Size fractionated sampling with the developed by the Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA) device revealed that pathogenic bacteria would deposit in the inhalable, the thorax, and possibly alveolar dust fraction according to EN481. TCC analysis showed the deposition of bacterial cells in the third stage (< 1μm) at the NIOSH device which implies that bacteria can reach deep into the lungs and contaminate the alveolus after inhalation. Nevertheless, both personal sampling devices

  4. The use of an airborne lidar for mapping cirrus clouds in FIRE, phase 2

    NASA Technical Reports Server (NTRS)

    Radke, Lawrence F.; Hobbs, Peter V.

    1990-01-01

    The Univ. of Washington (UW) and Georgia Tech have recently built a dual wavelength airborne lidar for operation on the UW's Convair C-131A research aircraft. This lidar was used in studying aerosols and clouds. These studies demonstrated the utility of airborne lidar in a variety of atmospheric research and prompt the suggestion that this facility be included in the next FIRE cirrus experiment. The vertically pointing airborne lidar would be used as a complement to ground based lidars. The airborne lidar would ensure extended coverage of IFO cases that develop upwind of the surface lidars or which miss the ground based lidars while still being the focus of satellite and aircraft in situ studies. The airborne lidar would help assure that cirrus clouds were simultaneously viewed by satellite, sampled by aircraft, and structurally characterized by lidar. System specifications are listed and a schematic is shown of the lidar system aboard the C-131A.

  5. High Resolution Mass Spectrometry of Seasonal Aerosol Samples From an Urban Location in the Italian Po Valley

    NASA Astrophysics Data System (ADS)

    Mahon, Brendan; Giorio, Chiara; Gallimore, Peter J.; Zielinski, Arthur T.; Tapparo, Andrea; Kalberer, Markus

    2016-04-01

    The Po Valley in Northern Italy represents one of the most polluted environments in Europe, with PM2.5 and ozone concentrations regularly exceeding 100μg/m3 and 50ppb respectively. Particularly during winter, prolonged inversion conditions together with biomass burning and anthropogenic emissions regularly lead to severe air pollution events. Over the course of several months in 2013-14, we carried out a sampling program at a city-centre site in Padova, Italy, collecting 24-hour high-volume aerosol filter samples, 18 in winter (mid December - mid March) and 20 in summer (late May - late July). Utilising high-resolution Orbitrap mass spectrometry techniques, we have characterised these sample sets to examine the long-term variation in aerosol composition over the sampling campaign and to determine the effect of anthropogenic gaseous pollutants such as NOx and SO2 on the composition of organic particle components. The results showed that between ca. 450-700 ions were measured in each sample in both the summer and winter sample sets, however the majority (90%) of ions in the winter samples were below 300m/z and below 380m/z in the summer samples. A much higher percentage of CHO-only ions were found in winter (ca. 27%) compared to the summer samples (ca. 6%), indicating a higher degree of photochemical reactions taking place involving pollutants such as NOx and SO2 in summer. Our results represent the first long term data set of high-resolution measurements of aerosol composition and demonstrate that this technique is an important tool in evaluating the composition of aerosol particles in complex polluted urban areas.

  6. Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC4RS campaign

    NASA Astrophysics Data System (ADS)

    Shingler, Taylor; Crosbie, Ewan; Ortega, Amber; Shiraiwa, Manabu; Zuend, Andreas; Beyersdorf, Andreas; Ziemba, Luke; Anderson, Bruce; Thornhill, Lee; Perring, Anne E.; Schwarz, Joshua P.; Campazano-Jost, Pedro; Day, Douglas A.; Jimenez, Jose L.; Hair, Johnathan W.; Mikoviny, Tomas; Wisthaler, Armin; Sorooshian, Armin

    2016-04-01

    In situ aerosol particle measurements were conducted during 21 NASA DC-8 flights in the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys field campaign over the United States, Canada, Pacific Ocean, and Gulf of Mexico. For the first time, this study reports rapid, size-resolved hygroscopic growth and real refractive index (RI at 532 nm) data between the surface and upper troposphere in a variety of air masses including wildfires, agricultural fires, biogenic, marine, and urban outflow. The Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) quantified size-resolved diameter growth factors (GF = Dp,wet/Dp,dry) that are used to infer the hygroscopicity parameter κ. Thermokinetic simulations were conducted to estimate the impact of partial particle volatilization within the DASH-SP across a range of sampling conditions. Analyses of GF and RI data as a function of air mass origin, dry size, and altitude are reported, in addition to κ values for the inorganic and organic fractions of aerosol. Average RI values are found to be fairly constant (1.52-1.54) for all air mass categories. An algorithm is used to compare size-resolved DASH-SP GF with bulk scattering f(RH = 80%) data obtained from a pair of nephelometers, and the results show that the two can only be reconciled if GF is assumed to decrease with increasing dry size above 400 nm (i.e., beyond the upper bound of DASH-SP measurements). Individual case studies illustrate variations of hygroscopicity as a function of dry size, environmental conditions, altitude, and composition.

  7. Thermodesorption of aerosol matter on multiple filters of different materials for a more detailed evaluation of sampling artifacts

    NASA Astrophysics Data System (ADS)

    Wittmaack, Klaus; Keck, Lothar

    2004-10-01

    Multiple, essentially identical samples of PM2.5, PM10 and TSP aerosol matter were collected on filters of cellulose acetate-nitrate membrane (CA), quartz fiber (QF) and glass fiber (GF) material. The samples were analyzed in terms of the gravimetric mass and the mass of nine inorganic ions. These parameters were also measured after step-wise thermodesorption of aerosol matter by 1-h heating in ambient air up to 350 °C. The observed thermograms of the analyzed ions were compared with results obtained using pure and mixed salts on filter. In summer the apparent mass concentration of aerosol matter collected on CA was always larger than on QF and GF filter. The excess mass on CA was found to be highly volatile, i.e. completely removable at 120 °C, and composed of both ionic and non-ionic matter. The apparent nitrate concentration sampled on QF and GF was almost an order of magnitude lower than on CA. The very pronounced nitrate losses from the fiber filters are attributed to volatilization of ammonium nitrate. In contrast, nitrate losses from CA were small or even negligible for two reasons, pile-up of aerosol matter predominantly on (rather than in) the filter ("cake" formation) and, more importantly, re-adsorption of volatilized ammonia and nitric acid in the filter. Sampling on GF filters was found to suffer from severe problems due to chemical reactions between Na+ of the glass and SO42- of the aerosol matter. A novel type of artifact was observed in sampling campaigns during fall. Presumably as a results of a high water content, the collected aerosol matter became liquefied and a large fraction of the water soluble components was driven through the filter into the support pad underneath. The negative "wetting artifact" was much more pronounced for the thin CA than for the relatively thick QF filters. The total amount of aerosol matter in the CA/pad and QF/pad combinations was the same, indicating that this kind of artifact can be corrected for. Ammonium

  8. Automated method for simultaneous lead and strontium isotopic analysis applied to rainwater samples and airborne particulate filters (PM10).

    PubMed

    Beltrán, Blanca; Avivar, Jessica; Mola, Montserrat; Ferrer, Laura; Cerdà, Víctor; Leal, Luz O

    2013-09-03

    A new automated, sensitive, and fast system for the simultaneous online isolation and preconcentration of lead and strontium by sorption on a microcolumn packed with Sr-resin using an inductively coupled plasma mass spectrometry (ICP-MS) detector was developed, hyphenating lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA). Pb and Sr are directly retained on the sorbent column and eluted with a solution of 0.05 mol L(-1) ammonium oxalate. The detection limits achieved were 0.04 ng for lead and 0.03 ng for strontium. Mass calibration curves were used since the proposed system allows the use of different sample volumes for preconcentration. Mass linear working ranges were between 0.13 and 50 ng and 0.1 and 50 ng for lead and strontium, respectively. The repeatability of the method, expressed as RSD, was 2.1% and 2.7% for Pb and Sr, respectively. Environmental samples such as rainwater and airborne particulate (PM10) filters as well as a certified reference material SLRS-4 (river water) were satisfactorily analyzed obtaining recoveries between 90 and 110% for both elements. The main features of the LOV-MSFIA-ICP-MS system proposed are the capability to renew solid phase extraction at will in a fully automated way, the remarkable stability of the column which can be reused up to 160 times, and the potential to perform isotopic analysis.

  9. Airborne pollen sampling in Manoa Valley, Hawaii: effect of rain, humidity and wind.

    PubMed

    Massey, D G; Fournier-Massey, G

    1984-05-01

    Kramer-Collins pollen sampling was conducted over 24 hours for 25 consecutive months at two valley sites in Honolulu. Of 1,059 expected samples, 699 (66.0%) were collected. Only 25 were considered excellent, i.e., eight three-hour collection bands. Twenty eight were considered good, ie., two to six bands. The difficulties in the study were associated with the weather directly (17.5%), the power source (3.9%), inadequancy of the samplers (63.1%) and the inexperience of technicians (15.3%). Sampler problems were also indirectly attributable to the high humidity, rain and wind, which differed at the two sites.

  10. Development of a new airborne humidigraph system.

    SciTech Connect

    Pekour, Mikhail S.; Schmid, Beat; Chand, Duli; Hubbe, John M.; Kluzek, Celine D.; Nelson, Danny A.; Tomlinson, Jason M.; Cziczo, Daniel J.

    2012-12-06

    Modeling and measurements of aerosol properties is complicated by the hygroscopic behavior of the aerosols adding significant uncertainty to our best estimates of the direct effect aerosols exert on the radiative balance of the atmosphere. Airborne measurements of aerosol hygroscopicity are particularly challenging but critically needed. This motivated the development of a newly designed system which can measure the dependence of the aerosol light scattering coefficient (σsp) on relative humidity (RH), known as f(RH), in real-time at a rapid rate (<10 s) on an aerial platform. The new system has several advantages over existing systems. It consists of three integrating nephelometers and humidity conditioners for simultaneous measurement of the σsp at three different RHs. The humidity is directly controlled in exchanger cells without significant temperature disturbances and without particle dilution, heating or loss of volatile compounds. The single-wavelength nephelometers are illuminated by LED-based light sources thereby minimizing heating of the sample stream. The flexible design of the RH conditioners, consisting of a number of specially designed exchanger cells (driers or humidifiers), enables us to measure f(RH) under hydration or dehydration conditions (always starting with the aerosol in a known state) with a simple system re-configuration. These exchanger cells have been characterized for losses of particles using latex spheres and laboratory generated ammonium sulfate aerosols. Residence times of 6 - 9 s in the exchangers and subsequent lines is sufficient for most aerosols to attain equilibrium with the new water vapor content. The performance of this system has been assessed aboard DOE’s G-1 research aircraft during test flights over California, Oregon, and Washington.

  11. Aerosol, radiation, and climate

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1983-01-01

    Airborne, spaceborne, and ground-based measurements are used to study the radiative and climatic effects of aerosols. The data, which are modelled with a hierarchy of radiation and climate models, and their implications are summarized. Consideration is given to volcanic aerosols, polar stratospheric clouds, and the Arctic haze. It is shown that several types of aerosols (volcanic particles and the Arctic haze) cause significant alterations to the radiation budget of the regions where they are located.

  12. Organic Composition of Size-Segregated Aerosols Sampled During the 2002 Bay Regional Atmospheric Chemistry Experiment (BRACE), Florida, USA

    NASA Astrophysics Data System (ADS)

    Tremblay, R. T.; Zika, R. G.

    2003-04-01

    Aerosol samples were collected for the analysis of organic source markers using non-rotating Micro Orifice Uniform Deposit Impactors (MOUDI) as part of the Bay Regional Atmospheric Chemistry Experiment (BRACE) in Tampa, FL, USA. Daily samples were collected 12 m above ground at a flow rate of 30 lpm throughout the month of May 2002. Aluminum foil discs were used to sample aerosol size fractions with aerodynamic cut diameter of 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.17 and 0.093 um. Samples were solvent extracted using a mixture of dichloromethane/acetone/hexane, concentrated and then analyzed using gas chromatography-mass spectrometry (GC/MS). Low detection limits were achieved using a HP Programmable Temperature Vaporizing inlet (PTV) and large volume injections (80ul). Excellent chromatographic resolution was obtained using a 60 m long RTX-5MS, 0.25 mm I.D. column. A quantification method was built for over 90 organic compounds chosen as source markers including straight/iso/anteiso alkanes and polycyclic aromatic hydrocarbons (PAH). The investigation of potential aerosol sources for different particle sizes using known organic markers and source profiles will be presented. Size distributions of carbon preference indices (CPI), percent wax n-alkanes (%WNA) and concentration of selected compounds will be discussed. Also, results will be compared with samples acquired in different environments including the 1999 Atlanta SuperSite Experiment, GA, USA.

  13. Model-Based Estimation of Sampling-Caused Uncertainty in Aerosol Remote Sensing for Climate Research Applications

    NASA Technical Reports Server (NTRS)

    Geogdzhayev, Igor V.; Cairns, Brian; Mishchenko, Michael I.; Tsigaridis, Kostas; van Noije, Twan

    2014-01-01

    To evaluate the effect of sampling frequency on the global monthly mean aerosol optical thickness (AOT), we use 6 years of geographical coordinates of Moderate Resolution Imaging Spectroradiometer (MODIS) L2 aerosol data, daily global aerosol fields generated by the Goddard Institute for Space Studies General Circulation Model and the chemical transport models Global Ozone Chemistry Aerosol Radiation and Transport, Spectral Radiationtransport Model for Aerosol Species and Transport Model 5, at a spatial resolution between 1.125 deg × 1.125 deg and 2 deg × 3?: the analysis is restricted to 60 deg S-60 deg N geographical latitude. We found that, in general, the MODIS coverage causes an underestimate of the global mean AOT over the ocean. The long-term mean absolute monthly difference between all and dark target (DT) pixels was 0.01-0.02 over the ocean and 0.03-0.09 over the land, depending on the model dataset. Negative DT biases peak during boreal summers, reaching 0.07-0.12 (30-45% of the global long-term mean AOT). Addition of the Deep Blue pixels tempers the seasonal dependence of the DT biases and reduces the mean AOT difference over land by 0.01-0.02. These results provide a quantitative measure of the effect the pixel exclusion due to cloud contamination, ocean sun-glint and land type has on the MODIS estimates of the global monthly mean AOT. We also simulate global monthly mean AOT estimates from measurements provided by pixel-wide along-track instruments such as the Aerosol Polarimetry Sensor and the Cloud-Aerosol LiDAR with Orthogonal Polarization. We estimate the probable range of the global AOT standard error for an along-track sensor to be 0.0005-0.0015 (ocean) and 0.0029-0.01 (land) or 0.5-1.2% and 1.1-4% of the corresponding global means. These estimates represent errors due to sampling only and do not include potential retrieval errors. They are smaller than or comparable to the published estimate of 0.01 as being a climatologically significant

  14. Analysis of field-sampled, in-situ network, and PALS airborne soil moisture observations over SMAPVEX12

    NASA Astrophysics Data System (ADS)

    Adams, J. R.; Berg, A. A.; McNairn, H.; Cosh, M. H.

    2014-12-01

    The Soil Moisture Active Passive Validation Experiment in 2012 (SMAPVEX12) was conducted over an agricultural domain in southern Manitoba, Canada. The purpose of the campaign was to develop ground and airborne datasets for pre-launch validation of SMAP satellite soil moisture retrieval algorithms. Three key soil moisture datasets were collected in support of the campaign objectives: 1) intensive field sampling over (up to) 55 agricultural fields on 17 sampling days; 2) a continuously operated temporary in-situ network (> 30 stations) distributed over the domain; and 3) L-band microwave data from NASA's Passive Active L-band Sensor (PALS) onboard a Twin-Otter aircraft. This presentation addresses whether dense temporary in-situ networks can supplant intensive field-sampling during pre-/post-launch validation campaigns. SMAPVEX12 datasets are examined at the field and aircraft pixel (~800 m) scale, and at the domain scale. Preliminary results demonstrate that, at the field-scale, there is generally limited agreement between a single station and sampled data over its field. Over the duration of the campaign, the majority of temporary soil moisture stations have > 0.04 m3m-3 RMSE with sampled field data, suggesting that a single station has limited representativeness of an agricultural field. Furthermore, the in-situ stations and field-sampled data are compared with PALS generated soil moisture to assess differences in daily RMSE. For wet-periods, both ground datasets provide a comparable RMSE for the PALS estimate. Although for dry-periods, the difference in RMSE between the ground datasets becomes more significant (> 0.04 m3m-3). This is because the field-sampled data exhibit a sharper dry-down than the in-situ station measurements. However, at the domain scale there is strong agreement between the soil moisture datasets. Additional results describe the sources of variability affecting these soil moisture datasets and the statistical number of stations needed to

  15. Measurement of airborne carbonyls using an automated sampling and analysis system.

    PubMed

    Aiello, Mauro; McLaren, Robert

    2009-12-01

    Based upon the well established method of derivitization with 2,4-dinitrophenylhydrazine, an instrument was developed for ambient measurement of carbonyls with significantly improved temporal resolution and detection limits through automation, direct injection, and continuous use of a single microsilica DNPH cartridge. Kinetic experiments indicate that the derivitization reaction on the cartridge is fast enough for continuous measurements with 50 min air sampling. Reaction efficiencies measured on the cartridge were 100% for the carbonyls tested, including formaldehyde, acetaldehyde, propanal, acetone, and benzaldehyde. Transmission of the carbonyls through an ozone scrubber (KI) were in the range of 97-101%. Blank levels and detection limits were lower than those obtainable with conventional DNPH methods by an order of magnitude or greater. Mixing ratio detection limits of carbonyls in ambient air were 38-73 ppt for a 50 min air sample (2.5 L). The instrument made continuous measurements of carbonyls on a 2 h cycle over a period of 10 days during a field study in southwestern Ontario. Median mixing ratios were 0.58 ppb formaldehyde; 0.29 ppb acetaldehyde; 1.14 ppb acetone; and 0.45 ppb glyoxal. Glyoxal shows a significant correlation with ozone and zero intercept, consistent with a secondary source and minor direct source to the atmosphere. The method should easily be extendable to the detection of other low molecular weight carbonyls that have been previously reported using the DNPH technique.

  16. EVALUATION OF COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY APPLIED TO AN AMBIENT URBAN AEROSOL SAMPLE

    EPA Science Inventory

    Concerns about the environmental and public health effects of particulate matter (PM) have stimulated interest in analytical techniques capable of measuring the size and chemical composition of individual aerosol particles. Computer-controlled scanning electron microscopy (CCSE...

  17. Air sampling and determination of vapours and aerosols of bitumen and polycyclic aromatic hydrocarbons in the Human Bitumen Study.

    PubMed

    Breuer, Dietmar; Hahn, Jens-Uwe; Höber, Dieter; Emmel, Christoph; Musanke, Uwe; Rühl, Reinhold; Spickenheuer, Anne; Raulf-Heimsoth, Monika; Bramer, Rainer; Seidel, Albrecht; Schilling, Bernd; Heinze, Evelyn; Kendzia, Benjamin; Marczynski, Boleslaw; Welge, Peter; Angerer, Jürgen; Brüning, Thomas; Pesch, Beate

    2011-06-01

    The chemical complexity of emissions from bitumen applications is a challenge in the assessment of exposure. Personal sampling of vapours and aerosols of bitumen was organized in 320 bitumen-exposed workers and 69 non-exposed construction workers during 2001-2008. Area sampling was conducted at 44 construction sites. Area and personal sampling of vapours and aerosols of bitumen showed similar concentrations between 5 and 10 mg/m(3), while area sampling yielded higher concentrations above the former occupational exposure limit (OEL) of 10 mg/m(3). The median concentration of personal bitumen exposure was 3.46 mg/m(3) (inter-quartile range 1.80-5.90 mg/m(3)). Only few workers were exposed above the former OEL. The specificity of the method measuring C-H stretch vibration is limited. This accounts for a median background level of 0.20 mg/m³ in non-exposed workers which is likely due to ubiquitous aliphatic hydrocarbons. Further, area measurements of polycyclic aromatic hydrocarbons (PAHs) were taken at 25 construction sites. U.S. EPA PAHs were determined with GC/MS, with the result of a median concentration of 2.47 μg/m(3) at 15 mastic asphalt worksites associated with vapours and aerosols of bitumen, with a Spearman correlation coefficient of 0.45 (95% CI -0.13 to 0.78). PAH exposure at mastic-asphalt works was higher than at reference worksites (median 0.21 μg/m(3)), but about one order of magnitude lower compared to coke-oven works. For a comparison of concentrations of vapours and aerosols of bitumen and PAHs in asphalt works, differences in sampling and analytical methods must to be taken into account.

  18. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  19. BioAerosol Mass Spectrometry: Reagentless Detection of Individual Airborne Spores and Other Bioagent Particles Based on Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Steele, Paul Thomas

    2004-09-01

    Better devices are needed for the detection of aerosolized biological warfare agents. Advances in the ongoing development of one such device, the BioAerosol Mass Spectrometry (BAMS) system, are described here in detail. The system samples individual, micrometer-sized particles directly from the air and analyzes them in real-time without sample preparation or use of reagents. At the core of the BAMS system is a dual-polarity, single-particle mass spectrometer with a laser based desorption and ionization (DI) system. The mass spectra produced by early proof-of-concept instruments were highly variable and contained limited information to differentiate certain types of similar biological particles. The investigation of this variability and subsequent changes to the DI laser system are described. The modifications have reduced the observed variability and thereby increased the usable information content in the spectra. These improvements would have little value without software to analyze and identify the mass spectra. Important improvements have been made to the algorithms that initially processed and analyzed the data. Single particles can be identified with an impressive level of accuracy, but to obtain significant reductions in the overall false alarm rate of the BAMS instrument, alarm decisions must be made dynamically on the basis of multiple analyzed particles. A statistical model has been developed to make these decisions and the resulting performance of a hypothetical BAMS system is quantitatively predicted. The predictions indicate that a BAMS system, with reasonably attainable characteristics, can operate with a very low false alarm rate (orders of magnitude lower than some currently fielded biodetectors) while still being sensitive to small concentrations of biological particles in a large range of environments. Proof-of-concept instruments, incorporating some of the modifications described here, have already performed well in independent testing.

  20. Comparison of laser ablation and dried solution aerosol as sampling systems in inductively coupled plasma mass spectrometry.

    PubMed

    Coedo, A G; Padilla, I; Dorado, M T

    2004-12-01

    This paper describes a study designed to determine the possibility of using a dried aerosol solution for calibration in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The relative sensitivities of tested materials mobilized by laser ablation and by aqueous nebulization were established, and the experimentally determined relative sensitivity factors (RSFs) were used in conjunction with aqueous calibration for the analysis of solid steel samples. To such a purpose a set of CRM carbon steel samples (SS-451/1 to SS-460/1) were sampled into an ICP-MS instrument by solution nebulization using a microconcentric nebulizer with membrane desolvating (D-MCN) and by laser ablation (LA). Both systems were applied with the same ICP-MS operating parameters and the analyte signals were compared. The RSF (desolvated aerosol response/ablated solid response) values were close to 1 for the analytes Cr, Ni, Co, V, and W, about 1.3 for Mo, and 1.7 for As, P, and Mn. Complementary tests were carried out using CRM SS-455/1 as a solid standard for one-point calibration, applying LAMTRACE software for data reduction and quantification. The analytical results are in good agreement with the certified values in all cases, showing that the applicability of dried aerosol solutions is a good alternative calibration system for laser ablation sampling.

  1. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    NASA Astrophysics Data System (ADS)

    González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

    2009-01-01

    Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas), in a minimal mineral (oligotrophic) media. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. Phylogenetic comparison with the currently available rDNA database allowed sequences belonging to Proteobacteria Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla to be identified. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the marine Antarctic soil the poorest (only one). Snow samples from Col du Midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteriaclone). The only microorganism identified in the Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. Most of the identified microorganisms had been detected previously in cold environments, marine sediments soils and rocks. Air current dispersal is the best model to explain the presence of very specific microorganisms, like those identified in this work, in environments very distant and very different from each other.

  2. Time-weighted average sampling of airborne propylene glycol ethers by a solid-phase microextraction device.

    PubMed

    Shih, H C; Tsai, S W; Kuo, C H

    2012-01-01

    A solid-phase microextraction (SPME) device was used as a diffusive sampler for airborne propylene glycol ethers (PGEs), including propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), and dipropylene glycol monomethyl ether (DPGME). Carboxen-polydimethylsiloxane (CAR/PDMS) SPME fiber was selected for this study. A polytetrafluoroethylene (PTFE) tubing was used as the holder, and the SPME fiber assembly was inserted into the tubing as a diffusive sampler. The diffusion path length and area of the sampler were 0.3 cm and 0.00086 cm(2), respectively. The theoretical sampling constants at 30°C and 1 atm for PGME, PGMEA, and DPGME were 1.50 × 10(-2), 1.23 × 10(-2) and 1.14 × 10(-2) cm(3) min(-1), respectively. For evaluations, known concentrations of PGEs around the threshold limit values/time-weighted average with specific relative humidities (10% and 80%) were generated both by the air bag method and the dynamic generation system, while 15, 30, 60, 120, and 240 min were selected as the time periods for vapor exposures. Comparisons of the SPME diffusive sampling method to Occupational Safety and Health Administration (OSHA) organic Method 99 were performed side-by-side in an exposure chamber at 30°C for PGME. A gas chromatography/flame ionization detector (GC/FID) was used for sample analysis. The experimental sampling constants of the sampler at 30°C were (6.93 ± 0.12) × 10(-1), (4.72 ± 0.03) × 10(-1), and (3.29 ± 0.20) × 10(-1) cm(3) min(-1) for PGME, PGMEA, and DPGME, respectively. The adsorption of chemicals on the stainless steel needle of the SPME fiber was suspected to be one of the reasons why significant differences between theoretical and experimental sampling rates were observed. Correlations between the results for PGME from both SPME device and OSHA organic Method 99 were linear (r = 0.9984) and consistent (slope = 0.97 ± 0.03). Face velocity (0-0.18 m/s) also proved to have no effects on the sampler

  3. THE NIST-EPA INTERAGENCY AGREEMENT ON MEASUREMENTS AND STANDARDS IN AEROSOL CARBON: SAMPLING REGIONAL PM 2.5 FOR THE CHEMOMETRIC OPTIMIZATION OF THERMAL-OPTICAL ANALYSIS

    EPA Science Inventory

    Results from the NIST-EPA Interagency Agreement on Measurements and Standards in Aerosol Carbon: Sampling Regional PM2.5 for the Chemometric Optimization of Thermal-Optical Analysis Study will be presented at the American Association for Aerosol Research (AAAR) 24th Annual Confer...

  4. Sediment grain size estimation using airborne remote sensing, field sampling, and robust statistic.

    PubMed

    Castillo, Elena; Pereda, Raúl; Luis, Julio Manuel de; Medina, Raúl; Viguri, Javier

    2011-10-01

    Remote sensing has been used since the 1980s to study parameters in relation with coastal zones. It was not until the beginning of the twenty-first century that it started to acquire imagery with good temporal and spectral resolution. This has encouraged the development of reliable imagery acquisition systems that consider remote sensing as a water management tool. Nevertheless, the spatial resolution that it provides is not adapted to carry out coastal studies. This article introduces a new methodology for estimating the most fundamental physical property of intertidal sediment, the grain size, in coastal zones. The study combines hyperspectral information (CASI-2 flight), robust statistic, and simultaneous field work (chemical and radiometric sampling), performed over Santander Bay, Spain. Field data acquisition was used to build a spectral library in order to study different atmospheric correction algorithms for CASI-2 data and to develop algorithms to estimate grain size in an estuary. Two robust estimation techniques (MVE and MCD multivariate M-estimators of location and scale) were applied to CASI-2 imagery, and the results showed that robust adjustments give acceptable and meaningful algorithms. These adjustments have given the following R(2) estimated results: 0.93 in the case of sandy loam contribution, 0.94 for the silty loam, and 0.67 for clay loam. The robust statistic is a powerful tool for large dataset.

  5. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay.

    PubMed

    Park, Ji-Woon; Kim, Hyeong Rae; Hwang, Jungho

    2016-10-19

    We present a methodology for continuous and real-time bioaerosol monitoring wherein an aerosol-to-hydrosol sampler is integrated with a bioluminescence detector. Laboratory test was conducted by supplying an air flow with entrained test bacteria (Staphylococcus epidermidis) to the inlet of the sampler. High voltage was applied between the discharge electrode and the ground electrode of the sampler to generate air ions by corona discharge. The bacterial aerosols were charged by the air ions and sampled in a flowing liquid containing both a cell lysis buffer and adenosine triphosphate (ATP) bioluminescence reagents. While the liquid was delivered to the bioluminescence detector, sampled bacteria were dissolved by the cell lysis buffer and ATP was extracted. The ATP was reacted with the ATP bioluminescence reagents, causing light to be emitted. When the concentration of bacteria in the aerosols was varied, the ATP bioluminescence signal in relative light units (RLUs) closely tracked the concentration in particles per unit air volume (# cm(-3)), as measured by an aerosol particle sizer. The total response time required for aerosol sampling and ATP bioluminescence detection increased from 30 s to 2 min for decreasing liquid sampling flow rate from 800 to 200 μLPM, respectively. However, lower concentration of S. epidermidis aerosols was able to be detected with lower liquid sampling flow rate (1 RLU corresponded to 6.5 # cm(-3) of S. epidermidis aerosols at 200 μLPM and 25.5 # cm(-3) at 800 μLPM). After obtaining all data sets of concentration of S. epidermidis aerosols and concentration of S. epidermidis particles collected in the flowing liquid, it was found that with our bioluminescence detector, 1 RLU corresponded to 1.8 × 10(5) (±0.2 × 10(5)) # mL(-1) of S. epidermidis in liquid. After the lab-test with S. epidermidis, our bioaerosol monitoring device was located in the lobby of a building. Air sampling was conducted continuously for 90

  6. Enhanced recovery of airborne T3 coliphage and Pasteurella pestis bacteriophage by means of a presampling humidification technique.

    PubMed

    Hatch, M T; Warren, J C

    1969-05-01

    This paper reports a series of experiments in which two methods of collecting airborne bacteriophage particles were compared. A standard aerosol sampler, the AGI-30, was evaluated for its competence in measuring the content of bacteriophage aerosols. It was used alone or with a prewetting or humidification device (humidifier bulb) to recover T(3) coliphage and Pasteurella pestis bacteriophage particles from aerosols maintained at 21 C and varied relative humidity. Collection of bacteriophage particles via the humidifier bulb altered both the initial recovery level and the apparent biological decay. Sampling airborne bacteriophage particles by the AGI-30 alone yielded data that apparently underestimated the maximal number of potentially viable particles within the aerosol, sometimes by as much as 3 logs.

  7. Bio-aerosols in indoor environment: composition, health effects and analysis.

    PubMed

    Srikanth, Padma; Sudharsanam, Suchithra; Steinberg, Ralf

    2008-01-01

    Bio-aerosols are airborne particles that are living (bacteria, viruses and fungi) or originate from living organisms. Their presence in air is the result of dispersal from a site of colonization or growth. The health effects of bio-aerosols including infectious diseases, acute toxic effects, allergies and cancer coupled with the threat of bioterrorism and SARS have led to increased awareness on the importance of bio-aerosols. The evaluation of bio-aerosols includes use of variety of methods for sampling depending on the concentration of microorganisms expected. There have been problems in developing standard sampling methods, in proving a causal relationship and in establishing threshold limit values for exposures due to the complexity of composition of bio-aerosols, variations in human response to their exposure and difficulties in recovering microorganisms. Currently bio-aerosol monitoring in hospitals is carried out for epidemiological investigation of nosocomial infectious diseases, research into airborne microorganism spread and control, monitoring biohazardous procedures and use as a quality control measure. In India there is little awareness regarding the quality of indoor air, mould contamination in indoor environments, potential source for transmission of nosocomial infections in health care facilities. There is an urgent need to undertake study of indoor air, to generate baseline data and explore the link to nosocomial infections. This article is a review on composition, sources, modes of transmission, health effects and sampling methods used for evaluation of bio-aerosols, and also suggests control measures to reduce the loads of bio-aerosols.

  8. Airborne transmission of Bordetella pertussis.

    PubMed

    Warfel, Jason M; Beren, Joel; Merkel, Tod J

    2012-09-15

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets.

  9. Characterizing forest structure variations across an intact tropical peat dome using field samplings and airborne LiDAR.

    PubMed

    Nguyen, Ha T; Hutyra, Lucy R; Hardiman, Brady S; Raciti, Steve M

    2016-03-01

    Tropical peat swamp forests (PSF) are one of the most carbon dense ecosystems on the globe and are experiencing substantial natural and anthropogenic disturbances. In this study, we combined direct field sampling and airborne LiDAR to empirically quantify forest structure and aboveground live biomass (AGB) across a large, intact tropical peat dome in Northwestern Borneo. Moving up a 4 m elevational gradient, we observed increasing stem density but decreasing canopy height, crown area, and crown roughness. These findings were consistent with hypotheses that nutrient and hydrological dynamics co-influence forest structure and stature of the canopy individuals, leading to reduced productivity towards the dome interior. Gap frequency as a function of gap size followed a power law distribution with a shape factor (λ) of 1.76 ± 0.06. Ground-based and dome-wide estimates of AGB were 217.7 ± 28.3 Mg C/ha and 222.4 ± 24.4 Mg C/ha, respectively, which were higher than previously reported AGB for PSF and tropical forests in general. However, dome-wide AGB estimates were based on height statistics, and we found the coefficient of variation on canopy height was only 0.08, three times less than stem diameter measurements, suggesting LiDAR height metrics may not be a robust predictor of AGB in tall tropical forests with dense canopies. Our structural characterization of this ecosystem advances the understanding of the ecology of intact tropical peat domes and factors that influence biomass density and landscape-scale spatial variation. This ecological understanding is essential to improve estimates of forest carbon density and its spatial distribution in PSF and to effectively model the effects of disturbance and deforestation in these carbon dense ecosystems.

  10. Concentrations of iodine isotopes ((129)I and (127)I) and their isotopic ratios in aerosol samples from Northern Germany.

    PubMed

    Daraoui, A; Riebe, B; Walther, C; Wershofen, H; Schlosser, C; Vockenhuber, C; Synal, H-A

    2016-04-01

    New data about (129)I, (127)I concentrations and their isotopic ratios in aerosol samples from the trace survey station of the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Northern Germany, are presented and discussed in this paper. The investigated samples were collected on a weekly basis during the years 2011 to 2013. Iodine was extracted from aerosol filters using a strong basic solution and was separated from the matrix elements with chloroform and was analysed by accelerator mass spectrometry (AMS) for (129)I and by inductively coupled plasma mass spectrometry (ICP-MS) for (127)I. The concentrations of (127)I and (129)I in aerosol filters ranged from 0.31 to 3.71 ng m(-3) and from 0.06 to 0.75 fg m(-3), respectively. The results of (129)I/(127)I isotopic ratios were in the order 10(-8) to 10(-7). The (129)I originated directly from gaseous emissions and indirectly from liquid emissions (via sea spray) from the reprocessing plants in Sellafield and La Hague. In comparison with the results of (131)I after the Fukushima accident, no contribution of (129)I from this accident was detectable in Central Europe due to the high background originating from the (129)I releases of the European reprocessing plants. (129)I atmospheric activity concentrations were compared with those of an anthropogenic radionuclide ((85)Kr). We did not find any correlation between (129)I and (85)Kr, both having nuclear reprocessing plant as the main source.

  11. Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon.

    PubMed

    Chow, Judith C; Watson, John G; Robles, Jerome; Wang, Xiaoliang; Chen, L-W Antony; Trimble, Dana L; Kohl, Steven D; Tropp, Richard J; Fung, Kochy K

    2011-12-01

    Accurate, precise, and valid organic and elemental carbon (OC and EC, respectively) measurements require more effort than the routine analysis of ambient aerosol and source samples. This paper documents the quality assurance (QA) and quality control (QC) procedures that should be implemented to ensure consistency of OC and EC measurements. Prior to field sampling, the appropriate filter substrate must be selected and tested for sampling effectiveness. Unexposed filters are pre-fired to remove contaminants and acceptance tested. After sampling, filters must be stored in the laboratory in clean, labeled containers under refrigeration (<4 °C) to minimize loss of semi-volatile OC. QA activities include participation in laboratory accreditation programs, external system audits, and interlaboratory comparisons. For thermal/optical carbon analyses, periodic QC tests include calibration of the flame ionization detector with different types of carbon standards, thermogram inspection, replicate analyses, quantification of trace oxygen concentrations (<100 ppmv) in the helium atmosphere, and calibration of the sample temperature sensor. These established QA/QC procedures are applicable to aerosol sampling and analysis for carbon and other chemical components.

  12. Visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park: Properties observed by high resolution gas chromatography

    NASA Astrophysics Data System (ADS)

    Mazurek, Monica; Masonjones, Michael C.; Masonjones, Heather D.; Salmon, Lynn G.; Cass, Glen R.; Hallock, Kristen A.; Leach, Martin

    1997-02-01

    Fine particle and total airborne particle samples were collected during August 1989 within the Grand Canyon (Indian Gardens (IG)) and on its south rim (Hopi Point (HP)) to define summertime organic aerosol concentration and composition as a function of elevation at Grand Canyon National Park. Inorganic chemical constituents were analyzed also to help place the relative importance of organics in perspective. Fine particle organic aerosols were approximately equal in concentration to sulfate aerosols at both sites. Monthly average mass concentrations for fine aerosol organics ranged from 1.1 μg m-3 (IG) to 1.3 μg m-3 (HP), while the organic aerosol concentration within total suspended particulate matter samples ranged from 1.9 μg m-3 (IG) to 2.1 μg m-3 (HP). Aerosol organics that could be evaluated by gas chromatography with flame ionization detection (GC-FID) (elutable organics) constituted 27% to 53% of the total organics mass collected as fine or total aerosol. At each site, roughly half of the elutable organics fine aerosol fraction was composed of highly polar organic compounds. Distributions of the elutable organics were compared to Los Angeles fine aerosol samples and to distributions of authentic sources of aerosol organics. It was found that the Grand Canyon organic aerosol during August 1989 did not resemble diluted aged Los Angeles organic aerosol, indicating that most of the organic particulate matter at the Grand Canyon at the time studied originated from other sources.

  13. Aerosol sampling: Comparison of two rotating impactors for field droplet sizing and volumetric measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper compares the collection characteristics of a new rotating impactor for ultra fine aerosols (FLB) with the industry standard (Hock). The volume and droplet size distribution collected by the rotating impactors were measured via spectroscopy and microscopy. The rotary impactors were co-lo...

  14. Diversity of bacteria producing pigmented colonies in aerosol, snow and soil samples from remote glacial areas (Antarctica, Alps and Andes)

    NASA Astrophysics Data System (ADS)

    González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

    2008-04-01

    Four different communities and one culture of pigmented microbial assemblages were obtained by incubation in mineral medium of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas). Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. The phylogenetic comparison with the currently available rDNA database allowed the identification of sequences belonging to Proteobacteria (Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the maritime Antarctic soil the poorest (only one). Snow samples from Col du midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteria clone). The only microorganism identified in the maritime Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. The two snow samples from the Alps only shared one common microorganism. Most of the identified microorganisms have been detected previously in cold environments (Dietzia kujamenisi, Pseudonocardia Antarctica, Hydrogenophaga palleronii and Brebundimonas sp.), marine sediments (Aquiflexus balticus, Pseudomonas pseudoalkaligenes, Pseudomonas sp. and one uncultured Alphaproteobacteria), and soils and rocks (Pseudonocardia sp., Agrobactrium sp., Limnobacter sp. and two uncultured Alphaproteobacetria clones). Air current dispersal is the best model to explain the presence of very specific microorganisms, like those

  15. Regional PIXE facility at Chandigarh (India) and Trace Element Analysis of Aerosol and Bio-medical Samples

    NASA Astrophysics Data System (ADS)

    Govil, I. M.

    2009-03-01

    A regional Proton induced X-ray Emission (PIXE) facility is newly developed using 3 Mev Proton beam from Variable Energy Cyclotron, Panjab University, Chandigarh (India). A new target chamber has been designed to cater for Proton Induced Gamma Emission (PIGE) and Rutherford Back Scattering (RBS) along with PIXE measurements. The HPGe x-ray detector, the Ge (Li) gamma-ray detector and a silicon surface barrier (SSB) detector can be mounted simultaneously in the chamber for this purpose. A remotely controlled stepper motor is provided to move the target wheel holding 12/24 samples at a time. This facility is now routinely used for the detection of trace elements in the aerosol, medical and forensic science samples. The paper presents the analysis of Aerosol samples collected from highly polluted steel city of Mandi Govindgarh in Punjab state and relatively clean city of Jammu in Jammu & Kashmir region. The results from the analysis of these samples show some basic differences in the trace element profile of the two cities. The paper also describes the trace element analysis of fly ash in the vicinity of Ropar Thermal Power plant in Punjab. The scope of this study was to determine the concentration and composition of atmospheric particulate matter (PM) in the vicinity of coal-fired thermal power plants in India. The data taken for the Bio-medical samples are also discussed.

  16. Ion-Beam Analysis of Airborne Pollution

    NASA Astrophysics Data System (ADS)

    Harrington, Charles; Gleason, Colin; Schuff, Katie; Battaglia, Maria; Moore, Robert; Turley, Colin; Labrake, Scott; Vineyard, Michael

    2010-11-01

    An undergraduate laboratory research program in ion-beam analysis (IBA) of atmospheric aerosols is being developed to study pollution in the Capitol District and Adirondack Mountains of New York. The IBA techniques applied in this project include proton induced X-ray emission (PIXE), proton induced gamma-ray emission (PIGE), Rutherford backscattering (RBS), and proton elastic scattering analysis (PESA). These methods are well suited for studying air pollution because they are quick, non-destructive, require little to no sample preparation, and capable of investigating microscopic samples. While PIXE spectrometry is used to analyze most elements from silicon to uranium, the other techniques are being applied to measure some of the remaining elements and complement PIXE in the study of aerosols. The airborne particulate matter is collected using nine-stage cascade impactors that separate the particles according to size and the samples are bombarded with proton beams from the Union College 1.1-MV Pelletron Accelerator. The reaction products are measured with SDD X-ray, Ge gamma-ray, and Si surface barrier charged particle detectors. Here we report on the progress we have made on the PIGE, RBS, and PESA analysis of aerosol samples.

  17. Ambient Airborne Solids Concentrations Including Volcanic Ash at Hanford, Washington Sampling Sites Subsequent to the Mount St. Helens Eruption

    SciTech Connect

    Sehmel, G.A.

    1982-12-20

    A major eruption of Mount St. Helens occurred on May 18, 1980. Subsequently, airborne solid concentrations were measured as a function of time at two sites within the southern edge of the fallout plume about 211 km east of Mount St. Helens. This ash was a source for investigating area-wide resuspension. Rain had a variable effect on decreasing airborne concentrations from resuspension. From 0.5 to 1.5 cm of rain were required to significantly reduce airborne solid concentrations through July. For a more aged resuspension source in September, a rain of 2.0 cm had a negligible effect. A monthly average threshold-wind speed for resuspension was defined as 3.6 m/s. For monthly-average wind speeds less than the threshold wind speed, monthly-average airborne concentrations tended to decrease with time. A decrease was recorded between September and October. For this 4-month time period, the half-life was on the order of 50 days, corresponding to a weathering rate of 5.1 year/sup -1/.

  18. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  19. Assessment of air sampling methods and size distribution of virus-laden aerosols in outbreaks in swine and poultry farms.

    PubMed

    Alonso, Carmen; Raynor, Peter C; Goyal, Sagar; Olson, Bernard A; Alba, Anna; Davies, Peter R; Torremorell, Montserrat

    2017-03-01

    Swine and poultry viruses, such as porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and highly pathogenic avian influenza virus (HPAIV), are economically important pathogens that can spread via aerosols. The reliability of methods for quantifying particle-associated viruses as well as the size distribution of aerosolized particles bearing these viruses under field conditions are not well documented. We compared the performance of 2 size-differentiating air samplers in disease outbreaks that occurred in swine and poultry facilities. Both air samplers allowed quantification of particles by size, and measured concentrations of PRRSV, PEDV, and HPAIV stratified by particle size both within and outside swine and poultry facilities. All 3 viruses were detectable in association with aerosolized particles. Proportions of positive sampling events were 69% for PEDV, 61% for HPAIV, and 8% for PRRSV. The highest virus concentrations were found with PEDV, followed by HPAIV and PRRSV. Both air collectors performed equally for the detection of total virus concentration. For all 3 viruses, higher numbers of RNA copies were associated with larger particles; however, a bimodal distribution of particles was observed in the case of PEDV and HPAIV.

  20. Fine Mode Aerosol over the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Ross, K. E.; Piketh, S. J.; Reid, J. S.; Reid, E. A.

    2005-12-01

    The aerosol loading of the atmosphere over the Arabian Gulf region is extremely diverse and is composed not only of dust, but also of pollution that is derived largely from oil-related activities. Fine mode pollution particles are most efficient at scattering incoming solar radiation and have the potential to act as cloud condensation nuclei (CCN), and may therefore have implications for climate change. The smaller aerosols may also pose a health hazard if present in high concentrations. The United Arab Emirates Unified Aerosol Experiment (UAE2) was designed to investigate aerosol and meteorological characteristics over the region using ground-based, aircraft and satellite measurements, and was conducted in August and September 2004. Aerosol chemical composition has been obtained from filters that were collected at the site of the Mobile Atmospheric Aerosol and Radiation Characterization Observatory (MAARCO) on the coast of the UAE between Abu Dhabi and Dubai. Filter samples were also collected on an airborne platform in order to assess how aerosol chemical composition varies across the region and throughout the depth of the boundary layer. Results of the analysis of the PM2.5 coastal samples show that ammonium sulphate is the most prevalent constituent of the fine mode aerosol in the region (>50% of the mass), followed by organic matter, alumino-silicates, calcium carbonate and black carbon. Source apportionment indicates that most of the fine aerosol mass is derived from fossil fuel combustion, while mineral dust and local vehicle emissions also contribute to the fine aerosol loading. The organic carbon-to-total carbon ratio of the aerosol is 0.65, which is typical of fossil fuel combustion. The dominance of sulphates means that the fine mode aerosol in the region is probably responsible for a negative radiative forcing, and that the polluting emissions significantly elevate the concentration of CCN.

  1. Human Occupancy as a Source of Indoor Airborne Bacteria

    PubMed Central

    Hospodsky, Denina; Qian, Jing; Nazaroff, William W.; Yamamoto, Naomichi; Bibby, Kyle; Rismani-Yazdi, Hamid; Peccia, Jordan

    2012-01-01

    Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study presents evidence for elevated concentrations of indoor airborne bacteria due to human occupancy, and investigates the sources of these bacteria. Samples were collected in a university classroom while occupied and when vacant. The total particle mass concentration, bacterial genome concentration, and bacterial phylogenetic populations were characterized in indoor, outdoor, and ventilation duct supply air, as well as in the dust of ventilation system filters and in floor dust. Occupancy increased the total aerosol mass and bacterial genome concentration in indoor air PM10 and PM2.5 size fractions, with an increase of nearly two orders of magnitude in airborne bacterial genome concentration in PM10. On a per mass basis, floor dust was enriched in bacterial genomes compared to airborne particles. Quantitative comparisons between bacterial populations in indoor air and potential sources suggest that resuspended floor dust is an important contributor to bacterial aerosol populations during occupancy. Experiments that controlled for resuspension from the floor implies that direct human shedding may also significantly impact the concentration of indoor airborne particles. The high content of bacteria specific to the skin, nostrils, and hair of humans found in indoor air and in floor dust indicates that floors are an important reservoir of human-associated bacteria, and that the direct particle shedding of desquamated skin cells and their subsequent resuspension strongly influenced the airborne bacteria population structure in this human-occupied environment. Inhalation exposure to microbes shed by other current or previous human occupants may occur in communal indoor environments. PMID:22529946

  2. Human occupancy as a source of indoor airborne bacteria.

    PubMed

    Hospodsky, Denina; Qian, Jing; Nazaroff, William W; Yamamoto, Naomichi; Bibby, Kyle; Rismani-Yazdi, Hamid; Peccia, Jordan

    2012-01-01

    Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study presents evidence for elevated concentrations of indoor airborne bacteria due to human occupancy, and investigates the sources of these bacteria. Samples were collected in a university classroom while occupied and when vacant. The total particle mass concentration, bacterial genome concentration, and bacterial phylogenetic populations were characterized in indoor, outdoor, and ventilation duct supply air, as well as in the dust of ventilation system filters and in floor dust. Occupancy increased the total aerosol mass and bacterial genome concentration in indoor air PM(10) and PM(2.5) size fractions, with an increase of nearly two orders of magnitude in airborne bacterial genome concentration in PM(10). On a per mass basis, floor dust was enriched in bacterial genomes compared to airborne particles. Quantitative comparisons between bacterial populations in indoor air and potential sources suggest that resuspended floor dust is an important contributor to bacterial aerosol populations during occupancy. Experiments that controlled for resuspension from the floor implies that direct human shedding may also significantly impact the concentration of indoor airborne particles. The high content of bacteria specific to the skin, nostrils, and hair of humans found in indoor air and in floor dust indicates that floors are an important reservoir of human-associated bacteria, and that the direct particle shedding of desquamated skin cells and their subsequent resuspension strongly influenced the airborne bacteria population structure in this human-occupied environment. Inhalation exposure to microbes shed by other current or previous human occupants may occur in communal indoor environments.

  3. ACE-Asia: Size Resolved Sampling of Aerosols on the Ronald H Brown and US Western Receptor Sites

    NASA Astrophysics Data System (ADS)

    Jimenez-Cruz, M. P.; Cliff, S. S.; Perry, K. D.; Cahill, T. A.; Bates, T. S.

    2001-12-01

    The ACE (Aerosol Characterization Experiment)-Asia project was pre-dominantly performed during the spring of 2001. In addition to the core Asian sampling sites, we sampled at 4 Western US receptor sites. The receptor sites include, Mauna Loa Observatory, Hawaii, Crater Lake Oregon, Adak Island, Alaska and Rattlesnake Mountain, Washington. A small subset of sites (Rattlesnake Mtn., MLO, and Asian sites) continued during a 6-week intensive summer study. For the spring study, an 8-stage DRUM impactor also sampled aboard the NOAA ship RV Ronald H Brown, and mix of 8- and 3-DRUM impactors were used at the western US receptor sites. The impactors are capable of size-segregated, time-resolved aerosol collection. The size categories for the 8-DRUM are inlet-5.00, 5.00-2.50, 2.50-1.15, 1.15-0.75, 0.75-0.56, 0.56-0.34, 0.34-.026, 0.26-.09 microns and 3-DRUM: 2.50-1.10, 1.10-0.34, 0.34-0.12 microns. These samples were analyzed in 6 hour time bites using synchrotron-XRF for quantitative composition for elements sodium through uranium, when present. A major dust event occurring around April 13 was detected at all receptor sites. Comparisons of key elemental ratios and conservative tracers will be presented.

  4. Composition of microbial communities in aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes)

    NASA Astrophysics Data System (ADS)

    Elster, J.; Delmas, R. J.; Petit, J.-R.; Řeháková, K.

    2007-06-01

    Taxonomical and ecological analyses were performed on micro-autotrophs (cyanobacteria and algae together with remnants of diatom valves), micro-fungi (hyphae and spores), bacteria (rod, cocci and red clusters), yeast, and plant pollen extracted from various samples: Alps snow (Mt. Blank area), Andean snow (Illimani, Bolivia), Antarctic aerosol filters (Dumont d'Urville, Terre Adélie), and Antarctic inland ice (Terre Adélie). Three methods for ice and snow sample's pre-concentration were tested (filtration, centrifugation and lyophilisation). Afterwards, cultivation methods for terrestrial, freshwater and marine microorganisms (micro-autotrophs and micro-fungi) were used in combination with liquid and solid media. The main goal of the study was to find out if micro-autotrophs are commonly transported by air masses, and later stored in snow and icecaps around the world. The most striking result of this study was the absence of culturable micro-autotrophs in all studied samples. However, an unusual culturable pigmented prokaryote was found in both alpine snow and aerosol samples. Analyses of many samples and proper statistical analyses (PCA, RDA- Monte Carlo permutation tests) showed that studied treatments highly significantly differ in both microbial community and biotic remnants composition F=9.33, p=0.001. In addition, GLM showed that studied treatments highly significantly differ in numbers of categories of microorganisms and remnants of biological material F=11.45, p=0.00005. The Antarctic aerosol samples were characterised by having red clusters of bacteria, the unusual prokaryote and yeasts. The high mountain snow from the Alps and Andes contained much more culturable heterotrophs. The unusual prokaryote was very abundant, as were coccoid bacteria, red clusters of bacteria, as well as yeasts. The Antarctic ice samples were quite different. These samples had higher numbers of rod bacteria and fungal hyphae. The microbial communities and biological remnants of

  5. An Evaluation of Sharp Cut Cyclones for Sampling Diesel Particulate Matter Aerosol in the Presence of Respirable Dust

    PubMed Central

    Cauda, Emanuele; Sheehan, Maura; Gussman, Robert; Kenny, Lee; Volkwein, Jon

    2015-01-01

    Two prototype cyclones were the subjects of a comparative research campaign with a diesel particulate matter sampler (DPMS) that consists of a respirable cyclone combined with a downstream impactor. The DPMS is currently used in mining environments to separate dust from the diesel particulate matter and to avoid interferences in the analysis of integrated samples and direct-reading monitoring in occupational environments. The sampling characteristics of all three devices were compared using ammonium fluorescein, diesel, and coal dust aerosols. With solid spherical test aerosols at low particle loadings, the aerodynamic size-selection characteristics of all three devices were found to be similar, with 50% penetration efficiencies (d50) close to the design value of 0.8 µm, as required by the US Mine Safety and Health Administration for monitoring occupational exposure to diesel particulate matter in US mining operations. The prototype cyclones were shown to have ‘sharp cut’ size-selection characteristics that equaled or exceeded the sharpness of the DPMS. The penetration of diesel aerosols was optimal for all three samplers, while the results of the tests with coal dust induced the exclusion of one of the prototypes from subsequent testing. The sampling characteristics of the remaining prototype sharp cut cyclone (SCC) and the DPMS were tested with different loading of coal dust. While the characteristics of the SCC remained constant, the deposited respirable coal dust particles altered the size-selection performance of the currently used sampler. This study demonstrates that the SCC performed better overall than the DPMS. PMID:25060240

  6. Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.; Kobayashi, Minoru; Mochida, Michihiro; Kawamura, Kimitaka; Lee, Meehye; Lim, Ho-Jin; Turpin, Barbara J.; Komazaki, Yuichi

    2004-10-01

    The organic compound tracers of atmospheric particulate matter, as well as organic carbon (OC) and elemental carbon (EC), have been characterized for samples acquired during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) from Gosan, Jeju Island, Korea, from Sapporo, Japan, and from Chichi-jima Island in the western North Pacific, as well as on the National Oceanic and Atmospheric Administration R/V Ronald H. Brown. Total extracts were analyzed by gas chromatography-mass spectrometry to determine both polar and aliphatic compounds. Total particles, organic matter, and lipid and saccharide compounds were high during the Asian dust episode (early April 2001) compared to levels at other times. The organic matter can be apportioned to seven emission sources and to significant oxidation-producing secondary products during long-range transport. Terrestrial natural background compounds are vascular plant wax lipids derived from direct emission and as part of desert sand dust. Fossil fuel utilization is obvious and derives from petroleum product and coal combustion emissions. Saccharides are a major polar (water-soluble) carbonaceous fraction derived from soil resuspension (agricultural activities). Biomass-burning smoke is evident in all samples and seasons. It contributes up to 13% of the total compound mass as water-soluble constituents. Burning of refuse is another source of organic particles. Varying levels of marine-derived lipids are superimposed during aerosol transport over the ocean. Secondary oxidation products increase with increasing transport distance and time. The ACE-Asia aerosols are composed not only of desert dust but also of soil dust, smoke from biomass and refuse burning, and emissions from fossil fuel use in urban areas.

  7. Condensed nitrate, sulfate, and chloride in Antarctic stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Toon, O. B.; Ferry, G. V.; Oberbeck, V. R.; Starr, W. L.; Chan, K. R.; Goodman, J. K.

    1989-01-01

    The 1987 Airborne Antarctic Ozone Experiment, in which the NO3, Cl, and SO4 contents of stratospheric aerosols were estimated, is discussed. The aerosol size and chemical composition measurements were carried out on samples collected during August 17 to September 4, 1987. The data indicate that condensed nitrate is found below a threshold temperature of 193.6 + or - 3.0 K, which is generally found at latitudes exceeding 64 deg S. A negative correlation exists between condensed nitrate and ozone correlation.

  8. Airborne 131I at a background monitoring site.

    PubMed

    Kitto, Michael E; Fielman, Eileen M; Fielman, Steven E; Gillen, Elizabeth A

    2005-01-01

    As part of an environmental surveillance program, measurements of 131I in samples of atmospheric aerosols were determined in week-long collection periods at 0.3 km and 1.5 km from a municipal-sewage sludge incinerator located in Albany, New York. During an 11-month period when the sampler was temporarily located near the incinerator, sampling canisters of activated charcoal nearly always contained detectable airborne 131I activity (range of 0.1-6.0 mBq m(-3)). In contrast, remote concentrations where the sample was normally located were near or below analytical detection limits, both before and after the 11-month relocation. Activities of wet and dry fallout at both locations were below detection limits. The source of 131I in the aerosols associated with the sewage sludge was likely excreta from patients following medical treatments at local hospitals.

  9. The upgraded external-beam PIXE/PIGE set-up at LABEC for very fast measurements on aerosol samples

    NASA Astrophysics Data System (ADS)

    Lucarelli, F.; Calzolai, G.; Chiari, M.; Giannoni, M.; Mochi, D.; Nava, S.; Carraresi, L.

    2014-01-01

    At the 3 MV Tandetron accelerator of the LABEC laboratory of INFN in Florence, an external beam facility is fully dedicated to measurements of elemental composition of atmospheric aerosol. The experimental set-up hitherto used for this kind of applications has been upgraded with the replacement of a traditional Si(Li) detector for the detection of medium-high Z elements with a silicon drift detector (SDD) with a big active area (80 mm2) and 450 μm thickness, with the aim of obtaining better minimum detection limits (MDL) and reduce measuring times. The Upilex extraction window has been replaced by a more resistant one (Si3N4). A comparison between the old Si(Li) and the new SDD for aerosol samples collected on different substrata like Teflon, Kapton and Nuclepore evidenced the better performances of the SDD. It allows obtaining better results (higher counting statistics, lower MDLs) even in shorter measuring times, thus allowing very fast analysis of both daily and hourly samples.

  10. Evaluation of culture media for detecting airborne Salmonella enteritidis collected with an electrostatic sampling device from the environment of experimentally infected laying hens.

    PubMed

    Gast, R K; Mitchell, B W; Holt, P S

    2004-07-01

    Detection of Salmonella enteritidis in the environment of commercial laying hens is critical for reducing the production of contaminated eggs by infected flocks. In the present study, an inexpensive and portable electrostatic air sampling device was used to collect S. enteritidis in rooms containing experimentally infected laying hens. After hens were orally inoculated with a phage type 13a S. enteritidis strain and housed in individual cages, air samples were collected 3 times each week with electrostatic devices onto plates of 6 types of culture media (brilliant green agar, modified lysine iron agar, modified semisolid Rappaport-Vassiliadis agar, Rambach agar, XLD agar, and XLT4 agar). Air sampling plates were incubated at 37 degrees C, examined visually for presumptive identification of typical S. enteritidis colonies and then subjected to confirmatory enrichment culturing. Air samples (collected using all 6 culture media) were positive for S. enteritidis for 3 wk postinoculation. Because visual determination of the presence or absence of typical S. enteritidis colonies on air sampling plates was not consistently confirmed by enrichment culturing, the postenrichment results were used for comparing sampling strategies. The frequency of positive air sampling results using brilliant green agar (66.7% overall) was significantly greater than was obtained using most other media. A combination of several plating media (brilliant green agar, modified lysine iron agar, and XLT4 agar) allowed detection of airborne S. enteritidis at an overall frequency of 83.3% over the 3 wk of sampling. When used with appropriate culture media, electrostatic collection of airborne S. enteritidis can provide a sensitive alternative to traditional methods for detecting this pathogen in the environment of laying flocks.

  11. Measurements of HNO3, SO2 High Resolution Aerosol SO4 (sup 2-), and Selected Aerosol Species Aboard the NASA DC-8 Aircraft: During the Transport and Chemical Evolution Over the Pacific Airborne Mission (TRACE-P)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    2004-01-01

    The UNH investigation during TRACE-P provided measurements of selected acidic gases and aerosol species aboard the NASA DC-8 research aircraft. Our investigation focused on measuring HNO3, SO2, and fine (less than 2 microns) aerosol SO4(sup 2-) with two minute time resolution in near-real-time. We also quantified mixing ratios of aerosol ionic species, and aerosol (210)Pb and (7)Be collected onto bulk filters at better than 10 minute resolution. This suite of measurements contributed extensively to achieving the principal objectives of TRACE-P. In the context of the full data set collected by experimental teams on the DC-8, our observations provide a solid basis for assessing decadal changes in the chemical composition and source strength of Asian continental outflow. This region of the Pacific should be impacted profoundly by Asian emissions at this time with significant degradation of air quality over the next few decades. Atmospheric measurements in the western Pacific region will provide a valuable time series to help quantify the impact of Asian anthropogenic activities. Our data also provide important insight into the chemical and physical processes transforming Asian outflow during transport over the Pacific, particularly uptake and reactions of soluble gases on aerosol particles. In addition, the TRACE-P data set provide strong constraints for assessing and improving the chemical fields simulated by chemical transport models.

  12. Improvement of Aerosol Prediction Capability

    DTIC Science & Technology

    2001-09-30

    by dust storms in the past.) The operational aerosol products will be used for initialization or specification of aerosols in COAMPS when new cloud...Figure 2. SeaWiFS visible imagery for May 18, 2001, showing a dust storm originating at dry lakes along the Iran-Afghanistan border and then...versions of the Navy Aerosol Analysis and Prediction System (NAAPS) for analysis of airborne dust loads (Westphal/NRL). B: Modify existing radiative

  13. Application and Validation of a Novel Airborne Sampling Methodology That Uses Green's Theorem and Micrometeorological Principles to Estimate Surface Emission Rates

    NASA Astrophysics Data System (ADS)

    Faloona, I. C.; Conley, S. A.; Mehrotra, S.; Suard, M.

    2015-12-01

    Airborne, so called top-down, estimates of greenhouse gas emissions are becoming much more prevalent with the advent of sensitive, high-rate trace gas instrumentation, and they have lead to some controversial findings when compared with bottom-up engineering estimates reported to environmental regulatory agencies. Consequently, a proper assessment of the accuracy of these airborne methods is crucial to interpreting the meaning of such discrepancies. We present a new method of sampling surface sources of methane and ethane, of spatial scales as small as about 100 m, where consecutive loops are flown around the source at many different flight altitudes. Using the principles of Reynolds decomposition for the wind and scalar concentrations, along with Green's Theorem, we show that the method accurately accounts for the smaller scale turbulent dispersion of the local plume, which is often ignored in other average "mass balance" methods. With the help of Large Eddy Simulations we further show how the sampling method can be optimized for the micrometeorological conditions encountered during any flight. Furthermore, by sampling controlled releases of methane and ethane on the ground we are able to ascertain an accuracy in the method of better than 15%, with limits of detection below 5 kg/hr for both gases. Because of the FAA mandated minimum flight safe altitude of 500 ft., placement of the plane is critical to not allowing a large portion of the plume to flow underneath the lowest sampling altitude, which is generally the leading source of uncertainty in these measurements. Finally, because the bulk of the flux is carried by rapid plume encounters, which are relatively rare, we show how the accuracy of the method is strongly dependent on the number of sampling loops, or time spent sampling the source.

  14. ORGANIC MOLECULAR MARKER ANALYSIS OF LOW VOLUME RESIDENTIAL SAMPLES FOR SOURCE APPORTIONMENT IN THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    EPA Science Inventory

    This abstract describes a poster on results for organic speciation analysis for Detroit Exposure and Aerosol Research Study (DEARS) to be presented at the 2006 International Aerosol Conference sponsored by the American Association for Aerosol Research in St. Paul, Minnesota on Se...

  15. Airborne Trace Gas and Aerosol Measurements in Several Shale Gas Basins during the SONGNEX (Shale Oil and Natural Gas Nexus) Campaign 2015

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Trainer, M.; De Gouw, J. A.

    2015-12-01

    Oil and natural gas from tight sand and shale formations has increased strongly over the last decade. This increased production has been associated with emissions of methane, non-methane hydrocarbons and other trace gases to the atmosphere, which are concerns for air quality, climate and air toxics. The NOAA Shale Oil and Natural Gas Nexus (SONGNEX) aircraft campaign took place in 2015, when the NOAA WP-3 aircraft conducted 20 research flights between March 19 and April 27, 2015 in the following shale gas regions: Denver-Julesberg, Uintah, Upper Green River, San Juan, Bakken, Barnett, Eagle Ford, Haynesville, Woodford, and Permian. The NOAA P3 was equipped with an extensive set of gas phase measurements, including instruments for methane, ethane, CO, CO2, a new H3O+CIMS, canister and cartridge samples for VOCs, HCHO, glyoxal, HNO3, NH3, NOx, NOy, PANs, ozone, and SO2. Aerosol number and size distributions were also measured. This presentation will focus on an overview of all the measurements onboard the NOAA WP-3 aircraft and discuss the differences between the shale gas regions. Due to a drop in oil prices, drilling for oil decreased in the months prior to the mission, but nevertheless the production of oil and natural gas were near the all-time high. Many of the shale gas basins investigated during SONGNEX have quite different characteristics. For example, the Permian Basin is a well-established field, whereas the Eagle Ford and the Bakken saw an almost exponential increase in production over the last few years. The basins differ by the relative amounts of natural gas versus oil that is being produced. Previous work had shown a large variability in methane emissions relative to the production (leak rate) between different basins. By including more and qualitatively different basins during SONGNEX, the study has provided an extensive data set to address how emissions depend on raw gas composition, extraction techniques and regulation. The influence of these

  16. Free and combined amino acids in size-segregated atmospheric aerosol samples

    NASA Astrophysics Data System (ADS)

    Di Filippo, Patrizia; Pomata, Donatella; Riccardi, Carmela; Buiarelli, Francesca; Gallo, Valentina; Quaranta, Alessandro

    2014-12-01

    Concentrations of free and combined amino acids in an urban atmosphere and their distributions in size-segregated particles were investigated in the cold and warm seasons. In particular this article provides the first investigation of protein bioaerosol concentrations in ultrafine fraction (PM0.1) of particulate matter. In addition the present work provides amino acid and total proteinaceous material concentrations in NIST SRM 1649b, useful as reference values. The reference material was also used to build matrix matched calibration curves. Free amino acid total content in winter and summer PM0.1 was respectively 48.0 and 94.4 ng m-3, representing about 0.7 and 7.4% by weight of urban particulate matter in the two seasons. Total airborne protein and peptide concentrations in the same ultrafine fractions were 93.6 and 449.9 ng m-3 respectively in winter and in summer, representing 7.5 and 35.4% w/w of PM0.1, and demonstrating an exceptionally high percentage in summer ultrafine fraction. The significant potential adverse health effects of ultrafine particulate matter include allergies mainly caused by protein particles and we assumed that in summer 162 ng h-1 of proteinaceous material, by means of ultrafine particles, can penetrate from the lungs into the bloodstream.

  17. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies.

    PubMed

    Madsen, Anne Mette; Larsen, Søren T; Koponen, Ismo K; Kling, Kirsten I; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-04-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 10(7)CFU of fungi/m(3)air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans,Aspergillus niger, Aspergillus ustus, Aspergillus versicolor,Chaetomium globosum,Cladosporium herbarum,Penicillium brevicompactum,Penicillium camemberti,Penicillium chrysogenum,Penicillium commune,Penicillium glabrum,Penicillium olsonii,Penicillium rugulosum,Stachybotrys chartarum, and Wallemia sebi They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition.

  18. Generation and Characterization of Indoor Fungal Aerosols for Inhalation Studies

    PubMed Central

    Larsen, Søren T.; Koponen, Ismo K.; Kling, Kirsten I.; Barooni, Afnan; Karottki, Dorina Gabriela; Tendal, Kira; Wolkoff, Peder

    2016-01-01

    In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 107 CFU of fungi/m3 air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans, Aspergillus niger, Aspergillus ustus, Aspergillus versicolor, Chaetomium globosum, Cladosporium herbarum, Penicillium brevicompactum, Penicillium camemberti, Penicillium chrysogenum, Penicillium commune, Penicillium glabrum, Penicillium olsonii, Penicillium rugulosum, Stachybotrys chartarum, and Wallemia sebi. They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition. PMID:26921421

  19. Airborne/Space-Based Doppler Lidar Wind Sounders Sampling the PBL and Other Regions of Significant Beta and U Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Emmitt, Dave

    1998-01-01

    This final report covers the period from April 1994 through March 1998. The proposed research was organized under four main tasks. Those tasks were: (1) Investigate the vertical and horizontal velocity structures within and adjacent to thin and subvisual cirrus; (2) Investigate the lowest 1 km of the PBL and develop algorithms for processing pulsed Doppler lidar data obtained from single shots into regions of significant inhomogeneities in Beta and U; (3) Participate in OSSEs including those designed to establish shot density requirements for meso-gamma scale phenomena with quasi-persistent locations (e.g., jets, leewaves, tropical storms); and (4) Participate in the planning and execution of an airborne mission to measure winds with a pulsed CO2 Doppler lidar. Over the four year period of this research contract, work on all four tasks has yielded significant results which have led to 38 professional presentations (conferences and publications) and have been folded into the science justification for an approved NASA space mission, SPARCLE (SPAce Readiness Coherent Lidar Experiment), in 2001. Also this research has, through Task 4, led to a funded proposal to work directly on a NASA field campaign, CAMEX III, in which an airborne Doppler wind lidar will be used to investigate the cloud-free circulations near tropical storms. Monthly progress reports required under this contract are on file. This final report will highlight major accomplishments, including some that were not foreseen in the original proposal. The presentation of this final report includes this written document as well as material that is better presented via the internet (web pages). There is heavy reference to appended papers and documents. Thus, the main body of the report will serve to summarize the key efforts and findings.

  20. Sampling strategies and post-processing methods for increasing the time resolution of organic aerosol measurements requiring long sample-collection times

    NASA Astrophysics Data System (ADS)

    Modini, Rob L.; Takahama, Satoshi

    2016-07-01

    The composition and properties of atmospheric organic aerosols (OAs) change on timescales of minutes to hours. However, some important OA characterization techniques typically require greater than a few hours of sample-collection time (e.g., Fourier transform infrared (FTIR) spectroscopy). In this study we have performed numerical modeling to investigate and compare sample-collection strategies and post-processing methods for increasing the time resolution of OA measurements requiring long sample-collection times. Specifically, we modeled the measurement of hydrocarbon-like OA (HOA) and oxygenated OA (OOA) concentrations at a polluted urban site in Mexico City, and investigated how to construct hourly resolved time series from samples collected for 4, 6, and 8 h. We modeled two sampling strategies - sequential and staggered sampling - and a range of post-processing methods including interpolation and deconvolution. The results indicated that relative to the more sophisticated and costly staggered sampling methods, linear interpolation between sequential measurements is a surprisingly effective method for increasing time resolution. Additional error can be added to a time series constructed in this manner if a suboptimal sequential sampling schedule is chosen. Staggering measurements is one way to avoid this effect. There is little to be gained from deconvolving staggered measurements, except at very low values of random measurement error (< 5 %). Assuming 20 % random measurement error, one can expect average recovery errors of 1.33-2.81 µg m-3 when using 4-8 h-long sequential and staggered samples to measure time series of concentration values ranging from 0.13-29.16 µg m-3. For 4 h samples, 19-47 % of this total error can be attributed to the process of increasing time resolution alone, depending on the method used, meaning that measurement precision would only be improved by 0.30-0.75 µg m-3 if samples could be collected over 1 h instead of 4 h. Devising a

  1. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.; Bauguitte, S. J.-B.; O'Shea, S. J.; Muller, J. B. A.; Zahniser, M. S.; Pyle, J.; Palmer, P. I.

    2015-08-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large Atmospheric Research Aircraft. We present details of the mid-IR Aerodyne Research Inc. Quantum Cascade Laser Absorption Spectrometer (QCLAS) employed, including its configuration for airborne sampling, and evaluate its performance over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. A new in-flight calibration procedure to account for the observed sensitivity of the instrument to ambient pressure changes is described, and its impact on instrument performance is assessed. Test flight data linking this sensitivity to changes in cabin pressure is presented. Total 1σ uncertainties of 1.81 ppb for CH4 and 0.35 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Los Gatos Research Fast Greenhouse Gas Analyser (FGGA). Finally, a potential case study for the estimation of a regional N2O flux using a mass balance technique is identified, and the method for calculating such an estimate is outlined.

  2. The development and evaluation of airborne in situ N2O and CH4 sampling using a quantum cascade laser absorption spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.; Bauguitte, S. J.-B.; O'Shea, S. J.; Muller, J. B. A.; Zahniser, M. S.; Pyle, J.; Palmer, P. I.

    2016-01-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large atmospheric research aircraft. We present details of the mid-infrared quantum cascade laser absorption spectrometer (QCLAS, Aerodyne Research Inc., USA) employed, including its configuration for airborne sampling, and evaluate its performance over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. A new in-flight calibration procedure to account for the observed sensitivity of the instrument to ambient pressure changes is described, and its impact on instrument performance is assessed. Test flight data linking this sensitivity to changes in cabin pressure are presented. Total 1σ uncertainties of 2.47 ppb for CH4 and 0.54 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Fast Greenhouse Gas Analyser (FGGA, Los Gatos Research, USA). Finally, a potential case study for the estimation of a regional N2O flux using a mass balance technique is identified, and the method for calculating such an estimate is outlined.

  3. Use of single particle aerosol mass spectrometry for the automated nondestructive identification of drugs in multicomponent samples.

    PubMed

    Martin, Audrey N; Farquar, George R; Steele, Paul T; Jones, A Daniel; Frank, Matthias

    2009-11-15

    In this work, single particle aerosol mass spectrometry (SPAMS) was used to identify the active drug ingredients in samples of multicomponent over-the-counter (OTC) drug tablets with minimal damage to the tablets. OTC drug tablets in various formulations were analyzed including single active ingredient tablets and multi-ingredient tablets. Using a sampling apparatus developed in-house, micrometer-sized particles were simultaneously dislodged from tablets and introduced to the SPAMS, where dual-polarity mass spectra were obtained from individual particles. Active ingredients were identified from the parent ions and fragment ions formed from each sample, and alarm files were developed for each active ingredient, allowing successful automated identification of each compound in a mixture. The alarm algorithm developed for SPAMS correctly identified all drug compounds in all single-ingredient and multi-ingredient tablets studied. A further study demonstrated the ability of this technique to identify the active ingredient in a single tablet analyzed in the presence of several other nonidentical tablets. In situ measurements were also made by sampling directly from a drug sample in its original bottle. A single tablet embedded in 11 identical tablets of different composition was detected in this manner. Overall, this work demonstrates the ability of the SPAMS technique to detect a target drug compound both in complex tablets, i.e., multidrug ingredient tablets, and complex sampling environments, i.e., multitablet sampling sources. The technique is practically nondestructive, leaving the characteristic shape, color, and imprint of a tablet intact for further analysis. Applications of this technique may include forensic and pharmaceutical analysis.

  4. Improved measurement of carbonaceous aerosol in Beijing, China: intercomparison of sampling and thermal-optical analysis methods

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; He, K. B.; Duan, F. K.; Zheng, M.; Ma, Y. L.; Tan, J. H.; Du, Z. Y.

    2010-06-01

    The sampling artifacts (both positive and negative) and the influence of thermal-optical methods (both charring correction method and the peak inert mode temperature) on the split of organic carbon (OC) and elemental carbon (EC) were evaluated in Beijing. The positive sampling artifact constituted 10% and 23% of OC concentration determined by the bare quartz filter during winter and summer, respectively. For summer samples, the adsorbed gaseous organics were found to continuously evolve off the filter during the whole inert mode when analyzed by the IMPROVE-A temperature protocol. This may be due to the oxidation of the adsorbed organics during sampling (reaction artifact) which would increase their thermal stability. The backup quartz approach was evaluated by a denuder-based method for assessing the positive artifact. The quartz-quartz (QBQ) in series method was demonstrated to be reliable, since all of the OC collected by QBQ was from originally gaseous organics. Negative artifact that could be adsorbed by quartz filter was negligible. When the activated carbon impregnated glass fiber (CIG) filter was used as the denuded backup filter, the denuder efficiency for removing gaseous organics that could be adsorbed by the CIG filter was only about 30%. EC values were found to differ by a factor of about two depending on the charring correction method. Influence of the peak inert mode temperature was evaluated based on the summer samples. The EC value was found to continuously decrease with the peak inert mode temperature. Premature evolution of light absorbing carbon began when the peak inert mode temperature was increased from 580 to 650 °C; when further increased to 800 °C, the OC and EC split frequently occurred in the He mode, and the last OC peak was characterized by the overlapping of two separate peaks. The discrepancy between EC values defined by different temperature protocols was larger for Beijing carbonaceous aerosol compared with North America and

  5. Development of a sampling method for carbonyl compounds released due to the use of electronic cigarettes and quantitation of their conversion from liquid to aerosol.

    PubMed

    Jo, Sang-Hee; Kim, Ki-Hyun

    2016-01-15

    In this study, an experimental method for the collection and analysis of carbonyl compounds (CCs) released due to the use of electronic cigarettes (e-cigarettes or ECs) was developed and validated through a series of laboratory experiments. As part of this work, the conversion of CCs from a refill solution (e-solution) to aerosol also was investigated based on mass change tracking (MCT) approach. Aerosol samples generated from an e-cigarette were collected manually using 2,4-dinitrophenylhydrazine (DNPH) cartridges at a constant sampling (puffing) velocity of 1 L min(-1) with the following puff conditions: puff duration (2s), interpuff interval (10s), and puff number (5, 10, and 15 times). The MCT approach allowed us to improve the sampling of CCs through critical evaluation of the puff conditions in relation to the consumed quantities of refill solution. The emission concentrations of CCs remained constant when e-cigarettes were sampled at or above 10 puff. Upon aerosolization, the concentrations of formaldehyde and acetaldehyde increased 6.23- and 58.4-fold, respectively, relative to their concentrations in e-solution. Furthermore, a number of CCs were found to be present in the aerosol samples which were not detected in the initial e-solution (e.g., acetone, butyraldehyde, and o-tolualdehyde).

  6. An evaluation of the "GGP" personal samplers under semi-volatile aerosols: sampling losses and their implication on occupational risk assessment.

    PubMed

    Dragan, George C; Breuer, Dietmar; Blaskowitz, Morten; Karg, Erwin; Schnelle-Kreis, Jürgen; Arteaga-Salas, Jose M; Nordsieck, Hermann; Zimmermann, Ralf

    2015-02-01

    Semi-volatile (SV) aerosols still represent an important challenge to occupational hygienists due to toxicological and sampling issues. Particularly problematic is the sampling of hazardous SV that are present in both particulate and vapour phases at a workplace. In this study we investigate the potential evaporation losses of SV aerosols when using off-line filter-adsorber personal samplers. Furthermore, we provide experimental data showing the extent of the evaporation loss that can bias the workplace risk assessment. An experimental apparatus consisting of an aerosol generator, a flow tube and an aerosol monitoring and sampling system was set up inside a temperature controlled chamber. Aerosols from three n-alkanes were generated, diluted with nitrogen and sampled using on-line and off-line filter-adsorber methods. Parallel measurements using the on-line and off-line methods were conducted to quantify the bias induced by filter sampling. Additionally, two mineral oils of different volatility were spiked on filters and monitored for evaporation depending on the samplers flow rate. No significant differences between the on-line and off-line methods were detected for the sum of particles and vapour. The filter-adsorber method however tended to underestimate up to 100% of the particle mass, especially for the more volatile compounds and lower concentrations. The off-line sampling method systematically returned lower particle and higher vapour values, an indication for particle evaporation losses. We conclude that using only filter sampling for the assessment of semi-volatiles may considerably underestimate the presence of the particulate phase due to evaporation. Thus, this underestimation can have a negative impact on the occupational risk assessment if the evaporated particle mass is no longer quantified.

  7. Comparison of Precision of Biomass Estimates in Regional Field Sample Surveys and Airborne LiDAR-Assisted Surveys in Hedmark County, Norway

    NASA Technical Reports Server (NTRS)

    Naesset, Erik; Gobakken, Terje; Bollandsas, Ole Martin; Gregoire, Timothy G.; Nelson, Ross; Stahl, Goeran

    2013-01-01

    Airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool to provide auxiliary data for sample surveys aiming at estimation of above-ground tree biomass (AGB), with potential applications in REDD forest monitoring. For larger geographical regions such as counties, states or nations, it is not feasible to collect airborne LiDAR data continuously ("wall-to-wall") over the entire area of interest. Two-stage cluster survey designs have therefore been demonstrated by which LiDAR data are collected along selected individual flight-lines treated as clusters and with ground plots sampled along these LiDAR swaths. Recently, analytical AGB estimators and associated variance estimators that quantify the sampling variability have been proposed. Empirical studies employing these estimators have shown a seemingly equal or even larger uncertainty of the AGB estimates obtained with extensive use of LiDAR data to support the estimation as compared to pure field-based estimates employing estimators appropriate under simple random sampling (SRS). However, comparison of uncertainty estimates under SRS and sophisticated two-stage designs is complicated by large differences in the designs and assumptions. In this study, probability-based principles to estimation and inference were followed. We assumed designs of a field sample and a LiDAR-assisted survey of Hedmark County (HC) (27,390 km2), Norway, considered to be more comparable than those assumed in previous studies. The field sample consisted of 659 systematically distributed National Forest Inventory (NFI) plots and the airborne scanning LiDAR data were collected along 53 parallel flight-lines flown over the NFI plots. We compared AGB estimates based on the field survey only assuming SRS against corresponding estimates assuming two-phase (double) sampling with LiDAR and employing model-assisted estimators. We also compared AGB estimates based on the field survey only assuming two-stage sampling (the NFI

  8. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  9. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    SciTech Connect

    Leach, James

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  10. Characterization of radicals and high-molecular weight species from alpha-pinene/ozone reaction and ambient aerosol samples

    NASA Astrophysics Data System (ADS)

    Pavlovic, Jelica

    Secondary organic aerosol formed during oxidation of different volatile organic compounds is composed from a number of final and intermediate reaction products. The final products include compounds in both low and high molecular weight range called also oligomer species. These compounds can be highly volatile, as well as being semi- or low-volatility compounds. This study characterized intermediate reactive radical products formed from previously often studied alpha-pinene/ozone reaction. In order to passivate those radical species nitrone spin traps were used. 5,5-dimethyl-4,5-dihydro-3H-pyrrole-N-oxide (DMPO), and 5-dietoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) traps were able to successfully trap oxygen- and carbon-centered radicals produced from alpha-pinene/ozone reaction. Electrospray ionization (ESI) in negative ion mode with mass spectrometry (MS) detection was used to scan spectra of formed spin trap adducts and the tandem mass spectrometry (MSn) to elucidate its structures as well as structures of captured radicals. The same method was applied to analyze radical species present in ambient PM2.5 samples. Few carbon- (alkyl) and oxygen- (alkoxyl) centered radicals were captured with DMPO and DEPMPO traps. The second part of this study was focused on high molecular weight (high-MW) species formed from the same reaction (alpha-pinene/ozone), but found also in fine particulate matter fractions of ambient samples. LC/MS/MS analysis of dimer species from chamber study revealed fragments that can originate from peroxide structures. Proposed reaction for these peroxide dimer formation is self reaction of two peroxyl radicals, followed by the loss of oxygen molecule. These findings emphasize the role of peroxyl (ROO) radicals in formation of high-MW products and are in line with the high O:C ratio results reported in other studies. Water soluble organic carbon (WSOC) extracts of three size fractions of the ambient aerosol, PM1--2.5, PM0.1--1, and PM<0

  11. FIELD EVALUATION OF A SAMPLING APPROACH FOR PM-COARSE AEROSOLS

    EPA Science Inventory

    Subsequent to a 1997 revision of the national ambient air quality standards (NAAQS) for particulate matter (PM), the US Environmental Protection Agency is investigating the development of sampling methodology for a possible new coarse particle standard. When developed, this me...

  12. Modeling of Aerosols in Post-Combustor Flow Path and Sampling System

    NASA Technical Reports Server (NTRS)

    Wey, Thomas; Liu, Nan-Suey

    2006-01-01

    The development and application of a multi-dimensional capability for modeling and simulation of aviation-sourced particle emissions and their precursors are elucidated. Current focus is on the role of the flow and thermal environments. The cases investigated include a film cooled turbine blade, the first-stage of a high-pressure turbine, the sampling probes, the sampling lines, and a pressure reduction chamber.

  13. Dynamics of airborne fungal populations in a large office building

    NASA Technical Reports Server (NTRS)

    Burge, H. A.; Pierson, D. L.; Groves, T. O.; Strawn, K. F.; Mishra, S. K.

    2000-01-01

    The increasing concern with bioaerosols in large office buildings prompted this prospective study of airborne fungal concentrations in a newly constructed building on the Gulf coast. We collected volumetric culture plate air samples on 14 occasions over the 18-month period immediately following building occupancy. On each sampling occasion, we collected duplicate samples from three sites on three floors of this six-story building, and an outdoor sample. Fungal concentrations indoors were consistently below those outdoors, and no sample clearly indicated fungal contamination in the building, although visible growth appeared in the ventilation system during the course of the study. We conclude that modern mechanically ventilated buildings prevent the intrusion of most of the outdoor fungal aerosol, and that even relatively extensive air sampling protocols may not sufficiently document the microbial status of buildings.

  14. Investigation of atmospheric aerosols and gases at an East China Station. Technical memo

    SciTech Connect

    Parungo, F.; Nagamoto, C.; Kopcewicz, B.; Li, X.; Yang, D.

    1993-04-01

    From August to October of 1991, when the West Pacific Exploratory Mission (PEM-west) airborne expedition was conducted, ground-level measurements of gases and aerosols were carried out at Lin-an station near the east coast of China. Meteorological parameters such as temperature, pressure, humidity, solar radiation, wind direction, and wind speed were recorded continuously. Concentrations of SO[sub 2], NO[sub 2], O[sub 3], and black carbon were monitored in situ intermittently. Aerosol samples were collected and later analyzed in laboratories. A transmission electron microscope was used to analyze particle concentration, morphology, and size distribution. Elemental compositions of aerosol samples, collected on filters, were determined with an neutron activation analyzer and with a proton induced x-ray energy spectrometer. The water soluble portions of the aerosols were analyzed by ion chromatography.

  15. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  16. Aerosols and Particulates Workshop Sampling Procedures and Venues Working Group Summary

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter; Howard, Robert

    1999-01-01

    The Sampling Procedures and Venues Workgroup discussed the potential venues available and issues associated with obtaining measurements. Some of the issues included Incoming Air Quality, Sampling Locations, Probes and Sample Systems. The following is a summary of the discussion of the issues and venues. The influence of inlet air to the measurement of exhaust species, especially trace chemical species, must be considered. Analysis procedures for current engine exhaust emissions regulatory measurements require adjustments for air inlet humidity. As a matter of course in scientific investigations, it is recommended that "background" measurements for any species, particulate or chemical, be performed during inlet air flow before initiation of combustion, if possible, and during the engine test period as feasible and practical. For current regulatory measurements, this would be equivalent to setting the "zero" level for conventional gas analyzers. As a minimum, it is recommended that measurements of the humidity and particulates in the incoming air be taken at the start and end of each test run. Additional measurement points taken during the run are desirable if they can be practically obtained. It was felt that the presence of trace gases in the incoming air is not a significant problem. However, investigators should consider the ambient levels and influences of local air pollution for species of interest. Desired measurement locations depend upon the investigation requirements. A complete investigation of phenomenology of particulate formation and growth requires measurements at a number of locations both within the engine and in the exhaust field downstream of the nozzle exit plane. Desirable locations for both extractive and in situ measurements include: (1) Combustion Zone (Multiple axial locations); (2) Combustor Exit (Multiple radial locations for annular combustors); (3) Turbine Stage (Inlet and exit of the stage); (4) Exit Nozzle (Multiple axial locations

  17. Factors to Consider in Designing Aerosol Inlet Systems for Engine Exhaust Plume Sampling

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce

    2004-01-01

    This document consists of viewgraphs of charts and diagrams of considerations to take when sampling the engine exhaust plume. It includes a chart that compares the emissions from various fuels, a diagram and charts of the various processes and conditions that influence the particulate size and concentration,

  18. Linear models for airborne-laser-scanning-based operational forest inventory with small field sample size and highly correlated LiDAR data

    USGS Publications Warehouse

    Junttila, Virpi; Kauranne, Tuomo; Finley, Andrew O.; Bradford, John B.

    2015-01-01

    Modern operational forest inventory often uses remotely sensed data that cover the whole inventory area to produce spatially explicit estimates of forest properties through statistical models. The data obtained by airborne light detection and ranging (LiDAR) correlate well with many forest inventory variables, such as the tree height, the timber volume, and the biomass. To construct an accurate model over thousands of hectares, LiDAR data must be supplemented with several hundred field sample measurements of forest inventory variables. This can be costly and time consuming. Different LiDAR-data-based and spatial-data-based sampling designs can reduce the number of field sample plots needed. However, problems arising from the features of the LiDAR data, such as a large number of predictors compared with the sample size (overfitting) or a strong correlation among predictors (multicollinearity), may decrease the accuracy and precision of the estimates and predictions. To overcome these problems, a Bayesian linear model with the singular value decomposition of predictors, combined with regularization, is proposed. The model performance in predicting different forest inventory variables is verified in ten inventory areas from two continents, where the number of field sample plots is reduced using different sampling designs. The results show that, with an appropriate field plot selection strategy and the proposed linear model, the total relative error of the predicted forest inventory variables is only 5%–15% larger using 50 field sample plots than the error of a linear model estimated with several hundred field sample plots when we sum up the error due to both the model noise variance and the model’s lack of fit.

  19. Aerosolization as a Means of Sample Preparation of Geological Materials for XRF Analysis and its Validity Compared to EPA Method 3050A Digestion.

    PubMed

    Sarver, Richard H

    1996-03-01

    A sample preparation method has been developed in which a powder may be aerosolized and collected onto filter media in the form of a uniform layer of participate matter similar to the EPA Total Suspended Particulate (TSP) aerodynamic diameter. Samples of dusts and powders as small as 100 mg may be prepared for metals analysis by XRF with this method. The method is also applicable to the preparation of samples such as ores, soils, sediments, etc., which may be ground to pass through a #400 Tyler equivalent sieve (37 um geometric diameter) prior to aerosolization. Samples prepared in this manner present a representative aliquot with minimal matrix interferences to the XRF instrument for elements with atomic number as low as 13 (aluminum). This method is equivalent to EPA's Method 3050A digestion and subsequent analysis by either ICP or GFAA for many analytes, while other species (notably Cr) are not as favorable in comparison.

  20. Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea.

    PubMed

    Murphy, Shane M; Agrawal, Harshit; Sorooshian, Armin; Padró, Luz T; Gates, Harmony; Hersey, Scott; Welch, W A; Lung, H; Miller, J W; Cocker, David R; Nenes, Athanasios; Jonsson, Haflidi H; Flagan, Richard C; Seinfeld, John H

    2009-07-01

    We report the first joint shipboard and airborne study focused on the chemical composition and water-uptake behavior of particulate ship emissions. The study focuses on emissions from the main propulsion engine of a Post-Panamax class container ship cruising off the central coast of California and burning heavy fuel oil. Shipboard sampling included micro-orifice uniform deposit impactors (MOUDI) with subsequent off-line analysis, whereas airborne measurements involved a number of real-time analyzers to characterize the plume aerosol, aged from a few seconds to over an hour. The mass ratio of particulate organic carbon to sulfate at the base of the ship stack was 0.23 +/- 0.03, and increased to 0.30 +/- 0.01 in the airborne exhaust plume, with the additional organic mass in the airborne plume being concentrated largely in particles below 100 nm in diameter. The organic to sulfate mass ratio in the exhaust aerosol remained constant during the first hour of plume dilution into the marine boundary layer. The mass spectrum of the organic fraction of the exhaust aerosol strongly resembles that of emissions from other diesel sources and appears to be predominantly hydrocarbon-like organic (HOA) material. Background aerosol which, based on air mass back trajectories, probably consisted of aged ship emissions and marine aerosol, contained a lower organic mass fraction than the fresh plume and had a much more oxidized organic component. A volume-weighted mixing rule is able to accurately predict hygroscopic growth factors in the background aerosol but measured and calculated growth factors do not agree for aerosols in the ship exhaust plume. Calculated CCN concentrations, at supersaturations ranging from 0.1 to 0.33%, agree well with measurements in the ship-exhaust plume. Using size-resolved chemical composition instead of bulk submicrometer composition has little effect on the predicted CCN concentrations because the cutoff diameter for CCN activation is larger than the

  1. Influence of sample composition on aerosol organic and black carbon determinations

    SciTech Connect

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550{degrees}C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations.

  2. A Comparison between Airborne and Mountaintop Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    David, R.; Lowenthal, D. H.; Hallar, A. G.; McCubbin, I.; Avallone, L. M.; Mace, G. G.; Wang, Z.

    2014-12-01

    Complex terrain has a large impact on cloud dynamics and microphysics. Several studies have examined the microphysical details of orographically-enhanced clouds from either an aircraft or from a mountain top location. However, further research is needed to characterize the relationships between mountain top and airborne microphysical properties. During the winter of 2011, an airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured cloud droplet, ice crystal, and aerosol size distributions at SPL, located on the west summit of Mt. Werner at 3220m MSL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes while small crystal concentrations were routinely higher at the surface, suggesting ice nucleation near cloud base. The effects of aerosol concentrations and upwind stability on mountain top and downwind microphysics are considered.

  3. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    NASA Astrophysics Data System (ADS)

    Araujo, Rennan G. O.; Vignola, Fabíola; Castilho, Ivan N. B.; Borges, Daniel L. G.; Welz, Bernhard; Vale, Maria Goreti R.; Smichowski, Patricia; Ferreira, Sérgio L. C.; Becker-Ross, Helmut

    2011-05-01

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3σ), based on ten atomizations of an unexposed filter, was 40 ng g - 1 , corresponding to 0.12 ng m - 3 in the air for a typical air volume of 1440 m 3 collected within 24 h. The limit of quantification was 150 ng g -1, equivalent to 0.41 ng m -3 in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g -1 and 381 ± 24 ng g -1. These values correspond to a mercury concentration in the air between < 0.12 ng m -3 and 1.47 ± 0.09 ng m -3. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  4. Evaluation of exposure to airborne heavy metals at gun shooting ranges.

    PubMed

    Lach, Karel; Steer, Brian; Gorbunov, Boris; Mička, Vladimír; Muir, Robert B

    2015-04-01

    Aerosols formed during shooting events were studied with various techniques including the wide range size resolving sampling system Nano-ID(®) Select, followed by inductively coupled plasma mass spectrometry chemical analysis, scanning electron microscopy, and fast mobility particle sizing. The total lead mass aerosol concentration ranged from 2.2 to 72 µg m(-3). It was shown that the mass concentration of the most toxic compound lead is much lower than the total mass concentration. The deposition fraction in various compartments of the respiratory system was calculated using the ICRP lung deposition model. It was found that the deposition fraction in the alveolar range varies by a factor >3 for the various aerosols collected, depending on the aerosol size distribution and total aerosol concentration, demonstrating the importance of size resolved sampling in health risk evaluation. The proportion of the total mass of airborne particles deposited in the respiratory tract varies from 34 to 70%, with a median of 55.9%, suggesting the health risk based upon total mass significantly overestimates the accumulated dose and therefore the health risk. A comparison between conventional and so called 'green' ammunition confirmed significant lowering of concentrations of lead and other toxic metals like antimony in the atmosphere of indoor shooting ranges using 'green' ammunition, although higher concentrations of manganese and boron were measured. These metals are likely to be the constituents of new types of primers. They occur predominantly in the size fraction <250 nm of aerosols.

  5. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  6. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  7. Filter measurements of chemical composition during the airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Grandrud, B. W.; Sperry, P. D.; Sanford, L.

    1988-01-01

    During the Airborne Antarctic Ozone Experiment campaign, a filter sampler was flown to measure the bulk composition of aerosol and gas phases. The background sulfate aerosol was measured in regions inside and outside of the chemically perturbed region (CPR) of the polar vortex. The mass ratio of sulfate outside to inside was 2.8. This is indicative of a cleansing mechanism effecting the CPR or of a different air mass inside versus outside. The absolute value of the sulfate mixing ratio shows that the background aerosol has not been influenced by recent volcanic eruptions. The sulfate measured on the ferry flight returning to NASA Ames shows a decrease towards the equator with increasing concentrations in the northern hemisphere. Nitrate in the aerosol phase was observed on two flights. The largest amount of nitrate measured in the aerosol was 44 percent of the total amount of nitrate observed. Other samples on the same flights show no nitrate in the aerosol phase. The presence of nitrate in the aerosol is correlated with the coldest temperatures observed on a given flight. Total nitrate (aerosol plus acidic vapor nitrate) concentrations were observed to increase at flight altitude with increasing latitude north and south of the equator. Total nitrate was lower inside the CPR than outside. Chloride and flouride were not detected in the aerosol phase. From the concentrations of acidic chloride vapor, the ratio of acidic vapor Cl to acidic vapor F and a summing of the individual chloride containing species to yield a total chloride concentration, there is a suggestion that some of the air sampled was dechlorinated. Acidic vapor phase fluoride was observed to increase at flight altitude with increasing latitude both north and south of the equator. The acidic vapor phase fluoride was the only compound measured with the filter technique that exhibited larger concentrations inside the CPR than outside.

  8. Neuraminidase as an enzymatic marker for detecting airborne Influenza virus and other viruses.

    PubMed

    Turgeon, Nathalie; Toulouse, Marie-Josée; Ho, Jim; Li, Dongqing; Duchaine, Caroline

    2017-02-01

    Little information is available regarding the effectiveness of air samplers to collect viruses and regarding the effects of sampling processes on viral integrity. The neuraminidase enzyme is present on the surface of viruses that are of agricultural and medical importance. It has been demonstrated that viruses carrying this enzyme can be detected using commercial substrates without having to process the sample by methods such as RNA extraction. This project aims at evaluating the effects of 3 aerosol-sampling devices on the neuraminidase enzyme activity of airborne viruses. The purified neuraminidase enzymes from Clostridium perfringens, a strain of Influenza A (H1N1) virus, the FluMist influenza vaccine, and the Newcastle disease virus were used as models. The neuraminidase models were aerosolized in aerosol chambers and sampled with 3 different air samplers (SKC BioSampler, 3-piece cassettes with polycarbonate filters, and Coriolis μ) to assess the effect on neuraminidase enzyme activity. Our results demonstrated that Influenza virus and Newcastle disease virus neuraminidase enzymes are resistant to aerosolization and sampling with all air samplers tested. Moreover, we demonstrated that the enzymatic neuraminidase assay is as sensitive as RT-qPCR for detecting low concentrations of Influenza virus and Newcastle disease virus. Therefore, given the sensitivity of the assay and its compatibility with air sampling methods, viruses carrying the neuraminidase enzyme can be rapidly detected from air samples using neuraminidase activity assay without having to preprocess the samples.

  9. The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles

    NASA Astrophysics Data System (ADS)

    Drinovec, Luka; Gregorič, Asta; Zotter, Peter; Wolf, Robert; Bruns, Emily Anne; Prévôt, André S. H.; Petit, Jean-Eudes; Favez, Olivier; Sciare, Jean; Arnold, Ian J.; Chakrabarty, Rajan K.; Moosmüller, Hans; Filep, Agnes; Močnik, Griša

    2017-03-01

    Black carbon is a primary aerosol tracer for high-temperature combustion emissions and can be used to characterize the time evolution of its sources. It is correlated with a decrease in public health and contributes to atmospheric warming. Black carbon measurements are usually conducted with absorption filter photometers, which are prone to several artifacts, including the filter-loading effect - a saturation of the instrumental response due to the accumulation of the sample in the filter matrix. In this paper, we investigate the hypothesis that this filter-loading effect depends on the optical properties of particles present in the filter matrix, especially on the black carbon particle coating. We conducted field campaigns in contrasting environments to determine the influence of source characteristics, particle age and coating on the magnitude of the filter-loading effect. High-time-resolution measurements of the filter-loading parameter in filter absorption photometers show daily and seasonal variations of the effect. The variation is most pronounced in the near-infrared region, where the black carbon mass concentration is determined. During winter, the filter-loading parameter value increases with the absorption Ångström exponent. It is suggested that this effect is related to the size of the black carbon particle core as the wood burning (with higher values of the absorption Ångström exponent) produces soot particles with larger diameters. A reduction of the filter-loading effect is correlated with the availability of the coating material. As the coating of ambient aerosols is reduced or removed, the filter-loading parameter increases. Coatings composed of ammonium sulfate and secondary organics seem to be responsible for the variation of the loading effect. The potential source contribution function analysis shows that high values of the filter-loading parameter in the infrared are indicative of local pollution, whereas low values of the filter

  10. Determination of malic acid and other C4 dicarboxylic acids in atmospheric aerosol samples.

    PubMed

    Röhrl, Andreas; Lammel, Gerhard

    2002-03-01

    An ion chromatographic method was developed which is able to separate five unsubstituted and hydroxy C4 dicarboxylic acids, succinic, malic, tartaric, maleic and fumaric acid, besides the other unsubstituted C2-C5 dicarboxylic acids, oxalic, malonic and glutaric acids, as well as inorganic ions in samples extracted from atmospheric particulate matter. By the application of this method it was found for both rural and urban sites and for various types of air masses that in the summer-time malic acid is the most prominent C4 diacid (64 ng m(-3) by average), exceeding succinic acid concentration (28 ng m(-3) by average) considerably. In winter-time considerably less, a factor of 4-15, C4 acids occurred and succinic acid was more concentrated than malic acid. Tartaric, fumaric and maleic acids were less concentrated (5.1, 5.0 and 4.5 ng m(-3) by average, respectively). Tartaric acid was observed for the first time in ambient air. The results indicate that in particular anthropogenic sources are important for the precursors of succinic, maleic and fumaric acids. Biogenic sources seem to influence the occurrence of malic acid significantly.

  11. Characterizing mineral dusts and other aerosols from the Middle East--Part 1: ambient sampling.

    PubMed

    Engelbrecht, Johann P; McDonald, Eric V; Gillies, John A; Jayanty, R K M; Casuccio, Gary; Gertler, Alan W

    2009-02-01

    The purpose of the Enhanced Particulate Matter Surveillance Program was to provide scientifically founded information on the chemical and physical properties of dust collected over a period of approximately 1 year in Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (northern, central, coastal, and southern regions). Three collocated low-volume particulate samplers, one each for the total suspended particulate matter, < 10 micro m in aerodynamic diameter (PM(10)) particulate matter, and < 2.5 micro m in aerodynamic diameter (PM(2.5)) particulate matter, were deployed at each of the 15 sites, operating on a '1 in 6' day sampling schedule. Trace-element analysis was performed to measure levels of potentially harmful metals, while major-element and ion-chemistry analyses provided an estimate of mineral components. Scanning electron microscopy with energy dispersive spectroscopy was used to analyze the chemical composition of small individual particles. Secondary electron images provided information on particle size and shape. This study shows the three main air pollutant types to be geological dust, smoke from burn pits, and heavy metal condensates (possibly from metals smelting and battery manufacturing facilities). Non-dust storm events resulted in elevated trace metal concentrations in Baghdad, Balad, and Taji in Iraq. Scanning-electron-microscopy secondary electron images of individual particles revealed no evidence of freshly fractured quartz grains. In all instances, quartz grains had rounded edges and mineral grains were generally coated by clay minerals and iron oxides.

  12. Characteristics of microbial aerosols released from chicken and swine feces.

    PubMed

    Chien, Yeh-Chung; Chen, Chiou-Jong; Lin, Tzu-Hsien; Chen, Shih-Hsun; Chien, Yu-Ching

    2011-08-01

    Bioaerosols generated during livestock and poultry production are significant occupational hazards. This study investigates the characteristics of bioaerosols released from animal feces. Fresh feces from pigs and chickens were obtained and tested in a controlled-environment facility. Airborne viable (culturable) bacteria and fungi were sampled hourly for 48 hr. The predominant species were identified via polymerase chain reaction analysis. The number of bacterial colonies released from chicken feces increased gradually, peaked at approximately 20 hr, and remained relatively constant to test end; however, the bacterial colonies released from swine feces did not increase significantly. The chicken feces released significantly (P < 0.05) more bacterial aerosols than swine feces over 40 hr, by approximately 1 order of magnitude. However, the difference in total fungal aerosols released from the two feces types was relatively small (30-40%) and insignificant (P > 0.05). Aerosols sized between approximately 0.65 and 1.1 microm were predominant for bacteria, whereas aerosols sized between approximately 2.1 and 3.3 microm prevailed for fungi. Genera Stenotrophomonas were the predominant bacterial aerosols, whereas Cladosporium and Acremonium accounted for the greatest amounts of fungi from chicken and swine feces, respectively. More than 1000 culturable bacterial colonies can be released from 1 g of chicken feces per hour, and approximately 80% of these bioaerosols are respirable. Most bacterial aerosols released from swine and chicken feces were opportunistic human pathogens; thus, the significance of their presence warrants further investigations.

  13. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    SciTech Connect

    Bartlett, W.T.; Walker, B.A.

    1996-01-01

    Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs.

  14. Liquid-phase sample preparation method for real-time monitoring of airborne asbestos fibers by dual-mode high-throughput microscopy.

    PubMed

    Cho, Myoung-Ock; Kim, Jung Kyung; Han, Hwataik; Lee, Jeonghoon

    2013-01-01

    Asbestos that had been used widely as a construction material is a first-level carcinogen recognized by the World Health Organization. It can be accumulated in body by inhalation causing virulent respiratory diseases including lung cancer. In our previous study, we developed a high-throughput microscopy (HTM) system that can minimize human intervention accompanied by the conventional phase contrast microscopy (PCM) through automated counting of fibrous materials and thus significantly reduce analysis time and labor. Also, we attempted selective detection of chrysotile using DksA protein extracted from Escherichia coli through a recombinant protein production technique, and developed a dual-mode HTM (DM-HTM) by upgrading the HTM device. We demonstrated that fluorescently-labeled chrysotile asbestos fibers can be identified and enumerated automatically among other types of asbestos fibers or non-asbestos particles in a high-throughput manner through a newly modified HTM system for both reflection and fluorescence imaging. However there is a limitation to apply DM-HTM to airborne sample with current air collecting method due to the difficulty of applying the protein to dried asbestos sample. Here, we developed a technique for preparing liquid-phase asbestos sample using an impinger normally used to collect odor molecules in the air. It would be possible to improve the feasibility of the dual-mode HTM by integrating a sample preparation unit for making collected asbestos sample dispersed in a solution. The new technique developed for highly sensitive and automated asbestos detection can be a potential alternative to the conventional manual counting method, and it may be applied on site as a fast and reliable environmental monitoring tool.

  15. The chemical and disperse composition of atmospheric aerosol in different layers of the troposphere background area of south of Western Siberia and its seasonal features on result of airborne sounding by Tupolev-134 "Optik"

    NASA Astrophysics Data System (ADS)

    Belan, Boris D.; Rasskazchikova, Tatyana M.; Simonenkov, Denis V.; Tolmachev, Gennadii N.

    2015-11-01

    This paper presents the data of the vertical distribution of ion concentrations in aerosols and their seasonal characteristics obtained during the flights of the aircraft-laboratory Tupolev-134 "Optics" in 2011 - 2013 over the Karakan boron area in the southern part of the right bank of the Novosibirsk reservoir. The time duration of each flight is about 2 hours. Sampling on Petryanov filters AFA-CP-20 at heights and in the layers of 7000-5500, 4000-3000, 2000-1500 and 1000- 500 meters.

  16. Resistance of Aerosolized Bacterial Viruses to Four Germicidal Products

    PubMed Central

    Turgeon, Nathalie; Michel, Kevin; Ha, Thi-Lan; Robine, Enric; Moineau, Sylvain; Duchaine, Caroline

    2016-01-01

    Viral diseases can spread through a variety of routes including aerosols. Yet, limited data are available on the efficacy of aerosolized chemicals to reduce viral loads in the air. Bacteriophages (phages) are often used as surrogates for hazardous viruses in aerosol studies because they are inexpensive, easy to handle, and safe for laboratory workers. Moreover, several of these bacterial viruses display physical characteristics similar to pathogenic human and animal viruses, like morphological size, type of nucleic acids, capsid morphology, and the presence of an envelope. In this study, the efficacy of four chemicals was evaluated on four airborne phages at two different relative humidity levels. Non-tailed bacteriophages MS2 (single-stranded RNA), ϕ6 (double-stranded RNA, enveloped), PR772 (double-stranded DNA), and ϕX174 (single-stranded DNA) were first aerosolized in a 55L rotative environmental chamber at 19°C with 25% and 50% relative humidity. Then, hydrogen peroxide, Eugenol (phenylpropene used in commercial perfumes and flavorings), Mist® (automobile disinfectant containing Triethylene glycol), and Pledge® (multisurface disinfectant containing Isopropanol, n-Alkyl Dimethyl Benzyl Amonium Chlorides, and n-Alkyl Dimethyl Ethylbenzyl Ammonium Chloride) were nebulized with the phages using a separate nebulizer. Aerosols were maintained in suspension during 10 minutes, 1 hour, and 2 hours. Viral aerosols were sampled using an SKC BioSampler and samples were analyzed using qPCR and plaque assays. The resistance levels of the four phages varied depending on the relative humidity (RH) and germicidal products tested. Phage MS2 was the most stable airborne virus under the environmental conditions tested while phage PR772 was the least stable. Pledge® and Eugenol reduced the infectivity of all airborne phages tested. At 25% RH, Pledge® and Eugenol were more effective at reducing infectivity of RNA phages ϕ6 and MS2. At 50% RH, Pledge® was the most effective

  17. Transport of aerosol to the Arctic: analysis of CALIOP and French aircraft data during the spring 2008 POLARCAT campaign

    NASA Astrophysics Data System (ADS)

    Ancellet, G.; Pelon, J.; Blanchard, Y.; Quennehen, B.; Bazureau, A.; Law, K. S.; Schwarzenboeck, A.

    2014-08-01

    Lidar and in situ observations performed during the Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, Climate, Chemistry, Aerosols and Transport (POLARCAT) campaign are reported here in terms of statistics to characterize aerosol properties over northern Europe using daily airborne measurements conducted between Svalbard and Scandinavia from 30 March to 11 April 2008. It is shown that during this period a rather large number of aerosol layers was observed in the troposphere, with a backscatter ratio at 532 nm of 1.2 (1.5 below 2 km, 1.2 between 5 and 7 km and a minimum in between). Their sources were identified using multispectral backscatter and depolarization airborne lidar measurements after careful calibration analysis. Transport analysis and comparisons between in situ and airborne lidar observations are also provided to assess the quality of this identification. Comparison with level 1 backscatter observations of the spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) were carried out to adjust CALIOP multispectral observations to airborne observations on a statistical basis. Recalibration for CALIOP daytime 1064 nm signals leads to a decrease of their values by about 30%, possibly related to the use of the version 3.0 calibration procedure. No recalibration is made at 532 nm even though 532 nm scattering ratios appear to be biased low (-8%) because there are also significant differences in air mass sampling between airborne and CALIOP observations. Recalibration of the 1064 nm signal or correction of -5% negative bias in the 532 nm signal both could improve the CALIOP aerosol colour ratio expected for this campaign. The first hypothesis was retained in this work. Regional analyses in the European Arctic performed as a test emphasize the potential of the CALIOP spaceborne lidar for further monitoring in-depth properties of the aerosol layers over Arctic using infrared and depolarization observations. The CALIOP

  18. Evaluation of an electrostatic particle ionization technology for decreasing airborne pathogens in pigs.

    PubMed

    Alonso, Carmen; Raynor, Peter C; Davies, Peter R; Morrison, Robert B; Torremorell, Montserrat

    Influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV) and Staphylococcus aureus are important swine pathogens capable of being transmitted via aerosols. The electrostatic particle ionization system (EPI) consists of a conductive line that emits negative ions that charge particles electrically resulting in the settling of airborne particles onto surfaces and potentially decreasing the risk of pathogen dissemination. The objectives of this study were to determine the effect of the EPI system on the quantity and viability of IAV, PRRSV, PEDV and S. aureus in experimentally generated aerosols and in aerosols generated by infected animals. Efficiency at removing airborne particles was evaluated as a function of particle size (ranging from 0.4 to 10 µm), distance from the source of ions (1, 2 and 3 m) and relative air humidity (RH 30 vs. 70 %). Aerosols were sampled with the EPI system "off" and "on." Removal efficiency was significantly greater for all pathogens when the EPI line was the closest to the source of aerosols. There was a greater reduction for larger particles ranging between 3.3 and 9 µm, which varied by pathogen. Overall airborne pathogen reduction ranged between 0.5 and 1.9 logs. Viable pathogens were detected with the EPI system "on," but there was a trend to reducing the quantity of viable PRRSV and IAV. There was not a significant effect on the pathogens removal efficiency based on the RH conditions tested. In summary, distance to the source of ions, type of pathogen and particle size influenced the removal efficiency of the EPI system. The reduction in infectious agents in the air by the EPI technology could potentially decrease the microbial exposure for pigs and people in confinement livestock facilities.

  19. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  20. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS - diurnal variations and PMF receptor modelling

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.

    2013-04-01

    Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter < 2.5 μm) resolved aerosol samples analysed by Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie European Union framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the approach used is the simultaneous sampling at two monitoring sites in Barcelona (Spain) during September-October 2010: an urban background site (UB) and a street canyon traffic road site (RS). Elements related to primary non-exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (regional sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non-exhaust brake dust (Fe-Cu) - 7%), and three types of industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%, percentages presented are average source contributions to the total elemental mass measured). The validity of the PMF solution of the PIXE data is supported by very good correlations with external single particle mass spectrometry measurements. Some important conclusions can be drawn about the PM2.5 mass fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both

  1. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.

    PubMed

    Heitbrink, William A; Collingwood, Scott

    2005-01-01

    In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters.

  2. Temporal change in the size distribution of airborne Radiocesium derived from the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Kaneyasu, Naoki; Ohashi, Hideo; Suzuki, Fumie; Okuda, Tomoaki; Ikemori, Fumikazu; Akata, Naofumi

    2013-04-01

    The accident of Fukushima Dai-ichi nuclear power plant discharged a large amount of radioactive materials into the environment. After 40 days of the accident, we started to collect the size-segregated aerosol at Tsukuba City, Japan, located 170 km south of the plant, by use of a low-pressure cascade impactor. The sampling continued from April 28, through October 26, 2011. The number of sample sets collected in total was 8. The radioactivity of 134Cs and 137Cs in aerosols collected at each stage were determined by gamma-ray with a high sensitivity Germanic detector. After the gamma-ray spectrometry analysis, the chemical species in the aerosols were analyzed. The analyses of first (April 28-May 12) and second (May 12-26) samples showed that the activity size distributions of 134Cs and 137Cs in aerosols reside mostly in the accumulation mode size range. These activity size distributions almost overlapped with the mass size distribution of non-sea-salt sulfate aerosol. From the results, we regarded that sulfate is the main transport medium of these radionuclides, and re-suspended soil particles that attached radionuclides were not the major airborne radioactive substances by the end of May, 2011 (Kaneyasu et al., 2012). We further conducted the successive extraction experiment of radiocesium from the aerosol deposits on the aluminum sheet substrate (8th stage of the first aerosol sample, 0.5-0.7 μm in aerodynamic diameter) with water and 0.1M HCl. In contrast to the relatively insoluble property of Chernobyl radionuclides, those in aerosols collected at Tsukuba in fine mode are completely water-soluble (100%). From the third aerosol sample, the activity size distributions started to change, i.e., the major peak in the accumulation mode size range seen in the first and second aerosol samples became smaller and an additional peak appeared in the coarse mode size range. The comparison of the activity size distributions of radiocesium and the mass size distributions of

  3. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2016-06-13

    storm activity, and 4) surface and airborne measurements on the west coast of the U.S. indicate the presence of aerosols and dust on the predicted...observables (in situ and satellites) and model quantities such as mass. Aerosol species currently included in the analyses are dust , pollution, biomass...Prediction System ( COAMPS ®). Over the next several years it is the goal of this project to maintain these systems as the world leaders in EO prediction

  4. Airborne Dial Remote Sensing of the Arctic Ozone Layer

    NASA Technical Reports Server (NTRS)

    Wirth, Martin; Renger, Wolfgang; Ehret, Gerhard

    1992-01-01

    A combined ozone and aerosol LIDAR was developed at the Institute of Physics of the Atmosphere at the DLR in Oberpfaffenhofen. It is an airborne version, that, based on the DIAL-principle, permits the recording of two-dimensional ozone profiles. This presentation will focus on the ozone-part; the aerosol subsection will be treated later.

  5. Comparison of three different sample preparation procedures for the determination of traffic-related elements in airborne particulate matter collected on glass fiber filters.

    PubMed

    Castilho, Ivan N B; Welz, Bernhard; Vale, Maria Goreti R; de Andrade, Jailson B; Smichowski, Patricia; Shaltout, Abdallah A; Colares, Lígia; Carasek, Eduardo

    2012-01-15

    Three different procedures for sample preparation have been compared for the determination of Cu, Mo and Sb in airborne particulate matter (APM) collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). Direct solid sample analysis of the ground filters was compared with microwave-assisted acid leaching with aqua regia and ultrasound-assisted extraction also using aqua regia. The main absorption line at 324.754 nm or the secondary line at 216.509 nm was used for the determination of Cu, depending on the analyte content in the samples. The primary absorption line at 313.259 nm was used for Mo and the secondary line at 212.739 nm for Sb determination. The limits of detection (LOD, 3σ) found for the direct solid sampling method, based on ten atomizations of an unused filter were 15 μg g(-1) for all three analytes, corresponding to 40 ng m(-3) for a typical air volume of 1,440 m(3) collected over a period of 24h. The LOD for the other two methods were less than a factor of two inferior, but the total time required for an analysis was significantly longer. The repeatability of the measurements was between 3 and 9% (n=5), and the results obtained with the three methods did not show any significant difference. The ratio between the three analytes on the filters from areas of intense traffic was found to be around Cu:Mo:Sb≈4:1:1.4, which suggests that the source of all three elements is brake linings, i.e., related to automobile traffic. When the ratio deviated significantly from the above values, the source of contamination was assumed to be of different origin.

  6. Saharan Mineral Dust Experiment SAMUM 2006: Airborne observations of dust particle properties and vertical dust profiles

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Weinzierl, B.; Esselborn, M.; Fiebig, M.; Fix, A.; Kiemle, C.; Wirth, M.; Müller, D.; Wendisch, M.; Schuetz, L.; Kandler, K.; Kahn, R.; Wagner, F.; Pereira, S.; Virkkula, A.

    2006-12-01

    The Saharan Mineral Dust Experiment (SAMUM) is an initiative of several German institutes. Its goal is the characterisation of optical, physical, chemical, and radiative properties of Saharan dust at the source region. SAMUM data may serve as ground truth data to validate satellite products and atmospheric transport models, and to support the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) mission. The first SAMUM intensive field phase was carried out in May/June 2006 in Southern Morocco. Ground sites were Ouarzazate (30.93° N, 6.9° W), Zagora (30.15° N, 5.37°), and Evora (38.53°N, 7.90°E) in Portugal for long- range transport studies. Research aircraft were operating from Ouarzazate (Partenavia, local flights) and Casablanca (DLR Falcon) at the Moroccan west coast As part of SAMUM, airborne measurements of dust particle properties were conducted using the German research aircraft Falcon. The DLR Falcon was equipped with an extensive set of aerosol physico-chemical instruments for size, volatility, and absorption measurements, impactor