Science.gov

Sample records for airborne atmospheric measurements

  1. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  2. Pulsed airborne lidar measurements of atmospheric CO2 column absorption

    NASA Astrophysics Data System (ADS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Kawa, S. Randoph; Biraud, Sebastien

    2010-11-01

    ABSTRACT We report initial measurements of atmospheric CO2 column density using a pulsed airborne lidar operating at 1572 nm. It uses a lidar measurement technique being developed at NASA Goddard Space Flight Center as a candidate for the CO2 measurement in the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. The pulsed multiple-wavelength lidar approach offers several new capabilities with respect to passive spectrometer and other lidar techniques for high-precision CO2 column density measurements. We developed an airborne lidar using a fibre laser transmitter and photon counting detector, and conducted initial measurements of the CO2 column absorption during flights over Oklahoma in December 2008. The results show clear CO2 line shape and absorption signals. These follow the expected changes with aircraft altitude from 1.5 to 7.1 km, and are in good agreement with column number density estimates calculated from nearly coincident airborne in-situ measurements.

  3. Infrared heterodyne radiometer for airborne atmospheric transmittance measurements

    NASA Technical Reports Server (NTRS)

    Wolczok, J. M.; Lange, R. A.; Dinardo, A. J.

    1980-01-01

    An infrared heterodyne radiometer (IHR) was used to measure atmospheric transmittance at selected hydrogen fluoride (2.7 micrometer) and deuterium fluoride (3.8 micrometer) laser transitions. The IHR was installed aboard a KC-135 aircraft for an airborne atmospheric measurements program that used the sun as a backlighting source for the transmission measurements. The critical components are: a wideband indium antimonide (1nSb) photomixer, a CW HF/DF laser L0, a radiometric processor, and a 1900 K blackbody reference source. The measured heterodyne receiver sensitivity (NEP) is 1.3 x 10 to the -19th power W/Hz, which yields a calculated IHR temperature resolution accuracy of delta I sub S/-3 sub S = 0.005 for a source temperature of 1000 K and a total transmittance of 0.5. Measured atmospheric transmittance at several wavelengths and aircraft altitudes from 9.14 km (30,000 ft) to 13.72 km (45,000 ft) were obtained during the measurements program and have been compared with values predicted by the AFGL Atmospheric Line Parameter Compilation.

  4. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; Kawa, Stephan

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  5. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  6. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Howell, Burgess F.; Hardesty, Robert M.; Tratt, David M.; Darby, Lisa S.

    1999-01-01

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, Jet Propulsion Laboratory and NASA Marshall Space Flight Center jointly developed an airborne scanning coherent Doppler Lidar. We describe the system, present recent measurement (including the first wind fields measured within a hurricane using Doppler lidar), and describe prospective instrument improvements and research applications.

  7. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2016-06-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new instrument has been flown in spring of 2014 for a total of ten flights with 27 flight hours. This IPDA lidar provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the results.

  8. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Howell, James N.; Darby, Lisa S.; Tratt, David M.; Menzies, Robert T.

    1999-01-01

    The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general

  9. Correcting airborne scanning infrared radiometer measurements for atmospheric effects

    NASA Technical Reports Server (NTRS)

    Boudreau, R. D.

    1972-01-01

    Two techniques were developed for determining atmospheric corrections from observations made by a scanning radiometer. Both techniques depend on knowing the radiometer's limb function. The limb function for an RS-18 scanning radiometer is derived from calculations made with a radiation model and used to demonstrate the techniques. One technique requires observations made over an isothermal water surface within the area being remotely sensed. The other technique does not depend on an isothermal water surface but requires a boat measurement of radiometric sea surface temperature within the area being remotely sensed. The radiation model used to derive the limb function does not account for the effects of atmospheric particulates on the correction. It is hypothesized that the effect of particulates on the limb function derived in this study is negligible, and therefore the technique essentially obtains the total correction. The techniques developed can be used over land provided that a section of isothermal land exists within the experiment area or that a radiometric measurement of surface temperature is made at the surface.

  10. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Riris, H.; Abshire, J. B.; Allan, G. R.; Stephen, M.; Hasselbrack, W.; Mao, J.

    2012-12-01

    We report on airborne atmospheric pressure measurements using fiber-based laser technology and the oxygen A-band at 765 nm. Remote atmospheric temperature and pressure measurements are needed for NASA's Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. ASCENDS will measure atmospheric CO2 dry mixing ratios on a global scale. Remote atmospheric pressure measurements are necessary to normalize ASCENDS CO2 measurements. Our work, funded by the ESTO IIP program, uses erbium doped fiber optic amplifiers and non-linear optics technology to tune laser radiation over the Oxygen A-band between 764.5 nm and 765 nm. Surface reflections are fiber-coupled from a receiver telescope to photon counting detectors. Our pulsed, time gated approach resolves ground reflections from cloud returns. This system successfully recorded O2 absorption spectra during two airborne campaigns aboard a NASA DC-8. Airborne data has been analyzed and fitted to HITRAN reference spectra based upon aircraft meteorological data. Our algorithm linearly scales the HITRAN reference until measurement errors are minimized. Atmospheric pressure changes are estimated by comparing the differential optical depth of the optimum scaled HITRAN spectra to the differential optical depth of the nominal HITRAN spectra. On flights over gradually sloping terrain, these results compare favorably with ground-based observations and predictions from computer models. Measurement uncertainty is commensurate with photon counting noise. We plan to reduce measurement uncertainty in future campaigns by improving transmitter pulse energy and increasing wavelength sweep frequency.

  11. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Astrophysics Data System (ADS)

    Meadows, B.; Davis, K.; Barrick, J. D. W.; Browell, E. V.; Chen, G.; Dobler, J. T.; Fried, A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Miles, N. L.; Nehrir, A. R.; Obland, M. D.; O'Dell, C.; Sweeney, C.; Yang, M. M.

    2015-12-01

    NASA announced the research opportunity Earth Venture Suborbital - 2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport - America (ACT - America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT - America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2 and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  12. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; Miles, Natasha; Nehrir, Amin; Obland, Michael; O'Dell, Chris; Sweeney, Colm; Yang, Melissa

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  13. Direct Measurement of Atmospheric Ammonia from an Airborne Miniature Chemical Ionization Mass Spectrometer (miniCIMS)

    NASA Astrophysics Data System (ADS)

    Casados, K.; Schill, S.; Freeman, S.; Zoerb, M.; Bertram, T. H.; Lefer, B. L.

    2015-12-01

    Ammonia is emitted into the atmosphere from a variety of sources such as trees, ocean, diary fields, biomass burning, and fuel emissions. Previous studies have investigated the environmental impacts of atmospheric ammonia which can include chemical reactivity, nucleation of fine particulate matter 2.5 (PM 2.5 ), and implications for human health, but its chemical nature and relatively short lifetime make direct measurement of atmospheric ammonia difficult. During the 2015 NASA Student Airborne Research Program (SARP) an airborne miniature Chemical Ionization Mass Spectrometer (miniCIMS) was deployed on the NASA DC-8 flying laboratory in the Southern California region. The spatial and temporal variability of measured atmospheric ammonia concentrations will be discussed.

  14. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriquez, Michael; Allan, Graham R.; Hasselbrack, William E.; Stephen, Mark A.; Abshire, James B.

    2011-01-01

    We report on airborne measurements of atmospheric pressure using a fiber-laser based lidar operating in the oxygen A-band near 765 nm and the integrated path differential absorption measurement technique. Our lidar uses fiber optic technology and non-linear optics to generate tunable laser radiation at 765 nm, which overlaps an absorption line pair in the Oxygen A-band. We use a pulsed time resolved technique, which rapidly steps the laser wavelength across the absorption line pair, a 20 cm telescope and photon counting detector to measure Oxygen concentrations.

  15. Airborne Measurements of Atmospheric Methane Column Abundance Made Using a Pulsed IPDA Lidar

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Ramanathan, Anamd; Dawsey, Martha; Mao, Jianping; Kawa, Randolph; Abshire, James B.

    2012-01-01

    We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection IPDA lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier (OPA) pumped by a Nd:YAG laser and the receiver used a photomultiplier detector and photon counting electronics. The results follow the expected changes with aircraft altitude and the measured line shapes and optical depths show good agreement with theoretical calculations.

  16. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriquez, Michael D.; Allan, Graham R.; Hasselbrack, William E.; Mao, Jianping; Stephen, Mark A.; Abshire, James B.

    2012-01-01

    Accurate measurements of greenhouse gas mixing ratios on a global scale are currently needed to gain a better understanding of climate change and its possible impact on our planet. In order to remotely measure greenhouse gas concentrations in the atmosphere with regard to dry air, the air number density in the atmosphere is also needed in deriving the greenhouse gas concentrations. Since oxygen is stable and uniformly mixed in the atmosphere at 20.95%, the measurement of an oxygen absorption in the atmosphere can be used to infer the dry air density and used to calculate the dry air mixing ratio of a greenhouse gas, such as carbon dioxide or methane. OUT technique of measuring Oxygen uses integrated path differential absorption (IPDA) with an Erbium Doped Fiber Amplifier (EDF A) laser system and single photon counting module (SPCM). It measures the absorbance of several on- and off-line wavelengths tuned to an O2 absorption line in the A-band at 764.7 nm. The choice of wavelengths allows us to maximize the pressure sensitivity using the trough between two absorptions in the Oxygen A-band. Our retrieval algorithm uses ancillary meteorological and aircraft altitude information to fit the experimentally obtained lidar O2 line shapes to a model atmosphere and derives the pressure from the profiles of the two lines. We have demonstrated O2 measurements from the ground and from an airborne platform. In this paper we will report on our airborne measurements during our 2011 campaign for the ASCENDS program.

  17. Prediction and performance measures of atmospheric disturbances on an airborne imaging platform

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.; Martin, Jeffrey B.; Kovacs, Mark A.; Cardani, Joseph C.; Maia, Francisco; Aflalo, Tyson; Shilko, Michael L., Sr.

    2004-02-01

    A series of airborne imaging experiments have been conducted on the island of Maui. The imaging platform was a Twin Otter aircraft, which circled ground target sites. The typical platform altitude was 3000 meters, with a slant range to the target of 9000 meters. This experiment was performed during the day using solar illuminated target buildings, and at night with spotlights used to simulate point sources. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  18. Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

    1986-01-01

    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

  19. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jianping; Kawa, Stephen R.; Weaver, Clark J.

    2010-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  20. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  1. Airborne Lidar for Simultaneous Measurement of Column CO2 and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Antill, Charles W.; Remus, Ruben; Yu, Jirong

    2016-01-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption feathers for the gas at this particular wavelength. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers. This paper will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar. The development of this active optical remote sensing IPDA instrument is targeted for measuring both CO2 and water vapor (H2O) in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver telescope, detection system and data acquisition. Future plans for the IPDA lidar system for ground integration, testing and flight validation will also be presented.

  2. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  3. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  4. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions. PMID:20941181

  5. Airborne IPDA Lidar Measurements of Atmospheric Methane in Support of MERLIN

    NASA Astrophysics Data System (ADS)

    Kiemle, C.; Amediek, A.; Wirth, M.; Ehret, G.

    2015-12-01

    Space-based lidar missions targeting greenhouse gases are expected to close observational gaps, e.g., over subarctic permafrost and tropical wetlands, where in-situ and passive remote sensing techniques have difficulties. Consequently, a "Methane Remote Lidar Mission" (MERLIN) was proposed by the German and French space agencies DLR and CNES. MERLIN is now in Phase B, in which all mission components are planned in detail; launch is foreseen in 2020. An integrated path differential absorption (IPDA) lidar will measure weighted columns of atmospheric methane (XCH4) along the satellite track. Primary objective is to provide accurate global observations of methane concentration gradients for inverse numerical models in order to better quantify regional fluxes. DLR has developed an airborne demonstrator, CHARM-F, for technology demonstration and validation purposes. First successful flights on-board the German HALO research aircraft have been performed in May 2015 over Central Europe. The measurements are expected to help solve general retrieval issues for future space-borne IPDA lidars. For example, the CHARM-F flights over ocean and lakes help assess the strength and variability of backscatter from water surfaces. The IPDA weighting function, or measurement sensitivity, is dependent on atmospheric pressure and temperature, in particular close to the surface. We use ECMWF analyses interpolated in space and time to the aircraft track that provide these auxiliary data at 14 km horizontal resolution. Due to the coarse representation of orography the model's pressure and temperature profiles have to be extrapolated down to the true lidar's scattering surface elevation, which generates uncertainties that we assess. We also assess biases by spectroscopic uncertainties in the methane absorption lines' parameters. Overall, the airborne results will support the development of advanced processing algorithms for future space lidar missions such as MERLIN.

  6. Atmospheric Airborne Pressure Measurements using the Oxygen A Band for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Riris, H.; Rodriguez, M.

    2014-12-01

    We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an Integrated Path Differential Absorption (IPDA) lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled Erbium Doped Fiber amplifier and single photon counting detector to measure oxygen absorption at 765 nm. Our approach uses a sequence of laser pulses at increasing wavelengths that sample a pair of absorption lines in the Oxygen A-band at 764.7 nm. The O2 lines were selected after careful spectroscopic analysis to minimize the O2 line temperature dependence and the availability of the transmitter and receiver technology to maximize transmitter power, doubling efficiency, and detector sensitivity. We compare our 2013 and 2014 Oxygen IPDA lidar measurements and evaluate the impact of receiver dynamic range, transmitter stability and signal to noise ratio on the differential optical depth measurements.

  7. Simulations of an airborne laser absorption spectrometer for atmospheric CO2 measurements

    NASA Astrophysics Data System (ADS)

    Lin, B.; Ismail, S.; Harrison, F. W.; Browell, E. V.; Dobler, J. T.; Refaat, T.; Kooi, S. A.

    2012-12-01

    Atmospheric column amount of carbon dioxide (CO2), a major greenhouse gas of the atmosphere, has significantly increased from a preindustrial value of about 280 parts per million (ppm) to more than 390 ppm at present. Our knowledge about the spatiotemporal change and variability of the greenhouse gas, however, is limited. Thus, a near-term space mission of the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) is crucial to increase our understanding of global sources and sinks of CO2. Currently, NASA Langley Research Center (LaRC) and ITT Exelis are jointly developing and testing an airborne laser absorption spectrometer (LAS) as a prototype instrument for the mission. To assess the space capability of accurate atmospheric CO2 measurements, accurate modeling of the instrument and practical evaluation of space applications are the keys for the success of the ASCENDS mission. This study discusses the simulations of the performance of the airborne instrument and its CO2 measurements. The LAS is a multi-wavelength spectrometer operating on a 1.57 um CO2 absorption line. The Intensity-Modulated Continuous-Wave (IM-CW) approach is implemented in the instrument. To reach accurate CO2 measurements, transmitted signals are monitored internally as reference channels. A model of this kind of instrument includes all major components of the spectrometer, such as modulation generator, fiber amplifier, telescope, detector, transimpedance amplifier, matched filter, and other signal processors. The characteristics of these components are based on actual laboratory tests, product specifications, and general understanding of the functionality of the components. For simulations of atmospheric CO2 measurements, environmental conditions related to surface reflection, atmospheric CO2 and H2O profiles, thin clouds, and aerosol layers, are introduced into the model. Furthermore, all major noise sources such as those from detectors, background radiation, speckle, and

  8. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Ramanathan, Anand; Hasselbrack, William E.; Mao, Jianping; Weaver, Clark; Browell, Edward V.

    2012-01-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to greater than 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the Iidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected -linear change of the peak DOD with altitude. For measurements at altitudes greater than 6 km the random errors were approximately 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as wen as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly

  9. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm.

    PubMed

    Riris, Haris; Rodriguez, Michael; Allan, Graham R; Hasselbrack, William; Mao, Jianping; Stephen, Mark; Abshire, James

    2013-09-01

    We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an IPDA lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled erbium-doped fiber amplifier and single photon-counting detector to measure oxygen absorption at 765 nm. Our results show good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km.

  10. Pulsed Lidar Measurements of Atmospheric CO2 Column Concentration in the ASCENDS 2014 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A. K.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Chen, J. R.

    2015-12-01

    We report progress in demonstrating a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line by using 30 wavelength samples distributed across the lube. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength 10 times per second. The retrievals solve for the optimum CO2 absorption line shape and the column average CO2 concentrations using radiative transfer calculations based on HITRAN, the aircraft altitude, range to the scattering surface, and the atmospheric conditions. We compare these to CO2 concentrations sampled by in-situ sensors on the aircraft. The number of wavelength samples can be reduced in the retrievals. During the ASCENDS airborne campaign in 2013 two flights were made in February over snow in the Rocky Mountains and the Central Plains allowing measurement of snow-covered surface reflectivity. Several improvements were made to the lidar for the 2014 campaign. These included using a new step-locked laser diode source, and incorporating a new HgCdTe APD detector and analog digitizer into the lidar receiver. Testing showed this detector had higher sensitivity, analog response, and a more linear dynamic range than the PMT detector used previously. In 2014 flights were made in late August and early September over the California Central Valley, the redwood forests along the California coast, two desert areas in Nevada and California, and two flights above growing agriculture in Iowa. Two flights were also made under OCO-2 satellite ground tracks. Analyses show the retrievals of lidar range and CO2 column absorption, and mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, and through thin clouds and aerosol scattering. The lidar measurements clearly

  11. Airborne Measurements of Atmospheric Pressure made Using an IPDA Lidar Operating in the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Abshire, James B.; Stephen, Mark; Rodriquez, Michael; Allan, Graham; Hasselbrack, William; Mao, Jianping

    2012-01-01

    We report airborne measurements of atmospheric pressure made using an integrated path differential absorption (IPDA) lidar that operates in the oxygen A-band near 765 nm. Remote measurements of atmospheric temperature and pressure are needed for NASA s Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission to measure atmospheric CO2. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve our predictions of climate change. The goal of ASCENDS is to determine the CO2 dry mixing ratio with lidar measurements from space at a level of 1 ppm. Analysis to date shows that with current weather models, measurements of both the CO2 column density and the column density of dry air are needed. Since O2 is a stable molecule that uniformly mixed in the atmosphere, measuring O2 absorption in the atmosphere can be used to infer the dry air density. We have developed an airborne (IPDA) lidar for Oxygen, with support from the NASA ESTO IIP program. Our lidar uses DFB-based seed laser diodes, a pulsed modulator, a fiber laser amplifier, and a non-linear crystal to generate wavelength tunable 765 nm laser pulses with a few uJ/pulse energy. The laser pulse rate is 10 KHz, and average transmitted laser power is 20 mW. Our lidar steps laser pulses across a selected line O2 doublet near 764.7 nm in the Oxygen A-band. The direct detection lidar receiver uses a 20 cm diameter telescope, a Si APD detector in Geiger mode, and a multi-channel scalar to detect and record the time resolved laser backscatter in 40 separate wavelength channels. Subsequent analysis is used to estimate the transmission line shape of the doublet for the laser pulses reflected from the ground. Ground based data analysis allows averaging from 1 to 60 seconds to increase SNR in the transmission line shape of the doublet. Our retrieval algorithm fits the expected O2 lineshapes against the measurements and

  12. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign: Measurement Analysis

    NASA Astrophysics Data System (ADS)

    Ramanathan, A.; Mao, J.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W.; Riris, H.; Sun, X.; Abshire, J. B.

    2012-12-01

    Trace gas LIDAR has the potential to actively sense greenhouse gas concentrations in the earth's atmosphere continuously without being affected by day or night. This will enable identifying greenhouse gas sources and sinks, which will help better predict future atmospheric trends of these gases. However, in order to ensure reliable and accurate measurements, it is important to establish metrics to quantify performance. As part of the ASCENDS (Active Sensing of Co2 over Nights, Days and Seasons) program, we conducted an airborne campaign of our CO2 pulsed LIDAR system in August 2011, flying over a variety of terrain and conditions, including snow, ocean, clouds, desert and mountains. Our instrument uses an IPDA (Integrated Path Differential Absorption) approach probing 30 wavelengths across a 1572 nm CO2 absorption line. Our multi-wavelength approach provides redundancy for evaluating the stability of the instrument, and also allows us to perform spectroscopic analysis of the atmosphere. Here, we present our detailed analysis and results. Tracking long-term stability of our instrument by using the Allan deviation formalism for wavelengths away from the absorption line-center, we find that the measured pulse energy (normalized to eliminate ground reflectivity) is stable down to 0.2% across varying terrain, surface reflectivity, flight altitude and LIDAR range. Comparing our measured CO2 absorption line-shape (at regions of constant, known CO2 concentrations) with the predicted line-shape based on the LIDAR range, flight altitude and relevant atmosphere parameters (based on in situ measurements by instruments aboard the aircraft), we find the agreement to be better than 1% (RMS error), once we average 50 s to eliminate shot noise. Our multi-wavelength approach also allows us to track the position of the line-center. The altitude dependence of the atmospheric pressure causes a shift in the CO2 absorption as a function of aircraft altitude. Our measured pressure shift

  13. Testing of a Two-Micron Double-Pulse IPDA Lidar Instrument for Airborne Atmospheric Carbon Dioxide Measurement

    NASA Astrophysics Data System (ADS)

    Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Singh, U. N.

    2015-12-01

    Utilizing a tunable two-micron double-pulse laser transmitter, an airborne IPDA lidar system has been developed at NASA Langley Research Center for atmospheric carbon dioxide column measurements. The instrument comprises a receiver with 0.4 m telescope and InGaAs pin detectors coupled to 12-bit, 200 MS/s waveform digitizers. For on-site ground testing, the 2-μm CO2 IPDA lidar was installed inside a trailer located where meteorological data and CO2 mixing ratio profiles were obtained from CAPABLE and LiCoR in-suite sampling, respectively. IPDA horizontal ground testing with 860 m target distance indicated CO2 sensitivity of 2.24 ppm with -0.43 ppm offset, while operating at 3 GHz on-line position from the R30 line center. Then, the IPDA lidar was integrated inside the NASA B-200 aircraft, with supporting instrumentation, for airborne testing and validation. Supporting instruments included in-situ LiCoR sensor, GPS and video recorder for target identification. Besides, aircraft built-in sensors provided altitude, pressure, temperature and relative humidity sampling during flights. The 2-mm CO2 IPDA lidar airborne testing was conducted through ten daytime flights (27 hours flight time). Airborne testing included different operating and environmental conditions for flight altitude up to 7 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Some flights targeted power plant incinerators for investigating IPDA sensitivity to CO2 plums. Relying on independent CO2 in-situ sampling, conducted through NOAA, airborne IPDA CO2 sensitivity of 4.15 ppm with 1.14 ppm offset were observed at 6 km altitude and 4 GHz on-line offset frequency. This validates the 2-μm double-pulse IPDA lidar for atmospheric CO2 measurement.

  14. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  15. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm

    NASA Astrophysics Data System (ADS)

    Riris, H.; Rodriguez, M.; Allan, G. R.; Mao, J.; Hasselbrack, W.; Abshire, J. B.

    2013-12-01

    We report on an airborne demonstration of atmospheric oxygen (O2) optical depth measurements with an Integrated Path Differential Absorption (IPDA) lidar using a fiber-based laser system and a photon counting detector. Accurate atmospheric temperature and pressure measurements are required for NASA's Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. Since O2 in uniformly mixed in the atmosphere, its absorption spectra can be used to estimate atmospheric pressure. In its airborne configuration, the IPDA lidar uses a doubled Erbium Doped Fiber amplifier and single photon counting detector to measure oxygen absorption at multiple discrete wavelengths in the oxygen A-band near 765 nm. This instrument has been deployed three times aboard NASA's DC-8 airborne laboratory as part of campaigns to measure CO2 mixing ratios over a wide range of topography and weather conditions from altitudes between 3 km and 13 km. The O2 IPDA lidar flew seven flights in 2011 and six flights in 2013 in the continental United States and British Columbia, Canada. Our results from 2011 showed good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km after a systematic bias correction of approximately 8% was applied. The random noise component was 2.5-3.0 %. The most recent data recorded in 2013 show better agreement between experimental optical depth measurements and theoretical predictions and much smaller systematic errors. The random error remained comparable with 2011 at 2-3%. The main source of random error is primarily the low energy (power) of the laser transmitter and the high solar background. We are in the process of addressing this issue with a new, higher energy amplifier that we anticipate will reduce the random noise component by a factor of 3-5 to less than 0.5%. The results from these flights show that the IPDA technique is a viable method

  16. Airborne and ground based lidar measurements of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  17. Airborne atmospheric electricity experiments

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.

    1985-01-01

    During the 1984 U2 spring flight program, lightning spectra were measured in the wavelengths from 380 nm to 900 nm with a temporal resolution of 5 ms. With this capability, researchers simultaneously acquired both visible near-infrared lightning spectra on a pulse to pulse basis, so that the spectral variability within a flash, as well as flash to flash variations, can be studied. Preliminary results suggest that important variations do occur, particularly in the strengths of the hydrogen and singly ionized nitrogen emission lines. Also, the results have revealed significant differences in the integrated energy distributions between the lightning spectra measured above clouds and the spectral measurements of cloud-to-ground lightning made at the ground. In particular, the ratio of the energy in the near-IR to that in the visible is around 1 to 2 for cloud top spectra versus about 1/3 for surface observations. Detailed analyses of the 1984 lightning spectral data is being conducted. This data should provide improved understanding about the optical transmission properties of thunderclouds and the physics of the lightning discharge process. Efforts continue on developing and testing background signal removal algorithms using U2 spectometer and optical array sensor day-flight data sets. The goal of this research is to develop an algorithm satisfying Lightning Mapper Sensor requirements.

  18. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  19. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with

  20. Airborne measurements of the atmospheric emissions from a fuel ethanol refinery

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; McKeen, S. A.; Aikin, K. C.; Brock, C. A.; Brown, S. S.; Gilman, J. B.; Graus, M.; Hanisco, T.; Holloway, J. S.; Kaiser, J.; Keutsch, F. N.; Lerner, B. M.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Min, K.-E.; Neuman, J. A.; Nowak, J. B.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Trainer, M.; Veres, P. R.; Warneke, C.; Welti, A.; Wolfe, G. M.

    2015-05-01

    Ethanol made from corn now constitutes approximately 10% of the fuel used in gasoline vehicles in the U.S. The ethanol is produced in over 200 fuel ethanol refineries across the nation. We report airborne measurements downwind from Decatur, Illinois, where the third largest fuel ethanol refinery in the U.S. is located. Estimated emissions are compared with the total point source emissions in Decatur according to the 2011 National Emissions Inventory (NEI-2011), in which the fuel ethanol refinery represents 68.0% of sulfur dioxide (SO2), 50.5% of nitrogen oxides (NOx = NO + NO2), 67.2% of volatile organic compounds (VOCs), and 95.9% of ethanol emissions. Emissions of SO2 and NOx from Decatur agreed with NEI-2011, but emissions of several VOCs were underestimated by factors of 5 (total VOCs) to 30 (ethanol). By combining the NEI-2011 with fuel ethanol production numbers from the Renewable Fuels Association, we calculate emission intensities, defined as the emissions per ethanol mass produced. Emission intensities of SO2 and NOx are higher for plants that use coal as an energy source, including the refinery in Decatur. By comparing with fuel-based emission factors, we find that fuel ethanol refineries have lower NOx, similar VOC, and higher SO2 emissions than from the use of this fuel in vehicles. The VOC emissions from refining could be higher than from vehicles, if the underestimated emissions in NEI-2011 downwind from Decatur extend to other fuel ethanol refineries. Finally, chemical transformations of the emissions from Decatur were observed, including formation of new particles, nitric acid, peroxyacyl nitrates, aldehydes, ozone, and sulfate aerosol.

  1. Atmospheric CO2 Column Measurements Under Clear and Cloudy Conditions Using an Airborne Intensity-Modulated Continuous-Wave Lidar

    NASA Astrophysics Data System (ADS)

    Lin, B.; Ismail, S.; Harrison, F. W.; Nehrir, A. R.; Browell, E. V.; Fan, T. F.; Kooi, S. A.; Dobler, J. T.; Meadows, B.; Obland, M. D.

    2014-12-01

    This study focuses on the atmospheric CO2 measurements using the Exelis' airborne Intensity-Modulated Continuous-Wave (IM-CW) Laser Absorption Spectrometer (LAS) system operating in the 1.57-mm CO2 absorption band. The atmospheric CO2 estimates above clouds and for entire columns are retrieved from the data obtained during the summer 2011 and spring 2013 ASCENDS flight campaigns. The lidar returns from clouds and surfaces are discriminated by the range-encoded IM signals transmitted by the airborne LAS system. Under thin cloud conditions, lidar systems generally have strong enough return signals from the surface for CO2 retrieval. For optically thick clouds, CO2 columns above the clouds are estimated with lidar returns from the cloud tops, and neighboring clear sky areas are used to measure the total CO2 columns to the surface. Case studies show that the full-column atmospheric CO2 measurements are very similar in adjacent clear and thin-cloud regions, while the signal-to-noise ratio (SNR) values of the CO2 columns are very different due to differences in the transmissions from aircraft to surface over cloudy and clear regions. For example, the measured CO2 columns to land surfaces were found to be about 398 ppm with an average SNR values for 0.1-s averages of about 140 and 38 in clear and thin-cloud conditions, respectively. Under thick clouds conditions, considerable variations in lidar returns for the extended targets are found. Also, their CO2 differential absorption optical depth values are normally smaller than those to the surface. These effects significantly reduce the precisions of CO2 column measurements both above clouds and to the surface under cloudy conditions compared to those to the surface in clear skies. Still, column-averaged CO2 mixing ratio (XCO2) estimates above clouds for daytime observations are expected to be slightly higher than those for the entire atmospheric column due to CO2 uptake by vegetation at the surface.

  2. Airborne Laser Absorption Spectrometer Measurements of CO2 Column Mixing Ratios: Source and Sink Detection in the Atmospheric Environment

    NASA Astrophysics Data System (ADS)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2016-06-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. The four most recent flight campaigns were on the NASA DC-8 research aircraft, in support of the NASA ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission formulation studies. This instrument operates in the 2.05-μm spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the CO2LAS signal processing, data analysis, and the calibration/validation methodology. Results from flights in various U.S. locations during the past three years include observed mid-day CO2 drawdown in the Midwest, also cases of point-source and regional plume detection that enable the calculation of emission rates.

  3. Recent Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption to 13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Mao, J.; Hasselbrack, W.; Sun, X.; Rodriguez, M. R.

    2010-12-01

    We have developed a lidar technique for measuring atmospheric CO2 concentrations as a candidate for NASA’s ASCENDS mission. It uses pulsed laser transmitters to simultaneously measure a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers step in wavelength across the CO2 line and an O2 line pair during the measurement. The receiver uses a telescope and photon counting detectors, and measures the time resolved backscatter of the laser echoes. Signal processing is used to isolate the laser echo signals from the surface, estimate their range, and reject laser photons scattered in the atmosphere. The gas extinction and column densities for the CO2 and O2 gases are estimated via the IPDA technique. We developed a lidar to demonstrate the CO2 measurement from aricraft. The lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 or 30 steps per scan. The line scan rate is 450 Hz and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. During July and August 2009 we made 5 two hour long flights while installed on the NASA Glenn Lear-25 aircraft. We measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surfaces in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The Oklahoma and east coast flights were coordinated with the NASA LaRC/ITT CO2 lidar on their UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. Ed Browell

  4. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and

  5. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and

  6. Airborne Measurements of the Atmospheric Emissions from a Fuel Ethanol Refinery

    NASA Astrophysics Data System (ADS)

    De Gouw, J. A.; McKeen, S. A.; Aikin, K. C.; Brock, C. A.; Brown, S. S.; Gilman, J.; Graus, M.; Hanisco, T. F.; Holloway, J. S.; Lerner, B. M.; Kaiser, J.; Keutsch, F. N.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Min, K. E.; Neuman, J. A.; Nowak, J. B.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Trainer, M.; Veres, P. R.; Warneke, C.; Welti, A.; Wolfe, G. M., Jr.

    2014-12-01

    Ethanol made from corn now constitutes approximately 10% of the fuel used in gasoline vehicles in the United States. The ethanol is produced in over 200 fuel ethanol refineries across the country. In this work, we report measurements of the atmospheric emissions from the third largest fuel ethanol refinery in the U.S. located in Decatur, Illinois. Measurements were made from the NOAA WP-3D research aircraft during the NOAA Southeast Nexus (SENEX) campaign in the summer of 2013, which was part of the larger Southeast Atmosphere Study (SAS). Emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) agreed with reported emissions in the 2011 National Emissions Inventory (NEI-2011). In contrast, emissions of several volatile organic compounds (VOCs) including ethanol, formaldehyde and acetaldehyde, were underestimated by an order of magnitude in the NEI-2011. By combining data from the NEI-2011 and fuel ethanol production numbers from the Renewable Fuels Association, we calculate emission intensities for SO2, NOx and VOCs, defined as the emissions per volume of fuel produced. These emission intensities can be readily compared to fuel-based emission factors from gasoline vehicles and the relative contributions made by fuel refining and fuel use to overall emissions will be quantified. Emission intensities of SO2 and NOx are particularly high for those fuel ethanol refineries that use coal as an energy source, including the plant in Decatur studied in this work. Finally, by comparing the measurements at different distances downwind, chemical transformation of the emissions could be observed, including the formation of new particles, peroxyacyl nitrates, ozone and sulfate aerosol.

  7. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Several Surfaces and Ecosystem over Southern Africa

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; King, M. D.; Tsay, S.; Arnold, G. T.; Li, J. Y.

    2001-12-01

    The Cloud Absorption Radiometer (CAR) was flown aboard the University of Washington Convair CV-580 research aircraft and took measurements on 23 flights between August 15 and September 16. On 12 of those flights, BRF measurements were obtained over different natural surfaces and ecosystem in southern Africa. The BRF measurements were done to characterize surface anisotropy in support of SAFARI 2000 science objectives principally to validate products from NASA's EOS satellites, and to parameterize and validate BRF models. In this paper we present results of BRFs taken over two EOS validation sites: Skukuza tower, South Africa (25.0 oS, 31.5 oE) and Mongu tower, Zambia (15.4 oS, 23.3 oE). Additional sites are also considered and include, Maun tower, Botswana (20.0 oS, 23.5 oE), Sowa Pan, Botswana (20.6 oS, 26.2 oE) and Etosha Pan, Namibia (19.0 oS, 16.0 oE). The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 μ m), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 μ m). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to bank at a comfortable roll angle of ~20 o and fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were

  8. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Skukuza and Mongu Sites

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; King, Michael D.; Arnold, G. T.; Li, J. Y.

    2001-01-01

    The Cloud Absorption Radiometer (CAR) was flown aboard the University of Washington Convair CV-580 research aircraft and took measurements on 23 flights between August 15 and September 16. On 12 of those flights, BRF (bidirectional reflection function) measurements were obtained over different natural surfaces and ecosystems in southern Africa. The BRF measurements were done to characterize surface anisotropy in support of SAFARI 2000 science objectives principally to validate products from NASA's EOS (Earth Observing System) satellites, and to parameterize and validate BRF models. In this paper we present results of BRFs taken over two EOS validation sites: Skukuza tower, South Africa (25.0 S, 31.5 E) and Mongu tower, Zambia (15.4 S, 23.3 E). The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 microns), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 microns). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to bank at a comfortable roll angle of approximately 20 degrees and fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were acquired over selected surfaces so that average BRF smooth out small-scale surface and

  9. Airborne spectral Measurements of Surface-Atmosphere Anisotropy for Several Surfaces and Ecosystem over Southern Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; King, M. D.; Arnold, G. T.; Li, J. Y.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The Cloud Absorption Radiometer (CAR) was flown aboard the University of Washington Convair CV-580 research aircraft and took measurements on 23 flights between August 15 and September 16. On 12 of those flights, BRF measurements were obtained over different natural surfaces and ecosystem in southern Africa. The BRF measurements were done to characterize surface anisotropy in support of SAFARI 2000 science objectives principally to validate products from NASA's EOS satellites, and to parameterize and validate BRF models. In this paper we present results of BRFs taken over two EOS validation sites: Skukuza tower, South Africa (25.0 deg S, 31.5 deg E) and Mongu tower, Zambia (15.4 deg S, 23.3 deg E). Additional sites are also considered and include, Maun tower, Botswana (20.0 deg S, 23.5 deg E), Sowa Pan, Botswana (20.6 deg S, 26.2 deg E) and Etosha Pan, Namibia (19.0 deg S, 16.0 deg E). The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 micrometers), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 micrometers). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to bank at a comfortable roll angle of approximately 20 degrees and fly in a circle about 3 km in diameter above the surface for roughly two

  10. Analysis of Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Weaver, Clark J.; Riris, Haris; Mao, Jianping; Sun, Xiaoli; Allan, Graham R.; Hasselbrack, William; Browell, Edward V.

    2011-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS space mission [1]. It uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1575 nm band, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver measures the energies of the laser echoes from the surface along with the range profile of scattering in the path. The column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off-line signals via the integrated path differential absorption (IPDA) technique. The time of flight of the laser pulses is used to estimate the height of the scattering surface and to reject laser photons scattered in the atmosphere. We developed an airborne lidar to demonstrate an early version of the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar stepped the pulsed laser's wavelength across the selected CO2 line with 20 wavelength steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a NIR photomultiplier and is recorded on every other reading by a photon counting system [2]. During August 2009 we made a series of 2.5 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over locations in the US, including the SGP ARM site in Oklahoma, central Illinois, north-eastern North Carolina, and over the Chesapeake Bay and the eastern shore of Virginia. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes, and some measurements were made

  11. Airborne multi-axis DOAS measurements of atmospheric trace gases on CARIBIC long-distance flights

    NASA Astrophysics Data System (ADS)

    Dix, B.; Brenninkmeijer, C. A. M.; Frieß, U.; Wagner, T.; Platt, U.

    2009-11-01

    A DOAS (Differential Optical Absorption Spectroscopy) instrument was implemented and operated onboard a long-distance passenger aircraft within the framework of the CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container). The instrument was designed to keep weight, size and power consumption low and to comply with civil aviation regulations. It records spectra of scattered light from three viewing directions (nadir, 10° above and below horizon) using a miniaturized telescope system. The telescopes are integrated in the main pylon of the inlet system which is mounted at the belly of the aircraft. Fibre bundles transmit light from the telescopes to spectrograph-detector units inside the DOAS container instrument. The latter is part of the removable CARIBIC instrument container, which is installed monthly on the aircraft for a series of measurement flights. During 30 flight operations within three years, measurements of HCHO, HONO, NO2, BrO, O3 and the oxygen dimer O4 were conducted. All of these trace gases except BrO could be analysed with a 30 s time resolution. HONO was detected for the first time in a deep convective cloud over central Asia, while BrO, NO2 and O3 could be observed in tropopause fold regions. Biomass burning signatures over South America could be seen and measurements during ascent and descent provided information on boundary layer trace gas profiles (e.g. NO2 or HCHO).

  12. Airborne multi-axis DOAS measurements of atmospheric trace gases on CARIBIC long-distance flights

    NASA Astrophysics Data System (ADS)

    Dix, B.; Brenninkmeijer, C. A. M.; Frieß, U.; Wagner, T.; Platt, U.

    2009-02-01

    A DOAS (Differential Optical Absorption Spectroscopy) instrument was implemented and operated onboard a long-distance passenger aircraft within the framework of the CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container). The instrument was designed to keep weight, size and power consumption low and to comply with civil aviation regulations. It records spectra of scattered light from three viewing directions (nadir, 10° above and below horizon) using a miniaturized telescope system. The telescopes are integrated in the main pylon of the inlet system which is mounted at the belly of the aircraft. Fibre bundles transmit light from the telescopes to spectrograph-detector units inside the DOAS container instrument. The latter is part of the removable CARIBIC instrument container, which is installed monthly on the aircraft for a series of measurement flights. During 30 flight operations within three years, measurements of HCHO, HONO, NO2, BrO, O3 and the oxygen dimer O4 were conducted. All of these trace gases except BrO could be analysed with a 30 s time resolution. HONO was detected for the first time in a deep convective cloud over central Asia. BrO, NO2 and O3 could be observed in tropopause fold regions, biomass burning signatures over South America could be seen and measurements during ascent and descent provided information on boundary layer trace gas profiles (e.g. NO2 or HCHO).

  13. Mutagenic activity of airborne particulate matter as an indicative measure of atmospheric pollution.

    PubMed

    Ducatti, Adriana; Vargas, Vera Maria Ferrão

    2003-09-01

    Mutagenic activity of organic extracts of airborne particulate matter at four different sites within the urban area of the city of Porto Alegre, Brazil, was investigated using the Salmonella/microsome assay, with the Kado microsuspension method. The extracts were obtained by sonication, sequentially extracted according to polarity, with cyclohexane (CX) and dichloromethane (DCM) solvents. The different fractions were tested for mutagenicity with the Salmonella typhimurium strains TA98, TA98NR and TA98/1,8-DNP6, without S9 mix metabolic activation. A positive frameshift mutagenic response was observed for non-polar (CX) and/or moderately polar (DCM) compounds at the different sites. The responses varied at different seasons of the year, and the highest revertants per m3 (rev/m3) values were observed at the site subject to the strongest influence of automotive vehicles (site 3) in spring (17.13 rev/m3) in DCM fractions, and in summer (13.01 rev/m3) in CX fractions. The responses observed for the TA98NR and TA98/1,8-DNP6 strains suggest the contribution of nitrocompounds to the mutagenic activity observed. Although there appears to be an indicative association between the increased mass per unit volume of air (TSP) and the mutagenicity of organic extracts of airborne particulate matter in the present study, the Salmonella/microsome assay was a sensitive method to define areas contaminated by genotoxic compounds, even in samples that present TPS values acceptable by the environmental quality standards established by law. PMID:12972059

  14. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Arctic Sea Ice and Tundra

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Tsay, Si-Chee; King, Michael D.; Li, Jason Y.; Soulen, Peter F.

    1999-01-01

    Angular distributions of spectral reflectance for four common arctic surfaces: snow-covered sea ice, melt-season sea ice, snow-covered tundra, and tundra shortly after snowmelt were measured using an aircraft based, high angular resolution (1-degree) multispectral radiometer. Results indicate bidirectional reflectance is higher for snow-covered sea ice than melt-season sea ice at all wavelengths between 0.47 and 2.3 pm, with the difference increasing with wavelength. Bidirectional reflectance of snow-covered tundra is higher than for snow-free tundra for measurements less than 1.64 pm, with the difference decreasing with wavelength. Bidirectional reflectance patterns of all measured surfaces show maximum reflectance in the forward scattering direction of the principal plane, with identifiable specular reflection for the melt-season sea ice and snow-free tundra cases. The snow-free tundra had the most significant backscatter, and the melt-season sea ice the least. For sea ice, bidirectional reflectance changes due to snowmelt were more significant than differences among the different types of melt-season sea ice. Also the spectral-hemispherical (plane) albedo of each measured arctic surface was computed. Comparing measured nadir reflectance to albedo for sea ice and snow-covered tundra shows albedo underestimated 5-40%, with the largest bias at wavelengths beyond 1 pm. For snow-free tundra, nadir reflectance underestimates plane albedo by about 30-50%.

  15. Combined VHF Dopplar radar and airborne (CV-990) measurements of atmospheric winds on the mesoscale

    NASA Technical Reports Server (NTRS)

    Fairall, Christopher W.; Thomson, Dennis W.

    1989-01-01

    Hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. To prevent a potential loss of structural detail and retain statistical significance, data from both radars were stratified into categories based on the location data from the Penn State radar were also compared to data from Pittsburgh radiosondes. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radars operating beneath a jet stream. Temperature profiles for the radar site were obtained using an interpolated temperature and dewpoint temperature sounding procedure developed at Penn State. The combination of measured wind and interpolated temperature profiles allowed Richardson number profiles to be generated for the profiler sounding volume. Both Richardson number and wind shear statistics were then examined along with pilot reports of turbulence in the vicinity of the profiler.

  16. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  17. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  18. Development of a new platform for airborne measurements of atmospheric CO2 and CH4 and comparison with GOSAT measurements at Railroad Valley playa, Nevada

    NASA Astrophysics Data System (ADS)

    Tadic, J.; Loewenstein, M.; Iraci, L. T.; Gore, W.; Schiro, K. A.; Olson, R. A.; Sheffner, E. J.; Yates, E. L.

    2011-12-01

    XCH4) retrieved from the GOSAT. The platform proved to be a useful tool for the calibration and support both for GOSAT and future OCO-2 satellite. Apart from that, its potential as a helpful tool for calibration and support of other remote sensing platforms, like FFT ground stations and airborne remote sensing instruments, was tested by flying together with DC-8 airplane carrying in-situ and remote CO2 measurements on 28th of July, 2011, over Merced CA, USA. The concentration profiles were created simultaneously with remote measurements in the same regions of atmosphere. The results showed high degree of correlation between two platforms.

  19. Aerosol scattering and absorption during the EUCAARI-LONGREX flights of the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146: can measurements and models agree?

    NASA Astrophysics Data System (ADS)

    Highwood, E. J.; Northway, M. J.; McMeeking, G. R.; Morgan, W. T.; Liu, D.; Osborne, S.; Bower, K.; Coe, H.; Ryder, C.; Williams, P.

    2012-08-01

    Scattering and absorption by aerosol in anthropogenically perturbed air masses over Europe has been measured using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM) on 14 flights during the EUCAARI-LONGREX campaign in May 2008. The geographical and temporal variations of the derived shortwave optical properties of aerosol are presented. Values of single scattering albedo of dry aerosol at 550 nm varied considerably from 0.86 to near unity, with a campaign average of 0.93 ± 0.03. Dry aerosol optical depths ranged from 0.030 ± 0.009 to 0.24 ± 0.07. An optical properties closure study comparing calculations from composition data and Mie scattering code with the measured properties is presented. Agreement to within measurement uncertainties of 30% can be achieved for both scattering and absorption, but the latter is shown to be sensitive to the refractive indices chosen for organic aerosols, and to a lesser extent black carbon, as well as being highly dependent on the accuracy of the absorption measurements. Agreement with the measured absorption can be achieved either if organic carbon is assumed to be weakly absorbing, or if the organic aerosol is purely scattering and the absorption measurement is an overestimate due to the presence of large amounts of organic carbon. Refractive indices could not be inferred conclusively due to this uncertainty, despite the enhancement in methodology compared to previous studies that derived from the use of the black carbon measurements. Hygroscopic growth curves derived from the wet nephelometer indicate moderate water uptake by the aerosol with a campaign mean f(RH) value (ratio in scattering) of 1.5 (range from 1.23 to 1.63) at 80% relative humidity. This value is qualitatively consistent with the major chemical components of the aerosol measured by the aerosol mass spectrometer, which are primarily mixed organics and

  20. Tunable Infrared Laser Instruments for Airborne Atmospheric Studies

    NASA Technical Reports Server (NTRS)

    Fried, A.; Diskin, G.; Weibring, P.; Richter, D.; Walega, J. G.; Sachse, G.; Slate, T.; Rana, M.; Podolske, J.

    2008-01-01

    Tunable infrared laser-based instruments on airborne platforms have provided invaluable contributions to atmospheric studies over the past several decades. This paper presents an overview of some recent studies and developments using this approach that were presented at the 2007 Field Laser Applications in Industry and Research (FLAIR, http://www.inoa.it/flair/) conference in Florence, Italy. The present overview only covers select in situ absorption-based instruments that were presented in the airborne session at this conference. In no case are comprehensive details presented. These details can be found in the numerous references given. Additional approaches based upon cavity-enhanced and photoacoustic measurements, which are also making invaluable contributions in airborne atmospheric studies, are not discussed in this brief overview.

  1. BOREAS RSS-12 Airborne Tracking Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Lobitz, Brad; Spanner, Michael; Wrigley, Robert

    2000-01-01

    The BOREAS RSS-12 team collected both ground and airborne sunphotometer measurements for use in characterizing the aerosol optical properties of the atmosphere during the BOREAS data collection activities. These measurements are to be used to: 1) measure the magnitude and variability of the aerosol optical depth in both time and space; 2) determine the optical properties of the boreal aerosols; and 3) atmospherically correct remotely sensed data acquired during BOREAS. This data set contains airborne tracking sunphotometer data that were acquired from the C-130 aircraft during its flights over the BOREAS study areas. The data cover selected days and times from May to September 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Ismail, Syed; Kavaya, Michael J; Davis, Kenneth J

    2015-02-20

    Water vapor and carbon dioxide are the most dominant greenhouse gases directly contributing to the Earth's radiation budget and global warming. A performance evaluation of an airborne triple-pulsed integrated path differential absorption (IPDA) lidar system for simultaneous and independent monitoring of atmospheric water vapor and carbon dioxide column amounts is presented. This system leverages a state-of-the-art Ho:Tm:YLF triple-pulse laser transmitter operating at 2.05 μm wavelength. The transmitter provides wavelength tuning and locking capabilities for each pulse. The IPDA lidar system leverages a low risk and technologically mature receiver system based on InGaAs pin detectors. Measurement methodology and wavelength setting are discussed. The IPDA lidar return signals and error budget are analyzed for airborne operation on-board the NASA B-200. Results indicate that the IPDA lidar system is capable of measuring water vapor and carbon dioxide differential optical depth with 0.5% and 0.2% accuracy, respectively, from an altitude of 8 km to the surface and with 10 s averaging. Provided availability of meteorological data, in terms of temperature, pressure, and relative humidity vertical profiles, the differential optical depth conversion into weighted-average column dry-air volume-mixing ratio is also presented. PMID:25968204

  3. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Ismail, Syed; Kavaya, Michael J; Davis, Kenneth J

    2015-02-20

    Water vapor and carbon dioxide are the most dominant greenhouse gases directly contributing to the Earth's radiation budget and global warming. A performance evaluation of an airborne triple-pulsed integrated path differential absorption (IPDA) lidar system for simultaneous and independent monitoring of atmospheric water vapor and carbon dioxide column amounts is presented. This system leverages a state-of-the-art Ho:Tm:YLF triple-pulse laser transmitter operating at 2.05 μm wavelength. The transmitter provides wavelength tuning and locking capabilities for each pulse. The IPDA lidar system leverages a low risk and technologically mature receiver system based on InGaAs pin detectors. Measurement methodology and wavelength setting are discussed. The IPDA lidar return signals and error budget are analyzed for airborne operation on-board the NASA B-200. Results indicate that the IPDA lidar system is capable of measuring water vapor and carbon dioxide differential optical depth with 0.5% and 0.2% accuracy, respectively, from an altitude of 8 km to the surface and with 10 s averaging. Provided availability of meteorological data, in terms of temperature, pressure, and relative humidity vertical profiles, the differential optical depth conversion into weighted-average column dry-air volume-mixing ratio is also presented.

  4. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The

  5. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption during the ASCENDS 2009-2011 Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G.; Hasselbrack, W.; Browell, E. V.

    2011-12-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs

  6. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption and Range During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs

  7. Airborne spectral measurements of surface-atmosphere anisotropy during the SCAR-A, Kuwait oil fire, and TARFOX experiments

    NASA Astrophysics Data System (ADS)

    Soulen, Peter F.; King, Michael D.; Tsay, Si-Chee; Arnold, G. Thomas; Li, Jason Y.

    2000-04-01

    During the SCAR-A, Kuwait Oil Fire Smoke Experiment, and TARFOX deployments, angular distributions of spectral reflectance for various surfaces were measured using the scanning Cloud Absorption Radiometer (CAR) mounted on the nose of the University of Washington C-131A research aircraft. The CAR contains 13 narrowband spectral channels between 0.47 and 2.3 μm with a 190° scan aperture (5° before zenith to 5° past nadir) and 1° instantaneous field of view. The bidirectional reflectance is obtained by flying a clockwise circular orbit above the surface, resulting in a ground track approximately 3 km in diameter within about 2 min. Spectral bidirectional reflectances of four surfaces are presented: the Great Dismal Swamp in Virginia with overlying haze layer, the Saudi Arabian Desert and the Persian Gulf in the Middle East, and the Atlantic Ocean measured east of Richmond, Virginia. Although the CAR measurements are contaminated by atmospheric effects, results show distinct spectral characteristics for various types of surface-atmosphere systems, including hot spots, limb brightening and darkening, and Sun glint. In addition, the hemispherical albedo of each surface-atmosphere system is calculated directly by integrating over all high angular-resolution CAR measurements for each spectral channel. Comparing the nadir reflectance with the overall hemispherical albedo of each surface, we find that using nadir reflectances as a surrogate for hemispherical albedo can cause albedos to be underestimated by as much as 95% and overestimated by up to 160%, depending on the type of surface and solar zenith angle.

  8. Regional airborne flux measurements in Europe

    NASA Astrophysics Data System (ADS)

    Gioli, B.; Miglietta, F.; Vaccari, F. P.; Zaldei, A.; Hutjes, R. W. A.

    2003-04-01

    The problem of identifying the spatial and temporal distribution of sources and sinks of atmospheric CO2 is the subject of considerable scientific and political debate. Even if it is now possible to estimate within reasonable accuracy the sink strength of European forests at the local scale, difficulties still exist in determining the partitioning of the sinks at the global and regional scales. The aim of the EU-project RECAB (Regional Assessment of the Carbon Balance in Europe) that is coordinated by Alterra, Wageningen (NL), is to bridge the gap between local scale flux measurements and continental scale inversion models by a generic modelling effort and measurement program, focussing on a limited number of selected regions in Europe for which previous measurements exists. This required the establishment of a European facility for airborne measurement of surface fluxes of CO2 at very low altitude, and a research aircraft capable of performing airborne eddy covariance measurements has been acquired by this project and used on several occasions at the different RECAB sites. The aircraft is the italian Sky Arrows ERA (Environmental Research Aircraft) equipped with the NOAA/ARA Mobile Flux Platform (MFP), and a commercial open-path infrared gas analyser. Airborne eddy covariance measurements were made from June 2001 onwards in Southern Spain near Valencia (June and December 2001), in Central Germany near Jena (July 2001), in Sweden near Uppsala (August 2001), in The Netherlands near Wageningen (January and July 2002) and in Italy near Rome (June 2002). Flux towers were present at each site to provide a validation of airborne eddy covariance measurements. This contribution reports some validation results based on the comparison between airborne and ground based flux measurements and some regional scale results for different locations and different seasons, in a wide range of meteorological and ecological settings.

  9. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements from the Western Pacific during SHIVA

    NASA Astrophysics Data System (ADS)

    Sala, S.; Bönisch, H.; Keber, T.; Oram, D. E.; Mills, G.; Engel, A.

    2014-02-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive dataset of all halogen species relevant for the atmospheric budget of total organic bromine has been collected in the West Pacific region using the FALCON aircraft operated by the German Aerospace agency DLR (Deutsches Zentrum für Luft- und Raumfahrt) covering a vertical range from the planetary boundary layer up to the ceiling altitude of the aircraft of 13 km. In total, more than 700 measurements were performed with the newly developed fully-automated in-situ instrument GHOST-MS (Gas cHromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt (GUF) and with the onboard whole-air sampler WASP with subsequent ground based state-of-the-art GC/MS analysis by the University of East Anglia (UEA). Both instruments yield good agreement for all major (CHBr3 and CH2Br2) and minor (CHBrCl, CHBrCl2 and CHBr2Cl) VSLS (very short-lived substances), at least at the level of their 2 σ measurement uncertainties. In contrast to the suggestion that the Western Pacific could be a major source region for VSLS (Pyle et al., 2011), we found only slightly enhanced mixing ratios of brominated halogen source gases relative to the levels reported in Montzka et al. (2011) for other tropical regions. A budget for total organic bromine, including all four halons,CH3Br and the VSLS, is derived for the upper troposphere, the input region for the TTL and thus also for the stratosphere, compiled from the SHIVA dataset. With exception of the two minor VSLS CHBrCl2 and CHBr2Cl, excellent agreement with the values reported in Montzka et al. (2011) is found, while being slightly higher than previous studies from our group based on balloon-borne measurements.

  10. Deriving an atmospheric budget of total organic bromine using airborne in situ measurements from the western Pacific area during SHIVA

    NASA Astrophysics Data System (ADS)

    Sala, S.; Bönisch, H.; Keber, T.; Oram, D. E.; Mills, G.; Engel, A.

    2014-07-01

    During the recent SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive data set of all halogen species relevant for the atmospheric budget of total organic bromine was collected in the western Pacific region using the Falcon aircraft operated by the German Aerospace agency DLR (Deutsches Zentrum für Luft- und Raumfahrt) covering a vertical range from the planetary boundary layer up to the ceiling altitude of the aircraft of 13 km. In total, more than 700 measurements were performed with the newly developed fully automated in situ instrument GHOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt (GUF) and with the onboard whole-air sampler WASP with subsequent ground-based state-of-the-art GC / MS analysis by the University of East Anglia (UEA). Both instruments yield good agreement for all major (CHBr3 and CH2Br2) and minor (CH2BrCl, CHBrCl2 and CHBr2Cl) VSLS (very short-lived substances), at least at the level of their 2σ measurement uncertainties. In contrast to the suggestion that the western Pacific could be a region of strongly increased atmospheric VSLS abundance (Pyle et al., 2011), we found only in the upper troposphere a slightly enhanced amount of total organic bromine from VSLS relative to the levels reported in Montzka and Reimann et al. (2011) for other tropical regions. From the SHIVA observations in the upper troposphere, a budget for total organic bromine, including four halons (H-1301, H-1211, H-1202, H-2402), CH3Br and the VSLS, is derived for the level of zero radiative heating (LZRH), the input region for the tropical tropopause layer (TTL) and thus also for the stratosphere. With the exception of the two minor VSLS CHBrCl2 and CHBr2Cl, excellent agreement with the values reported in Montzka and Reimann et al. (2011) is found, while being slightly higher than previous studies from our group based on balloon-borne measurements.

  11. Airborne measurements of black carbon aerosol over the Southeastern U.S. during the Southeast Atmosphere Study (SAS) experiment

    NASA Astrophysics Data System (ADS)

    Markovic, M. Z.; Perring, A. E.; Schwarz, J. P.; Fahey, D. W.; Gao, R.; Watts, L.; Holloway, J.; Graus, M.; Warneke, C.; De Gouw, J. A.; Veres, P. R.; Roberts, J. M.; Middlebrook, A. M.; Welti, A.; Liao, J.

    2013-12-01

    The Southeast Atmosphere Study (SAS) field campaign was a large-scale, collaborative project, which took place in the Southeastern U.S. in June and July of 2013. The goal of the campaign was to investigate the impacts of biogenic and anthropogenic gases and aerosols on the formation of haze and anomalous climate cooling in the region. During SAS, a NOAA Single Particle Soot Photometer (SP2) instrument was utilized onboard NOAA WP-3D research aircraft for measurements of black carbon (BC) aerosol mass and microphysical properties. BC aerosol is emitted into the atmosphere from biomass burning (BB) and incomplete combustion of fossil and biofuel. Hence, BC sources are strongly linked to anthropogenic activity. BC aerosol is currently the second largest anthropogenic climate forcing agent after CO2(g), and its climate impacts, which depend on vertical burden and internal mixing, are not fully understood. In the Southeast, BC aerosol is expected to provide surface area for the condensation of semi-volatile products of VOC oxidation and subsequent formation of secondary organic aerosol (SOA). Hence, BC is expected to impact the haze formation and regional climate. In this work we present an overview of BC measurements during Southeast Nexus (SENEX) study, the NOAA contribution to SAS. Geographical variations in mass mixing ratios, mass size distributions, and mixing state of BC over the Southeast U.S. are discussed. Relationships of BC with carbon monoxide (CO), acetonitrile (ACN) and other trace gases are used to investigate the impacts of urban, BB, natural gas development, and power plant emissions on the distribution and properties of BC aerosol in the region. Among studied urban centers, St. Louis and Atlanta were determined to be the largest source regions of BC. A clear weekend effect in BC mass mixing ratios and microphysical properties was observed in the metropolitan Atlanta region. Compared to BB and urban centers, power plants and natural gas developments

  12. [Remote sensing of atmospheric trace gas by airborne passive FTIR].

    PubMed

    Gao, Min-quang; Liu, Wen-qing; Zhang, Tian-shu; Liu, Jian-guo; Lu, Yi-huai; Wang, Ya-ping; Xu, Liang; Zhu, Jun; Chen, Jun

    2006-12-01

    The present article describes the details of aviatic measurement for remote sensing trace gases in atmosphere under various surface backgrounds with airborne passive FTIR. The passive down viewing and remote sensing technique used in the experiment is discussed. The method of acquiring atmospheric trace gases infrared characteristic spectra in complicated background and the algorithm of concentration retrieval are discussed. The concentrations of CO and N2O of boundary-layer atmosphere in experimental region below 1000 m are analyzed quantitatively. This measurement technique and the data analysis method, which does not require a previously measured background spectrum, allow fast and mobile remote detection and identification of atmosphere trace gas in large area, and also can be used for urgent monitoring of pollution accidental breakout.

  13. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 and 2013 Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W.; Weaver, C. J.; Browell, E. V.

    2013-12-01

    We have developed a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan with 300 scans per second. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength every second. We then solve for the optimum CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak and the column average CO2 concentrations. We compared these to radiative transfer calculations based on the HITRAN 2008 database, the atmospheric conditions, and the CO2 concentrations sampled by in-situ sensors on the aircraft. Our team participated in the ASCENDS science flights during July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 absorption line shapes were recorded. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds and to stratus cloud tops. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption profile (averaged for 50 sec) matched the predicted profile to better than 1% RMS error for all flight altitudes. For 10 second averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by signal shot noise (i.e. the signal photon count). For flight

  14. Profiling the atmosphere with the airborne radio occultation technique

    NASA Astrophysics Data System (ADS)

    Muradyan, Paytsar

    The GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS) was designed for dense sampling of meteorological targets using the airborne radio occultation (RO) technique. Airborne RO refers to an atmospheric limb sounding technique in which Global Positioning System (GPS) signals are recorded at a receiver onboard an aircraft as the satellites descend beyond the limb of the Earth. The GPS signals, that are unaffected by clouds and precipitation, experience refractive bending as well as a delay in the travel time through the atmosphere. Bending can be used to retrieve information about atmospheric refractivity, which depends on atmospheric moisture and temperature. The new system has the potential for improving numerical weather prediction (NWP) forecasts through assimilation of many high-resolution atmospheric profiles in an area of interest, compared to spaceborne RO, which samples sparsely around the globe. In February 2008, GISMOS was deployed on the National Science Foundation Gulfstream-V aircraft to make atmospheric observations in the Gulf of Mexico coastal region with an objective to test the performance of the profiling system. Recordings from this flight campaign made with the conventional phase lock loop GPS receivers descend from flight level to 5 km altitude. However, below that level strong refractivity gradients, especially those associated with the boundary layer, cause rapid phase accelerations resulting in loss of lock in the receiver. To extend the RO profiles deeper in the atmosphere, the GISMOS system was also equipped with a GPS Recording System (GRS) that records the raw RF signals. Post-processing this dataset in open-loop (OL) tracking mode enables reliable atmospheric profiling at lower altitudes. We present a comprehensive analysis of the performance of the airborne system OL tracking algorithm during a 5 hour flight on 15 February 2008. Excess phase and amplitude profiles for 5 setting and 5 rising occultations were

  15. Airborne Methane Measurements using Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Riris, H.; Numata, K.; Li, S.; Wu, S.; Ramanathan, A.; Dawsey, M.; Abshire, J. B.; Kawa, S. R.; Mao, J.

    2012-12-01

    We report on airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from clathrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment and more measurements are needed. In this paper we report on an airborne demonstration of atmospheric methane column optical depth measurements at 1.65 μm using widely tunable, seeded optical parametric amplifier (OPA) and a photon counting detector. Our results show good agreement between the experimentally derived optical depth measurements and theoretical calculations and follow the expected changes for aircraft altitudes from 3 to 11 km. The technique has also been used to measure carbon dioxide and monoxide, water vapor, and other trace gases in the near and mid-infrared spectral regions on the ground.

  16. Simultaneous and Independent Measurement of Atmospheric Water Vapor and Carbon Dioxide using a Triple-Pulsed, 2-micron Airborne IPDA Lidar - A Feasibility Study

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Refaat, T. F.; Yu, J.; Petros, M.

    2013-12-01

    Water vapor (H2O) and carbon dioxide (CO2) are dominant greenhouse gases that are critical for Earth's radiation budget and global warming through the eco-system and the carbon cycle. NASA Langley Research Center (LaRC) has a strong heritage in atmospheric remote sensing of both gases using several instruments adopting various DIAL techniques. This communication presents a feasibility study for measuring both H2O and CO2 simultaneously and independently using a single instrument. This instrument utilizes the Integrated Path Differential Absorption (IPDA) lidar technique to measure the weighted-average column dry-air mixing ratios of CO2 (XCO2) and H2O (XH2O) independently and simultaneously from an airborne platform. The key component of this instrument is a tunable triple-pulse 2-micron laser. The three laser pulses are transmitted sequentially within a short time interval of 200 microsec. The wavelength of each of the laser pulses can be tuned separately. The IPDA receiver design is based on low-risk, commercially available components, including 300-micron diameter InGaAs 2-micron pin detector, a low-noise, high speed trans-impedance amplifier (TIA) and 12-bit 400 MHz digitizer.

  17. Atmospheric boundary layer structures associated with the Ora del Garda wind in the Alps as revealed from airborne and surface measurements

    NASA Astrophysics Data System (ADS)

    Laiti, Lavinia; Zardi, Dino; de Franceschi, Massimiliano; Rampanelli, Gabriele

    2013-10-01

    The paper investigates a coupled lake-breeze and valley-wind system, known as Ora del Garda. The latter typically originates on clear-sky days over the northern shore of Lake Garda in the Alps. After channelling into the nearby Sarca Valley and Lakes Valley, this airflow finally breaks out, through an elevated saddle, into the adjacent Adige Valley, where it strongly interacts with the local valley wind. Two flights of an instrumented motorglider explored, under different synoptic conditions, the thermal structure of the atmospheric boundary layer (ABL) associated with this wind at selected vertical sections-namely over the lake shore, at mid-valley, and at the junction with the Adige Valley. Data from airborne measurements, as well as from weather stations disseminated along the valley floor, provided the basis for mapping 3D fields of potential temperature over high-resolution grids by means of a Residual Kriging (RK) technique. This representation allowed the identification of site-specific ABL features associated with the Ora del Garda. In particular, a typical daytime coastal-breeze structure is detected in the lake shore region, where the advection of colder air tends to stabilize the atmosphere throughout the ABL depth. Mid-valley vertical profiles from both flights display shallow convective mixed layers, surmounted by deeper weakly stable layers. On the other hand, RK-gridded temperature maps show cross-valley thermal asymmetries, amenable to the complex topography and to the inhomogeneous surface coverage, as well as to a curvature of the valley axis. Finally, in the area where the upper Lakes Valley joins the Adige Valley, specific features associated with the complex interaction between the Ora del Garda and the local up-valley wind are found.

  18. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  19. Mobile Instruments Measure Atmospheric Pollutants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  20. Possibility of growth of airborne microbes in outer planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Chatigny, M. A.

    1975-01-01

    It is shown that airborne bacteria can maintain metabolic functions in a suitable atmosphere. It is theorized that particles in the Jovian atmosphere would have physical half-lives of 10 to 1500 years, depending upon which of two turbulent models is chosen.

  1. Characterization of Fine Airborne Particulate Collected in Tokyo and Major Atmospheric Emission Sources by Using Single Particle Measurement of SEM-EDX

    NASA Astrophysics Data System (ADS)

    Sato, K.; Iijima, A.; Furuta, N.

    2008-12-01

    In our long-term monitoring of size-classified Airborne Particulate Matter (APM) in Tokyo since 1995, it had been demonstrated that toxic elements such as As, Se, Cd, Sb and Pb were extremely enriched in fine APM (PM2.5). However, in that study, total sampled APM on a filter was digested with acids, and thus only averaged elemental composition in fine APM could be obtained. One of the effective methods to determine the origin of APM is single particle measurement by using SEM-EDX. By using characteristic shapes observed by SEM and marker elements contained in APM measured by EDX, detailed information for source identification can be obtained. In this study, fine APM (PM2.5) was collected at various locations such as roadside, diesel vehicle exhaust, a heavy oil combustion plant and a waste incineration plant as well as ambient atmosphere in Tokyo, and characteristics of fine particles that will be utilized for identification of emission sources are elucidated. Fine particles can be classified into 3 main characteristic shape groups; edge-shaped, cotton-like and spherical. Shape of particles collected in a heavy oil combustion plant and a waste incineration plant was mostly spherical, and these particles may be associated with thermal process. Diesel exhaust particles were predominantly cotton-like which may consist of coagulated nano-sized particles. Most of brake abrasion dusts were edge-shaped, which may be associated with mechanical abrasion of brake pads. In the elemental analysis of fine particles, high concentrations of Sb, Cu, Ti and Ba were detected in brake abrasion dusts. Since these elements are major constituents of brake pads, these can be used for marker elements of brake abrasion dusts. High concentration of C was detected in diesel exhaust particles and oil combustion particles, and thus C can be used for marker elements of their origin. Furthermore, high concentrations of C, Ca and K were detected in fly ash from a waste incineration plant, which

  2. Airborne Measurement of Ecosystem Carbon Dynamics over Heterogeneous Landscapes

    NASA Astrophysics Data System (ADS)

    Wade, T. J.; Hill, T. C.; Clement, R.; Moncrieff, J.; Disney, M.; Nichol, C. J.; Williams, M. D.

    2009-12-01

    Terrestrial carbon sinks are currently believed to account for the removal and storage of approximately 25% of anthropogenic carbon emissions from the atmosphere. The processes involved are numerous and complex and many feedbacks are at play. The ability to study the dynamics of different ecosystems at scales meaningful to climatic forcing is essential for understanding the key processes involved and identifying crucial sensitivities and thresholds. Airborne platforms with the requisite instrumentation offer the opportunity to directly measure biological processes and atmospheric structures at scales that are not achievable by ground measurements alone. The current generation of small research aircraft such as the University of Edinburgh’s Diamond HK36TTC ECO Dimona present excellent platforms for measurement of both the atmosphere and terrestrial surface. In this study we present results from airborne CO2/H2O flux measuring campaigns in contrasting climatic systems to quantify spatial patterns in ecosystem photosynthesis. Several airborne campaigns were undertaken in Arctic Finland, as part of the Arctic Biosphere Atmosphere Coupling at Multiple Scales (ABACUS) project (2008), and mainland UK as part of the UK Population Biology Network (UKPopNet) 2009 project, to explore the variability in surface CO2 flux across spatial scales larger than captured using conventional ground based eddy covariance. We discuss the application of our aircraft platform as a tool to address the challenge of understanding carbon dynamics within landscapes of heterogeneous vegetation class, terrain and hydrology using complementary datasets acquired from airborne eddy covariance and remote sensing.

  3. Airborne bacteria in the atmosphere: Presence, purpose, and potential

    NASA Astrophysics Data System (ADS)

    Smets, Wenke; Moretti, Serena; Denys, Siegfried; Lebeer, Sarah

    2016-08-01

    Numerous recent studies have highlighted that the types of bacteria present in the atmosphere often show predictable patterns across space and time. These patterns can be driven by differences in bacterial sources of the atmosphere and a wide range of environmental factors, including UV intensity, precipitation events, and humidity. The abundance of certain bacterial taxa is of interest, not only for their ability to mediate a range of chemical and physical processes in the atmosphere, such as cloud formation and ice nucleation, but also for their implications -both beneficial and detrimental-for human health. Consequently, the widespread importance of airborne bacteria has stimulated the search for their applicability. Improving air quality, modelling the dispersal of airborne bacteria (e.g. pathogens) and biotechnological purposes are already being explored. Nevertheless, many technological challenges still need to be overcome to fully understand the roles of airborne bacteria in our health and global ecosystems.

  4. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  5. Possibility of growth of airborne microbes in outer planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Chatigny, M. A.

    1976-01-01

    The state of the art of laboratory aerobiological research is briefly reviewed. Experiments are described in which the biological behavior of microbes in or on aerosol particles is investigated in a stirred settling chamber and a rotating drum. Experimental findings are summarized which indicate that airborne bacteria can maintain metabolic functions in a suitable atmosphere. These studies have been undertaken in consideration of the possibility that Jupiter's atmosphere might be contaminated if a space probe enters a biological stratum.

  6. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  7. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  8. Relating Hyperspectral Airborne Data to Ground Measurements in a Complex and Discontinuous Canopy

    NASA Astrophysics Data System (ADS)

    Calleja, Javier F.; Hellmann, Christine; Mendiguren, Gorka; Punalekar, Suvarna; Peón, Juanjo; MacArthur, Alasdair; Alonso, Luis

    2015-12-01

    The work described in this paper is aimed at validating hyperspectral airborne reflectance data collected during the Regional Experiments For Land-atmosphere EXchanges (REFLEX) campaign. Ground reflectance data measured in a vineyard were compared with airborne reflectance data. A sampling strategy and subsequent ground data processing had to be devised so as to capture a representative spectral sample of this complex crop. A linear model between airborne and ground data was tried and statistically tested. Results reveal a sound correspondence between ground and airborne reflectance data (R2 > 0.97), validating the atmospheric correction of the latter.

  9. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  10. Airborne Instrumentation Needs for Climate and Atmospheric Research

    SciTech Connect

    McFarquhar, Greg; Schmid, Beat; Korolev, Alexei; Ogren, John A.; Russell, P. B.; Tomlinson, Jason M.; Turner, David D.; Wiscombe, Warren J.

    2011-10-06

    Observational data are of fundamental importance for advances in climate and atmospheric research. Advances in atmospheric science are being made not only through the use of ground-based and space-based observations, but also through the use of in-situ and remote sensing observations acquired on instrumented aircraft. In order for us to enhance our knowledge of atmospheric processes, it is imperative that efforts be made to improve our understanding of the operating characteristics of current instrumentation and of the caveats and uncertainties in data acquired by current probes, as well as to develop improved observing methodologies for acquisition of airborne data.

  11. Retrieval of Atmospheric Temperature from Airborne Microwave Radiometer Observations

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Schreier, Franz; Kenntner, Mareike; Fix, Andreas; Trautmann, Thomas

    2015-06-01

    Atmospheric temperature is a key geophysical parameter associated with fields such as meteorology, climatology, or photochemistry. There exist several techniques to measure temperature profiles. In the case of microwave remote sensing, the vertical temperature profile can be estimated from thermal emission lines of molecular oxygen. The MTP (Microwave Temperature Profiler) instrument is an airborne radiometer developed at the Jet Propulsion Laboratory (JPL), United States. The instrument passively measures natural thermal emission from oxygen lines at 3 frequencies and at a selection of 10 viewing angles (from near zenith to near nadir). MTP has participated in hundreds of flights, including on DLR’s Falcon and HALO aircrafts. These flights have provided data of the vertical temperature distribution from the troposphere to the lower stratosphere with a good temporal and spatial resolution. In this work, we present temperature retrievals based on the Tikhonov-type regularized nonlinear least squares fitting method. In particular, Jacobians (i.e. temperature derivatives) are evaluated by means of automatic differentiation. The retrieval performance from the MTP measurements is analyzed by using synthetic data. Besides, the vertical sensitivity of the temperature retrieval is studied by weighting functions characterizing the sensitivity of the transmission at different frequencies with respect to changes of altitude levels.

  12. Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar.

    PubMed

    Dobler, Jeremy T; Harrison, F Wallace; Browell, Edward V; Lin, Bing; McGregor, Doug; Kooi, Susan; Choi, Yonghoon; Ismail, Syed

    2013-04-20

    The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO(2) Emissions over Nights, Days, and Seasons (ASCENDS) as a midterm, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype laser absorption spectrometer for making high-precision, column CO(2) mixing ratio measurements needed for the ASCENDS mission. This instrument, called the multifunctional fiber laser lidar (MFLL), operates in an intensity-modulated, continuous wave mode in the 1.57 μm CO(2) absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a wide range of atmospheric conditions. Very high-precision CO(2) column measurements resulting from high signal-to-noise ratio (>1300) column optical depth (OD) measurements for a 10 s (~1 km) averaging interval have been achieved. In situ measurements of atmospheric CO(2) profiles were used to derive the expected CO(2) column values, and when compared to the MFLL measurements over desert and vegetated surfaces, the MFLL measurements were found to agree with the in situ-derived CO(2) columns to within an average of 0.17% or ~0.65 ppmv with a standard deviation of 0.44% or ~1.7 ppmv. Initial results demonstrating ranging capability using a swept modulation technique are also presented.

  13. Atmospheric CO2 Column Measurements with an Airborne Intensity-Modulated Continuous-Wave 1.57-micron Fiber Laser Lidar

    NASA Technical Reports Server (NTRS)

    Dobler, Jeremy T.; Harrison, F. Wallace; Browell, Edward V.; Lin, Bing; McGregor, Doug; Kooi, Susan; Choi, Yonghoon; Ismail, Syed

    2013-01-01

    The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as a mid-term, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype Laser Absorption Spectrometer for making high-precision, column CO2 mixing ratio measurements needed for the ASCENDS mission. This instrument, called the Multifunctional Fiber Laser Lidar (MFLL), operates in an intensity-modulated, continuous-wave mode in the 1.57- micron CO2 absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a wide range of atmospheric conditions. Very high-precision CO2 column measurements resulting from high signal-to-noise (great than 1300) column optical depth measurements for a 10-s (approximately 1 km) averaging interval have been achieved. In situ measurements of atmospheric CO2 profiles were used to derive the expected CO2 column values, and when compared to the MFLL measurements over desert and vegetated surfaces, the MFLL measurements were found to agree with the in situ-derived CO2 columns to within an average of 0.17% or approximately 0.65 ppmv with a standard deviation of 0.44% or approximately 1.7 ppmv. Initial results demonstrating ranging capability using a swept modulation technique are also presented.

  14. The Airborne Measurements of Methane Fluxes (AIRMETH) Arctic Campaign (Invited)

    NASA Astrophysics Data System (ADS)

    Serafimovich, A.; Metzger, S.; Hartmann, J.; Kohnert, K.; Sachs, T.

    2013-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale methane release from Arctic permafrost areas. The Airborne Measurements of Methane Fluxes (AIRMETH) campaign is designed to quantitatively and spatially explicitly address this question. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of methane. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking methane flux observations in the atmospheric surface layer to meteorological and biophysical drivers in the flux footprints. For this purpose thousands of kilometers of AIRMETH data across the Alaskan North Slope are utilized, with the aim to extrapolate the airborne EC methane flux observations to the entire North Slope. The data were collected aboard the research aircraft POLAR 5, using its turbulence nose boom and fast response methane and meteorological sensors. After thorough data pre-processing, Reynolds averaging is used to derive spatially integrated fluxes. To increase spatial resolution and to derive ERFs, we then use wavelet transforms of the original high-frequency data. This enables much improved spatial discretization of the flux observations, and the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between the methane flux observations and the meteorological and

  15. Errors in airborne flux measurements

    NASA Astrophysics Data System (ADS)

    Mann, Jakob; Lenschow, Donald H.

    1994-07-01

    We present a general approach for estimating systematic and random errors in eddy correlation fluxes and flux gradients measured by aircraft in the convective boundary layer as a function of the length of the flight leg, or of the cutoff wavelength of a highpass filter. The estimates are obtained from empirical expressions for various length scales in the convective boundary layer and they are experimentally verified using data from the First ISLSCP (International Satellite Land Surface Climatology Experiment) Field Experiment (FIFE), the Air Mass Transformation Experiment (AMTEX), and the Electra Radome Experiment (ELDOME). We show that the systematic flux and flux gradient errors can be important if fluxes are calculated from a set of several short flight legs or if the vertical velocity and scalar time series are high-pass filtered. While the systematic error of the flux is usually negative, that of the flux gradient can change sign. For example, for temperature flux divergence the systematic error changes from negative to positive about a quarter of the way up in the convective boundary layer.

  16. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements of brominated hydrocarbons in the Western Pacific during SHIVA

    NASA Astrophysics Data System (ADS)

    Sala, Stephan; Bönisch, Harald; Keber, Timo; Oram, Dave; Mills, Graham; Engel, Andreas

    2014-05-01

    Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the tropical tropopause layer. The contribution of the so called very short lived species (VSLS), having atmospheric lifetimes of less than half a year as sources gases for stratospheric bromine is significant. Source gas observations of long-lived bromine compounds and VSLS have so far not been able to explain the amount of bromine derived in the stratosphere from observations of BrO and modeling of the ratio of BrO to total bromine. Due to the short lifetimes and the high atmospheric variability, the representativeness of the available observations of VSLS source gases remains unclear, as these may vary with region and display seasonal variability. During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive dataset with over 700 samples of ambient air of all halogen species relevant for the atmospheric budget of total organic bromine (long lived halocarbons: H-1301, H-1211, H-1202, H-2402 and CH3Br, very short lived substances: CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CHBrCl) have been collected from onboard the FALCON aircraft in the West Pacific region. Measurements were performed with the newly developed fully-automated in-situ instrument GHOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt and with the onboard whole-air sampler WASP with subsequent ground based state-of-the-art GC/MS analysis by the University of East Anglia. We will present the datasets, compare these to other observation, derive a bromine budget for the West Pacific and derive an estimate of the amount of bromine from VSLS reaching the stratosphere. Using the mean mixing ratios in the upper troposphere of the halocarbons mentioned above, the calculated budget of the total organic

  17. Using airborne in-situ measurements of brominated hydrocarbons in the Western Pacific to improve the understanding of atmospheric halogen loading.

    NASA Astrophysics Data System (ADS)

    Sala, S.; Bönisch, H.; Keber, T.; Engel, A.

    2012-04-01

    In this work, we present measurement data from the field campaign "SHIVA - Stratospheric Halogens in a Varying Atmosphere". One part of this campaign was the deployment of the German research aircraft "Falcon" in the Western Pacific at Miri/Malaysia, performing research flights from the boundary layer up to 11km altitude. The dataset we present was obtained by a total amount of sixteen local flights in the area of Borneo in November and December 2011. Onboard the aircraft we used a sophisticated in-situ GC/MS system operated in negative chemical ionization mode for the fast analysis of halogenated hydrocarbons in ambient air. Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the Tropical Tropopause Layer (TTL). Measurements of stratospheric BrO indicate an existing gap between the abundance of long lived brominated halocarbons, such as Halons and methyl bromide (CH3Br), and the abundance of inorganic bromine in the stratosphere. Recently, it has been realized that in addition to these long-lived substances so called very short-lived substances (VSLS) can also contribute significantly to the stratospheric halogen loading. The VSLS have lifetimes less than half a year and are predominantly emitted from climate-sensitive natural sources, e.g. marine macro-algae. A main source region for those emissions is the Western Pacific where sea surface temperatures are high and air masses from the surface can be transported rapidly into the TTL by deep convective systems. Our main goal during SHIVA was to improve the understanding of emissions, atmospheric transport and the chemical degradation of halogenated VSLS. Detailed measurements in the boundary layer as well as data from survey flights in the free upper troposphere are used to deflect a local budget bromine species in this tropical region. Measurements in areas of

  18. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  19. Study of cloud properties using airborne and satellite measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Stefan, Sabina; Vajaiac, Sorin Nicolae

    2014-08-01

    The present study investigates cloud microphysics properties using aircraft and satellite measurements. Cloud properties were drawn from data acquired both from in situ measurements with state of the art airborne instrumentation and from satellite products of the MODIS06 System. The used aircraft was ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research, property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania, which is specially equipped for this kind of research. The main tool of the airborne laboratory is a Cloud, Aerosol and Precipitation Spectrometer - CAPS (30 bins, 0.51- 50 μm). The data was recorded during two flights during the winter 2013-2014, over a flat region in the south-eastern part of Romania (between Bucharest and Constanta). The analysis of cloud particle size variations and cloud liquid water content provided by CAPS can explain cloud processes, and can also indicate the extent of aerosols effects on clouds. The results, such as cloud coverage and/or cloud types, microphysical parameters of aerosols on the one side and the cloud microphysics parameters obtained from aircraft flights on the other side, was used to illustrate the importance of microphysics cloud properties for including the radiative effects of clouds in the regional climate models.

  20. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  1. Airborne intercomparisons of carbon monoxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Sachse, Glen W.; Hill, Gerald F.; Condon, Estelle P.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of carbon monoxide (CO) are discussed. The intercomparison was conducted as part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and included a laser differential absorption method and two grab sample/gas chromatograph methods. Measurements were obtained during approximately 90 flight hours, during which the CO mixing ratios ranged from about 60 to 140 ppbv. The level of agreement observed for the ensemble of measurements was well within the overall accuracy stated for each instrument. The correlation observed between the measurements from the respective pairs of instruments ranged from 0.85 to 0.98, with no evidence for the presence of either a constant or proportional bias between any of the instruments.

  2. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements of brominated hydrocarbons in the Western Pacific during SHIVA.

    NASA Astrophysics Data System (ADS)

    Sala, Stephan; Bönisch, Harald; Keber, Timo; Engel, Andreas

    2013-04-01

    Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the tropical tropopause layer. Measurements of stratospheric BrO indicate an existing gap between the abundance of long lived brominated halocarbons, such as Halons and methyl bromide (CH3Br), and the abundance of inorganic bromine in the stratosphere. Recently, it has been realized that in addition to these long-lived substances so called very short-lived substances (VSLS) can also contribute significantly to the stratospheric halogen loading. The VSLS have lifetimes less than half a year and are predominantly emitted from climate-sensitive natural sources, e.g. marine macro-algae. A main source region for those emissions is the Western Pacific where sea surface temperatures are high and air masses from the surface can be transported rapidly into the TTL (Tropical Tropopause Layer) by deep convective systems. In this work, we present results derived by our measurement data from the field campaign which was part of the SHIVA (Stratospheric Halogens in a Varying Atmosphere) Project. One aspect of this campaign, which took place in November and December 2011, was the deployment of the German research aircraft "Falcon" in the Western Pacific at Miri in Malaysia. From there we performed sixteen local flights in total; these flights covered a spatial range from the boundary layer up to 11km altitude around the area of Borneo. Our contribution to the campaign was the deployment of a newly developed GC/MS system operated in negative chemical ionization mode for the fast analysis of halogenated hydrocarbons in ambient air onboard the aircraft. The long lived halocarbons H1301, H1211, H1202, H2402 as well as CH3Br and the very short lived substances CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CHBrCl were be analyzed with the instrument. We derive a detailed budget of total organic

  3. Airborne compact rotational Raman lidar for temperature measurement.

    PubMed

    Wu, Decheng; Wang, Zhien; Wechsler, Perry; Mahon, Nick; Deng, Min; Glover, Brent; Burkhart, Matthew; Kuestner, William; Heesen, Ben

    2016-09-01

    We developed an airborne compact rotational Raman lidar (CRL) for use on the University of Wyoming King Air (UWKA) aircraft to obtain two-dimensional (2D) temperature disman tributions. It obtained fine-scale 2D temperature distributions within 3 km below the aircraft for the first time during the PECAN (Plains Elevated Convection At Night) campaign in 2015. The CRL provided nighttime temperature measurements with a random error of <0.5 K within 800 m below aircraft at 45 m vertical and 1000 m horizontal resolution. The temperatures obtained by the CRL and a radiosonde agreed. Along with water vapor and aerosol measurements, the CRL provides critical parameters on the state of the lower atmosphere for a wide range of atmospheric research. PMID:27607724

  4. Airborne measurements of spatial NO2 distributions during AROMAT

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Seyler, André; Schönhardt, Anja; Richter, Andreas; Ruhtz, Thomas; Lindemann, Carsten; Burrows, John P.

    2015-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In September 2014 several European research groups conducted the ESA funded Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign to test and intercompare newly developed airborne observation sytsems dedicated to air quality satellite validation studies. The IUP Bremen contributed to this campaign with its Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) on board a Cessna 207 turbo, operated by the FU Berlin. AirMAP allows the retrieval of integrated NO2 column densities in a stripe below the aircraft at a fine spatial resolution of up to 30 x 80 m2, at a typical flight altitude. Measurements have been performed over the city of Bucharest, creating for the first time high spatial resolution maps of Bucharest's NO2 distribution in a time window of approx. 2 hours. The observations were synchronised with ground-based car MAX-DOAS measurements for comparison. In addition, measurements were taken over the city of Berlin, Germany and at the Rovinari power plant, Romania. In this work the results of the research flights will be presented and conclusions will be drawn on the quality of the measurements, their applicability for satellite data validation and possible improvements for future measurements.

  5. Airborne measurements of NO2 shipping emissions using imaging DOAS

    NASA Astrophysics Data System (ADS)

    Meier, Andreas C.; Schönhardt, Anja; Richter, Andreas; Seyler, André; Ruhtz, Thomas; Lindemann, Carsten; Wittrock, Folkard; Burrows, John P.

    2014-05-01

    NOx (NO and NO2) play a key role in tropospheric chemistry and affect human health and the environment. Shipping emissions contribute substantially to the global emissions of anthropogenic NOx. Due to globalization and increased trade volume, the relative importance emissions from ships gain even more importance. The Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP), developed at IUP Bremen, has been used to perform measurements of NO2 in the visible spectral range. The observations allow the determination of spatial distributions of column densities of NO2 below the aircraft. Airborne measurements were performed over Northern Germany and adjacent coastal waters during the NOSE (NO2 from Shipping Emissions) campaign in August 2013. The focus of the campaign activities was on shipping emissions, but NO2 over cities and power plants has been measured as well. The measurements have a spatial resolution below the order of 100 × 30 m2, and they reveal the large spatial variability of NO2 and the evolution of NO2 plumes behind point sources. Shipping lanes as well as plumes of individual ships are detected by the AirMAP instrument. In this study, first results from the NOSE campaign are presented for selected measurement areas.

  6. High Energy 2-Micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  7. Measurements of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murrow, Harold N.

    1987-01-01

    Various types of atmospheric turbulence measurements are addressed for the purpose of stimulating discussion relative to available data. An outline of these various types of measurements are discussed. Some specific results of detailed characterization studies made at NASA Langley are emphasized. The most recent reports on statistics of turbulence encounters for various types of aircraft operations are summarized. Special severe encounter studies and reference to remote sensing are also included. Wind shear is considered to be a special topic and is not covered.

  8. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  9. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan

    SciTech Connect

    Biraud, S

    2015-12-01

    From October 1 through September 30, 2016, the Atmospheric Radiation Measurement (ARM) Aerial Facility will deploy the Cessna 206 aircraft over the Southern Great Plains (SGP) site, collecting observations of trace-gas mixing ratios over the ARM’s SGP facility. The aircraft payload includes two Atmospheric Observing Systems, Inc., analyzers for continuous measurements of CO2 and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, 14CO2, carbonyl sulfide, and trace hydrocarbon species, including ethane). The aircraft payload also includes instrumentation for solar/infrared radiation measurements. This research is supported by the U.S. Department of Energy’s ARM Climate Research Facility and Terrestrial Ecosystem Science Program and builds upon previous ARM Airborne Carbon Measurements (ARM-ACME) missions. The goal of these measurements is to improve understanding of 1) the carbon exchange at the SGP site, 2) how CO2 and associated water and energy fluxes influence radiative forcing, convective processes and CO2 concentrations over the SGP site, and 3) how greenhouse gases are transported on continental scales.

  10. An Algorithm to Atmospherically Correct Visible and Thermal Airborne Imagery

    NASA Technical Reports Server (NTRS)

    Rickman, Doug L.; Luvall, Jeffrey C.; Schiller, Stephen; Arnold, James E. (Technical Monitor)

    2000-01-01

    The program Watts implements a system of physically based models developed by the authors, described elsewhere, for the removal of atmospheric effects in multispectral imagery. The band range we treat covers the visible, near IR and the thermal IR. Input to the program begins with atmospheric pal red models specifying transmittance and path radiance. The system also requires the sensor's spectral response curves and knowledge of the scanner's geometric definition. Radiometric characterization of the sensor during data acquisition is also necessary. While the authors contend that active calibration is critical for serious analytical efforts, we recognize that most remote sensing systems, either airborne or space borne, do not as yet attain that minimal level of sophistication. Therefore, Watts will also use semi-active calibration where necessary and available. All of the input is then reduced to common terms, in terms of the physical units. From this it Is then practical to convert raw sensor readings into geophysically meaningful units. There are a large number of intricate details necessary to bring an algorithm or this type to fruition and to even use the program. Further, at this stage of development the authors are uncertain as to the optimal presentation or minimal analytical techniques which users of this type of software must have. Therefore, Watts permits users to break out and analyze the input in various ways. Implemented in REXX under OS/2 the program is designed with attention to the probability that it will be ported to other systems and other languages. Further, as it is in REXX, it is relatively simple for anyone that is literate in any computer language to open the code and modify to meet their needs. The authors have employed Watts in their research addressing precision agriculture and urban heat island.

  11. Airborne gamma radiation soil moisture measurements over short flight lines

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  12. Airborne measured analytic signal for UXO detection

    SciTech Connect

    Gamey, T.J.; Holladay, J.S.; Mahler, R.

    1997-10-01

    The Altmark Tank Training Range north of Haldensleben, Germany has been in operation since WWI. Weapons training and testing has included cavalry, cannon, small arms, rail guns, and tank battalions. Current plans are to convert the area to a fully digital combat training facility. Instead of using blank or dummy ordnance, hits will be registered with lasers and computers. Before this can happen, the 25,000 ha must be cleared of old debris. In support of this cleanup operation, Aerodat Inc., in conjunction with IABG of Germany, demonstrated a new high resolution magnetic survey technique involving the measurement of 3-component magnetic gradient data. The survey was conducted in May 1996, and covered 500 ha in two blocks. The nominal line spacing was 10 m, and the average sensor altitude was 7 m. The geologic column consisted of sands over a sedimentary basin. Topographic relief was generally flat with approximately 3 m rolling dunes and occasional man-made features such as fox holes, bunkers, tank traps and reviewing stands. Trees were sparse and short (2-3 metres) due to frequent burn off and tank activity. As such, this site was nearly ideal for low altitude airborne surveying.

  13. Radon measurements aboard the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.

    1995-01-01

    We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.

  14. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Numata, K.; Riris, H.; Li, S.; Wu, S.; Kawa, S. R.; Abshire, J. B.; Dawsey, M.; Ramanathan, A.

    2011-12-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from clathrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 um and 1.65 um. We have demonstrated detection of methane at 3.3 μm and 1650 nm in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 um.

  15. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  16. Airborne Bacteria in the Atmospheric Surface Layer: Temporal Distribution above a Grass Seed Field

    PubMed Central

    Lighthart, B.; Shaffer, B. T.

    1995-01-01

    Temporal airborne bacterial concentrations and meteorological conditions were measured above a grass seed field in the Willamette River Valley, near Corvallis, Oreg., in the summer of 1993. The concentration of airborne bacteria had a maximum of 1,368.5 CFU/m(sup3), with a coefficient of variation of 90.5% and a mean of 121.3 CFU/m(sup3). The lowest concentration of bacteria occurred during the predawn hours, with an average of 32.2 CFU/m(sup3), while sunrise and early evening hours had the highest averages (164.7 and 158.1 CFU/m(sup3), respectively). The concentrations of bacteria in the atmosphere varied greatly, with a maximum difference between two 2-min samples of 1,995 CFU/m(sup3). The concentrations of bacteria in the atmosphere could be divided into five time periods during the day that were thought to be related to the local diurnal sea breeze and Pacific Coast monsoon weather conditions as follows: (i) the nighttime minimum concentration, i.e., 2300 to 0600 h; (ii) the sunrise peak concentration, i.e., 0600 to 0800 h; (iii) the midday accumulating concentration, i.e., 0800 to 1515 h; (iv) the late-afternoon sea breeze trough concentration, i.e., 1515 to 1700 h; and (v) the evening decrease to the nighttime minimum concentration, i.e., 1700 to 2300 h. The sunrise peak concentration (period ii) is thought to be a relatively general phenomenon dependent on ground heating by the sun, while the afternoon trough concentration is thought to be a relatively local phenomenon dependent on the afternoon sea breeze. Meteorological conditions are thought to be an important regulating influence on airborne bacterial concentrations in the outdoor atmosphere in the Willamette River Valley. PMID:16534998

  17. Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas.

    PubMed

    Maya-Manzano, José María; Fernández-Rodríguez, Santiago; Smith, Matt; Tormo-Molina, Rafael; Reynolds, Andrew M; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Sadyś, Magdalena

    2016-11-15

    The pollen grains of Quercus spp. (oak trees) are allergenic. This study investigates airborne Quercus pollen in SW Spain with the aim identifying favourable conditions for atmospheric transport and potential sources areas. Two types of Quercus distribution maps were produced. Airborne Quercus pollen concentrations were measured at three sites located in the Extremadura region (SW Spain) for 3 consecutive years. The seasonal occurrence of Quercus pollen in the air was investigated, as well as days with pollen concentrations ≥80Pm(-3). The distance that Quercus pollen can be transported in appreciable numbers was calculated using clusters of back trajectories representing the air mass movement above the source areas (oak woodlands), and by using a state-of-the-art dispersion model. The two main potential sources of Quercus airborne pollen captured in SW Spain are Q. ilex subsp. ballota and Q. suber. The minimum distances between aerobiological stations and Quercus woodlands have been estimated as: 40km (Plasencia), 66km (Don Benito), 62km (Zafra) from the context of this study. Daily mean Quercus pollen concentration can exceed 1,700Pm(-3), levels reached not less than 24 days in a single year. High Quercus pollen concentration were mostly associated with moderate wind speed events (6-10ms(-1)), whereas that a high wind speed (16-20ms(-1)) seems to be associated with low concentrations. PMID:27443456

  18. Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas.

    PubMed

    Maya-Manzano, José María; Fernández-Rodríguez, Santiago; Smith, Matt; Tormo-Molina, Rafael; Reynolds, Andrew M; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Sadyś, Magdalena

    2016-11-15

    The pollen grains of Quercus spp. (oak trees) are allergenic. This study investigates airborne Quercus pollen in SW Spain with the aim identifying favourable conditions for atmospheric transport and potential sources areas. Two types of Quercus distribution maps were produced. Airborne Quercus pollen concentrations were measured at three sites located in the Extremadura region (SW Spain) for 3 consecutive years. The seasonal occurrence of Quercus pollen in the air was investigated, as well as days with pollen concentrations ≥80Pm(-3). The distance that Quercus pollen can be transported in appreciable numbers was calculated using clusters of back trajectories representing the air mass movement above the source areas (oak woodlands), and by using a state-of-the-art dispersion model. The two main potential sources of Quercus airborne pollen captured in SW Spain are Q. ilex subsp. ballota and Q. suber. The minimum distances between aerobiological stations and Quercus woodlands have been estimated as: 40km (Plasencia), 66km (Don Benito), 62km (Zafra) from the context of this study. Daily mean Quercus pollen concentration can exceed 1,700Pm(-3), levels reached not less than 24 days in a single year. High Quercus pollen concentration were mostly associated with moderate wind speed events (6-10ms(-1)), whereas that a high wind speed (16-20ms(-1)) seems to be associated with low concentrations.

  19. Alexandrite laser source for atmospheric lidar measurements

    NASA Technical Reports Server (NTRS)

    Pelon, J.; Loth, C.; Flamant, P.; Megie, G.

    1986-01-01

    During the past years, there has been a marked increase in interest in the applications of vibronic solid state lasers to meteorology and atmospheric physics. Two airborne lidar programs are now under development in France. The differential absorption lidar (DIAL) method with vibronic solid state lasers is very attractive for water vapor, temperature and pressure measurements. Alexandrite laser and titanium-sapphire are both suitable for these applications. However, only alexandrite rods are commercially available. The requirements on the laser source for airborne dial applications are two fold: (1) a restriction on laser linewidth and a requirement on stability and tunability with a good spectral purity; and (2) a requirement on the time separation between the two pulses. These constraints are summarized.

  20. Real-time atmospheric absorption spectra for in-flight tuning of an airborne dial system

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.; Walden, H.; Schwemmer, G. K.; Milrod, J.; Korb, C. L.

    1986-01-01

    Real-time measurements of atmospheric absorption spectra are displayed and used to precisely calibrate and fix the frequency of an Alexandrite laser to specific oxygen absorption features for airborne Differential Absorption Lidar (DIAL) measurements of atmospheric pressure and temperature. The DIAL system used contains two narrowband tunable Alexandrite lasers: one is electronically scanned to tune to oxygen absorption features for on-line signals while the second is used to obtain off-line (nonabsorbed) atmospheric return signals. The lidar operator may select the number of shots to be averaged, the altitude, and altitude interval over which the signals are averaged using single key stroke commands. The operator also determines exactly which oxygen absorption lines are scanned by comparing the line spacings and relative strengths with known line parameters, thus calibrating the laser wavelength readout. The system was used successfully to measure the atmospheric pressure profile on the first flights of this lidar, November 20, and December 9, 1985, aboard the NASA Wallops Electra aircraft.

  1. Airborne Spectral Measurements of Ocean Directional Reflectance

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; King, Michael D.; Lyapustin, Alexei; Arnold, G. Thomas; Redemann, Jens

    2004-01-01

    During summer of 2001 NASA's Cloud Absorption Radiometer (CAR) obtained measurement of ocean angular distribution of reflected radiation or BRDF (bidirectional reflectance distribution function) aboard the University of Washington Convair CV-580 research aircraft under cloud-free conditions. The measurements took place aver the Atlantic Ocean off the eastern seaboard of the U.S. in the vicinity of the Chesapeake Light Tower and at nearby National Oceanic and Atmospheric Administration (NOAA) Buoy Stations. The measurements were in support of CLAMS, Chesapeake Lighthouse and Aircraft Measurements for Satellites, field campaign that was primarily designed to validate and improve NASA's Earth Observing System (EOS) satellite data products being derived from three sensors: MODIS (MODerate Resolution Imaging Spectro-Radiometer), MISR (Multi-angle Imaging Spectro-Radiometer) and CERES (Clouds and Earth s Radiant Energy System). Because of the high resolution of the CAR measurements and its high sensitivity to detect weak ocean signals against a noisy background, results of radiance field above the ocean are seen in unprecedented detail. The study also attempts to validate the widely used Cox-Munk model for predicting reflectance from a rough ocean surface.

  2. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-06-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and Methane Experiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace gas signature detection in an airborne science campaign, and presages many future applications.

  3. Airborne interferometer for atmospheric emission and solar absorption.

    PubMed

    Keith, D W; Dykema, J A; Hu, H; Lapson, L; Anderson, J G

    2001-10-20

    The interferometer for emission and solar absorption (INTESA) is an infrared spectrometer designed to study radiative transfer in the troposphere and lower stratosphere from a NASA ER-2 aircraft. The Fourier-transform spectrometer (FTS) operates from 0.7 to 50 mum with a resolution of 0.7 cm(-1). The FTS observes atmospheric thermal emission from multiple angles above and below the aircraft. A heliostat permits measurement of solar absorption spectra. INTESA's calibration system includes three blackbodies to permit in-flight assessment of radiometric error. Results suggest that the in-flight radiometric accuracy is ~0.5 K in the mid-infrared.

  4. Upper atmosphere pollution measurements (GASP)

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Holdeman, J. D.

    1975-01-01

    The environmental effects are discussed of engine effluents of future large fleets of aircraft operating in the stratosphere. Topics discussed include: atmospheric properties, aircraft engine effluents, upper atmospheric measurements, global air sampling, and data reduction and analysis

  5. Pluto's Atmosphere from the 29 June 2015 Occultation: SOFIA Airborne Results

    NASA Astrophysics Data System (ADS)

    Person, Michael J.; MIT-Williams Occulation Group (MIT/Williams College/Lowell Observatory/SAAO), HIPO Instrument Group (Lowell Observatory/MIT), FLITECAM Instrument Group (UCLA), FPI+ Instrument Group (DSI/U. Stuttgart), SOFIA Operations Group (NASA/USRA/DSI)

    2016-01-01

    After an extensive prediction effort, the 29 June 2015 occultation by Pluto was observed from both airborne (Stratospheric Observatory for Infrared Astronomy - SOFIA) and numerous ground-based telescopes (Bosh et al. 2015, in prep.). Real-time prediction updates allowed placement of the SOFIA telescope with its four detectors deep within the central-flash region of the atmospheric occultation. Fortuitously, the Mount John University Observatory (Lake Tekapo, New Zealand) was also within the central-flash region. This happenstance allowed for direct mutual calibration of the SOFIA data with the ground-based data in multiple central-flash detections in several colors from each facility resulting in a full maping of the central-flash evolute.Combining all of the data allows for a precise measurement of the SOFIA flight path through the shadow, and direct measurement of Pluto's atmospheric shadow size.We will examine and discuss the central-flash signatures from the deepest pass yet recorded through a Pluto central flash. The relative orientations and asymmetries in the various central flash data allow us to use them to tightly constrain the lower atmospheric ellipticity and orientation of likely winds with respect to Pluto's figure. The ratio of the two separate central flashes (airborne and ground-based) is also a strong constraint on the geometric solution for the full occultation data set, and the absolute height of the central flashes with respect to those expected for a clear isothermal atmosphere places constraints on haze densities and thermal gradients in Pluto's lower atmosphere. We can also compare the central-flash signatures in several colors to establish bounds on haze-particle sizes in the lower atmosphere.SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was

  6. Measuring the solar atmosphere

    NASA Astrophysics Data System (ADS)

    de la Cruz Rodriguez, Jaime

    2010-11-01

    The new CRISP filter at the Swedish 1-m Solar Telescope provides opportunities for observing the solar atmosphere with unprecedented spatial resolution and cadence. In order to benefit from the high quality of observational data from this instrument, we have developed methods for calibrating and restoring polarized Stokes images, obtained at optical and near infrared wavelengths, taking into account field-of-view variations of the filter properties. In order to facilitate velocity measurements, a time series from a 3D hydrodynamical granulation simulation is used to compute quiet Sun spectral line profiles at different heliocentric angles. The synthetic line profiles, with their convective blueshifts, can be used as absolute references for line-of-sight velocities. Observations of the Ca II 8542 Å line are used to study magnetic fields in chromospheric fibrils. The line wings show the granulation pattern at mid-photospheric heights whereas the overlying chromosphere is seen in the core of the line. Using full Stokes data, we have attempted to observationally verify the alignment of chromospheric fibrils with the magnetic field. Our results suggest that in most cases fibrils are aligned along the magnetic field direction, but we also find examples where this is not the case. Detailed interpretation of Stokes data from spectral lines formed in the chromospheric data can be made using non-LTE inversion codes. For the first time, we use a realistic 3D MHD chromospheric simulation of the quiet Sun to assess how well NLTE inversions recover physical quantities from spectropolarimetric observations of Ca II 8542 Å. We demonstrate that inversions provide realistic estimates of depth-averaged quantities in the chromosphere, although high spectral resolution and high sensitivity are needed to measure quiet Sun chromospheric magnetic fields.

  7. Comparison between laboratory and airborne BRDF measurements for remote sensing

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2006-08-01

    Samples from soil and leaf litter were obtained at a site located in the savanna biome of South Africa (Skukuza; 25.0°S, 31.5°E) and their bidirectional reflectance distribution functions (BRDF) were measured using the out-of-plane scatterometer located in the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center (GSFC) Diffuser Calibration Facility (DCaF). BRDF was measured using P and S incident polarized light over a range of incident and scatter angles. A monochromator-based broadband light source was used in the ultraviolet (uv) and visible (vis) spectral ranges. The diffuse scattered light was collected using an uv-enhanced silicon photodiode detector with output fed to a computer-controlled lock-in amplifier. Typical measurement uncertainties of the reported laboratory BRDF measurements are found to be less than 1% (k=1). These laboratory results were compared with airborne measurements of BRDF from NASA's Cloud Absorption Radiometer (CAR) instrument over the same general site where the samples were obtained. This study presents preliminary results of the comparison between these laboratory and airborne BRDF measurements and identifies areas for future laboratory and airborne BRDF measurements. This paper presents initial results in a study to try to understand BRDF measurements from laboratory, airborne, and satellite measurements in an attempt to improve the consistency of remote sensing models.

  8. Sampling the Vertical Moisture Structure of an Atmospheric River Event Using Airborne GPS Radio Occultation Profiling

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Malloy, K.; Murphy, B.; Sussman, J.; Zhang, W.

    2015-12-01

    Atmospheric rivers (ARs) are of high concern in California, bringing significant rain to the region over extended time periods of up to 5 days, potentially causing floods, and more importantly, contributing to the Sierra snowpack that provides much of the regional water resources. The CalWater project focuses on predicting the variability of the West Coast water supply, including improving AR forecasting. Unfortunately, data collection over the ocean remains a challenge and impacts forecasting accuracy. One novel technique to address this issue includes airborne GPS radio occultation (ARO), using broadcast GPS signals from space to measure the signal ray path bending angle and refractivity to retrieve vertical water vapor profiles. The Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) system was developed for this purpose for recording and processing high-sample rate (10MHz) signals in the lower troposphere. Previous studies (Murphy et al, 2014) have shown promising results in acquiring airborne GPS RO data, comparing it to dropsondes and numerical weather models. CalWater launched a field campaign in the beginning of 2015 which included testing GISMOS ARO on the NOAA GIV aircraft for AR data acquisition, flying into the February 6th AR event that brought up to 35 cm of rain to central California. This case study will compare airborne GPS RO refractivity profiles to the NCEP-NCAR final reanalysis model and dropsonde profiles. We will show the data distribution and explain the sampling characteristics, providing high resolution vertical information to the sides of the aircraft in a manner complementary to dropsondes beneath the flight track. We will show how this method can provide additional reliable data during the development of AR storms.

  9. Airborne measurement of peroxy radicals in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Andrés Hernández, Maria Dolores; Horstjann, Markus; Kartal, Deniz; Krebsbach, Marc; Linke, Christian; Lichtenstern, Michael; Andrey, Javier; Burrows, John P.

    2013-04-01

    The importance of peroxy radicals in the tropospheric chemistry is well recognized in the scientific literature. Hydroxy- and organic peroxy radicals (HO2 and RO2, R being an organic chain) are key intermediates in the OH radical initiated oxidation of CO and SO2, of volatile organic compounds (VOC), in the ozonolysis of alkenes and photo-oxidation of carbonyl species. Peroxy radicals are responsible for the ozone production in the troposphere, the formation of peroxides and other oxidants. Although radical chemistry in the troposphere has been subject of intensive research in the past three decades, it is still very few known about the vertical distribution of peroxy radicals. Airborne observations are scarce in spite of their particular importance to improve the understanding of the tropospheric chemistry and the oxidising capacity of the atmosphere at different altitudes. In situ trace gas measurements were carried out in summer 2010 on board of the INTA (Instituto Nacional de Técnicas Aeroespaciales) C212 aircraft over Spain in the frame of the EUFAR project VERDRILLT (VERtical Distribution of Radicals In the Lower Layers of the Troposphere), and in cooperation with the DLR (Deutsches Zentrum für Luft- und Raumfahrt), the University of Wuppertal, the CEAM (Centro de Estudios Ambientales del Mediterráneo) and the UPV-EHU University in Bilbao. VERDRILLT aimed at getting a deeper understanding of the vertical distribution of peroxy radicals in the lower layers of the troposphere. Measurements were taken over urban areas and extensions of different vegetation under meteorological conditions favouring active photochemistry and convection from the ground into close atmospheric layers. Results and main findings will be presented and discussed.

  10. Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations

    NASA Astrophysics Data System (ADS)

    Wolfe, G. M.; Hanisco, T. F.; Arkinson, H. L.; Bui, T. P.; Crounse, J. D.; Dean-Day, J.; Goldstein, A.; Guenther, A.; Hall, S. R.; Huey, G.; Jacob, D. J.; Karl, T.; Kim, P. S.; Liu, X.; Marvin, M. R.; Mikoviny, T.; Misztal, P. K.; Nguyen, T. B.; Peischl, J.; Pollack, I.; Ryerson, T.; St. Clair, J. M.; Teng, A.; Travis, K. R.; Ullmann, K.; Wennberg, P. O.; Wisthaler, A.

    2015-10-01

    Atmospheric composition is governed by the interplay of emissions, chemistry, deposition, and transport. Substantial questions surround each of these processes, especially in forested environments with strong biogenic emissions. Utilizing aircraft observations acquired over a forest in the southeast U.S., we calculate eddy covariance fluxes for a suite of reactive gases and apply the synergistic information derived from this analysis to quantify emission and deposition fluxes, oxidant concentrations, aerosol uptake coefficients, and other key parameters. Evaluation of results against state-of-the-science models and parameterizations provides insight into our current understanding of this system and frames future observational priorities. As a near-direct measurement of fundamental process rates, airborne fluxes offer a new tool to improve biogenic and anthropogenic emissions inventories, photochemical mechanisms, and deposition parameterizations.

  11. Quantifying Sources and Sinks of Reactive Gases in the Lower Atmosphere Using Airborne Flux Observations

    NASA Technical Reports Server (NTRS)

    Wolfe, G. M.; Hanisco, T. F.; Arkinson, H. L.; Bui, T. P.; Crounse, J. D.; Dean-Day, J.; Goldstein, A.; Guenther, A.; Hall, S. R.; Huey, G.; Jacob, D. J.; Karl, T.; Kim, P. S.; Liu, X.; Marvin, M. R.; Mikoviny, T.; Misztal, P. K.; Nguyen, T. B.; Peischl, J.; Pollack, I.; Ryerson, T.; St. Clair, J. M.; Teng, A.; Travis, K. R.; Ullmann, K.; Wennberg, P.O.; Wisthaler, A.

    2015-01-01

    Atmospheric composition is governed by the interplay of emissions, chemistry, deposition, and transport. Substantial questions surround each of these processes, especially in forested environments with strong biogenic emissions. Utilizing aircraft observations acquired over a forest in the southeast U.S., we calculate eddy covariance fluxes for a suite of reactive gases and apply the synergistic information derived from this analysis to quantify emission and deposition fluxes, oxidant concentrations, aerosol uptake coefficients, and other key parameters. Evaluation of results against state-of-the-science models and parameterizations provides insight into our current understanding of this system and frames future observational priorities. As a near-direct measurement of fundamental process rates, airborne fluxes offer a new tool to improve biogenic and anthropogenic emissions inventories, photochemical mechanisms, and deposition parameterizations.

  12. Assessment of Elemental Content in Airborne Particulate Matter in Bratislava Atmosphere using INAA and AAS

    SciTech Connect

    Meresova, J.; Florek, M.; Holy, K.; Sykora, I.; Frontasyeva, M. V.; Pavlov, S. S.

    2007-11-26

    The wide range concentration of elements including heavy metals, halogens and rare earths in airborne particulate matter were investigated. Sixteen samples were collected on filters in Meteorological station, Comenius University Bratislava (Slovak Republic) in different seasons. Using instrumental neutron activation analysis (INAA) the concentrations of 29 elements (Na, Al, Cl, K, Ca, Sc, Ti, V, Mn, Fe, Ga, As, Se, Br, Rb, In, Sb, I, Cs, Ba, La, Sm, Dy, Tm, W, Au, Hg, Th, U) were determined. The concentrations of other 6 elements (Cr, Ni, Cu, Zn, Cd, Pb) were measured by atomic absorption spectrometry (AAS). The obtained results allow us to better understand the dynamic processes in the atmosphere and to quantify the air pollution and its trends.

  13. Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations

    SciTech Connect

    Wolfe, Glenn; Hanisco, T. F.; Atkinson, H. L.; Bui, Thaopaul; Crounse, J. D.; Dean-Day, J.; Goldstein, Allen H.; Guenther, Alex B.; Hall, S. R.; Huey, L. G.; Jacob, D.; Karl, T.; Kim, P. S.; Liu, X.; Marvin, M. R.; Mikoviny, Tomas; Misztal, Pawel K.; Nguyen, Tran B.; Peischl, Jeff; Pollack, Ilana; Ryerson, T. B.; St Clair, J. M.; Teng, A. P.; Travis, Katherine; Ullmann, K.; Wennberg, P. O.; Wisthaler, Armin

    2015-10-16

    Atmospheric composition is governed by the interplay of emissions, chemistry, deposition, and transport. Substantial questions surround each of these processes, especially in forested environments with strong biogenic emissions. Utilizing aircraft observations acquired over a forest in the southeast U.S., we calculate eddy covariance fluxes for a suite of reactive gases and apply the synergistic information derived from this analysis to quantify emission and deposition fluxes, oxidant concentrations, aerosol uptake coefficients, and other key parameters. Evaluation of results against state-of-the-science models and parameterizations provides insight into our current understanding of this system and frames future observational priorities. As a near-direct measurement of fundamental process rates, airborne fluxes offer a new tool to improve biogenic and anthropogenic emissions inventories, photochemical mechanisms, and deposition parameterizations.

  14. Airborne measurement of OH reactivity during INTEX-B

    NASA Astrophysics Data System (ADS)

    Mao, J.; Ren, X.; Brune, W. H.; Olson, J. R.; Crawford, J. H.; Fried, A.; Huey, L. G.; Cohen, R. C.; Heikes, B.; Singh, H. B.; Blake, D. R.; Sachse, G. W.; Diskin, G. S.; Hall, S. R.; Shetter, R. E.

    2009-01-01

    The measurement of OH reactivity, the inverse of the OH lifetime, provides a powerful tool to investigate atmospheric photochemistry. A new airborne OH reactivity instrument was designed and deployed for the first time on the NASA DC-8 aircraft during the second phase of Intercontinental Chemical Transport Experiment-B (INTEX-B) campaign, which was focused on the Asian pollution outflow over Pacific Ocean and was based in Hawaii and Alaska. The OH reactivity was measured by adding OH, generated by photolyzing water vapor with 185 nm UV light in a moveable wand, to the flow of ambient air in a flow tube and measuring the OH signal with laser induced fluorescence. As the wand was pulled back away from the OH detector, the OH signal decay was recorded; the slope of -Δln(signal)/Δ time was the OH reactivity. The overall absolute uncertainty at the 2σ confidence levels is about 1 s-1 at low altitudes (for decay about 6 s-1), and 0.7 s-1 at high altitudes (for decay about 2 s-1). From the median vertical profile obtained in the second phase of INTEX-B, the measured OH reactivity (4.0±1.0 s-1) is higher than the OH reactivity calculated from assuming that OH was in steady state (3.3±0.8 s-1), and even higher than the OH reactivity that was calculated from the total measurements of all OH reactants (1.6±0.4 s-1). Model calculations show that the missing OH reactivity is consistent with the over-predicted OH and under-predicted HCHO in the boundary layer and lower troposphere. The over-predicted OH and under-predicted HCHO suggest that the missing OH sinks are most likely related to some highly reactive VOCs that have HCHO as an oxidation product.

  15. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James; Dawsey, Martha; Ramanathan, Anand

    2012-01-01

    We report on an initial airborne demonstration of atmospheric methane column measurements at 1.65 micrometers using a widely tunable, seeded optical parametric amplifier (OPA) lidar and a photon counting detector. Methane is an important greenhouse gas and accurate knowledge of its sources and sinks is needed for climate modeling. Our lidar system uses 20 pulses at increasing wavelengths and integrated path differential absorption (IPDA) to map a methane line at 1650.9 nanometers. The wavelengths are generated by using a Nd:YAG pump laser at 1064.5 nanometers and distributed feedback diode laser at 1650.9 nanometers and a periodically-poled lithium niobate (PPLN) crystal. The pulse width was 3 nanoseconds and the pulse repetition rate was 6.28 KHz. The outgoing energy was approximately 13 microJoules/pulse. A commercial 20 nanometer diameter fiber-coupled telescope with a photon counting detector operated in analog mode with a 0.8 nanometer bandpass filter was used as the lidar receiver. The lidar system was integrated on NASA's DC-8 flying laboratory, based at Dryden Airborne operations Facility (DAOF) in Palmdale CA. Three flights were performed in the central valley of California. Each flight lasted about 2.5 hours and it consisted of several flight segments at constant altitudes at approximately 3, 4.5, 6, 7.6, 9.1, 10.6 km (l0, 15, 20, 25, 30, 35 kft). An in-situ cavity ring down spectrometer made by Picarro Inc. was flown along with the lidar instrument provided us with the "truth" i.e. the local CH4, CO2 and H2O concentrations at the constant flight altitude segments. Using the aircraft's altitude, GPS, and meteorological data we calculated the theoretical differential optical depth of the methane absorption at increasing altitudes. Our results showed good agreement between the experimentally derived optical depth measurements from the lidar instrument and theoretical calculations as the flight altitude was increased from 3 to 10.6 kilometers, assuming a

  16. Coordinated airborne and satellite measurements of equatorial plasma depletions

    SciTech Connect

    Weber, E.J.; Brinton, H.C.; Buchau, J.; Moore, J.G.

    1982-12-01

    A series of experiments was conducted in December 1979 to investigate the structure of plasma depletions in the low latitude, nightime ionosphere. The measurements included all sky imaging photometer (ASIP), ionosonde and amplitude scintillation observations from the AFGL Airborne Ionospheric Observatory (AIO), and in situ ion density measurements from the Atmosphere Explorer (AE-E) Bennett Ion Mass Spectrometer (BIMS). The AIO performed two flights along the Ascension Island (-18/sup 0/ MLAT) magnetic meridian: one in the southern hemisphere and one near the Ascension conjugate point in the northern hemisphere. During these flights, measurements from the AE-E satellite at 434 km altitude are compared with simultaneous remote ionospheric measurements from the AIO. Density biteouts of approximately one order of magnitude in the dominant ion O/sup +/, were mapped to lower altitudes along magnetic field lines for comparison with 6300-A and 7774-A O I airglow depletions. Because of the different airglow production mechanisms (dissociative recombination of O/sup +//sub 2/ for 6300 A and radiative recombination of O/sup +/ for 7774 A) the 6300-A depletions reflect plasma depletions near the bottomside of the F layer, while those at 7774 A are located near the peak of the layer. The O/sup +/ biteouts map directly into the 7774-A airglow depletions in the same hemisphere and also when traced into the opposite hemisphere, which indicates magnetic flux tube alignment over north-south distances of approx.2220 km. The 6300-A (bottomside) depletions are wider in longitude than the 7774-A (F-peak) depletions near the equatorward edge of the Appleton anomaly. This difference in topside and bottomside structure is used to infer large-scale structure near the anomaly and to relate this to structure, commonly observed near the magnetic equator by the ALTAIR radar.

  17. ARM Airborne Continuous carbon dioxide measurements

    DOE Data Explorer

    Biraud, Sebastien

    2013-03-26

    The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

  18. Influence of suspended inorganic sediment on airborne laser fluorosensor measurements

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Esaias, W. E.

    1983-01-01

    The results of Poole and Esaias (1982) are presently extended to an examination of the influence of inorganic sediment on the water Raman normalization procedure, as well as an assessment of the potential for using the Raman signal to monitor surface water attenuation properties. An optically perfect lidar system is assumed which has geometric properties representative of the Airborne Oceanographic Lidar, and is mounted on an airborne platform flying at an altitude of 150 m above the water surface. The results obtained suggest that caution should be exercised in attempts to quantitatively monitor changes in optical attenuation by means of remote measurements of the Raman scattering signal.

  19. Analyzers Measure Greenhouse Gases, Airborne Pollutants

    NASA Technical Reports Server (NTRS)

    2012-01-01

    to fuel cellular functions. "We think this chemical process did not exist when life first formed on Earth," he says, "because it is based on oxygen being available, and there was little oxygen available on the early Earth." It is possible that there are anaerobic regions beneath the sea floor in which life forms like those early non-Krebs Cycle microbes may yet exist. To detect and potentially collect samples of life emerging from hydrothermal vents, Flynn and his colleagues created Medusa, a multi-sensor instrument designed for long-term observation of diked vents on the ocean floor. When the vents erupt, Medusa assesses indicators of life within the expelled water. If the results are positive, the observatory collects samples and detaches from the ocean floor, making the long journey to the surface for retrieval by scientists. One of the indicators Medusa measures is the ratio of carbon isotopes in the water, namely carbon-12 and carbon-13. Living organisms preferentially take up carbon-12, Flynn says, so examining the ratio of these isotopes can help to determine the source of carbon in an environment as either biological or non-biological. "On Mars, there is evidence of localized methane in the atmosphere, and that methane could come from biological sources or from geochemical ones," Flynn says. "Determining the background planetary carbon isotope ratios and then evaluating the specific carbon ratios in this methane would help to determine how it was formed." A long-duration observatory similar to Medusa could one day provide essential evidence for or against the presence of life on the Red Planet or beneath the ice-crusted oceans of Europa.

  20. Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Bardin, M.; Jaenicke, R.; Vogel, B.; Leyronas, C.; Ariya, P. A.; Psenner, R.

    2011-01-01

    For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.

  1. Exploring the potential of combining column-integrated atmospheric polarization with airborne in situ size distribution measurements for the retrieval of an aerosol model: A case study of a biomass burning plume during SAFARI 2000

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Piketh, Stuart J.; Burger, Roelof; Silva, Ana Maria

    2003-07-01

    Ground-based columnar and airborne in situ measurements of aerosol optical properties acquired during the Southern African Regional Science Initiative (SAFARI 2000) in August-September 2000 are analyzed to retrieve the aerosol model of a haze layer affected by long-range transport of biomass burning emissions. One case study is considered. A columnar value of the aerosol polarized phase function Qmeasp(Θ) and of the aerosol single scattering albedo ω0, both at 870 nm, are retrieved from measurements acquired by a ground-based Sun/sky photometer, assuming that the surface albedo is 0.3. The maximum value of the polarized phase function is 0.37 ± 0.02 at a scattering angle of 70°, ω0 is 0.80 ± 0.05. The in situ particle size distribution is measured in a vertical profile over the ground-based site by an airborne optical particle counter. Because the size distribution integrated over the column is inconsistent with the polarized phase function, aerosol concentration of the 0.25 μm mode is reduced by a factor of 7.5. Taking into account that the estimation of particle size depends on particle refractive index, it is found that the radius of absorbing particles cannot be larger than 0.15 μm for reproducing Qmeasp(Θ), suggesting external mixture of absorbing particles smaller than 0.15 μm with nonabsorbing particles larger than 0.15 μm. The imaginary part of the effective refractive index is estimated to be (0.09 ± 0.03)i. Comparing Ångström exponent obtained from Sun/sky photometer extinction measurements and the Ångström exponent calculated for the in situ measured aerosol size distribution acquired in eleven vertical profiles allows us to conclude that in most considered cases, the mixture of absorbing with nonabsorbing particles is external with a radius limit at around 0.15 μm.

  2. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-10-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace-gas signature detection in an airborne science campaign, and presages many future applications. Post-analysis demonstrates matched filter methods providing noise-equivalent (1σ) detection sensitivity for 1.0 % CH4 column enhancements equal to 141 ppm m.

  3. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  4. Double-Pulse Two-Micron IPDA Lidar Simulation for Airborne Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    An advanced double-pulsed 2-micron integrated path differential absorption lidar has been developed at NASA Langley Research Center for measuring atmospheric carbon dioxide. The instrument utilizes a state-of-the-art 2-micron laser transmitter with tunable on-line wavelength and advanced receiver. Instrument modeling and airborne simulations are presented in this paper. Focusing on random errors, results demonstrate instrument capabilities of performing precise carbon dioxide differential optical depth measurement with less than 3% random error for single-shot operation from up to 11 km altitude. This study is useful for defining CO2 measurement weighting, instrument setting, validation and sensitivity trade-offs.

  5. Technical Note: Formation of airborne ice crystals in a wall independent reactor (WIR) under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Fries, E.; Haunold, W.; Starokozhev, E.; Palitzsch, K.; Sitals, R.; Jaeschke, W.; Püttmann, W.

    2008-07-01

    Both, gas and particle scavenging contribute to the transport of organic compounds by ice crystals in the troposphere. To simulate these processes an experimental setup was developed to form airborne ice crystals under atmospheric conditions. Experiments were performed in a wall independent reactor (WIR) installed in a walk-in cold chamber maintained constantly at -20°C. Aerosol particles were added to the carrier gas of ambient air by an aerosol generator to allow heterogeneous ice formation. Temperature variations and hydrodynamic conditions of the WIR were investigated to determine the conditions for ice crystal formation and crystal growth by vapour deposition. In detail, the dependence of temperature variations from flow rate and temperature of the physical wall as well as temperature variations with an increasing reactor depth were studied. The conditions to provide a stable aerosol concentration in the carrier gas flow were also studied. The temperature distribution inside the reactor was strongly dependent on flow rate and physical wall temperature. At an inlet temperature of -20°C, a flow rate of 30 L•min-1 and a physical wall temperature of +5°C turned out to provide ideal conditions for ice formation. At these conditions a sharp and stable laminar down draft "jet stream" of cold air in the centre of the reactor was produced. Temperatures measured at the chamber outlet were kept well below the freezing point in the whole reactor depth of 1.0 m. Thus, melting did not affect ice formation and crystal growth. The maximum residence time for airborne ice crystals was calculated to at 40 s. Ice crystal growth rates increased also with increasing reactor depth. The maximum ice crystal growth rate was calculated at 2.82 mg• s-1. Further, the removal efficiency of the cleaning device for aerosol particles was 99.8% after 10 min. A reliable particle supply was attained after a preliminary lead time of 15 min. Thus, the minimum lead time was determined at 25

  6. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  7. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  8. Multilateration with the wide-angle airborne laser ranging system: positioning precision and atmospheric effects.

    PubMed

    Bock, O

    1999-05-20

    Numerical simulations based on previously validated models for the wide-angle airborne laser ranging system are used here for assessing the precision in coordinate estimates of ground-based cube-corner retroreflectors (CCR's). It is shown that the precision can be optimized to first order as a function of instrument performance, number of laser shots (LS's), and network size. Laser beam divergence, aircraft altitude, and CCR density are only second-order parameters, provided that the number of echoes per LS is greater than 20. Thus precision in the vertical is approximately 1 mm, with a signal-to-noise ratio of 50 at nadir, a 10-km altitude, a 20 degrees beam divergence, and approximately 5 x 10(3) measurements. Scintillation and fair-weather cumulus clouds usually have negligible influence on the estimates. Laser biases and path delay are compensated for by adjustment of aircraft offsets. The predominant atmospheric effect is with mesoscale nonuniform horizontal temperature gradients, which might lead to biases near 0.5 mm.

  9. Measurement of airborne {sup 218}Po - A Bayesian approach

    SciTech Connect

    Groer, P.G.; Lo, Y.

    1996-12-01

    The standard mathematical treatment of the buildup and decay of airborne radionuclides on a filter paper uses the solutions of the so-called bateman equations adapted to the sampling process. The equations can be interpreted as differential equations for the expectation of an underlying stochastic process, which describes the random fluctuations in the accumulation and decay of the sampled radioactive atoms. The process for the buildup and decay of airborne {sup 218}Po can be characterized as an {open_quotes}immigration-death process{close_quotes} in the widely adopted, biologically based jargon. The probability distribution for the number of {sup 218}Po atoms, accumulated after sampling time t, is Poisson. We show that the distribution of the number of counts, registered by a detector with efficiency {epsilon} during a counting period T after the end of sampling, it also Poisson, with mean dependent on {epsilon},t,T, the flowrate and N{sub o}, the number of airborne {sup 218}Po atoms per unit volume. This Poisson distribution was used to construct the likelihood given the observed number of counts. After inversion with Bayes` Theorem we obtained the posterior density for N{sub o}. This density characterizes the remaining uncertainty about the measured under of {sup 218}Po atoms per unit volume of air. 6 refs., 3 figs., 1 tab.

  10. Functional requirements document for measuring emissions of airborne radioactive materials

    SciTech Connect

    Criddle, J.D. Jr.

    1994-09-01

    This document states the functional requirements and procedures for systems making measurements of radioactive airborne emissions from facilities at the Hanford Site. The following issues are addressed in this document: Definition of the program objectives; Selection of the overall approach to collecting the samples; Sampling equipment design; Sampling equipment maintenance, and quality assurance issues. The intent of this document is to assist WHC in demonstrating a high quality of air emission measurements with verified system performance based on documented system design, testing, inspection, and maintenance.

  11. Comparative influences of airborne pollutants and meteorological parameters on atmospheric visibility and turbidity

    NASA Astrophysics Data System (ADS)

    Wen, Chih-Chung; Yeh, Hui-Hsuan

    2010-06-01

    The purpose of this paper was to investigate how atmospheric air pollutants and meteorological conditions affect atmospheric visibility and turbidity. Meteorological parameter and anthropogenic air pollutant values were recorded during 2004 and 2005 at the Wuchi weather station and the Sha-lu environmental quality database station at the Taichung Harbor near the Taiwan Strait. Local weather conditions (temperature, relative humidity and solar radiation) and airborne pollutant (PM 10, SO 2, NO 2, CO and O 3) concentrations were used to analyze the relative effects of atmospheric air pollutants and meteorological conditions on atmospheric visibility and turbidity. Based on the analytic results, air pollutant concentrations significantly influence visibility and atmospheric turbidity. Wind speed is an important meteorological parameter that affects atmospheric turbidity parameters at the same atmospheric air pollutant concentrations throughout the periods of observation. At wind speeds of greater than 7 m/s, the turbidity factor β Vis is below 0.3 and visibility is greater than 6.5 km. Under very turbid conditions, β Vis > 0.4, the wind velocity is below 5 m/s, regardless of the atmospheric pollutant concentration. When visibility is ≥ 11 km, the PM 10 concentration is predicted to be below 150 μg/m 3 and the atmosphere is regarded as clear. Under very turbid conditions, the PM 10 concentration exceeds 250 μg/m 3.

  12. Potential scientific research which will benefit from an airborne Doppler lidar measurement system

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1980-01-01

    Areas of research which can be significantly aided by the Doppler lidar airborne system are described. The need for systematic development of the airborne Doppler lidar is discussed. The technology development associated with the systematic development of the system will have direct application to satellite systems for which the lidar also promises to be an effective instrument for atmospheric research.

  13. Estimation of the Atmospheric Refraction Effect in Airborne Images Using Radiosonde Data

    NASA Astrophysics Data System (ADS)

    Beisl, U.; Tempelmann, U.

    2016-06-01

    The influence of the atmospheric refraction on the geometric accuracy of airborne photogrammetric images was already considered in the days of analogue photography. The effect is a function of the varying refractive index on the path from the ground to the image sensor. Therefore the effect depends on the height over ground, the view zenith angle and the atmospheric constituents. It is leading to a gradual increase of the scale towards the borders of the image, i.e. a magnification takes place. Textbooks list a shift of several pixels at the borders of standard wide angle images. As it was the necessity of that time when images could only be acquired at good weather conditions, the effect was calculated using standard atmospheres for good atmospheric conditions, leading to simple empirical formulas. Often the pixel shift caused by refraction was approximated as linear with height and compensated by an adjustment of the focal length. With the advent of sensitive digital cameras, the image dynamics allows for capturing images at adverse weather conditions. So the influence of the atmospheric profiles on the geometric accuracy of the images has to be investigated and the validity of the standard correction formulas has to be checked. This paper compares the results from the standard formulas by Saastamoinen with the results calculated from a broad selection of atmospheres obtained from radiosonde profile data. The geometric deviation is calculated by numerical integration of the refractive index as a function of the height using the refractive index formula by Ciddor. It turns out that the effect of different atmospheric profiles (including inversion situations) is generally small compared to the overall effect except at low camera heights. But there the absolute deviation is small. Since the necessary atmospheric profile data are often not readily available for airborne images a formula proposed by Saastamoinen is verified that uses only camera height, the pressure

  14. Balloon atmospheric propagation experiment measurements

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1973-01-01

    High altitude balloon measurements on laser beam fading during propagation through turbulent atmosphere show that a correlation between fading strength and stellar scintillation magnitudes exists. Graphs for stellar scintillation as a function of receiver aperture are used to predict fading bit error rates for neodymium-yag laser communication system.

  15. Transmitter Pulse Estimation and Measurements for Airborne TDEM Systems

    NASA Astrophysics Data System (ADS)

    Vetrov, A.; Mejzr, I.

    2013-12-01

    The processing and interpretation of Airborne Time Domain EM data requires precise description of the transmitter parameters, including shape, amplitude and length of the transmitted pulse. There are several ways to measure pulse shape of the transmitter loop. Transmitted pulse can be recorded by a current monitor installed on the loop. The current monitor readings do not give exact image due to own time-domain physical characteristics of the current monitor. Another way is to restore the primary pulse shape from the receiver data recorded on-time, if such is possible. The receiver gives exact image of the primary field projection combined with the ground response, which can be minimized at high altitude pass, usually with a transmitter elevation higher than 1500 ft from the ground. The readings on the receiver are depending on receiver position and orientation. Modeling of airborne TDEM transmitter pulse allows us to compare estimated and measured shape of the pulse and apply required corrections. Airborne TDEM system transmitter pulse shape has been studied by authors while developing P-THEM system. The data has been gathered during in-doors and out-doors ground tests in Canada, as well as during flight tests in Canada and in India. The P-THEM system has three-axes receiver that is suspended on a tow-cable in the midpoint between the transmitter and the helicopter. The P-THEM receiver geometry does not require backing coils to dump the primary field. The system records full-wave data from the receiver and current monitor installed on the transmitter loop, including on-time and off-time data. The modeling of the transmitter pulse allowed us to define the difference between estimated and measured values. The higher accuracy pulse shape can be used for better data processing and interpretation. A developed model can be applied to similar systems and configurations.

  16. Airborne Shaped Sonic Boom Demonstration Pressure Measurements with Computational Fluid Dynamics Comparisons

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Murray, James E.; Purifoy, Dana D.; Graham, David H.; Meredith, Keith B.; Ashburn, Christopher E.; Stucky, Mark

    2005-01-01

    The Shaped Sonic Boom Demonstration project showed for the first time that by careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. In order to assess the propagation characteristics of the shaped sonic boom and to validate computational fluid dynamics codes, airborne measurements were taken of the pressure signatures in the near field by probing with an instrumented F-15B aircraft, and in the far field by overflying an instrumented L-23 sailplane. This paper describes each aircraft and their instrumentation systems, the airdata calibration, analysis of the near- and far-field airborne data, and shows the good to excellent agreement between computational fluid dynamics solutions and flight data. The flights of the Shaped Sonic Boom Demonstration aircraft occurred in two phases. Instrumentation problems were encountered during the first phase, and corrections and improvements were made to the instrumentation system for the second phase, which are documented in the paper. Piloting technique and observations are also given. These airborne measurements of the Shaped Sonic Boom Demonstration aircraft are a unique and important database that will be used to validate design tools for a new generation of quiet supersonic aircraft.

  17. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  18. Atmospheric water mapping with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Mountain Pass, California

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg; Bruegge, Carol J.; Gary, Bruce L.

    1988-01-01

    Observations are given of the spatial variation of atmospheric precipitable water using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over a desert area in eastern California, derived using a band ratio method and the 940 nm atmospheric water band and 870 nm continuum radiances. The ratios yield total path water from curves of growth supplied by the LOWTRAN 7 atmospheric model. An independent validation of the AVIRIS-derived column abundance at a point is supplied by a spectral hygrometer calibrated with respect to radiosonde observations. Water values conform to topography and fall off with surface elevation. The edge of the water vapor boundary layer defined by topography is thought to have been recovered. The ratio method yields column abundance estimates of good precision and high spatial resolution.

  19. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  20. Simultaneous Red - Blue Lidar and Airborne Impactor Measurements

    NASA Technical Reports Server (NTRS)

    McCormick, M. P.; Blifford, I. H.; Fuller, W. H.; Grams, G. W.

    1973-01-01

    Simultaneous two-color (0.6943 micrometers and 0.3472 micrometers) LIDAR measurements were made in the troposphere and lower stratosphere over Boulder, Colorado during March 1973. In addition, on the evening of March 26, airborne single-stage impactor measurements were made at four altitudes-- 10,500, 25,000, 33,000 and 43,000 feet MSL. These data were integrated at constant altitude for 15,45, 45, and 60 minutes respectively. The LIDAR data were taken with Langley's 48" LIDAR using a dichroic beamsplitter to separate the return at 0.6943 micrometers and 0.3472 micrometers. The analog waveforms for both colors were digitized simultaneously; one on an NCAR data acquisition system and the other on the 48" Langley data acquisition system. A discussion of the preliminary results from these measurements will be presented.

  1. ATLAS: Airborne Tunable Laser Absorption Spectrometer for stratospheric trace gas measurements

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Podolske, James R.; Strahan, Susan E.

    1990-01-01

    The ATLAS instrument is an advanced technology diode laser based absorption spectrometer designed specifically for stratospheric tracer studies. This technique was used in the acquisition of N2O tracer data sets on the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition. These data sets have proved valuable for comparison with atmospheric models, as well as in assisting in the interpretation of the entire ensemble of chemical and meteorological data acquired on these two field studies. The N2O dynamical tracer data set analysis revealed several ramifications concerning the polar atmosphere: the N2O/NO(y) correlation, which is used as a tool to study denitrification in the polar vertex; the N2O Southern Hemisphere morphology, showing subsidence in the winter polar vortex; and the value of the N2O measurements in the interpretation of ClO, O3, and NO(y) measurements and of the derived dynamical tracer, potential vorticity. Field studies also led to improved characterization of the instrument and to improved accuracy.

  2. Development of airborne eddy-correlation flux measurement capabilities for reactive oxides of nitrogen

    NASA Technical Reports Server (NTRS)

    Bradshaw, John (Principal Investigator); Zheng, Xiaonan; Sandholm, Scott T.

    1996-01-01

    This research is aimed at producing a fundamental new research tool for characterizing the source strength of the most important compound controlling the hemispheric and global scale distribution of tropospheric ozone. Specifically, this effort seeks to demonstrate the proof-of-concept of a new general purpose laser-induced fluorescence based spectrometer for making airborne eddy-correlation flux measurements of nitric oxide (NO) and other reactive nitrogen compounds. The new all solid-state laser technology being used in this advanced sensor will produce a forerunner of the type of sensor technology that should eventually result in highly compact operational systems. The proof-of-concept sensor being developed will have over two orders-of-magnitude greater sensitivity than present-day instruments. In addition, this sensor will offer the possibility of eventual extension to airborne eddy-correlation flux measurements of nitrogen dioxide (NO2) and possibly other compounds, such as ammonia (NH3), peroxyradicals (HO2), nitrateradicals (NO3) and several iodine compounds (e.g., I and IO). Demonstration of the new sensor's ability to measure NO fluxes will occur through a series of laboratory and field tests. This proof-of-concept demonstration will show that not only can airborne fluxes of important ultra-trace compounds be made at the few parts-per-trillion level, but that the high accuracy/precision measurements currently needed for predictive models can also. These measurement capabilities will greatly enhance our current ability to quantify the fluxes of reactive nitrogen into the troposphere and significantly impact upon the accuracy of predictive capabilities to model O3's distribution within the remote troposphere. This development effort also offers a timely approach for producing the reactive nitrogen flux measurement capabilities that will be needed by future research programs such as NASA's planned 1999 Amazon Biogeochemistry and Atmospheric Chemistry

  3. Metagenomic Characterization of Airborne Viral DNA Diversity in the Near-Surface Atmosphere

    PubMed Central

    Whon, Tae Woong; Kim, Min-Soo; Roh, Seong Woon; Shin, Na-Ri; Lee, Hae-Won

    2012-01-01

    Airborne viruses are expected to be ubiquitous in the atmosphere but they still remain poorly understood. This study investigated the temporal and spatial dynamics of airborne viruses and their genotypic characteristics in air samples collected from three distinct land use types (a residential district [RD], a forest [FR], and an industrial complex [IC]) and from rainwater samples freshly precipitated at the RD site (RD-rain). Viral abundance exhibited a seasonal fluctuation in the range between 1.7 × 106 and 4.0 × 107 viruses m−3, which increased from autumn to winter and decreased toward spring, but no significant spatial differences were observed. Temporal variations in viral abundance were inversely correlated with seasonal changes in temperature and absolute humidity. Metagenomic analysis of air viromes amplified by rolling-circle phi29 polymerase-based random hexamer priming indicated the dominance of plant-associated single-stranded DNA (ssDNA) geminivirus-related viruses, followed by animal-infecting circovirus-related sequences, with low numbers of nanoviruses and microphages-related genomes. Particularly, the majority of the geminivirus-related viruses were closely related to ssDNA mycoviruses that infect plant-pathogenic fungi. Phylogenetic analysis based on the replication initiator protein sequence indicated that the airborne ssDNA viruses were distantly related to known ssDNA viruses, suggesting that a high diversity of viruses were newly discovered. This research is the first to report the seasonality of airborne viruses and their genetic diversity, which enhances our understanding of viral ecology in temperate regions. PMID:22623790

  4. A reassessment of Antarctic plateau reactive nitrogen based on ANTCI 2003 airborne and ground based measurements

    NASA Astrophysics Data System (ADS)

    Davis, Douglas D.; Seelig, Jon; Huey, Greg; Crawford, Jim; Chen, Gao; Wang, Yuhang; Buhr, Marty; Helmig, Detlev; Neff, William; Blake, Don; Arimoto, Rich; Eisele, Fred

    The first airborne measurements of nitric oxide (NO) on the Antarctic plateau have demonstrated that the previously reported elevated levels of this species extend well beyond the immediate vicinity of South Pole. Although the current database is still relatively weak and critical laboratory experiments are still needed, the findings here suggest that the chemical uniqueness of the plateau may be substantially greater than first reported. For example, South Pole ground-based findings have provided new evidence showing that the dominant process driving the release of nitrogen from the snowpack during the spring/summer season (post-depositional loss) is photochemical in nature with evaporative processes playing a lesser role. There is also new evidence suggesting that nitrogen, in the form of nitrate, may undergo multiple recycling within a given photochemical season. Speculation here is that this may be a unique property of the plateau and much related to its having persistent cold temperatures even during summer. These conditions promote the efficient adsorption of molecules like HNO 3 (and very likely HO 2NO 2) onto snow-pack surface ice where we have hypothesized enhanced photochemical processing can occur, leading to the efficient release of NO x to the atmosphere. In addition, to these process-oriented tentative conclusions, the findings from the airborne studies, in conjunction with modeling exercises suggest a new paradigm for the plateau atmosphere. The near-surface atmosphere over this massive region can be viewed as serving as much more than a temporary reservoir or holding tank for imported chemical species. It defines an immense atmospheric chemical reactor which is capable of modifying the chemical characteristics of select atmospheric constituents. This reactor has most likely been in place over geological time, and may have led to the chemical modulation of some trace species now found in ice cores. Reactive nitrogen has played a critical role in both

  5. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  6. Effect of atmospheric electricity on dry deposition of airborne particles from atmosphere

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Kimmel, V.; Israelsson, S.

    The electric mechanism of dry deposition is well known in the case of unattached radon daughter clusters that are unipolar charged and of high mobility. The problematic role of the electric forces in deposition of aerosol particles is theoretically examined by comparing the fluxes of particles carried by different deposition mechanisms in a model situation. The electric mechanism of deposition appears essential for particles of diameter 10-200 nm in conditions of low wind speed. The electric flux of fine particles can be dominant on the tips of leaves and needles even in a moderate atmospheric electric field of a few hundred V m -1 measured over the plane ground surface. The electric deposition is enhanced under thunderclouds and high voltage power lines. Strong wind suppresses the relative role of the electric deposition when compared with aerodynamic deposition. When compared with diffusion deposition the electric deposition appears less uniform: the precipitation particulate matter on the tips of leaves and especially on needles of top branches of conifer trees is much more intensive than on the ground surface and electrically shielded surfaces of plants. The knowledge of deposition geometry could improve our understanding of air pollution damage to plants.

  7. Electrochemical Measurement of Atmospheric Corrosion

    NASA Technical Reports Server (NTRS)

    DeArmond, Anna H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Corrosion of Shuttle thruster components in atmospheres containing high concentrations of nitrogen tetroxide (NTO) and water is an important issue in ground operations of bipropellant systems in humid locations. Measurements of the corrosivities of NTO-containing atmospheres and the responses of different materials to these atmospheres have been accomplished using an electrochemical sensor. The sensor is composed of alternating aluminum/titanium strips separated by thin insulating layers. Under high humidity conditions a thin film of water covers the surface of the sensor. Added NTO vapor reacts with the water film to form a conductive medium and establishes a galvanic cell. The current from this cell can be integrated with respect to time and related to the corrosion activity. The surface layer formed from humid air/NTO reacts in the same way as an aqueous solution of nitric acid. Nitric acid is generally considered an important agent in NTO corrosion situations. The aluminum/titanium sensor is unresponsive to dry air, responds slightly to humid air (> 75% RH), and responds strongly to the combination of humid air and NTO. The sensor response is a power function (n = 2) of the NTO concentration. The sensor does not respond to NTO in dry air. The response of other materials in this type of sensor is related to position of the material in a galvanic series in aqueous nitric acid. The concept and operation of this electrochemical corrosion measurement is being applied to other corrosive atmospheric contaminants such as hydrogen chloride, hydrogen fluoride, sulfur dioxide, and acidic aerosols.

  8. Evidence for CO in Jupiter's atmosphere from airborne spectroscopic observations at 5 microns

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.; Treffers, R. R.

    1978-01-01

    High-altitude (12.4 km) spectra of Jupiter recorded at the Kuiper Airborne Observatory are analyzed for the presence of CO absorption lines. A line-by-line comparison of Jupiter's spectrum with that of carbon monoxide is presented, as well as a correlation analysis that includes the influence of other gases present in Jupiter's atmosphere (CH4, NH3, H2O, PH3, and GeH4). The resulting evidence points strongly to the presence of carbon monoxide in Jupiter's atmosphere, thus strengthening Beer's evidence for it. Possible explanations for the existence and observability of Jovian CO, including convection from hotter, deeper layers or decomposition of organic molecules, are explored. A recent suggestion that the Jovian CO is restricted to stratospheric levels is not supported by the observations.

  9. Airborne measurements of solar and planetary near ultraviolet radiation during the NASA/ESA CV-900 spacelab simulation

    NASA Technical Reports Server (NTRS)

    Sivjee, G. G.

    1977-01-01

    Results from a comparative study of the feasibility of employing experiment operators on the space shuttle to acquire scientifically worthwhile data are presented. The experiments performed during these tests included spectral observations of the Sun and Venus in the near ultraviolet region. The solar measurements were analyzed to determine ozone abundance in the terrestrial atmosphere. Using a detailed spectral matching technique to compare airborne solar UV measurements with synthetic spectral profiles of sunlight, it is deduced that in winter the total atmospheric ozone abundance is about 0.33 atm/cm at midlatitudes in the northern hemisphere.

  10. Comparison of airborne measurements of greenhouse gases over Railroad Valley, Nevada to satellite and model results

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Yates, E. L.; Iraci, L. T.; Johnson, M. S.; Lopez, J.; Loewenstein, M.; Gore, W.; Tadic, J.; Kuze, A.; Kawakami, S.

    2014-12-01

    As part of the Alpha Jet Atmospheric eXperiment (AJAX) we have measured vertical profiles of greenhouse gases (GHGs) (i.e., carbon dioxide (CO2) and methane (CH4)) over Railroad Valley, NV (RRV) on a monthly basis since 2011. These GHG measurements are conducted to quantify trends of climatically important gases and to validate satellite-based GHG column estimates from Greenhouse Observing Satellite (GOSAT) and Orbiting Carbon Observatory-2 (OCO-2).The vertical profiles of GHGs observed over RRV show relatively uniform features below and above the boundary layer, and mixing ratios are increasing every year. Strong enhancements in the free troposphere are seen in these profiles in some instances. To assess possible sources of these enhancements and their effects on the GHG column average, GHG vertical profiles calculated by the 3-D GEOS-Chem chemical transport model (v9-01-03) and back-trajectory analysis from the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) are compared with airborne measurements. The main results that we will show are 1) the comparison of vertical GHG distribution calculated from GEOS-Chem and that measured by AJAX, 2) total column GHG values from the model, AJAX, and GOSAT, and 3) demonstrate the source apportionment in GHGs profiles measured at RRV.The RRV playa is a flat high altitude desert site where local sources and sinks of carbon-species are expected to be minimal except for a small oil field. RRV is a radiometrically flat region and has been used to calibrate various satellite radiometers before. These measurements are conducted as part of the Alpha Jet Atmospheric eXperiment (AJAX) which regularly measures GHGs, ozone, and 3-D winds over California and Nevada. The Alpha Jet is operated from NASA Ames Research Center at Moffett Field and airborne instruments are installed in an unpressurized wing pod.

  11. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  12. Diode - Pumped Nd:YAG Lidar for Airborne Cloud Measurements

    NASA Technical Reports Server (NTRS)

    Mehnert, A.; Halldorsson, TH.; Herrmann, H.; Haering, R.; Krichbaumer, W.; Streicher, J.; Werner, CH.

    1992-01-01

    This work is concerned with the experimental method used to separate scattering and to use it for the determination of cloud microphysical parameters. It is also the first airborne test of a lidar version related to the ATLID Program - ESA's scheduled spaceborne lidar. The already tested DLR microlidar was modified with the new diode-pumped laser and a faster data recording system was added. The system was used during the CLEOPATRA campaign in the DLR research aircraft Falcon 20 to measure cloud parameters. The diode pumped Nd:YAG laser we developed for the microlidar is a modification of the laser we introduced at the Lidar Congress at 'Laser 1991' in Munich. Various aspects of this work are discussed.

  13. An Intercomparison of Airborne VOC and PAN Measurements

    NASA Astrophysics Data System (ADS)

    Hansel, A.; Wisthaler, A.; Flocke, F.; Weinheimer, A.; Fall, R.; Goldan, P.; Hübler, G.; Fehsenfeld, F. C.

    2002-12-01

    As part of the Texas Air Quality Study (TexAQS 2000) an informal airborne intercomparison has been conducted to evaluate the state-of-the-art of fast-response, in-situ methods for analyzing Volatile Organic Compounds (VOCs) and peroxyacetyl nitrate (PAN). Instrumentation included a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS), the Tropospheric Airborne Chromatograph for Oxy-hydrocarbons and Hydrocarbons (TACOH) and a gas chromatograph for PAN detection using electron capture (GC/ECD). The measurements were made in the Greater Houston area and East Texas in August/September 2000 during 13 flights with the NSF/NCAR ELECTRA aircraft. The intercomparison was conducted mainly in the boundary layer but included some encounters with air masses from the free troposphere. Final results from the intercomparison show that measurements of acetaldehyde, isoprene, the sum\\textsuperscript{*} of acetone and propanal, the sum\\textsuperscript{*} methyl vinyl ketone and methacrolein (\\textsuperscript{*} PTR-MS does not distinguish between isobaric species) and toluene agree very well. Poor agreement was achieved in the case of methanol and the underlying sensitivity problem in the PTR-MS or TACOH system is under investigation. The results of the PAN intercomparison indicate that the PTR-MS technique suffered from an interference most likely associated with the presence of peracetic acid in photochemically aged air. If this interfering signal was traced by periodically inserting a selective PAN scrubber (thermal decomposition) into the sample air stream and subtracted from the original signal, the corrected PTR-MS PAN data are in very good agreement with the GC/ECD results.

  14. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  15. NASA Langley Atmospheric Science Data Center Toolsets for Airborne Data (TAD): Common Variable Naming Schema

    NASA Astrophysics Data System (ADS)

    Chen, G.; Early, A. B.; Peeters, M. C.

    2014-12-01

    NASA has conducted airborne tropospheric chemistry studies for about three decades. These field campaigns have generated a great wealth of observations, which are characterized by a wide range of trace gases and aerosol properties. The airborne observational data have often been used in assessment and validation of models and satellite instruments. One particular issue is a lack of consistent variable naming across field campaigns, which makes cross-mission data discovery difficult. The ASDC Toolset for Airborne Data (TAD) is being designed to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. As part of this effort, a common naming system was developed to provide a link between variables from different aircraft field studies. This system covers all current and past airborne in-situ measurements housed at the ASDC, as well as select NOAA missions. The TAD common variable naming system consists of 6 categories and 3 sub-levels. The top-level category is primarily defined by the physical characteristics of the measurement: e.g., aerosol, cloud, trace gases. The sub-levels were designed to organize the variables according to nature of measurement (e.g., aerosol microphysical and optical properties) or chemical structures (e.g., carbon compound). The development of the TAD common variable naming system was in consultation with staff from the Global Change Master Directory (GCMD) and referenced/expanded the existing Climate and Forecast (CF) variable naming conventions. The detailed structure of the TAD common variable naming convention and its application in TAD development will be presented.

  16. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; Veselovskii, Igor; Forno, Ricardo; Mielke, Bernd; Stein, Bernhard; Leblanc, Thierry; McDermid, Stuart; Voemel, Holger

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  17. LIDAR for measuring atmospheric extinction

    NASA Astrophysics Data System (ADS)

    Dawsey, M.; Gimmestad, G.; Roberts, D.; McGraw, J.; Zimmer, P.; Fitch, J.

    2006-06-01

    The Georgia Tech Research Institute and the University of New Mexico are developing a compact, rugged, eye safe lidar (laser radar) to be used specifically for measuring atmospheric extinction in support of the second generation of the CCD/Transit Instrument (CTI-II). The CTI-II is a 1.8 meter telescope that will be used to accomplish a precise timedomain imaging photometric and astrometric survey at the McDonald Observatory in West Texas. The supporting lidar will enable more precise photometry by providing real-time measurements of the amount of atmospheric extinction as well as its cause, i.e. low-lying aerosols, dust or smoke in the free troposphere, or high cirrus. The goal of this project is to develop reliable, cost-effective lidar technology for any observatory. The lidar data can be used to efficiently allocate observatory time and to provide greater integrity for ground-based data. The design is described in this paper along with estimates of the lidar's performance.

  18. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  19. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    EPA Science Inventory

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. DNPH active-sampling is a method widely used for sampling airborne aldehydes and ketones (carbonyls); ...

  20. NASA Langley Atmospheric Science Data Center Toolsets for Airborne Data (TAD): User Interface Design and Development

    NASA Astrophysics Data System (ADS)

    Beach, A. L., III; Early, A. B.; Chen, G.; Parker, L.

    2014-12-01

    NASA has conducted airborne tropospheric chemistry studies for about three decades. These field campaigns have generated a great wealth of observations, which are characterized by a wide range of trace gases and aerosol properties. The airborne observational data have often been used in assessment and validation of models and satellite instruments. The ASDC Toolset for Airborne Data (TAD) is being designed to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. Given the sheer volume of data variables across field campaigns and instruments reporting data on different time scales, this data is often difficult and time-intensive for researchers to analyze. The TAD web application is designed to provide an intuitive user interface (UI) to facilitate quick and efficient discovery from a vast number of airborne variables and data. Users are given the option to search based on high-level parameter groups, individual common names, mission and platform, as well as date ranges. Experienced users can immediately filter by keyword using the global search option. Once the user has chosen their required variables, they are given the option to either request PI data files based on their search criteria or create merged data, i.e. geo-located data from one or more measurement PIs. The purpose of the merged data feature is to allow users to compare data from one flight, as not all data from each flight is taken on the same time scale. Time bases can be continuous or based on the time base from one of the measurement time scales and intervals. After an order is submitted and processed, an ASDC email is sent to the user with a link for data download. The TAD user interface design, application architecture, and proposed future enhancements will be presented.

  1. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data

    SciTech Connect

    Bo-Cai Gao; Goetz, A.F.H. )

    1990-03-20

    High spatial resolution column atmospheric water vapor amounts were derived from spectral data collected by the airborne visible-infrared imaging spectrometer (AVIRIS). The quantitative derivation is made by curve fitting observed spectra with calculated spectra in the 1.14-{mu}m and 0.94-{mu}m water vapor band absorption regions using an atmospheric model, a narrow-band spectral model, and a nonlinear least squares fitting technique. The derivation makes use of the facts that (1) the reflectances of many ground targets vary approximately linearly with wavelength in the 0.94- and 1.14-{mu}m water vapor band absorption regions, (2) the scattered radiation near 1 {mu}m is small compared with the directly reflected radiation when the atmospheric aerosol concentrations are low, and (3) the scattered radiation in the lower part of the atmosphere is subjected to the water vapor absorption. Based on the analyses of an AVIRIS data set that was acquired within an hour of radiosonde launch, it appears that the accuracy approaches the precision. The derived column water vapor amounts are independent of the absolute surface reflectances. It now appears feasible to derive high spatial resolution column water vapor amounts over land areas from satellite altitude with the proposed high resolution imaging spectrometer (HIRIS). Curve fitting of spectra near 1 {mu}m from areas covered with vegetation, using an atmospheric model and a simplified vegetation reflectance model, indicates that both the amount of atmospheric water vapor and the moisture content of vegetation can be retrieved simultaneously because the band centers of liquid water in vegetation and the atmospheric water vapor are offset by approximately 0.05 {mu}m.

  2. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton.

    PubMed

    Churnside, James H; Thorne, Richard E

    2005-09-10

    Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton. PMID:16161666

  3. Airborne microwave Doppler measurements of ocean wave directional spectra

    NASA Technical Reports Server (NTRS)

    Plant, W. J.; Keller, W. C.; Reeves, A. B.; Uliana, E. A.; Johnson, J. W.

    1987-01-01

    A technique is presented for measuring ocean wave directional spectra from aircraft using microwave Doppler radar. The technique involves backscattering coherent microwave radiation from a patch of sea surface which is small compared to dominant ocean wavelengths in the antenna look direction, and large compared to these lengths in the perpendicular (azimuthal) direction. The mean Doppler shift of the return signal measured over short time intervals is proportional to the mean sea surface velocity of the illuminated patch. Variable sea surface velocities induced by wave motion therefore produce time-varying Doppler shifts in the received signal. The large azimuthal dimension of the patch implies that these variations must be produced by surface waves traveling near the horizontal antenna look direction thus allowing determination of the direction of wave travel. Linear wave theory is used to convert the measured velocities into ocean wave spectral densities. Spectra measured simultaneously with this technique and two laser profilometers, and nearly simultaneous with this technique and two laser profilometers, and nearly simultaneous with a surface buoy, are presented. Applications and limitations of this airborne Doppler technique are discussed.

  4. Airborne measurements performed by a light aircraft during Pegasos spring 2013 campaign

    NASA Astrophysics Data System (ADS)

    Väänänen, Riikka; Krejci, Radovan; Manninen, Hanna E.; Nieminen, Tuomo; Yli-Juuti, Taina; Kangasluoma, Juha; Pohja, Toivo; Aalto, Pasi P.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    To fully understand the chemical and physical processes in atmosphere, measuring only on-ground is not sufficient. To extend the measurements into the lower troposphere, the University of Helsinki has performed airborne campaigns since 2009. During spring 2013, a light aircraft was used to measure the aerosol size distribution over boreal forests as a part of the Pegasos 'Norhern Mission'. The aims of the measurements were to quantify the vertical profiles of aerosols up to the altitude of 3.5 km, to study the new particle formation in the lower troposphere, to measure the planetary boundary layer evolution, and to support the measurements performed by Zeppelin NT. We used a Cessna 172 light aircraft as a platform. An aerosol and gas inlet was mounted under the right wing and the sample air was conducted inside the cabin where most of the instruments were placed. The aerosol measurement instruments included a TSI 3776 condensation particle counter (CPC) with a cut-off size of 3 nm, a Scanning Mobility Particle Sizer (SMPS), with a size range of 10-350 nm, and a Particle Size Magnifier (PSM) connected with a TSI 3772 condensation particle counter. As the properties of the PSM measuring in airborne conditions were still under testing during the campaign, the setups of the PSM varied between the measurements. Other instruments on board included a Li-Cor Li-840 H2O/Co2-analyzer, a temperature sensor, a relative humidity sensor, and a GPS receiver. Total amount of 45 flights with 118 flight hours were performed between 24th April and 15th June 2013. The majority of the flights were flown around SMEAR II station located in Hyytiälä, and when possible, the flights were synchronized with the Zeppelin flights. Simultaneously, an extensive field campaign to measure aerosol and gas properties was performed on-ground at SMEAR II station. A time series of airborne aerosol data of around 1.5 months allows us to construct statistical vertical profiles of aerosol size

  5. Using an A-10 Aircraft for Airborne measurements of TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Christian, Hugh, J.; Blakeslee, Richard J.; Grove, J. Eric; Chektman, Alexandre; Jonsson, Haflidi; Detwiler, Andrew G.

    2012-01-01

    Plans are underway to convert an A-10 combat attack aircraft into a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft would be terrestrial gamma ]ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x-and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into this TGF production mechanism. The A -10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  6. Airborne measurements of total reactive odd nitrogen (NO(y))

    NASA Technical Reports Server (NTRS)

    Huebler, G.; Fahey, D. W.; Ridley, B. A.; Gregory, G. L.; Fehsenfeld, F. C.

    1992-01-01

    Airborne total reactive odd nitrogen measurements were made during August and September 1986 over the continental United States and off the west coast over the Pacific Ocean during NASA's Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation 2 program. Measurements were made in the marine and continental boundary layer and the free troposphere up to 6.1 km altitude. NO(y) mixing ratios between 24 pptv and more than 1 ppbv were found, with median values of 101 pptv in the marine boundary layer, 298 pptv in the marine free troposphere, and 288 pptv in the continental free troposphere, respectively. The marine troposphere exhibited layered structure which was also seen in the simultaneously measured ozone mixing ratio and dew point temperature. The averaged vertical NO(y) profile over the ocean does not show a distinct gradient. The NO(y) mixing ratio over the continent decreases with increasing altitude. The latter is consistent with our understanding that the continents are the major source region for these gases.

  7. Airborne Flux Measurements of Volatile Organic Compounds and NOx over a European megacity

    NASA Astrophysics Data System (ADS)

    Shaw, Marvin; Lee, James; Davison, Brian; Misztal, Pawel; Karl, Thomas; Hewitt, Nick; Lewis, Alistair

    2014-05-01

    Ground level ozone (O3) and nitrogen dioxide (NO2) are priority pollutants whose concentrations are closely regulated by European Union Air Quality Directive 2008/50/EC. O3 is a secondary pollutant, produced from a complex chemical interplay between oxides of nitrogen (NOx = NO + NO2) and volatile organic compounds (VOCs). Whilst the basic atmospheric chemistry leading to O3 formation is generally well understood, there are substantial uncertainties associated with the magnitude of emissions of both VOCs and NOx. At present our knowledge of O3 precursor emissions in the UK is primarily derived from National Atmospheric Emission inventories (NAEI) that provide spatially disaggregated estimates at 1x1km resolution, and these are not routinely tested at city or regional scales. Uncertainties in emissions propagate through into uncertainties in predictions of air quality in the future, and hence the likely effectiveness of control policies on both background and peak O3 and NO2 concentrations in the UK. The Ozone Precursor Fluxes in the Urban Environment (OPFUE) project aims to quantify emission rates for NOx and selected VOCs in and around the megacity of London using airborne eddy covariance (AEC). The mathematical foundation for AEC has been extensively reviewed and AEC measurements of ozone, dimethyl sulphide, CO2 and VOCs have been previously reported. During the summer of 2013, approximately 30 hours of airborne flux measurements of toluene, benzene, NO and NO2 were obtained from the NERC Airborne Research and Survey Facility's (ARSF) Dornier-228 aircraft. Over SE England, flights involved repeated south west to north east transects of ~50 km each over Greater London and it's surrounding suburbs and rural areas, flying at the aircraft's minimum operating flight altitude and airspeed (~300m, 80m/s). Mixing ratios of benzene and toluene were acquired at 2Hz using a proton transfer reaction mass spectrometer (PTR-MS) and compared to twice hourly whole air canister

  8. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  9. Airborne lidar for ocean-atmosphere studies and assessment of future satellite mission concepts

    NASA Astrophysics Data System (ADS)

    Hostetler, C. A.; Hair, J. W.; Hu, Y.; Behrenfeld, M. J.; Cetinic, I.; Butler, C. F.; Powell, K. A.; Ferrare, R. A.; Burton, S. P.; Cairns, B.; Chowdhary, J.; Hare, R. J.; Harper, D. B.; Cook, A. L.; Berkoff, T.; Mack, T. L.; Notari, A.; Woodell, G. A.

    2014-12-01

    Global estimates of phytoplankton biomass (Cphyto) and particulate organic carbon (POC) have traditionally been made using passive ocean color measurements. Recently, data from the CALIOP sensor on the CALIPSO satellite have provided the first measurements of these two key carbon cycle stocks from a space-based lidar. Although CALIOP was not designed for subsurface ocean retrievals, global distributions of Cphyto and POC retrieved with CALIOP compare well with independent assessments using MODIS passive ocean color data. This success suggests a potentially important future role for space lidar measurements in global ocean plankton research, particularly for a lidar system optimized for water column profiling. To this end, the NASA Langley airborne High Spectral Resolution Lidar (HSRL) was recently modified for ocean research to provide independent vertically-resolved retrievals of the diffuse attenuation coefficient (Kd) and particulate backscatter coefficient (bbp). The advanced HSRL has been deployed on three ocean-focused airborne field missions: a mission based in the Azores in October 2012, a CALIPSO validation mission based in Bermuda in June 2014, and the Ship-Aircraft Bio-Optical Research (SABOR) experiment based in Bermuda, New Hampshire, and Virginia in July-August of 2014. On the Azores and SABOR missions, the HSRL instrument acquired data coincident with ship-based optical measurements, and data were acquired along CALIOP tracks on all three missions. Results from the airborne HSRL and CALIOP studies will be described, along with a discussion of potential future aircraft campaigns, the scalability of the HSRL technique to space, and the value of simultaneously measuring plankton abundance, marine aerosol loading and optical properties, and cloud microphysical properties and albedo.

  10. Comparison of Continuous Wave CO2 Doppler Lidar Calibration Using Earth Surface Targets in Laboratory and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1999-01-01

    Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency

  11. Airborne Sunphotometer Studies of Aerosol Properties and Effects, Including Closure Among Satellite, Suborbital Remote, and In situ Measurements

    NASA Technical Reports Server (NTRS)

    Russlee, Philip B.; Schmid, B.; Redemann, J.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Airborne sunphotometry has been used to measure aerosols from North America, Europe, and Africa in coordination with satellite and in situ measurements in TARFOX (1996), ACE-2 (1997), PRIDE (2000), and SAFARI 2000. Similar coordinated measurements of Asian aerosols are being conducted this spring in ACE-Asia and are planned for North American aerosols this summer in CLAMS. This paper summarizes the approaches used, key results, and implications for aerosol properties and effects, such as single scattering albedo and regional radiative forcing. The approaches exploit the three-dimensional mobility of airborne sunphotometry to access satellite scenes over diverse surfaces (including open ocean with and without sunglint) and to match exactly the atmospheric layers sampled by airborne in situ measurements and other radiometers. These measurements permit tests of the consistency, or closure, among such diverse measurements as aerosol size-resolved chemical composition; number or mass concentration; light extinction, absorption, and scattering (total, hemispheric back and 180 deg.); and radiative fluxes. In this way the airborne sunphotometer measurements provide a key link between satellite and in situ measurements that helps to understand any discrepancies that are found. These comparisons have led to several characteristic results. Typically these include: (1) Better agreement among different types of remote measurements than between remote and in situ measurements. (2) More extinction derived from transmission measurements than from in situ measurements. (3) Larger aerosol absorption inferred from flux radiometry than from in situ measurements. Aerosol intensive properties derived from these closure studies have been combined with satellite-retrieved fields of optical depth to produce fields of regional radiative forcing. We show results for the North Atlantic derived from AVHRR optical depths and aerosol intensive properties from TARFOX and ACE-2. Companion papers

  12. Airborne Measurements of Aerosol Size Distributions During PACDEX

    NASA Astrophysics Data System (ADS)

    Rogers, D. C.; Gandrud, B.; Campos, T.; Kok, G.; Stith, J.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) is an airborne project that attempts to characterize the indirect aerosol effect by tracing plumes of dust and pollution across the Pacific Ocean. This project occurred during April-May 2007 and used the NSF/NCAR HIAPER research aircraft. When a period of strong generation of dust particles and pollution was detected by ground-based and satellite sensors, then the aircraft was launched from Colorado to Alaska, Hawaii, and Japan. Its mission was to intercept and track these plumes from Asia, across the Pacific Ocean, and ultimately to the edges of North America. For more description, see the abstract by Stith and Ramanathan (this conference) and other companion papers on PACDEX. The HIAPER aircraft carried a wide variety of sensors for measuring aerosols, cloud particles, trace gases, and radiation. Sampling was made in several weather regimes, including clean "background" air, dust and pollution plumes, and regions with cloud systems. Altitude ranges extended from 100 m above the ocean to 13.4 km. This paper reports on aerosol measurements made with a new Ultra-High Sensitivity Aerosol Spectrometer (UHSAS), a Radial Differential Mobility Analyzer (RDMA), a water-based CN counter, and a Cloud Droplet Probe (CDP). These cover the size range 10 nm to 10 um diameter. In clear air, dust was detected with the UHSAS and CDP. Polluted air was identified with high concentrations of carbon monoxide, ozone, and CN. Aerosol size distributions will be presented, along with data to define the context of weather regimes.

  13. Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.

    2000-01-01

    During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.

  14. Airborne Bacterial Diversity from the Low Atmosphere of Greater Mexico City.

    PubMed

    García-Mena, Jaime; Murugesan, Selvasankar; Pérez-Muñoz, Ashael Alfredo; García-Espitia, Matilde; Maya, Otoniel; Jacinto-Montiel, Monserrat; Monsalvo-Ponce, Giselle; Piña-Escobedo, Alberto; Domínguez-Malfavón, Lilianha; Gómez-Ramírez, Marlenne; Cervantes-González, Elsa; Núñez-Cardona, María Teresa

    2016-07-01

    Greater Mexico City is one of the largest urban centers in the world, with an estimated population by 2010 of more than 20 million inhabitants. In urban areas like this, biological material is present at all atmospheric levels including live bacteria. We sampled the low atmosphere in several surveys at different points by the gravity method on LB and blood agar media during winter, spring, summer, and autumn seasons in the years 2008, 2010, 2011, and 2012. The colonial phenotype on blood agar showed α, β, and γ hemolytic activities among the live collected bacteria. Genomic DNA was extracted and convenient V3 hypervariable region libraries of 16S rDNA gene were high-throughput sequenced. From the data analysis, Firmicutes, Proteobacteria, and Actinobacteria were the more abundant phyla in all surveys, while the genera from the family Enterobacteriaceae, in addition to Bacillus spp., Pseudomonas spp., Acinetobacter spp., Erwinia spp., Gluconacetobacter spp., Proteus spp., Exiguobacterium spp., and Staphylococcus spp. were also abundant. From this study, we conclude that it is possible to detect live airborne nonspore-forming bacteria in the low atmosphere of GMC, associated to the microbial cloud of its inhabitants.

  15. Airborne Bacterial Diversity from the Low Atmosphere of Greater Mexico City.

    PubMed

    García-Mena, Jaime; Murugesan, Selvasankar; Pérez-Muñoz, Ashael Alfredo; García-Espitia, Matilde; Maya, Otoniel; Jacinto-Montiel, Monserrat; Monsalvo-Ponce, Giselle; Piña-Escobedo, Alberto; Domínguez-Malfavón, Lilianha; Gómez-Ramírez, Marlenne; Cervantes-González, Elsa; Núñez-Cardona, María Teresa

    2016-07-01

    Greater Mexico City is one of the largest urban centers in the world, with an estimated population by 2010 of more than 20 million inhabitants. In urban areas like this, biological material is present at all atmospheric levels including live bacteria. We sampled the low atmosphere in several surveys at different points by the gravity method on LB and blood agar media during winter, spring, summer, and autumn seasons in the years 2008, 2010, 2011, and 2012. The colonial phenotype on blood agar showed α, β, and γ hemolytic activities among the live collected bacteria. Genomic DNA was extracted and convenient V3 hypervariable region libraries of 16S rDNA gene were high-throughput sequenced. From the data analysis, Firmicutes, Proteobacteria, and Actinobacteria were the more abundant phyla in all surveys, while the genera from the family Enterobacteriaceae, in addition to Bacillus spp., Pseudomonas spp., Acinetobacter spp., Erwinia spp., Gluconacetobacter spp., Proteus spp., Exiguobacterium spp., and Staphylococcus spp. were also abundant. From this study, we conclude that it is possible to detect live airborne nonspore-forming bacteria in the low atmosphere of GMC, associated to the microbial cloud of its inhabitants. PMID:26944561

  16. Airborne flux measurements of Biogenic Isoprene over California

    SciTech Connect

    Misztal, P.; Karl, Thomas G.; Weber, Robin; Jonsson, H. H.; Guenther, Alex B.; Goldstein, Allen H.

    2014-10-10

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK+MAC, methanol, monoterpenes, and MBO over ~10,000-km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z/zi). Fluxes were generally measured by flying consistently 1 at 400 m ±50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  17. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  18. Airborne measurements of surface layer turbulence over the ocean during cold air outbreaks

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Shien; Yeh, Eueng-Nan

    1987-01-01

    The spectral characteristics of surface layer turbulence for the near-shore cloud street regions over the Atlantic Ocean were examined using 50-m level data of airborne measurements of atmospheric turbulence spectra above the western Atlantic Ocean during cold air outbreaks. The present study, performed for the Mesoscale Air-Sea Exchange (MASEX) experiment, extends and completes the preliminary analyses of Chou and Yeh (1987). In the inertial subrange, a near 4/3 ratio was observed between velocity spectra normal to and those along the aircraft heading. A comparison of the turbulent kinetic energy budgets with those of Wyngaard and Cote (1971) and Caughey and Wyngaard (1979) data indicates that the turbulent kinetic energy in the surface layer is dissipated less in the MASEX data than in data obtained by the previous groups.

  19. Design of an in-line, digital holographic imaging system for airborne measurement of clouds.

    PubMed

    Spuler, Scott M; Fugal, Jacob

    2011-04-01

    We discuss the design and performance of an airborne (underwing) in-line digital holographic imaging system developed for characterizing atmospheric cloud water droplets and ice particles in situ. The airborne environment constrained the design space to the simple optical layout that in-line non-beam-splitting holography affords. The desired measurement required the largest possible sample volume in which the smallest desired particle size (∼5 μm) could still be resolved, and consequently the magnification requirement was driven by the pixel size of the camera and this particle size. The resulting design was a seven-element, double-telecentric, high-precision optical imaging system used to relay and magnify a hologram onto a CCD surface. The system was designed to preserve performance and high resolution over a wide temperature range. Details of the optical design and construction are given. Experimental results demonstrate that the system is capable of recording holograms that can be reconstructed with resolution of better than 6.5 μm within a 15 cm(3) sample volume.

  20. Radar range measurements in the atmosphere.

    SciTech Connect

    Doerry, Armin Walter

    2013-02-01

    The earths atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  1. Using airborne LIDAR to measure tides and river slope

    NASA Astrophysics Data System (ADS)

    Talke, S. A.; Hudson, A.; Chickadel, C. C.; Farquharson, G.; Jessup, A. T.

    2014-12-01

    The spatial variability of tides and the tidally-averaged water-level is often poorly resolved in shallow waters, despite its importance in validating models and interpreting dynamics. In this contribution we explore using airborne LIDAR to remotely observe tides and along-river slope in the Columbia River estuary (CRE). Using an airplane equipped with LIDAR, differential GPS, and an infra-red camera, we flew 8 longitudinal transects over a 50km stretch of the CRE over a 14 hour period in June 2013. After correcting for airplane elevation, pitch and roll and median filtering over 1km blocks, a spatially-resolved data set of relative water level was generated. Results show the tide (amplitude 2m) propagating upstream at the expected phase velocity. A sinusoid with 2 periods (12.4 and 24 hours) was next fit to data to produce a smooth tide and extract the mean slope. Comparison with 4 tide gauges indicates first order agreement with measured tides (rms error 0.1m), and confirms that a substantial sub-tidal gradient exists in the CRE. This proof-of-concept experiment indicates that remote sensing of tides in coastal areas is feasible, with possible applications such as improving bathymetric surveys or inferring water depths.

  2. Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system

    NASA Astrophysics Data System (ADS)

    Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole

    2013-04-01

    Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump

  3. Mapping methane emission sources over California based on airborne measurements

    NASA Astrophysics Data System (ADS)

    Karl, T.; Guha, A.; Peischl, J.; Misztal, P. K.; Jonsson, H.; Goldstein, A. H.; Ryerson, T. B.

    2011-12-01

    The California Global Warming Solutions Act of 2006 (AB 32) has created a need to accurately characterize the emission sources of various greenhouse gases (GHGs) and verify the existing state GHG inventory. Methane (CH4) is a major GHG with a global warming potential of 20 times that of CO2 and currently constitutes about 6% of the total statewide GHG emissions on a CO2 equivalent basis. Some of the major methane sources in the state are area sources where methane is biologically produced (e.g. dairies, landfills and waste treatment plants) making bottom-up estimation of emissions a complex process. Other potential sources include fugitive emissions from oil extraction processes and natural gas distribution network, emissions from which are not well-quantified. The lack of adequate field measurement data to verify the inventory and provide independently generated estimates further contributes to the overall uncertainty in the CH4 inventory. In order to gain a better perspective of spatial distribution of major CH4 sources in California, a real-time measurement instrument based on Cavity Ring Down Spectroscopy (CRDS) was installed in a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of airborne CH4 and CO2 measurements during eight unique flights which covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. The coincident VOC measurements, obtained through a high frequency proton transfer reaction mass spectrometer (PTRMS), aid in CH4 source identification. High mixing ratios of CH4 (> 2000 ppb) are observed consistently in all the flight transects above the Central Valley. These high levels of CH4 are accompanied by high levels of methanol which is an important

  4. Using airborne HIAPER Pole-to-Pole Observations (HIPPO) to evaluate model and remote sensing estimates of atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Frankenberg, Christian; Kulawik, Susan S.; Wofsy, Steven C.; Chevallier, Frédéric; Daube, Bruce; Kort, Eric A.; O'Dell, Christopher; Olsen, Edward T.; Osterman, Gregory

    2016-06-01

    In recent years, space-borne observations of atmospheric carbon dioxide (CO2) have been increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column-averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network (TCCON). Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) flights from 01/2009 through 09/2011 to validate CO2 measurements from satellites (Greenhouse Gases Observing Satellite - GOSAT, Thermal Emission Sounder - TES, Atmospheric Infrared Sounder - AIRS) and atmospheric inversion models (CarbonTracker CT2013B, Monitoring Atmospheric Composition and Climate (MACC) v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, in particular at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of -0.06 ppm, and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm, and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm, and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20, and 50 atmospheric soundings have been averaged for GOSAT, TES, and AIRS

  5. ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports

    SciTech Connect

    Biraud, S. C.; Tom, M. S.; Sweeney, C.

    2016-01-01

    We report on a 5-year multi-institution and multi-agency airborne study of atmospheric composition and carbon cycling at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, with scientific objectives that are central to the carbon-cycle and radiative-forcing goals of the U.S. Global Change Research Program and the North American Carbon Program (NACP). The goal of these measurements is to improve understanding of 1) the carbon exchange of the Atmospheric Radiation Measurement (ARM) SGP region; 2) how CO2 and associated water and energy fluxes influence radiative-forcing, convective processes, and CO2 concentrations over the ARM SGP region, and 3) how greenhouse gases are transported on continental scales.

  6. Alexandrite laser transmitter development for airborne water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas H.; Ponsardin, Patrick; Higdon, Noah S.; DeYoung, Russell J.; Browell, Edward V.

    1995-01-01

    In the DIAL technique, the water vapor concentration profile is determined by analyzing the lidar backscatter signals for laser wavelengths tuned 'on' and 'off' a water vapor absorption line. Desired characteristics of the on-line transmitted laser beam include: pulse energy greater than or equal to 100 mJ, high-resolution tuning capability (uncertainty less than 0.25 pm), good spectral stability (jitter less than 0.5 pm about the mean), and high spectral purity (greater than 99 percent). The off-line laser is generally detuned less than 100 pm away from the water vapor line. Its spectral requirements are much less stringent. In our past research, we developed and demonstrated the airborne DIAL technique for water vapor measurements in the 720-nm spectral region using a system based on an alexandrite laser as the transmitter for the on-line wavelength and a Nd:YAG laser-pumped dye laser for the off-line wavelength. This off-line laser has been replaced by a second alexandrite laser. Diode lasers are used to injection seed both lasers for frequency and linewidth control. This eliminates the need for the two intracavity etalons utilized in our previous alexandrite laser and thereby greatly reduces the risk of optical damage. Consequently, the transmitted pulse energy can be substantially increased, resulting in greater measurement range, higher data density, and increased measurement precision. In this paper, we describe the diode injection seed source, the two alexandrite lasers, and the device used to line lock the on-line seed source to the water vapor absorption feature.

  7. Challenges in the Management and Stewardship of Airborne Observational Data at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL)

    NASA Astrophysics Data System (ADS)

    Aquino, J.; Daniels, M. D.

    2015-12-01

    The National Science Foundation (NSF) provides the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) funding for the operation, maintenance and upgrade of two research aircraft: the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V and the NSF/NCAR Hercules C-130. A suite of in-situ and remote sensing airborne instruments housed at the EOL Research Aviation Facility (RAF) provide a basic set of measurements that are typically deployed on most airborne field campaigns. In addition, instruments to address more specific research requirements are provided by collaborating participants from universities, industry, NASA, NOAA or other agencies (referred to as Principal Investigator, or PI, instruments). At the 2014 AGU Fall Meeting, a poster (IN13B-3639) was presented outlining the components of Airborne Data Management included field phase data collection, formats, data archival and documentation, version control, storage practices, stewardship and obsolete data formats, and public data access. This talk will cover lessons learned, challenges associated with the above components, and current developments to address these challenges, including: tracking data workflows for aircraft instrumentation to facilitate identification, and correction, of gaps in these workflows; implementation of dataset versioning guidelines; and assignment of Digital Object Identifiers (DOIs) to data and instrumentation to facilitate tracking data and facility use in publications.

  8. Measurement of airborne particle concentrations near the Sunset Crater volcano, Arizona.

    PubMed

    Benke, Roland R; Hooper, Donald M; Durham, James S; Bannon, Donald R; Compton, Keith L; Necsoiu, Marius; McGinnis, Ronald N

    2009-02-01

    Direct measurements of airborne particle mass concentrations or mass loads are often used to estimate health effects from the inhalation of resuspended contaminated soil. Airborne particle mass concentrations were measured using a personal sampler under a variety of surface-disturbing activities within different depositional environments at both volcanic and nonvolcanic sites near the Sunset Crater volcano in northern Arizona. Focused field investigations were performed at this analog site to improve the understanding of natural and human-induced processes at Yucca Mountain, Nevada. The level of surface-disturbing activity was found to be the most influential factor affecting the measured airborne particle concentrations, which increased over three orders of magnitude relative to ambient conditions. As the surface-disturbing activity level increased, the particle size distribution and the majority of airborne particle mass shifted from particles with aerodynamic diameters less than 10 mum (0.00039 in) to particles with aerodynamic diameters greater than 10 mum (0.00039 in). Under ambient conditions, above average wind speeds tended to increase airborne particle concentrations. In contrast, stronger winds tended to decrease airborne particle concentrations in the breathing zone during light and heavy surface-disturbing conditions. A slight increase in the average airborne particle concentration during ambient conditions was found above older nonvolcanic deposits, which tended to be finer grained than the Sunset Crater tephra deposits. An increased airborne particle concentration was realized when walking on an extremely fine-grained deposit, but the sensitivity of airborne particle concentrations to the resuspendible fraction of near-surface grain mass was not conclusive in the field setting when human activities disturbed the bulk of near-surface material. Although the limited sample size precluded detailed statistical analysis, the differences in airborne particle

  9. Airborne Measurements of Methane Fluxes over Mid-Latitude and Sub-Arctic Wetlands

    NASA Astrophysics Data System (ADS)

    Hartmann, J.; Sachs, T.

    2012-04-01

    For a quantification of the natural GHG budget of the atmosphere the emission of methane from the vast arctic wetlands need to be assessed accurately. The conventional methods of flux measurements made by closed chambers and eddy towers need to be upscaled, introducing a potentially large source of uncertainty, due to the heterogeneity of the emitting sources at the surface. In order to obtain a large area coverage and thus a higher spacial representativeness we performed airborne measurements of methane fluxes over mid-latitude and sub-arctic wetlands, for flight legs of tens of kilometres length. We installed a fast trace gas analyser, a Los Gatos RMT200, in the research aircraft Polar 5, together with the noseboom mounted turbulence sensor package. Measurement flights have been carried out in June 2011 over wetlands in Germany and in northern Finland in a convectively mixed boundary layer. Reference data have been optained at the surface by tower mounted eddy correlation measurements. A spectral analysis of the first measurements shows that the system is well suitable to measure the vertical flux of methane from natural surfaces transported by the dominating eddies in the convective boundary layer. Our flux measurements compare well to those obtained at the surface. On the high-frequency end of the spectrum the measurement accuracy is not sufficient to resolve the inertial subrange.

  10. Airborne particle concentrations at schools measured at different spatial scales

    NASA Astrophysics Data System (ADS)

    Buonanno, G.; Fuoco, F. C.; Morawska, L.; Stabile, L.

    2013-03-01

    Potential adverse effects on children health may result from school exposure to airborne particles. To address this issue, measurements in terms of particle number concentration, particle size distribution and black carbon (BC) concentrations were performed in three school buildings in Cassino (Italy) and its suburbs, outside and inside of the classrooms during normal occupancy and use. Additional time resolved information was gathered on ventilation condition, classroom activity, and traffic count data around the schools were obtained using a video camera. Across the three investigated school buildings, the outdoor and indoor particle number concentration monitored down to 4 nm and up to 3 μm ranged from 2.8 × 104 part cm-3 to 4.7 × 104 part cm-3 and from 2.0 × 104 part cm-3 to 3.5 × 104 part cm-3, respectively. The total particle concentrations were usually higher outdoors than indoors, because no indoor sources were detected. I/O measured was less than 1 (varying in a relatively narrow range from 0.63 to 0.74), however one school exhibited indoor concentrations higher than outdoor during the morning rush hours. Particle size distribution at the outdoor site showed high particle concentrations in different size ranges, varying during the day; in relation to the starting and finishing of school time two modes were found. BC concentrations were 5 times higher at the urban school compared with the suburban and suburban-to-urban differences were larger than the relative differences of ultrafine particle concentrations.

  11. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne Particle Analysis

    SciTech Connect

    Bruns, Emily A.; Perraud, Veronique M.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-07-15

    Secondary organic aerosols (SOA) formed in the atmosphere from the condensation of semivolatile oxidation products are a significant component of airborne particles which have deleterious effects on health, visibility, and climate. In this study, atmospheric solids analysis probe mass spectrometry (ASAP-MS) is applied for the first time to the identification of organics in particles from laboratory systems as well as from ambient air. SOA were generated in the laboratory from the ozonolysis of r-pinene and isoprene, as well as from NO3 oxidation of r-pinene, and ambient air was sampled at forested and suburban sites. Particles were collected by impaction on ZnSe disks, analyzed by Fourier transform-infrared spectroscopy (FT-IR) and then transferred to an ASAP-MS probe for further analysis. ASAP-MS data for the laboratory-generated samples show peaks from wellknown products of these reactions, and higher molecular weight oligomers are present in both laboratory and ambient samples. Oligomeric products are shown to be present in the NO3 reaction products for the first time. A major advantage of this technique is that minimal sample preparation is required, and complementary information from nondestructive techniques such as FT-IR can be obtained on the same samples. In addition, a dedicated instrument is not required for particle analysis. This work establishes that ASAP-MS will be useful for identification of organic components of SOA in a variety of field and laboratory studies.

  12. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  13. Airborne flux measurements of biogenic isoprene over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-10-01

    Biogenic isoprene fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne Biogenic volatile organic compound (BVOC) Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a proton transfer reaction mass spectrometer (PTR-MS) and a wind radome probe to directly determine fluxes of isoprene over 7400 km of flight paths focusing on areas of California predicted to have the largest emissions. The fast Fourier transform (FFT) approach was used to calculate fluxes of isoprene over long transects of more than 15 km, most commonly between 50 and 150 km. The continuous wavelet transformation (CWT) approach was used over the same transects to also calculate instantaneous isoprene fluxes with localization of both frequency and time independent of non-stationarities. Fluxes were generally measured by flying consistently at 400 m ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence determined in the racetrack-stacked profiles. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to basal emission factor (BEF) land-cover data sets used to drive BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. Even though the isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, observations at the Walnut Grove tower south of Sacramento demonstrate that isoprene oxidation products from the high emitting regions in the surrounding oak woodlands accumulate at night in

  14. Characterization of Airborne Microbial Communities at a High-Elevation Site and Their Potential To Act as Atmospheric Ice Nuclei▿

    PubMed Central

    Bowers, Robert M.; Lauber, Christian L.; Wiedinmyer, Christine; Hamady, Micah; Hallar, Anna G.; Fall, Ray; Knight, Rob; Fierer, Noah

    2009-01-01

    Bacteria and fungi are ubiquitous in the atmosphere. The diversity and abundance of airborne microbes may be strongly influenced by atmospheric conditions or even influence atmospheric conditions themselves by acting as ice nucleators. However, few comprehensive studies have described the diversity and dynamics of airborne bacteria and fungi based on culture-independent techniques. We document atmospheric microbial abundance, community composition, and ice nucleation at a high-elevation site in northwestern Colorado. We used a standard small-subunit rRNA gene Sanger sequencing approach for total microbial community analysis and a bacteria-specific 16S rRNA bar-coded pyrosequencing approach (4,864 sequences total). During the 2-week collection period, total microbial abundances were relatively constant, ranging from 9.6 × 105 to 6.6 × 106 cells m−3 of air, and the diversity and composition of the airborne microbial communities were also relatively static. Bacteria and fungi were nearly equivalent, and members of the proteobacterial groups Burkholderiales and Moraxellaceae (particularly the genus Psychrobacter) were dominant. These taxa were not always the most abundant in freshly fallen snow samples collected at this site. Although there was minimal variability in microbial abundances and composition within the atmosphere, the number of biological ice nuclei increased significantly during periods of high relative humidity. However, these changes in ice nuclei numbers were not associated with changes in the relative abundances of the most commonly studied ice-nucleating bacteria. PMID:19502432

  15. Aspects regarding vertical distribution of greenhouse gases resulted from in situ airborne measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Sorin Vajaiac, Nicolae; Ardelean, Magdalena; Benciu, Silviu Stefan

    2016-04-01

    In the last decades the air quality, as well as other components of the environment, has been severely affected by uncontrolled emissions of gases - most known as greenhouse gases (GHG). The main role of GHG is given by the direct influence on the Earth's radiative budget, through Sun light scattering and indirectly by participating in cloud formation. Aldo, many efforts were made for reducing the high levels of these pollutants, e.g., International Panel on Climate Change (IPCC) initiatives, Montreal Protocol, etc., this issue is still open. In this context, this study aims to present several aspects regarding the vertical distribution in the lower atmosphere of some greenhouse gases: water vapours, CO, CO2 and methane. Bucharest and its metropolitan area is one of the most polluted regions of Romania due to high traffic. For assessing the air quality of this area, in situ measurements of water vapours, CO, CO2 and CH4 were performed using a Britten Norman Islander BN2 aircraft equipped with a Picarro gas analyser, model G2401-mc, able to provide precised, continuous and accurate data in real time. This configuration consisting in aircraft and airborne instruments was tested for the first time in Romania. For accomplishing the objectives of the measurement campaign, there were proposed several flight strategies which included vertical and horizontal soundings from 105 m to 3300 m and vice-versa around Clinceni area (20 km West of Bucharest). During 5 days (25.08.2015 - 31.08.2015) were performed 7 flights comprising 10h 18min research flight hours. The measured concentrations of GHS ranged between 0.18 - 2.2 ppm for water vapours with an average maximum value of 1.7 ppm, 0.04 - 0.53 ppm for CO with an average maximum value of 0.21 ppm, 377 - 437.5 ppm for CO2 with an average maximum value of 397 ppm and 1.7 - 6.1 ppm for CH4 with an average maximum value of 2.195 ppm. It was noticed that measured concentrations of GHG are decreasing for high values of sounding

  16. Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: using thermo-couple.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2014-03-01

    Vibration amplitude of transducer's elements is the influential parameters in the performance of high power airborne ultrasonic transducers to control the optimum vibration without material yielding. The vibration amplitude of elements of provided high power airborne transducer was determined by measuring temperature of the provided high power airborne transducer transducer's elements. The results showed that simple thermocouples can be used both to measure the vibration amplitude of transducer's element and an indicator to power transmission to the air. To verify our approach, the power transmission to the air has been investigated by other common method experimentally. The experimental results displayed good agreement with presented approach.

  17. Aerosol Optical Depth Measurements by Airborne Sun Photometer in SOLVE II: Comparisons to SAGE III, POAM III and Airborne Spectrometer Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Ramirez, S.; Yee, J-H.; Swartz, W.; Shetter, R.

    2004-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) measured solar-beam transmission on the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II). This paper presents AATS-14 results for multiwavelength aerosol optical depth (AOD), including its spatial structure and comparisons to results from two satellite sensors and another DC-8 instrument. These are the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Polar Ozone and Aerosol Measurement III (POAM III) and the Direct beam Irradiance Airborne Spectrometer (DIAS).

  18. Effect of spectral time-lag correlation coefficient and signal averaging on airborne CO2 DIAL measurements

    NASA Astrophysics Data System (ADS)

    Ben-David, Avishai; Vanderbeek, Richard G.; Gotoff, Steven W.; D'Amico, Francis M.

    1997-10-01

    The effects of flight geometry, signal averaging and time- lag correlation coefficient on airborne CO2 dial lidar measurements are shown in simulations and field measurements. These factors have implications for multi- vapor measurements and also for measuring a shingle vapor with a wide absorption spectra for which one would like to make DIAL measurements at many wavelengths across the absorption spectra of the gas. Thus it is of interest to know how many wavelengths and how many groups of wavelengths can be used effectively in DIAL measurements. Our data indicate that for our lidar about 80 wavelengths can be used for DIAL measurements of a stationary vapor. The lidar signal is composed of fluctuations with three time scales: a very short time scale due to system noise which is faster than the data acquisition sampling rate of the receiver, a medium time scale due to atmospheric turbulence, and a long time scale due to slow atmospheric transmission drift from aerosol in homogeneities. The decorrelation time scale of fluctuations for airborne lidar measurements depends on the flight geometry.

  19. A comparison of LOWTRAN-7 corrected Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data with ground spectral measurements

    NASA Technical Reports Server (NTRS)

    Xu, Peng-Yang; Greeley, Ronald

    1992-01-01

    Atmospheric correction of imaging spectroscopy data is required for quantitative analysis. Different models were proposed for atmospheric correction of these data. LOWTRAN-7 is a low-resolution model and computer code for predicting atmospheric transmittance and background radiance from 0 to 50,00 cm(sup -1) which was developed by the Air Force Geophysics Laboratory. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data used are radiometrically calibrated and include the 28 Sep. 1989 Providence Fan flight line segment 07, California. It includes a dark gravel surface defined as a calibration site by the Geologic Remote Sensing Field Experiment (GRSFE). Several ground measurements of portable spectrometer DAEDALUS AA440 Spectrafax were taken during the GRSFE, July 1989 field campaign. Comparisons of the LOWTRAN-7 corrected AVIRIS data with the ground spectrometer measurement were made.

  20. Innovative measurement within the atmosphere of Venus.

    NASA Astrophysics Data System (ADS)

    Ekonomov, Alexey; Linkin, Vyacheslav; Manukin, Anatoly; Makarov, Vladislav; Lipatov, Alexander

    The results of Vega project experiments with two balloons flew in the cloud layer of the atmosphere of Venus are analyzed as to the superrotation nature and local dynamic and thermodynamic characteristics of the atmosphere. These balloons in conjunction with measurements of temperature profiles defined by the Fourier spectrometer measurements from the spacecraft Venera 15 allow us to offer a mechanism accelerating the atmosphere to high zonal velocities and supporting these speeds, the atmosphere superrotation in general. Spectral measurements with balloons confirm the possibility of imaging the planet's surface from a height of not more than 55 km. Promising experiments with balloons in the atmosphere of Venus are considered. In particular, we discuss the possibility of measuring the geopotential height, as Venus no seas and oceans to vertical positioning of the temperature profiles. As an innovative research facilities within the atmosphere overpressure balloon with a lifetime longer than 14 Earth days and vertical profile microprobes are considered.

  1. Airborne measurements of peroxy radicals using the PERCA technique.

    PubMed

    Green, Timothy J; Reeves, Claire E; Brough, Neil; Edwards, Gavin D; Monks, Paul S; Penkett, Stuart A

    2003-02-01

    The Peroxy Radical Chemical Amplifier (PERCA) technique is a proven method for measurement of ambient levels of peroxy radicals at ground level, but there are no published instances of the technique being used on an aerial platform. Here we describe deployment of a PERCA on the former UK Meteorological Office C-130 Hercules research aircraft. The instrument uses the established method of chemical amplification and conversion of peroxy radicals to nitrogen dioxide (NO2) by doping the sample air-flow matrix with CO and NO, subsequently measuring the NO2 yield with an improved 'Luminox' LMA-3 NO2 detector. NO2 from the amplification chemistry is distinguished from other sources of NO2 reaching the detector by periodically injecting CO approximately 1 s downstream of the NO injection point (termination mode). Chain lengths (CL's) for the amplification chemistry were typically approximately 260 (ground level) to approximately 200 (7,000 m). This variation with altitude is less than the variation associated with the 'age' of the PFA inlet material where the amplification chemistry occurs; CL's of approximately 200 with old tubing to approximately 300 with new clean tubing were typical (ground level values). The CL determinations were made in-flight using an onboard calibration unit based on the 254 nm photolysis of 7.5 to 10 parts per billion (by volume, ppbv) of CH3I in air, producing CH3O2 in a quantitative manner. The noise-equivalent detection limit for peroxy radicals (HO2 + RO2) is 2 parts per trillion (by volume, pptv) at 3,650 m when the background ambient ozone levels are stable, based on a 5 min average of five 30 s amplification cycles and five 30 s termination cycles. This detection limit is a function of several factors but is most seriously degraded when there is large variability in the ambient ozone concentration. This paper describes the instrument design, considers its performance and proposes design improvements. It concludes that the performance of an

  2. Direct analysis of airborne mite allergen (Der f1) in the residential atmosphere by chemifluorescent immunoassay using bioaerosol sampler.

    PubMed

    Miyajima, Kumiko; Suzuki, Yurika; Miki, Daisuke; Arai, Moeka; Arakawa, Takahiro; Shimomura, Hiroji; Shiba, Kiyoko; Mitsubayashi, Kohji

    2014-06-01

    Dermatophagoides farinae allergen (Der f1) is one of the most important indoor allergens associated with allergic diseases in humans. Mite allergen Der f1 is usually associated with particles of high molecular weight; thus, Der f1 is generally present in settled dust. However, a small quantity of Der f1 can be aerosolized and become an airborne component. Until now, a reliable method of detecting airborne Der f1 has not been developed. The aim of this study was to develop a fiber-optic chemifluorescent immunoassay for the detection of airborne Der f1. In this method, the Der f1 concentration measured on the basis of the intensity of fluorescence amplified by an enzymatic reaction between the labeled enzyme by a detection antibody and a fluorescent substrate. The measured Der f1 concentration was in the range from 0.49 to 250 ng/ml and a similar range was found by enzyme-linked immunosorbent assay (ELISA). This method was proved to be highly sensitive to Der f1 compared with other airborne allergens. For the implementation of airborne allergen measurement in a residential environment, a bioaerosol sampler was constructed. The airborne allergen generated by a nebulizer was conveyed to a newly sampler we developed for collecting airborne Der f1. The sampler was composed of polymethyl methacrylate (PMMA) cells for gas/liquid phases and some porous membranes which were sandwiched in between the two phases. Der f1 in air was collected by the sampler and measured using the fiber-optic immunoassay system. The concentration of Der f1 in aerosolized standards was in the range from 0.125 to 2.0 mg/m(3) and the collection rate of the device was approximately 0.2%.

  3. Dual-channel photoacoustic hygrometer for airborne measurements: background, calibration, laboratory and in-flight intercomparison tests

    NASA Astrophysics Data System (ADS)

    Tátrai, D.; Bozóki, Z.; Smit, H.; Rolf, C.; Spelten, N.; Krämer, M.; Filges, A.; Gerbig, C.; Gulyás, G.; Szabó, G.

    2015-01-01

    This paper describes a tunable diode laser-based dual-channel photoacoustic (PA) humidity measuring system primarily designed for aircraft-based environment research. It is calibrated for total pressure and water vapor (WV) volume mixing ratios (VMRs) possible during airborne applications. WV VMR is calculated by using pressure-dependent calibration curves and a cubic spline interpolation method. Coverage of the entire atmospheric humidity concentration range that might be encountered during airborne measurements is facilitated by applying an automated sensitivity mode switching algorithm. The calibrated PA system was validated through laboratory and airborne intercomparisons, which proved that the repeatability, the estimated accuracy and the response time of the system are 0.5 ppmV or 0.5% of the actual reading (whichever value is the greater), 5% of the actual reading within the VMR range of 1-12 000 ppmV and 2 s, respectively. The upper detection limit of the system is theoretically about 85 000 ppmV, limited only by condensation of water vapor on the walls of the 318 K heated PA cells and inlet lines, and was experimentally verified up to 20 000 ppmV. The unique advantage of the presented system is its applicability for simultaneous water vapor and total water volume mixing ratio measurements.

  4. Cloud shortwave radiative effect and cloud properties estimated from airborne measurements of transmitted and reflected light

    NASA Astrophysics Data System (ADS)

    LeBlanc, Samuel E.; Redemann, Jens; Segal-Rosenheimer, Michal; Kacenelenbogen, Meloë; Shinozuka, Yohei; Flynn, Connor; Russell, Philip; Schmid, Beat; Schmidt, K. Sebastian; Pilewskie, Peter; Song, Shi

    2015-04-01

    from aircraft by using the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument. The 4STAR instrument was deployed on an airborne platform during SEAC4RS and TCAP. During SEAC4RS, the Solar Spectral Flux Radiometer (SSFR) was also deployed alongside 4STAR. The cloud optical thickness and effective radius from the retrieval based on transmitted shortwave radiation are compared to cloud properties obtained from above the cloud by using reflected shortwave radiation measured with SSFR, with the enhanced MODIS Airborne Simulator (eMAS), with the Research Scanning Polarimeter (RSP), and from in situ cloud probes. For TCAP, we compare cloud properties retrieved using 4STAR and the Moderate Resolution Imaging Spectroradiometer (MODIS).

  5. Measurements of Ultra-fine and Fine Aerosol Particles over Siberia: Large-scale Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail; Paris, Jean-Daniel; Stohl, Andreas; Belan, Boris; Ciais, Philippe; Nédélec, Philippe

    2010-05-01

    In this paper we discuss the results of in-situ measurements of ultra-fine and fine aerosol particles carried out in the troposphere from 500 to 7000 m in the framework of several International and Russian State Projects. Number concentrations of ultra-fine and fine aerosol particles measured during intensive airborne campaigns are presented. Measurements carried over a great part of Siberia were focused on particles with diameters from 3 to 21 nm to study new particle formation in the free/upper troposphere over middle and high latitudes of Asia, which is the most unexplored region of the Northern Hemisphere. Joint International airborne surveys were performed along the following routes: Novosibirsk-Salekhard-Khatanga-Chokurdakh-Pevek-Yakutsk-Mirny-Novosibirsk (YAK-AEROSIB/PLARCAT2008 Project) and Novosibirsk-Mirny-Yakutsk-Lensk-Bratsk-Novosibirsk (YAK-AEROSIB Project). The flights over Lake Baikal was conducted under Russian State contract. Concentrations of ultra-fine and fine particles were measured with automated diffusion battery (ADB, designed by ICKC SB RAS, Novosibirsk, Russia) modified for airborne applications. The airborne ADB coupled with CPC has an additional aspiration unit to compensate ambient pressure and changing flow rate. It enabled to classify nanoparticles in three size ranges: 3-6 nm, 6-21 nm, and 21-200 nm. To identify new particle formation events we used similar specific criteria as Young et al. (2007): (1) N3-6nm >10 cm-3, (2) R1=N3-6/N621 >1 and R2=N321/N21200 >0.5. So when one of the ratios R1 or R2 tends to decrease to the above limits the new particle formation is weakened. It is very important to notice that space scale where new particle formation was observed is rather large. All the events revealed in the FT occurred under clean air conditions (low CO mixing ratios). Measurements carried out in the atmospheric boundary layer over Baikal Lake did not reveal any event of new particle formation. Concentrations of ultra

  6. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart

    2009-01-01

    The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.

  7. Identification and Atmospheric Transport of Microcystin Around Southern California Using Airborne Remote Sensing

    NASA Astrophysics Data System (ADS)

    Conlin, J.; Kudela, R. M.; Broughton, J.

    2014-12-01

    Microcystin, a hepatotoxin produced by the cyanobacteria Microcystis, has been known to contaminate fresh water sources around southern California. Ingesting this toxin can cause death in animals and illnesses in humans, which has promoted the World Health Organization (WHO) and California to establish preliminary guidelines for microcystin concentrations in the water (1 μg/L in drinking water and 0.8 μg/L for recreational exposure respectively). However, very few studies have been done to assess the effects of this toxin when aerosolized, even though Fitzgeorge et al. (1994) describes the toxin as potentially 12x more deadly if inhaled rather than swallowed. This project aimed to identify areas with the potential for high microcystin concentrations using airborne data and then model the potential atmospheric transport of the toxin. After applying the Master Scattering Line Height (MSLH) and Aphanizomenon-Microcystis Index (AMI) algorithms to Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS), multiple water bodies were identified as having the potential for Microcystis, although many of the observed water bodies had AMI values indicating the presence of Aphanizomenon-- a non-toxic cyanobacteria that is usually present before Microcystis. A relationship between toxins and biomass was developed and used to estimate the amount of phycocyanin and dissolved microcystin in the water. Brevetoxin, common in the Florida 'red tides', was used as a proxy to estimate the amount of microcystin that becomes aerosolized given a known water concentration (Kirkpatrick et al, 2010). These amounts were then run and averaged with the HYSPLIT dispersion model for 4 hours, 12 hours, and 24 hours. The final results show that most areas are exposed to less than 0.1 ng/m^3 after 4 hours. As a worst case scenario, one final model was run to show the exposure amount when Pinto Lake was observed to have the maximum amount of microcystin recorded in 2007. The results show that after 4

  8. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    USGS Publications Warehouse

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed

  9. Airborne Validation of Spatial Properties Measured by the CALIPSO Lidar

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Vaughan, Mark A.; Trepte, Charles Reginald; Hart, William D.; Hlavka, Dennis L.; Winker, David M.; Keuhn, Ralph

    2007-01-01

    The primary payload onboard the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite is a dual-wavelength backscatter lidar designed to provide vertical profiling of clouds and aerosols. Launched in April 2006, the first data from this new satellite was obtained in June 2006. As with any new satellite measurement capability, an immediate post-launch requirement is to verify that the data being acquired is correct lest scientific conclusions begin to be drawn based on flawed data. A standard approach to verifying satellite data is to take a similar, or validation, instrument and fly it onboard a research aircraft. Using an aircraft allows the validation instrument to get directly under the satellite so that both the satellite instrument and the aircraft instrument are sensing the same region of the atmosphere. Although there are almost always some differences in the sampling capabilities of the two instruments, it is nevertheless possible to directly compare the measurements. To validate the measurements from the CALIPSO lidar, a similar instrument, the Cloud Physics Lidar, was flown onboard the NASA high-altitude ER-2 aircraft during July- August 2006. This paper presents results to demonstrate that the CALIPSO lidar is properly calibrated and the CALIPSO Level 1 data products are correct. The importance of the results is to demonstrate to the research community that CALIPSO Level 1 data can be confidently used for scientific research.

  10. How Cities Breathe: Ground-Referenced, Airborne Hyperspectral Imaging Precursor Measurements To Space-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Leifer, Ira; Tratt, David; Quattrochi, Dale; Bovensmann, Heinrich; Gerilowski, Konstantin; Buchwitz, Michael; Burrows, John

    2013-01-01

    the complex and often aerosol laden, humid, urban microclimates, atmospheric transport and profile monitoring, spatial resolution, temporal cycles (diurnal and seasonal which involve interactions with the surrounding environment diurnal and seasonal cycles) and representative measurement approaches given traffic realities. Promising approaches incorporate contemporaneous airborne remote sensing and in situ measurements, nocturnal surface surveys, with ground station measurement

  11. Airborne Dust Cloud Measurements at the INL National Security Test Range

    SciTech Connect

    Michael L. Abbott; Norm Stanley; Larry Radke; Charles Smeltzer

    2007-09-01

    On July 11, 2007, a surface, high-explosive test (<20,000 lb TNT-equivalent) was carried out at the National Security Test Range (NSTR) on the Idaho National Laboratory (INL) Site. Aircraft-mounted rapid response (1-sec) particulate monitors were used to measure airborne PM-10 concentrations directly in the dust cloud and to develop a PM-10 emission factor that could be used for subsequent tests at the NSTR. The blast produced a mushroom-like dust cloud that rose approximately 2,500–3,000 ft above ground level, which quickly dissipated (within 5 miles of the source). In general, the cloud was smaller and less persistence than expected, or that might occur in other areas, likely due to the coarse sand and subsurface conditions that characterize the immediate NSTR area. Maximum short time-averaged (1-sec) PM-10 concentrations at the center of the cloud immediately after the event reached 421 µg m-3 but were rapidly reduced (by atmospheric dispersion and fallout) to near background levels (~10 µg m-3) after about 15 minutes. This occurred well within the INL Site boundary, about 8 km (5 miles) from the NSTR source. These findings demonstrate that maximum concentrations in ambient air beyond the INL Site boundary (closest is 11.2 km from NSTR) from these types of tests would be well within the 150 µg m-3 24-hour National Ambient Air Quality Standards for PM-10. Aircraft measurements and geostatistical techniques were used to successfully quantify the initial volume (1.64E+9 m3 or 1.64 km3) and mass (250 kg) of the PM-10 dust cloud, and a PM-10 emission factor (20 kg m-3 crater soil volume) was developed for this specific type of event at NSTR. The 250 kg of PM-10 mass estimated from this experiment is almost seven-times higher than the 36 kg estimated for the environmental assessment (DOE-ID 2007) using available Environmental Protection Agency (EPA 1995) emission factors. This experiment demonstrated that advanced aircraft-mounted instruments operated by

  12. Airborne Spectral Measurements of Ocean Anisotropy during CLAMS

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; King, M. D.; Arnold, G. T.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The Cloud Absorption Radiometer (CAR) aboard the University of Washington Convair CV-580 research aircraft obtained bidirectional reflectance-distribution function (BRDF) of Atlantic Ocean and Dismal Swamp between July 10 and August 2, 2001. The BRDF measurements (15 in total, 8 uncontaminated by clouds) obtained under a variety of sun angles and wind conditions, will be used to characterize ocean anisotropy in support of Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) science objectives principally to validate products from NASA's EOS satellites, and to parameterize and validate BRDF models of the ocean. In this paper we present results of BRDF of the Ocean under different sun angles and wind conditions. The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 micron), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 micron). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were acquired over selected surfaces so that average BRF smooth out small-scale surface and atmospheric inhomogeneities. At an altitude of 600 m above the targeted surface area and

  13. Airborne Spectral Measurements of Ocean Anisotropy during CLAMS

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; King, M. D.; Arnold, G. T.

    2002-05-01

    The Cloud Absorption Radiometer (CAR) aboard the University of Washington Convair CV-580 research aircraft obtained bidirectional reflectance-distribution function (BRDF) of Atlantic ocean off eastern USA and Dismal Swamp between July 10 and August 2, 2001. The BRDF measurements (15 in total, 8 uncontaminated by clouds) obtained under a variety of sun angles and wind conditions, will be used to characterize ocean anisotropy in support of Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) science objectives principally to validate products from NASA's EOS satellites, and to parameterize and validate BRDF models of the ocean. In this paper we present results of BRDF of the Ocean under different sun angles and wind conditions. The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 μ m), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 μ m). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were acquired over selected surfaces so that average BRF smooth out small-scale surface and atmospheric inhomogeneities. For example, at an altitude of 600 m above the

  14. First Airborne Lidar Measurements of Methane and Carbon Dioxide Applying the MERLIN Demonstrator CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, Axel; Büdenbender, Christian; Ehret, Gerhard; Fix, Andreas; Gerbig, Christoph; Kiemle, Chritstoph; Quatrevalet, Mathieu; Wirth, Martin

    2016-04-01

    CHARM-F is the new airborne four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4. Due to its high technological conformity it is also a demonstrator for MERLIN, the French-German satellite mission providing a methane lidar. MERLIN's Preliminary Design Review was successfully passed recently. The launch is planned for 2020. First CHARM-F measurements were performed in Spring 2015 onboard the German research aircraft HALO. The aircraft's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, result in data similar to those obtained by a spaceborne system. The CHARM-F and MERLIN lidars are designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between the system and ground. The successfully completed CHARM-F flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. Furthermore, the dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on system design questions. These activities are supported by another instrument onboard the aircraft during the flight campaign: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the aircraft lidar. For the near future, detailed characterizations of CHARM-F are planned, further support of the MERLIN design, as well as the scientific aircraft campaign CoMet.

  15. Regular, Fast and Accurate Airborne In-Situ Methane Measurements Around the Tropopause

    NASA Astrophysics Data System (ADS)

    Dyroff, Christoph; Rauthe-Schöch, Armin; Schuck, Tanja J.; Zahn, Andreas

    2013-04-01

    We present a laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft. The instrument is based on a commercial fast methane analyzer (FMA, Los Gatos Res.), which was modified for fully unattended employment. A laboratory characterization was performed and the results with emphasis on the precision, cross sensitivity to H2O, and accuracy are presented. An in-flight calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. By statistical comparison of the in-situ measurements with the flask samples we derive a total uncetrainty estimate of ~ 3.85 ppbv (1?) around the tropopause, and ~ 12.4 ppbv (1?) during aircraft ascent and descent. Data from the first two years of airborne operation are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere, with occasional crossings of the tropics on flights to southern Africa. With its high spatial resolution and high accuracy this data set is unprecedented in the highly important atmospheric layer of the tropopause.

  16. Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Radke, L. F.; Langer, G.; Hindman, E. E., II

    1978-01-01

    Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.

  17. Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

    NASA Technical Reports Server (NTRS)

    Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander; Bright, Benjamin C.; O'Brien, Joseph J.; Hornsby, Benjamin; Ichoku, Charles; Faulring, Jason; Gerace, Aaron; Peterson, David; Mauceri, Joseph

    2015-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

  18. Hydrometeor discrimination in melting layer using multiparameter airborne radar measurement

    NASA Technical Reports Server (NTRS)

    Kumagai, H.; Meneghini, R.; Kozu, T.

    1992-01-01

    Results from a multiparameter airborne radar/radiometer experiment (the Typhoon experiment) are presented. The experiment was conducted in the western Pacific with the NASA DC-8 aircraft, in which a dual-wavelength at X-band and Ka-band and dual-polarization at X-band radar was installed. The signatures of dBZ(X), dBZ(Ka), LDR (linear depolarization ratio) at X-band and DZ=dBZ(X)-dBZ(Ka) are discussed for the data obtained in the penetration of the typhoon Flo. With emphasis on discrimination of hydrometeor particles, some statistical features of the brightband in stratiform rain are discussed.

  19. Airborne tunable diode laser system for trace gas measurements

    NASA Technical Reports Server (NTRS)

    Sachse, G. W.; Hill, G. F.; Hoell, J. M., Jr.

    1983-01-01

    Sachse et al. (1976) have reported the development of an airborne tunable diode laser (TDL) system, named the Differential Absorption CO Monitor (DACOM). The absorption path was 10 m long and located in the free airstream along the fuselage of a C-54 aircraft. The present investigation is concerned with a modification of the DACOM instrument. Differences between the new instrument and the original one are related to a replacement of the external absorption path with a White cell. The instrument has the capability to suppress TDL excess noise. The laser refrigerator has been redesigned to permit an alternative method of cooling the TDL when electric power is not available.

  20. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  1. Analyzing source apportioned methane in northern California during Discover-AQ-CA using airborne measurements and model simulations

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew S.; Yates, Emma L.; Iraci, Laura T.; Loewenstein, Max; Tadić, Jovan M.; Wecht, Kevin J.; Jeong, Seongeun; Fischer, Marc L.

    2014-12-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric mixing ratios in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were ∼5.30 Gg day-1 (Gg = 1.0 × 109 g) (equating to ∼1.90 × 103 Gg yr-1) for all of California. According to EDGAR, the SFBA and northern SJV region contributes ∼30% of total CH4 emissions from California. Source apportionment analysis during this study shows that CH4 mixing ratios over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 mixing ratios in northern California (average normalized mean bias (NMB) = -5.2% and linear regression slope = 0.20). The largest negative biases in the model were calculated on days when large amounts of CH4 were measured over local emission sources and atmospheric CH4 mixing ratios reached values >2.5 parts per million. Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be obtained and additional research is necessary to better quantify source apportioned CH4 emissions in California.

  2. Analyzing Source Apportioned Methane in Northern California During DISCOVER-AQ-CA Using Airborne Measurements and Model Simulations

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.

    2014-01-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric concentrations in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were 5.30 Gg/day (Gg 1.0 109 grams) (equating to 1.9 103 Gg/yr) for all of California. According to EDGAR, the SFBA and northern SJV region contributes 30 of total emissions from California. Source apportionment analysis during this study shows that CH4 concentrations over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 concentrations in northern California (average normalized mean bias (NMB) -5 and linear regression slope 0.25). The largest negative biases in the model were calculated on days when hot spots of local emission sources were measured and atmospheric CH4 concentrations reached values 3.0 parts per million (model NMB -10). Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be obtained and additional research is necessary to better quantify source apportioned CH4 emissions in California and further the understanding of the physical processes

  3. Measurements in the atmosphere of Mars.

    PubMed

    Seiff, A

    1969-07-01

    The detailed definition of the key features of Mars' atmosphere from one or a few entries and landings is a challenging task involving a variety of measurements, taken during entry and after landing, and correlated with observations to be taken from orbiters and flyby missions. The properties of interest include profiles to high altitudes of the atmospheric state properties, composition (abundant gases and minor constituents related to life processes), and meteorological factors such as winds, clouds, and variations in pressure and temperature. Profiles of the atmosphere are best measured during entry, by techniques which are described. The lander, if designed for lifetimes of days to weeks, can contribute information on diurnal variability of the atmosphere, and possibly on clouds and winds. Landings at several latitudes and in different seasonal regions will probably be required to complete a first order description of the atmosphere.

  4. Validating MODIS above-cloud aerosol optical depth retrieved from "color ratio" algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors

    NASA Astrophysics Data System (ADS)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob

    2016-10-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.

  5. Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study

    NASA Astrophysics Data System (ADS)

    Asa-Awuku, Akua; Moore, Richard H.; Nenes, Athanasios; Bahreini, Roya; Holloway, John S.; Brock, Charles A.; Middlebrook, Ann M.; Ryerson, Thomas B.; Jimenez, Jose L.; Decarlo, Peter F.; Hecobian, Arsineh; Weber, Rodney J.; Stickel, Robert; Tanner, Dave J.; Huey, Lewis G.

    2011-06-01

    Airborne measurements of aerosol and cloud condensation nuclei (CCN) were conducted aboard the National Oceanic and Atmospheric Administration WP-3D platform during the 2006 Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS). The measurements were conducted in regions influenced by industrial and urban sources. Observations show significant local variability of CCN activity (CCN/CN from 0.1 to 0.5 at s = 0.43%), while variability is less significant across regional scales (˜100 km × 100 km; CCN/CN is ˜0.1 at s = 0.43%). CCN activity can increase with increasing plume age and oxygenated organic fraction. CCN measurements are compared to predictions for a number of mixing state and composition assumptions. Mixing state assumptions that assumed internally mixed aerosol predict CCN concentrations well. Assuming organics are as hygroscopic as ammonium sulfate consistently overpredicted CCN concentrations. On average, the water-soluble organic carbon (WSOC) fraction is 60 ± 14% of the organic aerosol. We show that CCN closure can be significantly improved by incorporating knowledge of the WSOC fraction with a prescribed organic hygroscopicity parameter (κ = 0.16 or effective κ ˜ 0.3). This implies that the hygroscopicity of organic mass is primarily a function of the WSOC fraction. The overall aerosol hygroscopicity parameter varies between 0.08 and 0.88. Furthermore, droplet activation kinetics are variable and 60% of particles are smaller than the size characteristic of rapid droplet growth.

  6. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  7. Aerosol properties derived from airborne sky radiance and direct beam measurements in recent NASA and DoE field campaigns

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S. E.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-12-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and airmass characterization studies made possible by the combined 4STAR direct beam and sky radiance observations.

  8. Analysis of satellite and airborne wind measurements during the SEMAPHORE experiment

    SciTech Connect

    Tournadre, J.; Hauser, D.

    1994-12-31

    During the SEMAPHORE experiment Intensive Observation Period (IOP), held in October and November 1993 in the Azores-Madeira region, two airplanes, instrumented for atmospheric research, and two oceanographic research vessels have conducted in situ measurements in a 500km x 500km domain. Within the framework of SEMAPHORE, the SOFIA program is dedicated to the study of the air-sea fluxes and interactions from local scale up to mesoscale. The analysis of the structure of the wind and wave fields and their relations to the surface fluxes (especially near oceanic fronts) and the validation of the satellite data are two of the main goals of the SOFIA program. During the IOP, the experiment domain was regularly overflown by the ERS-1 and Topex-Poseidon (TP) satellites. This study presents a preliminary analysis of the ERS-1 and TP altimeter wind and wave measurement and ERS-1 scatterometer wind fields. The data from the airborne RESSAC (a radar ocean wave spectrometer) are also presented.

  9. Airborne Measurements of Trace Gases and Aerosols in Northern China: EAST-AIRE IOP 2005

    NASA Astrophysics Data System (ADS)

    Li, C.; Dickerson, R. R.; Li, Z.; Stehr, J. W.; Chen, H.; Marufu, L. T.

    2005-12-01

    To characterize the emission, transport and removal of pollutants and aerosols emitted from East Asia, a US-China joint field campaign was conducted from February to April in China under the EAST-AIRE project. Surface and airborne measurements of trace gases and aerosols were made at different locations in northern China. In early April, eight research flights were conducted around Shenyang, an industrialized city with a population of about 6 million, 600 km northeast of Beijing. Parameters measured include SO2, CO, O3, aerosol size distribution, aerosol scattering and absorption coefficients. During 4 of the 8 flights, the research aircraft made spirals over two suburban locations (~50 km south and north of the downtown area of Shenyang) to determine the detailed vertical distribution of trace gases and aerosols. Various weather patterns were encountered, allowing an examination of the roles of atmospheric circulation in transporting local pollutants to much larger areas. For example, the flights made ahead of the cold front showed fairly high concentrations of pollutants above the planetary boundary layer, probably lifted by the upward motion associated with the approaching cold fronts. On the other hand, much lower pollutant levels were found for the flights made behind the cold front. Also observed in one cold-sector flight is a level (~3000 m) with enhanced aerosol scattering but almost undetectable SO2. Back trajectory analysis using NOAA-HYSPLIT model suggests possible dust transport from source regions.

  10. High resolution spectroscopy to support atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Smith, Mary Ann H.; Devi, V. Malathy; Rinsland, Curtis P.; Benner, D. Chris; Harvey, Gale A.

    1990-01-01

    Detailed knowledge of the molecular spectra of ozone and other infrared-active atmospheric species is needed for accurate calculation of atmospheric heating and cooling rates in climate models. Remote sensing experiments on the Nimbus-7 satellites and the Spacelab-3 Space Shuttle Mission have shown that space-based measurements of infrared absorption or emission can be used to accurately determine the concentrations and distributions of stratospheric species on a global scale. The objective of this research task is to improve knowledge of the spectroscopic line parameters (positions, intensities, assignments, halfwidths, and pressure-induced shifts) of key atmospheric constituents through laboratory measurements.

  11. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.

    PubMed

    Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine.

  12. Measurement of chlorophyll a fluorescence with an airborne fluorosensor

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Brown, C. A., Jr.; Campbell, J. W.; Houghton, W. M.; Poole, L. R.

    1979-01-01

    Phytoplankton biomass and diversity among various algal species are important for marine productivity assessments. The spatial heterogeneity of phytoplankton in coastal and estuarine environments complicates estimates of total biomass using conventional surface sampling techniques. Since synoptic or near-synoptic data can be quite useful in these studies, this area is a natural focal point for development of remote sensors. However, it is very difficult to sense phytoplankton density and diversity with spacecraft-borne passive sensors primarily because modulation in the signal due to phytoplankton is of the same order as that of atmospheric effects. The same sensors mounted on aircraft may be able to detect and quantify high concentrations of phytoplankton (blooms), but the current lack of knowledge about the spectral reflectance signatures of the major phytoplankton color groups rules out any diversity measurements by this type of sensor. An active fluorosensor mounted on a low-flying aircraft or helicopter is not limited by any of these constraints. A brief survey of the four currently active systems is presented.

  13. Overview of the Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) airborne summer campaign

    NASA Astrophysics Data System (ADS)

    Ricaud, Philippe; Zbinden, Regina; Catoire, Valery; Brocchi, Vanessa; Dulac, Francois; Hamonou, Eric; Canonici, Jean-Christophe; El Amraoui, Laaziz; Massart, Sebastien; Piguet, Bruno; Dayan, Uri; Nabat, Pierre; Sciare, Jean; Ramonet, Michel; di Sarra, Alcide; Mihalopoulos, Nikolaos; Kouvarakis, Giorgos; Kleanthous, Savvas; Pikridas, Michael; Attié, Jean-Luc

    2016-04-01

    The Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) airborne campaign has been set up to investigate the variability of constituents (pollutants and greenhouse gases) and aerosols between the West and the East of the Mediterranean Basin in summer 2014. This campaign occurred in the framework of the Chemistry-Aerosol Mediterranean Experiment (CHARMEX) as part of the Mediterranean Integrated STudies at Regional And Local Scales (MISTRALS) programme. During the campaign, several instruments including the Spectromètre InfraRouge In situ Toute altitude (SPIRIT) instrument onboard the SAFIRE Falcon-20 aircraft measured aerosols, winds, radiation, humidity and chemical compounds such as O3, CO, CH4, N2O, and CO2. The campaign took place from 6 to 10 August 2014 from Toulouse (France) to Larnaca (Cyprus) and back, via Menorca (Spain), Lampedusa (Italy) and Heraklion (Crete). The aircraft flew at about 5000 m altitude above sea level to go and at about 9000 m altitude to return. The campaign also provided some vertical profilings from the surface to about 12 km in the vicinity of the landing sites listed above. The present paper shows an overview of the measurements and of the scientific results obtained during GLAM combining space-borne and surface station measurements, modelling (MOCAGE and ALADIN-CLIMAT) and chemical forecasts and analyses from Copernicus Atmospheric Monitoring Service (CAMS) run by the European Centre for Medium range Weather Forecasting (ECMWF). Along an East-West axis or along the vertical, we analyze different processes. Among the different processes that have been studied in detail, we will particularly focus on aerosol results concentrating on the intercontinental transport and comparisons with surface stations. Combining GLAM, back-trajectories, satellite and model data, we demonstrate that the biomass burning from northern America, desert dust from Sahara and O3-depleted maritime boundary layer air masses

  14. Atmospheric effect on spectral signature - measurements

    NASA Astrophysics Data System (ADS)

    Kaufman, Yoram J.

    In order to improve the quality of remote sensing there is a need to estimate the atmospheric effect on the remotely sensed image, from the image itself. This can be done by recognition of some surface features with known radiative characteristics. For this purpose measurements of the atmospheric effect on the spectral signature of surface cover were conducted during hazy conditions. Simultaneous measurements of the aerosol optical thickness and its vertical distribution were carried. The results of the measurements are used here to study the spectral dependence of the atmospheric effect on remote sensing of vegetated fields (forest, corn field etc.) and water bodies, and to verify theoretical predictions. It is suggested that the radiances over dark areas (e.g. water in the near IR and forest in the visible) can be used to derive the aerosol optical thickness. Combined with climatological information, the derived optical thickness can be used to perform corrections of the atmospheric effect (not given here).

  15. Identifying a Sea Breeze Circulation Pattern Over the Los Angeles Basin Using Airborne In Situ Carbon Dioxide Measurements

    NASA Astrophysics Data System (ADS)

    Brannan, A. L.; Schill, S.; Trousdell, J.; Heath, N.; Lefer, B. L.; Yang, M. M.; Bertram, T. H.

    2014-12-01

    The Los Angeles Basin in Southern California is an optimal location for a circulation study, due to its location between the Pacific Ocean to the west and the Santa Monica and San Gabriel mountain ranges to the east, as well as its booming metropolitan population. Sea breeze circulation carries air at low altitudes from coastal to inland regions, where the air rises and expands before returning back towards the coast at higher altitudes. As a result, relatively clean air is expected at low altitudes over coastal regions, but following the path of sea breeze circulation should increase the amount of anthropogenic influence. During the 2014 NASA Student Airborne Research Program, a highly modified DC-8 aircraft completed flights from June 23 to 25 in and around the LA Basin, including missed approaches at four local airports—Los Alamitos and Long Beach (coastal), Ontario and Riverside (inland). Because carbon dioxide (CO2) is chemically inert and well-suited as a conserved atmospheric tracer, the NASA Langley Atmospheric Vertical Observations of CO2 in the Earth's Troposphere (AVOCET) instrument was used to make airborne in situ carbon dioxide measurements. Combining measured wind speed and direction data from the aircraft with CO2 data shows that carbon dioxide can be used to trace the sea breeze circulation pattern of the Los Angeles basin.

  16. Airborne volcanic plume measurements using a FTIR spectrometer, Kilauea volcano, Hawaii

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.

    1998-01-01

    A prototype closed-path Fourier transform infrared spectrometer system (FTIK), operating from battery power and with a Stirling engine microcooler for detector cooling, was successfully used for airborne measurements of sulfur dioxide at Kilauea volcano. Airborne profiles of the volcanic plume emanating from the erupting Pu'u 'O'o vent on the East Rift of Kilauea revealed levels of nearly 3 ppm SO2 in the core of the plume. An emission rate of 2,160 metric tons per day of sulfur dioxide was calculated from the FTIR data, which agrees closely with simultaneous measurements by a correlation spectrometer (COSPEC). The rapid spatial sampling possible from an airborne platform distinguishes the methodology described here from previous FTIR measurements.

  17. Airborne lidar measurements of wave energy dissipation in a coral reef lagoon system

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Cheng; Reineman, Benjamin D.; Lenain, Luc; Melville, W. Kendall; Middleton, Jason H.

    2012-03-01

    Quantification of the turbulent kinetic energy dissipation rate in the water column, ɛ, is very important for assessing nutrient uptake rates of corals and therefore the health of coral reef lagoon systems. However, the availability of such data is limited. Recently, at Lady Elliot Island (LEI), Australia, we showed that there was a strong correlation between in situ measurements of surface-wave energy dissipation and ɛ. Previously, Reineman et al. (2009), we showed that a small airborne scanning lidar system could measure the surface wavefield remotely. Here we present measurements demonstrating the use of the same airborne lidar to remotely measure surface wave energy fluxes and dissipation and thereby estimate ɛ in the LEI reef-lagoon system. The wave energy flux and wave dissipation rate across the fore reef and into the lagoon are determined from the airborne measurements of the wavefield. Using these techniques, observed spatial profiles of energy flux and wave energy dissipation rates over the LEI reef-lagoon system are presented. The results show that the high lidar backscatter intensity and point density coming from the high reflectivity of the foam from depth-limited breaking waves coincides with the high wave-energy dissipation rates. Good correlations between the airborne measurements and in situ observations demonstrate that it is feasible to apply airborne lidar systems for large-scale, long-term studies in monitoring important physical processes in coral reef environments. When added to other airborne techniques, the opportunities for efficient monitoring of large reef systems may be expanded significantly.

  18. Airborne lidar measurements of ozone and aerosols during the pacific exploratory mission-tropics A

    NASA Technical Reports Server (NTRS)

    Fenn, Marta A.; Browell, Edward V.; Grant, William B.; Butler, Carolyn F.; Kooi, Susan A.; Clayton, Marian B.; Brackett, Vincent G.; Gregory, Gerald L.

    1998-01-01

    Airborne lidar measurements of aerosol and ozone distributions from the surface to above the tropopause over the South Pacific Ocean are presented. The measurements illustrate large-scale features of the region, and are used to quantify the relative contributions of different ozone sources to the tropospheric ozone budget in this remote region.

  19. Advances in High Energy Solid-State Pulsed 2-micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Singh, Upendra; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael; Remus, Ruben

    2015-04-01

    NASA Langley Research Center has a long history of developing 2 µm lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2 µm lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250-mJ in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hrs of flight measurement were made from an altitude ranging 1500 meter to 8000 meter. These measurements were compared to in-situ measurements and NOAA airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a triple-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA

  20. Airborne measurements of organosulfates over the continental U.S.

    PubMed Central

    Liao, Jin; Froyd, Karl D; Murphy, Daniel M; Keutsch, Frank N; Yu, Ge; Wennberg, Paul O; St Clair, Jason M; Crounse, John D; Wisthaler, Armin; Mikoviny, Tomas; Jimenez, Jose L; Campuzano-Jost, Pedro; Day, Douglas A; Hu, Weiwei; Ryerson, Thomas B; Pollack, Ilana B; Peischl, Jeff; Anderson, Bruce E; Ziemba, Luke D; Blake, Donald R; Meinardi, Simone; Diskin, Glenn

    2015-01-01

    Organosulfates are important secondary organic aerosol (SOA) components and good tracers for aerosol heterogeneous reactions. However, the knowledge of their spatial distribution, formation conditions, and environmental impact is limited. In this study, we report two organosulfates, an isoprene-derived isoprene epoxydiols (IEPOX) (2,3-epoxy-2-methyl-1,4-butanediol) sulfate and a glycolic acid (GA) sulfate, measured using the NOAA Particle Analysis Laser Mass Spectrometer (PALMS) on board the NASA DC8 aircraft over the continental U.S. during the Deep Convective Clouds and Chemistry Experiment (DC3) and the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). During these campaigns, IEPOX sulfate was estimated to account for 1.4% of submicron aerosol mass (or 2.2% of organic aerosol mass) on average near the ground in the southeast U.S., with lower concentrations in the western U.S. (0.2–0.4%) and at high altitudes (<0.2%). Compared to IEPOX sulfate, GA sulfate was more uniformly distributed, accounting for about 0.5% aerosol mass on average, and may be more abundant globally. A number of other organosulfates were detected; none were as abundant as these two. Ambient measurements confirmed that IEPOX sulfate is formed from isoprene oxidation and is a tracer for isoprene SOA formation. The organic precursors of GA sulfate may include glycolic acid and likely have both biogenic and anthropogenic sources. Higher aerosol acidity as measured by PALMS and relative humidity tend to promote IEPOX sulfate formation, and aerosol acidity largely drives in situ GA sulfate formation at high altitudes. This study suggests that the formation of aerosol organosulfates depends not only on the appropriate organic precursors but also on emissions of anthropogenic sulfur dioxide (SO2), which contributes to aerosol acidity. Key Points IEPOX sulfate is an isoprene SOA tracer at acidic and low NO conditions Glycolic acid sulfate

  1. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  2. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  3. Organic Halogen and Related Trace Gases in the Tropical Atmosphere: Results from Recent Airborne Campaigns Over the Pacific

    NASA Astrophysics Data System (ADS)

    Atlas, E. L.; Navarro, M. A.; Donets, V.; Schauffler, S.; Lueb, R.; Hendershot, R.; Gabbard, S.; Hornbrook, R. S.; Apel, E. C.; Riemer, D. D.; Pan, L.; Salawitch, R. J.; Nicely, J. M.; Montzka, S. A.; Miller, B.; Moore, F. L.; Elkins, J. W.; Hintsa, E. J.; Campos, T. L.; Quack, B.; Zhu, X.; Pope, L.

    2014-12-01

    Organic halogen gases, especially containing bromine and iodine, play a significant role as precursors to active halogen chemistry and ozone catalytic loss. Much of the reactive organic halogen originates from biological processes in the surface ocean, which can be quite variable by season and location. The tropics and coastal margins are potentially important sources that are being examined. The recent coordinated CONTRAST/ATTREX/CAST missions were conducted in the Western Tropical Pacific, a region that is a major transport pathway for tropospheric air entering the stratosphere. One of the goals of the missions was to identify sources, distributions, and transport of organic halogens from the ocean surface into the tropical lower stratosphere. The missions were conducted during the NH winter season, Jan-Feb, 2014. In this presentation, we will discuss the distributions and variability of organic halogen gases in the study region and will examine the input of organic halogen species into the Tropical Tropopause Layer (TTL). Comparison with other tracers, such as methyl nitrate and NMHC, will help identify source regions for these gases. We will focus on the measurements obtained in the CONTRAST and ATTREX missions with data from in-situ GC/MS measurements and whole air samples collected on the NSF GV and NASA Global Hawk aircraft. Comparisons with other recent airborne campaigns, such as HIPPO and TC4, and with several ship-based studies will provide an additional context for evaluating the variability of organic halogen species in the tropical atmosphere and their role in transporting reactive halogen compounds into the UT/LS.

  4. Lidar reflectance from snow at 2.05  μm wavelength as measured by the JPL Airborne Laser Absorption Spectrometer.

    PubMed

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph C

    2016-03-10

    We report airborne measurements of lidar directional reflectance (backscatter) from land surfaces at a wavelength in the 2.05 μm CO₂ absorption band, with emphasis on snow-covered surfaces in various natural environments. Lidar backscatter measurements using this instrument provide insight into the capabilities of lidar for both airborne and future global-scale CO₂ measurements from low Earth orbit pertinent to the NASA Active Sensing of CO₂ Emissions over Nights, Days, and Seasons mission. Lidar measurement capability is particularly useful when the use of solar scattering spectroscopy is not feasible for high-accuracy atmospheric CO₂ measurements. Consequently, performance in high-latitude and winter season environments is an emphasis. Snow-covered surfaces are known to be dark in the CO₂ band spectral regions. The quantitative backscatter data from these field measurements help to elucidate the range of backscatter values that can be expected in natural environments.

  5. Identification of Thermally Driven Valley Wind From Ground Based and Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Rampanelli, G.; de Franceschi, M.; Zardi, D.

    A peculiar valley wind, the so called Ora del Garda, has been adopted as a test case of thermally driven wind. The latter occurs on fair weather days, when it starts blowing during the late morning along the northern shore of Garda Lake as a typical lake breeze and thence channels in the Sarca Valley and Lakes Valley nearby, until it finally reaches, through an elevated saddle, the River Adige Valley, where it appears as a strong gusty wind. A statistical analysis of time series recorded by a network of meteorological ground station located in the above valleys allowed detailed identifi- cation of peculiar features. Further understanding has been gained from specific field observations including both ground based and airborne measurements performed with a light airplane within and above the valley boundary layer. A geostatistical analy- sis (kriging) of data allowed evaluation of vertical profiles at various locations. Deviations from the averaged vertical profile due to horizontal temperature gradients within the valley atmosphere were also evaluated and the underlying statistical struc- ture estimated in terms of suitable variogram function of the monitored variables. Fi- nally the procedure allowed an estimate potential temperature anomalies throughout the valley volume and the identification of basic thermal structures within the convec- tive boundary layer.

  6. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  7. Development of Airborne Eddy-Correlation Flux Measurement Capabilities for Reactive Oxides of Nitrogen

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott

    1998-01-01

    This report addresses the Tropospheric Trace Gas and Airborne Measurement Group (TTGAMG) endeavors to continue to push the evolution of the Georgia Institute of Technology's Airborne Laser Induced Fluorescence Experiment (GITALIFE) into a sensor capable of making airborne eddy correlation measurements of nitrogen oxides. It will mainly address the TTGAMG successes and failures as well as its participation in the summer 1998 Wallops Island test flights on board the P3-B. Due to the restructuring and reorganization of the TTGAMG since the original funding of this grant, some of the objectives and the deliverables can not be achieved as proposed in the original funding of this grant. Most of these changes have been driven by the passing away of John Bradshaw, the original principal investigator.

  8. NARAC: An Emergency Response Resource for Predicting the Atmospheric Dispersion and Assessing the Consequences of Airborne Radionuclides

    SciTech Connect

    Bradley, M M

    2005-08-23

    Hazardous radioactive materials can be released into the atmosphere by accidents at nuclear power plants, fuel processing facilities, and other facilities, and by transportation accidents involving nuclear materials. In addition, the post-cold-war proliferation of nuclear material has increased the potential for terrorism scenarios involving radiological dispersal devices, improvised nuclear devices, and inadequately secured military nuclear weapons. To mitigate these risks, the National Atmospheric Release Advisory Center (NARAC) serves as a national resource for the United States, providing tools and services to quickly predict the environmental contamination and health effects caused by airborne radionuclides, and to provide scientifically based guidance to emergency managers for the protection of human life. NARAC's expert staff uses computer models, supporting databases, software systems, and communications systems to predict the plume paths and consequences of radiological, chemical, and biological atmospheric releases.

  9. Investigation of Advanced Radar Techniques for Atmospheric Hazard Detection with Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.

    2014-01-01

    In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.

  10. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  11. Airborne measurements of different trace gases during the AROMAT-2 campaign with an Avantes spectrometer

    NASA Astrophysics Data System (ADS)

    Bösch, Tim; Meier, Andreas; Schönhardt, Anja; Peters, Enno; Richter, Andreas; Ruhtz, Thomas; Burrows, John

    2016-04-01

    Differential Optical Absorption Spectroscopy (DOAS) is a well-known, versatile, and frequently used technique for the analysis of trace gases within the atmosphere. Although DOAS has been used for several decades, airborne DOAS has become more popular during the last years because of the possibility of measuring in high lateral resolutions with the help of imaging instruments. Here, we present results of the AROMAT-2 campaign in Romania in summer 2015. The introduced measurements were taken using a nadir viewing Avantes spectrometer on board of a Cessna aircraft which flew over Bucharest and the Turceni power plant in Romania. The instrument covers the wavelength region of 287 - 551nm at a spectral resolution of 0.13nm and has a temporal resolution of 0.5s, translating to about 450m in flight direction at 3000m flight attitude. The field of view of the instrument was set to 8.1 degrees, resulting in a pixel size across track of about 420m. Compared to the imaging DOAS instrument AirMAP which was also operated from the aircraft, the signal to noise ratio of the simple nadir viewing spectrometer is slightly better, which allows an analysis of less abundant species and interesting spectral features. The results show a day-to-day variation of NO2 over the city of Bucharest as well as spectral features over lakes in the city, which can be attributed to algae. Furthermore, we were able to measure large emission plumes of NO2 and SO2 over the Turceni power plant, which could be observed over long spatial distances. In addition, the results from the Avantes instrument were used for comparison with measurements of the imaging spectrometer AirMAP and good agreement was found, providing independent verification of the imager data.

  12. OCEANET-Atmosphere - The Autonomous Measurement Container

    NASA Astrophysics Data System (ADS)

    Kalisch, John; Macke, Andreas; Althausen, Dietrich; Bumke, Karl; Engelmann, Ronny; Kanitz, Thomas; Kleta, Henry; Zoll, Yann

    2010-05-01

    OCEANET-Atmosphere is a joint venture project of IFM-GEOMAR and IFT to study the mass and energy transfer of ocean and atmosphere by introducing a special measurement container, which is suitable to perform a large spectrum of atmospheric underway measurements on offshore research vessels and cargo ships. The container combines state-of-the-art measurement devices and connect them to its own computer network to realize a comprehensive system for remote sensing. A Raman-lidar measures marine and anthropogenic optical aerosol properities by analyzing the elastic signal and the vibration-rotation Raman signal of nitrogen. Our passive microwave radiometer determines the integrated water vapor and the liquid water path of the atmospheric column, as well as vertical temperature and humidity profiles. Carbon dioxide is measured high-frequent. Turbulence measurements are performed by means of a sonic anemometer. In combination with fast humidity sensors the fluxes of momentum, latent and sensible heat are derived. An automatic full sky imager monitors the state of the cloudy sky. A selection of standard meteorological devices measure air temperature, humidity, wind velocity, wind speed and downward shortwave and longwave radiative fluxes. The GPS sensors register navigational data. For an almost real time monitoring of a data subset our telemetry system is sending short hourly data reports via satellite. OCEANET-Atmosphere is set up to improve the quantity and the quality of atmospheric data sets on intercontinental oceanic transects, where the previous data base is still weak. A first research mission has been performed onboard RV Polarstern at ANT XXVI/1.

  13. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  14. Airborne digital holographic system for cloud particle measurements.

    PubMed

    Fugal, Jacob P; Shaw, Raymond A; Saw, Ewe Wei; Sergeyev, Aleksandr V

    2004-11-10

    An in-line holographic system for in situ detection of atmospheric cloud particles [Holographic Detector for Clouds (HOLODEC)] has been developed and flown on the National Center for Atmospheric Research C-130 research aircraft. Clear holograms are obtained in daylight conditions at typical aircraft speeds of 100 m s(-1). The instrument is fully digital and is interfaced to a control and data-acquisition system in the aircraft via optical fiber. It is operable at temperatures of less than -30 degrees C and at typical cloud humidities. Preliminary data from the experiment show its utility for studies of the three-dimensional spatial distribution of cloud particles and ice crystal shapes.

  15. Airborne VLF measurements and mapping of ground conductivity in Sweden

    NASA Astrophysics Data System (ADS)

    Pedersen, Laust B.; Persson, Lena; Bastani, Mehrdad; Byström, Sören

    2009-03-01

    Airborne VLF data are routinely collected by The Geological Survey of Sweden (SGU) as part of its bedrock mapping programme. In this paper we demonstrate that the novel Tensor VLF technique developed at Uppsala University and SGU can provide useful qualitative and quantitative information about the electrical conductivity distribution in the upper few hundred meters. Single transmitter scalar VLF maps emphasize those conductive structures that have dominant strikes in the direction of the transmitter. The tensor tipper (essentially the vertical magnetic field from currents along the strike direction) calculated from multiple transmitters is dependent only upon the underlying conductivity structure. Transformation of the tipper into the peaker (the horizontal divergence) has proven to enhance the lateral resolution while the transformation to the apparent resistivity can be used to discriminate different rock types. Two case histories from the application of VLF data are presented in this study. Two dimensional structures can be quantitatively modelled by modern inversion methods developed originally for deep electromagnetic MT soundings. Direct inversion of the real and imaginary parts of the tipper provides more quantitative information about the subsurface resistivity distribution.

  16. A new thoron atmosphere reference measurement system.

    PubMed

    Sabot, B; Pierre, S; Michielsen, N; Bondiguel, S; Cassette, P

    2016-03-01

    A new thoron reference ((220)Rn) in air measurement system is developed at the LNE-LNHB with the collaboration of the IRSN. This measurement system is based on a reference volume with an alpha detector which is able to directly measure thoron and its decay products at atmospheric pressure. In order to improve the spectrum quality of the thoron progenies, we have applied an electric field to catch the decay products on the detector surface. The developed system is a portative device which can be used to measure reference thoron atmosphere such as the BACCARA chamber at IRSN (Picolo et al., 1999). As this system also allows the measurement of radon ((222)Rn) in air, it was validated using the radon primary standards made at the LNE-LNHB. This thoron measurement system will be used, at IRSN, as a reference instrument in order to calibrate the thoron activity concentration in the BACCARA facility. PMID:26701661

  17. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Marenco, Franco; Marinou, Eleni; Rosenberg, Phil; Solomos, Stavros; Trembath, Jamie; Allan, James; Bacak, Asan; Nenes, Athanasios

    2016-06-01

    Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015).

  18. Measurements of Solar Induced Chlorophyll Fluorescence at 685 nm by Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Yee, J. H.; Boldt, J.; Cook, W. B.; Corp, L. A.

    2015-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the fill-in of strong O2 absorption lines or solar Fraunhofer lines in the reflected spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is a triple etalon Fabry-Perot interferometer designed and optimized specifically for the ChlF sensing from an airborne platform using this line fill-in technique. In this paper, we will present the results of APFS ChlF measurements obtained from a NASA Langley King Air during two airborne campaigns (12/12 in 2014 and 5/20 in 2015) over various land, river, and vegetated targets in Virginia during stressed and growth seasons.

  19. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  20. COMET: a planned airborne mission to simultaneously measure CO2 and CH4 columns using airborne remote sensing and in-situ techniques

    NASA Astrophysics Data System (ADS)

    Fix, A.; Amediek, A.; Büdenbender, C.; Ehret, G.; Wirth, M.; Quatrevalet, M.; Rapp, M.; Gerilowski, K.; Bovensmann, H.; Gerbig, C.; Pfeilsticker, K.; Zöger, M.; Giez, A.

    2013-12-01

    To better predict future trends in the cycles of the most important anthropogenic greenhouse gases, CO2 and CH4, there is a need to measure and understand their distribution and variation on various scales. To address these requirements it is envisaged to deploy a suite of state-of-the-art airborne instruments that will be capable to simultaneously measure the column averaged dry-air mixing ratios (XGHG) of both greenhouse gases along the flight path. As the measurement platform serves the research aircraft HALO, a modified Gulfstream G550, operated by DLR. This activity is dubbed CoMet (CO2 and Methane Mission). The instrument package of CoMet will consist of active and passive remote sensors as well as in-situ instruments to complement the column measurements by highly-resolved profile information. As an active remote sensing instrument CHARM-F, the integrated-path differential absorption lidar currently under development at DLR, will provide both, XCO2 and XCH4, below flight altitude. The lidar instrument will be complemented by MAMAP which is a NIR/SWIR absorption spectrometer developed by University of Bremen and which is also capable to derive XCH4 and XCO2. As an additional passive instrument, mini-DOAS operated by University of Heidelberg will contribute with additional context information about the investigated air masses. In order to compare the remote sensing instruments with integrated profile information, in-situ instrumentation is indispensable. The in-situ package will therefore comprise wavelength-scanned Cavity-Ring-Down Spectroscopy (CRDS) for the detection of CO2, CH4, CO and H2O and a flask sampler for collection of atmospheric samples and subsequent laboratory analysis. Furthermore, the BAsic HALO Measurement And Sensor System (BAHAMAS) will provide an accurate set of meteorological and aircraft state parameters for each scientific flight. Within the frame of the first CoMet mission scheduled for the 2015 timeframe it is planned to concentrate

  1. Comparison of multispectral airborne scanner reflectance images with ground surface reflectance measurements

    SciTech Connect

    Kollewe, M.; Bienlein, J.; Kollewe, T.; Spitzer, H.

    1996-11-01

    Simultaneously with an airborne data taking campaign near the city of Nurnberg (FRG), performed with an imaging 11-channel scanner of type Daedalus AADS 1268, ground reference measurements of reflectance spectra were conducted with a spectrally high resolving spectroradiometer of type IRIS at selected test sites. Based on a method developed reflectance images are calculated from the aerial raw data. Thus, physical quantities of the surfaces are generated, which are independent of illumination and registration conditions. The airborne scanner reflectance images are compared with ground reference reflectance measurements. The comparison yields deviations up to 35%. They can partially be explained by an inaccurate calibration of the airborne scanner. In addition, errors appear during calculation of the reflectances due to simplifying model assumptions and an inexact knowledge of the values of the model input parameters. It is shown that calibration of the airborne scanner data with the ground reference measurements improves the results, as compared to calibration based on laboratory testbench measurements. 8 refs., 4 figs., 1 tab.

  2. On-board Polarimetric Calibration of Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) Measurements

    NASA Astrophysics Data System (ADS)

    van Harten, G.; Diner, D. J.; Bull, M. A.; Tkatcheva, I. N.; Jovanovic, V. M.; Seidel, F. C.; Garay, M. J.; Xu, F.; Davis, A. B.; Rheingans, B. E.; Chipman, R. A.

    2015-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) aims at characterizing atmospheric aerosols and clouds using highly accurate imaging polarimetry. The instrument is deployed regularly onboard the NASA ER2 high-altitude aircraft, which is an ideal testbed for satellite remote sensing. Flying at 20 km altitude, AirMSPI's pushbroom camera typically provides 11×11 km images at 10 m resolution. The target is observed from multiple along-track angles within ±67° using a gimbal mount. Eight spectral bands within 355-935 nm are recorded simultaneously in different detector rows, 3 of which also measure linear polarization: 470, 660 and 865 nm. Photoelastic modulators (PEMs) encode the polarized and total intensities in each polarimetric pixel as the amplitude and offset of a wavelike intensity pattern, such that the ratio of the two is insensitive to pixel-to-pixel differences. This enables an accuracy in the degree of linear polarization of ~0.001, as measured in the lab. To maintain this accuracy in-flight, an optical probe continuously monitors the PEMs' retardances and controls their driving signals. Before and after observing a target, the instrument also observes a validator, which is an extended, polarized light source, located inside the instrument housing. These data are now incorporated in the data processing pipeline to further improve the calibration of the modulation functions. Highly polarized pixels in Earth data are utilized to transfer the validator results to meet the illumination in Earth scenes, as well as to make fine adjustments at higher temporal resolution. The reprocessed polarization products for the PODEX campaign show significant improvements when intercompared with the Research Scanning Polarimeter (RSP, Goddard Institute for Space Studies). We currently evaluate the impact of the on-board polarimetric calibration on aerosol retrievals, and compare against AERONET reference measurements.

  3. An airborne spectrometer with three infrared lasers for trace gas measurements applied to convection case studies

    NASA Astrophysics Data System (ADS)

    Catoire, V.; Krysztofiak, G.; Robert, C.; Chartier, M.

    2012-12-01

    An infrared absorption spectrometer named SPIRIT (SPectromètre InfraRouge In situ Toute altitude) has been built for airborne simultaneous online measurements of trace gases. SPIRIT is based on two recent technological advances, leading to optimal performances and miniaturization: continuous wave quantum cascade lasers (CW-QCL) operating near room temperature coupled to a new, patented, multipass optical cell (Robert, Appl. Optics, 2007). An essential electronic development allows the sequential use of three QCLs with the same single cell. With judicious selected spectral micro-windows, this potentially leads to the measurements of at least four species at 0.7 Hz frequency. The first deployment of SPIRIT was made onboard the DLR Falcon-20 aircraft during the campaign associated to the EU SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project in Nov.-Dec. 2011 over Malaysia. In the present paper, the flight of 19 Nov. is presented in detail as an example of the SPIRIT performances, with CO, CO2, CH4 and N2O as measured species. The aircraft crossed four times the anvil of a severe thunderstorm from 11.3 km to 12.8 km altitude corresponding to a large convective system near Borneo island (6.0°N-115.5°E). During the crossing, carbon monoxide mixing ratios increase by 5 to 10 ppbv from the ambient cloud free environment to the anvil cloud correlated with an increase of CH4 mixing ratio. Using these observations, the fraction of boundary layer air contained in fresh convective outflow has been calculated. Other convection cases were detected, allowing for other fractions to be calculated, with results ranging between 0.15 and 0.55 and showing the variability of the mixing taking place during convective transport.

  4. Airborne measurements in the longwave infrared using an imaging hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Allard, Jean-Pierre; Chamberland, Martin; Farley, Vincent; Marcotte, Frédérick; Rolland, Matthias; Vallières, Alexandre; Villemaire, André

    2008-07-01

    Emerging applications in Defense and Security require sensors with state-of-the-art sensitivity and capabilities. Among these sensors, the imaging spectrometer is an instrument yielding a large amount of rich information about the measured scene. Standoff detection, identification and quantification of chemicals in the gaseous state is one important application. Analysis of the surface emissivity as a means to classify ground properties and usage is another one. Imaging spectrometers have unmatched capabilities to meet the requirements of these applications. Telops has developed the FIRST, a LWIR hyperspectral imager. The FIRST is based on the Fourier Transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. The FIRST, a man portable sensor, provides datacubes of up to 320×256 pixels at 0.35mrad spatial resolution over the 8-12 μm spectral range at spectral resolutions of up to 0.25cm-1. The FIRST has been used in several field campaigns, including the demonstration of standoff chemical agent detection [http://dx.doi.org/10.1117/12.788027.1]. More recently, an airborne system integrating the FIRST has been developed to provide airborne hyperspectral measurement capabilities. The airborne system and its capabilities are presented in this paper. The FIRST sensor modularity enables operation in various configurations such as tripod-mounted and airborne. In the airborne configuration, the FIRST can be operated in push-broom mode, or in staring mode with image motion compensation. This paper focuses on the airborne operation of the FIRST sensor.

  5. Neutral atmospheric waves determined from Atmospheric Explorer measurements

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Wharton, L. E.; Spencer, N. W.; Dyson, P. L.

    1979-01-01

    A description is presented of the first observations of neutral gravity waves in which a sufficient number of wave parameters are detected to allow a specification of the neutral wave characteristics. In situ measurements of neutral wind, temperature, and composition from Atmospheric Explorer are used to obtain wave amplitudes and phases for N2 temperature and wind, and N2, O, and He densities. These amplitudes and phases along with the Doppler shifted wave frequency provide sufficient information to evaluate the wave frequency and the wave vector.

  6. Investigation of Ozone Sources in California Using AJAX Airborne Measurements and Models: Implications for Stratospheric Intrusion and Long Range Transport

    NASA Technical Reports Server (NTRS)

    Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Pierce, R. Bradley; Tanaka, Tomoaki; Gore, Warren

    2015-01-01

    High ozone concentrations at low altitudes near the surface were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on May 30, 2012. We investigate the causes of the elevated ozone concentrations using the airborne measurements and various models. GEOS-chem and WRF-STILT model simulations show that the contribution from local sources is small. From MERRA reanalysis, it is found that high potential vorticity (PV) is observed at low altitudes. This high PV appears to be only partially coming through the stratospheric intrusions because the air inside the high PV region is moist, which shows that mixing appears to be enhanced in the low altitudes. Considering that diabatic heating can also produce high PV in the lower troposphere, high ozone is partially coming through stratospheric intrusion, but this cannot explain the whole ozone concentration in the target areas of the western U.S. A back-trajectory model is utilized to see where the air masses originated. The air masses of the target areas came from the lower stratosphere (LS), upper (UT), mid- (MT), and lower troposphere (LT). The relative number of trajectories coming from LS and UT is low (7.7 and 7.6, respectively) compared to that from LT (64.1), but the relative ozone concentration coming from LS and UT is high (38.4 and 20.95, respectively) compared to that from LT (17.7). The air mass coming from LT appears to be mostly coming from Asia. Q diagnostics show that there is sufficient mixing along the trajectory to indicate that ozone from the different origins is mixed and transported to the western U.S. This study shows that high ozone concentrations can be detected by airborne measurements, which can be analyzed by integrated platforms such as models, reanalysis, and satellite data.

  7. Investigating Ozone Sources in California Using AJAX Airborne Measurements and Models: Implications for Stratospheric Intrusion and Long Range Transport

    NASA Technical Reports Server (NTRS)

    Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Pierce, R. Bradley; Tanaka, Tomoaki; Gore, Warren

    2016-01-01

    High ozone concentrations at low altitudes near the surface were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on May 30, 2012. We investigate the causes of the elevated ozone concentrations using the airborne measurements and various models. GEOSchem and WRF-STILT model simulations show that the contribution from local sources is small. From MERRA reanalysis, it is found that high potential vorticity (PV) is observed at low altitudes. This high PV appears to be only partially coming through the stratospheric intrusions because the air inside the high PV region is moist, which shows that mixing appears to be enhanced in the low altitudes. Considering that diabatic heating can also produce high PV in the lower troposphere, high ozone is partially coming through stratospheric intrusion, but this cannot explain the whole ozone concentration in the target areas of the western U.S. A back-trajectory model is utilized to see where the air masses originated. The air masses of the target areas came from the lower stratosphere (LS), upper (UT), mid- (MT), and lower troposphere (LT). The relative number of trajectories coming from LS and UT is low (7.7% and 7.6%, respectively) compared to that from LT (64.1%), but the relative ozone concentration coming from LS and UT is high (38.4% and 20.95%, respectively) compared to that from LT (17.7%). The air mass coming from LT appears to be mostly coming from Asia. Q diagnostics show that there is sufficient mixing along the trajectory to indicate that ozone from the different origins is mixed and transported to the western U.S. This study shows that high ozone concentrations can be detected by airborne measurements, which can be analyzed by integrated platforms such as models, reanalysis, and satellite data.

  8. Using airborne measurements and modelling to determine the leak rate of the Elgin platform in 2012

    NASA Astrophysics Data System (ADS)

    Mobbs, Stephen D.; Bauguitte, Stephane J.-B.; Wellpott, Axel; O'Shea, Sebastian

    2013-04-01

    On the 25th March 2012 the French multinational oil and gas company Total reported a gas leak at the Elgin gas field in the North Sea following an operation on well G4 on the wellhead platform. During operations to plug and decommission the well methane leaked out which lead to the evacuation of the platform. Total made immense efforts to quickly stop the leak and on the 16th May 2012 the company announced the successful "Top kill". The UK's National Centre for Atmospheric Science (NCAS) supported the Total response to the leak with flights of the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft. Between the 3rd of April and the 4th of May five missions were flown. The FAAM aircraft was equipped with a Fast Greenhouse Gas Analyser (FGGA, Model RMT-200, Los Gatos Research Inc., US) to measure CH4 mixing ratios with an accuracy of 0.07±2.48 ppbv. The measurement strategy used followed closely NOAA's during the Deepwater Horizon (DWH) spill in the Gulf of Mexico in 2010. The basis of the method is to sample the cross-wind structure of the plume at different heights downwind of the source. The measurements were then fitted to a Gaussian dispersion model which allowed the calculation of the leak rate. The first mission was flown on the 30th March 2012 only 5 days after Total reported the leak. On this day maximum CH4 concentrations exceeded 2800 ppbv. The plume was very distinct and narrow especially near the platform (10km) and it showed almost perfect Gaussian characteristics. Further downwind the plume was split up into several filaments. On this day the CH4 leak rate was estimated to be 1.1 kg/s. Between the 1st and 2nd mission (03/04/2012) the leak rate decreased significantly to about 0.5 kg/s. From the 2nd flight onwards only a minor decrease in leak rate was calculated. The last mission - while the platform was still leaking - was flown on the 4th of May, when the leak rate was estimated to be 0.3 kg/s. The FAAM aircraft measurements

  9. Analyzing carbon dioxide and methane emissions in California using airborne measurements and model simulations

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Yates, E. L.; Iraci, L. T.; Jeong, S.; Fischer, M. L.

    2013-12-01

    Greenhouse gas (GHG) concentrations have increased over the past decades and are linked to global temperature increases and climate change. These changes in climate have been suggested to have varying effects, and uncertain consequences, on agriculture, water supply, weather, sea-level rise, the economy, and energy. To counteract the trend of increasing atmospheric concentrations of GHGs, the state of California has passed the California Global Warming Act of 2006 (AB-32). This requires that by the year 2020, GHG (e.g., carbon dioxide (CO2) and methane (CH4)) emissions will be reduced to 1990 levels. To quantify GHG fluxes, emission inventories are routinely compiled for the State of California (e.g., CH4 emissions from the California Greenhouse Gas Emissions Measurement (CALGEM) Project). The major sources of CO2 and CH4 in the state of California are: transportation, electricity production, oil and gas extraction, cement plants, agriculture, landfills/waste, livestock, and wetlands. However, uncertainties remain in these emission inventories because many factors contributing to these processes are poorly quantified. To alleviate these uncertainties, a synergistic approach of applying air-borne measurements and chemical transport modeling (CTM) efforts to provide a method of quantifying local and regional GHG emissions will be performed during this study. Additionally, in order to further understand the temporal and spatial distributions of GHG fluxes in California and the impact these species have on regional climate, CTM simulations of daily variations and seasonality of total column CO2 and CH4 will be analyzed. To assess the magnitude and spatial variation of GHG emissions and to identify local 'hot spots', airborne measurements of CH4 and CO2 were made by the Alpha Jet Atmospheric eXperiment (AJAX) over the San Francisco Bay Area (SFBA) and San Joaquin Valley (SJV) in January and February 2013 during the Discover-AQ-CA study. High mixing ratios of GHGs were

  10. Airborne lidar measurements of smoke plume distribution, vertical transmission, and particle size.

    PubMed

    Uthe, E E; Morley, B M; Nielsen, N B

    1982-02-01

    Observations were made of a dense smoke plume downwind from a forest fire using the ALPHA-1 two-wavelength downward-looking airborne lidar system. Facsimile displays derived from lidar signatures depict plume dimensions, boundary layer height, and underlying terrain elevation. Surface returns are interpreted in terms of vertical transmission as function of cross-plume distance. Results show significantly greater plume attenuation at 0.53-microm wavelength than at 1.06-microm, indicating ~0.1-microm mean particle diameters or the presence of gaseous constituents that absorb the visible radiation. These results demonstrate the potential of multiple-wavelength airborne lidar for quantitative analysis of atmospheric particulate and gaseous constituents. PMID:20372478

  11. Magnetic Approaches to Measuring and Mitigating Airborne Particulate Pollution

    NASA Astrophysics Data System (ADS)

    Maher, B.

    2014-12-01

    Human exposure to airborne particulate matter (PM) generates adverse human health impacts at all life stages from the embryonic to the terminal, including damage to respiratory and cardiovascular health, and neurodevelopment and cognitive function. Detailed understanding of the causal links between PM exposure and specific health impacts, and possible means to reduce PM exposure require knowledge of PM concentrations, compositions and sources at the fine-scale; i.e. beyond the current resolution of spatially-sparse conventional PM monitoring, non-unique elemental analyses, or poorly-validated PM modelling. Magnetically-ordered iron oxide minerals appear to be a ubiquitous component of urban PM. These minerals derive partly from the presence of iron impurities in fuels, which form, upon combustion, a non-volatile residue, often dominated by magnetite, within glassy, spherical condensates. Iron-rich, magnetic PM also arises from abrasion from vehicle components, including disk brakes, and road dust. The ubiquity and diversity of these magnetic PM phases, and the speed and sensitivity of magnetic analyses (down to trace concentrations), makes possible rapid, cost-effective magnetic characterization and quantification of PM, a field of study which has developed rapidly across the globe over the last 2 decades. Magnetic studies of actively-sampled PM, on filters, and passively-sampled PM, on tree leaves and other depositional surfaces, can be used to: monitor and map at high spatial resolution ambient PM concentrations; address the controversial issue of the efficacy of PM capture by vegetation; and add a new, discriminatory dimension to PM source apportionment.

  12. Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Hair, Johnathan; Hostetler, Chris; Hu, Yongxiang; Behrenfeld, Michael; Butler, Carolyn; Harper, David; Hare, Rich; Berkoff, Timothy; Cook, Antony; Collins, James; Stockley, Nicole; Twardowski, Michael; Cetinić, Ivona; Ferrare, Richard; Mack, Terry

    2016-06-01

    First of its kind combined atmospheric and ocean profile data were collected by the recently upgraded NASA Langley Research Center's (LaRC) High Spectral Resolution Lidar (HSRL-1) during the 17 July - 7 August 2014 Ship-Aircraft Bio-Optical Research Experiment (SABOR). This mission sampled over a region that covered the Gulf of Maine, open-ocean near Bermuda, and coastal waters from Virginia to Rhode Island. The HSRL-1 and the Research Scanning Polarimeter from NASA Goddard Institute for Space Studies collected data onboard the NASA LaRC King Air aircraft and flight operations were closely coordinated with the Research Vessel Endeavor that made in situ ocean optical measurements. The lidar measurements provided profiles of atmospheric backscatter and particulate depolarization at 532nm, 1064nm, and extinction (532nm) from approximately 9km altitude. In addition, for the first time HSRL seawater backscatter, depolarization, and diffuse attenuation data at 532nm were collected and compared to both the ship measurements and the Moderate Resolution Imaging Spectrometer (NASA MODIS-Aqua) satellite ocean retrievals.

  13. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  14. The effect of airborne dust on astronomical polarization measurements

    NASA Astrophysics Data System (ADS)

    Bailey, Jeremy; Ulanowski, Z.; Lucas, P. W.; Hough, J. H.; Hirst, E.; Tamura, M.

    2008-05-01

    In the past, it has generally been assumed that polarization observations made with ground-based telescopes are unaffected by the passage of light through the Earth's atmosphere. Here, we report observations with a new high-sensitivity astronomical polarimeter (PlanetPol) made during a Saharan dust event over the La Palma observatory in 2005 May that show excess linear polarization in the horizontal direction due to the passage of the starlight through the dust. The polarization reached a maximum value of 4.8 × 10-5 at 56° zenith distance and varied over five nights in proportion to the change in dust optical depth. Polarization of transmitted light (dichroism) does not occur for spherical or randomly oriented non-spherical particles. Thus, these results imply that some fraction of the dust grain population aligns with a preferred orientation. We use T-matrix models to demonstrate that the observed polarization direction implies a vertical orientation for the long axis of the particles. We suggest a possible mechanism for vertical orientation resulting from the electric field in the atmosphere. These results will need to be taken into account in the design and use of future instruments for high-sensitivity astronomical polarimetry. The results also indicate possible new approaches to studying aerosol particles and their effects on the Earth's atmosphere.

  15. Arctic Mechanisms of Interaction between the Surface and Atmosphere (AMISA) IPY Airborne Data Set

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Zucker, M. L.; Persson, O. P.

    2012-12-01

    The Arctic Mechanisms of Interaction Between the Surface and Atmosphere (AMISA) campaign is an International Polar year (IPY) project conducted in conjunction with a related ship-based IPY project, the Arctic Summer Cloud-Ocean Study (ASCOS). Understanding the top-side atmospheric and sea ice radiative processes contributing to Arctic sea ice reduction is the primary goal of AMISA. This poster describes the field activities and status of AMISA data processing studies at the end of the final grant year. Tropospheric synoptic and mesoscale disturbances over the Arctic Ocean force large, transitory changes in the structure of the Arctic boundary layer (ABL) and its surface energy budget (SEB). These changes determine the near-surface air temperature and drive the thermodynamic and mass balance of sea ice. The thermal, kinematic, and cloud features associated with these disturbances modify the kinematic and thermodynamic structure of the ABL through both turbulent and radiative fluxes and changes in ABL clouds. These changes, in turn, subsequently affect the SEB of the pack ice. Accordingly, processes linking atmospheric synoptic and mesoscale disturbances to ABL structure and SEB during the seasonal transition periods were the primary observational objectives of AMISA. To achieve these objectives high resolution observations of Arctic sea ice cover and type along with meteorological conditions representative of significant mesoscale processes were obtained during five sorties over polar sea ice as part of the 23-day AMISA deployment in August 2008 using the NASA DC-8 aircraft based out of Kiruna, Sweden. Measurements of ABL cloud and moisture content and identification of summertime meltponds (which produce different radiative and turbulent fluxes) and leads were included. DC-8 data includes high resolution microwave imagery of sea ice using the Polarimetric Scanning Radiometer (PSR/A) system, video data used for ice/lead/meltpond discrimination, and direct sampling

  16. Neutron spectral measurements in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Zobel, W.; Love, T. A.; Delorenzo, J. T.; Mcnew, C. O.

    1972-01-01

    An experiment to measure neutrons in the upper atmosphere was performed on a balloon flight from Palestine, Texas, at an altitude of about 32 km. The experimental arrangement is discussed briefly, and results of a preliminary analysis of the data for neutrons in the energy range 3 to 30 MeV are given.

  17. Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.; Claffey, K. J.; Abelev, A.; Hebert, D. A.; Jones, K.

    2014-12-01

    During March of 2014, the Naval Research Laboratory and the Cold Regions Research and Engineering Laboratory collected an integrated set of airborne and in-situ measurements over two areas of floating, but land-fast ice near the coast of Barrow, AK. The near-shore site was just north of Point Barrow, and the "offshore" site was ~ 20 km east of Point Barrow. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439) and a snow radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects at both sites consisting of a 2 km long profile of snow depth and ice thickness measurements with periodic boreholes. A 60 m x 400 m swath of snow depth measurements was centered on this profile. Airborne data were collected on five overflights of the two transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The radar measured snow thickness. The freeboard and snow thickness measurements are used to estimate ice thickness via isostasy and density estimates. The central swath of in situ snow depth data allows examination of the effects of cross-track variations considering the relatively large footprint of the snow radar. Assuming a smooth, flat surface the radar range resolution in air is < 4 cm, but the along-track sampling distance is ~ 3 m after unfocussed SAR processing. The width of the footprint varies from ~ 9 m up to about 40 m (beam-limited) for uneven surfaces. However, the radar could not resolve snow thickness

  18. Integrated Airborne and In-Situ Measurements Over Land-Fast Ice Near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Richter-Menge, J.; Abelev, A.; Liang, R.; Ball, D.; Claffey, K. J.; Hebert, D. A.; Jones, K.

    2015-12-01

    The Naval Research Laboratory has collected two field seasons of integrated airborne and in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. During the first season in March of 2014 the Cold Regions Research and Engineering Laboratory led the on-ice group including NRL personnel and Naval Academy midshipmen. The second season (March 2015) included only NRL scientists and midshipmen. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects a sites generally consisting of a 2 km long profile of Magnaprobe and EM31 measurements with periodic boreholes. A 60 m x 400 m swath of Magnaprobe measurements was centered on this profile. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown. The results of this ground-truth experiment will inform our analysis of grids of airborne data collected

  19. Airborne gamma radiation measurements of soil moisture during FIFE: Activities and results

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.

    1992-01-01

    Soil moisture measurements were obtained during the summer of 1987 and 1989 near Manhattan, Kansas, using the National Weather Service (NWS) airborne gamma radiation system. A network of 24 flight lines were established over the research area. Airborne surveys were flown daily during two intensive field campaigns. The data collected was sufficient to modify the NWS standard operational method for estimating soil moisture for the Field Experiment (FIFE) flight lines. The average root mean square error of the soil moisture estimates for shorter FIFE flight lines was found to be 2.5 percent, compared with a reported value of 3.9 percent for NWS flight lines. Techniques were developed to compute soil moisture estimates for portions of the flight lines. Results of comparisons of the airborne gamma radiation soil moisture estimates with those obtained using the NASA Pushbroom Microwave Radiation (PBMR) system and hydrological model are presented. The airborne soil moisture measurements, and real averages computed using all remotely sensed and ground data, have been in support of the research of the many FIFE investigators whose overall goal was the upscale integration of models and the application of satellite remote sensing.

  20. Assessment of water pollution by airborne measurement of chlorophyll

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1972-01-01

    Remote measurement of chlorophyll concentrations to determine extent of water pollution is discussed. Construction and operation of radiometer to provide measurement capability are explained. Diagram of equipment is provided.

  1. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients.

    PubMed

    Esselborn, Michael; Wirth, Martin; Fix, Andreas; Tesche, Matthias; Ehret, Gerhard

    2008-01-20

    An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May-June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements.

  2. Lidar measurements of atmospheric backscattering amplification

    NASA Astrophysics Data System (ADS)

    Banakh, V. A.; Razenkov, I. A.

    2016-02-01

    Results of long-term continuous measurements of the atmospheric backscattering amplification coefficient on a 2-km-long near-ground path with the use of a two-channel micropulse lidar based on a waveguide laser are presented. It is shown that the backscattering amplification coefficient has a pronounced daily variation. In the night and in the afternoon, atmospheric backscattering amplification is maximal and the amplification coefficient can exceed 2. The amplification is low or absent in morning and evening hours at neutral temperature stratification in the near-ground layer of the atmosphere. The backscattering amplification coefficient increases with an increase in the structure constant of the air refracting index and variance of the image jitter of the illumination spot created by the probing laser beam on the wall of a 2-km-distant building.

  3. A Transport Analysis of In Situ Airborne Ozone Measurements from the 2011 DISCOVER-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Arkinson, H. L.; Brent, L. C.; He, H.; Loughner, C.; Stehr, J. W.; Weinheimer, A. J.; Dickerson, R. R.

    2013-12-01

    Baltimore and Washington are currently designated as nonattainment areas with respect to the 2008 EPA National Ambient Air Quality Standard (NAAQS) for 8-hour Ozone (O3). Tropospheric O3 is the dominant component of summertime photochemical smog, and at high levels, has deleterious effects on human health, ecosystems, and materials. The University of Maryland (UMD) Regional Atmospheric Measurement Modeling and Prediction Program (RAMMPP) strives to improve understanding of air quality in the Mid-Atlantic States and to elucidate contributions of pollutants such as O3 from regional transport versus local sources through a combination of modeling and in situ measurements. The NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) project investigates the connection between column measurements and surface conditions to explore the potential of remote sensing observations in diagnosing air quality at ground level where pollutants can affect human health. During the 2011 DISCOVER-AQ field campaign, in situ airborne measurements of trace gases and aerosols were performed along the Interstate 95 corridor between Baltimore and Washington from the NASA P3B aircraft. To augment this data and provide regional context, measurements of trace gases and aerosols were also performed by the RAMMPP Cessna 402B aircraft over nearby airports in Maryland and Virginia. This work presents an analysis of O3 measurements made by the Ultraviolet (UV) Photometric Ambient O3 Analyzer on the RAMMPP Cessna 402B and by the NCAR 4-Channel Chemiluminescence instrument on the NASA P3B. In this analysis, spatial and temporal patterns of O3 data are examined within the context of forward and backward trajectories calculated from 12-km North American Mesoscale (NAM) meteorological data using the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model and from a high resolution Weather Research and

  4. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    The MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris, using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron aerosol species. The mass concentration of black carbon (BC), measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), BC, and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy)). Plotting the equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA) formation. Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in London, Mexico City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together with organic aerosol formation

  5. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  6. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  7. Evaluation of the NASA Langley Research Center airborne High Spectral Resolution Lidar extinction measurements during the Megacity Initiative: Local and Global Research Observations (MILAGRO) Campaign

    NASA Astrophysics Data System (ADS)

    Rogers, R. R.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Cook, A. L.; Harper, D. B.; Obland, M. D.; Burton, S. P.; Clarke, A. D.; Russell, P. B.; Redemann, J.; Livingston, J. M.

    2007-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA LaRC B-200 King Air aircraft and measured profiles of aerosol extinction, backscatter, and depolarization during the Megacity Initiative: Local and Global Research Observations (MILAGRO) Campaign in March 2006. The HSRL collected approximately 55 hours of data over 15 science flights, which were coordinated with the Sky Research J-31 aircraft (5 flights), the DOE G-1 aircraft (6 flights), and the NCAR C-130 aircraft (4 flights). This coordinated effort in MILAGRO provides the first opportunity to evaluate the HSRL aerosol extinction and optical thickness profiles with corresponding profiles derived from the other airborne measurements: 1) the 14 channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) on the J-31 and the in situ nephelometer measurements of aerosol scattering and Particle Soot Absorption Photometer (PSAP) measurements of aerosol absorption from the Hawaii Group for Environment and Atmospheric Research (HiGEAR) on the C-130. This study will include comparisons of aerosol extinction from these three techniques in cases where the HSRL flew directly over the AATS-14 and HiGEAR instruments while they measured aerosol extinction profiles. The results are used in assessing the uncertainty of the HSRL extinction profiles. Column aerosol optical depth (AOD) derived from the HSRL measurements is also compared with AOD derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements acquired on the Terra and Aqua spacecraft and from Aerosol Robotic Network (AERONET) ground-based Sun photometer measurements.

  8. Central Arctic Atmospheric SO2 pollution from smelters: Airborne detection and Arctic Haze formation

    NASA Astrophysics Data System (ADS)

    Arnold, F.; Nau, R.; Jurkat, T.; Schlager, H.; Minikin, A.; Dörnbrack, A.; Pirjola, L.; Stohl, A.

    2009-04-01

    Arctic Haze represents a dramatic manifestation of anthropogenic pollution of a remote and previously pristine atmospheric environment, which presently experiences faster climate warming than any other region on the planet. Arctic haze influences visibility, ecosystems, and may contribute to Arctic climate warming. In spring, Arctic Haze occupies large parts of the Arctic lower troposphere, the so called Arctic Dome. The most abundant Arctic Haze component is sulphate, which was previously thought to stem preferably from Extra-Arctic anthropogenic pollution sources. However, recent model simulations suggest that sulphate particle transport into the Arctic Dome is severely hindered. During the recent POLAR YEAR 2007/2008, in 2007, we have made the first Central Arctic SO2 measurements with high vertical and horizontal resolution and detected SO2 rich pollution plumes in the entire troposphere height range up to 9000 m. Below 2000 m, inside the Arctic Dome, these plumes were most pronounced and stemmed preferably from a giant Ni-Cu smelter complex, located in the Siberian sector of the Arctic Dome, near the city Norilsk, at a distance of 2100 km from our measurement region. Our measurements and accompanying model simulations indicate that SO2 emitted by that smelter complex represents a mayor if not the dominant precursor of Arctic Dome cloud condensation nuclei and haze particles. Along with SO2, were measured aerosol particles and additional trace gases including also gas-phase NOy (sum of reactive nitrogen gases). Importantly, the abundance ratio R=SO2/NOy is quite different for different SO2 source types (about 1-2 for fossil fuel combustion, <0.1 for bio mass burning, and about 40 for Ni/Cu smelting) and therefore serves as an SO2-source marker. In addition to our air craft measurements, we have made accompanying model simulations of pollutant transport and aerosol formation and growth. Our air craft measurements were part of the ASTAR 2007 (ASTAR=Arctic Study

  9. Airborne FTIR Measurements Obtained Aboard the UW CV-580 During SAFARI-2000

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Bertschi, I.; Christian, T. J.; Hobbs, P. V.; Ward, D. E.; Hao, W. M.

    2001-12-01

    The University of Montana/Forest Service airborne FTIR (AFTIR) was installed on the University of Washington Convair-580 for 19 flights between 14 August and 14 September 2000. We quantified the major trace gases in minutes-old biomass burning smoke (namely CO2, CO, CH4, C2H4, C2H2, CH2O, CH3OH, CH3COOH, HCOOH, NH3, NO, NO2, and HCN) from 9 fires in both arid and humid, wooded savannas where most global biomass burning occurs. Several of these measurements coincided with TERRA/ER2 overpasses. The AFTIR fire measurements confirmed the importance of oxygenated organic compounds in tropical smoke and provided an emission factor for HCN (a potential biomass burning tracer) that is 20 times higher than previously thought. AFTIR also documented some rapid post-emission chemical transformations in smoke. We measured actual formation rates for ozone and acetic acid in smoke downwind from two savanna fires. The ratio of excess ozone to excess CO reached 9% after a few hours of photochemical processing. The similar ratio for acetic acid increased from 1.4 to approximately 5% over the same time period. We observed cloud scavenging of methanol, ammonia, and acetic acid from smoke and a simultaneous, cloud-related source of formaldehyde in the plumes from two other savanna fires. To our knowledge, the SAFARI-2000 flights provided the first comprehensive characterization of savanna fire smoke samples with explicitly known smoke ages and post-emission processing scenarios. We also measured vertical profiles for CO2, CO, CH4, and H2O under TERRA/ER2 at 5 locations in the southern African gyre, one location in the continental outflow over the Atlantic, and one location in the inflow adjacent to the Indian Ocean. During a 3-aircraft intercomparison we observed trace gas enhancement in the free troposphere due to deep cumulus convection. Finally, we measured high NOx emission factors for ships off Namibia. Taken together, our FTIR-based measurements of the emissions from ships

  10. Airborne measurements of CO2, CH4 and HCN in boreal biomass burning plumes

    NASA Astrophysics Data System (ADS)

    O'Shea, Sebastian J.; Bauguitte, Stephane; Muller, Jennifer B. A.; Le Breton, Michael; Archibald, Alex; Gallagher, Martin W.; Allen, Grant; Percival, Carl J.

    2013-04-01

    Biomass burning plays an important role in the budgets of a variety of atmospheric trace gases and particles. For example, fires in boreal Russia have been linked with large growths in the global concentrations of trace gases such as CO2, CH4 and CO (Langenfelds et al., 2002; Simpson et al., 2006). High resolution airborne measurements of CO2, CH4 and HCN were made over Eastern Canada onboard the UK Atmospheric Research Aircraft FAAM BAe-146 from 12 July to 4 August 2011. These observations were made as part of the BORTAS project (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites). Flights were aimed at transecting and sampling the outflow from the commonly occurring North American boreal forest fires during the summer months and to investigate and identify the chemical composition and evolution of these plumes. CO2 and CH4 dry air mole fractions were determined using an adapted system based on a Fast Greenhouse Gas Analyser (FGGA, Model RMT-200) from Los Gatos Research Inc, which uses the cavity enhanced absorption spectroscopy technique. In-flight calibrations revealed a mean accuracy of 0.57 ppmv and 2.31 ppbv for 1 Hz observations of CO2 and CH4, respectively, during the BORTAS project. During these flights a number of fresh and photochemically-aged plumes were identified using simultaneous HCN measurements. HCN is a distinctive and useful marker for forest fire emissions and it was detected using chemical ionisation mass spectrometry (CIMS). In the freshest plumes, strong relationships were found between CH4, CO2 and other tracers for biomass burning. From this we were able to estimate that 8.5 ± 0.9 g of CH4 and 1512 ± 185 g of CO2 were released into the atmosphere per kg of dry matter burnt. These emission factors are in good agreement with estimates from previous studies and can be used to calculate budgets for the region. However for aged plumes the correlations between CH4 and other

  11. Radar measurement of the upper atmosphere.

    PubMed

    Walker, J C

    1979-10-12

    In the last two decades large radars have proved to be powerful instruments for the measurement of the properties of the upper atmosphere. These radars were used initially to measure properties of the ionosphere by the Thomson scattering technique at heights above 100 kilometers. Careful interpretation of the power and spectrum of radar echoes yielded data on electron and ion densities and temperatures as well as on bulk motion of the ionospheric plasma, all as functions of height and time. More recent developments have made it possible to measure wind speeds and the structure of turbulence in the stratosphere and mesosphere at altitudes below 100 kilometers.

  12. Atmospheric temperature measurements, using Raman lidar

    NASA Technical Reports Server (NTRS)

    Salzman, J. A.; Coney, T. A.

    1974-01-01

    The Raman-shifted return of a lidar system had been used to make atmospheric temperature measurements. The measurements were made along a horizontal path at temperatures ranging from -30 to 30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the rotational Raman spectrum, which were simultaneously sampled from a preset range. These tests verified that the theoretical predictions formulated in the design of the system were adequate. Measurements were made to an accuracy of + or - 4 C with 1-minute temporal resolution.

  13. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    NASA Astrophysics Data System (ADS)

    Liu, Jiqiao; Zhu, Xiaopeng; Diao, Weifeng; Zhang, Xin; Liu, Yuan; Bi, Decang; Jiang, Liyuan; Shi, Wei; Zhu, Xiaolei; Chen, Weibiao

    2016-06-01

    An all-fiber airborne pulsed coherent Doppler lidar (CDL) prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD) scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  14. Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Upgrade to Full Sun-Sky-Cloud-Trace Gas Spectrometry Capability for Airborne Science

    NASA Astrophysics Data System (ADS)

    Dunagan, S. E.; Flynn, C. J.; Johnson, R. R.; Kacenelenbogen, M. S.; Knobelspiesse, K. D.; LeBlanc, S. E.; Livingston, J. M.; Redemann, J.; Russell, P. B.; Schmid, B.; Segal-Rosenhaimer, M.; Shinozuka, Y.

    2014-12-01

    The Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument has been developed at NASA Ames in collaboration with Pacific Northwest National Laboratory (PNNL) and NASA Goddard, supported substantially since 2009 by NASA's Radiation Science Program and Earth Science Technology Office. It combines grating spectrometers with fiber optic links to a tracking, scanning head to enable sun tracking, sky scanning, and zenith viewing. 4STAR builds on the long and productive heritage of the NASA Ames Airborne Tracking Sunphotometers (AATS-6 and -14), which have yielded more than 100 peer-reviewed publications and extensive archived data sets in many NASA Airborne Science campaigns from 1986 to the present. The baseline 4STAR instrument has provided extensive data supporting the TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013), SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys, 2013), and ARISE (Arctic Radiation - IceBridge Sea and Ice Experiment, 2014), field campaigns.This poster presents plans and progress for an upgrade to the 4STAR instrument to achieve full science capability, including (1) direct-beam sun tracking measurements to derive aerosol optical depth spectra, (2) sky radiance measurements to retrieve aerosol absorption and type (via complex refractive index and mode-resolved size distribution), (3) cloud properties via zenith radiance, and (4) trace gas spectrometry. Technical progress in context with the governing physics is reported on several upgrades directed at improved light collection and usage, particularly as related to spectrally and radiometrically stable propagation through the collection light path. In addition, improvements to field calibration and verification, and flight operability and reliability are addressed.

  15. Analysis of Vertical Weighting Functions for Lidar Measurements of Atmospheric CO2 and O2

    NASA Astrophysics Data System (ADS)

    Kooi, S.; Mao, J.; Abshire, J. B.; Browell, E. V.; Weaver, C. J.; Kawa, S. R.

    2011-12-01

    Several NASA groups have developed integrated path differential absorption (IPDA) lidar approaches to measure atmospheric CO2 concentrations from space as a candidates for NASA's ASCENDS space mission. For example, the Goddard CO2 Sounder approach uses two pulsed lasers to simultaneously measure both CO2 and O2 absorption in the vertical path to the surface at a number of wavelengths across a CO2 line near 1572 nm and an O2 line doublet near 764 nm. The measurements of CO2 and O2 absorption allow computing their vertically weighted number densities and then their ratios for estimating CO2 concentration relative to dry air. Since both the CO2 and O2 densities and their absorption line-width decrease with altitude, the absorption response (or weighting function) varies with both altitude and absorption wavelength. We have used some standard atmospheres and HITRAN 2008 spectroscopy to calculate the vertical weighting functions for two CO2 lines near 1571 nm and the O2 lines near 764.7 and 1260 nm for candidate online wavelength selections for ASCENDS. For CO2, the primary candidate on-line wavelengths are 10-12 pm away from line center with the weighting function peaking in the atmospheric boundary layer to measure CO2 sources and sinks at the surface. Using another on-line wavelength 3-5 pm away from line center allows the weighting function to peak in the mid- to upper troposphere, which is sensitive to CO2 transport in the free atmosphere. The Goddard CO2 sounder team developed an airborne precursor version of a space instrument. During the summers of 2009, 2010 and 2011 it has participated in airborne measurement campaigns over a variety of different sites in the US, flying with other NASA ASCENDS lidar candidates along with accurate in-situ atmospheric sensors. All flights used altitude patterns with measurements at steps in altitudes between 3 and 13 km, along with spirals from 13 km altitude to near the surface. Measurements from in-situ sensors allowed an

  16. Development of the Lidar Atmospheric Sensing Experiment (LASE): An Advanced Airborne DIAL Instrument

    NASA Technical Reports Server (NTRS)

    Moore, Alvah S., Jr.; Brown, Kevin E.; Hall, William M.; Barnes, James C.; Edwards, William C.; Petway, Larry B.; Little, Alan D.; Luck, William S., Jr.; Jones, Irby W.; Antill, Charles W., Jr.

    1997-01-01

    The Lidar Atmospheric Sensing Experiment (LASE) Instrument is the first fully-engineered, autonomous Differential Absorption Lidar (DIAL) System for the measurement of water vapor in the troposphere (aerosol and cloud measurements are included). LASE uses a double-pulsed Ti:Sapphire laser for the transmitter with a 30 ns pulse length and 150 mJ/pulse. The laser beam is "seeded" to operate on a selected water vapor absorption line in the 815-nm region using a laser diode and an onboard absorption reference cell. A 40 cm diameter telescope collects the backscattered signals and directs them onto two detectors. LASE collects DIAL data at 5 Hz while onboard a NASA/Ames ER-2 aircraft flying at altitudes from 16-21 km. LASE was designed to operate autonomously within the environment and physical constraints of the ER-2 aircraft and to make water vapor profile measurements across the troposphere to better than 10% accuracy. LASE has flown 19 times during the development of the instrument and the validation of the science data. This paper describes the design, operation, and reliability of the LASE Instrument.

  17. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility

    DOE Data Explorer

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through permanent monitoring stations and field campaigns around the world. Airborne measurements required to answer science questions from researchers or to validate ground data are also collected. To find data from all categories of aerial operations, follow the links from the AAF information page at http://www.arm.gov/sites/aaf. Tables of information will provide start dates, duration, lead scientist, and the research site for each of the named campaigns. The title of a campaign leads, in turn, to a project description, contact information, and links to the data. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  18. In Situ Airborne Measurement of Formaldehyde with a New Laser Induced Fluorescence Instrument

    NASA Astrophysics Data System (ADS)

    Arkinson, H.; Hanisco, T. F.; Cazorla, M.; Fried, A.; Walega, J.

    2012-12-01

    Formaldehyde (HCHO) is a highly reactive and ubiquitous compound in the atmosphere that originates from primary emissions and secondary formation by photochemical oxidation of volatile organic compounds. HCHO is an important precursor to the formation of ozone and an ideal tracer for the transport of boundary layer pollutants to higher altitudes. In situ measurements of HCHO are needed to improve understanding of convective transport mechanisms and the effects of lofted pollutants on ozone production and cloud microphysics in the upper troposphere. The Deep Convective Clouds and Chemistry Project (DC3) field campaign addressed the effects of deep, midlatitude continental convective clouds on the upper troposphere by examining vertical transport of fresh emissions and water aloft and by characterizing subsequent changes in composition and chemistry. Observations targeting convective storms were conducted over Colorado, Alabama, and Texas and Oklahoma. We present measurements of the In Situ Airborne Formaldehyde instrument (ISAF), which uses laser induced fluorescence to achieve the high sensitivity and fast time response required to detect low concentrations in the upper troposphere and capture the fine structure characteristic of convective storm outflow. Preliminary results from DC3 indicate that the ISAF is able to resolve concentrations ranging from under 35 ppt to over 35 ppb, spanning three orders of magnitude, in less than a few minutes. Frequent, abrupt changes in HCHO captured by the ISAF are corroborated by similar patterns observed by simultaneous trace gas and aerosol measurements. Primary HCHO emissions are apparent in cases when the DC-8 flew over combustion sources or biomass burning, and secondary HCHO formation is suggested by observations of enhanced HCHO concurrent with other elevated hydrocarbons. Vertical transport of HCHO is indicated by measurements of over 6 ppb from outflow in the upper troposphere. The DC-8 payload also included the

  19. Continuous wave lidar measurement of atmospheric visibility

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.; Iyer, R. S.

    1978-01-01

    The technique of measurement of phase shift with a modulated CW lidar system for the purpose of atmospheric visibility assessment was evaluated both theoretically and experimentally. A closed form solution for prediction of phase shift as a function of visibility and modulation frequency was developed. Data obtained with a bistatic CW lidar configuration were compared with predictions. Results indicate the expected trends with equipment parameters and call for more extensive experiments.

  20. Mass spectrometric measurements of atmospheric composition

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1974-01-01

    The development of a magnetic sector field analyzer for continuous sampling and measurement of outer planetary atmospheres is discussed. Special features of the analyzer include a dynamic range of 10 to the minus 7th power, a mass range from 1 to 48 AMU, two ion sensitivities, a special scan time of 35 sec at 14 BPS, and the use of ion counting techniques for analysis.

  1. Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong

    2015-04-01

    Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205

  2. Airborne microwave measurements of the southern Greenland ice sheet

    SciTech Connect

    Swift, C.T.; Hayes, P.S.; Herd, J.S.; Jones, W.L.; Delmore, V.E.

    1985-02-01

    Microwave remote sensing measurements were collected over Greenland with the NASA C-130 aircraft used as a platform. The principal instruments were a C band radiometer and an X band scatterometer, which simultaneously collected both active and passive microwave remote sensing data. The data collected fully support the conclusions drawn by others that volume scattering from subsurface ice lenses and glands is the major influence on microwave signature. Both thermal emission and radar backscattering results are self-consistent with rather simple theories of volume scattering. The remote sensing measurements also provide a relative measure of the number density of scatterers; however, additional theoretical work is required to establish the cross section per scatterer in order to measure absolute number density. Along this avenue of thought, the data rule out Rayleigh scattering and strongly support a high frequency model. The measured anisotropy over the ice cap appears to be a new observation, and future exploitation of remote sensing techniques may provide information relating to the average shape of subsurface patterns and information relative to glacial flow. 14 references, 10 figures.

  3. Airborne Cloud Microphysical Measurements During The Baltex Bridge Campaign

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Wendisch, M.; Jaekel, E.

    The purpose of the Baltex Bridge Campaign (BBC) was to study the effects of spatial and temporal variability of clouds on solar radiative transfer. The BBC was conducted in the Netherlands in September 2001. Ground-based measurements with several remote sensing instruments (radar, radiometers) were realised in conjunction with microphysical and radiative measurements by three aircraft. The aim is to extract 3-dimensional microphysical cloud parameters such as liquid water content (LWC) and droplet effective radius (Re) and to use these data in dynamical and radiative transfer models whose output is then compared with radiation measurements. In this presentation, the analysis of microphysical data from one of the aircraft is reported. Two different optical instruments were flown: The PVM-100A (Particle Volume Monitor) measures LWC and Re by analysing the scattering signal of a droplet population within the sample volume of a laser beam. It was run at a sampling frequency of 200 Hz, allowing a spatial resolution down to 30 cm. The PVM was complemented by the Fast FSSP (Forward Scattering Spectrometer Probe), a droplet sizing counter storing interarrival times, durations and diameters (2-40 µm) of droplets entering the sampling volume of a He-Ne laser beam. Spatial resolution is limited by the sampling statistics only. PVM and Fast FSSP measurements are compared. LWC, Re, concentration and size distribution are statistically analysed in order to find typical spatial scales in the observed clouds.

  4. Analyzing source apportioned methane in northern California during Discover-AQ-CA using airborne measurements and model simulations

    DOE PAGES

    Johnson, Matthew S.; Yates, Emma L.; Iraci, Laura T.; Loewenstein, Max; Tadić, Jovan M.; Wecht, Kevin J.; Jeong, Seongeun; Fischer, Marc L.

    2014-12-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric mixing ratios in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were ~5.30 Gg day –1 (Gg = 1.0 ×more » 109 g) (equating to ~1.90 × 103 Gg yr–1) for all of California. According to EDGAR, the SFBA and northern SJV region contributes ~30% of total CH4 emissions from California. Source apportionment analysis during this study shows that CH4 mixing ratios over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 mixing ratios in northern California (average normalized mean bias (NMB) = –5.2% and linear regression slope = 0.20). The largest negative biases in the model were calculated on days when large amounts of CH4 were measured over local emission sources and atmospheric CH4 mixing ratios reached values >2.5 parts per million. Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be obtained and additional research is necessary to better quantify source apportioned CH4 emissions in California.« less

  5. Analyzing source apportioned methane in northern California during Discover-AQ-CA using airborne measurements and model simulations

    SciTech Connect

    Johnson, Matthew S.; Yates, Emma L.; Iraci, Laura T.; Loewenstein, Max; Tadić, Jovan M.; Wecht, Kevin J.; Jeong, Seongeun; Fischer, Marc L.

    2014-12-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric mixing ratios in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were ~5.30 Gg day –1 (Gg = 1.0 × 109 g) (equating to ~1.90 × 103 Gg yr–1) for all of California. According to EDGAR, the SFBA and northern SJV region contributes ~30% of total CH4 emissions from California. Source apportionment analysis during this study shows that CH4 mixing ratios over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 mixing ratios in northern California (average normalized mean bias (NMB) = –5.2% and linear regression slope = 0.20). The largest negative biases in the model were calculated on days when large amounts of CH4 were measured over local emission sources and atmospheric CH4 mixing ratios reached values >2.5 parts per million. Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be

  6. Tropospheric ozone distributions measured with an airborne laser absorption spectrometer

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1978-01-01

    Measurements of tropospheric ozone have been made in the southern and middle California regions and over the Pacific Ocean during two series of flights in February and May 1977. The data were obtained by using a laser absorption spectrometer, a nadir-viewing instrument which remotely measures the ozone column abundance between ground level and aircraft altitude by interacting with ozone at specific wavelengths near 9.5 microns. The measurements indicate significantly lower ozone abundances above the Mojave Desert region as compared with farm, forest, and urban areas. The average tropospheric column density was found to be 0.0027 atm cm/km over the California region and 0.0035 atm cm/km over the Pacific Ocean region 1000-2000 km west of the coast of Mexico.

  7. Atmospheric particulate measurements in Norfolk, Virginia

    NASA Technical Reports Server (NTRS)

    Storey, R. W., Jr.; Sentell, R. J.; Woods, D. C.; Smith, J. R.; Harris, F. S., Jr.

    1975-01-01

    Characterization of atmospheric particulates was conducted at a site near the center of Norfolk, Virginia. Air quality was measured in terms of atmospheric mass loading, particle size distribution, and particulate elemental composition for a period of 2 weeks. The objectives of this study were (1) to establish a mean level of air quality and deviations about this mean, (2) to ascertain diurnal changes or special events in air quality, and (3) to evaluate instrumentation and sampling schedules. Simultaneous measurements were made with the following instruments: a quartz crystal microbalance particulate monitor, a light-scattering multirange particle counter, a high-volume air sampler, and polycarbonate membrane filters. To assess the impact of meteorological conditions on air quality variations, continuous data on temperature, relative humidity, wind speed, and wind direction were recorded. Particulate elemental composition was obtained from neutron activation and scanning electron microscopy analyses of polycarbonate membrane filter samples. The measured average mass loading agrees reasonably well with the mass loadings determined by the Virginia State Air Pollution Control Board. There are consistent diurnal increases in atmospheric mass loading in the early morning and a sample time resolution of 1/2 hour seems necessary to detect most of the significant events.

  8. Fast in situ airborne and ground-based flux measurement of ammonia using a quantum cascade laser spectrometer

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Yu, X.; Hubbe, J.; Kluzek, C. D.; Tomlinson, J. M.; Fischer, M. L.; Reichl, K.; Gupta, M.

    2012-12-01

    A pair of new ammonia (NH3) spectrometers were developed based on off-axis integrated cavity output spectroscopy. These ammonia gas analyzers consist of an optical cell, a quantum-cascade laser, a HgCdTe detector, gas sampling system, electronics for control and data acquisition, and data-analysis software. The NH3 mixing ratio is determined from high-resolution NH3 absorption line shapes by tuning the laser wavelength over the fundamental vibration band near 9.6 μm. Excellent linearity is obtained in a wide range (0- 500 ppb) with a precision of 75 ppt (1σ in 1 second). The analyzers' 1/e response time to step changes in ammonia concentration are 2.4 Hz and 8.1 Hz for the airborne and flux instruments, respectively. Feasibility was demonstrated in airborne test flights in the troposphere on board of the Department of Energy (DOE) Gulfstream-1 (G-1) aircraft. Two research flights were conducted over Sunnyside, Washington. In the first test flight, the ammonia gas sensor was used to identify signatures of feedstock from local dairy farms with high vertical spatial resolution under low wind and stable atmospheric conditions. In the second flight, the NH3 spectrometer showed high sensitivity in capturing feedstock emission signals under windy and less stable conditions. Mixing ratios aloft were measured between 0.75 ppb above the boundary layer and 100 ppb over large feedlots. Eddy covariance estimates of NH3 flux from a manure slurry amendment were performed in a pasture near Two Rock, California from May 18, 2012 to July 5, 2012. Measurement spanned pasture conditions from forage growth, cut-to-ground, manure slurry amendment (estimated to be 95 ± 33% kg NH3-N ha-1) and re-growth. An exponential decay fit to the NH3 flux data after slurry amendment provides an estimate of cumulative emission of 6.6 ± 0.5 kg NH3-N ha-1 (or 7 ± 0.24% of the total applied nitrogen) as a result of the slurry amendment. These results demonstrate that the new ammonia spectrometers

  9. Reconciling In Situ Foliar Nitrogen and Vegetation Structure Measurements with Airborne Imagery Across Ecosystems

    NASA Astrophysics Data System (ADS)

    Flagg, C.

    2015-12-01

    Over the next 30 years the National Ecological Observatory Network (NEON) will monitor environmental and ecological change throughout North America. NEON will provide a suite of standardized data from several ecological topics of interest, including net primary productivity and nutrient cycling, from 60+ sites across 20 eco-climatic domains when fully operational in 2017. The breadth of sampling includes ground-based measurements of foliar nitrogen and vegetation structure, ground-based spectroscopy, airborne LIDAR, and airborne hyperspectral surveys occurring within narrow overlapping time intervals once every five years. While many advancements have been made in linking and scaling in situ data with airborne imagery, establishing these relationships across dozens of highly variable sites poses significant challenges to understanding continental-wide processes. Here we study the relationship between foliar nitrogen content and airborne hyperspectral imagery at different study sites. NEON collected foliar samples from three sites in 2014 as part of a prototype study: Ordway Swisher Biological Station (pine-oak savannah, with active fire management), Jones Ecological Research Center (pine-oak savannah), and San Joaquin Experimental Range (grass-pine oak woodland). Leaf samples and canopy heights of dominant and co-dominant species were collected from trees located within 40 x 40 meter sampling plots within two weeks of aerial LIDAR and hyperspectral surveys. Foliar canopy samples were analyzed for leaf mass per area (LMA), stable isotopes of C and N, C/N content. We also examine agreement and uncertainty between ground based canopy height and airborne LIDAR derived digital surface models (DSM) for each site. Site-scale maps of canopy nitrogen and canopy height will also be presented.

  10. Changes in airborne bacteria during a tropical burning season are correlated with satellite aerosol measurements

    NASA Astrophysics Data System (ADS)

    Mims, F., III

    Agricultural burning in the tropics generates vast quantities of smoke that can blanket entire countries and attenuate photosynthetically active radiation (PAR). Thick smoke also reduces the solar ultraviolet-B wavelengths that synthesize vitamin-D precur- sors in vertebrates and suppress many viruses and non-pigmented bacteria. As many pathogenic bacteria are non-pigmented, the latter finding may explain some of the in- creases in respiratory and other diseases that occur during episodes of severe aerosol loading. At Alta Floresta, Brazil, during the 1997 burning season, the correlation (r^2) of UV-B measured at the surface with the ratio of non-pigmented to total airborne bacteria colony forming units (CFUs) was 0.83. The correlation of the aerosol index measured from orbit by TOMS with the ratio of non-pigmented to total airborne bac- teria CFUs was 0.71. These findings suggest the application of satellite measurements of optical depth as a first approximation epidemiological tool for remote regions that have seasonally smokey skies. Further comparisons are warranted of surface measure- ments of airborne bacteria, UV-B and PAR with TOMS and MODIS observations of optical depth during severe air pollution events.

  11. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  12. Correlative Stratospheric Ozone Measurements with the Airborne UV DIAL System during TOTE/VOTE

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Fenn, Marta A.; Browell, Edward V.; McGee, Thomas J.; Singh, Upendra N.; Gross, Michael R.; McDermid, I. Stuart; Froidevaux, Lucien; Wang, Pi-Huang

    1998-01-01

    The airborne UV differential absorption lidar (DIAL) system participated in the Tropical Ozone Transport Experiment/Vortex Ozone Transport Experiment (TOTE/VOTE) in late 1995/early 1996. This mission afforded the opportunity to compare the DIAL system's stratospheric ozone measuring capability with other remote-sensing instruments through correlative measurements over a latitude range from the tropics to the Arctic. These instruments included ground-based DIAL and space-based stratospheric instruments: HALOE; MLS; and SAGE II. The ozone profiles generally agreed within random error estimates for the various instruments in the middle of the profiles in the tropics, but regions of significant systematic differences, especially near or below the tropopause or at the higher altitudes were also found. The comparisons strongly suggest that the airborne UV DIAL system can play a valuable role as a mobile lower-stratospheric ozone validation instrument.

  13. Airborne lidar measurements of the soufriere eruption of 17 april 1979.

    PubMed

    Fuller, W H; Sokol, S; Hunt, W H

    1982-06-01

    At the time of the Soufriere, St. Vincent, volcanic eruption of 17 April 1979, a NASA P-3 aircraft with an uplooking lidar (light detection and ranging) system onboard was airborne 130 kilometers east of the island. Lidar measurements of the fresh volcanic ash were made approximately 2 hours after the eruption, 120 kilometers to the northeast and east. On the evening of 18 April, the airborne lidar, on a southerly flight track, detected significant amounts of stratospheric material in layers at 16, 17, 18, and 19.5 kilometers. These data, and measurements to the north on 19 April, indicate that the volcanic plume penetrated the stratosphere to an altitude of about 20 kilometers and moved south during the first 48 hours after the eruption.

  14. Measurement and Chemistry of Atmospheric Organic Nitrates

    NASA Astrophysics Data System (ADS)

    Buhr, Martin Patrick

    1990-01-01

    Organic nitrates are important reservoir species for NO_{rm x} (NO + NO_2) in the atmosphere. Typically formed in and around urban areas, the organic nitrates sequester NO_{rm x} and allow it to be transported to rural and remote regions, wherein it may be released into the atmosphere and participate in catalytic cycles leading to the formation of ozone. The research described in this work focusses on two problems related to our understanding of the atmospheric chemistry of the organic nitrates, (1) measuring the organic nitrates contributions to total reactive nitrogen (NO_ {rm y}) in the atmosphere, and (2) determining the conditions under which the organic nitrates release NO_{rm x} into the atmosphere and thereby participate in ozone formation. The work performed included development of measurement methods for the organic nitrates, ambient measurements of several organic nitrates made under a variety of conditions, and data interpretation using a combination of bivariate and multivariate analysis. The instrument development that was performed centered around incorporation of capillary column technology in a gas chromatographic method. Use of a capillary column resulted in improved chromatographic resolution and instrument sensitivity. In addition to the work on the chromatographic separation of the organic nitrates, some work was done regarding the sensitivity of the electron capture detector (ECD) as a function of electrical mode of operation. Ambient measurements of several of the organic nitrates were made during three field experiments in conjunction with NOAA's Aeronomy laboratory, including PAN rm CH_3C(O)O_2NO_2), PPN rm (C_2H_5C(O)O_2NO _2), and the C_1-C _5 alkyl nitrates (RONO_2 ). The measurements were made in conjunction with a wide variety of other chemical and physical parameters. Data interpretation was performed using bivariate analysis in order to understand the diurnal variation of the concentrations of the organic nitrates and their

  15. Airborne measurement of tropospheric ice nuclei aerosols using the Portable Ice Nucleation Chamber (PINC)

    NASA Astrophysics Data System (ADS)

    Chou, C.; Stetzer, O.; Sierau, B.; Lohmann, U.

    2009-04-01

    Ice clouds and mixed phase clouds have different microphysical and radiative properties that need to be assessed in order to understand their impact on the climate. Indeed, on one hand ice crystals found in the ice phase have the ability to scatter incoming solar radiation and absorb terrestrial radiation. On the other hand, about 70% of the tropical precipitation forms via the ice-phase, this means an impact on the hydrological cycle. Investigation of the ability of an aerosol to act as Ice Nuclei (IN) requires knowledge of the thermodynamics conditions, i.e. relative humidity and temperature at which this aerosol form ice crystal. The PerformPINC project was a research campaign within the Education & Training program of the EUropean Fleet for Airborne Research (EUFAR). The project objectives were to measure the number concentration of IN in free and upper troposphere using the Portable Ice Nucleation Chamber (PINC) recently developed by the Institute for Atmospheric Climate Sciences at the ETH Zürich, and thus as a primary objective, testing the technical performance of the instrument during in-situ airborne measurements at different conditions within the chamber. The PINC is the portable version of the Zurich Ice Nucleation Chamber (ZINC) (Stetzer et al., 2008) and is meant for in-situ measurements. Both ZINC and PINC follow the same principle as the Continuous Flow Diffusion Chamber of the Colorado University (Rogers, 1988) that has proven to be of good performance in previous airborne in-situ campaigns (DeMott et al., 2003a). Unlike the CFDC, the PINC has a flat design composed of a main chamber, and an evaporation part. The cooling system of the PINC is also different and consists for the warm side of two BD120 compressors mounted in parallel. For the cold side, it is four BD120 compressors in parallel mounted to another BD120 compressor in serial, thus allowing us to reach lower temperature than the warm side. Aerosols are collected through an inlet where

  16. Airborne measurement of tropospheric ice nuclei aerosols using the Portable Ice Nucleation Chamber (PINC)

    NASA Astrophysics Data System (ADS)

    Chou, C.; Stetzer, O.; Sierau, B.; Lohmann, U.

    2009-04-01

    Ice clouds and mixed phase clouds have different microphysical and radiative properties that need to be assessed in order to understand their impact on the climate. Indeed, on one hand ice crystals found in the ice phase have the ability to scatter incoming solar radiation and absorb terrestrial radiation. On the other hand, about 70% of the tropical precipitation forms via the ice-phase, this means an impact on the hydrological cycle. Investigation of the ability of an aerosol to act as Ice Nuclei (IN) requires knowledge of the thermodynamics conditions, i.e. relative humidity and temperature at which this aerosol form ice crystal. The PerformPINC project was a research campaign within the Education & Training program of the EUropean Fleet for Airborne Research (EUFAR). The project objectives were to measure the number concentration of IN in free and upper troposphere using the Portable Ice Nucleation Chamber (PINC) recently developed by the Institute for Atmospheric Climate Sciences at the ETH Zürich, and thus as a primary objective, testing the technical performance of the instrument during in-situ airborne measurements at different conditions within the chamber. The PINC is the portable version of the Zurich Ice Nucleation Chamber (ZINC) (Stetzer et al., 2008) and is meant for in-situ measurements. Both ZINC and PINC follow the same principle as the Continuous Flow Diffusion Chamber of the Colorado University (Rogers, 1988) that has proven to be of good performance in previous airborne in-situ campaigns (DeMott et al., 2003a). Unlike the CFDC, the PINC has a flat design composed of a main chamber, and an evaporation part. The cooling system of the PINC is also different and consists for the warm side of two BD120 compressors mounted in parallel. For the cold side, it is four BD120 compressors in parallel mounted to another BD120 compressor in serial, thus allowing us to reach lower temperature than the warm side. Aerosols are collected through an inlet where

  17. Airborne measurements of gas and particle pollutants during CAREBeijing-2008

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhu, T.; Yang, W.; Bai, Z.; Sun, Y. L.; Xu, Y.; Yin, B.; Zhao, X.

    2014-01-01

    Measurements of gaseous pollutants - including ozone (O3), sulfur dioxide (SO2), nitrogen oxides (NOX = NO + NO2), carbon monoxide (CO), particle number concentrations (5.6-560 nm and 0.47-30 μm) - and meteorological parameters (T, RH, P) were conducted during the Campaigns of Air Quality Research in Beijing and Surrounding Regions in 2008 (CAREBeijing-2008), from 27 August through 13 October 2008. The data from a total 18 flights (70 h flight time) from near the surface to 2100 m altitude were obtained with a Yun-12 aircraft in the southern surrounding areas of Beijing (38-40° N, 114-118° E). The objectives of these measurements were to characterize the regional variation of air pollution during and after the Olympics of 2008, determine the importance of air mass trajectories and to evaluate of other factors that influence the pollution characteristics. The results suggest that there are primarily four distinct sources that influenced the magnitude and properties of the pollutants in the measured region based on back-trajectory analysis: (1) southerly transport of air masses from regions with high pollutant emissions, (2) northerly and northeasterly transport of less pollutant air from further away, (3) easterly transport from maritime sources where emissions of gaseous pollutant are less than from the south but still high in particle concentrations, and (4) the transport of air that is a mixture from different regions; that is, the air at all altitudes measured by the aircraft was not all from the same sources. The relatively long-lived CO concentration is shown to be a possible transport tracer of long-range transport from the northwesterly direction, especially at the higher altitudes. Three factors that influenced the size distribution of particles - i.e., air mass transport direction, ground source emissions and meteorological influences - are also discussed.

  18. Airborne time-series measurement of soil moisture using terrestrial gamma radiation

    NASA Technical Reports Server (NTRS)

    Carroll, Thomas R.; Lipinski, Daniel M.; Peck, Eugene L.

    1988-01-01

    Terrestrial gamma radiation data and independent ground-based core soil moisture data are analyzed. They reveal the possibility of using natural terrestrial gamma radiation collected from a low-flying aircraft to make reliable real-time soil moisture measurements for the upper 20 cm of soil. The airborne data were compared to the crude ground-based soil moisture data set collected at the core sites.

  19. Radiative flux measurements during the Airborne Tropical Tropopause Experiment (ATTREX) Guam Deployment.

    NASA Astrophysics Data System (ADS)

    Kindel, B. C.; Pilewskie, P.; Schmidt, S.

    2015-12-01

    The Airborne Tropical Tropopause Experiment was a field program utilizing the NASA Global Hawk aircraft, to make extensive measurements of tropical tropopause layer (TTL) over the Pacific Ocean. In February and March of 2014, the NASA Global Hawk was deployed to Guam and flew six long duration science flights. The aircraft was outfitted with a suite of instruments to study the composition of the TTL. Measurements included: water vapor amount, cloud particle size and shape, various gaseous species (e.g. CO, CH4, CO2, O3), and radiation measurements. The radiation measurements were comprised of the Solar Spectral Flux Radiometer (SSFR) that made spectrally resolved measurements of upwelling and downwelling solar irradiance from 350 to 2200 nm and thermal broadband (4μm to 42 μm) upwelling and downwelling irradiance. Once airborne, the Global Hawk made numerous vertical profiles (14 - 18 km) through the TTL. In this work we present results of combined solar spectral irradiance and broadband thermal irradiance measurements. Solar spectral measurements are correlated, wavelength-by-wavelength, with broadband thermal measurements. The radiative impact in the TTL of water vapor and cirrus clouds are examined both in the solar and thermal wavelengths from both upwelling and downwelling irradiances. The spectral measurements are used in an attempt to attribute physical mechanisms to the thermal (spectrally integrated) measurements. Measurements of heating rates are also presented, highlighting the difficultly in obtaining reliable results from aircraft measurements.

  20. Future atmospheric neutrino measurements with PINGU

    SciTech Connect

    Grant, D.

    2015-07-15

    Neutrino oscillations, first measured in 1998 via atmospheric neutrinos, have provided the only current direct evidence for physics beyond the Standard Model of Elementary Particles. The full neutrino mixing, described by six parameters, has been measured in the last decade with the exception of the charge-parity phase and the ordering of the mass eigenstates (the neutrino mass hierarchy – NMH). A relatively large mixing-angle between the first and third mass eigenstates has opened the possibility of measuring the mass hierarchy via atmospheric neutrinos using very large volume detectors. A leading proposal to perform this measurement is the future low-energy extension to the IceCube–DeepCore detector, called PINGU (the Precision IceCube Next Generation Upgrade). By increasing the photocathode density in the DeepCore region, it is possible to lower the energy threshold in the fiducial volume to the region that is affected by the MSW [1, 2], and thus permits extraction of the hierarchy. Here we discuss the design of the PINGU detector, its sensitivity to the mass hierarchy (approximately 3σ in 3.5 years) and measurements of ν{sub μ} disappearance and ν{sub τ} appearance.

  1. Atmospheric Measurements by Curiosity - An Overview

    NASA Astrophysics Data System (ADS)

    Atreya, S. K.

    2015-12-01

    The abundances, seasonal variations and isotopic ratios of atmospheric constituents measured by Curiosity have provided important insight into the present and past history of Mars. The argon mixing ratio is found to have a relatively small seasonal change at the near-equatorial site of Curiosity, unlike the much larger changes detected previously at high polar latitudes in the winter and attributed to the annual deposition and sublimation of CO2 at the martian poles. The Ar/N2 ratio remains constant over seasons, as expected for non-condensible species. On the other hand, methane, another non-condensible species, shows episodic spikes in mixing ratio but no particular seasonal trend with the measurements in hand. We will give an update of the data and possible scenarios of the formation and loss of this important species. The atmospheric isotope ratios of argon (primordial and radiogenic), nitrogen, carbon dioxide and water vapor measured on Curiosity all point to a warmer and wetter Mars compared to its present cold and arid state. The D/H ratio measured in the fines drilled from a 3+ Gyr old mudstone give an unprecedented look into the evolution of water loss from early Mars. Complementary observations of contemporary D/H from ground-based telescopes further reinforce the view of substantial liquid water on the surface of Mars in the past. Whereas the abovementioned isotope ratios are a good indicator of the evolutionary history of Mars in the past 4 billion years, the isotope ratios of the heavy noble gases, especially xenon, measured on Curiosity provide a better understanding of the very earliest periods when a massive loss of atmosphere took place by hydrodynamic escape or blowoff.

  2. Airborne validation of ground-object detection from polarized neutral-point atmosphere.

    PubMed

    Yang, Shang-qiang; Guan, Gui-xia; Zhao, Hai-meng; Zhao, Hong-ying; Yang, Bin; Zhang, Wen-kai; Tan, Xiang; Wu, Tai-xia; Yan, Lei

    2013-09-01

    Based on the object's polarization effects, polarization is a newly emerging method in the field of remote sensing. Both objects and atmosphere have polarization effects, however, the atmosphere's polarization effects are much stronger than that of objects'. Consequently, atmosphere polarization effects will interfere or even cover objects' when observing with sensors. How to maximally eliminate the polarized effects generated by the atmosphere is a crucial problem in polarization remote sensing. Atmospheric neutral point is an area where the degree of atmosphere polarization is near to zero; therefore, if sensors are set up in this area, atmosphere polarization would be greatly eliminated, which is the main content of separating the effects between objects and atmosphere by its neutral point method. In this paper, after processing and analyzing the experimental data got from the first polarization remote sensing flight experiment with atmosphere neutral point, the degree of polarization images captured in neutral and non-neutral point area were obtained, and it can be seen that the main value of polarized degree of images got in neutral point area was obviously smaller than that in non-neutral point area. The results showed that the theory mentioned above was logical and practical. An innovation in our study is that the requirements needed in polarization remote sensing flight with neutral point were clarified. In the meantime, a qualitative conclusion was drawn that observing with longer wavelength is more applicable to polarization remote sensing. PMID:24369665

  3. Lidar System for Airborne Measurement of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley; Izquierdo, Luis Ramos; Marzouk, Joe

    2008-01-01

    A lidar system for measuring optical properties of clouds and aerosols at three wavelengths is depicted. The laser transmitter is based on a Nd:YVO4 laser crystal pumped by light coupled to the crystal via optical fibers from laser diodes that are located away from the crystal to aid in dissipating the heat generated in the diodes and their drive circuits. The output of the Nd:YVO4 crystal has a wavelength of 1064 nm, and is made to pass through frequency-doubling and frequency-tripling crystals. As a result, the net laser output is a collinear superposition of beams at wavelengths of 1064, 532, and 355 nm. The laser operates at a pulse-repetition rate of 5 kHz, emitting per-pulse energies of 50 microJ at 1064 nm, 25 microJ at 532 nm and 50 microJ at 355 nm. An important feature of this system is an integrating sphere located between the laser output and the laser beam expander lenses. The integrating sphere collects light scattered from the lenses. Three energy-monitor detectors are located at ports inside the integrating sphere. Each of these detectors is equipped with filters such that the laser output energy is measured independently for each wavelength. The laser output energy is measured on each pulse to enable the most accurate calibration possible. The 1064-nm and 532-nm photodetectors are, more specifically, single photon-counting modules (SPCMs). When used at 1064 nm, these detectors have approximately 3% quantum efficiency and low thermal noise (fewer than 200 counts per second). When used at 532 nm, the SPCMs have quantum efficiency of about 60%. The photodetector for the 355-nm channel is a photon-counting photomultiplier tube having a quantum efficiency of about 20%. The use of photon-counting detectors is made feasible by the low laser pulse energy. The main advantage of photon-counting is ease of inversion of data without need for complicated calibration schemes like those necessary for analog detectors. The disadvantage of photon-counting detectors

  4. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  5. Airborne Measurements of CO by MOPITT-A

    NASA Astrophysics Data System (ADS)

    Jounot, L.; Drummond, J.; Dufour, D.; Mikhailov, O.; Irvine, R.; Gero, J.; Deschambault, R.; Taylor, J.

    2004-05-01

    MOPITT (Measurements of Pollution In The Troposphere) is a carbon monoxide and methane remote sounder launched in 1999 on the Terra spacecraft. An aircraft version of MOPITT (MOPITT-A) has been developed at the University of Toronto to perform validation of MOPITT radiances as well as small scale pollution studies. MOPITT-A is based on the engineering model of MOPITT, modified for flight in NASA's ER-2 research aircraft. In August and September 2000, it participated in the SAFARI 2000 field campaign in South Africa, monitoring CO emissions from biomass burning. This talk will describe the method used to retrieve carbon monoxide concentrations from longwave channel radiances. Special attention will be paid to the September 7th 2000 mission, the highlight of which was the overflight of a large prescribed fire in the vicinity of the Kruger National Park. MOPITT-A is financed by the Canadian Space Agency and the Natural Sciences and Engineering Research Council.

  6. The effect of air density on atmospheric electric fields required for lightning initiation from a long airborne object

    NASA Astrophysics Data System (ADS)

    Bazelyan, E. M.; Aleksandrov, N. L.; Raizer, Yu. P.; Konchakov, A. M.

    2007-11-01

    The purpose of the work was to determine minimum atmospheric electric fields required for lightning initiation from an airborne vehicle at various altitudes up to 10 km. The problem was reduced to the determination of a condition for initiation of a viable positive leader from a conductive object in an ambient electric field. It was shown that, depending on air density and shape and dimensions of the object, critical atmospheric fields are governed by the condition for leader viability or that for corona onset. To establish quantitative criteria for reduced air densities, available observations of spark discharges in long laboratory gaps were analyzed, the effect of air density on leader velocity was discussed and evolution in time of the properties of plasma in the leader channel was numerically simulated. The results obtained were used to evaluate the effect of pressure on the quantitative relationships between the potential difference near the leader tip, leader current and its velocity; based on these relationships, criteria for steady development of a leader were determined for various air pressures. Atmospheric electric fields required for lightning initiation from rods and ellipsoidal objects of various dimensions were calculated at different air densities. It was shown that there is no simple way to extend critical ambient fields obtained for some given objects and pressures to other objects and pressures.

  7. The Effect of Air Density on Atmospheric Electric Fields Required for Lightning Initiation from a Long Airborne Object

    NASA Technical Reports Server (NTRS)

    Bazelyan, E. M.; Aleksandrov, N. L.; Raizer, Yu. Pl.; Konchankov, A. M.

    2006-01-01

    The purpose of the work was to determine minimum atmospheric electric fields required for lightning initiation from an airborne vehicle at various altitudes up to 10 km. The problem was reduced to the determination of a condition for initiation of a viable positive leader from a conductive object in an ambient electric field. It was shown that, depending on air density and shape and dimensions of the object, critical atmospheric fields are governed by the condition for leader viability or that for corona onset. To establish quantitative criteria for reduced air densities, available observations of spark discharges in long laboratory gaps were analyzed, the effect of air density on leader velocity was discussed and evolution in time of the properties of plasma in the leader channel was numerically simulated. The results obtained were used to evaluate the effect of pressure on the quantitative relationships between the potential difference near the leader tip, leader current and its velocity; based on these relationships, criteria for steady development of a leader were determined for various air pressures. Atmospheric electric fields required for lightning initiation from rods and ellipsoidal objects of various dimensions were calculated at different air densities. It was shown that there is no simple way to extend critical ambient fields obtained for some given objects and pressures to other objects and pressures.

  8. Double-Pulsed 2-Micrometer Lidar Validation for Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Yu, Jirong; Petros, Mulugeta; Remus, Ruben

    2015-01-01

    A double-pulsed, 2-micron Integrated Path Differential Absorption (IPDA) lidar instrument for atmospheric carbon dioxide (CO2) measurements is successfully developed at NASA Langley Research Center (LaRC). Based on direct detection technique, the instrument can be operated on ground or onboard a small aircraft. Key features of this compact, rugged and reliable IPDA lidar includes high transmitted laser energy, wavelength tuning, switching and locking, and sensitive detection. As a proof of concept, the IPDA ground and airborne CO2 measurement and validation will be presented. IPDA lidar CO2 measurements ground validation were conducted at NASA LaRC using hard targets and a calibrated in-situ sensor. Airborne validation, conducted onboard the NASA B-200 aircraft, included CO2 plum detection from power stations incinerators, comparison to in-flight CO2 in-situ sensor and comparison to air sampling at different altitude conducted by NOAA at the same site. Airborne measurements, spanning for 20 hours, were obtained from different target conditions. Ground targets included soil, vegetation, sand, snow and ocean. In addition, cloud slicing was examined over the ocean. These flight validations were conducted at different altitudes, up to 7 km, with different wavelength controlled weighing functions. CO2 measurement results agree with modeling conducted through the different sensors, as will be discussed.

  9. Passive remote sensing of large-scale methane emissions from Oil Fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Thompson, David R.; Thorpe, Andrew K.; Kolyer, Richard W.; Jonsson, Haflidi; Krings, Thomas; Frankenberg, Christian; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Fladeland, Matthew; Schüttemeyer, Dirk; Burrows, John P.; Bovensmann, Heinrich

    2016-04-01

    The CO2 and MEthane EXperiment (COMEX) was a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities. As a part of this effort, seven flights were performed between June 3 and September 4, 2014 with the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) over the Kern River, Kern Front, and Poso Creek Oil Fields located in California's San Joaquin Valley. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with: a Picarro fast in-situ greenhouse gas (GHG) analyzer operated by the NASA Ames Research Center, ARC; a 5-hole turbulence probe; and an atmospheric measurement package operated by CIRPAS measuring aerosols, temperature, dew-point, and other atmospheric parameters. Three of the flights were accompanied by the Next Generation Airborne Visual InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft. Large-scale, high-concentration CH4 plumes were detected by the MAMAP instrument over the fields and tracked over several kilometers. The spatial distribution of the MAMAP observed plumes was compared to high spatial resolution CH4 anomaly maps derived by AVIRIS-NG imaging spectroscopy data. Remote sensing data collected by MAMAP was used to infer CH4 emission rates and their distributions over the three fields. Aggregated emission estimates for the three fields were compared to aggregated emissions inferred by subsequent airborne in-situ validation measurements collected by the Picarro instrument. Comparison of remote sensing and in-situ flux estimates will be presented, demonstrating the ability of airborne remote sensing data to provide accurate emission estimates for concentrations above the

  10. AgI plumes in WRF LES simulations versus airborne measurements

    NASA Astrophysics Data System (ADS)

    Xue, L.; Rasmussen, R.; Breed, D. W.

    2011-12-01

    Inadequate or uncertain targeting of seedable clouds from silver iodide (AgI) ground-based generators has been a complex and hence a long-standing problem in winter orographic cloud seeding programs. To address this issue within the Wyoming Weather Modification Pilot Program (WWMPP), a focused field experiment was conducted between 9 February and 1 March 2011. Airborne measurements of AgI-generated ice nuclei (IN) plumes from ground-based generators were carried out by Weather Modification Inc. using a Piper Cheyenne II research aircraft equipped with an updated NCAR acoustic IN counter. The airborne data were collected over the Wyoming Medicine Bow and Sierra Madre mountain ranges on nine different days within the experimental period. This study explores the ability of the Weather Research and Forecast (WRF) model to reproduce reasonable AgI plumes by comparing the model results with these airborne measurements. A suite of WRF simulations, including 2.5 km and 500 m runs along with two 100-m resolution Large Eddy Simulations (LES), have been conducted for the 16 February case over the Medicine Bow range. Two different sets of gridded data, the North America Regional Reanalysis data and the WWMPP Real-Time Four-Dimensional Data Assimilation WRF forecast data, were used to drive the model independently. An AgI point-source module was applied to represent the release of AgI from the ground generators. A detailed description of the WRF LES results and comparisons with the airborne measurements will be presented at the conference.

  11. Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Farley, V.; Lagueux, P.; Marcotte, F.; Chamberland, M.

    2009-05-01

    Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in

  12. Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Lagueux, P.; Farley, V.; Marcotte, F.; Chamberland, M.

    2009-09-01

    Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in

  13. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    NASA Technical Reports Server (NTRS)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  14. Assessing spaceborne lidar detection and characterization of aerosols near clouds using coincident airborne lidar and other measurements

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Redemann, J.; Russell, P. B.; Vaughan, M.; Omar, A. H.; Burton, S. P.; Rogers, R.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2011-12-01

    The objectives are to 1) evaluate potential shortcomings in the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol height detection concerning specific biomass burning smoke events informed by airborne High Spectral Resolution Lidar (HSRL) in different cloud environments and 2) study the lidar-derived atmospheric parameters in the vicinity of clouds for the cases where smoke is within or above clouds. In the case of light absorbing aerosols like biomass burning smoke, studies show that the greater the cloud cover below the aerosols, the more likely the aerosols are to heat the planet. An accurate aerosol height assumption is also crucial to a correct retrieval of aerosol chemical composition from passive space-based measurements (through the Single Scattering Albedo (SSA) and aerosol absorption coefficient, as exemplified by aerosol retrievals using the passive Ozone Monitoring Instrument (OMI)). Strong smoke events are recognized as very difficult to quantify from space using passive (MODIS, OMI etc...) or active (CALIOP) satellite sensors for different reasons. This study is performed through (i) the selection of smoke events with coincident CALIOP and airborne HSRL aerosol observations, with smoke presence determined according to the HSRL aerosol classification data, (ii) the order of such events by range of HSRL aerosol optical depth, total color ratio and depolarization ratio (the latter two informing on the size and shape of the particles) and the evaluation of CALIOP's detection, classification and retrieval performance for each event, (iii) the study of the HSRL (or CALIOP when available) atmospheric parameters (total color ratio, volume depolarization ratio, mean attenuated backscatter) in the vicinity of clouds for each smoke event.

  15. Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program

    SciTech Connect

    Bolton, W.R.

    1996-11-01

    ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, using two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.

  16. First Airborne IPDA Lidar Measurements of Methane and Carbon Dioxide Applying the DLR Greenhouse Gas Sounder CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Quatrevalet, M.; Büdenbender, C.; Kiemle, C.; Loehring, J.; Gerbig, C.

    2015-12-01

    First airborne measurement using CHARM-F, the four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4, were performed in Spring 2015 onboard the German research aircraft HALO. The lidar is designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between aircraft and ground. HALO's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, enable the CHARM-F system to be an airborne demonstrator for future spaceborne greenhouse gas lidars. Due to a high technological conformity this applies in particular to the French-German satellite mission MERLIN, the spaceborne methane IPDA lidar. The successfully completed flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. The flights covered different ground cover types, different orography types as well as the sea. Additionally, we captured different cloud conditions, at which the broken cloud case is a matter of particular interest. This dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on technical details of the system. These activities are supported by another instrument onboard: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the lidar. Additionally the onboard instrumentation of HALO gives information about pressure and temperature for cross-checking the ECMWF data, which are intended to be used for calculating the weighting function, the key quantity for the retrieval of gas column mixing ratios from the measured gas optical depths. In combination with dedicated descents into the boundary layer and subsequent ascents, a self-contained dataset for characterizations of CHARM-F is available.

  17. Improved Atmospheric Boundary Layer Observations of Tropical Cyclones with the Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Fernandez, D. Esteban; Chang, P.; Carswel, J.; Contreras, R.; Chu, T.; Asuzu, P.; Black, P.; Marks, F.

    2006-01-01

    The Imaging Wind and Rain Arborne Profilers (IWRAP) is a dual-frequency, conically-scanning Doppler radar that measures high-resolution, dual-polarized, multi-beam C- and Ku-band reflectivity and Doppler velocity profiles of the atmospheric boundary layer (ABL) within the inner core of hurricanes.From the datasets acquired during the 2002 through 20O5 hurricane seasons as part of the ONR Coupled Boundary Layer Air-Sea Transfer (CBLAST) program and the NOAA/NESDIS Ocean Winds and Rain experiments, very high resolution radar observations of hurricanes have been acquired and made available to the CBLAST community. Of particular interest am the ABL wind fields and 3-D structures found within the inner core of hurricanes. As a result of these analysis, a limitation in the ability to retrieve the ABL wind field at very low altitudes was identified. This paper shows how this limitation has been removed and presents initial results demonstrating its new capabilities to derive the ABL wind field within the inner are of hurricanes to much lower altitudes than the ones the original system was capable of.

  18. Footprint prediction of scalar fluxes - Reliability and implications for airborne flux measurements over the FIFE site

    NASA Technical Reports Server (NTRS)

    Schuepp, P. H.; Desjardins, R. L.; Macpherson, J. I.; Leclerc, M. Y.

    1990-01-01

    Estimates of the location and extension of the upwind ground area that affects flux observations most directly are examined to determine the reliability of airborne versus near-ground flux measurements. The theoretical issues regarding the 'footprint' are examined, and specific observations are analyzed by studying the data over a grid regarding sensible heat, latent heat, CO2, and greenness. The grid is footprint-corrected to correlate better with independently observed surface characteristics, and an optimized footprint is developed that satisfies the relationships between the observed variables. Optimized mapping of the surface flux is given which demonstrates the importance of considering local advection to correlate airborne and ground-based flux observations. The technique is particularly applicable to situations in which significant variations in the surface flux density exist.

  19. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  20. Airborne lidar measurements of pollution transport in central and southern California during CalNEX 2010

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Alvarez, R. J., II; Hardesty, R.; Langford, A. O.; Banta, R. M.; Brewer, A.; Davies, F.; Sandberg, S.; Marchbanks, R.; Weickmann, A.

    2010-12-01

    During the CalNEX experiment from May through July 2010, we co-deployed NOAA’s airborne ozone and aerosol lidar TOPAZ and the University of Leeds scanning Doppler wind lidar on a Twin Otter aircraft. We flew a total of 46 missions over central and southern California, focusing primarily on the Los Angeles Basin and Sacramento areas. The downward-looking lidars provided highly resolved measurements of ozone concentration, aerosol backscatter, and wind speed and direction in the boundary layer and lower free troposphere. We will use the airborne lidar data to characterize transport of ozone and aerosols on regional and local scales. In particular, we will focus on pollutant transport between air basins and the role of flow patterns in complex terrain, such as gap flows and orographic lifting and venting along mountain slopes, on pollutant distribution.

  1. Downsizing of Georgia Tech's Airborne Fluorescence Spectrometer (AFS) for the Measurement of Nitrogen Oxides

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott

    1998-01-01

    This report addresses the Tropospheric Trace Gas and Airborne Measurements (TTGAMG) endeavors to further downsize and stabilize the Georgia Institute of Technology's Airborne Laser Induced Fluorescence Experiment (GITALIFE). It will mainly address the TTGAMG successes and failures as participants in the summer 1998 Wallops Island test flights on board the P3-B. Due to the restructuring and reorganization of the TTGAMG since the original funding of this grant, some of the objectives and time lines of the deliverables have been changed. Most of these changes have been covered in the preceding annual report. We are anticipating getting back on track with the original proposal's downsizing effort this summer, culminating in the GITALIFE no longer occupying a high bay rack and the loss of several hundred pounds.

  2. Airborne flux measurements of trace species in an Arctic boundary layer

    SciTech Connect

    Ritter, J.A.; Barrick, J.D.W.; Sachse, G.W.; Gregory, G.L.; Woerner, M.A.; Watson, C.E.; Hill, G.F.; Collins, J.E. Jr. Science and Technology Corp., Hampton, VA )

    1992-10-01

    In situ airborne flux values for O[sub 3], CO, an CH[sub 4] over selected wetlands of Alaska are reported, and airborne CH[sub 4] flux measurements are presented for the first time. The source/sink distribution over the Yukon-Kuskokwim Delta (YKD) is qualitatively correlated with surface vegetation type. The CH[sub 4] source strength over the YKD ranged from 25 to 85 mg/sq m/d. A spatially averaged, seasonally adjusted source strength of 51 mg/sq m/d was established for the YKD. Indirect CH4 flux estimates obtained over the Alaskan North Slope indicate a much lower source strength. The global CH[sub 4] emission from tundra are estimated to be 44 Tg/a at an upper limit. Airborne CO flux measurements over the YKD indicate low negative flux values over the coastal areas, while some positive fluxes were observed in the inland sparsely forested regions. An inspection of the cospectrum of CO with vertical velocity for sample runs in coastal areas indicate the possibility of in situ photochemical destruction/production of CO. 64 refs.

  3. Studying the influence of temperature and pressure on microphysical properties of mixed-phase clouds using airborne measurements

    NASA Astrophysics Data System (ADS)

    Andreea, Boscornea; Sabina, Stefan; Sorin-Nicolae, Vajaiac; Mihai, Cimpuieru

    2015-04-01

    One cloud type for which the formation and evolution process is not well-understood is the mixed-phase type. In general mixed-phase clouds consist of liquid droplets and ice crystals. The temperature interval within both liquid droplets and ice crystals can potentially coexist is limited to 0 °C and - 40 °C. Mixed-phase clouds account for 20% to 30% of the global cloud coverage. The need to understand the microphysical characteristics of mixed-phase clouds to improve numerical forecast modeling and radiative transfer calculation is of major interest in the atmospheric community. In the past, studies of cloud phase composition have been significantly limited by a lack of aircraft instruments capable of discriminating between the ice and liquid phase for a wide range of particle sizes. Presently, in situ airborne measurements provide the most accurate information about cloud microphysical characteristics. This information can be used for verification of both numerical models and cloud remote-sensing techniques. The knowledge of the temperature and pressure variation during the airborne measurements is crucial in order to understand their influence on the cloud dynamics and also their role in the cloud formation processes like accretion and coalescence. Therefore, in this paper is presented a comprehensive study of cloud microphysical properties in mixed-phase clouds in focus of the influence of temperature and pressure variation on both, cloud dynamics and the cloud formation processes, using measurements performed with the ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research in property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS). The airborne laboratory equipped for special research missions is based on a Hawker Beechcraft - King Air C90 GTx aircraft and is equipped with a sensors system CAPS - Cloud, Aerosol and Precipitation Spectrometer (30 bins, 0.51-50 µm) and a HAWKEYE cloud probe. The analyzed data in this

  4. Aerosol Backscatter and Extinction Retrieval from Airborne Coherent Doppler Wind Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2016-06-01

    A novel method for coherent Doppler wind lidars (DWLs) calibration is shown in this work. Concurrent measurements of a ground based aerosol lidar operating at 532 nm and an airborne DWL at 2 μm are used in combination with sun photometer measurements for the retrieval of backscatter and extinction profiles. The presented method was successfully applied to the measurements obtained during the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE: http://www.pa.op.dlr.de/saltrace), which aimed to characterize the Saharan dust long range transport between Africa and the Caribbean.

  5. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  6. Atmospheric profiles of Black Carbon at remote locations using light-weight airborne Aethalometers

    NASA Astrophysics Data System (ADS)

    Hansen, A. D.; Močnik, G.; Drinovec, L.; Lenarcic, M.

    2012-12-01

    While measurements of atmospheric aerosols are routinely performed at ground-level around the world, there is far less knowledge of their concentrations at altitude: yet this data is a crucial requirement for our understanding of the dispersion of pollutants of anthropogenic origin, with their associated effects on radiative forcing, cloud condensation, and other adverse phenomena. Black Carbon (BC) is a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. It has no non-combustion sources and is not transformed by atmospheric processes. Recent technical advances have developed light-weight miniaturized instruments which can be operated on light aircraft or carried aboard commercial passenger flights. From January to April 2012, a single-seat ultra-light aircraft flew around the world on a scientific, photographic and environmental-awareness mission. The flight track crossed all seven continents and all major oceans, with altitudes up to 8.9 km ASL. The aircraft carried a custom-developed high-sensitivity dual-wavelength light-weight Aethalometer, operating at 370 and 880 nm with special provision to compensate for the effects of changing pressure, temperature and humidity. The instrument recorded BC concentrations with high temporal resolution and sensitivity better than 5 ng/m3. We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas, analyzing the spectral dependence of absorption to infer the contributions to BC from fossil fuel vs. biomass combustion, and aggregating the data into vertical profiles. The regional and long range transport of BC may be investigated using back-trajectories. We have also operated miniature instruments in the passenger cabins of long-distance commercial aircraft. Since there are no combustion sources within the cabin, any BC in the ventilation air must necessarily have originated from the outside

  7. Terrestrial and Airborne LIDAR: Comparison of Coincident Datasets for Measuring Ground Deformation and Topographic Change

    NASA Astrophysics Data System (ADS)

    Kayen, R. E.; Stewart, J. P.; Lembo, A. J.; Hu, J.; Davis, C. A.; Hogue, T.; Collins, B. D.; Minasian, D.; Louis-Kayen, N. M.; O'Rourke, T. D.

    2009-05-01

    We present the results from a controlled study on the use of pulse-based terrestrial lidar and phase-based airborne lidar to detect topographic change and ground deformation in areas of earthquake- and storm- induced landslides. Terrestrial and airborne lidar scans were performed at three sites in Los Angeles County and their accuracy was gauged using coincident total station survey measurements as the control. The study was supported by the Multidisciplinary Center for Earthquake Engineering Research (MCEER), the National Science Foundation (NSF), and the Los Angeles Department of Water and Power (LADWP). Horizontal accuracy was evaluated through the measurement of Northing and Easting residuals, standardized to WGS84. Assessment of accuracy was made on lengths and heights of well-defined objects in the lidar scans, such as LADWP buildings and water tanks. The bias and dispersion of lidar height measurements, standardized to NGVD88, were assessed at the Mulholland Tank adjacent to Hollywood Reservoir, the Owens Aqueduct Penstock at Power Plant 2 (PP2) in San Francisquito Canyon, and a flat un-vegetated site near the Los Angeles Reservoir before and after carefully measured trenching. At the vegetated slopes near PP2 and the Hollywood Reservoir site, airborne lidar showed minimal elevation bias and a standard deviation of approximately 50 cm, whereas terrestrial lidar demonstrated large bias and dispersion (on order of meters) due to the inability of ground-based lidar to penetrate heavy vegetation. Both systems were able to assess heights and lengths on unobstructed man made structures at the sub-decimeter scale. At the trench site, airborne lidar showed decimeter scale bias of -23.6 cm for flat ground to -8.7 cm for trenched ground, and dispersion of 5.6 for flat ground to 20 cm for trenched ground. Terrestrial lidar was nearly unbiased (~0 cm for flat or trenched ground) and with very low dispersion of 4.1 and 6.5 cm for flat and trenched ground, respectively

  8. Portable Airborne Laser System Measures Forest-Canopy Height

    NASA Technical Reports Server (NTRS)

    Nelson, Ross

    2005-01-01

    (PALS) is a combination of laser ranging, video imaging, positioning, and data-processing subsystems designed for measuring the heights of forest canopies along linear transects from tens to thousands of kilometers long. Unlike prior laser ranging systems designed to serve the same purpose, the PALS is not restricted to use aboard a single aircraft of a specific type: the PALS fits into two large suitcases that can be carried to any convenient location, and the PALS can be installed in almost any local aircraft for hire, thereby making it possible to sample remote forests at relatively low cost. The initial cost and the cost of repairing the PALS are also lower because the PALS hardware consists mostly of commercial off-the-shelf (COTS) units that can easily be replaced in the field. The COTS units include a laser ranging transceiver, a charge-coupled-device camera that images the laser-illuminated targets, a differential Global Positioning System (dGPS) receiver capable of operation within the Wide Area Augmentation System, a video titler, a video cassette recorder (VCR), and a laptop computer equipped with two serial ports. The VCR and computer are powered by batteries; the other units are powered at 12 VDC from the 28-VDC aircraft power system via a low-pass filter and a voltage converter. The dGPS receiver feeds location and time data, at an update rate of 0.5 Hz, to the video titler and the computer. The laser ranging transceiver, operating at a sampling rate of 2 kHz, feeds its serial range and amplitude data stream to the computer. The analog video signal from the CCD camera is fed into the video titler wherein the signal is annotated with position and time information. The titler then forwards the annotated signal to the VCR for recording on 8-mm tapes. The dGPS and laser range and amplitude serial data streams are processed by software that displays the laser trace and the dGPS information as they are fed into the computer, subsamples the laser range and

  9. GRS Measurements of Ar in Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Boynton, W. V.; Kerry, K. E.; Janes, D. M.; Kelly, N. J.; Crombie, M. K.; Hunten, D. M.; Nelli, S. M.; Murphy, J. R.; Reedy, R. C.; Metzger, A. E.

    2005-08-01

    One and one half Mars years of atmospheric argon (Ar) measurements are described in the context of understanding how Ar, a minor constituent of Mars atmosphere that does not condense at Mars temperatures, can be used to study martian circulation and dynamics. There is a repeated factor of 6 enhancement of Ar measured over south polar latitudes. The maximum in Ar abundance occurs near the onset of southern winter. There is no similar strong enhancement of Ar over north-polar regions during northern winter; only modest evidence for an enhancement peak is present. Part of this difference is explained by the global topographic dichotomy and the fact that the duration of northern autumn and winter is shorter than southern autumn and winter. Rapid seasonal fluctuations in Ar abundance may indicate evidence for wave activity at the perimeter of the southern seasonal polar cap. The apparent lack of coincidence of Ar enhancement with the relatively cold, cryptic terrain or relatively warm, bright albedo regions, indirectly supports the conclusion that the low temperatures measured over the south polar region by IRTM are probably caused by the combination of low CO2 abundance over south polar night and low emissivity regions on the surface associated with small grain size.

  10. Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)

    NASA Astrophysics Data System (ADS)

    Dupuy, E.; Walker, K. A.; Kar, J.; Boone, C. D.; McElroy, C. T.; Bernath, P. F.; Drummond, J. R.; Skelton, R.; McLeod, S. D.; Hughes, R. C.; Nowlan, C. R.; Dufour, D. G.; Zou, J.; Nichitiu, F.; Strong, K.; Baron, P.; Bevilacqua, R. M.; Blumenstock, T.; Bodeker, G. E.; Borsdorff, T.; Bourassa, A. E.; Bovensmann, H.; Boyd, I. S.; Bracher, A.; Brogniez, C.; Burrows, J. P.; Catoire, V.; Ceccherini, S.; Chabrillat, S.; Christensen, T.; Coffey, M. T.; Cortesi, U.; Davies, J.; de Clercq, C.; Degenstein, D. A.; de Mazière, M.; Demoulin, P.; Dodion, J.; Firanski, B.; Fischer, H.; Forbes, G.; Froidevaux, L.; Fussen, D.; Gerard, P.; Godin-Beekmann, S.; Goutail, F.; Granville, J.; Griffith, D.; Haley, C. S.; Hannigan, J. W.; Höpfner, M.; Jin, J. J.; Jones, A.; Jones, N. B.; Jucks, K.; Kagawa, A.; Kasai, Y.; Kerzenmacher, T. E.; Kleinböhl, A.; Klekociuk, A. R.; Kramer, I.; Küllmann, H.; Kuttippurath, J.; Kyrölä, E.; Lambert, J.-C.; Livesey, N. J.; Llewellyn, E. J.; Lloyd, N. D.; Mahieu, E.; Manney, G. L.; Marshall, B. T.; McConnell, J. C.; McCormick, M. P.; McDermid, I. S.; McHugh, M.; McLinden, C. A.; Mellqvist, J.; Mizutani, K.; Murayama, Y.; Murtagh, D. P.; Oelhaf, H.; Parrish, A.; Petelina, S. V.; Piccolo, C.; Pommereau, J.-P.; Randall, C. E.; Robert, C.; Roth, C.; Schneider, M.; Senten, C.; Steck, T.; Strandberg, A.; Strawbridge, K. B.; Sussmann, R.; Swart, D. P. J.; Tarasick, D. W.; Taylor, J. R.; Tétard, C.; Thomason, L. W.; Thompson, A. M.; Tully, M. B.; Urban, J.; Vanhellemont, F.; Vigouroux, C.; von Clarmann, T.; von der Gathen, P.; von Savigny, C.; Waters, J. W.; Witte, J. C.; Wolff, M.; Zawodny, J. M.

    2009-01-01

    This paper presents extensive {bias determination} analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45-60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about +20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within ±10% (average values within ±6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes ( 35-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45-55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements.

  11. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Science and Implementation Plan

    SciTech Connect

    Biraud, S

    2015-05-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO₂ and/or CH₄) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols, and cloud properties at the North Slope of Alaska are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections.

  12. Sampling and chemical characterization of workplace atmospheres contaminated with airborne diesel exhaust

    SciTech Connect

    Jenkins, R.A.; Griest, W.H.; Moneyhun, J.H.; Tomkins, B.A.; Ilgner, R.H.; Higgins, C.E.; Gayle, T.M.

    1988-01-01

    The chemical composition of workplace atmospheres contaminated with diesel exhaust appear to be exceedingly complex. Building to building differences occur even though the fuel source for vehicles operating in such a facility are identical. There appear to be substantial differences between the particle size distributions of workplace atmospheres and that of those sources which contaminate them. Long duration sampling tends to alter the apparent composition of the collected particle phase, and composite samples of shorter duration may enhance compositional accuracy. Diluted idling large vehicle engine exhaust is probably not a compositionally accurate surrogate for workplace atmospheres for inhalation toxicology studies.

  13. Remote sensing measurements of the CO2 mixing ratio in the planetary boundary layer using cloud slicing with airborne lidar

    NASA Astrophysics Data System (ADS)

    Ramanathan, Anand K.; Mao, Jianping; Abshire, James B.; Allan, Graham R.

    2015-03-01

    We have measured the CO2 volume mixing ratio (VMR) within the planetary boundary layer (PBL) using cloud slicing with an airborne pulsed integrated path differential absorption (IPDA) lidar from flight altitudes of up to 13 km. During a flight over Iowa in summer 2011, simultaneous measurement of the optical range and CO2 absorption to clouds and the ground were made using time-resolved detection of pulse echoes from each scattering surface. We determined the CO2 absorption in the PBL by differencing the two lidar-measured absorption line shapes, one to a broken shallow cumulus cloud layer located at the top of the PBL and the other to the ground. Solving for the CO2 VMR in the PBL and that of the free troposphere, we measured a ≈15 ppm (4%) drawdown in the PBL. Both CO2 VMRs were within ≈3 ppm of in situ CO2 profile measurements. We have also demonstrated cloud slicing using scatter from thin, diffuse cirrus clouds and cumulus clouds, which allowed solving for the CO2 VMR for three vertical layers. The technique and retrieval algorithm are applicable to a space-based lidar instrument as well as to lidar IPDA measurements of other trace gases. Thus, lidar cloud slicing also offers promise toward space-based remote sensing of vertical trace gas profiles in the atmosphere using a variety of clouds.

  14. Low level measurements of atmospheric DMS, H2S, and SO2 for GTE/CITE-3

    NASA Technical Reports Server (NTRS)

    Saltzman, Eric; Cooper, David

    1991-01-01

    This project involved the measurement of atmospheric dimethylsulfide (DMS) and hydrogen sulfide (H2S) as part of the GTE/CITE-3 instrument intercomparison program. The two instruments were adapted for use on the NASA Electra aircraft and participated in all phases of the mission. This included ground-based measurements of NIST-provided standard gases and a series of airborne missions over the Western Atlantic Ocean. Analytical techniques used are described and the results are summarized.

  15. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  16. Airborne system for fast measurements of upwelling and downwelling spectral actinic flux densities.

    PubMed

    Jäkel, Evelyn; Wendisch, Manfred; Kniffka, Anke; Trautmann, Thomas

    2005-01-20

    An airborne system for fast measurements of spectral actinic flux densities in the wavelength range 305-700 nm is introduced. The system is called the Actinic Flux Density Meter (AFDM). The AFDM utilizes the diode array technique and measures downwelling and upwelling spectral actinic flux densities separately with a time resolution of less than 1 s. For airborne measurements this means a spatial resolution of approximately 60 m, assuming an average aircraft velocity of 60 m/s. Thus the AFDM resolves fast changes in the actinic radiation field, which are of special importance for conditions of inhomogeneous clouds or surface reflection. Laboratory characterization measurements of the AFDM are presented, and a method to correct the nonideal angular response of the optical inlets is introduced. Furthermore, exemplar field data sampled simultaneously with spectral irradiance measurements are shown. The horizontal variability of the measured spectra of actinic flux density is quantified, and profile measurements for overcast situations are presented. Finally, the effects of clouds on the spectral actinic flux density are discussed.

  17. On the impact of a refined stochastic model for airborne LiDAR measurements

    NASA Astrophysics Data System (ADS)

    Bolkas, Dimitrios; Fotopoulos, Georgia; Glennie, Craig

    2016-09-01

    Accurate topographic information is critical for a number of applications in science and engineering. In recent years, airborne light detection and ranging (LiDAR) has become a standard tool for acquiring high quality topographic information. The assessment of airborne LiDAR derived DEMs is typically based on (i) independent ground control points and (ii) forward error propagation utilizing the LiDAR geo-referencing equation. The latter approach is dependent on the stochastic model information of the LiDAR observation components. In this paper, the well-known statistical tool of variance component estimation (VCE) is implemented for a dataset in Houston, Texas, in order to refine the initial stochastic information. Simulations demonstrate the impact of stochastic-model refinement for two practical applications, namely coastal inundation mapping and surface displacement estimation. Results highlight scenarios where erroneous stochastic information is detrimental. Furthermore, the refined stochastic information provides insights on the effect of each LiDAR measurement in the airborne LiDAR error budget. The latter is important for targeting future advancements in order to improve point cloud accuracy.

  18. Improved Beach Zone Segmentation From Airborne Lidar Measurements Using Intensity Measures

    NASA Astrophysics Data System (ADS)

    Starek, M. J.; Vemula, R. K.; Slatton, C.; Shrestha, R. L.; Carter, W. E.

    2007-05-01

    In an effort to monitor beach zone stability along the St. Augustine Beach region of Florida, high-resolution airborne laser swath mapping (ALSM) data are routinely acquired by the University of Florida's Geosensing and Engineering Mapping (GEM) Center. ALSM, often referred to as Light Detection and Ranging (LiDAR), systems enable sub-meter sampling of the near-shore coastal topography and the subsequent creation of digital elevation images with rms errors of less than 10cm over minimally-vegetated surfaces, such as beaches. Currently, there are seven collection dates spanning August 2003 to February 2007. This high spatial resolution coupled with the multiple acquisitions through time provided several results: two separate beach nourishment efforts were captured in the data allowing sediment spreading rate to be modeled and volume loss quantified, shoreline change rates were estimated for temporal scales ranging from a few months to over two years at various spatial frequencies from < 5m to > 300m, storm and seasonal wave climate induced shoreline response were modeled, and novel approaches to morphological feature extraction and identification of localized erosional hot- spots were developed. All previous analyses are based on range measurements; however, the ALSM system also records the intensity (peak voltage from the APD) for each return. Intensity has traditionally been under utilized as a feature for image classification because it does not represent true terrain radiance. We show that in areas with minimal topographic relief, such as beaches, intensity measures have great potential for improved beach zone segmentation. Segmentation of the beach zone is important for several factors including identification of the wet-dry line for traditional shoreline comparison and change-detection, and removal of water points to allow analysis of beach-only zones. Several intensity-based features are extracted from ALSM training data collected along the St. Augustine

  19. Laser Sounder Technique for Remotely Measuring Atmospheric CO2 Concentrations

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Collatz, G. J.; Sun, X.; Riris, H.; Andrews, A. E.; Krainak, M.

    2001-12-01

    We describe progress in developing a lidar technique for the remote measurement of the tropospheric CO2 concentrations. Our goal is to demonstrate a technique and technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate remote sensing measurements of CO2 mixing ratio from aircraft and space appear difficult. Potential error sources include possible interferences from other trace gas species, the effects of clouds and aerosols in the path, and variability in dry air density caused by pressure or topographic changes. Some potential instrumental errors include frequency drifts in the transmitter and sensitivity drifts in the receiver. High signal-to-noise ratios are needed for estimates at the few ppm level. We are developing a laser sounder approach as a candidate for these measurements. It uses 3 laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter at 1064 nm in the same atmospheric path. It directs the co-aligned laser beams from the lidar toward nadir, and measures the energy of the laser backscatter from land and water surfaces. During each measurement period, the two narrow linewidth lasers are rapidly tuned on and off the selected CO2 and O2 absorption lines. The receiver records and averages the energies of the laser echoes. The column extinction and column densities of both CO2 and O2 are estimated via the differential absorption lidar technique. For the on-line wavelength, the side of the gas absorption line is used, which weights its measurements to 0-4 km in the troposphere. Simultaneous measurements of O2 column abundance are made using an identical approach using an O2 line near 770 nm. Atmospheric baskscatter profiles are measured with the 1064 nm channel, which permits identifying and excluding measurements containing clouds or aerosols backscatter

  20. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  1. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  2. Radiative characteristics of clouds embedded in smoke derived from airborne multiangular measurements

    NASA Astrophysics Data System (ADS)

    Gautam, Ritesh; Gatebe, Charles K.; Singh, Manoj K.; Várnai, Tamás.; Poudyal, Rajesh

    2016-08-01

    Clouds in the presence of absorbing aerosols result in their apparent darkening, observed at the top of atmosphere (TOA), which is associated with the radiative effects of aerosol absorption. Owing to the large radiative effect and potential impacts on regional climate, above-cloud aerosols have recently been characterized in multiple satellite-based studies. While satellite data are particularly useful in showing the radiative impact of above-cloud aerosols at the TOA, recent literature indicates large uncertainties in satellite retrievals of above-cloud aerosol optical depth (AOD) and single scattering albedo (SSA), which are among the most important parameters in the assessment of associated radiative effects. In this study, we analyze radiative characteristics of clouds in the presence of wildfire smoke using airborne data primarily from NASA's Cloud Absorption Radiometer, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites campaign in Canada during the 2008 summer season. We found a strong positive reflectance (R) gradient in the UV-visible (VIS)-near infrared (NIR) spectrum for clouds embedded in dense smoke, as opposed to an (expected) negative gradient for cloud-free smoke and a flat spectrum for smoke-free cloud cover. Several cases of clouds embedded in thick smoke were found, when the aircraft made circular/spiral measurements, which not only allowed the complete characterization of angular distribution of smoke scattering but also provided the vertical distribution of smoke and clouds (within 0.5-5 km). Specifically, the largest darkening by smoke was found in the UV/VIS, with R0.34μm reducing to 0.2 (or 20%), in contrast to 0.8 at NIR wavelengths (e.g., 1.27 µm). The observed darkening is associated with large AODs (0.5-3.0) and moderately low SSA (0.85-0.93 at 0.53 µm), resulting in a significantly large instantaneous aerosol forcing efficiency of 254 ± 47 W m-2 τ-1. Our observations of smoke

  3. Airborne measurements of O3, CO, CH4 and NMHCs over the Bay of Bengal during winter

    NASA Astrophysics Data System (ADS)

    Srivastava, Shuchita; Lal, S.; Venkataramani, S.; Guha, I.; Bala Subrahamanyam, D.

    2012-11-01

    As part of the Winter phase of Integrated Campaign for Aerosols, gases and Radiation Budget (WICARB), airborne measurements of ozone (O3), carbon monoxide (CO), methane (CH4), ethane (C2H6), ethene (C2H4), acetylene (C2H2), propane (C3H8) and n-butane (n-C4H10) were conducted over the Bay of Bengal (BoB) at two altitude levels, 750 m and 1500 m, from Visakhapatnam, Chennai and Port Blair during January 2009. Airborne measurements, first of its kind over the BoB, revealed distinct chemical characteristics at these two altitudes over the eastern sector of Visakhapatnam away from the coastline. This feature is attributed to the presence of marine boundary layer inversion between the two altitudes that inhibited the vertical mixing. A comparative study of trace gas distributions during all air sorties showed enhanced mixing ratios of these gases over east of Visakhapatnam and south of Port Blair in comparison to the north/north-east and west of Port Blair and east of Chennai. The back-trajectory analysis showed the outflow from the highly polluted Indo-Gangetic Plain over eastern side of Visakhapatnam. The air masses showed lower photochemical processing (higher C2H2/CO ratio ˜ 4-4.5 pptv ppbv-1) with the age of ˜ 3-4 days over this location in comparison to other sorties. Chemical characteristics over south of Port Blair seem to be controlled by the outflow from Southeast Asian countries. The results presented in this work would serve as valuable inputs for the atmospheric chemistry transport models and will be helpful in reducing the uncertainty in the budget estimation of trace gases over tropical marine region.

  4. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    NASA Astrophysics Data System (ADS)

    Yuan, Bin; Kaser, Lisa; Karl, Thomas; Graus, Martin; Peischl, Jeff; Campos, Teresa L.; Shertz, Steve; Apel, Eric C.; Hornbrook, Rebecca S.; Hills, Alan; Gilman, Jessica B.; Lerner, Brian M.; Warneke, Carsten; Flocke, Frank M.; Ryerson, Thomas B.; Guenther, Alex B.; Gouw, Joost A.

    2015-06-01

    Emissions of methane (CH4) and volatile organic compounds (VOCs) from oil and gas production may have large impacts on air quality and climate change. Methane and VOCs were measured over the Haynesville and Marcellus shale gas plays on board the National Center for Atmospheric Research C-130 and NOAA WP-3D research aircraft in June-July of 2013. We used an eddy covariance technique to measure in situ fluxes of CH4 and benzene from both C-130 flights with high-resolution data (10 Hz) and WP-3D flights with low-resolution data (1 Hz). Correlation (R = 0.65) between CH4 and benzene fluxes was observed when flying over shale gas operations, and the enhancement ratio of fluxes was consistent with the corresponding concentration observations. Fluxes calculated by the eddy covariance method show agreement with a mass balance approach within their combined uncertainties. In general, CH4 fluxes in the shale gas regions follow a lognormal distribution, with some deviations for relatively large fluxes (>10 µg m-2 s-1). Statistical analysis of the fluxes shows that a small number of facilities (i.e., ~10%) are responsible for up to ~40% of the total CH4 emissions in the two regions. We show that the airborne eddy covariance method can also be applied in some circumstances when meteorological conditions do not favor application of the mass balance method. We suggest that the airborne eddy covariance method is a reliable alternative and complementary analysis method to estimate emissions from oil and gas extraction.

  5. Airborne measurements of Black Carbon using miniature high-performance Aethalometers during global circumnavigation campaign GLWF 2012

    NASA Astrophysics Data System (ADS)

    Močnik, Griša; Drinovec, Luka; Vidmar, Primož; Lenarčič, Matevž

    2013-04-01

    While ground-level measurements of atmospheric aerosols are routinely performed around the world, there exists very little data on their vertical and geographical distribution in the global atmosphere. This data is a crucial requirement for our understanding of the dispersion of pollutant species of anthropogenic origin, and their possible effects on radiative forcing, cloud condensation, and other phenomena which can contribute to adverse outcomes. Black Carbon (BC) is a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. It has no non-combustion sources and is not transformed by atmospheric processes. Its presence at altitude is unequivocal. Recent technical advances have led to the development of miniaturized instruments which can be operated on ultra-light aircraft, balloons or UAV's. From January to April 2012, a 'Pipistrel Virus' single-seat ultra-light aircraft flew around the world on a photographic and environmental-awareness mission. The flight track covered all seven continents; crossed all major oceans; and operated at altitudes around 3000 m ASL and up to 8900 m ASL. The aircraft carried a specially-developed high-sensitivity miniaturized dual-wavelength Aethalometer, which recorded BC concentrations with very high temporal resolution and sensitivity (see Reference below). We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas. Back-trajectories are used to show transport of polluted air masses. Measuring the dependence of the aerosol absorption on the wavelength, we show that aerosols produced during biomass combustion can be transported to high altitude in high concentrations. 1. __, Carbon Sampling Takes Flight, Science 2012, 335, 1286. 2. G. Močnik, L. Drinovec, M. Lenarčič, Airborne measurements of Black Carbon during the GLW Flight using miniature high-performance Aethalometers, accessed 8 January 2013

  6. Airborne Deployment and Calibration of Microwave Atmospheric Sounder on 6U CubeSat

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Brown, S. T.; Lim, B.; Kangaslahti, P.; Russell, D.; Stachnik, R. A.

    2015-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (<10 kms), are required for improved forecasting of extreme weather events. We envision a suite of low-cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, we will discuss the maiden airborne deployment of the instrument during the Plain Elevated Convection at Night (PECAN) experiment. The

  7. Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program in New Zealand in 2014

    NASA Astrophysics Data System (ADS)

    Fritts, Dave; Smith, Ron; Taylor, Mike; Doyle, Jim; Eckermann, Steve; Dörnbrack, Andreas; Rapp, Markus; Williams, Biff; Bossert, Katrina; Pautet, Dominique

    2015-04-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, Tasmania, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements beginning in late May and extending beyond the airborne component. DEEPWAVE employed two aircraft, the NSF/NCAR GV and the German DLR Falcon. The GV carried the standard flight-level instruments, dropsondes, and the Microwave Temperature Profiler (MTP). It also hosted new airborne lidar and imaging instruments built specifically to allow quantification of gravity waves (GWs) from sources at lower altitudes (e.g., orography, convection, jet streams, fronts, and secondary GW generation) throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-100 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) was also developed for the GV, and together with additional IR "wing" cameras, imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar able to measure radial winds below the Falcon where aerosol backscatter was sufficient. Additional ground-based instruments included a 449 MHz boundary layer radar, balloons at multiple sites, two ground-based Rayleigh lidars, a second ground-based AMTM, a Fabry Perot interferometer measuring winds and temperatures at ~87 and 95 km, and a meteor radar measuring winds from ~80-100 km. DEEPWAVE performed 26 GV flights, 13 Falcon flights, and an extensive series of ground-based measurements whether or not the aircraft were flying. Together, these observed many diverse cases of GW forcing, propagation, refraction, and dissipation

  8. Advanced near-and mid-infrared laser based instruments for atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Richter, Dirk; Weibring, Petter; Spuler, Scott; Walega, James; Spowart, Mike; Fried, Alan

    2010-05-01

    We present new ground and airborne instruments for atmospheric measurements based on fiber and diode laser sources. This versatile optical technology can be configured to provide high resolution, sensitive, selective, and real-time measurements. In particular we will present current and planned instruments to measure important trace gas species, including isotopes, and 3D wind-speeds from an aircraft platform. All the instruments presented leverage technology advances made in the photonics and optical telecommunication industry. We have developed a set of tools based around these technological building blocks and used them to design a suite of measurement capabilities for use by the atmospheric research community. Optical technologies have been accumulating a proven record of robust performance, and enable one to built more lightweight and compact instrumentation for easy deployment for traditional ground, advanced sea, and airborne measurement platforms. We will present how these enabling optical technologies have served as the foundation for select instruments, and provide a roadmap for future development opportunities.

  9. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  10. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  11. Characterization of shallow marine convection in subtropical regions by airborne and spaceborne lidar measurements

    NASA Astrophysics Data System (ADS)

    Gross, Silke; Gutleben, Manuel; Schäfler, Andreas; Kiemle, Christoph; Wirth, Martin; Hirsch, Lutz; Ament, Felix

    2016-04-01

    One of the biggest challenges in present day climate research is still the quantification of cloud feedbacks in climate models. Especially the feedback from marine cumulus clouds in the boundary layer with maximum cloud top heights of 4 km introduces large uncertainties in climate sensitivity. Therefore a better understanding of these shallow marine clouds, as well as of their interaction with aerosols and the Earth's energy budget is demanded. To improve our knowledge of shallow marine cumulus convection, measurements onboard the German research aircraft HALO were performed during the NARVAL (Next-generation Aircraft Remote-sensing for Validation studies) mission in December 2013. During NARVAL an EarthCARE equivalent remote sensing payload, with the DLR airborne high spectral resolution and differential absorption lidar system WALES and the cloud radar of the HAMP (HALO Microwave Package) as its core instrumentation, was deployed. To investigate the capability of spaceborne lidar measurements for this kind of study several CALIOP underflights were performed. We will present a comparison of airborne and spaceborne lidar measurements, and we will present the vertical and horizontal distribution of the clouds during NARVAL based on lidar measurements. In particular we investigate the cloud top distribution and the horizontal cloud and cloud gap length. Furthermore we study the representativeness of the NARVAL data by comparing them to and analysing a longer time series and measurements at different years and seasons.

  12. Dual-aureole and sun spectrometer system for airborne measurements of aerosol optical properties.

    PubMed

    Zieger, Paul; Ruhtz, Thomas; Preusker, Rene; Fischer, Jürgen

    2007-12-10

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed.

  13. Fast In Situ Airborne Measurement of Ammonia Using a Mid-Infrared Off-Axis ICOS Spectrometer

    SciTech Connect

    Leen, J. Brian; Yu, Xiao-Ying; Gupta, Manish; Baer, Douglas S.; Hubbe, John M.; Kluzek, Celine D.; Tomlinson, Jason M.; Hubbell, Mike R.

    2013-08-23

    A new ammonia (NH3) analyzer was developed based on off-axis integrated cavity output spectroscopy. Its feasibility was demonstrated by making tropospheric measurements in flights aboard the Department of Energy Gulfstream-1 aircraft. The ammonia analyzer consists of an optical cell, quantum-cascade laser, gas sampling system, control and data acquisition electronics, and analysis software. The NH3 mixing ratio is determined from high-resolution absorption spectra obtained by tuning the laser wavelength over the NH3 fundamental vibration band near 9.67 μm. Excellent linearity is obtained over a wide dynamic range (0–101 ppbv) with a response rate (1/e) of 2 Hz and a precision of ±90 pptv (1σ in 1 s). Two research flights were conducted over the Yakima Valley in Washington State. In the first flight, the ammonia analyzer was used to identify signatures of livestock from local dairy farms with high vertical and spatial resolution under low wind and calm atmospheric conditions. In the second flight, the analyzer captured livestock emission signals under windy conditions. Finally, our results demonstrate that this new ammonia spectrometer is capable of providing fast, precise, and accurate in situ observations of ammonia aboard airborne platforms to advance our understanding of atmospheric compositions and aerosol formation.

  14. Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer.

    PubMed

    Leen, J Brian; Yu, Xiao-Ying; Gupta, Manish; Baer, Douglas S; Hubbe, John M; Kluzek, Celine D; Tomlinson, Jason M; Hubbell, Mike R

    2013-09-17

    A new ammonia (NH3) analyzer was developed based on off-axis integrated cavity output spectroscopy. Its feasibility was demonstrated by making tropospheric measurements in flights aboard the Department of Energy Gulfstream-1 aircraft. The ammonia analyzer consists of an optical cell, quantum-cascade laser, gas sampling system, control and data acquisition electronics, and analysis software. The NH3 mixing ratio is determined from high-resolution absorption spectra obtained by tuning the laser wavelength over the NH3 fundamental vibration band near 9.67 μm. Excellent linearity is obtained over a wide dynamic range (0-101 ppbv) with a response rate (1/e) of 2 Hz and a precision of ±90 pptv (1σ in 1 s). Two research flights were conducted over the Yakima Valley in Washington State. In the first flight, the ammonia analyzer was used to identify signatures of livestock from local dairy farms with high vertical and spatial resolution under low wind and calm atmospheric conditions. In the second flight, the analyzer captured livestock emission signals under windy conditions. Our results demonstrate that this new ammonia spectrometer is capable of providing fast, precise, and accurate in situ observations of ammonia aboard airborne platforms to advance our understanding of atmospheric compositions and aerosol formation. PMID:23869496

  15. Conservative-coordinate transformations for atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Lait, L. R.

    1992-01-01

    This lecture describes a technique by which atmospheric measurements of trace species with medium to long lifetimes can be 'coincidentally' compared and validated even though measurements are taken at different locations and different times In other words, the method, under suitable counditions, can remove a large amount of the natural meteorological variability. The technique involves the use of quasi-Lagrangian or conservative coordinates - air parcel tags which are invariant or nearly invariant under the motion of the parcel. The technique is called 'reconstruction', since measurements taken at one location can be reconstructed at different locations. In order to do this, the data are transformed into the conservative coordinates and accumulated. Within the conservative reference frame, much of the meteorological variability is removed. Once enough data are obtained within the system, the observations can be tranformed back into physical space at any location and compared with other measurements. The method by which the trace species data are obtained makes no difference; satellite, balloon, rocket, aircraft and ground-based data all become equivalent and can be intercompared. The conservative-coordinate system not only allows for intercomparison of data, but shows how data can be taken in such a way as to maximize the physical scope of the information. In other words, the method automatically suggests when conditions might be suitable to obtain information with different environmental situations. It also allows for the forecast of constituent fields using only the meteorological forecasts and limited observational data.

  16. Development of a cavity-enhanced absorption spectrometer for airborne measurements of CH4 and CO2

    NASA Astrophysics Data System (ADS)

    O'Shea, S. J.; Bauguitte, S. J.-B.; Gallagher, M. W.; Lowry, D.; Percival, C. J.

    2013-05-01

    High-resolution CH4 and CO2 measurements were made on board the FAAM BAe-146 UK (Facility for Airborne Atmospheric Measurements, British Aerospace-146) atmospheric research aircraft during a number of field campaigns. The system was based on an infrared spectrometer using the cavity-enhanced absorption spectroscopy technique. Correction functions to convert the mole fractions retrieved from the spectroscopy to dry-air mole fractions were derived using laboratory experiments and over a 3 month period showed good stability. Long-term performance of the system was monitored using WMO (World Meteorological Office) traceable calibration gases. During the first year of operation (29 flights) analysis of the system's in-flight calibrations suggest that its measurements are accurate to 1.28 ppb (1σ repeatability at 1 Hz = 2.48 ppb) for CH4 and 0.17 ppm (1σ repeatability at 1 Hz = 0.66 ppm) for CO2. The system was found to be robust, no major motion or altitude dependency could be detected in the measurements. An inter-comparison between whole-air samples that were analysed post-flight for CH4 and CO2 by cavity ring-down spectroscopy showed a mean difference between the two techniques of -2.4 ppb (1σ = 2.3 ppb) for CH4 and -0.22 ppm (1σ = 0.45 ppm) for CO2. In September 2012, the system was used to sample biomass-burning plumes in Brazil as part of the SAMBBA project (South AMerican Biomass Burning Analysis). From these and simultaneous CO measurements, emission factors for savannah fires were calculated. These were found to be 2.2 ± 0.2 g (kg dry matter)-1 for CH4 and 1710 ± 171 g (kg dry matter)-1 for CO2, which are in excellent agreement with previous estimates in the literature.

  17. Atmospheric Dispersion Effects in Weak Lensing Measurements

    SciTech Connect

    Plazas, Andrés Alejandro; Bernstein, Gary

    2012-10-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed the statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.

  18. Atmospheric Dispersion Effects in Weak Lensing Measurements

    DOE PAGES

    Plazas, Andrés Alejandro; Bernstein, Gary

    2012-10-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed themore » statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.« less

  19. Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1984-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  20. Laser measurement of extinction coefficients of highly absorbing liquids. [airborne oil spill monitoring application

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Kincaid, J. S.

    1980-01-01

    A coaxial dual-channel laser system has been developed for the measurement of extinction coefficients of highly absorbing liquids. An empty wedge-shaped sample cell is first translated laterally through a He-Ne laser beam to measure the differential thickness using interference fringes in reflection. The wedge cell is carefully filled with the oil sample and translated through the coaxially positioned dye laser beam for the differential attenuation or extinction measurement. Optional use of the instrumentation as a single-channel extinction measurement system and also as a refractometer is detailed. The system and calibration techniques were applied to the measurement of two crude oils whose extinction values were required to complete the analysis of airborne laser data gathered over four controlled spills.

  1. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  2. Initial Field Measurements with the Multisensor Airborne Radiation Survey (MARS) High Purity Germanium (HPGe) Detector Array

    SciTech Connect

    Fast, James E.; Bonebrake, Christopher A.; Dorow, Kevin E.; Glasgow, Brian D.; Jensen, Jeffrey L.; Morris, Scott J.; Orrell, John L.; Pitts, W. Karl; Rohrer, John S.; Todd, Lindsay C.

    2010-06-29

    Abstract: The Multi-sensor Airborne Radiation Survey (MARS) project has developed a new single cryostat detector array design for high purity germanium (HPGe) gamma ray spectrometers that achieves the high detection efficiency required for stand-off detection and actionable characterization of radiological threats. This approach is necessary since a high efficiency HPGe detector can only be built as an array due to limitations in growing large germanium crystals. The system is ruggedized and shock mounted for use in a variety of field applications. This paper reports on results from initial field measurements conducted in a truck and on two different boats.

  3. Remotely Measured Terrestrial Chlorophyll Fluorescence Using Airborne G-LiHT and APFS Sensors

    NASA Astrophysics Data System (ADS)

    Cook, W. B.; Yee, J. H.; Corp, L. A.; Cook, B. D.; Huemmrich, K. F.

    2014-12-01

    In September 2014 the Goddard Lidar, Hyperspectral and Thermal (G-LiHT) and the APL/JHU Airborne Plant Fluorescence Sensor (APFS) were flown together on a NASA Langley King Air over vegetated targets in North Carolina and Virginia. The instruments provided high spatial and spectral resolution data in the visible and near infrared, down-welling irradiance, elevation maps, and thermal imagery. Ground validation data was also collected concurrently. Here we report the results of these measurements and show the feasibility of using these types of instruments for collection the fluorescence and other information essential for ecological and carbon cycle studies.

  4. Measurement of backscattering from sea with an airborne radar at L band

    NASA Astrophysics Data System (ADS)

    Luo, Xianyun; Zhang, Zhongzhi; Yin, Zhiying; Sun, Fang; Kang, Shifeng; Wang, Laibu; Yu, Yunchao; Wen, Fangru

    1998-08-01

    Measurements of electromagnetic backscattering from sea surface at L band have been done with airborne side-looking radar system. Several flights are made for various sea states. Coherent radar data ta HH polarization and some truth data such as wave height, wind velocity and direction, temperature of sea water are recorded. Corner reflectors and active backscattering coefficient can be derived from the radar data and the cinematic data. The result presented in this paper include scattering coefficient and statistical analysis of radar echo with typical probability distribution functions such as Rayleigh, Weibull, Log-normal and K distribution.

  5. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general. PMID:10548806

  6. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  7. Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments

    USGS Publications Warehouse

    Griffin, Dale W.; Gonzalez, C.; Teigell, N.; Petrosky, T.; Northup, D.E.; Lyles, M.

    2011-01-01

    The influence of sample-collection-time on the recovery of culturable airborne microorganisms using a low-flow-rate membrane-filtration unit and a high-flow-rate liquid impinger were investigated. Differences in recoveries were investigated in four different atmospheric environments, one mid-oceanic at an altitude of ~10.0 m, one on a mountain top at an altitude of ~3,000.0 m, one at ~1.0 m altitude in Tallahassee, Florida, and one at ~1.0 m above ground in a subterranean-cave. Regarding use of membrane filtration, a common trend was observed: the shorter the collection period, the higher the recovery of culturable bacteria and fungi. These data also demonstrated that lower culturable counts were common in the more remote mid-oceanic and mountain-top atmospheric environments with bacteria, fungi, and total numbers averaging (by sample time or method categories) <3.0 colony-forming units (CFU) m -3. At the Florida and subterranean sites, the lowest average count noted was 3.5 bacteria CFU m-3, and the highest averaged 140.4 total CFU m-3. When atmospheric temperature allowed use, the high-volume liquid impinger utilized in this study resulted in much higher recoveries, as much as 10?? greater in a number of the categories (bacterial, fungal, and total CFU). Together, these data illustrated that (1) the high-volume liquid impinger is clearly superior to membrane filtration for aeromicrobiology studies if start-up costs are not an issue and temperature permits use; (2) although membrane filtration is more cost friendly and has a 'typically' wider operational range, its limits include loss of cell viability with increased sample time and issues with effectively extracting nucleic acids for community-based analyses; (3) the ability to recover culturable microorganisms is limited in 'extreme' atmospheric environments and thus the use of a 'limited' methodology in these environments must be taken into account; and (4) the atmosphere culls, i.e., everything is not

  8. Investigating Seasonal Emissions of Carbon Dioxide and Methane in Northern California Using Airborne Measurements and Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Xi, X.; Yates, E. L.; Iraci, L. T.; Potter, C. S.; Tanaka, T.; Tadic, J.; Loewenstein, M.; Jeong, S.; Fischer, M. L.; Gurney, K. R.

    2014-12-01

    Greenhouse gas (GHG) concentrations have increased over the past decades and are linked to increasing global surface temperatures and climate change. To counteract the trend of increasing atmospheric concentrations of GHGs, the state of California has passed the California Global Warming Solutions Act of 2006 (AB-32). This requires that by 2020, GHG (e.g., carbon dioxide (CO2) and methane (CH4)) emissions will be reduced to 1990 levels. Currently, California emits ~500 Tg yr-1 of CO2eq GHGs, with CO2 and CH4 contributing ~90% of the total. To quantify the success of AB-32, GHG emission rates must be more thoroughly quantified in California. Presently, uncertainties remain in the existing "bottom-up" emission inventories in California due to many contributing factors not being fully understood. To help alleviate these uncertainties, we have analyzed airborne GHG measurements and applied inverse modeling techniques to quantify GHG spatiotemporal concentration patterns and "top-down" emission rates. To assess the magnitude/spatial variation of GHGs, and to identify local emission "hot spots", airborne measurements of CO2 and CH4 were made by the Alpha Jet Atmospheric eXperiment (AJAX) in the boundary layer of the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV) in Jan.-Feb. 2013 and July-Aug. 2014. To quantify/constrain GHG emissions we applied the WRF-STILT model and inverse modeling techniques, in conjunction with AJAX data, to estimate "top-down" SFBA/SJV GHG emission rates. Model simulations utilized source apportioned a priori CO2 and CH4 emission inventories from the Vulcan Project (including NASA Carnegie Ames Stanford Approach (NASA-CASA) model CO2 biosphere fluxes) and the California Greenhouse Gas Emissions Measurement (CALGEM) Project, respectively. Results from the evaluation of a priori and posterior GHG concentrations/emissions in northern California using AJAX data, along with the analysis of CO2 and CH4 concentration spatiotemporal

  9. Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)

    NASA Astrophysics Data System (ADS)

    Dupuy, E.; Walker, K. A.; Kar, J.; Boone, C. D.; McElroy, C. T.; Bernath, P. F.; Drummond, J. R.; Skelton, R.; McLeod, S. D.; Hughes, R. C.; Nowlan, C. R.; Dufour, D. G.; Zou, J.; Nichitiu, F.; Strong, K.; Baron, P.; Bevilacqua, R. M.; Blumenstock, T.; Bodeker, G. E.; Borsdorff, T.; Bourassa, A. E.; Bovensmann, H.; Boyd, I. S.; Bracher, A.; Brogniez, C.; Burrows, J. P.; Catoire, V.; Ceccherini, S.; Chabrillat, S.; Christensen, T.; Coffey, M. T.; Cortesi, U.; Davies, J.; de Clercq, C.; Degenstein, D. A.; de Mazière, M.; Demoulin, P.; Dodion, J.; Firanski, B.; Fischer, H.; Forbes, G.; Froidevaux, L.; Fussen, D.; Gerard, P.; Godin-Beekman, S.; Goutail, F.; Granville, J.; Griffith, D.; Haley, C. S.; Hannigan, J. W.; Höpfner, M.; Jin, J. J.; Jones, A.; Jones, N. B.; Jucks, K.; Kagawa, A.; Kasai, Y.; Kerzenmacher, T. E.; Kleinböhl, A.; Klekociuk, A. R.; Kramer, I.; Küllmann, H.; Kuttippurath, J.; Kyrölä, E.; Lambert, J.-C.; Livesey, N. J.; Llewellyn, E. J.; Lloyd, N. D.; Mahieu, E.; Manney, G. L.; Marshall, B. T.; McConnell, J. C.; McCormick, M. P.; McDermid, I. S.; McHugh, M.; McLinden, C. A.; Mellqvist, J.; Mizutani, K.; Murayama, Y.; Murtagh, D. P.; Oelhaf, H.; Parrish, A.; Petelina, S. V.; Piccolo, C.; Pommereau, J.-P.; Randall, C. E.; Robert, C.; Roth, C.; Schneider, M.; Senten, C.; Steck, T.; Strandberg, A.; Strawbridge, K. B.; Sussmann, R.; Swart, D. P. J.; Tarasick, D. W.; Taylor, J. R.; Tétard, C.; Thomason, L. W.; Thompson, A. M.; Tully, M. B.; Urban, J.; Vanhellemont, F.; von Clarmann, T.; von der Gathen, P.; von Savigny, C.; Waters, J. W.; Witte, J. C.; Wolff, M.; Zawodny, J. M.

    2008-02-01

    This paper presents extensive validation analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. The ACE satellite instruments operate in the mid-infrared and ultraviolet-visible-near-infrared spectral regions using the solar occultation technique. In order to continue the long-standing record of solar occultation measurements from space, a detailed quality assessment is required to evaluate the ACE data and validate their use for scientific purposes. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the mean differences range generally between 0 and +10% with a slight but systematic positive bias (typically +5%). At higher altitudes (45-60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments by up to ~40% (typically +20%). For the ACE-MAESTRO version 1.2 ozone data product, agreement within ±10% (generally better than ±5%) is found between 18 and 40 km for the sunrise and sunset measurements. At higher altitudes (45-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (by as much as -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS and indicate a large positive bias (+10 to +30

  10. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2009-12-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 μm) and angular range (180°) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  11. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  12. Toward the Direct Measurement of Coronal Magnetic Fields: An Airborne Infrared Spectrometer for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, J.; DeLuca, E. E.; Golub, L.; Cheimets, P.

    2014-12-01

    The solar magnetic field enables the heating of the corona and provides its underlying structure. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections (CME) and provides the ultimate source of energy for space weather. Therefore, direct measurements of the coronal magnetic field have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of coronal field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind. While current instruments routinely observe only the photospheric and chromospheric magnetic fields, a proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are four forbidden magnetic dipole transitions between 2 and 4 μm. The airborne system will consist of a telescope, grating spectrometer, and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the August 2017 total solar eclipse. The project incorporates several optical engineering challenges, centered around maintaining adequate spectral and spatial resolution in a compact and inexpensive package and on a moving platform. Design studies are currently underway to examine the tradeoffs between various optical geometries and control strategies for the pointing/stabilization system. The results will be presented and interpreted in terms of the consequences for the scientific questions. In addition, results from a laboratory prototype and simulations of the final system will be presented.

  13. Source Impact Determination using Airborne and Ground Measurements of Industrial Plumes.

    PubMed

    Leoni, Cecilia; Hovorka, Jan; Dočekalová, Veronika; Cajthaml, Tomáš; Marvanová, Soňa

    2016-09-20

    Industrial particulate matter (PM) air pollution exposing nearby residential areas forms several European air pollution hot-spots. One of these hot-spot is the residential district of Ostrava Radvanice-Bartovice with frequent exceedances for PM and benzo[a]pyrene B[a]P, a carcinogenic polycyclic aromatic hydrocarbon (PAH) of MW > 228 amu. Such PAHs are highly bonded to the ultrafine particles (UFPs), the smallest PM size fraction, which deposits most efficiently in the alveolar region of human lungs. Airborne measurements identified UFP point sources in the adjacent metallurgical complex and mapped limited horizontal and vertical dispersion of industrial plumes enriched with UFPs (3.2 × 10(5)cm(-3)). The plumes, episodes of simultaneous peaks of UFPs (1.4 × 10(5)cm(-3)), SO2 (88.2 ppb), and CO (11.3 ppm), were recorded on the ground downwind in the residential district when wind speeds >1 ms(-1). In the plumes, UFPs were mostly 19-44 nm in diameter, enriched with PAHs/B[a]P up to 43.8/3.5 mg·g(-1). Electron microscopy showed that these plume UFPs were mostly agglomerates of spherules of 30-50 nm in diameter. These source impact measurements, that combine airborne and ground-level measurements, are applicable to clearly identify specific industrial air pollution sources and provide information to assess their possible impact to human health in similar hot-spots worldwide. PMID:27548014

  14. Analysis of Airborne Radar Altimetry Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.

    1994-01-01

    This dissertation presents an analysis of airborne altimetry measurements taken over the Greenland ice sheet with the 13.9 GHz Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter. This Ku-band instrument was refurbished in 1990 by the Microwave Remote Sensing Laboratory at the University of Massachusetts to obtain high-resolution altitude measurements and to improve the tracking, speed, storage and display capabilities of the radar. In 1991 and 1993, the AAFE altimeter took part in the NASA Multisensor Airborne Altimetry Experiments over Greenland, along with two NASA laser altimeters. Altitude results from both experiments are presented along with comparisons to the laser altimeter and calibration passes over the Sondrestroem runway in Greenland. Although it is too early to make a conclusion about the growth or decay of the ice sheet, these results show that the instrument is capable of measuring small-scale surface changes to within 14 centimeters. In addition, results from these experiments reveal that the radar is sensitive to the different diagenetic regions of the ice sheet. Return waveforms from the wet- snow, percolation and dry-snow zones show varying effects of both surface scattering and sub-surface or volume scattering. Models of each of the diagenetic regions of Greenland are presented along with parameters such as rms surface roughness, rms surface slope and attenuation coefficient of the snow pack obtained by fitting the models to actual return waveforms.

  15. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    NASA Technical Reports Server (NTRS)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  16. Modelling climate change effects on a Dutch coastal groundwater system using airborne electromagnetic measurements

    NASA Astrophysics Data System (ADS)

    Faneca Sànchez, M.; Gunnink, J. L.; van Baaren, E. S.; Oude Essink, G. H. P.; Siemon, B.; Auken, E.; Elderhorst, W.; de Louw, P. G. B.

    2012-12-01

    The forecast of climate change effects on the groundwater system in coastal areas is of key importance for policy makers. The Dutch water system has been deeply studied because of its complex system of low-lying areas, dunes, land won to the sea and dikes, but nowadays large efforts are still being done to find out the best techniques to describe complex fresh-brackish-saline groundwater dynamic systems. In this paper, we describe a methodology consisting of high-resolution airborne electromagnetic (EM) measurements used in a 3-D variable-density transient groundwater model for a coastal area in the Netherlands. We used the airborne EM measurements in combination with borehole-logging data, electrical conductivity cone penetration tests and groundwater samples to create a 3-D fresh-brackish-saline groundwater distribution of the study area. The EM measurements proved to be an improvement compared to older techniques and provided quality input for the model. With the help of the built 3-D variable-density groundwater model, we removed the remaining inaccuracies of the 3-D chloride field and predicted the effects of three climate scenarios on the groundwater and surface water system. Results showed significant changes in the groundwater system, and gave direction for future water policy. Future research should provide more insight in the improvement of data collection for fresh-brackish-saline groundwater systems as it is of high importance to further improve the quality of the model.

  17. Modelling climate change effects on a Dutch coastal groundwater system using airborne Electro Magnetic measurements

    NASA Astrophysics Data System (ADS)

    Faneca Sànchez, M.; Gunnink, J. L.; van Baaren, E. S.; Oude Essink, G. H. P.; Siemon, B.; Auken, E.; Elderhorst, W.; de Louw, P. G. B.

    2012-05-01

    The forecast of climate change effects on the groundwater system in coastal areas is of key importance for policy makers. The Dutch water system has been deeply studied because of its complex system of low-lying areas, dunes, land won to the sea and dikes, but nowadays large efforts are still being done to find out the best techniques to describe complex fresh-brackish-saline groundwater dynamic systems. In this article, we describe a methodology consisting of high-resolution airborne Electro Magnetic (EM) measurements used in a 3-D variable-density transient groundwater model for a coastal area in the Netherlands. We used the Airborne EM measurements in combination with borehole-logging data, Electrical Conductivity Cone Penetration Tests and groundwater samples to create a 3-D fresh-brackish-saline groundwater distribution of the study area. The EM measurements proved to be an improvement compared to older techniques and provided quality input for the model. With the help of the built 3-D variable-density groundwater model, we removed the remaining inaccuracies of the 3-D chloride field and predicted the effects of three climate scenarios on the groundwater and surface water system. Results showed significant changes in the groundwater system, and gave direction for future water policy. Future research should provide more insight in the improvement of data collection for fresh-brackish-saline groundwater systems as it is of high importance to further improve the quality of the model.

  18. 2-micron Double Pulsed IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke; Scola, Tory

    2015-04-01

    We have developed a high energy pulsed 2-micron IPDA lidar instrument to measure the atmospheric CO2 column density. The IPDA lidar is operated on the long wavelength wing of R(30) CO2 line at 2050.967 nm (4875.749 cm-1) in the side-line operation mode. The R(30) line is an excellent absorption line for the measurements of CO2 in 2µm wavelength region with regard to the strength of the absorption lines, low susceptibility to atmospheric temperature variability, and freedom from problematic interference with other absorption lines. The Ho:Tm:YLF laser transmitter is designed to be operated in a unique double pulse format that can produce two-pulse pair in 10 Hz operation. Typically, the output energies of the laser transmitter are 100mJ and 45mJ for the first pulse and the second pulse, respectively. We injection seed the first pulse with on-line frequency and the second pulse with off-line frequency. The IPDA lidar instrument size, weight and power consumption were restricted to small research aircraft payload requirements. The airborne IPDA lidar instrument measures the total integrated column content of CO2 from the instrument to the ground but with weighting that can be tuned by controlling the transmitted wavelengths. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. The 2-μm CO2 IPDA lidar airborne demonstration was conducted during March 20, 2014 through April 10, 2014. IPDA lidar airborne flights included various operating and environmental conditions. Environmental conditions included different flight altitude up to 8.3 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Besides, some flights targeted power plant incinerators for investigating the IPDA sensitivity to CO2 plums. The lidar instrument is robust during all of the flights. This paper describes

  19. High Power and Frequency-Agile Optical Parametric Oscillators for Airborne DIAL Measurements of CH4 and H2O

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Shuman, T.; Chuang, T.; Hair, J. W.; Refaat, T. F.; Ismail, S.; Kooi, S. A.; Notari, A.

    2014-12-01

    Atmospheric methane (CH4) has the second largest radiative forcing of the long-lived greenhouse gasses (GHG) after carbon dioxide. However, methane's much shorter atmospheric lifetime and much stronger warming potential make its radiative forcing equivalent to that for CO2 over a 20-year time horizon which makes CH4 a particularly attractive target for mitigation strategies. Similar to CH4, water vapor (H2O) is the most dominant of the short-lived GHG in the atmosphere and plays a key role in many atmospheric processes. Atmospheric H2O concentrations span over four orders of magnitude from the planetary boundary layer where high impact weather initiates to lower levels in the upper troposphere and lower stratosphere (UTLS) where water vapor has significant and long term impacts on the Earth's radiation budget. NASA Langley has fostered the technology development with Fibertek, Inc. to develop frequency agile and high power (> 3 W) pulsed lasers using similar architectures in the 1645 nm and 935 nm spectral bands for DIAL measurements of CH4 and H2O, respectively. Both systems utilize high power 1 kHz pulse repetition frequency Nd:YAG lasers to generate high power laser emission at the desired wavelength via optical parametric oscillators (OPO). The CH4 OPO, currently in its final build stage in a SBIR Phase II program has demonstrated >2 W average power with injection seeding from a distributed feedback (DFB) laser during risk reduction experiments. The H2O OPO has demonstrated high power operation (>2 W) during the SBIR Phase I program while being injection seeded with a DFB laser, and is currently funded via an SBIR Phase II to build a robust system for future integration into an airborne water vapor DIAL system capable of profiling from the boundary layer up to the UTLS. Both systems have demonstrated operation with active OPO wavelength control to allow for optimization of the DIAL measurements for operation at different altitudes and geographic regions. An

  20. Airborne passive remote sensing of large-scale methane emissions from oil fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Initial results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Kolyer, Richard W.; Thompson, David R.; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Schüttemeyer, Dirk; Fladeland, Matthew; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    On several flights performed over the Kern River, Kern Front, and Poso Creek Oil Fields in California between June 3 and September 4, 2014, in the framework of the CO2 and MEthane Experiment (COMEX) - a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities - the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) detected large-scale, high-concentration, methane plumes. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with a Picarro fast in-situ greenhouse gas (GHG) analyzer (operated by the NASA Ames Research Center, ARC), a 5-hole turbulence probe and an atmospheric measurement package (operated by CIRPAS), measuring aerosols, temperature, dew-point, and other atmospheric parameters. Some of the flights were accompanied by the next generation of the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft (operated by Twin Otter International). Data collected with the in-situ GHG analyzer were used for validation of the MAMAP and AVIRIS-NG remotely sensed data. The in-situ measurements were acquired in vertical cross sections of the discovered plumes at fixed distances downwind of the sources. Emission rates are estimated from both the remote and in-situ data using wind information from the turbulence probe together with ground-based wind data from the nearby airport. Remote sensing and in-situ data as well as initial flux estimates for selected flights will be presented.

  1. Long-path atmospheric measurements using dual frequency comb measurements

    NASA Astrophysics Data System (ADS)

    Waxman, Eleanor; Cossel, Kevin; Truong, Gar-Wing; Giorgetta, Fabrizio; Swann, William; Coddington, Ian; Newbury, Nathan

    2016-04-01

    The dual frequency comb spectrometer is a new tool for performing atmospheric trace gas measurements. This instrument is capable of measuring carbon dioxide, methane, and water with extremely high resolution in the region between 1.5 and 2.1 microns in the near-IR. It combines the high resolution of a laboratory-based FTIR instrument with the portability of a long-path DOAS system. We operate this instrument at path lengths of a few kilometers, thus bridging the spatial resolution of in-situ point sensors and the tens of square kilometer footprints of satellites. This spatial resolution is ideal for measuring greenhouse gas emissions from cities. Here we present initial long-path integrated column measurements of the greenhouse gases water, carbon dioxide, and methane in an urban environment. We present a time series with 5 minute time resolution over a 2 kilometer path in Boulder, Colorado at the urban-rural interface. We validate this data via a comparison with an in-situ greenhouse gas monitor co-located along the measurement path and show that we agree well on the baseline concentration but that we are significantly less sensitive to local point source emission that have high temporal variability, making this instrument ideal for measurements of average city-wide emissions. We additionally present progress towards measurements over an 11 kilometer path over downtown Boulder to measure the diurnal flux of greenhouse gases across the city.

  2. Airborne Coarse Mode Aerosol Measurements with the CAS-DPOL Instrument: Effects of Particle Shape and Refractive Index and Implications for Radiative Transfer Estimate

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gasteiger, J.; Spanu, A.; Freudenthaler, V.; Gross, S.

    2015-12-01

    Each year huge amounts of mineral dust are mobilized in deserts and arid regions of the world and transported over large distances forming thick elevated aerosol layers with a substantial fraction of coarse mode particles. Optical properties of mineral dust, including the absorptive refractive index of some components, cause a significant effect on the atmospheric radiative energy balance from optical to infrared wavelengths. The aerosol characteristics, in particular its coarse mode size distribution, are modified during long-range transport by aging and deposition processes. This also affects the aerosol optical properties and therefore the effect on the atmospheric radiative energy budget. In-situ measurements of aerosol microphysical properties are essential to characterize those effects in order to be implemented in global climate models in parametrized form. However, in-situ measurements of airborne coarse mode aerosols such as mineral dust and volcanic ash are challenging and the measurements are usually affected by substantial uncertainties. In this work we use airborne measurements of mineral dust from our optical light-scattering spectrometer CAS-DPOL during SALTRACE 2013 to discuss the analysis of such data. We cover the effects of varying refractive index and particle shapes and develop recommendations for the configuration of the CAS-DPOL for aerosol studies. We also present an inversion method to derive coarse mode size distributions from light-scattering probes for mixtures of non-spherical, absorbing aerosols. The size distributions retrieved from the in-situ measurements are then validated using an independent analysis with a combination of sun-photometer and lidar data. We apply these methods to investigate the Saharan mineral dust particle size distributions measured on both sides of the Atlantic Ocean and discuss the influence of aerosol aging on the atmospheric radiative energy budget. With this example we also assess how the uncertainties

  3. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    PubMed Central

    Thorpe, Andrew K.; Thompson, David R.; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D.; Aubrey, Andrew D.; Hook, Simon; Green, Robert O.

    2016-01-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼ 2 kg/h to 5 kg/h through ∼ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign. PMID:27528660

  4. Ground truth measurement for the analysis of airborne SAR data recorded over Oberpfaffenhofen, FRG, 1989

    NASA Technical Reports Server (NTRS)

    Bayer, T.; Wieneke, F.; Winter, R.

    1990-01-01

    As a preliminary investigation to the joint multiparameter SIR-C/X-SAR shuttle experiment of NASA/JPL (USA), DLR (FRG), and PSN (Italy) which is scheduled for the year 1992 an airborne SAR campaign was conducted over Oberpfaffenhofen, FRG, in August 1989. Primarily this campaign was planned to test and verify equipment and algorithms developed at the DLR to calibrate multifrequency polarimetric SAR data. Oberpfaffenhofen is designated as one of the super test sites for the SIR-C/X-SAR experiment which will be imaged under all circumstances except severe mission errors. A super test site drives radar parameters and look directions and the recorded SAR data will be calibrated. In addition ancillary data will be available for the site. During the airborne STAR campaign conducted in the week of August 14th 1989 various sensor types were used to record remote sensing data over the calibration test site and its vicinity: the polarimetric DC-8 JPL-SAR (P-, L-, C-band), the DLR airborne SAR (C-, X-band), color infrared aerial photography (DLR), and the truck-mounted scatterometer (C- and X-band) of the Institute for Navigation, University of Stuttgart (INS). Because of this variety of different sensor types used and out of the fact that sufficiently large forested and agriculturally used areas were planned to be covered by these sensors, the interest of several German research groups involved in investigations concerning SAR land applications arose. The following groups carried out different ground-truth measurements: University of Bonn, Institute for plant cultivation (plant morphology and moisture content); University of Braunschweig, Institute for Geography (soil moisture and surface roughness); University of Freiburg, Institute for Geography (dielectric soil properties, landuse); and University of Munich, Institute for Geography (landuse inventory, plant, surface, and soil parameters). This paper presents the joint ground truth activities of the Institute for Geography

  5. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region.

    PubMed

    Frankenberg, Christian; Thorpe, Andrew K; Thompson, David R; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D; Aubrey, Andrew D; Hook, Simon; Green, Robert O

    2016-08-30

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit [Formula: see text] 2 kg/h to 5 kg/h through [Formula: see text] 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571-6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign. PMID:27528660

  6. On error sources during airborne measurements of the ambient electric field

    NASA Technical Reports Server (NTRS)

    Evteev, B. F.

    1991-01-01

    The principal sources of errors during airborne measurements of the ambient electric field and charge are addressed. Results of their analysis are presented for critical survey. It is demonstrated that the volume electric charge has to be accounted for during such measurements, that charge being generated at the airframe and wing surface by droplets of clouds and precipitation colliding with the aircraft. The local effect of that space charge depends on the flight regime (air speed, altitude, particle size, and cloud elevation). Such a dependence is displayed in the relation between the collector conductivity of the aircraft discharging circuit - on one hand, and the sum of all the residual conductivities contributing to aircraft discharge - on the other. Arguments are given in favor of variability in the aircraft electric capacitance. Techniques are suggested for measuring from factors to describe the aircraft charge.

  7. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    NASA Technical Reports Server (NTRS)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  8. Validation of Monte Carlo model of HPGe detector for field-station measurement of airborne radioactivity

    NASA Astrophysics Data System (ADS)

    Šolc, J.; Kovář, P.; Dryák, P.

    2016-03-01

    A Monte Carlo (MC) model of a mechanically-cooled High Purity Germanium detection system IDM-200-V™ manufactured by ORTEC® was created, optimized and validated within the scope of the Joint Research Project ENV57 ``Metrology for radiological early warning networks in Europe''. The validation was performed for a planar source homogeneously distributed on a filter placed on top of the detector end cap and for point sources positioned farther from the detector by comparing simulated full-energy peak (FEP) detection efficiencies with the ones measured with two or three different pieces of the IDM detector. True coincidence summing correction factors were applied to the measured FEP efficiencies. Relative differences of FEP efficiencies laid within 8% that is fully satisfactory for the intended use of the detectors as instruments for airborne radioactivity measurement in field-stations. The validated MC model of the IDM-200-V™ detector is now available for further MC calculations planned in the ENV57 project.

  9. Comparison of two atmospheric correction models for a vegetated Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene

    NASA Technical Reports Server (NTRS)

    Vandenbosch, Jeannette Marie; Alley, R. E.

    1991-01-01

    Current atmospheric correction models applied to imaging spectroscopy data include such methods as residual (scene average) and flat field correction, regression method, and the LOWTRAN 7 method. Due to the limitations of using residual and flat field corrections on vegetated scenes, regression and LOWTRAN 7 are compared. Field measured targets taken at the time of the 13 April, 1989 AVIRIS overflight of Jasper Ridge, California (U.S.) were used to formulate the regression atmospheric correction. Assuming the regressed image represents ground truth, results show that the LOWTRAN 7 method with radiosonde data does not compensate as well for atmospheric water vapor as the regression method, but it may be easier to obtain a posteriori information to perform the LOWTRAN 7 atmospheric correction.

  10. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  11. Continental-Scale Trace Gas Measurements During COBRA and the Case for Airborne Flask Measurements in the NACP

    NASA Astrophysics Data System (ADS)

    Miller, J. B.; Stephens, B. B.; Bakwin, P.; Tans, P. P.; Gerbig, C.; Lin, J.; Wofsy, S.; Andrews, A.; Daube, B.

    2002-12-01

    Intensive airborne sampling of trace gases is envisioned as a major component of the planned North American Carbon Program (NACP). During August 2000 we sampled air between the surface and 10,000 m in the eastern two thirds of the conterminous United States as part of the CO2 Budget and Rectification-Airborne (COBRA) study. Our experience from COBRA can help inform our airborne sampling strategy for the NACP. In COBRA, CO2 and CO were measured in situ by continuous instrumentation, and CO2, CO, CH4, N2O, H2, SF6 and δ13CO2 were measured in the laboratory. Although the data density of the continuous measurements is much higher than that of the flask-based ones, flasks samples are an important complement to the in situ. Laboratory measurements of CO2 and CO provide quality control, while high precision measurements of CH4, δ13CO2 and other species cannot be made in situ. Significant vertical gradients were observed for all species as a result of emissions from biogenic, fossil-fuel related and biomass burning sources. Simultaneously measuring multiple species can help isolate the biogenic component from this mix. For example, if we know emission ratios, measurements of CO and SF6 can be used to identify the fossil fuel and biomass burning contributions to observed CO2. Measurements indicate substantial surface sources of both CH4 and N2O, and a surface sink for H2, in different parts of the United States. As is the case for CO2, the magnitudes and signs of the fluxes are geographically variable. When combined, the vertical gradients CO2 and δ13C can be related to the extent of isotopic discrimination that takes place during plant photosynthesis. This, in turn, is related to plant type and metabolism. Within the data assimilation context of the NACP, measurements of these biologically mediated trace gases will add information on the functioning of the biosphere and thus help to constrain estimates of CO2 fluxes. How much information is lost by taking flask samples

  12. Airborne measurements of CO2 and CH4 onboard the UK FAAM research aircraft using a, Los Gatos Research Inc, cavity enhanced absorption spectrometer

    NASA Astrophysics Data System (ADS)

    O'Shea, S.; Bauguitte, S.; Muller, J. B.; Le Breton, M.; Gallagher, M. W.; Allen, G.; Percival, C. J.

    2012-12-01

    Airborne measurements of CO2 and CH4 have been made using the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft since spring 2011.The measurement system uses a commercially available analyser, based on the off-axis integrated cavity output spectroscopy technique, from Los Gatos Research Inc (FGGA, Model RMT-200). During the first year of operation (29 flights), 1 Hz measurements were found to be accurate to 0.07 ± 2.48ppbv for CH4 and -0.06± 0.66ppmv for CO2. In summer 2011, as part of the BORTAS project (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites), outflow from boreal forest fires was measured in Eastern Canada. A number of fresh and photochemically-aged plumes were identified using simultaneous HCN measurements, a widely used tracer for biomass burning. In the freshest plumes, strong relationships were found between CH4, CO2 and other tracers for biomass burning. From this we were able to estimate that 6.9±0.8 g of CH4 and 1551±213 g of CO2 were released into the atmosphere per kg of dry matter burnt. These emission factors are in good agreement with estimates from previous studies in boreal regions. However for aged plumes the correlations between CH4 and other biomass burning tracers were not as robust, most likely due to mixing from other CH4 emission sources, such as the wetland regions. The role of additional emission sources will be investigated using the UK Met Office NAME atmospheric dispersion model and the HYSPLIT trajectory model. Using tailored back trajectory analysis, we will present an interpretation of this new dataset in the context of air mass/fire origin, relating this to MODIS fire maps and source strength.

  13. Measurements of the atmospheric neutron leakage rate

    NASA Technical Reports Server (NTRS)

    Lockwood, J. A.; Ifedili, S. O.; Jenkins, R. W.

    1973-01-01

    The atmospheric neutron leakage rate in the energy range from 0.01 to 10,000,000 eV has been measured as a function of latitude, altitude, and time with a neutron detector on board the Ogo 6 satellite. The latitude dependence of the neutron leakage is in reasonable agreement with that predicted by Lingenfelter (1963) and Light et al. (1973) if the neutron energy spectrum has the shape calculated by Newkirk (1963). The change in the neutron latitude dependence with the cosmic ray modulation agrees with the predictions of Lingenfelter and Light et al. For several solar proton events enhancements were observed in the neutron counting rates at lambda greater than or equal to 70 deg. Such events, however, provide an insignificant injection of protons at E less than or equal to 20 MeV into the radiation belts. An isotropic angular distribution of the neutron leakage in the energy range from 0.1 keV to 10 MeV best fits the observed altitude dependence of the neutron leakage flux.

  14. Case Studies for UV, O2-A Band and Polarimetric Airborne Remote Sensing Observations of Coastal Waters: Implications for Atmospheric Correction.

    NASA Astrophysics Data System (ADS)

    Chowdhary, J.; van Diedenhoven, B.; Knobelspiesse, K. D.; Cairns, B.; Wasilewski, A. P.; Mccubbin, I. B.

    2014-12-01

    A major challenge for spaceborne observations of ocean color is to correct for atmospheric scattering, which typically contributes ≥85% to the top-of-atmosphere (TOA) radiance and varies substantially with aerosols. Ocean color missions traditionally analyze TOA radiance in the near-infrared (NIR), where the ocean is black, to constrain the TOA atmospheric scattering in the visible (VIS). However, this procedure is limited by insufficient sensitivity of NIR radiance to absorption and vertical distribution of aerosols, and by uncertainties in the extrapolation of aerosol properties from the NIR to the VIS. To improve atmospheric correction for ocean color observations, one needs to change the traditional procedure for this correction and/or increase the aerosol information. The instruments proposed for the Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission include ultraviolet and Oxygen A-band observations, as well as multispectral and multiangle polarimetry, to increase the aerosol information content. However no studies have been performed on whether such observations contain sufficient aerosol information, and on how to use this information, to substantially improve atmospheric correction. To study the atmospheric correction capabilities of PACE-like instruments, we are conducting field experiments off the Coast of California to obtain high-altitude airborne and in-situ observations of water-leaving radiance. The airborne data sets consist of hyperspectral radiance between 380-2500 nm by the Airborne Visible/Infrared Imaging Spectrometer, and narrow-band multiangle polarimetric data between 410-2250 nm by the Research Scanning Polarimeter. We discuss the quality of and comparisons between these data sets, and their differential sensitivities to variations in aerosol properties and ocean color.

  15. Measurements of Ocean Surface Scattering Using an Airborne 94-GHz Cloud Radar: Implication for Calibration of Airborne and Spaceborne W-band Radars

    NASA Technical Reports Server (NTRS)

    Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.

    2004-01-01

    Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

  16. Upgrade of the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) to its Full Science Capability of Sun-Sky-Cloud-Trace Gas Spectrometry in Airborne Science Deployments

    NASA Technical Reports Server (NTRS)

    Johnson, Roy R.; Russell, P.; Dunagan, S.; Redemann, J.; Shinozuka, Y.; Segal-Rosenheimer, M.; LeBlanc, S.; Flynn, C.; Schmid, B.; Livingston, J.

    2014-01-01

    The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge

  17. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  18. Mapping methane sources and emissions over California from direct airborne flux and VOC source tracer measurements

    NASA Astrophysics Data System (ADS)

    Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.

    2013-12-01

    Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance

  19. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  20. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  1. Oil film thickness measurement using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1980-01-01

    The use of laser-induced water Raman backscatter for remote thin oil film detection and thickness measurement is reported here for the first time. A 337.1-nm nitrogen laser was used to excite the 3400-cm-1 OH stretch band of natural ocean water beneath the oil slick from an altitude of 150 m. The signal strength of the 381-nm water Raman backscatter was always observed to depress when the oil was encountered and then return to its original undepressed value after complete aircraft traversal of the floating slick. After removal of background and oil fluorescence contributions, the ratio of the depressed-to-undepressed airborne water Raman signal intensities, together with laboratory measured oil extinction coefficients, is used to calculate the oil film thickness.

  2. Measurements of total reactive nitrogen during the Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Fahey, D. W.; Anderson, L. C.; Loewenstein, M.; Chan, K. R.

    1990-01-01

    Composite distributions of measured total reactive nitrogen NO(y), from the NASA ER-2 during the Airborne Arctic Stratospheric Expedition are presented. The observed features of these distributions are discussed in terms of the controlling dynamical, chemical and microphysical processes. In the latitudinal profile from 58 deg N to within about 4 deg poleward of the polar vortex boundary, NO(y) conforms closely to predictions of NO(y) based on N2O measurements. Poleward of 5 deg of latitude within the boundary, the average NO(y) decreases sharply and is significantly lower than that predicted from N2O. This feature is consistent with loss of NO(y) through sedimentation of particles containing NO(y) in polar stratospheric clouds.

  3. Airborne Measurements of Formaldehyde Employing a Tunable Diode Laser Absorption Spectrometer During TRACE-P

    NASA Technical Reports Server (NTRS)

    Fried, Alan; Drummond, James

    2003-01-01

    This final report summarizes the progress achieved over the entire 3-year proposal period including two extensions spanning 1 year. These activities include: 1) Preparation for and participation in the NASA 2001 TRACE-P campaign using our airborne tunable diode laser system to acquire measurements of formaldehyde (CH2O); 2) Comprehensive data analysis and data submittal to the NASA archive; 3) Follow up data interpretation working with NASA modelers to place our ambient CH2O measurements into a broader photochemical context; 4) Publication of numerous JGR papers using this data; 5) Extensive follow up laboratory tests on the selectivity and efficiency of our CH20 scrubbing system; and 6) An extensive follow up effort to assess and study the mechanical stability of our entire optical system, particularly the multipass absorption cell, with aircraft changes in cabin pressure.

  4. Derivation of Cumulus Cloud Dimensions and Shape from the Airborne Measurements by the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; Ottaviani, Matteo; Wasilewski, Andrzej P.

    2016-01-01

    The Research Scanning Polarimeter (RSP) is an airborne instrument, whose measurements have been extensively used for retrievals of microphysical properties of clouds. In this study we show that for cumulus clouds the information content of the RSP data can be extended by adding the macroscopic parameters of the cloud, such as its geometric shape, dimensions, and height above the ground. This extension is possible by virtue of the high angular resolution and high frequency of the RSP measurements, which allow for geometric constraint of the cloud's 2D cross section between a number of tangent lines of view. The retrieval method is tested on realistic 3D radiative transfer simulations and applied to actual RSP data.

  5. A new measurement method for separating airborne and structureborne noise radiated by aircraft type panels

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    The theoretical basis for and experimental validation of a measurement method for separating airborne and structure borne noise radiated by aircraft type panels are presented. An extension of the two microphone, cross spectral, acoustic intensity method combined with existing theory of sound radiation of thin shell structures of various designs, is restricted to the frequency range below the coincidence frequency of the structure. Consequently, the method lends itself to low frequency noise problems such as propeller harmonics. Both an aluminum sheet and two built up aircraft panel designs (two aluminum panels with frames and stringers) with and without added damping were measured. Results indicate that the method is quick, reliable, inexpensive, and can be applied to thin shell structures of various designs.

  6. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  7. Treatment of airborne asbestos and asbestos-like microfiber particles using atmospheric microwave air plasma.

    PubMed

    Averroes, A; Sekiguchi, H; Sakamoto, K

    2011-11-15

    Atmospheric microwave air plasma was used to treat asbestos-like microfiber particles that had two types of ceramic fiber and one type of stainless fiber. The treated particles were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experiment results showed that one type of ceramic fiber (Alumina:Silica=1:1) and the stainless fiber were spheroidized, but the other type of ceramic fiber (Alumina:Silica=7:3) was not. The conversion of the fibers was investigated by calculating the equivalent diameter, the aspect ratio, and the fiber content ratio. The fiber content ratio in various conditions showed values near zero. The relationship between the normalized fiber vanishing rate and the energy needed to melt the particles completely per unit surface area of projected particles, which is defined as η, was examined and seen to indicate that the normalized fiber vanishing rate decreased rapidly with the increase in η. Finally, some preliminary experiments for pure asbestos were conducted, and the analysis via XRD and phase-contrast microscopy (PCM) showed the availability of the plasma treatment. PMID:21962864