Science.gov

Sample records for airborne betula pollen

  1. Influence of meteorological parameters and air pollution on hourly fluctuation of birch (Betula L.) and ash (Fraxinus L.) airborne pollen.

    PubMed

    Puc, Małgorzata

    2012-01-01

    Pollen grains are one of the most important groups of atmospheric biological particles that originate allergic processes. Knowledge of intradiurnal variation of the atmospheric pollen may be useful for the treatment and prevention of pollen allergies. Intradiurnal fluctuation of hourly pollen counts in 24 h are related to the daily rhythm of anther opening, and modified by various interacting factors. Flowering and pollen production of individual species are influenced by genetic, phenological, ecological, meteorological and climatic factors. Estimation of the intradiurnal variability in the pollen count permits evaluation of the threat posed by allergens over a given area. Measurements performed in Szczecin over a period of 7 years (2006-2012) permitted analysis of hourly variation of the pollen count of birch (Betula) and ash (Fraxinus) in 24 h, and evaluation of the impact of weather conditions and the concentration of gas air pollutants on the intradiurnal patterns of both taxa. Aerobiological monitoring was conducted using a Hirst volumetric trap (Lanzoni VPPS 2000). Consecutive phases during the day were defined as 1, 5, 25, 50, 75, 95, 99% of annual total pollen. The analysis revealed that 50% of total daily pollen was noted at 14:00 for Betula and Fraxinus. The hourly distribution of birch pollen count skewed to the left and the majority of pollen of this taxon appears in the air in the first 12 hours of the day. However, for ash, the hourly distribution of pollen count skewed to the right. Statistically significant correlation was noted between the Betula and Fraxinus pollen concentration and the mean air temperature, relative humidity, wind speed, air pressure, total radiation and nitrogen oxides (NO(x)).

  2. The effect of meteorological factors on airborne Betula pollen concentrations in Lublin (Poland).

    PubMed

    Piotrowska, Krystyna; Kubik-Komar, Agnieszka

    2012-12-01

    The present study investigated the pattern of the birch atmospheric pollen seasons in Lublin in the period 2001-2010. Pollen monitoring was conducted using a Lanzoni VPPS 2000 sampler. The atmospheric pollen seasons were determined with the 98% method. Regression analysis was used to determine correlations between meteorological conditions and the pattern of the birch pollen season. On average, the birch pollen season started on 12 April, ended on 13 May, and lasted 32 days. The peak value and the Seasonal Pollen Index showed the greatest variation in particular years. All the seasons were right-skewed. During the study years, a trend was found towards earlier occurrence of the seasonal peak. Regression equations were developed for the following parameters of the atmospheric pollen season: start, duration, peak value and average pollen concentration during the season. The obtained model fit was at a level of 64-81%. Statistical analysis shows that minimum temperature of February and March and total rainfall in June in the year preceding pollen release have the greatest effect on the birch atmospheric pollen season in Lublin. Low temperatures in February promote the occurrence of high pollen concentrations.

  3. Short-term prediction of Betula airborne pollen concentration in Vigo (NW Spain) using logistic additive models and partially linear models

    NASA Astrophysics Data System (ADS)

    Cotos-Yáñez, Tomas R.; Rodríguez-Rajo, F. J.; Jato, M. V.

    Betula pollen is a common cause of pollinosis in localities in NW Spain and between 13% and 60% of individuals who are immunosensitive to pollen grains respond positively to its allergens. It is important in the case of all such people to be able to predict pollen concentrations in advance. We therefore undertook an aerobiological study in the city of Vigo (Pontevedra, Spain) from 1995 to 2001, using a Hirst active-impact pollen trap (VPPS 2000) situated in the city centre. Vigo presents a temperate maritime climate with a mean annual temperature of 14.9 °C and 1,412 mm annual total precipitation. This paper analyses two ways of quantifying the prediction of pollen concentration: first by means of a generalized additive regression model with the object of predicting whether the series of interest exceeds a certain threshold; second using a partially linear model to obtain specific prediction values for pollen grains. Both models use a self-explicative part and another formed by exogenous meteorological factors. The models were tested with data from 2001 (year in which the total precipitation registered was almost twice the climatological average overall during the flowering period), which were not used in formulating the models. A highly satisfactory classification and good forecasting results were achieved with the first and second approaches respectively. The estimated line taking into account temperature and a calm S-SW wind, corresponds to the real line recorded during 2001, which gives us an idea of the proposed model's validity.

  4. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States.

    PubMed

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G

    2014-07-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994-2000 and 2001-2011 showed that birch and oak trees were observed to flower 1-2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6%-248%. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.

  5. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G.

    2014-07-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994-2000 and 2001-2011 showed that birch and oak trees were observed to flower 1-2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6 %-248 %. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.

  6. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  7. Are the birch trees in Southern England a source of Betula pollen for North London?

    PubMed

    Skjøth, C A; Smith, M; Brandt, J; Emberlin, J

    2009-01-01

    Birch pollen is highly allergenic. Knowledge of daily variations, atmospheric transport and source areas of birch pollen is important for exposure studies and for warnings to the public, especially for large cities such as London. Our results show that broad-leaved forests with high birch tree densities are located to the south and west of London. Bi-hourly Betula pollen concentrations for all the days included in the study, and for all available days with high birch pollen counts (daily average birch pollen counts>80 grains/m3), show that, on average, there is a peak between 1400 hours and 1600 hours. Back-trajectory analysis showed that, on days with high birch pollen counts (n=60), 80% of air masses arriving at the time of peak diurnal birch pollen count approached North London from the south in a 180 degree arc from due east to due west. Detailed investigations of three Betula pollen episodes, with distinctly different diurnal patterns compared to the mean daily cycle, were used to illustrate how night-time maxima (2200-0400 hours) in Betula pollen counts could be the result of transport from distant sources or long transport times caused by slow moving air masses. We conclude that the Betula pollen recorded in North London could originate from sources found to the west and south of the city and not just trees within London itself. Possible sources outside the city include Continental Europe and the Betula trees within the broad-leaved forests of Southern England.

  8. Are the Pyrenees a barrier for the transport of birch (Betula) pollen from Central Europe to the Iberian Peninsula?

    PubMed

    Izquierdo, Rebeca; Alarcón, Marta; Mazón, Jordi; Pino, David; De Linares, Concepción; Aguinagalde, Xabier; Belmonte, Jordina

    2017-01-01

    This work provides a first assessment of the possible barrier effect of the Pyrenees on the atmospheric transport of airborne pollen from Europe to the North of the Iberian Peninsula. Aerobiological data recorded in three Spanish stations located at the eastern, central and western base of the Pyrenees in the period 2004-2014 have been used to identify the possible long range transport episodes of Betula pollen. The atmospheric transport routes and the origin regions have been established by means of trajectory analysis and a source receptor model. Betula pollen outbreaks were associated with the meteorological scenario characterized by the presence of a high-pressure system overm over Morocco and Southern Iberian Peninsula. France and Central Europe have been identified as the probable source areas of Betula pollen that arrives to Northern Spain. However, the specific source areas are mainly determined by the particular prevailing atmospheric circulation of each location. Finally, the Weather Research and Forecasting model highlighted the effect of the orography on the atmospheric transport patterns, showing paths through the western and easternmost lowlands for Vitoria-Gasteiz and Bellaterra respectively, and the direct impact of air flows over Vielha through the Garona valley.

  9. Forecasting model of Corylus, Alnus, and Betula pollen concentration levels using spatiotemporal correlation properties of pollen count.

    PubMed

    Nowosad, Jakub; Stach, Alfred; Kasprzyk, Idalia; Weryszko-Chmielewska, Elżbieta; Piotrowska-Weryszko, Krystyna; Puc, Małgorzata; Grewling, Łukasz; Pędziszewska, Anna; Uruska, Agnieszka; Myszkowska, Dorota; Chłopek, Kazimiera; Majkowska-Wojciechowska, Barbara

    The aim of the study was to create and evaluate models for predicting high levels of daily pollen concentration of Corylus, Alnus, and Betula using a spatiotemporal correlation of pollen count. For each taxon, a high pollen count level was established according to the first allergy symptoms during exposure. The dataset was divided into a training set and a test set, using a stratified random split. For each taxon and city, the model was built using a random forest method. Corylus models performed poorly. However, the study revealed the possibility of predicting with substantial accuracy the occurrence of days with high pollen concentrations of Alnus and Betula using past pollen count data from monitoring sites. These results can be used for building (1) simpler models, which require data only from aerobiological monitoring sites, and (2) combined meteorological and aerobiological models for predicting high levels of pollen concentration.

  10. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula

    NASA Astrophysics Data System (ADS)

    Nowosad, Jakub

    2016-06-01

    Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries.

  11. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula.

    PubMed

    Nowosad, Jakub

    2016-06-01

    Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries.

  12. Fifteen years' record of airborne allergenic pollen and meteorological parameters in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Gioulekas, Dimitrios; Balafoutis, Christos; Damialis, Athanasios; Papakosta, Despoina; Gioulekas, George; Patakas, Dimitrios

    . A pollen calendar has been constructed for the area of Thessaloniki and relationships between pollen transport and meteorological parameters have been assessed. Daily airborne pollen records were collected over a 15-year period (1987-2001), using a Burkard continuous volumetric pollen trap, located in the centre of the city. Sixteen allergenic pollen types were identified. Simultaneously, daily records of five main meteorological parameters (mean air temperature, relative humidity, rainfall, sunshine, wind speed) were made, and then correlated with fluctuations of the airborne pollen concentrations. For the first time in Greece, a pollen calendar has been constructed for 16 pollen types, from which it appears that 24.9% of the total pollen recorded belong to Cupressaceae, 20.8% to Quercus spp., 13.6% to Urticaceae, 9.1% to Oleaceae, 8.9% to Pinaceae, 6.3% to Poaceae, 5.4% to Platanaceae, 3.0% to Corylus spp., 2.5% to Chenopodiaceae and 1.4% to Populus spp. The percentages of Betula spp., Asteraceae (Artemisia spp. and Ambrosia spp.), Salix spp., Ulmaceae and Alnus spp. were each lower than 1%. A positive correlation between pollen transport and both mean temperature and sunshine was observed, whereas usually no correlation was found between pollen and relative humidity or rainfall. Finally, wind speed was generally found to have a significant positive correlation with the concentrations of 8 pollen types. For the first time in the area of Thessaloniki, and more generally in Greece, 15-year allergenic pollen records have been collected and meteorological parameters have been recorded. The airborne pollen concentration is strongly influenced by mean air temperature and sunshine duration. The highest concentrations of pollen grains are observed during spring (May).

  13. Temporal and spatiotemporal autocorrelation of daily concentrations of Alnus, Betula, and Corylus pollen in Poland.

    PubMed

    Nowosad, J; Stach, A; Kasprzyk, I; Grewling, Ł; Latałowa, M; Puc, M; Myszkowska, D; Weryszko-Chmielewska, E; Piotrowska-Weryszko, K; Chłopek, K; Majkowska-Wojciechowska, B; Uruska, A

    The aim of the study was to determine the characteristics of temporal and space-time autocorrelation of pollen counts of Alnus, Betula, and Corylus in the air of eight cities in Poland. Daily average pollen concentrations were monitored over 8 years (2001-2005 and 2009-2011) using Hirst-designed volumetric spore traps. The spatial and temporal coherence of data was investigated using the autocorrelation and cross-correlation functions. The calculation and mathematical modelling of 61 correlograms were performed for up to 25 days back. The study revealed an association between temporal variations in Alnus, Betula, and Corylus pollen counts in Poland and three main groups of factors such as: (1) air mass exchange after the passage of a single weather front (30-40 % of pollen count variation); (2) long-lasting factors (50-60 %); and (3) random factors, including diurnal variations and measurements errors (10 %). These results can help to improve the quality of forecasting models.

  14. Temporal variability in airborne pollen concentrations.

    PubMed

    Raynor, G S; Hayes, J V; Ogden, E C

    1976-06-01

    Tests were conducted to determine the relationship between concentrations of airborne pollens and sampling time, using sequential rotoslide samplers at urban and rural locations. Short-period data showed an increase in variability with time between samples. Two-hour data showed a stronger trend for the first 12 hours but better agreement as the time between samples approached one day.

  15. Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland)

    NASA Astrophysics Data System (ADS)

    Puc, Małgorzata

    2012-03-01

    Birch pollen is one of the main causes of allergy during spring and early summer in northern and central Europe. The aim of this study was to create a forecast model that can accurately predict daily average concentrations of Betula sp. pollen grains in the atmosphere of Szczecin, Poland. In order to achieve this, a novel data analysis technique—artificial neural networks (ANN)—was used. Sampling was carried out using a volumetric spore trap of the Hirst design in Szczecin during 2003-2009. Spearman's rank correlation analysis revealed that humidity had a strong negative correlation with Betula pollen concentrations. Significant positive correlations were observed for maximum temperature, average temperature, minimum temperature and precipitation. The ANN resulted in multilayer perceptrons 366 8: 2928-7-1:1, time series prediction was of quite high accuracy (SD Ratio between 0.3 and 0.5, R > 0.85). Direct comparison of the observed and calculated values confirmed good performance of the model and its ability to recreate most of the variation.

  16. Spatial variability in airborne pollen concentrations.

    PubMed

    Raynor, G S; Ogden, E C; Hayes, J V

    1975-03-01

    Tests were conducted to determine the relationship between airborne pollen concentrations and distance. Simultaneous samples were taken in 171 tests with sets of eight rotoslide samplers spaced from one to 486 M. apart in straight lines. Use of all possible pairs gave 28 separation distances. Tests were conducted over a 2-year period in urban and rural locations distant from major pollen sources during both tree and ragweed pollen seasons. Samples were taken at a height of 1.5 M. during 5-to 20-minute periods. Tests were grouped by pollen type, location, year, and direction of the wind relative to the line. Data were analyzed to evaluate variability without regard to sampler spacing and variability as a function of separation distance. The mean, standard deviation, coefficient of variation, ratio of maximum to the mean, and ratio of minimum to the mean were calculated for each test, each group of tests, and all cases. The average coefficient of variation is 0.21, the maximum over the mean, 1.39 and the minimum over the mean, 0.69. No relationship was found with experimental conditions. Samples taken at the minimum separation distance had a mean difference of 18 per cent. Differences between pairs of samples increased with distance in 10 of 13 groups. These results suggest that airborne pollens are not always well mixed in the lower atmosphere and that a sample becomes less representative with increasing distance from the sampling location.

  17. The airborne pollen calendar for Lublin, central-eastern Poland.

    PubMed

    Piotrowska-Weryszko, Krystyna; Weryszko-Chmielewska, Elżbieta

    2014-01-01

    An aerobiological study was conducted to investigate the quantity and quality of pollen in the atmosphere of Lublin in central-eastern Poland. Pollen monitoring was carried out in the period 2001-2012 using a Hirst-type volumetric spore trap. The atmospheric pollen season in Lublin lasted, on average, from the end of January to the beginning of October. The mean air temperature during the study period was found to be higher by 1.1 °C than the mean temperature in the period 1951-2000. 56 types of pollen of plants belonging to 41 families were identified. 28 types represented woody plants and 28 represented herbaceous plants. The study distinguished 5 plant taxa the pollen of which was present most abundantly in the air of Lublin, which altogether accounted for 73.4%: Betula, Urtica, Pinus, Poaceae, and Alnus. The mean annual pollen index was 68 706; the largest amount of pollen was recorded in April and accounted for 33.3% of the annual pollen index. The pollen calendar included 28 allergenic plant taxa. The pollen of woody plants had the highest percentage in the pollen spectrum, on average 58.4%. The parameters of the pollen calendar for Lublin were compared with the calendar for central-eastern Europe with regard to the start of the pollen season of particular taxa. The pollen calendar for Lublin was demonstrated to show greater similarity to the calendar for Münster (Germany) than to the calendar for Bratislava (Slovakia).

  18. Airborne birch pollen antigens in different particle sizes.

    PubMed

    Rantio-Lehtimäki, A; Viander, M; Koivikko, A

    1994-01-01

    Two particle samplers for ambient air, situated together: a static size-selective bio-aerosol sampler (SSBAS) and a Burkard pollen and spore trap were compared in sampling intact birch pollen grains through one flowering period of Betula (a total of 44 days). The SSBAS trapped pollen grains three times more efficiently than the Burkard trap, but the variations in pollen counts were significantly correlated. In contrast, birch pollen antigenic activity and the pollen count in the Burkard samples were not closely correlated. The antigenic concentration was occasionally high both before and after the pollination period. There was a high birch pollen antigenic activity in particle size classes where intact pollen grains were absent, even on days when the pollen count was very low. Correspondingly, on days with high birch pollen counts in the air, pollen antigenic activity was on several occasions low, indicating that pollen grains were empty of antigenic material. The small particle size classes are especially important to allergic patients because they are able to penetrate immediately into the alveoli and provoke asthmatic reactions. Therefore, aerobiological information systems based on pollen and spore counts should be supplemented with information concerning antigenic activities in the air.

  19. Pollen Raman spectra database: application to the identification of airborne pollen.

    PubMed

    Guedes, A; Ribeiro, H; Fernández-González, M; Aira, M J; Abreu, I

    2014-02-01

    Raman microspectroscopy allows a non-destructive identification of airborne particles. However, the identification of particles such as pollen is hindered by the absence of a spectral library. Although reference spectra of pollen have been published before, they have always been limited to a certain number of species. In this work, Raman spectra of 34 pollen types are presented and were used to build a pollen spectra primary library. Afterward, the applicability of this database for detecting and identifying pollen in airborne samples was tested. Airborne pollen samples collected during April, May and August were compared with blank pollen spectra by means of Hit Quality Index. Although a much larger library would be required, our results showed that all first hits correspond to the same blank pollen species of the questioned sample from the air. This possibility is an innovative idea and a promising line of investigation for future RAMAN technology development in the area of aerobiology.

  20. Mismatch in aeroallergens and airborne grass pollen concentrations

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Hernández-Ceballos, M. A.; Galán, C.

    2016-11-01

    An accurate estimation of the allergen concentration in the atmosphere is essential for allergy sufferers. The major cause of pollinosis all over Europe is due to grass pollen and Phl p 5 has the highest rates of sensitization (>50%) in patients with grass pollen-induced allergy. However, recent research has shown that airborne pollen does not always offer a clear indicator of exposure to aeroallergens. This study aims to evaluate relations between airborne grass pollen and Phl p 5 concentrations in Córdoba (southern Spain) and to study how meteorological parameters influence these atmospheric records. Monitoring was carried out from 2012 to 2014. Hirst-type volumetric spore trap was used for pollen collection, following the protocol recommended by the Spanish Aerobiology Network (REA). Aeroallergen sampling was performed using a low-volume cyclone sampler, and allergenic particles were quantified by ELISA assay. Besides, the influence of main meteorological factors on local airborne pollen and allergen concentrations was surveyed. A significant correlation was observed between grass pollen and Phl p 5 allergen concentrations during the pollen season, but with some sporadic discrepancy episodes. The cumulative annual Pollen Index also varied considerably. A significant correlation has been obtained between airborne pollen and minimum temperature, relative humidity and precipitation, during the three studied years. However, there is no clear relationship between allergens and weather variables. Our findings suggest that the correlation between grass pollen and aeroallergen Phl p 5 concentrations varies from year-to-year probably related to a complex interplay of meteorological variables.

  1. Predicting onset and duration of airborne allergenic pollen season in the United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Bielory, Leonard; Cai, Ting; Mi, Zhongyuan; Georgopoulos, Panos

    2015-02-01

    Allergenic pollen is one of the main triggers of Allergic Airway Disease (AAD) affecting 5%-30% of the population in industrialized countries. A modeling framework has been developed using correlation and collinearity analyses, simulated annealing, and stepwise regression based on nationwide observations of airborne pollen counts and climatic factors to predict the onsets and durations of allergenic pollen seasons of representative trees, weeds and grass in the contiguous United States. Main factors considered are monthly, seasonal and annual mean temperatures and accumulative precipitations, latitude, elevation, Growing Degree Day (GDD), Frost Free Day (FFD), Start Date (SD) and Season Length (SL) in the previous year. The estimated mean SD and SL for birch (Betula), oak (Quercus), ragweed (Ambrosia), mugwort (Artemisia) and grass (Poaceae) pollen season in 1994-2010 are mostly within 0-6 days of the corresponding observations for the majority of the National Allergy Bureau (NAB) monitoring stations across the contiguous US. The simulated spatially resolved maps for onset and duration of allergenic pollen season in the contiguous US are consistent with the long term observations.

  2. Airborne pollen and suicide mortality in Tokyo, 2001-2011.

    PubMed

    Stickley, Andrew; Sheng Ng, Chris Fook; Konishi, Shoko; Koyanagi, Ai; Watanabe, Chiho

    2017-05-01

    Prior research has indicated that pollen might be linked to suicide mortality although the few studies that have been undertaken to date have produced conflicting findings and been limited to Western settings. This study examined the association between the level of airborne pollen and suicide mortality in Tokyo, Japan in the period from 2001 to 2011. The daily number of suicide deaths was obtained from the Japanese Ministry of Health, Labour and Welfare, with pollen data being obtained from the Tokyo Metropolitan Institute of Public Health. A time-stratified case-crossover study was performed to examine the association between different levels of pollen concentration and suicide mortality. During the study period there were 5185 male and 2332 female suicides in the pollen season (February to April). For men there was no association between airborne pollen and suicide mortality. For women, compared to when there was no airborne pollen, the same-day (lag 0) pollen level of 30 to <100 grains per cm(2) was associated with an approximately 50% increase in the odds for suicide (e.g. 30 to <50 grains per cm(2): odds ratio 1.574, 95% confidence interval 1.076-2.303, p=0.020). The estimates remained fairly stable after adjusting for air pollutants and after varying the cut-points that defined the pollen levels. Our results indicate that pollen is associated with female suicide mortality in Tokyo.

  3. Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air

    NASA Astrophysics Data System (ADS)

    Castellano-Méndez, M.; Aira, M. J.; Iglesias, I.; Jato, V.; González-Manteiga, W.

    2005-05-01

    An increasing percentage of the European population suffers from allergies to pollen. The study of the evolution of air pollen concentration supplies prior knowledge of the levels of pollen in the air, which can be useful for the prevention and treatment of allergic symptoms, and the management of medical resources. The symptoms of Betula pollinosis can be associated with certain levels of pollen in the air. The aim of this study was to predict the risk of the concentration of pollen exceeding a given level, using previous pollen and meteorological information, by applying neural network techniques. Neural networks are a widespread statistical tool useful for the study of problems associated with complex or poorly understood phenomena. The binary response variable associated with each level requires a careful selection of the neural network and the error function associated with the learning algorithm used during the training phase. The performance of the neural network with the validation set showed that the risk of the pollen level exceeding a certain threshold can be successfully forecasted using artificial neural networks. This prediction tool may be implemented to create an automatic system that forecasts the risk of suffering allergic symptoms.

  4. Ambrosia airborne pollen concentration modelling and evaluation over Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Viovy, Nicolas; Khvorostyanov, Dmitry; Colette, Augustin

    2014-05-01

    Native from North America, Ambrosia artemisiifolia L. (Common Ragweed) is an invasive annual weed introduced in Europe in the mid-nineteenth century. It has a very high spreading potential throughout Europe and releases very allergenic pollen leading to health problems for sensitive persons. Because of its health effects, it is necessary to develop modelling tools to be able to forecast ambrosia air pollen concentration and to inform allergy populations of allergenic threshold exceedance. This study is realised within the framework of the ATOPICA project (https://www.atopica.eu/) which is designed to provide first steps in tools and estimations of the fate of allergies in Europe due to changes in climate, land use and air quality. To calculate and predict airborne concentrations of ambrosia pollen, a chain of models has been built. Models have been developed or adapted for simulating the phenology (PMP phonological modelling platform), inter-annual production (ORCHIDEE vegetation model), release and airborne processes (CHIMERE chemical transport model) of ragweed pollen. Airborne pollens follow processes similar to air quality pollutants in CHIMERE with some adaptations. The detailed methodology, formulations and input data will be presented. A set of simulations has been performed to simulate airborne concentrations of pollens over long time periods on a large European domain. Hindcast simulations (2000 - 2012) driven by ERA-Interim re-analyses are designed to best simulate past periods airborne pollens. The modelled pollen concentrations are calibrated with observations and validated against additional observations. Then, 20-year long historical simulations (1986 - 2005) are carried out using calibrated ambrosia density distribution and climate model-driven weather in order to serve as a control simulation for future scenarios. By comparison with multi-annual observed daily pollen counts we have shown that the model captures well the gross features of the pollen

  5. Characterisation of particulate matter on airborne pollen grains.

    PubMed

    Ribeiro, Helena; Guimarães, Fernanda; Duque, Laura; Noronha, Fernando; Abreu, Ilda

    2015-11-01

    A characterization of the physical-chemical composition of the atmospheric PM adsorbed to airborne pollen was performed. Airborne pollen was sampled using a Hirst-type volumetric spore sampler and observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image was taken of each pollen grain and EDS spectra were obtained for individually adsorbed particles. All images were analysed and the size parameters of the particles adsorbed to pollen was determined. The measured particles' equivalent diameter varied between 0.1 and 25.8 μm, mostly in the fine fraction. The dominant particulates identified were Si-rich, Organic-rich, SO-rich, Metals & Oxides and Cl-rich. Significant daily differences were observed in the physical-chemical characteristics of particles adsorbed to the airborne pollen wall. These differences were correlated with weather parameters and atmospheric PM concentration. Airborne pollen has the ability to adsorb fine particles that may enhance its allergenicity.

  6. Effect of air pollutant NO₂ on Betula pendula, Ostrya carpinifolia and Carpinus betulus pollen fertility and human allergenicity.

    PubMed

    Cuinica, Lázaro G; Abreu, Ilda; Esteves da Silva, Joaquim

    2014-03-01

    Pollen of Betula pendula, Ostrya carpinifolia and Carpinus betulus was exposed in vitro to two levels of NO2 (about 0.034 and 0.067 ppm) - both below current atmospheric hour-limit value acceptable for human health protection in Europe (0.11 ppm for NO2). Experiments were performed under artificial solar light with temperature and relative humidity continuously monitored. The viability, germination and total soluble proteins of all the pollen samples exposed to NO2 decreased significantly when compared with the non-exposed. The polypeptide profiles of all the pollen samples showed bands between 15 and 70 kDa and the exposure to NO2 did not produce any detectable changes in these profiles. However, the immunodetection assays indicated higher IgE recognition by patient sera sensitized to the pollen extracts from all exposed samples in comparison to the non-exposed samples. The common reactive bands to the three pollen samples correspond to 58 and 17 kDa proteins.

  7. Influence of wind on daily airborne pollen counts in Catalonia (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    tareq Majeed, Husam; Periago, Cristina; Alarcón, Marta; De Linares, Concepción; Belmonte, Jordina

    2016-04-01

    The aim of this study is to analize the influence of wind (speed and direction) on the daily airborne pollen counts recorded in Catalonia (NE Iberian Peninsula) of 21 pollen taxa recorded at 6 aerobiological stations: Barcelona, Bellaterra, Girona, Lleida Manresa, and Tarragona for the period 2004-2014. The taxa studied are Alnus, Betula, Castanea, Cupressaceae, Fagus, Fraxinus, Olea, Pinus, Platanus, total Quercus, Quercus deciduous type, Quercus evergreen type, Ulmus, Corylus, Pistacia, Artemisia, Chenopodiaceae/Amaranthaceae, Plantago, Poaceae, Polygonaceae, and Urticaceae. The mean daily wind direction was divided into 8 sectors: N, NE, E, SE, S, SW, W and NW. For each sector, the correlation between the daily pollen concentrations and wind speed using Spearman's rank correlation coefficient was computed and compared with the wind rose charts. The results showed that Tarragona was the station with more significant correlations followed by Bellaterra, Lleida and Manresa. On the other hand, Artemisia was the most correlated taxon with mainly negative values, and Fagus was the least. The W wind direction showed the largest number of significant correlations, mostly positive, while the N direction was the least and negatively correlated.

  8. Quantitative DNA Analyses for Airborne Birch Pollen.

    PubMed

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future.

  9. Quantitative DNA Analyses for Airborne Birch Pollen

    PubMed Central

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R.

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future. PMID:26492534

  10. Airborne pollen of Olea in five regions of Portugal.

    PubMed

    Ribeiro, Helena; Cunha, Mário; Abreu, Ilda

    2005-01-01

    The aim of this work was to study spatial and temporal distribution of Olea europeae airborne pollen in different Portuguese regions: Reguengos de Monsaraz (south); Bairrada (west); Braga (northwest); Valença do Douro and Foz Côa (north-east). Airborne pollen sampling was conducted from 1998-2003 using "Cour" type samplers located in each region. The main pollen season (MPS) of Olea lasted on average 36 days and occurred from late April until middle-to-end of June. During the studied period, inter-annual variations among and within regions, concerning the total annual pollen counts and the beginning, peak and ending dates of the MPS, were reported. Reguengos de Monsaraz and Bairrada registered the earliest MPS starting date, followed by Valença do Douro and Foz-Côa, and the latest date was verified in Braga that also had the shortest MPS. Reguengos de Monsaraz presented the longest MPS with the highest differences in the beginning and ending dates, but minimum differences in the dates of the maximum pollen peak. Our results showed an increase in the Olea annual pollen index, from north to south, and from the west to the east regions of the country.

  11. Does cutting of mugwort stands affect airborne pollen concentrations?

    PubMed

    Rantio-Lehtimäki, A; Helander, M L; Karhu, K

    1992-08-01

    Pollen of mugwort (Artemisia vulgaris L.) is the most important allergenic pollen in urban areas of south and central Finland in late summer. The purpose of this study was to investigate, experimentally, whether the cutting of mugwort stands affects its airborne pollen concentrations. Experimental plots were either cut (4 plots) or uncut (4 plots) in 2 previous seasons: 4 of them were small (less than 0.5 hectare) and 4 large (greater than 5 hectares). Finally, the plots were divided randomly into 2 groups according to a third variable, cutting in the study season, 1989. Samples were taken on 2 rainless mornings at the peak mugwort flowering time. Two rotorod type samplers were used at heights of 1 and 2 m from ground level, simulating the inhalation heights of children and adults, respectively. The results indicate that cutting mugwort stands significantly reduces airborne pollen concentrations, but the treated areas have to be large, since in the town area there are plenty of mugwort pollen sources. The pollen concentrations at the 2 heights tested did not differ significantly.

  12. Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe

    NASA Astrophysics Data System (ADS)

    Emberlin, J.; Detandt, M.; Gehrig, R.; Jaeger, S.; Nolard, N.; Rantio-Lehtimäki, A.

    2002-07-01

    A shift in the timing of birch pollen seasons is important because it is well known to be a significant aeroallergen, especially in NW Europe where it is a notable cause of hay fever and pollen-related asthma. The research reported in this paper aims to investigate temporal patterns in the start dates of Betula (birch) pollen seasons at selected sites across Europe. In particular it investigates relationships between the changes in start dates and changes in spring temperatures over approximately the last 20 years. Daily birch pollen counts were used from Kevo, Turku, London, Brussels, Zurich and Vienna, for the core period from 1982 to 1999 and, in some cases, from 1970 to 2000. The sites represent a range of biogeographical situations from just within the Arctic Circle through to North West Maritime and Continental Europe. Pollen samples were taken with Hirst-type volumetric spore traps. Weather data were obtained from the sites nearest to the pollen traps. The timing of birch pollen seasons is known to depend mostly on a non-linear balance between the winter chilling required to break dormancy, and spring temperatures. Pollen start dates and monthly mean temperatures for January through to May were compiled to 5-year running means to examine trends. The start dates for the next 10 years were calculated from regression equations for each site, on the speculative basis that the current trends would continue. The analyses show regional contrasts. Kevo shows a marked trend towards cooler springs and later starts. If this continues the mean start date will become about 6 days later over the next 10 years. Turku exhibits cyclic patterns in start dates. A current trend towards earlier starts is expected to continue until 2007, followed by another fluctuation. London, Brussels, Zurich and Vienna show very similar patterns in the trends towards earlier start dates. If the trend continues the mean start dates at these sites will advance by about 6 days over the next 10

  13. Airborne castanea pollen forecasting model for ecological and allergological implementation.

    PubMed

    Astray, G; Fernández-González, M; Rodríguez-Rajo, F J; López, D; Mejuto, J C

    2016-04-01

    Castanea sativa Miller belongs to the natural vegetation of many European deciduous forests prompting impacts in the forestry, ecology, allergological and chestnut food industry fields. The study of the Castanea flowering represents an important tool for evaluating the ecological conservation of North-Western Spain woodland and the possible changes in the chestnut distribution due to recent climatic change. The Castanea pollen production and dispersal capacity may cause hypersensitivity reactions in the sensitive human population due to the relationship between patients with chestnut pollen allergy and a potential cross reactivity risk with other pollens or plant foods. In addition to Castanea pollen's importance as a pollinosis agent, its study is also essential in North-Western Spain due to the economic impact of the industry around the chestnut tree cultivation and its beekeeping interest. The aim of this research is to develop an Artificial Neural Networks for predict the Castanea pollen concentration in the atmosphere of the North-West Spain area by means a 20years data set. It was detected an increasing trend of the total annual Castanea pollen concentrations in the atmosphere during the study period. The Artificial Neural Networks (ANNs) implemented in this study show a great ability to predict Castanea pollen concentration one, two and three days ahead. The model to predict the Castanea pollen concentration one day ahead shows a high linear correlation coefficient of 0.784 (individual ANN) and 0.738 (multiple ANN). The results obtained improved those obtained by the classical methodology used to predict the airborne pollen concentrations such as time series analysis or other models based on the correlation of pollen levels with meteorological variables.

  14. Proteomic profiling of birch (Betula verrucosa) pollen extracts from different origins.

    PubMed

    Erler, Anja; Hawranek, Thomas; Krückemeier, Leif; Asam, Claudia; Egger, Matthias; Ferreira, Fátima; Briza, Peter

    2011-04-01

    Pollen of the European white birch is a major source of spring pollinosis in Europe. Pollen-allergy diagnosis and treatment by specific immunotherapy commonly rely on extracts of natural origin. To gain insight into the protein content and its variability, we evaluated the profile of allergenic and non-allergenic proteins in extracts of pollen from different origins by MS-based proteomics. Aqueous extracts prepared from commercially available Swedish birch pollen, pollen collected from Austrian trees and a commercial skin prick extract were analyzed by 1-DE, 2-DE, immunoblotting and mass spectrometry, resulting in a complete inventory of extractable, disease-relevant pollen proteins. A main focus of this study was on the isoform distribution of Bet v 1, the major allergen of birch pollen. Using a combination of intact mass determination and peptide sequencing, five isoforms (a, b, d, f and j) were unequivocally identified in Swedish and Austrian birch pollen extracts, while the skin prick extract contained only isoforms a, b and d. Using the same methods as for Bet v 1, divergencies in the sequence of birch profilin (Bet v 2), a plant panallergen, were solved. The molecular characterization of pollen extracts is relevant for standardization and development of new reagents for specific immunotherapy.

  15. Diurnal variation of airborne pollen at two different heights.

    PubMed

    Alcázar, P; Galán, C; Cariñanos, P; Domínguez-Vilches, E

    1999-01-01

    The diurnal variation in airborne pollen concentrations in the air of Córdoba at two different heights (1.5 m and 15 m) was studied during 2 consecutive years with the help of two Hirst volumetric samplers. According to pollen percentages obtained every hour, we determined whether every taxon studied presented a morning or an afternoon pattern, and whether this model was homogeneous (with a slight difference between the time of maximum and minimum reading) or heterogeneous (with a large difference between the two readings). We observed that the taxa that had many species in the area, such as Plantago, Poaceae, and Chenopodiaceae-Amaranthaceae showed a homogeneous model, while those taxa with few species present, such as Cupressaceae and Urticaceae showed a more heterogeneous model. Furthermore, the pattern of the plants with a large presence in the study area was more heterogeneous at 1.5 m because the pollen collected at this height is released from anthers. In the sampler placed at 15 m we detected airborne pollen, found that the curves were smoother and also observed a slight time delay for the taxa that were highly present in the area of study.

  16. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport.

  17. Modelling airborne concentration and deposition rate of maize pollen

    NASA Astrophysics Data System (ADS)

    Jarosz, Nathalie; Loubet, Benjamin; Huber, Laurent

    2004-10-01

    The introduction of genetically modified (GM) crops has reinforced the need to quantify gene flow from crop to crop. This requires predictive tools which take into account meteorological conditions, canopy structure as well as pollen aerodynamic characteristics. A Lagrangian Stochastic (LS) model, called SMOP-2D (Stochastic Mechanistic model for Pollen dispersion and deposition in 2 Dimensions), is presented. It simulates wind dispersion of pollen by calculating individual pollen trajectories from their emission to their deposition. SMOP-2D was validated using two field experiments where airborne concentration and deposition rate of pollen were measured within and downwind from different sized maize (Zea mays) plots together with micrometeorological measurements. SMOP-2D correctly simulated the shapes of the concentration profiles but generally underestimated the deposition rates in the first 10 m downwind from the source. Potential explanations of this discrepancy are discussed. Incorrect parameterisation of turbulence in the transition from the crop to the surroundings is probably the most likely reason. This demonstrates that LS models for particle transfer need to be coupled with air-flow models under complex terrain conditions.

  18. Airborne pollen and spores of León (Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-González, Delia; Suarez-Cervera, María; Díaz-González, Tomás; Valencia-Barrera, Rosa María

    1993-06-01

    A qualitative and quantitative analysis of airborne pollen and spores was carried out over 2 years (from September 1987 to August 1989) in the city of León. Slides were prepared daily using a volumetric pollen trap, which was placed on the Faculty of Veterinary Science building (University of León) 12m above ground-level. Fifty-one pollen types were observed; the most important of these were: Cupressaceae during the winter, Pinus and Quercus in spring, and Poaceae, Leguminosae and Chenopodiaceae in the summer. The results also showed the existence of a rich mould spore assemblage in the atmosphere. The group of Amerospores ( Penicillium, Aspergillus and Cladosporium) as well as Dictyospores ( Alternaria) were the most abundant; Puccinia was common in the air in August. Fluctuations in the total pollen and spores m3 of air were compared with meteorological parameters (temperature, relative humidity and rainfall). From the daily sampling of the atmosphere of León, considering the maximum and minimum temperature and duration of rainfall, the start of the pollen grain season was observed generally to coincide with a rise in temperature in the absence of rain.

  19. Enhanced airborne radioactivity during a pine pollen release episode.

    PubMed

    Tschiersch, J; Frank, G; Roth, P; Wagenpfeil, F; Watterson, F; Watterson, J

    1999-07-01

    A single episode of pine pollen release in the highly contaminated area of Novozybkov, Russian Federation, which led to enhanced atmospheric concentrations of 137Cs is discussed. The pollen grains were sampled by a rotating arm impactor and analysed by gamma-spectrometry for 137Cs activity and by image analysis for their size. In the vicinity of a forest, a maximum concentration of 4.5+/-0.4 mBq m(-3) was measured, and a mean activity per pollen grain of 260+/-80 nBq was determined. The emission rate of the Novozybkov mixed pine forest was estimated to be approximately 400 Bq m(-2) per year. Because of the large size of pine pollen grains (about 50 microm) and the short emission period of 5-8 days per year, the estimated potential annual inhalation doses are very low. Biological emissions including pollen release may be a source of increased airborne radionuclide concentrations at larger distances from the source areas as well.

  20. Climate warming and the decline of Taxus airborne pollen in urban pollen rain (Emilia Romagna, northern Italy).

    PubMed

    Mercuri, A M; Torri, P; Casini, E; Olmi, L

    2013-01-01

    Woody plant performance in a changing global environment has always been at the centre of palaeoenvironmental and long-term climate reconstructions carried out by means of pollen analysis. In Mediterranean regions, Taxus constitutes the highest percentage in past pollen diagrams from cold or cool periods, and therefore it is generally considered a good index to infer climate features from past records. However, a comparison of these inferences with the true current trends in pollen production has not been attemped until now. This study reports the decline of airborne pollen of Taxus observed in Emilia Romagna, a region of northern Italy, during the period 1990-2007. Phenological observations on four male specimens and microscopic examination of fresh pollen were made in order to check Taxus flowering time and pollen morphology. Airborne pollen was monitored through continuous sampling with a Hirst volumetric sampler. In the 18-year long period of investigation, Taxus pollen production has decreased, while total woody pollen abundance in air has increased. The trend of the Taxus pollen season shows a delay at the beginning, a shortening of the pollen period, and an advance of the end of the pollen season. This was interpreted as a response to climate warming. In particular, Taxus follows the behaviour of winter-flowering plants, and therefore earlier pollination is favoured at low autumn temperatures, while late pollination occurs more often, most likely after warm autumn temperatures.

  1. An Electrostatic-Barrier-Forming Window that Captures Airborne Pollen Grains to Prevent Pollinosis.

    PubMed

    Takikawa, Yoshihiro; Matsuda, Yoshinori; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Toyoda, Hideyoshi

    2017-01-15

    An electrostatic-barrier-forming window (EBW) was devised to capture airborne pollen, which can cause allergic pollinosis. The EBW consisted of three layers of insulated conductor wires (ICWs) and two voltage generators that supplied negative charges to the two outer ICW layers and a positive charge to the middle ICW layer. The ICWs generated an attractive force that captured pollen of the Japanese cedar, Cryptomeria japonica, from air blown through the EBW. The attractive force was directly proportional to the applied voltage. At ≥3.5 kV, the EBW exerted sufficient force to capture all pollen carried at an air flow of 3 m/s, and pollen-free air passed through the EBW. The findings demonstrated that the electrostatic barrier that formed inside the EBW was very effective at capturing airborne pollen; thus, it could allow a home to remain pollen-free and healthy despite continuous pollen exposure.

  2. An Electrostatic-Barrier-Forming Window that Captures Airborne Pollen Grains to Prevent Pollinosis

    PubMed Central

    Takikawa, Yoshihiro; Matsuda, Yoshinori; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Toyoda, Hideyoshi

    2017-01-01

    An electrostatic-barrier-forming window (EBW) was devised to capture airborne pollen, which can cause allergic pollinosis. The EBW consisted of three layers of insulated conductor wires (ICWs) and two voltage generators that supplied negative charges to the two outer ICW layers and a positive charge to the middle ICW layer. The ICWs generated an attractive force that captured pollen of the Japanese cedar, Cryptomeria japonica, from air blown through the EBW. The attractive force was directly proportional to the applied voltage. At ≥3.5 kV, the EBW exerted sufficient force to capture all pollen carried at an air flow of 3 m/s, and pollen-free air passed through the EBW. The findings demonstrated that the electrostatic barrier that formed inside the EBW was very effective at capturing airborne pollen; thus, it could allow a home to remain pollen-free and healthy despite continuous pollen exposure. PMID:28098835

  3. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Liu, Li; Solmon, Fabien; Viovy, Nicolas; Khvorostyanov, Dmitry; Essl, Franz; Chuine, Isabelle; Colette, Augustin; Semenov, Mikhail A.; Schaffhauser, Alice; Storkey, Jonathan; Thibaudon, Michel; Epstein, Michelle M.

    2015-08-01

    Common ragweed (Ambrosia artemisiifolia) is an invasive alien species in Europe producing pollen that causes severe allergic disease in susceptible individuals. Ragweed plants could further invade European land with climate and land-use changes. However, airborne pollen evolution depends not only on plant invasion, but also on pollen production, release and atmospheric dispersion changes. To predict the effect of climate and land-use changes on airborne pollen concentrations, we used two comprehensive modelling frameworks accounting for all these factors under high-end and moderate climate and land-use change scenarios. We estimate that by 2050 airborne ragweed pollen concentrations will be about 4 times higher than they are now, with a range of uncertainty from 2 to 12 largely depending on the seed dispersal rate assumptions. About a third of the airborne pollen increase is due to on-going seed dispersal, irrespective of climate change. The remaining two-thirds are related to climate and land-use changes that will extend ragweed habitat suitability in northern and eastern Europe and increase pollen production in established ragweed areas owing to increasing CO2. Therefore, climate change and ragweed seed dispersal in current and future suitable areas will increase airborne pollen concentrations, which may consequently heighten the incidence and prevalence of ragweed allergy.

  4. Airborne pollen assemblages and weather regime in the central-eastern Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Yuecong; Ge, Yawen; Xu, Qinghai; Bunting, Jane M.; Lv, Suqing; Wang, Junting; Li, Zetao

    2015-04-01

    This paper presents the results of pollen trapping studies designed to quantify the pollen assemblages carried in the winds of the Loess Plateau in Luochuan and Hunyuan. The one-year-collection samples analysis results show that pollen assemblages can be more sensitive to the change of climate than the vegetation composition, because of the change of pollen production. The analysis results of pollen traps in different weather regimes indicate that the pollen influx coming from dust weather contribute more to the total pollen influx than that coming from non-dust weather. The wind speed is the most important influenced factor to pollen assemblages, then the mean temperature and the mean relative humidity, the wind direction also contributes some. Strong wind coming from dust direction can make the percent and influx of Artemisia and Chenopodiaceae increase obviously with averagely higher than over 2.7 times in dust weather than in non-dust samples. The influences of wind speed and wind direction are not serious to some arboreal pollen such as Rosaceae, Quercus, Betula, Pinus and Ostryopsis, which are mainly influenced by temperature or the relative humidity such as Salix, Hippophae, Carpinus, Brassicaceae, Cupressaceae, Fabaceae.

  5. Relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts.

    PubMed

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy.

  6. Relationships among Indoor, Outdoor, and Personal Airborne Japanese Cedar Pollen Counts

    PubMed Central

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy. PMID:26110813

  7. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing.

    PubMed

    Kraaijeveld, Ken; de Weger, Letty A; Ventayol García, Marina; Buermans, Henk; Frank, Jeroen; Hiemstra, Pieter S; den Dunnen, Johan T

    2015-01-01

    Pollen monitoring is an important and widely used tool in allergy research and creation of awareness in pollen-allergic patients. Current pollen monitoring methods are microscope-based, labour intensive and cannot identify pollen to the genus level in some relevant allergenic plant groups. Therefore, a more efficient, cost-effective and sensitive method is needed. Here, we present a method for identification and quantification of airborne pollen using DNA sequencing. Pollen is collected from ambient air using standard techniques. DNA is extracted from the collected pollen, and a fragment of the chloroplast gene trnL is amplified using PCR. The PCR product is subsequently sequenced on a next-generation sequencing platform (Ion Torrent). Amplicon molecules are sequenced individually, allowing identification of different sequences from a mixed sample. We show that this method provides an accurate qualitative and quantitative view of the species composition of samples of airborne pollen grains. We also show that it correctly identifies the individual grass genera present in a mixed sample of grass pollen, which cannot be achieved using microscopic pollen identification. We conclude that our method is more efficient and sensitive than current pollen monitoring techniques and therefore has the potential to increase the throughput of pollen monitoring.

  8. Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas.

    PubMed

    Maya-Manzano, José María; Fernández-Rodríguez, Santiago; Smith, Matt; Tormo-Molina, Rafael; Reynolds, Andrew M; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Sadyś, Magdalena

    2016-11-15

    The pollen grains of Quercus spp. (oak trees) are allergenic. This study investigates airborne Quercus pollen in SW Spain with the aim identifying favourable conditions for atmospheric transport and potential sources areas. Two types of Quercus distribution maps were produced. Airborne Quercus pollen concentrations were measured at three sites located in the Extremadura region (SW Spain) for 3 consecutive years. The seasonal occurrence of Quercus pollen in the air was investigated, as well as days with pollen concentrations ≥80Pm(-3). The distance that Quercus pollen can be transported in appreciable numbers was calculated using clusters of back trajectories representing the air mass movement above the source areas (oak woodlands), and by using a state-of-the-art dispersion model. The two main potential sources of Quercus airborne pollen captured in SW Spain are Q. ilex subsp. ballota and Q. suber. The minimum distances between aerobiological stations and Quercus woodlands have been estimated as: 40km (Plasencia), 66km (Don Benito), 62km (Zafra) from the context of this study. Daily mean Quercus pollen concentration can exceed 1,700Pm(-3), levels reached not less than 24 days in a single year. High Quercus pollen concentration were mostly associated with moderate wind speed events (6-10ms(-1)), whereas that a high wind speed (16-20ms(-1)) seems to be associated with low concentrations.

  9. On the causes of variability in amounts of airborne grass pollen in Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    de Morton, Julian; Bye, John; Pezza, Alexandre; Newbigin, Edward

    2011-07-01

    In Melbourne, Australia, airborne grass pollen is the predominant cause of hay fever (seasonal rhinitis) during late spring and early summer, with levels of airborne grass pollen also influencing hospital admissions for asthma. In order to improve predictions of conditions that are potentially hazardous to susceptible individuals, we have sought to better understand the causes of diurnal, intra-seasonal and inter-seasonal variability of atmospheric grass pollen concentrations (APC) by analysing grass pollen count data for Melbourne for 16 grass pollen seasons from 1991 to 2008 (except 1994 and 1995). Some of notable features identified in this analysis were that on days when either extreme (>100 pollen grains m-3) or high (50-100 pollen grains m-3) levels of grass pollen were recorded the winds were of continental origin. In contrast, on days with a low (<20 pollen grains m-3) concentration of grass pollen, winds were of maritime origin. On extreme and high grass pollen days, a peak in APC occurred on average around 1730 hours, probably due to a reduction in surface boundary layer turbulence. The sum of daily APC for each grass pollen season was highly correlated ( r = 0.79) with spring rainfall in Melbourne for that year, with about 60% of a declining linear trend across the study period being attributable to a reduction of meat cattle and sheep (and hence grazing land) in rural areas around Melbourne. Finally, all of the ten extreme pollen events (3 days or more with APC > 100 pollen grains m-3) during the study period were characterised by an average downward vertical wind anomaly in the surface boundary layer over Melbourne. Together these findings form a basis for a fine resolution atmospheric general circulation model for grass pollen in Melbourne's air that can be used to predict daily (and hourly) APC. This information will be useful to those sectors of Melbourne's population that suffer from allergic problems.

  10. What are the most important variables for Poaceae airborne pollen forecasting?

    PubMed

    Navares, Ricardo; Aznarte, José Luis

    2017-02-01

    In this paper, the problem of predicting future concentrations of airborne pollen is solved through a computational intelligence data-driven approach. The proposed method is able to identify the most important variables among those considered by other authors (mainly recent pollen concentrations and weather parameters), without any prior assumptions about the phenological relevance of the variables. Furthermore, an inferential procedure based on non-parametric hypothesis testing is presented to provide statistical evidence of the results, which are coherent to the literature and outperform previous proposals in terms of accuracy. The study is built upon Poaceae airborne pollen concentrations recorded in seven different locations across the Spanish province of Madrid.

  11. Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Sabariego, Silvia; Fernández-González, Federico; Pérez-Badia, Rosa

    2016-03-01

    Aerobiological research into airborne pollen diversity and seasonal variations in pollen counts has become increasingly important over recent decades due to the growing incidence of asthma, rhinitis and other pollen-related allergic conditions. Airborne pollen in Guadalajara (Castilla-La Mancha, Spain) was studied over a 6-year period (2008-2013) using a Hirst-type volumetric spore trap. The highest pollen concentrations were recorded from February to June, coinciding with the pollen season of the pollen types that most contribute to the local airborne pollen spectrum: Cupressaceae (32.2%), Quercus (15.1%), Platanus (13.2%), Olea (8.3%), Populus (7.8%) and Poaceae (7.2%). These are therefore critical months for allergy sufferers. The pollen calendar was typically Mediterranean and comprised 25 pollen types. Between January and March, Cupressaceae pollen concentrations exceeded allergy risk thresholds on 38 days. Other woody species such as Olea and Platanus have a shorter pollen season, and airborne concentrations exceeded allergy risk thresholds on around 13 days in each case. Poaceae pollen concentrations attained allergy risk levels on 26 days between May and July. Other highly allergenic pollen types included Urticaceae and Chenopodiaceae-Amaranthaceae, though these are less abundant than other pollen types in Guadalajara and did not exceed risk thresholds on more than 3 and 5 days, respectively.

  12. Airborne pollen of ornamental tree species in the NW of Spain.

    PubMed

    Aira, María Jesús; Rodríguez-Rajo, Francisco Javier; Fernández-González, María; Jato, Victoria

    2011-02-01

    This study analyzed airborne pollen counts for the tree taxa most widely used for ornamental purposes in the northwestern Iberian Peninsula (Platanus, Cupressaceae, Olea, Myrtaceae, Cedrus, and Casuarina) at four sites (Vigo, Ourense, Santiago, and Lugo), using aerobiological data recorded over a long period (1993-2007). The abundance and the temporal and spatial distribution of these pollen types were analyzed, and the influence of weather-related factors on airborne pollen counts was assessed. Platanus (in Ourense) and Olea (in Vigo) were the taxa contributing most to pollen counts. In general terms, the results may be taken as indicators of potential risk for pollen-allergy sufferers and therefore used in planning future green areas.

  13. Environmental Factors Affecting Asthma and Allergies: Predicting and Simulating Downwind Exposure to Airborne Pollen

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey; Estes, Sue; Sprigg, William A.; Nickovic, Slobodan; Huete, Alfredo; Solano, Ramon; Ratana, Piyachat; Jiang, Zhangyan; Flowers, Len; Zelicoff, Alan

    2009-01-01

    This slide presentation reviews the environmental factors that affect asthma and allergies and work to predict and simulate the downwind exposure to airborne pollen. Using a modification of Dust REgional Atmosphere Model (DREAM) that incorporates phenology (i.e. PREAM) the aim was to predict concentrations of pollen in time and space. The strategy for using the model to simulate downwind pollen dispersal, and evaluate the results. Using MODerate-resolution Imaging Spectroradiometer (MODIS), to get seasonal sampling of Juniper, the pollen chosen for the study, land cover on a near daily basis. The results of the model are reviewed.

  14. Time series predictions with neural nets: Application to airborne pollen forecasting

    NASA Astrophysics Data System (ADS)

    Arizmendi, C. M.; Sanchez, J. R.; Ramos, N. E.; Ramos, G. I.

    1993-09-01

    Pollen allergy is a common disease causing rhinoconjunctivitis (hay fever) in 5 10% of the population. Medical studies have indicated that pollen related diseases could be highly reduced if future pollen contents in the air could be predicted. In this work we have developed a new forecasting method that applies the ability of neural nets to predict the future behaviour of chaotic systems in order to make accurate predictions of the airborne pollen concentration. The method requires that the neural net be fed with non-zero values, which restricts the method predictions to the period following the start of pollen flight. The operational method outlined here constitutes a different point of view with respect to the more generally used forecasts of time series analysis, which require input of many meteorological parameters. Excellent forecasts were obtained training a neural net by using only the time series pollen concentration values.

  15. The long range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark

    NASA Astrophysics Data System (ADS)

    Ambelas Skjoth, C.; Sommer, J.; Stach, A.; Smith, M.; Brandt, J.; Christensen, J. H.; Frohn, L. M.; Geels, C.; Hansen, K. M.; Hedegaard, G. B.

    2009-04-01

    In Denmark, where birch pollen is considered to be among the most important allergenic pollen, about one million people suffer from seasonal allergic rhinitis. In Denmark, the official reported pollen forecast is based on the daily weather forecast, the pollen calendar and local 24-h measurements. Birch pollen has the potential for long-range transport but the present Danish pollen forecast does not account for birch pollen being transported into the country from distant sources.. Long-range transport episodes are intermittent and often out of the main pollen season, where individuals in general will be medically unprotected. Here we use an integrated approach to investigate whether or not Denmark receives significant quantities of birch pollen from Poland and Germany before local trees start to flower. In 2006 we used a combination of phenological observations and pollen measurements in Poland (Poznań) and Denmark (Copenhagen). Seasonal and diurnal variations in birch pollen measurement from Copenhagen (2000-2006) were examined with the aim of identifying pre-seasonal episodes originating from long-range transport. The 2.5% accumulation method was used for identifying start of season. If daily pollen counts exceeded 30 grains/m3 either before the local flowering season began or on the actual start day, the episode was chosen for investigation with back trajectory analysis. A birch forest inventory for Northern Europe was produced and implemented in DEHM-Pollen along with a simple unified pollen release model SUPREME to investigate the 2006 campaign in detail. In 2006, full flowering took place in Poznan between 20th and 28th of April and daily concentrations varied between 739 and 2169 grains/m3. In Copenhagen phenological observations showed that local flowering was initiated the 2nd of May. In Copenhagen several episodes with pollen concentrations at 108, 244 and 41 grains/m3 were recorded the 23rd, 26th and 27th of April, respectively. Back-trajectory analysis

  16. Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics.

    PubMed

    Maya-Manzano, J M; Sadyś, M; Tormo-Molina, R; Fernández-Rodríguez, S; Oteros, J; Silva-Palacios, I; Gonzalo-Garijo, A

    2017-04-15

    Airborne bio-aerosol content (mainly pollen and spores) depends on the surrounding vegetation and weather conditions, particularly wind direction. In order to understand this issue, maps of the main land cover in influence areas of 10km in radius surrounding pollen traps were created. Atmospheric content of the most abundant 14 pollen types was analysed in relation to the predominant wind directions measured in three localities of SW of Iberian Peninsula, from March 2011 to March 2014. Three Hirst type traps were used for aerobiological monitoring. The surface area for each land cover category was calculated and wind direction analysis was approached by using circular statistics. This method could be helpful for estimating the potential risk of exposure to various pollen types. Thus, the main land cover was different for each monitoring location, being irrigated crops, pastures and hardwood forests the main categories among 11 types described. Comparison of the pollen content with the predominant winds and land cover shows that the atmospheric pollen concentration is related to some source areas identified in the inventory. The study found that some pollen types (e.g. Plantago, Fraxinus-Phillyrea, Alnus) come from local sources but other pollen types (e.g. Quercus) are mostly coming from longer distances. As main conclusions, airborne particle concentrations can be effectively split by addressing wind with circular statistics. By combining circular statistics and GIS method with aerobiological data, we have created a useful tool for understanding pollen origin. Some pollen loads can be explained by immediate surrounding landscape and observed wind patterns for most of the time. However, other factors like medium or long-distance transport or even pollen trap location within a city, may occasionally affect the pollen load recorded using an air sampler.

  17. Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula.

    PubMed

    Silva-Palacios, Inmaculada; Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-02-01

    Cupressaceae includes species cultivated as ornamentals in the urban environment. This study aims to investigate airborne pollen data for Cupressaceae on the southwestern Iberian Peninsula over a 21-year period and to analyse the trends in these data and their relationship with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1993 to 2013 in Badajoz (SW Spain). The main pollen season for Cupressaceae lasted, on average, 58 days, ranging from 55 to 112 days, from 24 January to 22 March. Furthermore, a short-term forecasting model has been developed for daily pollen concentrations. The model proposed to forecast the airborne pollen concentration is described by one equation. This expression is composed of two terms: the first term represents the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term is obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological parameters multiplied by a fitting coefficient. Temperature was the main meteorological factor by its influence over daily pollen forecast, being the rain the second most important factor. This model represents a good approach to a continuous balance model of Cupressaceae pollen concentration and is supported by a close agreement between the observed and predicted mean concentrations. The novelty of the proposed model is the analysis of meteorological parameters that are not frequently used in Aerobiology.

  18. Regional and seasonal variation in airborne grass pollen levels between cities of Australia and New Zealand.

    PubMed

    Medek, Danielle E; Beggs, Paul J; Erbas, Bircan; Jaggard, Alison K; Campbell, Bradley C; Vicendese, Don; Johnston, Fay H; Godwin, Ian; Huete, Alfredo R; Green, Brett J; Burton, Pamela K; Bowman, David M J S; Newnham, Rewi M; Katelaris, Constance H; Haberle, Simon G; Newbigin, Ed; Davies, Janet M

    Although grass pollen is widely regarded as the major outdoor aeroallergen source in Australia and New Zealand (NZ), no assemblage of airborne pollen data for the region has been previously compiled. Grass pollen count data collected at 14 urban sites in Australia and NZ over periods ranging from 1 to 17 years were acquired, assembled and compared, revealing considerable spatiotemporal variability. Although direct comparison between these data is problematic due to methodological differences between monitoring sites, the following patterns are apparent. Grass pollen seasons tended to have more than one peak from tropics to latitudes of 37°S and single peaks at sites south of this latitude. A longer grass pollen season was therefore found at sites below 37°S, driven by later seasonal end dates for grass growth and flowering. Daily pollen counts increased with latitude; subtropical regions had seasons of both high intensity and long duration. At higher latitude sites, the single springtime grass pollen peak is potentially due to a cooler growing season and a predominance of pollen from C3 grasses. The multiple peaks at lower latitude sites may be due to a warmer season and the predominance of pollen from C4 grasses. Prevalence and duration of seasonal allergies may reflect the differing pollen seasons across Australia and NZ. It must be emphasized that these findings are tentative due to limitations in the available data, reinforcing the need to implement standardized pollen-monitoring methods across Australasia. Furthermore, spatiotemporal differences in grass pollen counts indicate that local, current, standardized pollen monitoring would assist with the management of pollen allergen exposure for patients at risk of allergic rhinitis and asthma.

  19. Regional and seasonal variation in airborne grass pollen levels between cities of Australia and New Zealand

    PubMed Central

    Beggs, Paul J.; Erbas, Bircan; Jaggard, Alison K.; Campbell, Bradley C.; Vicendese, Don; Johnston, Fay H.; Godwin, Ian; Huete, Alfredo R.; Green, Brett J.; Burton, Pamela K.; Bowman, David M. J. S.; Newnham, Rewi M.; Katelaris, Constance H.; Haberle, Simon G.; Newbigin, Ed; Davies, Janet M.

    2016-01-01

    Although grass pollen is widely regarded as the major outdoor aeroallergen source in Australia and New Zealand (NZ), no assemblage of airborne pollen data for the region has been previously compiled. Grass pollen count data collected at 14 urban sites in Australia and NZ over periods ranging from 1 to 17 years were acquired, assembled and compared, revealing considerable spatiotemporal variability. Although direct comparison between these data is problematic due to methodological differences between monitoring sites, the following patterns are apparent. Grass pollen seasons tended to have more than one peak from tropics to latitudes of 37°S and single peaks at sites south of this latitude. A longer grass pollen season was therefore found at sites below 37°S, driven by later seasonal end dates for grass growth and flowering. Daily pollen counts increased with latitude; subtropical regions had seasons of both high intensity and long duration. At higher latitude sites, the single springtime grass pollen peak is potentially due to a cooler growing season and a predominance of pollen from C3 grasses. The multiple peaks at lower latitude sites may be due to a warmer season and the predominance of pollen from C4 grasses. Prevalence and duration of seasonal allergies may reflect the differing pollen seasons across Australia and NZ. It must be emphasized that these findings are tentative due to limitations in the available data, reinforcing the need to implement standardized pollen-monitoring methods across Australasia. Furthermore, spatiotemporal differences in grass pollen counts indicate that local, current, standardized pollen monitoring would assist with the management of pollen allergen exposure for patients at risk of allergic rhinitis and asthma. PMID:27069303

  20. Pollen season and climate: is the timing of birch pollen release in the UK approaching its limit?

    PubMed

    Newnham, R M; Sparks, T H; Skjøth, C A; Head, K; Adams-Groom, B; Smith, M

    2013-05-01

    In light of heightened interest in the response of pollen phenology to temperature, we investigated recent changes to the onset of Betula (birch) pollen seasons in central and southern England, including a test of predicted advancement of the Betula pollen season for London. We calculated onset of birch pollen seasons using daily airborne pollen data obtained at London, Plymouth and Worcester, determined trends in the start of the pollen season and compared timing of the birch pollen season with observed temperature patterns for the period 1995-2010. We found no overall change in the onset of birch pollen in the study period although there was evidence that the response to temperature was nonlinear and that a lower asymptotic start of the pollen season may exist. The start of the birch pollen season was strongly correlated with March mean temperature. These results reinforce previous findings showing that the timing of the birch pollen season in the UK is particularly sensitive to spring temperatures. The climate relationship shown here persists over both longer decadal-scale trends and shorter, seasonal trends as well as during periods of 'sign-switching' when cooler spring temperatures result in later start dates. These attributes, combined with the wide geographical coverage of airborne pollen monitoring sites, some with records extending back several decades, provide a powerful tool for the detection of climate change impacts, although local site factors and the requirement for winter chilling may be confounding factors.

  1. Analysis of airborne pollen grains in Bilecik, Turkey.

    PubMed

    Türe, Cengiz; Böcük, Harun

    2009-04-01

    In this study, pollen grains in the atmosphere of Bilecik were studied for a continuous period of 2 years (2005 and 2006) by using Durham sampler. During this period, pollen grains belonging to 46 taxa were recorded, 26 of which belonged to arboreal plants and 20 to non-arboreal. Of total 14,269 pollen grains determined in Bilecik atmosphere, 6,675 were recorded in 2005 and 7,594 were in 2006. From these, 75.74% were arboreal, 21.80% were non-arboreal and 2.47% unidentifiable. Pinus sp., Poaceae, Cupressaceae, Platanus sp., Quercus sp., Salix sp., Ailanthus sp., Fagus sp., Urticaceae, Chenopodiaceae/Amaranthaceae were the main pollen producers in the atmosphere of Bilecik, respectively. Pollen concentrations reached their highest levels in May. Atmospheric pollen concentrations in February, March, September, October and November were less than those in other months.

  2. Atmospheric dispersion of airborne pollen evidenced by near-surface and columnar measurements in Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël.; Izquierdo, Rebeca; Jorba, Oriol; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; De Linares, Concepción; Baldasano, José Maria

    2016-10-01

    Hourly measurements of pollen near-surface concentration and lidar-derived profiles of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 27 - 31 March, 2015, are presented. Maximum hourly pollen concentrations of 4700 and 1200 m-3 h-1 were found for Platanus and Pinus, respectively, which represented together more than 80 % of the total pollen. . The pollen concentration was found positively correlated with temperature (correlation coefficient, r, of 0.95) and wind speed (r = 0.82) and negatively correlated with relative humidity (r = -0.18). The ground concentration shows a clear diurnal cycle although pollen activity is also detected during nighttime in three occasions and is clearly associated with periods of strong wind speeds. Everyday a clear diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles of the volume depolarization ratio with maxima usually reached between 12 and 15 UT. On average the volume depolarization ratios in the pollen plume ranged between 0.08 and 0.22. Except in the cases of nocturnal pollen activity, the correlation coefficients between volume depolarization ratio and near-surface concentration are high (>0.68). The dispersion of the Platanus and Pinus in the atmosphere was simulated with the Nonhydrostatic Multiscale Meteorological Model on the B grid at the Barcelona Supercomputing Center with a newly developed Chemical Transport Model (NMMB/BSC-CTM). Model near-surface daily pollen concentrations were compared to our observations at two sites: in Barcelona and Bellaterra (12 km NE of Barcelona). Model hourly pollen concentrations were compared to our observations in Barcelona. Better results are obtained for Pinus than for Platanus. Guidelines are proposed to improve the dispersion of airborne pollen by atmospheric models.

  3. The macroecology of airborne pollen in Australian and New Zealand urban areas.

    PubMed

    Haberle, Simon G; Bowman, David M J S; Newnham, Rewi M; Johnston, Fay H; Beggs, Paul J; Buters, Jeroen; Campbell, Bradley; Erbas, Bircan; Godwin, Ian; Green, Brett J; Huete, Alfredo; Jaggard, Alison K; Medek, Danielle; Murray, Frank; Newbigin, Ed; Thibaudon, Michel; Vicendese, Don; Williamson, Grant J; Davies, Janet M

    2014-01-01

    The composition and relative abundance of airborne pollen in urban areas of Australia and New Zealand are strongly influenced by geographical location, climate and land use. There is mounting evidence that the diversity and quality of airborne pollen is substantially modified by climate change and land-use yet there are insufficient data to project the future nature of these changes. Our study highlights the need for long-term aerobiological monitoring in Australian and New Zealand urban areas in a systematic, standardised, and sustained way, and provides a framework for targeting the most clinically significant taxa in terms of abundance, allergenic effects and public health burden.

  4. Concentrations of airborne pollen grains in Sivrihisar (Eskisehir), Turkey.

    PubMed

    Erkara, Ismuhan Potoglu

    2008-03-01

    Pollen grains in the atmosphere of Sivrihisar were studied for a continuous period of 2 years (1 January 2005-31 December 2006) using a Durham sampler. During this period, pollen grains belonging to 41 taxa were recorded, 24 of which belonged to arboreal plants and 17 to non-arboreal. From these, 23,219 were identified in 2005 and 34,154 in 2006. Of the total pollen grains, 90.46% were arboreal, 9.43% non-arboreal, and 0.1% unidentifiable. The majority of the investigated allergic pollen grains were from Pinaceae, Cupressaceae, Fraxinus spp., Cedrus spp., Artemisia spp., Poaceae, Chenopodiaceae/Amaranthaceae, Populus spp., Quercus spp., Urticaceae and Asteraceae, respectively. Pollen concentrations reached their highest levels in May. This information was then established into a calendar form according to the pollens determined in 2005-2006, in terms of annual, monthly and weekly numbers of taxa fall per cm2. A comparison between the results and the meteorological factors revealed a close relationship between pollen concentrations in the air and meteorological conditions. An increase in pollination was also linked to increasing temperatures and the wind. It was therefore concluded that high temperatures and relative humidity were also effective in increasing the number of pollens in the air.

  5. Airborne pollen in European and Asian parts of Istanbul.

    PubMed

    Celenk, Sevcan; Bicakci, Adem; Tamay, Zeynep; Guler, Nermin; Altunoglu, M Kemal; Canitez, Yakup; Malyer, Hulusi; Sapan, Nihat; Ones, Ulker

    2010-05-01

    Pollen concentrations in the atmosphere of Istanbul, a city located between two continents, has been monitored for 1 year as part of a larger research program. The sampling sites were located in two different continents: the Asian part (AS) and the European part (EP). The sampling was performed in AS and EP of the city by using Hirst type volumetric method, and pollen grains of 58 and 62 taxa were identified in the two parts, respectively. The pollen spectrum reflected the floristic diversity of the region. The main pollen producers at the sites were characterized by some allergenic pollen and were identified as Cupressaceae/Taxaceae, Urticaceae, Pistacia sp., Quercus sp., Platanus sp., Fraxinus sp., and Xanthium sp. These pollen types contributed to the total pollen sum with a percentage of more than 80% at both monitoring sites. The highest amount of pollen grains was recorded in April. The greatest number of species was recorded in May, when 42 types (AS) and 44 types (EP) were present.

  6. Airborne pollen grains in Bursa, Turkey, 1999-2000,.

    PubMed

    Bicakci, Adem; Tatlidil, Sevcan; Sapan, Nihat; Malyer, Hulusi; Canitez, Yakup

    2003-01-01

    In this study, pollen grains were sampled by using a Lanzoni trap (Lanzoni VPPS 2000) in atmosphere of Bursa in 1999 and 2000. During two years. a total of 13,991 pollen grains/m3 which belonged to 59 taxa and unidentified pollen grains were recorded. A total of 7.768 pollen grains were identified in 1999 and a total of 6.223 in 2000. From these taxa, 36 belong to arboreal and 23 taxa to non-arboreal plants. Total pollen grains consist of 78.61% arboreal. 20.37% non-arboreal plants and 1.03% unidentified pollen grains. In the region investigated, Pinus sp., Olea sp., Platanus sp., Gramineae, Cupressaceae/Taxaceae, Quercus sp., Acer sp.. Morus sp. Xanthium sp., Castanea sp., Chenopodiaceae/Amaranthaceae, Corvlus sp., Artemisia sp., Urtica sp.and Fraxinus sp. were responsible for the greatest amounts of pollen. During the study period the pollen concentration reached its highest level in April.

  7. Allergenic airborne pollen and spores in Anchorage, Alaska

    SciTech Connect

    Anderson, J.H.

    1985-05-01

    Major aeroallergens in Anchorage are birch, alder, poplar, spruce, grass pollen, Cladosporium, and unspecified fungus spores. Lesser pollens are sorrel, willow, pine, juniper, sedge, lamb's-quarters, wormwood, plantain, and others. The aero-flora is discussed in terms of the frequency of allergenically significant events and within-season and year-to-year dynamics.

  8. Head-high, airborne pollen grains from different areas of metropolitan Delhi.

    PubMed

    Malik, P; Singh, A B; Babu, C R; Gangal, S V

    1990-05-01

    A survey of airborne pollen grains from four zones of metropolitan Delhi was conducted for 1 year (February 1988-January 1989) at human height level (5'-6'). Sampling was carried out in different inhabited areas in the four zones using Burkard Volumetric Personal Samplers. Sampling was carried out at weekly intervals, three times a day (7, 14, & 20 h) for 15 min. Poaceae, Ricinus, Cheno-Amaranth, Morus, Artemisia, Myrtaceae, Parthenium, Prosopis and Cannabis are important pollen contributors to the atmosphere, especially at lower heights. In general, pollen concentration was low at human height. Quantitative zonal variations have been recorded within an urban city.

  9. Does insect netting affect the containment of airborne pollen from (GM-) plants in greenhouses?

    PubMed

    van Hengstum, Thomas; Hooftman, Danny A P; den Nijs, Hans C M; van Tienderen, Peter H

    2012-09-01

    Greenhouses are a well-accepted containment strategy to grow and study genetically modified plants (GM) before release into the environment. Various containment levels are requested by national regulations to minimize GM pollen escape. We tested the amount of pollen escaping from a standard greenhouse, which can be used for EU containment classes 1 and 2. More specifically, we investigated the hypothesis whether pollen escape could be minimized by insect-proof netting in front of the roof windows, since the turbulent airflow around the mesh wiring could avoid pollen from escaping. We studied the pollen flow out of greenhouses with and without insect netting of two non-transgenic crops, Ryegrass (Loliummultiflorum) and Corn (Zea Mays). Pollen flow was assessed with Rotorod(®) pollen samplers positioned inside and outside the greenhouse' roof windows. A significant proportion of airborne pollen inside the greenhouse leaves through roof windows. Moreover, the lighter pollen of Lolium escaped more readily than the heavier pollen of Maize. In contrast to our expectations, we did not identify any reduction in pollen flow with insect netting in front of open windows, even under induced airflow conditions. We conclude that insect netting, often present by default in greenhouses, is not effective in preventing pollen escape from greenhouses of wind-pollinated plants for containment classes 1 or 2. Further research would be needed to investigate whether other alternative strategies, including biotic ones, are more effective. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10453-011-9237-8) contains supplementary material, which is available to authorized users.

  10. Detection of airborne allergen (Pla a 1) in relation to Platanus pollen in Córdoba, South Spain.

    PubMed

    Alcázar, Purificación; Galán, Carmen; Torres, Carmen; Domínguez-Vilches, Eugenio

    2015-01-01

    Córdoba is one of the Spanish cities with the highest records of plane tree pollen grains in the air. Clinical studies have identified Platanus as a major cause of pollinosis. This fact provokes an important public health problem during early spring when these trees bloom. The objective of the study is to evaluate the correlation between airborne pollen counts and Pla a 1 aeroallergen concentrations in Córdoba, to elucidate if airborne pollen can be an accurate measure that helps to explain the prevalence of allergenic symptoms. Pollen sampling was performed during 2011-2012 using a Hirst-type sampler. Daily average concentration of pollen grains (pollen grains/m 3 ) was obtained following the methodology proposed by the Spanish Aerobiology Network. A multi-vial cyclone was used for the aeroallergen quantification. Allergenic particles were measured by ELISA using specific antibodies Pla a 1. The trend of Platanus pollen was characterized by a marked seasonality, reaching high concentrations in a short period of time. Airborne pollen and aeroallergen follow similar trends. The overlapping profile between both variables during both years shows that pollen and Pla a 1 are significantly correlated. The highest significant correlation coefficients were obtained during 2011 and for the post peak. Although some studies have found notable divergence between pollen and allergen concentrations in the air, in the case of Platanus in Córdoba, similar aerobiological dynamics between pollen and Pla a 1 have been found. Allergenic activity was found only during the plane tree pollen season, showing a close relationship with daily pollen concentrations. The obtained pollen potency was similar for both years of study. The results suggest that the allergenic response in sensitive patients to plane tree pollen coincide with the presence and magnitude of airborne pollen.

  11. Flowering phenology and potential pollen emission of three Artemisia species in relation to airborne pollen data in Poznań (Western Poland).

    PubMed

    Bogawski, Paweł; Grewling, Łukasz; Frątczak, Agata

    Artemisia pollen is an important allergen in Europe. In Poznań (Western Poland), three Artemisia species, A. vulgaris, A. campestris and A. absinthium, are widely distributed. However, the contributions of these species to the total airborne pollen are unknown. The aim of the study was to determine the flowering phenology and pollen production of the three abovementioned species and to construct a model of potential Artemisia pollen emission in the study area. Phenological observations were conducted in 2012 at six sites in Poznań using a BBCH phenological scale. Pollen production was estimated by counting the pollen grains per flower and recalculating the totals per inflorescence, plant and population in the study area. Airborne pollen concentrations were obtained using a Hirst-type volumetric trap located in the study area. Artemisia vulgaris began to flower the earliest, followed by A. absinthium and then A. campestris. The flowering of A. vulgaris corresponded to the first peak in the airborne pollen level, and the flowering of A. campestris coincided with the second pollen peak. The highest amounts of pollen per single plant were produced by A. vulgaris and A. absinthium. A. campestris produced considerably less pollen, however, due to its common occurrence, it contributed markedly (30 %) to the summation of total of recorded pollen. A. vulgaris is the most important pollen source in Poznań, but the roles of two other Artemisia species cannot be ignored. In particular, A. campestris should be considered as an important pollen contributor and likely might be one of the main causes of allergic reactions during late summer.

  12. Alternative statistical methods for interpreting airborne Alder ( Alnus glutimosa (L.) Gaertner) pollen concentrations

    NASA Astrophysics Data System (ADS)

    González Parrado, Zulima; Valencia Barrera, Rosa M.; Fuertes Rodríguez, Carmen R.; Vega Maray, Ana M.; Pérez Romero, Rafael; Fraile, Roberto; Fernández González, Delia

    2009-01-01

    This paper reports on the behaviour of Alnus glutinosa (alder) pollen grains in the atmosphere of Ponferrada (León, NW Spain) from 1995 to 2006. The study, which sought to determine the effects of various weather-related parameters on Alnus pollen counts, was performed using a volumetric method. The main pollination period for this taxon is January-February. Alder pollen is one of the eight major airborne pollen allergens found in the study area. An analysis was made of the correlation between pollen counts and major weather-related parameters over each period. In general, the strongest positive correlation was with temperature, particularly maximum temperature. During each period, peak pollen counts occurred when the maximum temperature fell within the range 9°C-14°C. Finally, multivariate analysis showed that the parameter exerting the greatest influence was temperature, a finding confirmed by Spearman correlation tests. Principal components analysis suggested that periods with high pollen counts were characterised by high maximum temperature, low rainfall and an absolute humidity of around 6 g m-3. Use of this type of analysis in conjunction with other methods is essential for obtaining an accurate record of pollen-count variations over a given period.

  13. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain.

    PubMed

    García-Mozo, Herminia; Oteros, Jose Antonio; Galán, Carmen

    2016-04-01

    Airborne pollen concentrations strongly correlate with flowering intensity of wind-pollinated species growing at and around monitoring sites. The pollen spectrum, and the variations in its composition and concentrations, is influenced by climatic features and by available nutritional resources but it is also determined by land use and its changes. The first factor influence is well known on aerobiological researches but the impact of land cover changes has been scarcely studied until now. This paper reports on a study carried out in Southern Spain (Córdoba city) examining airborne pollen trends over a 15-year period and it explores the possible links both to changes in land use and to climate variations. The Seasonal-Trend Decomposition procedure based on Loess (STL) which decomposes long-term data series into smaller seasonal component patterns was applied. Trends were compared with recorded changes in land use at varying distances from the city in order to determine their possible influence on pollen-count variations. The influence of climate-related factors was determined by means of non-parametric correlation analysis. The STL method proved highly effective for extracting trend components from pollen time series, because their features vary widely and can change quickly in a short term. Results revealed mixed trends depending on the taxa and reflecting fluctuations in land cover and/or climate. A significant rising trend in Olea pollen counts was observed, attributable both to the increasing olive-growing area but also to changes in temperature and rainfall. Poaceae pollen concentrations also increased, due largely to an expansion of heterogeneous agricultural areas and to an increase in pollen season length positively influenced by rainfall and temperature. By contrast, the significant declining trend observed for pollen from ruderal taxa, such as Amaranthaceae, Rumex, Plantago and Urticaceae, may be linked to changes in urban planning strategies with a

  14. Short term effects of airborne pollen concentrations on asthma epidemic

    PubMed Central

    Tobias, A; Galan, I; Banegas, J; Aranguez, E

    2003-01-01

    Methods: This study, based on time series analysis adjusting for meteorological factors and air pollution variables, assessed the short term effects of different types of allergenic pollen on asthma hospital emergencies in the metropolitan area of Madrid (Spain) for the period 1995–8. Results: Statistically significant associations were found for Poaceae pollen (lag of 3 days) and Plantago pollen (lag of 2 days), representing an increase in the range between the 99th and 95th percentiles of 17.1% (95% confidence interval (CI) 3.2 to 32.8) and 15.9% (95% CI 6.5 to 26.2) for Poaceae and Plantago, respectively. A positive association was also observed for Urticaceae (lag of 1 day) with an 8.4% increase (95% CI 2.8 to 14.4). Conclusions: There is an association between pollen levels and asthma related emergencies, independent of the effect of air pollutants. The marked relationship observed for Poaceae and Plantago pollens suggests their implication in the epidemic distribution of asthma during the period coinciding with their abrupt release into the environment. PMID:12885991

  15. Pla a_1 aeroallergen immunodetection related to the airborne Platanus pollen content.

    PubMed

    Fernández-González, M; Guedes, A; Abreu, I; Rodríguez-Rajo, F J

    2013-10-01

    Platanus hispanica pollen is considered an important source of aeroallergens in many Southern European cities. This tree is frequently used in urban green spaces as ornamental specie. The flowering period is greatly influenced by the meteorological conditions, which directly affect its allergenic load in the atmosphere. The purpose of this study is to develop equations to predict the Platanus allergy risk periods as a function of the airborne pollen, the allergen concentration and the main meteorological parameters. The study was conducted by means two volumetric pollen samplers; a Lanzoni VPPS 2000 for the Platanus pollen sampling and a Burkard multivial Cyclone Sampler to collect the aeroallergen particles (Pla a_1). In addiction the Dot-Blot and the Raman spectroscopy methods were used to corroborate the results. The Pla a_1 protein is recorded in the atmosphere after the presence of the Platanus pollen, which extend the Platanus pollen allergy risk periods. The Platanus pollen and the Pla a 1 allergens concentration are associated with statistical significant variations of some meteorological variables: in a positive way with the mean and maximum temperature whereas the sign of the correlation coefficient is negative with the relative humidity. The lineal regression equation elaborated in order to forecast the Platanus pollen content in the air explain the 64.5% of variance of the pollen presence in the environment, whereas the lineal regression equation elaborated in order to forecast the aeroallergen a 54.1% of the Pla a_1 presence variance. The combination of pollen count and the allergen quantification must be assessed in the epidemiologic study of allergic respiratory diseases to prevent the allergy risk periods.

  16. Gamma, Gaussian and logistic distribution models for airborne pollen grains and fungal spore season dynamics.

    PubMed

    Kasprzyk, I; Walanus, A

    2014-01-01

    The characteristics of a pollen season, such as timing and magnitude, depend on a number of factors such as the biology of the plant and environmental conditions. The main aim of this study was to develop mathematical models that explain dynamics in atmospheric concentrations of pollen and fungal spores recorded in Rzeszów (SE Poland) in 2000-2002. Plant taxa with different characteristics in the timing, duration and curve of their pollen seasons, as well as several fungal taxa were selected for this analysis. Gaussian, gamma and logistic distribution models were examined, and their effectiveness in describing the occurrence of airborne pollen and fungal spores was compared. The Gaussian and differential logistic models were very good at describing pollen seasons with just one peak. These are typically for pollen types with just one dominant species in the flora and when the weather, in particular temperature, is stable during the pollination period. Based on s parameter of the Gaussian function, the dates of the main pollen season can be defined. In spite of the fact that seasonal curves are often characterised by positive skewness, the model based on the gamma distribution proved not to be very effective.

  17. Airborne pollen and fungal spores in Garki, Abuja (North-Central Nigeria).

    PubMed

    Ezike, Dimphna Nneka; Nnamani, Catherine V; Ogundipe, Oluwatoyin T; Adekanmbi, Olushola H

    2016-01-01

    The ambient atmosphere is dominated with pollen and spores, which trigger allergic reactions and diseases and impact negatively on human health. A survey of pollen and fungal spores constituents of the atmosphere of Garki, Abuja (North-Central Nigeria) was carried out for 1 year (June 1, 2011-May 31, 2012). The aim of the study was to determine the prevalence and abundance of pollen and fungal spores in the atmosphere and their relationship with meteorological parameters. Airborne samples were trapped using modified Tauber-like pollen trap, and the recipient solutions were subjected to acetolysis. Results revealed the abundance of fungal spores, pollen, fern spores, algal cysts and diatoms in decreasing order of dominance. The atmosphere was qualitatively and quantitatively dominated by pollen during the period of late rainy/harmattan season than the rainy season. Numerous fungal spores were trapped throughout the sampling periods among which Alternaria spp., Fusarium spp., Cladosporium spp. and Curvularia spp. dominated. These fungi have been implicated in allergic diseases and are dermatophytic, causing diverse skin diseases. Other pathogenic fungi found in the studied aeroflora were Dreschlera spp., Helminthosporium spp., Torula spp., Pithomyces spp., Tetraploa spp., Nigrospora ssp., Spadicoides spp., Puccinia spp. and Erysiphe graminis. Total pollen and fungal spores counts do not show significant correlation with meteorological parameters.

  18. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, S.; Ambelas Skjøth, C.; Tormo-Molina, R.; Brandao, R.; Caeiro, E.; Silva-Palacios, I.; Gonzalo-Garijo, Á.; Smith, M.

    2012-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (southwestern Spain) and Évora (southeastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.

  19. Elliptical pollen corona from North American boreal paper birch trees (Betula papyrifera): strong fall orientations for near-spherical particles.

    PubMed

    Sassen, Kenneth

    2011-10-01

    It has only recently been realized that solar corona can be generated by dispersions of tree pollen grains suspended in the atmosphere, and these studies have come almost exclusively from Scandinavia. Using corona photographic and surface pollen analyses, it is shown here that paper birch trees in the interior of Alaska regularly generate solar corona during the boreal green-out in mid-May. Although near-spherical in shape, these ~27 μm average diameter particles have three surface protrusions involved in germination that are indicated to aid in the generation of elliptical corona, for which a strong preferential particle orientation is needed. For observations at solar elevation angles of ~35°-40°, an axis ratio of about 1.2 and average radius of 2.5° (for the second-order red band) are found. Because oriented particles of a particular shape tend to fall slower than randomly oriented ones, this microdesign promotes the lateral spread of pollen and enhances tree reproductive opportunities, an especially important trait for pioneering species.

  20. Association between airborne pollen and epidemic asthma in Madrid, Spain: a case-control study.

    PubMed

    Galán, Iñaki; Prieto, Alicia; Rubio, María; Herrero, Teresa; Cervigón, Patricia; Cantero, Jose Luis; Gurbindo, Maria Dolores; Martínez, María Isabel; Tobías, Aurelio

    2010-05-01

    BACKGROUND Despite the fact that airborne pollen is an important factor in precipitating asthma attacks, its implication in increases of epidemic asthma in usual meteorological conditions has not been reported. A study was undertaken to estimate the relationship between various types of aeroallergens and seasonal epidemic asthma in the region of Madrid, Spain. METHODS A case-control study was carried out in individuals aged 4-79 years who received emergency healthcare for asthma during 2001 in a base hospital covering a population of 750 000 inhabitants of Madrid. A skin prick test was performed with grass pollen, plantain pollen, olive pollen, cypress pollen, plane tree pollen, dust mites and Alternaria and the prevalence of skin reactivity was compared between subjects with asthma requiring emergency care for asthma within (cases) and outside (controls) the seasonal epidemic period. Data were analysed using logistic regression adjusting for age and sex. RESULTS The response rate was 61.7% for cases (n=95) and 51.6% for controls (n=146). The OR of sensitisation to grass pollen for cases compared with controls was 9.9 (95% CI 4.5 to 21.5); plantain pollen: 4.5 (95% CI 2.5 to 8.2); olive pollen: 7.3 (95% CI 3.5 to 15.2); plane tree pollen: 3.6 (95% CI 2.0 to 6.4); cypress pollen: 3.5 (95% CI 2.0 to 6.2); dust mites: 1.1 (95% CI 0.6 to 1.9); Alternaria: 0.9 (95% CI 0.5 to 1.9). The association with grasses was maintained after adjusting simultaneously for the remaining aeroallergens (OR 5.0 (95% CI 1.5 to 16.4)); this was the only one that retained statistical significance (p=0.007). CONCLUSIONS These results suggest that allergy to pollen, particularly grass pollen, is associated with the epidemic increase in asthma episodes during the months of May and June in the Madrid area of Spain.

  1. Models to predict the start of the airborne pollen season.

    PubMed

    Siniscalco, Consolata; Caramiello, Rosanna; Migliavacca, Mirco; Busetto, Lorenzo; Mercalli, Luca; Colombo, Roberto; Richardson, Andrew D

    2015-07-01

    Aerobiological data can be used as indirect but reliable measures of flowering phenology to analyze the response of plant species to ongoing climate changes. The aims of this study are to evaluate the performance of several phenological models for predicting the pollen start of season (PSS) in seven spring-flowering trees (Alnus glutinosa, Acer negundo, Carpinus betulus, Platanus occidentalis, Juglans nigra, Alnus viridis, and Castanea sativa) and in two summer-flowering herbaceous species (Artemisia vulgaris and Ambrosia artemisiifolia) by using a 26-year aerobiological data set collected in Turin (Northern Italy). Data showed a reduced interannual variability of the PSS in the summer-flowering species compared to the spring-flowering ones. Spring warming models with photoperiod limitation performed best for the greater majority of the studied species, while chilling class models were selected only for the early spring flowering species. For Ambrosia and Artemisia, spring warming models were also selected as the best models, indicating that temperature sums are positively related to flowering. However, the poor variance explained by the models suggests that further analyses have to be carried out in order to develop better models for predicting the PSS in these two species. Modeling the pollen season start on a very wide data set provided a new opportunity to highlight the limits of models in elucidating the environmental factors driving the pollen season start when some factors are always fulfilled, as chilling or photoperiod or when the variance is very poor and is not explained by the models.

  2. Models to predict the start of the airborne pollen season

    NASA Astrophysics Data System (ADS)

    Siniscalco, Consolata; Caramiello, Rosanna; Migliavacca, Mirco; Busetto, Lorenzo; Mercalli, Luca; Colombo, Roberto; Richardson, Andrew D.

    2015-07-01

    Aerobiological data can be used as indirect but reliable measures of flowering phenology to analyze the response of plant species to ongoing climate changes. The aims of this study are to evaluate the performance of several phenological models for predicting the pollen start of season (PSS) in seven spring-flowering trees ( Alnus glutinosa, Acer negundo, Carpinus betulus, Platanus occidentalis, Juglans nigra, Alnus viridis, and Castanea sativa) and in two summer-flowering herbaceous species ( Artemisia vulgaris and Ambrosia artemisiifolia) by using a 26-year aerobiological data set collected in Turin (Northern Italy). Data showed a reduced interannual variability of the PSS in the summer-flowering species compared to the spring-flowering ones. Spring warming models with photoperiod limitation performed best for the greater majority of the studied species, while chilling class models were selected only for the early spring flowering species. For Ambrosia and Artemisia, spring warming models were also selected as the best models, indicating that temperature sums are positively related to flowering. However, the poor variance explained by the models suggests that further analyses have to be carried out in order to develop better models for predicting the PSS in these two species. Modeling the pollen season start on a very wide data set provided a new opportunity to highlight the limits of models in elucidating the environmental factors driving the pollen season start when some factors are always fulfilled, as chilling or photoperiod or when the variance is very poor and is not explained by the models.

  3. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Galán, C.

    2016-12-01

    Olea europaea L. pollen is the second-largest cause of pollinosis in the southern Iberian Peninsula. Airborne-pollen monitoring networks provide essential data on pollen dynamics over a given study area. Recent research, however, has shown that airborne pollen levels alone do not always provide a clear indicator of actual exposure to aeroallergens. This study sought to evaluate correlations between airborne concentrations of olive pollen and Ole e 1 allergen levels in Córdoba (southern Spain), in order to determine whether atmospheric pollen concentrations alone are sufficient to chart changes in hay fever symptoms. The influence of major weather-related variables on local airborne pollen and allergen levels was also examined. Monitoring was carried out from 2012 to 2014. Pollen sampling was performed using a Hirst-type sampler, following the protocol recommended by the Spanish Aerobiology Network. A multi-vial cyclone sampler was used to collect aeroallergens, and allergenic particles were quantified by ELISA assay. Significant positive correlations were found between daily airborne allergen levels and atmospheric pollen concentrations, although there were occasions when allergen was detected before and after the pollen season and in the absence of airborne pollen. The correlation between the two was irregular, and pollen potency displayed year-on-year variations and did not necessarily match pollen-season-intensity.

  4. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Santiago; Skjøth, Carsten Ambelas; Tormo-Molina, Rafael; Brandao, Rui; Caeiro, Elsa; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Smith, Matt

    2014-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.

  5. [A new counting method for airborne Japanese red cedar and grass pollen allergens by the immunoblotting technique].

    PubMed

    Takahashi, Y; Katagiri, S; Inouye, S; Sakaguchi, M

    1990-12-01

    We devised a new counting method of pollen allergen particles which improved the fluorescence immunoblotting technique by Schumacher et al (1988). And by which airborne pollen allergens became visible under 10X magnifier or naked eyes. Airborne pollen allergens collected on the Burkard's sampling tape were transferred onto nitrocellulose membrane and were reacted with anti Cry j I rabbit serum or anti Lol p I rabbit serum, and then treated with alkaline phosphatase conjugated F(ab')2 anti rabbit IgG. Finally, bluish purple spots were obtained by staining with BCIP/NBT phosphatase substrate system. This technique does not require any skillful morphological observation, and is more suitable to measure the amounts of airborne pollen allergen for given pollinosis patients because total pollen allergen particles with common antigenicity are measured. In Japanese red cedar pollen counts, we could not count the spots more than 400 grains per 0.16 cm2 of the sample trapping area due to many overlapping spots. In this case, we tried to calculate the value from the ratio of bluish purple coloured area to one pollen area. However, a more suitable method for estimating the content of pollinosis caused airborne allergens may be colorimetric quantitation using densitometry and displaying the value as allergen content.

  6. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-03-01

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities’ fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents.

  7. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    PubMed Central

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-01-01

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities’ fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents. PMID:28300143

  8. Masting in oaks: Disentangling the effect of flowering phenology, airborne pollen load and drought

    NASA Astrophysics Data System (ADS)

    Fernández-Martínez, Marcos; Belmonte, Jordina; Maria Espelta, Josep

    2012-08-01

    Quercus species exhibit an extreme inter-annual variability in seed production often synchronized over large geographical areas (masting). Since this reproductive behavior is mostly observed in anemophilous plants, pollination efficiency is suggested as one hypothesis to explain it, although resource-based hypotheses are also suggested as alternatives. We analyzed the effect of flowering phenology, airborne pollen presence and meteorological conditions in the pattern of acorn production in mixed evergreen-deciduous oak forests (Quercus ilex and Quercus pubescens) in NE Spain for twelve years (1998-2009). In both oaks, higher temperatures advanced the onset of flowering and increased the amount of airborne pollen. Nevertheless, inter-annual differences in pollen production did not influence acorn crop size. Acorn production was enhanced by a delay in flowering onset in Q. ilex but not in Q. pubescens. This suggests that in perennial oaks a larger number of photosynthates produced before flowering could benefit reproduction while the lack of effects on deciduous oaks could be because these species flush new leaves and flowers at the same time. Notwithstanding this effect, spring water deficit was the most relevant factor in explaining inter-annual variability in acorn production in both species. Considering that future climate scenarios predict progressive warmer and dryer spring seasons in the Mediterranean Basin, this might result in earlier onsets of flowering and higher water deficits that would constrain acorn production.

  9. Transport of airborne Picea schrenkiana pollen on the northern slope of Tianshan Mountains (Xinjiang, China) and its implication for paleoenvironmental reconstruction.

    PubMed

    Pan, Yanfang; Yan, Shun; Behling, Hermann; Mu, Guijin

    2013-06-01

    The understanding of airborne pollen transportation is crucial for the reconstruction of the paleoenvironment. Under favorable conditions, a considerable amount of long-distance-transported pollen can be deposited far from its place of origin. In extreme arid regions, in most cases, such situations occur and increase the difficulty to interpret fossil pollen records. In this study, three sets of Cour airborne pollen trap were installed on the northern slope of Tianshan Mountains to collect airborne Picea schrenkiana (spruce) pollen grains from July 2001 to July 2006. The results indicate that Picea pollen disperses extensively and transports widely in the lower atmosphere far away from spruce forest. The airborne Picea pollen dispersal period is mainly concentrated between mid-May and July. In desert area, weekly Picea pollen began to increase and peaked suddenly in concentration. Also, annual pollen indices do not decline even when the distance increased was probably related to the strong wind may pick up the deposited pollen grains from the topsoil into the air stream, leading to an increase of pollen concentration in the air that is irrelevant to the normal and natural course of pollen transport and deposition. This, in turn, may lead to erroneous interpretations of the pollen data in the arid region. This study provided insight into the shift in the Picea pollen season regarding climate change in arid areas. It is recorded that the pollen pollination period starts earlier and the duration became longer. The results also showed that the temperature of May and June was positively correlated with the Picea pollen production. Furthermore, the transport of airborne Picea pollen data is useful for interpreting fossil pollen records from extreme arid regions.

  10. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change.

    PubMed

    García de León, David; García-Mozo, Herminia; Galán, Carmen; Alcázar, Purificación; Lima, Mauricio; González-Andújar, José L

    2015-10-15

    Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies.

  11. Long-term monitoring of airborne pollen in Alaska and the Yukon: Possible implications for global change

    SciTech Connect

    Anderson, J.H.

    1992-03-01

    Airborne pollen and spores have been sampled since 1978 in Fairbanks and 1982 Anchorage and other Alaska-Yukon locations for medical and ecological purposes. Comparative analyses of pre- and post-1986 data subsets reveal that after 1986 (1) pollen is in the air earlier, (2) the multiyear average of degree-days promoting pollen onset is little changed while (3) annual variation in degree-days at onset is greater, (4) pollen and spore annual productions are considerably higher, and (5) there is more year-to-year variation in pollen production. These changes probably reflect directional changes in certain weather variables, and there is some indication that they are of global change significance, i.e., related to increasing atmospheric greenhouse gases. Correlations with pollen data suggest that weather variables of high influence are temperatures during specific periods following pollen dispersal in the preceding year and the average temperature in April of the current year. Annual variations in pollen dispersal might be roughly linked to the 11 year sunspot cycle through air temperature mediators. Weather in 1990, apparent pollen production cycles under endogenous control, and the impending sunspot maximum portend a very severe pollen season in 199 existing but unfunded sampling projects.

  12. Airborne grass and ragweed pollen in the southern Panonnian Valley--consideration of rural and urban environment.

    PubMed

    Sikoparija, Branko; Radisic, Predrag; Pejak, Tatjana; Simic, Smiljka

    2006-01-01

    The aims of this study were to describe and compare the characteristics of grass and ragweed airborne pollen in rural and urban areas in the southern Panonnian Valley. Airborne pollen data were collected by using Hirst type volumetric samplers simultaneously in rural and urban localities. If rural and urban environment are considered, both grass and ragweed daily pollen concentrations showed a significant degree of association. Observed parameters (pollen index, maximum daily concentration, number of days during which the pollen is recorded in the air and start day of main pollen season), showed year-to-year variations for both grass and ragweed aeropollen. Average values of these parameters were higher in the rural environment, but the difference was statistically significant only for grass pollen index. Such a low difference indicates the possibility for conducting dose response clinical trials based on data obtained from one sampling station. The least year-to-year variations as well as the least difference between rural and urban environment, have been observed in the case of start date of the MPS. Such a situation suggests the possibility for using data obtained in one type of environment for the development of long-term forecast models for an entire region.

  13. Airborne Pollen Concentrations and Emergency Room Visits for Myocardial Infarction: A Multicity Case-Crossover Study in Ontario, Canada.

    PubMed

    Weichenthal, Scott; Lavigne, Eric; Villeneuve, Paul J; Reeves, François

    2016-04-01

    Few studies have examined the acute cardiovascular effects of airborne allergens. We conducted a case-crossover study to evaluate the relationship between airborne allergen concentrations and emergency room visits for myocardial infarction (MI) in Ontario, Canada. In total, 17,960 cases of MI were identified between the months of April and October during the years 2004-2011. Daily mean aeroallergen concentrations (pollen and mold spores) were assigned to case and control periods using central-site monitors in each city along with daily measurements of meteorological data and air pollution (nitrogen dioxide and ozone). Odds ratios and their 95% confidence intervals were estimated using conditional logistic regression models adjusting for time-varying covariates. Risk of MI was 5.5% higher (95% confidence interval (CI): 3.4, 7.6) on days in the highest tertile of total pollen concentrations compared with days in the lowest tertile, and a significant concentration-response trend was observed (P < 0.001). Higher MI risk was limited to same-day pollen concentrations, with the largest risks being observed during May (odds ratio = 1.16, 95% CI: 1.00, 1.35) and June (odds ratio = 1.10, 95% CI: 1.00, 1.22), when tree and grass pollen are most common. Mold spore concentrations were not associated with MI. Our findings suggest that airborne pollen might represent a previously unidentified environmental risk factor for myocardial infarction.

  14. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Gioulekas, Dimitrios; Lazopoulou, Chariklia; Balafoutis, Christos; Vokou, Despina

    2005-01-01

    We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from differe nt plant taxa prominent in the Thessaloniki area for a 4-year period (1996- 1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).

  15. The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe.

    PubMed

    de Weger, Letty A; Pashley, Catherine H; Šikoparija, Branko; Skjøth, Carsten A; Kasprzyk, Idalia; Grewling, Łukasz; Thibaudon, Michel; Magyar, Donat; Smith, Matt

    2016-12-01

    The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands, airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and to describe the conditions that facilitated this possible long distance transport. Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500 m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the airstream moving to northwest Europe where they were deposited at ground level and recorded by monitoring sites. The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources but transported long distances from potential source regions in east Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.

  16. The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe

    NASA Astrophysics Data System (ADS)

    de Weger, Letty A.; Pashley, Catherine H.; Šikoparija, Branko; Skjøth, Carsten A.; Kasprzyk, Idalia; Grewling, Łukasz; Thibaudon, Michel; Magyar, Donat; Smith, Matt

    2016-12-01

    The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands, airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and to describe the conditions that facilitated this possible long distance transport. Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500 m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the airstream moving to northwest Europe where they were deposited at ground level and recorded by monitoring sites. The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources but transported long distances from potential source regions in east Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.

  17. Airborne pollen and fungal spore sampling on the central California coast: the San Luis Obispo pollen project.

    PubMed

    McLean, A C; Parker, L; von Reis, J; von Reis, J

    1991-10-01

    A semiarid coastal location in San Luis Obispo, California was surveyed for 3 years (1986-1988) using a Rotorod sampler. Significant year-to-year variations in predominant pollen occurred, and abundant levels of fungal spores were observed. Coincidently, a large wildlands fire that may have affected pollen levels occurred in the region shortly before sampling began. The entire survey period took place during a drought.

  18. Trends and threshold exceedances analysis of airborne pollen concentrations in Metropolitan Santiago Chile

    PubMed Central

    Toro A., Richard; Córdova J., Alicia; Canales, Mauricio; Morales S., Raul G. E.; Mardones P., Pedro; Leiva G., Manuel A.

    2015-01-01

    Pollen is one of the primary causes of allergic rhinoconjunctivitis in urban centers. In the present study, the concentrations of 39 different pollens in the Santiago de Chile metropolitan area over the period 2009–2013 are characterized. The pollen was monitored daily using Burkard volumetric equipment. The contribution of each type of pollen and the corresponding time trends are evaluated. The concentrations of the pollens are compared with the established threshold levels for the protection of human health. The results show that the total amount of pollen grains originating from trees, grasses, weeds and indeterminate sources throughout the period of the study was 258,496 grains m-3, with an annual average of 51,699 ± 3,906 grains m-3 year-1. The primary source of pollen is Platanus orientalis, which produces 61.8% of the analyzed pollen. Grass pollen is the third primary component of the analyzed pollen, with a contribution of 5.82%. Among the weeds, the presence of Urticacea (3.74%) is remarkable. The pollination pattern of the trees is monophasic, and the grasses have a biphasic pattern. The trends indicate that the total pollen and tree pollen do not present a time trend that is statistically significant throughout the period of the study, whereas the grass pollen and weed pollen concentrations in the environment present a statistically significant decreasing trend. The cause of this decrease is unclear. The pollen load has doubled over the past decade. When the observed concentrations of the pollens were compared with the corresponding threshold levels, the results indicated that over the period of the study, the pollen concentrations were at moderate, high and very high levels for an average of 293 days per year. Systematic counts of the pollen grains are an essential method for diagnosing and treating patients with pollinosis and for developing forestation and urban planning strategies. PMID:25946339

  19. Trends and threshold exceedances analysis of airborne pollen concentrations in Metropolitan Santiago Chile.

    PubMed

    Toro A, Richard; Córdova J, Alicia; Canales, Mauricio; Morales S, Raul G E; Mardones P, Pedro; Leiva G, Manuel A

    2015-01-01

    Pollen is one of the primary causes of allergic rhinoconjunctivitis in urban centers. In the present study, the concentrations of 39 different pollens in the Santiago de Chile metropolitan area over the period 2009-2013 are characterized. The pollen was monitored daily using Burkard volumetric equipment. The contribution of each type of pollen and the corresponding time trends are evaluated. The concentrations of the pollens are compared with the established threshold levels for the protection of human health. The results show that the total amount of pollen grains originating from trees, grasses, weeds and indeterminate sources throughout the period of the study was 258,496 grains m-3, with an annual average of 51,699 ± 3,906 grains m-3 year-1. The primary source of pollen is Platanus orientalis, which produces 61.8% of the analyzed pollen. Grass pollen is the third primary component of the analyzed pollen, with a contribution of 5.82%. Among the weeds, the presence of Urticacea (3.74%) is remarkable. The pollination pattern of the trees is monophasic, and the grasses have a biphasic pattern. The trends indicate that the total pollen and tree pollen do not present a time trend that is statistically significant throughout the period of the study, whereas the grass pollen and weed pollen concentrations in the environment present a statistically significant decreasing trend. The cause of this decrease is unclear. The pollen load has doubled over the past decade. When the observed concentrations of the pollens were compared with the corresponding threshold levels, the results indicated that over the period of the study, the pollen concentrations were at moderate, high and very high levels for an average of 293 days per year. Systematic counts of the pollen grains are an essential method for diagnosing and treating patients with pollinosis and for developing forestation and urban planning strategies.

  20. Aerobiology of Artemisia airborne pollen in Murcia (SE Spain) and its relationship with weather variables: annual and intradiurnal variations for three different species. Wind vectors as a tool in determining pollen origin

    NASA Astrophysics Data System (ADS)

    Giner, M. Munuera; Carrión García, José S.; García Sellés, Javier

    Detailed results from a 2-year survey of airborne pollen concentrations of Artemisia in Murcia are presented. Three consecutive pollen seasons of Artemisia occurring each year, related to three different species (A.campestris, A.herba-alba and A.barrelieri), were observed. A winter blooming of Artemisia could explain the incidence of subsequent pollinosis in the Murcia area. With regard to meteorological parameters, mathematical analyses showed relationships between daily pollen concentrations of Artemisia in summer-autumn and precipitations that occurred 6-8 weeks before. The cumulative percentage of insolation from 1 March seemed to be related to blooming onsets. Once pollination has begun, meteorological factors do not seem to influence pollen concentrations significantly. Intradiurnal patterns of pollen concentrations were similar for late summer and winter species (A. campestris and A.barrelieri). During autumn blooming (A.herba-alba), the intradiurnal pattern was particularly erratic. Theoretical values of wind run were obtained for each pollen season by the graphical sum of hourly wind vectors. When theoretical wind run was mapped onto the vegetation pattern, supposed pollen source locations were obtained for each hour. By comparing supposed hourly pollen origins with the intradiurnal patterns of pollen concentrations, it can be seen that this simple model explains variations in mean pollen concentrations throughout the day.

  1. Adaptation and Impairment of DNA Repair Function in Pollen of Betula verrucosa and Seeds of Oenothera biennis from Differently Radionuclide-contaminated Sites of Chernobyl

    PubMed Central

    Boubriak, I. I.; Grodzinsky, D. M.; Polischuk, V. P.; Naumenko, V. D.; Gushcha, N. P.; Micheev, A. N.; McCready, S. J.; Osborne, D. J.

    2008-01-01

    Background and Aims The plants that have remained in the contaminated areas around Chernobyl since 1986 encapsulate the effects of radiation. Such plants are chronically exposed to radionuclides that they have accumulated internally as well as to α-, β- and γ-emitting radionuclides from external sources and from the soil. This radiation leads to genetic damage that can be countered by DNA repair systems. The objective of this study is to follow DNA repair and adaptation in haploid cells (birch pollen) and diploid cells (seed embryos of the evening primrose) from plants that have been growing in situ in different radionuclide fall-out sites in monitored regions surrounding the Chernobyl explosion of 1986. Methods Radionuclide levels in soil were detected using gamma-spectroscopy and radiochemistry. DNA repair assays included measurement of unscheduled DNA synthesis, electrophoretic determination of single-strand DNA breaks and image analysis of rDNA repeats after repair intervals. Nucleosome levels were established using an ELISA kit. Key Results Birch pollen collected in 1987 failed to perform unscheduled DNA synthesis, but pollen at γ/β-emitter sites has now recovered this ability. At a site with high levels of combined α- and γ/β-emitters, pollen still exhibits hidden damage, as shown by reduced unscheduled DNA synthesis and failure to repair lesions in rDNA repeats properly. Evening primrose seed embryos generated on plants at the same γ/β-emitter sites now show an improved DNA repair capacity and ability to germinate under abiotic stresses (salinity and accelerated ageing). Again those from combined α- and γ/β-contaminated site do not show this improvement. Conclusions Chronic irradiation at γ/β-emitter sites has provided opportunities for plant cells (both pollen and embryo cells) to adapt to ionizing irradiation and other environmental stresses. This may be explained by facilitation of DNA repair function. PMID:17981881

  2. Analysis of high allergenicity airborne pollen dispersion: common ragweed study case in Lithuania.

    PubMed

    Šaulienė, Ingrida; Veriankaitė, Laura

    2012-01-01

    The appearance of ragweed pollen in the air became more frequent in northerly countries. Attention of allergologists and aerobiologists in these countries is focused on the phenomenon that Ambrosia plants found relatively sporadic but the amount of pollen is high in particular days. Over the latter decade, a matter of particular concern has been Ambrosia pollen, whose appearance in the air is determined by the plants dispersing it and meteorological processes that alter pollen release, dissemination, transport or deposition on surfaces. Pollen data used in this study were collected in three pollen-trapping sites in Lithuania. The data corresponding to 2006-2011 years of pollen monitoring were documented graphically and evaluated statistically. Analysis of the pollen data suggests that although the number of ragweed plants identified has not increased over the latter decade, the total pollen count has been on the increase during the recent period. The highest atmospheric pollen load is established on the last days of August and first days of September. The estimated effect of meteorological parameters on pollen dispersal in the air showed that in Lithuania ragweed pollen is recorded when the relative air humidity is about 70%, and the minimal air temperature is not less than 12°C. Analysis of wind change effect on pollen count indicates that pollen is most often recorded in the air when the changes in wind speed are low (1-2 m/s). We have established a regularity exhibiting an increase in ragweed pollen count conditioned by south-eastern winds in Lithuania.

  3. The influence from synoptic weather on the variation of air pollution and pollen exposure

    NASA Astrophysics Data System (ADS)

    Grundström, Maria; Dahl, Åslög; Chen, Deliang; Pleijel, Håkan

    2014-05-01

    Exposure to elevated air pollution levels can make people more susceptible to allergies or result in more severe allergic reactions for people with an already pronounced sensitivity to pollen. The aim of this study was to investigate the relationships between urban air pollution (nitrogen oxides, ozone and particles) and airborne Betula pollen in Gothenburg, Sweden, during the pollen seasons for the years 2001-2012. Further, the influence from atmospheric weather pattern on pollen/pollution related risk, using Lamb Weather Types (LWT), was also considered. Daily LWTs were obtained by comparing the variation in atmospheric pressure from a 16 point grid over a given region on earth (scale ~1000km) and essentially describe the air mass movement for the region. They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E... etc.). LWTs with dry and calm meteorological character e.g. limited precipitation and low to moderate wind speeds (A, NE, E, SE) were associated with strongly elevated air pollution and pollen levels where Betula was exceptionally high in LWTs NE and E. The co-variation between Betula pollen and ozone was strong and significant during situations with LWTs A, NE, E and SE. The most important conclusion from this study was that LWTs A, NE, E and SE were associated with high pollen and air pollution levels and can therefore be classified as high risk weather situations for combined air pollution and pollen exposure. Our study shows that LWTs have the potential to be developed into an objective tool for integrated air quality forecasting and a warning system for risk of high exposure situations.

  4. Seasonal prevalence of air-borne pollen and spores in Kuala Lumpur, Malaysia.

    PubMed

    Ho, T M; Tan, B H; Ismail, S; Bujang, M K

    1995-06-01

    Aerosampling using Rotorod samplers was conducted in the Institute for Medical Research, Kuala Lumpur, Malaysia, from December 1991 to November 1993. Samples were collected twice a week between 10.00 hours to 12.00 hours. Rods were stained and examined microscopically. A total of 8 and 20 types of pollens and mold spores were collected, respectively. More mold spores were collected than pollens. Grass pollen constituted more than 40 percent of total pollen counts. Gramineae pollen counts peaked in March and September. The most abundant mold spore was Cladosporium followed by Rust, Nigrospora, Curvularia and Smut. Cladosporium counts peaked in February and August. Rust counts peaked in June and December whereas counts for Nigrospora peaked in February and October. Highest counts of Smut were recorded in March and October. Curvularia counts peaked in January, June and September.

  5. Masting by Betula-species; applying the resource budget model to north European data sets

    NASA Astrophysics Data System (ADS)

    Ranta, Hanna; Oksanen, Annukka; Hokkanen, Tatu; Bondestam, Kristoffer; Heino, Saini

    2005-01-01

    Masting, the intermittent production of large crops of flowers by a plant population, is a common feature among trees in boreal and temperate forests. The pollen of many broadleaved trees causes allergic diseases, which are major causes of increasing health-care costs in industrialised countries. As the prevalence and severity of allergic diseases are connected with the concentrations of airborne pollen, an universal model predicting the intensity of the coming flowering would be a valuable tool for pollen information services, and ultimately for allergic people and allergologists. We investigated whether a resource budget model created in Japan explains the fluctuations in the annual pollen sums of Betula-species in north European data sets (10 12 years at 4 sites, 20 years at 10 sites). Using the shorter data sets, the model explained 76 92% of the annual fluctuations at five study sites. Using the 20-year data set, the percentage for southern Finland was much lower, only 48%, compared with the 85% of the 12-year data set. The annual pollen sums have been higher during the 1990s than in the 1980s, which may explain the ineffectiveness of the model, while applied to the 20-year data set. Our results support the resource budget model: the masting of birch species is regulated by weather factors together with the system of resource allocation among years. The model can serve pollen information service. However, only the 10 most recent years should be used to avoid interference from trends in changing vegetation and/or climate.

  6. Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra

    DTIC Science & Technology

    2009-02-01

    biological particles (1–10) are important in the transmission of diseases (11, 12) of humans (e.g., tuberculosis , influenza), farm animals (e.g...the air. Bacteria, rickettsia, viruses, protein toxins, and some neurotoxins produced by microbes have been feared as potential airborne biological

  7. A principal component regression model to forecast airborne concentration of Cupressaceae pollen in the city of Granada (SE Spain), during 1995-2006.

    PubMed

    Ocaña-Peinado, Francisco M; Valderrama, Mariano J; Bouzas, Paula R

    2013-05-01

    The problem of developing a 2-week-on ahead forecast of atmospheric cypress pollen levels is tackled in this paper by developing a principal component multiple regression model involving several climatic variables. The efficacy of the proposed model is validated by means of an application to real data of Cupressaceae pollen concentration in the city of Granada (southeast of Spain). The model was applied to data from 11 consecutive years (1995-2005), with 2006 being used to validate the forecasts. Based on the work of different authors, factors as temperature, humidity, hours of sun and wind speed were incorporated in the model. This methodology explains approximately 75-80% of the variability in the airborne Cupressaceae pollen concentration.

  8. Airborne pollen sampling in Manoa Valley, Hawaii: effect of rain, humidity and wind.

    PubMed

    Massey, D G; Fournier-Massey, G

    1984-05-01

    Kramer-Collins pollen sampling was conducted over 24 hours for 25 consecutive months at two valley sites in Honolulu. Of 1,059 expected samples, 699 (66.0%) were collected. Only 25 were considered excellent, i.e., eight three-hour collection bands. Twenty eight were considered good, ie., two to six bands. The difficulties in the study were associated with the weather directly (17.5%), the power source (3.9%), inadequancy of the samplers (63.1%) and the inexperience of technicians (15.3%). Sampler problems were also indirectly attributable to the high humidity, rain and wind, which differed at the two sites.

  9. Threat of allergenic airborne grass pollen in Szczecin, NW Poland: the dynamics of pollen seasons, effect of meteorological variables and air pollution.

    PubMed

    Puc, Małgorzata

    2011-09-01

    The dynamics of Poaceae pollen season, in particularly that of the Secale genus, in Szczecin (western Poland) 2004-2008 was analysed to establish a relationship between the meteorological variables, air pollution and the pollen count of the taxa studied. Consecutive phases during the pollen season were defined for each taxon (1, 2.5, 5, 25, 50, 75, 95, 97.5, 99% of annual total), and duration of the season was determined using the 98% method. On the basis of this analysis, the temporary differences in the dynamics of the seasons were most evident for Secale in 2005 and 2006 with the longest main pollen season (90% total pollen). The pollen season of Poaceae started the earliest in 2007, when thermal conditions were the most favourable. Correlation analysis with meteorological factors demonstrated that the relative humidity, mean and maximum air temperature, and rainfall were the factors influencing the average daily pollen concentrations in the atmosphere; also, the presence of air pollutants such as ozone, PM(10) and SO(2) was statistically related to the pollen count in the air. However, multiple regression models explained little part of the total variance. Atmospheric pollution induces aggravation of symptoms of grass pollen allergy.

  10. Environmental factors affecting the start of pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain).

    PubMed

    Rodriguez-Rajo, Francisco Javier; Dopazo, Angeles; Jato, Victoria

    2004-01-01

    Alnus pollen is an early component of the annual atmospheric aerosol of the north-west regions of Spain, which causes the first occurrence of allergic symptoms. Seasonal and intra-daily variation of Alnus pollination, and the influence that main meteorological parameters exert, was studied in this paper. Monitoring was carried out from 1993-2002, by using two Lanzoni VPPS 2000 volumetric samplers. Once the atmospheric behaviour of this pollen had been identified, the final objective was to elaborate predictive models to determine the onset of the Alnus pollen season and its concentrations during the pollination period in two localities of north-west Spain (Santiago and Ourense). Winter chilling required to overcome the bud-dormancy period was similar in both cities, with around 800 Chilling Hours (C.H.) and 5.5 degrees C threshold temperature. Calculation of heat requirement for bud growth was carried out with maximum temperature, with around 50 Growth Degree Days (G.D.D. degrees C) needed, with 6 degrees C threshold temperature. Data from 2002 were used in order to determine the real validity of the models. This year was not taken into account to establish the aforementioned models. The variation between the predicted start of the pollen season and the observed season was smallest in Ourense. Verifying the proposed models for predicting daily mean concentrations of Alnus pollen during the pollen season shows that the predicted curves fits the observed variations of daily mean concentrations.

  11. [Airborne Japanese cedar allergens studied by immunoblotting technique using anti-Cry j I monoclonal antibody--comparison with actual pollen counts and effect of wind speed and directions].

    PubMed

    Iwaya, M; Murakami, G; Matsuno, M; Onoue, Y; Takayanagi, M; Kayahara, M; Adachi, Y; Adachi, Y; Okada, T; Kenda, S

    1995-07-01

    We collected airborne particles of Japanese cedar pollen with Burkard's sampling tape in Toyama from February to April 1992. The tape was cut into two pieces in parallel to time axis. The one of piece of the tapes was stained with glycerin-jerry and stained pollens were counted with a microscope. The other piece was treated according to the immunoblotting technique. The airborne pollen allergens, reacting with anti-Cry j I monoclonal antibody, were stained as blue spots. The spots were classified by diameter into two groups, large spots (> 50 microns) and small spots (< 50 microns). There were significant correlations found between the airborne Cry j I allergen spots (in large and small) and actual pollen counts obtained with the Burkard's sampler and the Durham's sampler (r = 0.729, 0.586 in large spots and r = 0.676, 0.489 in small spots, p < 0.001). The counts of small spots stayed in high level even in April when actual pollen counts decreased. We concluded that this discrepancy was caused by allergenic crushed cedar pollen particles staying floating longer than actual pollens. Secondly we set a gauge of wind speed and direction at the same point as the samplers. The actual pollen counts and large spots counts were significantly larger in the wind (SE wind in Toyama city) from cedar trees blooming area than other areas. However small spots counts did not differ significantly according to wind directions. Wind speed did not effect on actual pollen counts, large spots counts and small spots count.

  12. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    PubMed

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  13. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications

    NASA Astrophysics Data System (ADS)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  14. Airborne pollen of Carya, Celtis, Cupressus, Fraxinus and Pinus in the metropolitan area of Monterrey Nuevo Leon, Mexico.

    PubMed

    Rocha-Estrada, Alejandra; Alvarado-Vázquez, Marco Antonio; Torres-Cepeda, Teresa Elizabeth; Foroughbakhch-Pournavab, Rahim; Hernández-Piñero, Jorge Luis

    2008-01-01

    The concentration of pollen grains in the atmosphere over the metropolitan area of Monterrey, Nuevo Leon, Mexico, was analyzed throughout a year from March 2003-February 2004, focused on the genus Carya, Celtis, Cupressus, Fraxinus and Pinus owing to their interest as etiological pollinosis agents in diverse regions of the world. A 7-day Hirst type volumetric spore and pollen trap was located on a building roof of the city at 15 m from ground level for continuous sampling. The total quantity of pollen recorded for the study period was 21,083 grains/m(3), corresponding to 49.75 % of the taxa of interest. February and March were the months with higher pollen amounts in the air with 7,525 and 2,781 grains/m(3), respectively, and amounted to 49 % of total year through pollen. Fraxinus was the genus which contributed to the largest amount of pollen with 28 % of total grains (5,935 grains/m(3)) followed by Cupressus with 13 % (2,742 grains/ m(3)). Celtis, Pinus and Carya contributed with 5.3 % , 2.7 % , and 0.6 % of total pollen, respectively. These results indicate that Fraxinus and Cupressus are present in the area in sufficient quantity to indicate likely involvement in the origin of allergic disorders in the human population.

  15. Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City.

    PubMed

    Ríos, B; Torres-Jardón, R; Ramírez-Arriaga, E; Martínez-Bernal, A; Rosas, I

    2016-05-01

    Pollen is an important cause of allergic respiratory ailments in the Mexico City Metropolitan Area (MCMA). However, very little is known if ambient air temperature correlates with the early blooming of plants observed in other urban areas around the world. A research study was conducted during the dry season of 2012-2013 at three representative sites of the MCMA with different urban characteristics with the aim to understand the relationships between the profusion and diversity of pollen against temperature and other meteorological variables and degree of urbanization. Pollen samples were collected using a Hirst-type trap sampler in the sites: Merced (highly urbanized), Iztapalapa (medium-high urbanized) and Coyoacan (moderately urbanized). Urbanization levels were determined using a composite index based on population density, proportion of surface covered by construction and asphalt, and urban heat island intensity. A set of representative pollen sampling tapes were assayed under a light microscope at magnification of ×1,000 and converted to grains per cubic meter. The most representative pollen types found in the three sites were, regardless of urbanization levels were: Fraxinus, Cupressaceae/Taxodiaceae, Casuarina, Alnus, Myrtaceae, and Pinus. Total pollen concentration was greatest in the moderately urbanized area, although earlier blooming took place at the highly urbanized zone. Total pollen concentration in the medium-high urbanized site has the lowest because the green areas in this zone of MCMA are few. In a diurnal basis, the most abundant pollen types peaked near midday or in the afternoon evening at the three sites. A Spearman test showed a positive correlation among bihourly pollen concentrations, temperature and relative humidity in all sites, but wind speed just correlated in Iztapalapa and Coyoacan. The results obtained suggest that Urban Heat Island Intensity can disturb flowering periods and pollen concentrations, largely in the highly urbanized

  16. Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City

    NASA Astrophysics Data System (ADS)

    Ríos, B.; Torres-Jardón, R.; Ramírez-Arriaga, E.; Martínez-Bernal, A.; Rosas, I.

    2016-05-01

    Pollen is an important cause of allergic respiratory ailments in the Mexico City Metropolitan Area (MCMA). However, very little is known if ambient air temperature correlates with the early blooming of plants observed in other urban areas around the world. A research study was conducted during the dry season of 2012-2013 at three representative sites of the MCMA with different urban characteristics with the aim to understand the relationships between the profusion and diversity of pollen against temperature and other meteorological variables and degree of urbanization. Pollen samples were collected using a Hirst-type trap sampler in the sites: Merced (highly urbanized), Iztapalapa (medium-high urbanized) and Coyoacan (moderately urbanized). Urbanization levels were determined using a composite index based on population density, proportion of surface covered by construction and asphalt, and urban heat island intensity. A set of representative pollen sampling tapes were assayed under a light microscope at magnification of ×1,000 and converted to grains per cubic meter. The most representative pollen types found in the three sites were, regardless of urbanization levels were: Fraxinus, Cupressaceae/Taxodiaceae, Casuarina, Alnus, Myrtaceae, and Pinus. Total pollen concentration was greatest in the moderately urbanized area, although earlier blooming took place at the highly urbanized zone. Total pollen concentration in the medium-high urbanized site has the lowest because the green areas in this zone of MCMA are few. In a diurnal basis, the most abundant pollen types peaked near midday or in the afternoon evening at the three sites. A Spearman test showed a positive correlation among bihourly pollen concentrations, temperature and relative humidity in all sites, but wind speed just correlated in Iztapalapa and Coyoacan. The results obtained suggest that Urban Heat Island Intensity can disturb flowering periods and pollen concentrations, largely in the highly urbanized

  17. Reevaluation of pollen quantitation by an automatic pollen counter.

    PubMed

    Muradil, Mutarifu; Okamoto, Yoshitaka; Yonekura, Syuji; Chazono, Hideaki; Hisamitsu, Minako; Horiguchi, Shigetoshi; Hanazawa, Toyoyuki; Takahashi, Yukie; Yokota, Kunihiko; Okumura, Satoshi

    2010-01-01

    Accurate and detailed pollen monitoring is useful for selection of medication and for allergen avoidance in patients with allergic rhinitis. Burkard and Durham pollen samplers are commonly used, but are labor and time intensive. In contrast, automatic pollen counters allow simple real-time pollen counting; however, these instruments have difficulty in distinguishing pollen from small nonpollen airborne particles. Misidentification and underestimation rates for an automatic pollen counter were examined to improve the accuracy of the pollen count. The characteristics of the automatic pollen counter were determined in a chamber study with exposure to cedar pollens or soil grains. The cedar pollen counts were monitored in 2006 and 2007, and compared with those from a Durham sampler. The pollen counts from the automatic counter showed a good correlation (r > 0.7) with those from the Durham sampler when pollen dispersal was high, but a poor correlation (r < 0.5) when pollen dispersal was low. The new correction method, which took into account the misidentification and underestimation, improved this correlation to r > 0.7 during the pollen season. The accuracy of automatic pollen counting can be improved using a correction to include rates of underestimation and misidentification in a particular geographical area.

  18. Integration of Airborne Aerosol Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic,Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; VandeWater, Peter K.; Levetin, Estelle; Crimmins, Theresa; Weltzin, Jake

    2011-01-01

    This slide presentation reviews the study that used a model to forecast pollen to assist in warning for asthma populations. Using MODIS daily reflectances to input to a model, PREAM, adapted from the Dust REgional Atmospheric Modeling (DREAM) system, a product of predicted pollen is produced. Using the pollen from Juniper the PREAM model was shown to be an assist in alerting the public of pollen bursts, and reduce the health impact on asthma populations.

  19. A Six-Year Study on the Changes in Airborne Pollen Counts and Skin Positivity Rates in Korea: 2008–2013

    PubMed Central

    Park, Hye Jung; Lee, Jae-Hyun; Park, Kyung Hee; Kim, Kyu Rang; Han, Mae Ja; Choe, Hosoeng

    2016-01-01

    Purpose The occurrence of pollen allergy is subject to exposure to pollen, which shows regional and temporal variations. We evaluated the changes in pollen counts and skin positivity rates for 6 years, and explored the correlation between their annual rates of change. Materials and Methods We assessed the number of pollen grains collected in Seoul, and retrospectively reviewed the results of 4442 skin-prick tests conducted at the Severance Hospital Allergy-Asthma Clinic from January 1, 2008 to December 31, 2013. Results For 6 years, the mean monthly total pollen count showed two peaks, one in May and the other in September. Pollen count for grasses also showed the same trend. The pollen counts for trees, grasses, and weeds changed annually, but the changes were not significant. The annual skin positivity rates in response to pollen from grasses and weeds increased significantly over the 6 years. Among trees, the skin positivity rates in response to pollen from walnut, popular, elm, and alder significantly increased over the 6 years. Further, there was a significant correlation between the annual rate of change in pollen count and the rate of change in skin positivity rate for oak and hop Japanese. Conclusion The pollen counts and skin positivity rates should be monitored, as they have changed annually. Oak and hop Japanese, which showed a significant correlation with the annual rate of change in pollen count and the rate of change in skin positivity rate over the 6 years may be considered the major allergens in Korea. PMID:26996572

  20. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen.

    PubMed

    Obersteiner, Andrea; Gilles, Stefanie; Frank, Ulrike; Beck, Isabelle; Häring, Franziska; Ernst, Dietrich; Rothballer, Michael; Hartmann, Anton; Traidl-Hoffmann, Claudia; Schmid, Michael

    2016-01-01

    Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress.

  1. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen

    PubMed Central

    Obersteiner, Andrea; Gilles, Stefanie; Frank, Ulrike; Beck, Isabelle; Häring, Franziska; Ernst, Dietrich; Rothballer, Michael; Hartmann, Anton; Traidl-Hoffmann, Claudia; Schmid, Michael

    2016-01-01

    Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress. PMID:26910418

  2. Predicting tree pollen season start dates using thermal conditions.

    PubMed

    Myszkowska, Dorota

    2014-01-01

    Thermal conditions at the beginning of the year determine the timing of pollen seasons of early flowering trees. The aims of this study were to quantify the relationship between the tree pollen season start dates and the thermal conditions just before the beginning of the season and to construct models predicting the start of the pollen season in a given year. The study was performed in Krakow (Southern Poland); the pollen data of Alnus, Corylus and Betula were obtained in 1991-2012 using a volumetric method. The relationship between the tree pollen season start, calculated by the cumulated pollen grain sum method, and a 5-day running means of maximum (for Alnus and Corylus) and mean (for Betula) daily temperature was found and used in the logistic regression models. The estimation of model parameters indicated their statistically significance for all studied taxa; the odds ratio was higher in models for Betula, comparing to Alnus and Corylus. The proposed model makes the accuracy of prediction in 83.58 % of cases for Alnus, in 84.29 % of cases for Corylus and in 90.41 % of cases for Betula. In years of model verification (2011 and 2012), the season start of Alnus and Corylus was predicted more precisely in 2011, while in case of Betula, the model predictions achieved 100 % of accuracy in both years. The correctness of prediction indicated that the data used for the model arrangement fitted the models well and stressed the high efficacy of model prediction estimated using the pollen data in 1991-2010.

  3. Integration of Airborne Aerosol Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; VandeWater, Peter K.; Levetin, Estelle; Losleben, Mark; Weltzin, Jake

    2009-01-01

    The residual signal indicates that the pollen event may influence the seasonal signal to an extent that would allow detection, given accurate QA filtering and BRDF corrections. MODIS daily reflectances increased during the pollen season. The DREAM model (PREAM) was successfully modified for use with pollen and may provide 24-36 hour running pollen forecasts. Publicly available pollen forecasts are linked to general weather patterns and roughly-known species phenologies. These are too coarse for timely health interventions. PREAM addresses this key data gap so that targeting intervention measures can be determined temporally and geospatially. The New Mexico Department of Health (NMDOH) as part of its Environmental Public Health Tracking Network (EPHTN) would use PREAM a tool for alerting the public in advance of pollen bursts to intervene and reduce the health impact on asthma populations at risk.

  4. Integration for Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.

    2008-01-01

    The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.

  5. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula.

    PubMed

    Huang, Haijiao; Wang, Shan; Jiang, Jing; Liu, Guifeng; Li, Huiyu; Chen, Su; Xu, Huanwen

    2014-08-01

    The involvement of APETALA1 (AP1) in the flowering transition has been the focus of much research. Here, we produced Betula platyphylla × Betula pendula (birch) lines that overexpressed BpAP1 using Agrobacterium-mediated transformation; we obtained five independent 35S::BpAP1 transgenic lines. Polymerase chain reaction (PCR), Southern, northern and western analyses were used to identify the transformants. As determined by quantitative real-time PCR (qRT-PCR), BpAP1 expression in roots, shoots, leaves and terminal buds of 35S::BpAP1 transgenic lines was significantly higher than that in the wild type (WT, P < 0.01). The average height of 2-year-old 35S::BpAP1 plants was significantly lower (41.17%) than that of non-transgenic plants. In the 35S::BpAP1 lines, inflorescences emerged successively beginning 2 months after transplanting. In addition, the length-diameter ratio of fully developed male and female inflorescences were both significantly less than those of the WT (P < 0.05), i.e. the morphological characteristic was stubby. The male inflorescences emerged early, with empty, draped anthers, and pollen was rarely produced, whereas the female floret structure was not different from WT. The pistils developed normally and could accept pollen, leading to the production of hybrid progeny (F1 ). F1 plants completed flowering within only 1 year after sowing. We demonstrate that BpAP1 can be inherited through sexual reproduction. Overexpression of BpAP1 caused early flowering and dwarfism; these lines had an obviously shortened juvenile phase. These results greatly increase our understanding of the mechanisms underlying the flowering transition and enhance genetic studies of birch traits, and they open up new possibilities for the breeding of birch and other woody plants.

  6. Recent pollen spectra and zonal vegetation in the western USSR

    NASA Astrophysics Data System (ADS)

    Peterson, G. M.

    The relationship of modern pollen spectra to present-day vegetation is critical to the reconstruction of vegetation and climate from fossil pollen spectra. This study uses isopoll maps to illustrate the pollen-vegetation relationships in the Soviet Union west of 100°E and presents descriptive statistics for 544 modern samples of arboreal pollen and for 370 samples of herb pollen obtained from the Soviet palynological literature. Data are assembled from this large geographic region and presented in a standardized form on a scale which can be used to relate quantitative pollen data to zonal vegetation and climatic variables and to make comparisons with other regions. In order to show the relationship between pollen types and major ecotones in forested and non-forested areas, the pollen data are presented as percentages of a sum including both arboreal and non-arboreal pollen. Major pollen types which attain values of 10% or more in at least one vegetation zone include Betula (birch), Cyperaceae (sedges), Picea (spruce), Pinus (total pine), Pinus sibirica, Ericaceae (heath family), Gramineae (grasses), Artemisia (sage), and Chenopodiaceae (i.e., saltbush, Russian thistle, pigweed family). Samples from the tundra and forest-tundra have high values of Ericaceae (heath family), birch, alder, and sedge pollen. In the boreal forest, pine, spruce, and birch pollen predominate. In the mixed and deciduous forests, Tilia (linden), Quercus (oak), Ulmus (elm), and Corylus (hazel) pollen attain maximum values. In the forest-steppe and steppe zones, arboreal pollen decreases in importance and is replaced by non-arboreal pollen types. Pollen of Artemisia and Chenopodiaceae predominates in the semi-desert zones. In spite of variation in the pollen spectra arising from the use of different sediment types (soil, peat, and river sediments), and human disturbance of vegetation, the pollen spectra are clearly related to zonal vegetation. Pollen spectra from the western USSR show

  7. Predicting days of high allergenic risk during Betula pollination using weather types.

    PubMed

    Laaidi, K

    2001-09-01

    The aim of this study was to build up a picture of the influence of meteorological conditions on pollen and pollinosis, taking account of weather types, pollen concentrations in the air and pollinosis symptoms, with the aim of preventing allergic responses. The study took place in Burgundy from 1996 to 1998, during the pollination of the birch (Betula), which is the most important arborean allergen in this region. We used daily pollen data from four Hirst volumetric traps, identified weather types by Bénichou's classification, and obtained data on the occurrence of rhinitis, conjunctivitis, asthma and coughing from a sample of 100 patients. These data were analysed by multiple-component analysis. The results show that pollen dispersal is favoured by windy conditions, low relative humidity, precipitation below 2 mm and temperatures above 6 degrees C. Such weather also favours pollinosis, but other particular meteorological situations, even if they do not assist pollen dispersal, can act directly on the development of symptoms: a decrease of temperature (3 degrees C) led to the development of rhinitis and conjunctivitis, while strong winds were associated with many cases of conjunctivitis and asthma, owing to the irritant effect of cold or wind; asthma was favoured by temperature inversions with fog, probably because such weather corresponds to high levels of pollution, which act on bronchial hyperreactivity. Because the weather types favouring pollination and pollinosis are predicted by the meteorological office, this can constitute a tool for reducing the effect of high-risk allergenic days.

  8. Predicting days of high allergenic risk during Betula pollination using weather types

    NASA Astrophysics Data System (ADS)

    Laaidi, K.

      The aim of this study was to build up a picture of the influence of meteorological conditions on pollen and pollinosis, taking account of weather types, pollen concentrations in the air and pollinosis symptoms, with the aim of preventing allergic responses. The study took place in Burgundy from 1996 to 1998, during the pollination of the birch (Betula), which is the most important arborean allergen in this region. We used daily pollen data from four Hirst volumetric traps, identified weather types by Bénichou's classification, and obtained data on the occurrence of rhinitis, conjunctivitis, asthma and coughing from a sample of 100 patients. These data were analysed by multiple-component analysis. The results show that pollen dispersal is favoured by windy conditions, low relative humidity, precipitation below 2 mm and temperatures above 6°C. Such weather also favours pollinosis, but other particular meteorological situations, even if they do not assist pollen dispersal, can act directly on the development of symptoms: a decrease of temperature (3°C) led to the development of rhinitis and conjunctivitis, while strong winds were associated with many cases of conjunctivitis and asthma, owing to the irritant effect of cold or wind; asthma was favoured by temperature inversions with fog, probably because such weather corresponds to high levels of pollution, which act on bronchial hyperreactivity. Because the weather types favouring pollination and pollinosis are predicted by the meteorological office, this can constitute a tool for reducing the effect of high-risk allergenic days.

  9. Modern pollen deposition in Long Island Sound

    USGS Publications Warehouse

    Beuning, Kristina R.M.; Fransen, Lindsey; Nakityo, Berna; Mecray, Ellen L.; Bucholtz ten Brink, Marilyn R.

    2000-01-01

    Palynological analyses of 20 surface sediment samples collected from Long Island Sound show a pollen assemblage dominated by Carya, Betula, Pinus, Quercus, Tsuga, and Ambrosia, as is consistent with the regional vegetation. No trends in relative abundance of these pollen types occur either from west to east or associated with modern riverine inputs throughout the basin. Despite the large-scale, long-term removal of fine-grained sediment from winnowed portions of the eastern Sound, the composition of the pollen and spore component of the sedimentary matrix conforms to a basin-wide homogeneous signal. These results strongly support the use of select regional palynological boundaries as chronostratigraphic tools to provide a framework for interpretation of the late glacial and Holocene history of the Long Island Sound basin sediments.

  10. Impact and correlation of environmental conditions on pollen counts in Karachi, Pakistan.

    PubMed

    Perveen, Anjum; Khan, Muneeba; Zeb, Shaista; Imam, Asif Ali

    2015-02-01

    A quantitative and qualitative survey of airborne pollen was performed in the city of Karachi, and the pollen counts were correlated with different climatic conditions. The aim of the study was to determine the possible effect of meteorological factors on airborne pollen distribution in the atmosphere of Karachi city. Pollen sampling was carried out by using Burkard spore Trap for the period of August 2009 to July 2010, and a total of 2,922 pollen grains/m(3) were recorded. In this survey, 22 pollen types were recognized. The highest pollen count was contributed by Poaceae pollen type (1,242 pollen grains/m(3)) followed by Amaranthaceae/Chenopodiaceae (948 pollen grains/m(3)), Cyperus rotundus (195 pollen grains/m(3)) and Prosopis juliflora (169 pollen grains/m(3)). Peak pollen season was in August showing a total of 709 pollen grains/m(3) and lowest pollen count was observed in January-2010. Pearson's chi-square test was performed for the possible correlation of pollen counts and climatic factors. The test revealed significant positive correlation of wind speed with pollen types of Amaranthaceae/Chenopodiaceae; Brassica campestris; Asteraceae; and Thuja orientalis. While the correlation of "average temperature" showed significant positive value with Asteraceae and Tamarix indica pollen types. Negative correlation was observed between humidity/ precipitation and pollen types of Brassica campestris; Daucus carota; Ephedra sp.; and Tamarix indica. In the light of above updated data one could identify various aeroallergens present in the air of Karachi city.

  11. Increasing allergy potency of Zinnia pollen grains in polluted areas.

    PubMed

    Chehregani, Abdolkarim; Majde, Ahmad; Moin, Mostafa; Gholami, Mansour; Ali Shariatzadeh, Mohammad; Nassiri, Hosein

    2004-06-01

    There is much evidence that allergic symptoms represent a major health problem in polluted cities. The aim of this research is to elucidate some microscopic effects of air pollutants on pollen structure, proteins, and allergenicity. A scanning electron microscopy study of pollen grains indicated that in polluted areas, airborne particles accumulate on the surface of pollen grains and change the shape and tectum of pollen. Also, many vesicles are released from polluted pollen grains and the pollen material agglomerates on the surface of pollen grains. SDS-PAGE revealed that different proteins exist in mature and immature pollen grains. There were no significant differences between protein bands of polluted and nonpolluted pollen grains, but in polluted pollen, protein content decreases in response to air pollution, causing the release of pollen proteins. The results indicate that mature pollen have more allergenicity than immature pollen. According to the experiments polluted pollen grains are more effective than nonpolluted pollen grains in inducing allergic symptoms. Air pollutants can cause allergic symptoms, but when associated with allergen pollen grains, their allergenicity power is increased.

  12. Tree pollen spectra and pollen allergy risk in the Osijek-Baranja County.

    PubMed

    Sikora, Magdalena; Valek, Marina; Šušić, Zdenka; Santo, Vera; Brdarić, Dario

    2013-01-01

    The forests of north-eastern Croatia, as well as various plants and trees in the parks and streets of the Osijek-Baranja County, produce large amounts of pollen during the pollen season, which can cause allergy symptoms in pollen sensitive individuals. The aim of this study was to determine the most frequent types of pollen in this area and estimate possible health risks, especially the risk of allergy. In 2009 and 2010, the staff of the Health Ecology Department of the Osijek Public Health Institute monitored tree pollen concentrations in four cities from the Osijek - Baranja County (Osijek, Našice, Đakovo and Beli Manastir) using a Burkard volumetric instrument. The results were affected by weather conditions. Windy and sunny days facilitated the transfer of pollen, whereas during rainy days, the concentration of pollen grains decreased. High pollen concentrations of Cupressaceae/Taxaceae, Betulaceae, Salicaceae and Aceraceae could be the cause for symptoms of pollen allergy. In 2009, conifers, birch and poplar pollen were dominant at all monitoring stations with 5000 pollen grains (PG), 3188 PG and 3113 PG respectively. The highest number of pollen grains was recorded at measuring site Osijek. The variations in airborne pollen concentration between pollen seasons were recorded at all monitoring stations. The most obvious variations were recorded at measuring site Osijek. The usual pollination period lasts two to three months, which means that most pollen grains remain present from February to early June. However, the Cupressaceae / Taxaceae pollination periods last the longest and their pollen grains remain present until the end of summer. The risk of allergy was determined at four monitored measuring stations and the obtained data confirmed that the largest number of days with a high health risk was at the Đakovo measuring station for a species of birch. The research information aims to help allergologists and individuals allergic to plant pollen develop

  13. Towards a "crime pollen calendar" - pollen analysis on corpses throughout one year.

    PubMed

    Montali, Elisa; Mercuri, Anna Maria; Trevisan Grandi, Giuliana; Accorsi, Carla Alberta

    2006-11-22

    A palynological study was carried out on 28 corpses brought in one year (June 2003-May 2004) to the morgue of the Institute of Legal Medicine of Parma (Northern Italy). This preliminary research focuses on the date of death, which was known for all corpses examined. Pollen sampling and analyses were made with the first aim of comparing the pollen grains found on corpses with those diffused in the atmosphere in the region in the same season as the known date of death. Eyebrows, hair-line near the forehead, facial skin and nasal cavities were sampled. Most of the corpses had trapped pollen grains, with the exception of two December corpses. All pollen grains were found with cytoplasm and in a good state of preservation. In this way, a series of reference data was collected for the area where the deaths occurred, and we examined whether pollen grains on corpses could be an index of the season of death. To verify this hypothesis, the pollen analyses were compared with data reported in the airborne pollen calendars of Parma and the region around. Pollen calendars record pollen types and their concentrations in the air, month by month. The quantity of pollen recorded on corpses did not prove to be directly related to the quantity of pollen in the air. But qualitatively, many pollen types which are seasonal markers were found on corpses. Main corpse/air discrepancies were also observed due to the great influence that the local environmental conditions of the death scene have in determining the pollen trapped by a corpse. Qualitative plus quantitative pollen data from corpses appeared helpful in indicating the season of death. A preliminary sketch of a "crime pollen calendar" in a synthetic graphic form was made by grouping the corpse pollen records into three main seasons: A, winter/spring; B, spring/summer; C, summer/autumn. Trends match the general seasonal trend of pollen types in the air.

  14. Detection of pollen grains in multifocal optical microscopy images of air samples.

    PubMed

    Landsmeer, Sander H; Hendriks, Emile A; de Weger, Letty A; Reiber, Johan H C; Stoel, Berend C

    2009-06-01

    Pollen is a major cause of allergy and monitoring pollen in the air is relevant for diagnostic purposes, development of pollen forecasts, and for biomedical and biological researches. Since counting airborne pollen is a time-consuming task and requires specialized personnel, an automated pollen counting system is desirable. In this article, we present a method for detecting pollen in multifocal optical microscopy images of air samples collected by a Burkard pollen sampler, as a first step in an automated pollen counting procedure. Both color and shape information was used to discriminate pollen grains from other airborne material in the images, such as fungal spores and dirt. A training set of 44 images from successive focal planes (stacks) was used to train the system in recognizing pollen color and for optimization. The performance of the system has been evaluated using a separate set of 17 image stacks containing 65 pollen grains, of which 86% was detected. The obtained precision of 61% can still be increased in the next step of classifying the different pollen in such a counting system. These results show that the detection of pollen is feasible in images from a pollen sampler collecting ambient air. This first step in automated pollen detection may form a reliable basis for an automated pollen counting system.

  15. Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae).

    PubMed

    Goleva, Irina; Zebitz, Claus P W

    2013-11-01

    , and A. hippocastanum and Betula pendula pollen is recommended to be used as dispersible pollen in greenhouses.

  16. Allergenic pollen in the atmosphere of Kayseri, Turkey.

    PubMed

    Ince, Ali; Kart, Levent; Demir, Ramazan; Ozyurt, M Sabri

    2004-01-01

    Airborne pollen are important allergens that cause sensitization in allergic rhinoconjunctivitis and asthma. Our aim was to detect the pollen in the atmosphere of Kayseri, to present a pollen calendar, and to detect the allergenic level of these pollen by performing skin tests on patients. Atmospheric pollen were collected by Durham gravimetric samplers in Kayseri between March and November in the years 1996 and 1997. In our study, we observed pollen belonging to 43 different taxa. The total number of pollen per cm2 was found to be 1,330.8 in 1996 and 1,182.5 in 1997. Most of the pollen were from the taxa Pinus, Poaceae, Chenopodiaceae/Amaranthaceae, Cupressaceae, Populus and Quercus in decreasing order. In the skin tests, pollen of the taxa Poaceae and Chenopodiaceae were found to give the most frequent allergic reactions. It was concluded that preparing an airborne pollen calendar could be useful for medical practice. Nevertheless the skin test data did not really correlate with the aerobiologic data, as skin test reactivity is related to the allergenicity of the pollen and not just to ambient exposure.

  17. A Method of Recording and Predicting the Pollen Count.

    ERIC Educational Resources Information Center

    Buck, M.

    1985-01-01

    A hair dryer, plastic funnel, and microscope slide can be used for predicting pollen counts on a day-to-day basis. Materials, methods for assembly, collection technique, meteorological influences, and daily patterns are discussed. Data collected using the apparatus suggest that airborne grass products other than pollen also affect hay fever…

  18. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco).

    PubMed

    Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed

    2013-03-01

    Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m(3). Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.

  19. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco)

    NASA Astrophysics Data System (ADS)

    Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M. Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed

    2013-03-01

    Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m3. Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.

  20. The pollen season dynamics and the relationship among some season parameters (start, end, annual total, season phases) in Kraków, Poland, 1991-2008.

    PubMed

    Myszkowska, D; Jenner, B; Stępalska, D; Czarnobilska, E

    2011-09-01

    The dynamics of 15 taxa pollen seasons in Kraków, in 1991-2008 was monitored using a Burkard volumetric spore trap of the Hirst design. The highest daily pollen concentrations were achieved in the first half of May, and they were caused mainly by Betula and Pinus pollen. The second period of the high concentrations took place from the middle of July to the end of August (mainly Urtica pollen). Tree pollen seasons were shorter (18-24 days) in comparison with the most herbaceous pollen seasons (73-89 days), except at Artemisia and Ambrosia seasons (30 and 24 days, respectively). The season phases (percentyles) of the spring and late-summer taxa were the most variable in the consecutive years. The highest annual sums were noted for Urtica, Poaceae (herbaceous pollen seasons) and for Betula, Pinus, Alnus (tree pollen seasons), and the highest variability of annual totals was stated for Urtica, Populus, Fraxinus and the lowest for Ambrosia, Corylus, Poaceae. For the plants that pollinate in the middle of the pollen season (Quercus, Pinus and Rumex), the date of the season start seems not to be related to the season end, while for late pollen seasons, especially for Ambrosia and Artemisia, the statistically negative correlation between the start and the end season dates was found. Additionally, for the most studied taxa, the increase in annual pollen totals was observed. The presented results could be useful for the allergological practice and general botanical knowledge.

  1. Aerobiology of Juniperus Pollen in Oklahoma, Texas, and New Mexico

    NASA Technical Reports Server (NTRS)

    Levetin, Estelle; Bunderson, Landon; VandeWater, Pete; Luvall, Jeff

    2014-01-01

    Pollen from members of the Cupressaceae are major aeroallergens in many parts of the world. In the south central and southwest United States, Juniperus pollen is the most important member of this family with J. ashei (JA) responsible for severe winter allergy symptoms in Texas and Oklahoma. In New Mexico, pollen from J. monosperma (JM) and other Juniperus species are important contributors to spring allergies, while J. pinchotii (JP) pollinates in the fall affecting sensitive individuals in west Texas, southwest Oklahoma and eastern New Mexico. Throughout this region, JA, JM, and JP occur in dense woodland populations. Generally monitoring for airborne allergens is conducted in urban areas, although the source for tree pollen may be forested areas distant from the sampling sites. Improved pollen forecasts require a better understanding of pollen production at the source. The current study was undertaken to examine the aerobiology of several Juniperus species at their source areas for the development of new pollen forecasting initiatives.

  2. Pollen calendar of the city of Salamanca (Spain). Aeropalynological analysis for 1981-1982 and 1991-1992.

    PubMed

    Hernández Prieto, M; Lorente Toledano, F; Romo Cortina, A; Dávila González, I; Laffond Yges, E; Calvo Bullón, A

    1998-01-01

    We report a study on the contents of airborne pollen in the city of Salamanca (Spain) aimed at establishing a pollen calendar for the city for the yearly periods of maximum concentrations, relating these with quantifiable atmospheric variables over two two-year periods with an interval of 10 years between them: 1981-82 and 1991-92. The pollen was captured with Burkard spore-traps, based on Hirst's volumetric method. Determinations were made daily and were used to make preparations, previously stained with basic fuscin, for study under light microscopy at x 1,000 magnification. 946 preparations were analyzed, corresponding to the same number of days distributed over 150 weeks of the periods studied. The results afforded the identification of 48 different types of pollen grain: Grasses (Poaceae), Olea europea (olive), Quercus rotundifolia (Holm-oak), other Quercus spp. (Q. pyrenaica, Q. suber, Q. faginea, etc.), Cupressaceae (Cupressus sempervivens, C. arizonica, Juniperus communis etc.), Plantago (Plantago lanceolata, Plantago media, etc.), Pinaceae (Pinus communis, Abies alba, etc.), Rumex sp. (osier), Urtica dioica (nettle), Parietaria (Parietaria officinalis, P. judaica), Chenopodio-Amaranthaceae (Chenopodium sp., Amaranthus sp., Salsola kali, etc.), Artemisia vulgaris (Artemisia), other Compositae (Taraxacum officinalis, Hellianthus sp. etc.), Castanea sativa (Chestnut), Ligustrum sp. (privet), Betula sp. (birch), Alnus sp. (common alder), Fraxinus sp (ash), Populus sp. (poplar), Salix sp. (willow), Ulmus sp. (elm), Platanus sp. (plantain, plane), Carex sp. (sweet flag), Erica sp. (common heather), Leguminosae or Fabaceae:--Papillionaceae (Medicago sp.; Cercis sp., Robina sp.)--Cesalpinoideae Acacia sp. (Acacia),--Mimosoideae: Sophora japonica, Umbelliferae (Foeniculum sp., Cirsium sp., etc.), Centaurea sp., Cistus sp. (rock rose), Typha sp (bulrush), Mirtaceae (Myrtus communis), Juglans regia (Walnut), Galium verum, Filipendula sp. (spirea/drop wort), Rosaceae

  3. Concentric Ring Method for generating pollen maps. Quercus as case study.

    PubMed

    Oteros, Jose; Valencia, Rosa Mª; Del Río, Sara; Vega, Ana Mª; García-Mozo, Herminia; Galán, Carmen; Gutiérrez, Pablo; Mandrioli, Paolo; Fernández-González, Delia

    2017-01-15

    Mapping pollen concentrations is of great interest to study the health impact and ecological implications or for forestry or agronomical purposes. A deep knowledge about factors affecting airborne pollen is essential for predicting and understanding its dynamics. The present work sought to predict annual Quercus pollen over the Castilla and León region (Central and Northern Spain). Also to understand the relationship between airborne pollen and landscape. Records of Quercus and Quercus pyrenaica pollen types were collected at 13 monitoring sites over a period of 8years. They were analyzed together with land use data applying the Concentric Ring Method (CRM), a technique that we developed to study the relationship between airborne particle concentrations and emission sources in the region. The maximum correlation between the Quercus pollen and forms of vegetation was determined by shrubland and "dehesa" areas. For the specific Qi pyrenaica model (Q. pyrenaica pollen and Q. pyrenaica forest distribution), the maximum influence of emission sources on airborne pollen was observed at 14km from the pollen trap location with some positive correlations up to a distance of 43km. Apart from meteorological behavior, the local features of the region can explain pollen dispersion patterns. The method that we develop here proved to be a powerful tool for multi-source pollen mapping based on land use.

  4. Variations and trends of Fagaceae pollen in Northern Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Canu, Annalisa; Pellizzaro, Grazia; Arca, Bachisio; Vargiu, Arnoldo

    2016-04-01

    The aim of this study is to analyze variations in the start and the end dates of pollen season, date of maximum concentration peak, pollen season duration, pollen concentration value and Seasonal Pollen Index of airborne Fagaceae pollen series recorded in Sassari, Northern Italy, and to evaluate their relation to meteorological data. Daily pollen concentration data were measured from 1986 to 2008 in a urban area of northern Sardinia (Italy) using a Burkard seven-day recording volumetric spore trap. The date of the peak occurrence was defined as the day when the cumulated daily pollen values reached the 50 % of the total annual pollen concentration. Meteorological data were recorded during the same period by an automatic weather station. Cumulative Degree days were calculated, for each year, from different starting dates using the daily averaging method. The correlation between meteorological variables and the different characteristics of pollen seasons was analyzed using Spearman's correlation tests. In the city of Sassari the Fagaceae airborne pollen content was mainly due to Quercus. The main pollen season took place from April to June. The longest pollen season appeared in the year 2002. The cumulative counts varied over the years, with a mean value of 5,336 pollen grains, a lowest total of 550 in 1986 and a highest total of 8,678 in 2001. Daily pollen concentrations presented positive correlation with temperature, and negative with relative humidity (p<0,0001) and with rainfall. In addition, Cumulative Degree days were significantly correlated with the dates of maximum concentration peak (p<0,0001).

  5. Viability and seasonal distribution patterns of Scots pine pollen in Finland.

    PubMed

    Pulkkinen, P.; Rantio-Lehtimäki, A.

    1995-01-01

    Germination ability and airborne counts of Scots pine (Pinus sylvestris L.) pollen were studied during the spring of 1993 at Turku in southern Finland (60 degrees 32' N, 22 degrees 28' E) and at Utsjoki in northern Finland (69 degrees 45' N, 27 degrees 01' E). Pollen waas trapped from the beginning of May to the end of June in a high-volume air sampler. Germination tests were performed to determine the in vitro pollen viability of the trapped pollen. Airborne pine pollen counts were obtained from a continuously operating Burkard trap located near each high-volume sampler. When male flowering began, phenological observations were carried out on pollen grains collected in rotored samplers located in pine and spruce stands and open fields near Turku and Utsjoki. In southern Finland, the peak period of pine pollen production was short, lasting for only 3 days, but it accounted for about 80% of the total germinating pine pollen yield for the year. The peak count was on May 20, with over 2000 germinating pollen grains per cubic meter of air. Pollen germination rates of up to 70% were obtained during the week preceding the local pollen peak, and rates reached almost 90% on the peak day. Pollen viability remained at 45 to 65% for 1 week after the peak. There was no significant difference between the pollen counts for day and night, indicating that during the main pollen season, the pollen source was close to Turku. Before the local pollen peak, the counts of living pine pollen were low, indicating that pine pollen transported over long distances was of little ecological importance in 1993 in the Turku area. In northern Finland, the first pollen grains were caught on July 4, and the peak day was July 13. However, no viable pollen was observed during this period, indicating that there was little gene drift from southern to northern Finland in 1993.

  6. Polarization Analysis of Light Scattered by Pollen Grains of Cryptomeria japonica

    NASA Astrophysics Data System (ADS)

    Iwai, Toshiaki

    2013-06-01

    Pollinosis to airborne pollen grains is a severe problem that concerns the whole world. Almost spring allergies in Japan are caused by pollen grains of Japan cedar (Cryptomeria japonica) during the period of pollination from February to May. One of the key technologies in a pollen monitoring and forecast system is a pollen sensor. The pollen grain of Japan cedar is identified by introducing the degree of polarization to the optical sensor based on the scattered intensity. The detectability and discriminability in identifying the pollen grains of Japan cedar from the polystyrene spherical particles and the Kanto loam grains are achieved up to 95 and 86%, respectively.

  7. Atmospheric pollen season in Zagreb (Croatia) and its relationship with temperature and precipitation.

    PubMed

    Peternel, Renata; Srnec, Lidija; Culig, Josip; Zaninović, Ksenija; Mitić, Bozena; Vukusić, Ivan

    2004-05-01

    The number of individuals allergic to plant pollen has recently been on a constant increase, especially in large cities and industrial areas. Therefore, monitoring of airborne pollen types and concentrations during the pollen season is of the utmost medical importance. The research reported in this paper aims to determine the beginning, course and end of the pollen season for the plants in the City of Zagreb, to identify allergenic plants, and to assess the variation in airborne pollen concentration as a function of temperature and precipitation changes for the year 2002. A volumetric Hirst sampler was used for airborne pollen sampling. Qualitative and quantitative pollen analysis was performed under a light microscope (magnification x400). In the Zagreb area, 12 groups of highly allergenic plants (alder, hazel, cypress, birch, ash, hornbeam, grasses, elder, nettles, sweet chestnut, artemisia and ambrosia) were identified. Birch pollen predominated in spring, the highest concentrations being recorded in February and March. Grass pollen prevailed in May and June, and pollen of herbaceous plants of the genus Urtica (nettle) and of ambrosia in July, August and September. Air temperature was mostly higher or considerably higher than the annual average in those months, which resulted in a many days with high and very high airborne pollen concentrations. The exception was April, when these concentrations were lower because of high levels of precipitation. This also held for the first half of August and the second half of September. Pollen-sensitive individuals were at high risk from February till October because of the high airborne pollen concentrations, which only showed a transient decrease when the temperature fell or there was precipitation.

  8. Role of macrophage migration inhibitory factor (MIF) in pollen-induced allergic conjunctivitis and pollen dermatitis in mice.

    PubMed

    Nagata, Yuka; Yoshihisa, Yoko; Matsunaga, Kenji; Rehman, Mati Ur; Kitaichi, Nobuyoshi; Kitaichi, Nobuyuki; Shimizu, Tadamichi

    2015-01-01

    Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis.

  9. Role of Macrophage Migration Inhibitory Factor (MIF) in Pollen-Induced Allergic Conjunctivitis and Pollen Dermatitis in Mice

    PubMed Central

    Nagata, Yuka; Yoshihisa, Yoko; Matsunaga, Kenji; Rehman, Mati Ur; Kitaichi, Nobuyuki; Shimizu, Tadamichi

    2015-01-01

    Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis. PMID:25647395

  10. Effects of acidity on tree pollen germination and tube growth

    SciTech Connect

    Jacobson, J.S.; Van Rye, D.M.; Lassoie, J.P.

    1985-01-01

    Several studies have indicated that pollen germination and tube growth are adversely affected by air pollutants. Pollutants may inhibit the function of pollen by reducing the number of pollen grains which germinate, by reducing the maximum length to which the pollen tubes grow, or by interfering with the formation of the generative cell. The paper reports on studies that are attempting to determine the effects acid rain may have on these crucial stages in the life histories of northeastern tree species. The first stage of this work assessed the effects of acidity in the growth medium on in vitro pollen germination for four deciduous forest species common to central New York State, Betula lutea (yellow birch), B. lenta (black birch), Acer saccharum (sugar maple), and Cornus florida (flowering dogwood). Measurements were taken at the end of the growth period to determine the percentage of grains which had germinated, and to estimate the average tube length. To determine the effects of pollen on the growth medium, the pH of the germination drop was measured at the end of the growth period.

  11. Relationship between Pollen Counts and Weather Variables in East-Mediterranean Coast of Turkey

    PubMed Central

    Karakoç, Gülbin Bingöl; Yilmaz, Mustafa; Pinar, Münevver; Kendirli, Seval Güneçer; Çakan, Halil

    2004-01-01

    Background: Aeroallergen sampling provides information regarding the onset, duration and severity of the pollen season that clinicians use to guide allergen selection for skin testing and treatment. Objectives: This atmospheric survey reports (1) airborne pollen contributions in Adana in one-year period (2) pollen onset, duration and peak level (3) the relationship between airborne pollen and selected meteorological variables and; (4) effects on symptoms in pollen allergic children. Methods: Pollen sampling was performed with a volumetric Burkard Spore Trap. Meteorological data were measured daily from April 2001 to April 2002. Asthma symptom scores were investigated in 186 pollen allergic children that were on follow up in pediatric allergy outpatient clinics during same period. Results: Average measurements included 82.5% tree pollen, 7.7% grass pollen and 9.8% herb pollen 54 taxa were identified during one year. The most prominent tree pollens were Cupressaceae, Eucalyptus and Pinus. The most common herb was Chenopodiaceae pollen family. When airborne pollen levels were examined in relation to single meteorological conditions; daily variations in total pollen counts were not significantly correlated with any variable studied (humidity, rainfall, temperature and wind) (p>0.05). On the other hand, statistically significant relationship between pollen concentration and symptom scores were found (p>0.05). Positive correlations were seen between both Gramineae and Herb pollen, and humidity and rainfall from March to July. However, positive correlations were detected between tree pollen counts and temperature and humidity in May and June. Conclusion: This survey is the first volumetric airborne pollen analysis conducted in the survey area in Adana. This study suggested that the effects of weather on pollen count and symptom scores in this population could not be clearly identified with the evaluation of one-year data. However, pollen counts had effect on allergic

  12. Comparison of fluorescence spectroscopy and FTIR in differentiation of plant pollens

    NASA Astrophysics Data System (ADS)

    Mularczyk-Oliwa, Monika; Bombalska, Aneta; Kaliszewski, Miron; Włodarski, Maksymilian; Kopczyński, Krzysztof; Kwaśny, Mirosław; Szpakowska, Małgorzata; Trafny, Elżbieta A.

    2012-11-01

    Spectroscopic techniques are under investigation on possibility of differentiation of airborne particles. This paper describes pollen discrimination among others bio-particles in laboratory conditions. Pollen samples were characterized with UV-Vis fluorescence, drift and KBr pellet techniques of infrared spectroscopy. Principal Component Analysis of UV-Vis fluorescence and FTIR spectra revealed that pollens can be distinguished from other bio-materials with use of these methods. Both methods resulted in similar classification capability. Combined FTIR and fluorescence data analysis did not improve the discrimination between pollen allergens and other airborne biological materials.

  13. Can we improve pollen season definitions by using the symptom load index in addition to pollen counts?

    PubMed

    Bastl, Katharina; Kmenta, Maximilian; Geller-Bernstein, Carmi; Berger, Uwe; Jäger, Siegfried

    2015-09-01

    Airborne pollen measurements are the foundation of aerobiological research and provide essential raw data for various disciplines. Pollen itself should be considered a relevant factor in air quality. Symptom data shed light on the relationship of pollen allergy and pollination. The aim of this study is to assess the spatial variation of local, regional and national symptom datasets. Ten pollen season definitions are used to calculate the symptom load index for the birch and grass pollen seasons (2013-2014) in Austria. (1) Local, (2) regional and (3) national symptom datasets are used to examine spatial variations and a consistent pattern was found. In conclusion, national datasets are suitable for first insights where no sufficient local or regional dataset is available and season definitions based on percentages provide a practical solution, as they can be applied in regions with different pollen loads and produce more constant results.

  14. Pollensomes as Natural Vehicles for Pollen Allergens.

    PubMed

    Prado, Noela; De Linares, Concepción; Sanz, María L; Gamboa, Pedro; Villalba, Mayte; Rodríguez, Rosalía; Batanero, Eva

    2015-07-15

    Olive (Olea europaea) pollen constitutes one of the most important allergen sources in the Mediterranean countries and some areas of the United States, South Africa, and Australia. Recently, we provided evidence that olive pollen releases nanovesicles of respirable size, named generically pollensomes, during in vitro germination. Olive pollensomes contain allergens, such as Ole e 1, Ole e 11, and Ole e 12, suggesting a possible role in allergy. The aim of this study was to assess the contribution of pollensomes to the allergic reaction. We show that pollensomes exhibit allergenic activity in terms of patients' IgE-binding capacity, human basophil activation, and positive skin reaction in sensitized patients. Furthermore, allergen-containing pollensomes have been isolated from three clinically relevant nonphylogenetically related species: birch (Betula verrucosa), pine (Pinus sylvestris), and ryegrass (Lolium perenne). Most interesting, pollensomes were isolated from aerobiological samples collected with an eight-stage cascade impactor collector, indicating that pollensomes secretion is a naturally occurring phenomenon. Our findings indicate that pollensomes may represent widespread vehicles for pollen allergens, with potential implications in the allergic reaction.

  15. [Allergic responses to date palm and pecan pollen in Israel].

    PubMed

    Waisel, Y; Keynan, N; Gil, T; Tayar, D; Bezerano, A; Goldberg, A; Geller-Bernstein, C; Dolev, Z; Tamir, R; Levy, I

    1994-03-15

    Date palm (Phoenix dactylifera) and pecan (Carya illinoensis) trees are commonly planted in Israel for fruit, for shade, or as ornamental plants. Pollen grains of both species are allergenic; however, the extent of exposure to such pollen and the incidence of allergic response have not been studied here. We therefore investigated skin-test responses to pollen extracts of 12 varieties of palm and 9 of pecan in 705 allergic patients living in 3 cities and 19 rural settlements. Sensitivity to the pollen extracts of both species was much higher among residents of rural than of urban communities. Moreover, there was a definite relationship between the abundance of these trees in a region and the incidence of skin responders to their pollen. Sensitivity was frequent in settlements rich in these 2 species, such as those with nearby commercial date or pecan plantations. In general, sensitivity to date pollen extracts was lower than to pecan. However, differences in skin responses to pollen extracts of various clones were substantiated. Air sampling revealed that pollen pollution decreased considerably with distance from the trees. At approximately 100 m from a source concentrations of airborne pollen were low. Since planting of male palm and pecan trees in population centers would increase pollen pollution, it should be avoided.

  16. Pollen dispersal in sugar beet production fields.

    PubMed

    Darmency, Henri; Klein, Etienne K; De Garanbé, Thierry Gestat; Gouyon, Pierre-Henri; Richard-Molard, Marc; Muchembled, Claude

    2009-04-01

    Pollen-mediated gene flow has important implications for biodiversity conservation and for breeders and farmers' activities. In sugar beet production fields, a few sugar beet bolters can produce pollen as well as be fertilized by wild and weed beet. Since the crop, the wild beets, and the weed beets are the same species and intercross freely, the question of pollen flow is an important issue to determine the potential dispersal of transgenes from field to field and to wild habitats. We report here an experiment to describe pollen dispersal from a small herbicide-resistant sugar beet source towards male sterile target plants located along radiating lines up to 1,200 m away. Individual dispersal functions were inferred from statistical analyses and compared. Pollen limitation, as expected in root-production fields, was confirmed at all the distances from the pollen source. The number of resistant seeds produced by bait plants best fitted a fat-tailed probability distribution curve of pollen grains (power-law) dependent on the distance from the pollen source. A literature survey confirmed that power-law function could fit in most cases. The b coefficient was lower than 2. The number of fertilized flowers by background (herbicide-susceptible) pollen grains was uniform across the whole field. Airborne pollen had a fertilization impact equivalent to that of one adjacent bolter. The individual dispersal function from different pollen sources can be integrated to provide the pollen cloud composition for a given target plant, thus allowing modeling of gene flow in a field, inter-fields in a small region, and also in seed-production area. Long-distance pollen flow is not negligible and could play an important role in rapid transgene dispersal from crop to wild and weed beets in the landscape. The removing of any bolting, herbicide-resistant sugar beet should be compulsory to prevent the occurrence of herbicide-resistant weed beet, thus preventing gene flow to wild

  17. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis.

    PubMed

    Zhang, Wenbo; Wei, Rui; Chen, Su; Jiang, Jing; Li, Huiyu; Huang, Haijiao; Yang, Guang; Wang, Shuo; Wei, Hairong; Liu, Guifeng

    2015-06-01

    We cloned a Cinnamoyl-CoA Reductase gene (BpCCR1) from an apical meristem and first internode of Betula platyphylla and characterized its functions in lignin biosynthesis, wood formation and tree growth through transgenic approaches. We generated overexpression and suppression transgenic lines and analyzed them in comparison with the wild-type in terms of lignin content, anatomical characteristics, height and biomass. We found that BpCCR1 overexpression could increase lignin content up to 14.6%, and its underexpression decreased lignin content by 6.3%. Surprisingly, modification of BpCCR1 expression led to conspicuous changes in wood characteristics, including xylem vessel number and arrangement, and secondary wall thickness. The growth of transgenic trees in terms of height was also significantly influenced by the modification of BpCCR1 genes. We discuss the functions of BpCCR1 in the context of a phylogenetic tree built with CCR genes from multiple species.

  18. Estimates of common ragweed pollen emission and dispersion over Europe using RegCM-pollen model

    NASA Astrophysics Data System (ADS)

    Liu, L.; Solmon, F.; Vautard, R.; Hamaoui-Laguel, L.; Torma, Cs. Zs.; Giorgi, F.

    2015-11-01

    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hayfever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In the online model environment where climate is integrated with dispersion and vegetation production, pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000-2010. To reduce the large uncertainties notably due to ragweed density distribution on pollen emission, a calibration based on airborne pollen observations is used. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger. From these simulations health risks associated common ragweed pollen spread are then evaluated through calculation of exposure time above health

  19. Chloroplast DNA phylogeography of Betula maximowicziana, a long-lived pioneer tree species and noble hardwood in Japan.

    PubMed

    Tsuda, Yoshiaki; Ide, Yuji

    2010-05-01

    Betula maximowicziana is an ecologically and economically important tree species in Japan. In order to examine the phylogeographical pattern of the species in detail, maternally inherited chloroplast (cp) DNA variations of 25 natural populations of Betula maximowicziana and a total of 12 populations of three related species were evaluated by PCR-RFLP analysis. Two main haplotypic groups of B. maximowicziana populations (northern and southern) were detected, with the main boundary passing through the Tohoku region in northeastern Japan; in addition there was high genetic differentiation among the 25 populations studied (GST = 0.950, G'ST =0:977). The phylogeographical pattern exhibited by B. maximowicziana was much more similar to that of alpine plants than to that of beech and oak. Comparison of the patterns of genetic structure obtained from the cpDNA with previously and newly acquired data on bi-parentally inherited nuclear DNA indicates that the nuclear genome was transferred via pollen from the northern haplotypic group to the southern group more frequently than it moved in the opposite direction. Although common haplotypes were detected among B. maximowicziana and the two related species examined, these haplotypes were not shared sympatrically, suggesting very rare hybridization among the species currently occurring in their natural populations.

  20. Allergenic pollen season variations in the past two decades under changing climate in the United States.

    PubMed

    Zhang, Yong; Bielory, Leonard; Mi, Zhongyuan; Cai, Ting; Robock, Alan; Georgopoulos, Panos

    2015-04-01

    Many diseases are linked with climate trends and variations. In particular, climate change is expected to alter the spatiotemporal dynamics of allergenic airborne pollen and potentially increase occurrence of allergic airway disease. Understanding the spatiotemporal patterns of changes in pollen season timing and levels is thus important in assessing climate impacts on aerobiology and allergy caused by allergenic airborne pollen. Here, we describe the spatiotemporal patterns of changes in the seasonal timing and levels of allergenic airborne pollen for multiple taxa in different climate regions at a continental scale. The allergenic pollen seasons of representative trees, weeds and grass during the past decade (2001-2010) across the contiguous United States have been observed to start 3.0 [95% Confidence Interval (CI), 1.1-4.9] days earlier on average than in the 1990s (1994-2000). The average peak value and annual total of daily counted airborne pollen have increased by 42.4% (95% CI, 21.9-62.9%) and 46.0% (95% CI, 21.5-70.5%), respectively. Changes of pollen season timing and airborne levels depend on latitude, and are associated with changes of growing degree days, frost free days, and precipitation. These changes are likely due to recent climate change and particularly the enhanced warming and precipitation at higher latitudes in the contiguous United States.

  1. Modeling olive pollen intensity in the Mediterranean region through analysis of emission sources.

    PubMed

    Rojo, J; Orlandi, F; Pérez-Badia, R; Aguilera, F; Ben Dhiab, A; Bouziane, H; Díaz de la Guardia, C; Galán, C; Gutiérrez-Bustillo, A M; Moreno-Grau, S; Msallem, M; Trigo, M M; Fornaciari, M

    2016-05-01

    Aerobiological monitoring of Olea europaea L. is of great interest in the Mediterranean basin because olive pollen is one of the most represented pollen types of the airborne spectrum for the Mediterranean region, and olive pollen is considered one of the major cause of pollinosis in this region. The main aim of this study was to develop an airborne-pollen map based on the Pollen Index across a 4-year period (2008-2011), to provide a continuous geographic map for pollen intensity that will have practical applications from the agronomical and allergological points of view. For this purpose, the main predictor variable was an index based on the distribution and abundance of potential sources of pollen emission, including intrinsic information about the general atmospheric patterns of pollen dispersal. In addition, meteorological variables were included in the modeling, together with spatial interpolation, to allow the definition of a spatial model of the Pollen Index from the main olive cultivation areas in the Mediterranean region. The results show marked differences with respect to the dispersal patterns associated to the altitudinal gradient. The findings indicate that areas located at an altitude above 300ma.s.l. receive greater amounts of olive pollen from shorter-distance pollen sources (maximum influence, 27km) with respect to areas lower than 300ma.s.l. (maximum influence, 59km).

  2. Intradiurnal variations of allergenic tree pollen in the atmosphere of Toledo (central Spain).

    PubMed

    Pérez-Badia, Rosa; Vaquero, Consolación; Sardinero, Santiago; Galán, Carmen; García-Mozo, Herminia

    2010-01-01

    To study the impact of inhaling airborne pollen on health, it is important to know not only their average daily concentrations but also the intradiurnal behaviour of these biological particles. This study reports the bi-hourly distribution of the arboreal airborne pollen types more abundant in the atmosphere of Toledo (central Spain), many of them triggering important allergic processes in Toledo citizens and tourist visitors. Knowledge of bi-hourly pattern atmospheric variation pollen may help pollinosis patients to adopt preventive measures and plan their outdoor activities accordingly. Intradiurnal variation has been studied for the arboreal pollen types: Cupressaceae, Fraxinus, Olea, Platanus, Populus, Quercus and Ulmus, during the period 2005-2008. The main hourly pollen concentrations were observed during sunlight hours and the maximum pollen values obtained at midday and in the afternoon, except for pollen types Quercus and Platanus, whose maximum pollen concentrations were obtained during the night. The statistical analyses performed to compare pollen concentration and main hourly meteorological variables proved to be significant for most of the taxa. The results show a significant and positive effect of temperature, solar radiation and wind speed on the daily variability undergone by atmospheric pollen. Relative humidity influenced in a negative way on the intradiurnal variation of pollen in the atmosphere of Toledo.

  3. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

    NASA Astrophysics Data System (ADS)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2016-08-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  4. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

    NASA Astrophysics Data System (ADS)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2017-02-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  5. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing.

    PubMed

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2017-02-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture-for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments-as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series-daily Poaceae pollen concentrations over the period 2006-2014-was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  6. Regional forecast model for the Olea pollen season in Extremadura (SW Spain).

    PubMed

    Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Silva-Palacios, Inmaculada; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-10-01

    The olive tree (Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.

  7. Regional forecast model for the Olea pollen season in Extremadura (SW Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Silva-Palacios, Inmaculada; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-10-01

    The olive tree ( Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.

  8. Titanium dioxide (TiO2) fine particle capture and BVOC emissions of Betula pendula and Betula pubescens at different wind speeds

    NASA Astrophysics Data System (ADS)

    Räsänen, Janne V.; Leskinen, Jari T. T.; Holopainen, Toini; Joutsensaari, Jorma; Pasanen, Pertti; Kivimäenpää, Minna

    2017-03-01

    Trees are known to affect air quality by capturing a remarkable amount of particles from the atmosphere. However, the significance of trees in removing very fine particles (diameter less than 0.5 μm) is not well understood. We determined particle capture efficiency (Cp) of two birch species: Betula pendula and Betula pubescens by using inert titanium dioxide fine particles (TiO2, geometric mean diameter 0.270 μm) at three wind speeds (1, 3 and 6 ms-1) in a wind tunnel. Capture efficiencies were determined by measuring densities of TiO2 particles on leaf surfaces by scanning electron microscopy. In addition, the particle intake into an inner structure of leaves was studied by transmission electron microscopy. The effects of fine particle exposure and wind speed on emission rates of biogenic volatile organic compounds (BVOCs) were measured. Particles were captured (Cp) equally efficiently on foliage of B. pendula (0.0026 ± 0.0005) % and B. pubescens (0.0025 ± 0.0006) %. Increasing wind speed significantly decreased Cp. Increasing wind speed increased deposition velocity (Vg) on B. pendula but not on B. pubescens. Particles were deposited more efficiently on the underside of B. pendula leaves, whereas deposition was similar on the upper and under sides of B. pubescens leaves. TiO2 particles were found inside three of five B. pendula leaves exposed to particles at a wind speed of 1 ms-1 indicating that particles can penetrate into the plant structure. Emission rates of several mono-, homo- and sesquiterpenes were highest at a wind speed of 3 ms-1 in B. pendula. In B. pubescens, emission rates of a few monoterpenes and nonanal decreased linearly with wind speed, but emission rates of sesquiterpenes were lowest at 3 ms-1 and increased at 6 ms-1. Emission rates of a few green leaf volatile compounds increased with increasing wind speed in both species. The results of this study suggest that the surface structure of trees is less important for capturing particles with

  9. Large Eddy Simulation of Pollen Transport in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chamecki, Marcelo; Meneveau, Charles; Parlange, Marc B.

    2007-11-01

    The development of genetically modified crops and questions about cross-pollination and contamination of natural plant populations enhanced the importance of understanding wind dispersion of airborne pollen. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using large eddy simulation. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of great importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. The velocity field is discretized using a pseudospectral approach. However the application of the same discretization scheme to the pollen equation generates unphysical solutions (i.e. negative concentrations). The finite-volume bounded scheme SMART is used for the pollen equation. A conservative interpolation scheme to determine the velocity field on the finite volume surfaces was developed. The implementation is validated against field experiments of point source and area field releases of pollen.

  10. Nutrient status: a missing factor in phenological and pollen research?

    PubMed Central

    Jochner, Susanne; Höfler, Josef; Beck, Isabelle; Göttlein, Axel; Ankerst, Donna Pauler; Traidl-Hoffmann, Claudia; Menzel, Annette

    2013-01-01

    Phenology ranks among the best ecosystem processes for fingerprinting climate change since temperature explains a high percentage of the interannual or spatial variation in phenological onset dates. However, roles of other environmental variables, such as foliar nutrient concentrations, are far from adequately understood. This observational study examined the effects of air temperature and 11 nutrients on spring phenology of Betula pendula Roth (birch) along an urban–rural gradient in Munich, Germany, during the years 2010/2011. Moreover, the influence of temperature, nutrients, and air pollutants (NO2 and O3) on the amounts of pollen and catkin biomass in 2010 was evaluated. In addition to the influence of higher temperatures advancing phenological onset dates, higher foliar concentrations of potassium, boron, zinc, and calcium were statistically significantly linked to earlier onset dates. Since flushing of leaves is a turgor-driven process and all the influential nutrients are involved in cell extension, membrane function, and stability, there might be a reasonable physiological interpretation of the observed association. The amounts of pollen were negatively correlated with temperature, atmospheric NO2, and foliar iron concentration, suggesting that these variables restrict pollen production. The results of this study suggested an influence of nutritional status on both phenology and pollen production. The interaction of urbanization and climate change should be considered in the assessment of the impact of global warming on ecosystems and human health. PMID:23630329

  11. Pollen tube development.

    PubMed

    Johnson, Mark A; Kost, Benedikt

    2010-01-01

    Pollen tubes grow rapidly in a strictly polarized manner as they transport male reproductive cells through female flower tissues to bring about fertilization. Vegetative pollen tube cells are an excellent model system to investigate processes underlying directional cell expansion. In this chapter, we describe materials and methods required for (1) the identification of novel factors essential for polarized cell growth through the isolation and analysis of Arabidopsis mutants with defects in pollen tube growth and (2) the detailed functional characterization of pollen tube proteins based on transient transformation and microscopic analysis of cultured tobacco pollen tubes.

  12. A biology-driven receptor model for daily pollen allergy risk in Korea based on Weibull probability density function

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Rang; Kim, Mijin; Choe, Ho-Seong; Han, Mae Ja; Lee, Hye-Rim; Oh, Jae-Won; Kim, Baek-Jo

    2016-07-01

    Pollen is an important cause of respiratory allergic reactions. As individual sanitation has improved, allergy risk has increased, and this trend is expected to continue due to climate change. Atmospheric pollen concentration is highly influenced by weather conditions. Regression analysis and modeling of the relationships between airborne pollen concentrations and weather conditions were performed to analyze and forecast pollen conditions. Traditionally, daily pollen concentration has been estimated using regression models that describe the relationships between observed pollen concentrations and weather conditions. These models were able to forecast daily concentrations at the sites of observation, but lacked broader spatial applicability beyond those sites. To overcome this limitation, an integrated modeling scheme was developed that is designed to represent the underlying processes of pollen production and distribution. A maximum potential for airborne pollen is first determined using the Weibull probability density function. Then, daily pollen concentration is estimated using multiple regression models. Daily risk grade levels are determined based on the risk criteria used in Korea. The mean percentages of agreement between the observed and estimated levels were 81.4-88.2 % and 92.5-98.5 % for oak and Japanese hop pollens, respectively. The new models estimated daily pollen risk more accurately than the original statistical models because of the newly integrated biological response curves. Although they overestimated seasonal mean concentration, they did not simulate all of the peak concentrations. This issue would be resolved by adding more variables that affect the prevalence and internal maturity of pollens.

  13. A biology-driven receptor model for daily pollen allergy risk in Korea based on Weibull probability density function

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Rang; Kim, Mijin; Choe, Ho-Seong; Han, Mae Ja; Lee, Hye-Rim; Oh, Jae-Won; Kim, Baek-Jo

    2017-02-01

    Pollen is an important cause of respiratory allergic reactions. As individual sanitation has improved, allergy risk has increased, and this trend is expected to continue due to climate change. Atmospheric pollen concentration is highly influenced by weather conditions. Regression analysis and modeling of the relationships between airborne pollen concentrations and weather conditions were performed to analyze and forecast pollen conditions. Traditionally, daily pollen concentration has been estimated using regression models that describe the relationships between observed pollen concentrations and weather conditions. These models were able to forecast daily concentrations at the sites of observation, but lacked broader spatial applicability beyond those sites. To overcome this limitation, an integrated modeling scheme was developed that is designed to represent the underlying processes of pollen production and distribution. A maximum potential for airborne pollen is first determined using the Weibull probability density function. Then, daily pollen concentration is estimated using multiple regression models. Daily risk grade levels are determined based on the risk criteria used in Korea. The mean percentages of agreement between the observed and estimated levels were 81.4-88.2 % and 92.5-98.5 % for oak and Japanese hop pollens, respectively. The new models estimated daily pollen risk more accurately than the original statistical models because of the newly integrated biological response curves. Although they overestimated seasonal mean concentration, they did not simulate all of the peak concentrations. This issue would be resolved by adding more variables that affect the prevalence and internal maturity of pollens.

  14. Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen.

    PubMed

    Bhalla, P L; Swoboda, I; Singh, M B

    1999-09-28

    Type 1 allergic reactions, such as hay fever and allergic asthma, triggered by grass pollen allergens are a global health problem that affects approximately 20% of the population in cool, temperate climates. Ryegrass is the dominant source of allergens because of its prodigious production of airborne pollen. Lol p 5 is the major allergenic protein of ryegrass pollen, judging from the fact that almost all of the individuals allergic to grass pollen show presence of serum IgE antibodies against this protein. Moreover, nearly two-thirds of the IgE reactivity of ryegrass pollen has been attributed to this protein. Therefore, it can be expected that down-regulation of Lol p 5 production can significantly reduce the allergic potential of ryegrass pollen. Here, we report down-regulation of Lol p 5 with an antisense construct targeted to the Lol p 5 gene in ryegrass. The expression of antisense RNA was regulated by a pollen-specific promoter. Immunoblot analysis of proteins with allergen-specific antibodies did not detect Lol p 5 in the transgenic pollen. The transgenic pollen showed remarkably reduced allergenicity as reflected by low IgE-binding capacity of pollen extract as compared with that of control pollen. The transgenic ryegrass plants in which Lol p 5 gene expression is perturbed showed normal fertile pollen development, indicating that genetic engineering of hypoallergenic grass plants is possible.

  15. Christmas tree allergy: mould and pollen studies.

    PubMed

    Wyse, D M; Malloch, D

    1970-12-05

    A history of respiratory or other allergic symptoms during the Christmas season is occasionally obtained from allergic patients and can be related to exposure to conifers at home or in school. Incidence and mechanism of production of these symptoms were studied. Of 1657 allergic patients, respiratory and skin allergies to conifers occurred in 7%. This seasonal syndrome includes sneezing, wheezing and transitory skin rashes. The majority of patients develop their disease within 24 hours, but 15% experience symptoms after several days' delay. Mould and pollen studies were carried out in 10 test sites before, during and after tree placement in the home. Scrapings from pine and spruce bark yielded large numbers of Penicillium, Epicoccum and Alternaria, but these failed to become airborne. No significant alteration was discovered in the airborne fungi in houses when trees were present. Pollen studies showed release into air of weed, grass and tree pollens while Christmas trees were in the house. Oleoresins of the tree balsam are thought to be the most likely cause of the symptoms designated as Christmas tree allergy.

  16. Variability within the 10-Year Pollen Rain of a Seasonal Neotropical Forest and Its Implications for Paleoenvironmental and Phenological Research

    PubMed Central

    Haselhorst, Derek S.; Moreno, J. Enrique; Punyasena, Surangi W.

    2013-01-01

    Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1–3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen

  17. Variability within the 10-year pollen rain of a seasonal neotropical forest and its implications for paleoenvironmental and phenological research.

    PubMed

    Haselhorst, Derek S; Moreno, J Enrique; Punyasena, Surangi W

    2013-01-01

    Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1-3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen traps

  18. Effects of CO₂ on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates.

    PubMed

    Silva, M; Ribeiro, H; Abreu, I; Cruz, A; Esteves da Silva, J C G

    2015-05-01

    Atmospheric gaseous pollutants can induce qualitative and quantitative changes in airborne pollen characteristics. In this work, it was investigated the effects of carbon dioxide (CO2) on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates. Pollen was collected directly from the anthers and in vitro exposed to three CO2 levels (500, 1000, and 3000 ppm) for 6 and 24 h in an environmental chamber. Pollen fertility was determined using viability and germination assays, total soluble protein was determined with Coomassie Protein Assay Reagent, and the antigenic and allergenic properties were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunological techniques using patients' sera. Also, pollen fructose, sucrose, and glucose values were determined. Carbon dioxide exposure affected negatively pollen fertility, total soluble protein content, and fructose content. The patient sera revealed increased IgE reactivity to proteins of A. negundo pollen exposed to increasing levels of the pollutant. No changes were detected in the SDS-PAGE protein profiles and in sucrose and glucose levels. Our results indicate that increase in atmospheric CO2 concentrations can have a negative influence of some features of A. negundo airborne pollen that can influence the reproductive processes as well as respiratory pollen allergies in the future.

  19. [Birch pollen allergy].

    PubMed

    Lavaud, F; Fore, M; Fontaine, J-F; Pérotin, J M; de Blay, F

    2014-02-01

    In the North-East of France, birch is the main tree responsible of spring pollen allergy. However, the epidemiology of sensitization to birch pollen remains unclear. Monosensitization to birch pollen seems rare because of the frequency of cross-reactions with other pollens of the same botanical family via the major allergen Bet v 1. Around one third of patients with allergic rhinoconjunctivitis due to birch pollen are also asthmatics and a half suffer from a food allergy, essentially an oral syndrome due to rosaceae fruits eaten raw. The molecular allergens of birch pollen are well-known and have been cloned. They are available for use in in vitro diagnostic tests and also in clinical trials of specific immunotherapy.

  20. Pollen, vegetation, and climate relationships along the Dalton Highway, Alaska, USA: a basis for holocene paleoecological and paleoclimatic studies

    SciTech Connect

    Short, S.K.; Andrews, J.T.; Webber, P.J.

    1986-01-01

    The Dalton Highway extends from Fairbanks, in the interior of Alaska, to Prudhoe Bay on the Arctic Coastal Plain. Over this 600-km transect, July temperatures vary from 17 to 5/sup 0/C. Studies of vegetation along the Dalton Highway identified nine major zones. During the vegetation survey moss polsters were collected within the survey quadrats. Two hundred and nineteen individual moss polsters document regional variations in the modern pollen spectra along this vegetation/climate transect. Treeline is distinguished by a change from dominance by spruce and shrub (especially alder) pollen to the south to herb and shrub (especially willow) pollen dominance to the north; a shift from high modern pollen concentration values to very low values is also noted. Discriminant analysis indicated that the vegetation zones are also defined by different pollen assemblages, suggesting that former changes in vegetation during the Holocene, as recorded in peat deposits, could be interpreted from pollen diagrams. Transfer functions were developed to examine the statistical association between the modern pollen rain and several climatic parameters. The correlation between pollen taxa and mean July temperature was r = 0.84. The most important taxa in the equation are Picea, Alnus, Pinus, Sphagnum, and Betula. 59 references, 7 figures, 4 tables.

  1. [Regional and extra-local pollen in tundra pollen samples].

    PubMed

    Vasil'chuk, A K

    2005-01-01

    Patterns of pollen spectra formation in the tundra zone of Eurasia were considered. Changes in total pollen concentration were traced in subfossil pollen samples of the tundra zone. The data on subfossil pollen spectra were used to evaluate the proportion between local and regional plus extra-local components of tundra pollen samples as well as the changes in concentration of pollen of Scots and Siberian stone pines as well as of tree and shrub birches. The diameter of dwarf birch pollen was determined in different tundra subzones of Western Siberia. The role of extra-local and regional pollen was considered for all vegetation subzones of tundra.

  2. Dating Fossil Pollen: A Simulation.

    ERIC Educational Resources Information Center

    Sheridan, Philip

    1992-01-01

    Describes a hands-on simulation in which students determine the age of "fossil" pollen samples based on the pollen types present when examined microscopically. Provides instructions for the preparation of pollen slides. (MDH)

  3. Pollen counts and their relationship to meteorological factors in Ankara, Turkey during 2005-2008

    NASA Astrophysics Data System (ADS)

    Kizilpinar, Ilginc; Civelek, Ersoy; Tuncer, Ayfer; Dogan, Cahit; Karabulut, Erdem; Sahiner, Umit M.; Yavuz, S. Tolga; Sackesen, Cansin

    2011-07-01

    Pollen plays an important role in the development and exacerbation of allergic diseases. We aimed to investigate the days with highest counts of the most allergenic pollens and to identify the meteorological factors affecting pollen counts in the atmosphere of Ankara, Turkey. Airborne pollen measurements were carried out from 2005 to 2008 with a Burkard volumetric 7-day spore trap. Microscope counts were converted into atmospheric concentrations and expressed as pollen grains/m3. Meteorological parameters were obtained from the State Meteorological Service. All statistical analyses were done with pollen counts obtained from March to October for each year. The percentages of tree, grass and weed pollens were 72.1% ( n = 24,923), 12.8% ( n = 4,433) and 15.1% ( n = 5,219), respectively. The Pinaceae family from tree taxa (39% to 57%) and the Chenopodiaceae/Amaranthaceae family from weed taxa, contributed the highest percentage of pollen (25% to 43%), while from the grass taxa, only the Poaceae family was detected from 2005 to 2008. Poaceae and Chenopodiaceae/Amaranthaceae families, which are the most allergenic pollens, were found in high numbers from May to August in Ankara. In multiple logistic regression analysis, wind speed (OR = 1.18, CI95% = 1.02-1.36, P = 0.023) for tree pollen, daily mean temperature (OR = 1.10, CI95% = 1.04-1.17, P = 0.001) and sunshine hours (OR = 1.15, CI95% = 1.01-1.30, P = 0.033) for grass pollen, and sunshine hours (OR = 3.79, CI95% = 1.03-13.92, P = 0.044) for weed pollen were found as significant risk factors for high pollen count. The pollen calendar and its association with meteorological factors depend mainly on daily temperature, sunshine hours and wind speed, which may help draw the attention of physicians and allergic patients to days with high pollen counts.

  4. Exploitation of pollen by mycorrhizal mycelial systems with special reference to nutrient recycling in boreal forests.

    PubMed Central

    Perez-Moreno, J.; Read, D. J.

    2001-01-01

    Very large quantities of pollen are released annually by wind-pollinated trees, which dominate northern forest ecosystems. Since pollen is enriched in both nitrogen and phosphorus, this recurrent pulse of deposition constitutes a significant potential source of these elements in what are known to be severely nutrient-limited systems. Here, we demonstrate for the first time, to our knowledge, that an ectomycorrhizal fungus, Paxillus involutus, is able to scavenge effectively for nitrogen and phosphorus in pollen and to return a significant proportion of each nutrient to its autotrophic host, Betula pendula. More than 75 and 96%, respectively, of the nitrogen and phosphorus were removed from pollen in microcosms containing the mycorrhizal fungus, 29 and 25%, respectively, being transferred to the plants. In contrast, in microcosms without the mycorrhizal fungus only 42 and 35%, respectively, of nitrogen and phosphorus were lost from the pollen, presumably as a result of export by saprotrophs, and only 12 and 7%, respectively, were transferred to the plants. We hypothesize that this process of resource recapture, by contributing significantly to the ability of the trees to sustain the necessary annual investment in pollen production, will have a major impact upon their reproductive capabilities and hence 'fitness'. PMID:11429131

  5. Surface pollen and its relationship to vegetation in the Zoige Basin, eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Furong; Zhao, Yan; Sun, Jinghui; Zhao, Wenwei; Guo, Xiaoli; Zhang, Ke

    2011-09-01

    We use a data set of 23 surface pollen samples from moss polsters in the Zoige Basin to explore the relationship between modern pollen assemblages and contemporary vegetation patterns. The surface pollen samples spanned four types of plant communities: Carex muliensis marsh, Stipa and Kobresia meadow, Carex-dominated forb meadow and Sibiraea angustata scrub. Principal-components analysis (PCA) was used to determine the relationships between modern pollen and vegetation and environmental variables. The results show that the pollen assemblages of surface moss samples generally reflect the features of the modern vegetation, basically similar in the vegetation types and the dominant genera; however, they don't show a very clear distinction between different communities. Our results also demonstrate that pollen representation of different families or genus varied. Some tree taxa, such as Pinus and Betula, and herb types, such as Artemisia are over-represented, while Asteraceae, Ranunculaceae and Cyperaceae are moderately represented, and Poaceae and Rosaceae are usually under-represented in our study region. PCA results indicate that the distribution of vegetation in the Zoige Basin is mainly controlled by precipitation and altitude.

  6. Seasonal variation of birch and grass pollen loads and allergen release at two sites in the German Alps

    NASA Astrophysics Data System (ADS)

    Jochner, Susanne; Lüpke, Marvin; Laube, Julia; Weichenmeier, Ingrid; Pusch, Gudrun; Traidl-Hoffmann, Claudia; Schmidt-Weber, Carsten; Buters, Jeroen T. M.; Menzel, Annette

    2015-12-01

    Less vegetated mountainous areas may provide better conditions for allergy sufferers. However, atmospheric transport can result in medically relevant pollen loads in such regions. The majority of investigations has focused on the pollen load, expressed as daily averages of pollen per cubic meter of air (pollen grains/m³); however, the severity of allergic symptoms is also determined by the actual allergen content of this pollen, its pollen potency, which may differ between high and low altitudes. We analysed airborne birch and grass pollen concentrations along with allergen content (birch: Bet v 1, grass: Phl p 5) at two different altitudes (734 and 2650 m a.s.l.) in the Zugspitze region (2009-2010). Back-trajectories were calculated for the high altitude site and for specific days with abrupt increases in pollen potency. We observed several days with medically relevant pollen concentrations at the highest site. In addition, a few days with pollen were not associated with allergens and vice versa. The calculated seasonal mean allergen release per pollen grain was 1.8-3.3 pg Bet v 1 and 5.7 pg Phl p 5 in the valley and 1.1-3.7 pg Bet v 1 and 0.7-1.5 pg Phl p 5 at the high altitude site. Back-trajectories revealed that high pollen potency at the higher site was generally associated with south-westerly to south-easterly (birch), or northerly (grass) wind directions. By investigating days with sudden increases in pollen potency, however, it was difficult to draw definitive conclusions on long- or short-range transport. Our findings suggest that people allergic to pollen might suffer less at higher altitudes and further indicate that a risk assessment relying on the actual concentration of airborne pollen does not necessarily reflect the actual allergy exposure of individuals.

  7. Wind tunnel and field assessment of pollen dispersal in soybean [Glycine max (L.) Merr.].

    PubMed

    Yoshimura, Yasuyuki

    2011-01-01

    Although genetically modified (GM) soybean has never been cultivated commercially in Japan, it is essential to set up the isolation distance required to prevent out-crossing between GM and conventional soybean in preparation for any future possibility of pollen transfer. The airborne soybean pollen was sampled using some Durham pollen samplers located in the range of 20 m from the field edge. In addition, the dispersal distance was assessed in a wind tunnel under constant air flow and then it was compared with the anticipated distances based on the pollen diameter. In the field, the maximum pollen density per day observed was 1.235 grains cm(-2) day(-1) at three observation points within 2.5 m from the field and inside the field the mean density did not reach the rate of 1 grain cm(-2 )day(-1) during 19 flowering days. The results of the wind tunnel experiment also showed that the plants had almost no airborne release of pollen and the dispersal distance was shorter than theoretical value due to clustered dispersal. This study showed little airborne pollen in and around the soybean field and the dispersal is restricted to a small area. Therefore, wind-mediated pollination appears to be negligible.

  8. In vitro pollen responses of two birch species to acidity and temperature

    SciTech Connect

    Hughes, R.N.; Cox, R.M.

    1993-10-01

    Paper birch (Betula papyrifera Marsh.) and mountain paper birch (Betula cordifolia Regel) near the Bay of Fundy coast frequently intercept acidic advection marine fogs. Chemical deposition by these fogs is thought to be a factor contributing to the observed foliar browning symptoms associated with a marked deterioration of these trees in the area. In vitro experiments were performed to test whether pollen germination in these two birch species would be affected by acidity at levels routinely found in the fog. The combined effect of temperature with acidity was also examined. Pollen germination in both species was inhibited below pH 5.6 (P < 0.0001) and the effect of incubation temperature was also significant (P < 0.01) in both species. There was no difference in in vitro pollen germination between species (P > 0.05) in response to acidity, based on combined data from 12 trees of each; the optimum germination temperature was 22{degrees}C for B. papyrifera and 21{degrees}C for B. cordifolia.

  9. Allergies, asthma, and pollen

    MedlinePlus

    ... Some trees Some grasses Weeds Ragweed Watch the Weather and the Season The amount of pollen in the air can affect whether you or your child has hay fever and asthma symptoms. On hot, dry, windy days, more pollen is in the air. ...

  10. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study

    NASA Astrophysics Data System (ADS)

    Buters, Jeroen T. M.; Thibaudon, Michel; Smith, Matt; Kennedy, Roy; Rantio-Lehtimäki, Auli; Albertini, Roberto; Reese, Gerald; Weber, Bernhard; Galan, Carmen; Brandao, Rui; Antunes, Celia M.; Jäger, Siegfried; Berger, Uwe; Celenk, Sevcan; Grewling, Łukasz; Jackowiak, Bogdan; Sauliene, Ingrida; Weichenmeier, Ingrid; Pusch, Gudrun; Sarioglu, Hakan; Ueffing, Marius; Behrendt, Heidrun; Prank, Marje; Sofiev, Mikhail; Cecchi, Lorenzo; Hialine Working Group

    2012-08-01

    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grains and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network). Pollen count was assessed with Hirst type pollen traps at 10 l min-1 at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800 l min-1 with a Chemvol® high-volume cascade impactor equipped with stages PM > 10 μm, 10 μm > PM > 2.5 μm, and in Germany also 2.5 μm > PM > 0.12 μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcɛR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen symptomatic patient. Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM > 10 μm fraction at all stations. Bet v 1 isoforms pattern did not vary substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long-range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration. Although Bet v 1 is a mixture of different

  11. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study

    NASA Astrophysics Data System (ADS)

    The HIALINE working Group; Buters, Jeroen T. M.; Thibaudon, Michel; Smith, Matt; Kennedy, Roy; Rantio-Lehtimäki, Auli; Albertini, Roberto; Reese, Gerald; Weber, Bernhard; Galan, Carmen; Brandao, Rui; Antunes, Celia M.; Jäger, Siegfried; Berger, Uwe; Celenk, Sevcan; Grewling, Łukasz; Jackowiak, Bogdan; Sauliene, Ingrida; Weichenmeier, Ingrid; Pusch, Gudrun; Sarioglu, Hakan; Ueffing, Marius; Behrendt, Heidrun; Prank, Marje; Sofiev, Mikhail; Cecchi, Lorenzo

    2012-08-01

    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grains and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network).Pollen count was assessed with Hirst type pollen traps at 10 l min-1 at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800 l min-1 with a Chemvol® high-volume cascade impactor equipped with stages PM > 10 μm, 10 μm > PM > 2.5 μm, and in Germany also 2.5 μm > PM > 0.12 μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcɛR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen symptomatic patient.Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM > 10 μm fraction at all stations. Bet v 1 isoforms pattern did not vary substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long-range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration.Although Bet v 1 is a mixture of different

  12. Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands).

    PubMed

    Izquierdo, Rebeca; Belmonte, Jordina; Avila, Anna; Alarcón, Marta; Cuevas, Emilio; Alonso-Pérez, Silvia

    2011-01-01

    The Canary Islands, due to their geographical position, constitute an adequate site for the study of long-range pollen transport from the surrounding land masses. In this study, we analyzed airborne pollen counts at two sites: Santa Cruz de Tenerife (SCO), at sea level corresponding to the marine boundary layer (MBL), and Izaña at 2,367 m.a.s.l. corresponding to the free troposphere (FT), for the years 2006 and 2007. We used three approaches to describe pollen transport: (1) a classification of provenances with an ANOVA test to describe pollen count differences between sectors; (2) a study of special events of high pollen concentrations, taking into consideration the corresponding meteorological synoptic pattern responsible for transport and back trajectories; and (3) a source-receptor model applied to a selection of the pollen taxa to show pollen source areas. Our results indicate several extra-regional pollen transport episodes to Tenerife. The main provenances were: (1) the Mediterranean region, especially the southern Iberian Peninsula and Morocco, through the trade winds in the MBL. These episodes were characterized by the presence of pollen from trees (Casuarina, Olea, Quercus perennial and deciduous types) mixed with pollen from herbs (Artemisia, Chenopodiaceae/Amaranthaceae and Poaceae wild type). (2) The Saharan sector, through transport at the MBL level carrying pollen principally from herbs (Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type) and, in one case, Casuarina pollen, uplifted to the free troposphere. And (3) the Sahel, characterized by low pollen concentrations of Arecaceae, Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type in sporadic episodes. This research shows that sporadic events of long-range pollen transport need to be taken into consideration in Tenerife as possible responsible agents in respiratory allergy episodes. In particular, it is estimated that 89-97% of annual counts of the highly allergenous Olea

  13. Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Izquierdo, Rebeca; Belmonte, Jordina; Avila, Anna; Alarcón, Marta; Cuevas, Emilio; Alonso-Pérez, Silvia

    2011-01-01

    The Canary Islands, due to their geographical position, constitute an adequate site for the study of long-range pollen transport from the surrounding land masses. In this study, we analyzed airborne pollen counts at two sites: Santa Cruz de Tenerife (SCO), at sea level corresponding to the marine boundary layer (MBL), and Izaña at 2,367 m.a.s.l. corresponding to the free troposphere (FT), for the years 2006 and 2007. We used three approaches to describe pollen transport: (1) a classification of provenances with an ANOVA test to describe pollen count differences between sectors; (2) a study of special events of high pollen concentrations, taking into consideration the corresponding meteorological synoptic pattern responsible for transport and back trajectories; and (3) a source-receptor model applied to a selection of the pollen taxa to show pollen source areas. Our results indicate several extra-regional pollen transport episodes to Tenerife. The main provenances were: (1) the Mediterranean region, especially the southern Iberian Peninsula and Morocco, through the trade winds in the MBL. These episodes were characterized by the presence of pollen from trees ( Casuarina, Olea, Quercus perennial and deciduous types) mixed with pollen from herbs ( Artemisia, Chenopodiaceae/Amaranthaceae and Poaceae wild type). (2) The Saharan sector, through transport at the MBL level carrying pollen principally from herbs (Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type) and, in one case, Casuarina pollen, uplifted to the free troposphere. And (3) the Sahel, characterized by low pollen concentrations of Arecaceae, Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type in sporadic episodes. This research shows that sporadic events of long-range pollen transport need to be taken into consideration in Tenerife as possible responsible agents in respiratory allergy episodes. In particular, it is estimated that 89-97% of annual counts of the highly allergenous Olea

  14. [Juniper pollen monitoring by Burkard sampler in Galveston, Texas, USA and Japanese cedar pollen counting in Fukuoka, Japan -- introduction of Pan American Aerobiology Association protocol counting technique].

    PubMed

    Kishikawa, Reiko; M-Horiuti, Terumi; Togawa, Akihisa; Kondoh, Yasuto; Janzy, Paul D; Goldblum, Randal M; Kotoh, Eiko; Shimoda, Teruhumi; Shoji, Shunsuke; Nishima, Sankei; Brooks, Edward G

    2004-06-01

    We have monitored Juniper pollen which caused winter allergy symptoms by Burkard sampler in Galveston, Texas. We identified and counted Juniper pollen grains by PAAA protocol which was a comprehensive guideline for the operation of Hirst-Type suction bioaerosol sampler, (original of Burkard sampler) in the USA. In Galveston we were able to detect the Mountain Cedar (Juniperus ashei) pollen from December to of January, and Eastern Red Cedar (Juniperus virginiana) which has cross reactivity to MC from almost middle of January to February. There is no MC vegetation in Galveston. We found the pollen grains were transported from west at Edward Plateau in West Texas where it was thickly wooded. Then, we tried to monitor Japanese Cedar (JC) pollen grains in Fukuoka, Japan according with the same method. We found the significant positive correlation between the pollen counts using one single longitudinal traverse counting technique in the PAAA protocol and the JC pollen counting on the whole of Melinex tape per 24 hours (R2=0.9212, p=0.0001), and the gravitational method that is Durham sampler's pollen counting in 2002 (R2=0.489, p=0.0001), and in 2003 (R2=0.948, p=0.0001) respectively. We suggested that we can use the PAAA protocol for airborne pollen investigation in Japan by Burkard sampler.

  15. All-optical automatic pollen identification: Towards an operational system

    NASA Astrophysics Data System (ADS)

    Crouzy, Benoît; Stella, Michelle; Konzelmann, Thomas; Calpini, Bertrand; Clot, Bernard

    2016-09-01

    We present results from the development and validation campaign of an optical pollen monitoring method based on time-resolved scattering and fluorescence. Focus is first set on supervised learning algorithms for pollen-taxa identification and on the determination of aerosol properties (particle size and shape). The identification capability provides a basis for a pre-operational automatic pollen season monitoring performed in parallel to manual reference measurements (Hirst-type volumetric samplers). Airborne concentrations obtained from the automatic system are compatible with those from the manual method regarding total pollen and the automatic device provides real-time data reliably (one week interruption over five months). In addition, although the calibration dataset still needs to be completed, we are able to follow the grass pollen season. The high sampling from the automatic device allows to go beyond the commonly-presented daily values and we obtain statistically significant hourly concentrations. Finally, we discuss remaining challenges for obtaining an operational automatic monitoring system and how the generic validation environment developed for the present campaign could be used for further tests of automatic pollen monitoring devices.

  16. Comparison of modern pollen distribution between the northern and southern parts of the South China Sea.

    PubMed

    Luo, Chuanxiu; Chen, Muhong; Xiang, Rong; Liu, Jianguo; Zhang, Lanlan; Lu, Jun

    2015-04-01

    The authors conducted a palynological analysis based on different number of air pollen samples for the northern and southern parts of the South China Sea, respectively, in order to give a reference to reconstruct the paleoclimate of the area. (1) Fifteen air pollen samples were collected from the northern part of the South China Sea from August to September 2011, and 13 air pollen samples were collected from the southern part of the South China Sea in December 2011. The pollen types were more abundant in the north than in the south. The total pollen number and concentration in the north was 10 times more than that in the south, which may be because of the sampling season. Airborne pollen types and concentrations have a close relationship with wind direction and distance from the sampling point to the continent. (2) Seventy-four samples were collected from surface sediments in the northern part of the South China Sea in the autumn. Thirty-three samples were collected from surface sediments in the southern part of the South China Sea in the winter. Pollen concentrations in the north were nearly 10 times higher than that in the south. This is because trilete spores are transported by rivers from Hainan Island to the sea and also by the summer monsoon-forced marine current. (3) Ten air pollen samples and 10 surface sediments samples were selected for comparison. The pollen and spores in the air were mainly herbaceous and woody pollen, excluding fern spores, having seasonal pollen characteristics. Pollen in the surface sediments were mainly trilete, Pinus, and herbaceous, and may also show a combination of annual pollen characteristics.

  17. Comparison of modern pollen distribution between the northern and southern parts of the South China Sea

    NASA Astrophysics Data System (ADS)

    Luo, Chuanxiu; Chen, Muhong; Xiang, Rong; Liu, Jianguo; Zhang, Lanlan; Lu, Jun

    2015-04-01

    The authors conducted a palynological analysis based on different number of air pollen samples for the northern and southern parts of the South China Sea, respectively, in order to give a reference to reconstruct the paleoclimate of the area. (1) Fifteen air pollen samples were collected from the northern part of the South China Sea from August to September 2011, and 13 air pollen samples were collected from the southern part of the South China Sea in December 2011. The pollen types were more abundant in the north than in the south. The total pollen number and concentration in the north was 10 times more than that in the south, which may be because of the sampling season. Airborne pollen types and concentrations have a close relationship with wind direction and distance from the sampling point to the continent. (2) Seventy-four samples were collected from surface sediments in the northern part of the South China Sea in the autumn. Thirty-three samples were collected from surface sediments in the southern part of the South China Sea in the winter. Pollen concentrations in the north were nearly 10 times higher than that in the south. This is because trilete spores are transported by rivers from Hainan Island to the sea and also by the summer monsoon-forced marine current. (3) Ten air pollen samples and 10 surface sediments samples were selected for comparison. The pollen and spores in the air were mainly herbaceous and woody pollen, excluding fern spores, having seasonal pollen characteristics. Pollen in the surface sediments were mainly trilete, Pinus, and herbaceous, and may also show a combination of annual pollen characteristics.

  18. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  19. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae)

    PubMed Central

    Wang, Nian; McAllister, Hugh A.; Bartlett, Paul R.; Buggs, Richard J. A.

    2016-01-01

    Background and Aims Betula L. (birch) is a genus of approx. 60 species, subspecies or varieties with a wide distribution in the northern hemisphere, of ecological and economic importance. A new classification of Betula has recently been proposed based on morphological characters. This classification differs somewhat from previously published molecular phylogenies, which may be due to factors such as convergent evolution, hybridization, incomplete taxon sampling or misidentification of samples. While chromosome counts have been made for many species, few have had their genome size measured. The aim of this study is to produce a new phylogenetic and genome size analysis of the genus. Methods Internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced for 76 Betula samples verified by taxonomic experts, representing approx. 60 taxa, of which approx. 24 taxa have not been included in previous phylogenetic analyses. A further 49 samples from other collections were also sequenced, and 108 ITS sequences were downloaded from GenBank. Phylogenetic trees were built for these sequences. The genome sizes of 103 accessions representing nearly all described species were estimated using flow cytometry. Key Results As expected for a gene tree of a genus where hybridization and allopolyploidy occur, the ITS tree shows clustering, but not resolved monophyly, for the morphological subgenera recently proposed. Most sections show some clustering, but species of the dwarf section Apterocaryon are unusually scattered. Betula corylifolia (subgenus Nipponobetula) unexpectedly clusters with species of subgenus Aspera. Unexpected placements are also found for B. maximowicziana, B. bomiensis, B. nigra and B. grossa. Biogeographical disjunctions were found within Betula between Europe and North America, and also disjunctions between North-east and South-west Asia. The 2C-values for Betula ranged from 0·88 to 5·33 pg, and polyploids are scattered widely throughout the

  20. Large-scale climate variability and its effects on mean temperature and flowering time of Prunus and Betula in Denmark

    NASA Astrophysics Data System (ADS)

    Gormsen, A. K.; Hense, A.; Toldam-Andersen, T. B.; Braun, P.

    2005-08-01

    Large-scale climate variability largely affects average climatic conditions and therefore is likely to influence the phenology of plants. In NW-Europe, the North Atlantic Oscillation (NAO) particularly influences winter climate and, through climate interactions on plants, flowering time of all tree species. In Denmark, like in many other NW-European countries, flowering of most tree species has become earlier since the end of the 1980’s. To quantify a possible relation between NAO and flowering time of tree species, two sources of phenological information from the Copenhagen area (Denmark) were analysed, i.e. pollen counts of the genus Betula and observed first bloom dates of Prunus avium. The Winter NAO explained 29 and 37% of the variation of monthly mean temperature for February and March, respectively. The influence of temperature on flowering time was up to 56% to 60% for the February April mean. A direct correlation of Winter NAO-index and flowering time also revealed a clear relation but the time of influence was earlier (December to February). This was shown to be the likely result of a combination of direct and time-lagged effects of the NAO on air and sea surface temperature. The NAO signal is apparently stored in the North Sea and then influences temperature east up to the Baltic States. It is shown that Denmark is right in the centre of direct and time-lagged effects of the NAO. This offers the possibility of using the NAO-index for predicting flowering time of Prunus avium. The beginning of pollen flow appears to be influenced too much by short-term perturbations of the climate system decreasing the value of the NAO-index for prediction. However, it indicates a close relationship between natural climate variability, measured by the NAO index, and flowering time of tree species for Denmark.

  1. Region-specific sensitivity of anemophilous pollen deposition to temperature and precipitation.

    PubMed

    Donders, Timme H; Hagemans, Kimberley; Dekker, Stefan C; de Weger, Letty A; de Klerk, Pim; Wagner-Cremer, Friederike

    2014-01-01

    Understanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values), and the North Atlantic Oscillation climate index. Spearman rank correlation analysis shows that specifically in Alnus, Betula, Corylus, Fraxinus, Quercus and Plantago both temperature in the year prior to (T-1), as well as in the growing season (T), are highly significant factors (TApril rs between 0.30 [P<0.05[ and 0.58 [P<0.0001]; TJuli-1 rs between 0.32 [P<0.05[ and 0.56 [P<0.0001]) in the annual pollen influx of wind-pollinated plants. Total annual pollen prediction models based on multiple climate variables yield R2 between 0.38 and 0.62 (P<0.0001). The effect of precipitation is minimal. A second trapping station in the SE Netherlands, shows consistent trends and annual variability, suggesting the climate factors are regionally relevant. Summer temperature is thought to influence the formation of reproductive structures, while temperature during the flowering season influences pollen release. This study provides a first predictive model for seasonal pollen forecasting, and also aides forensic studies. Furthermore, variations in pollen accumulation rates from a sub-fossil peat deposit are comparable with the pollen trap data. This suggests that high frequency variability pollen records from natural archives reflect

  2. Region-Specific Sensitivity of Anemophilous Pollen Deposition to Temperature and Precipitation

    PubMed Central

    Donders, Timme H.; Hagemans, Kimberley; Dekker, Stefan C.; de Weger, Letty A.; de Klerk, Pim; Wagner-Cremer, Friederike

    2014-01-01

    Understanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values), and the North Atlantic Oscillation climate index. Spearman rank correlation analysis shows that specifically in Alnus, Betula, Corylus, Fraxinus, Quercus and Plantago both temperature in the year prior to (T-1), as well as in the growing season (T), are highly significant factors (TApril rs between 0.30 [P<0.05[ and 0.58 [P<0.0001]; TJuli-1 rs between 0.32 [P<0.05[ and 0.56 [P<0.0001]) in the annual pollen influx of wind-pollinated plants. Total annual pollen prediction models based on multiple climate variables yield R2 between 0.38 and 0.62 (P<0.0001). The effect of precipitation is minimal. A second trapping station in the SE Netherlands, shows consistent trends and annual variability, suggesting the climate factors are regionally relevant. Summer temperature is thought to influence the formation of reproductive structures, while temperature during the flowering season influences pollen release. This study provides a first predictive model for seasonal pollen forecasting, and also aides forensic studies. Furthermore, variations in pollen accumulation rates from a sub-fossil peat deposit are comparable with the pollen trap data. This suggests that high frequency variability pollen records from natural archives reflect

  3. Mapped plant macrofossil and pollen records of late Quaternary vegetation change in eastern North America

    SciTech Connect

    Jackson, S.T.; Overpeck, J.T.; Webb, T. III ||

    1995-06-01

    We compiled a plant macrofossil database for 12 eastern North American tree and shrub taxa (Picea sp., P. glauca, P. mariana, Larix laricina, Abies balsamea, Tsuga canadensis, Pinus strobus, P. banksiana, P. resinosa, Betula papyrifera, B. alleghaniensis, B. Series Humiles) at 264 late Quaternary sites. Presence/absence maps for these taxa at 18,000, 15,000, 12,000, 9000, 6000, 3000, and 0 {sup 14}C yr B.P. show changes in geographic ranges of these species in response to climatic change. Comparison of the macrofossil maps with isopoll maps for corresponding taxa corroborates inferences from the pollen data, and reveals species-level patterns not apparent in the pollen maps.

  4. Molecular analysis confirms the long-distance transport of Juniperus ashei pollen

    PubMed Central

    Mohanty, Rashmi Prava; Buchheim, Mark Alan; Anderson, James; Levetin, Estelle

    2017-01-01

    Although considered rare, airborne pollen can be deposited far from its place of origin under a confluence of favorable conditions. Temporally anomalous records of Cupressacean pollen collected from January air samples in London, Ontario, Canada have been cited as a new case of long-distance transport. Data on pollination season implicated Juniperus ashei (mountain cedar), with populations in central Texas and south central Oklahoma, as the nearest source of the Cupressacean pollen in the Canadian air samples. This finding is of special significance given the allergenicity of mountain cedar pollen. While microscopy is used extensively to identify particles in the air spora, pollen from all members of the Cupressaceae, including Juniperus, are morphologically indistinguishable. Consequently, we implemented a molecular approach to characterize Juniperus pollen using PCR in order to test the long-distance transport hypothesis. Our PCR results using species-specific primers confirmed that the anomalous Cupressacean pollen collected in Canada was from J. ashei. Forward trajectory analysis from source areas in Texas and the Arbuckle Mountains in Oklahoma and backward trajectory analysis from the destination area near London, Ontario were completed using models implemented in HYSPLIT4 (Hybrid Single-Particle Lagrangian Integrated Trajectory). Results from these trajectory analyses strongly supported the conclusion that the J. ashei pollen detected in Canada had its origins in Texas or Oklahoma. The results from the molecular findings are significant as they provide a new method to confirm the long-distance transport of pollen that bears allergenic importance. PMID:28273170

  5. Transcriptomic Analysis of Phenotypic Changes in Birch (Betula platyphylla) Autotetraploids

    PubMed Central

    Mu, Huai-Zhi; Liu, Zi-Jia; Lin, Lin; Li, Hui-Yu; Jiang, Jing; Liu, Gui-Feng

    2012-01-01

    Plant breeders have focused much attention on polyploid trees because of their importance to forestry. To evaluate the impact of intraspecies genome duplication on the transcriptome, a series of Betula platyphylla autotetraploids and diploids were generated from four full-sib families. The phenotypes and transcriptomes of these autotetraploid individuals were compared with those of diploid trees. Autotetraploids were generally superior in breast-height diameter, volume, leaf, fruit and stoma and were generally inferior in height compared to diploids. Transcriptome data revealed numerous changes in gene expression attributable to autotetraploidization, which resulted in the upregulation of 7052 unigenes and the downregulation of 3658 unigenes. Pathway analysis revealed that the biosynthesis and signal transduction of indoleacetate (IAA) and ethylene were altered after genome duplication, which may have contributed to phenotypic changes. These results shed light on variations in birch autotetraploidization and help identify important genes for the genetic engineering of birch trees. PMID:23202935

  6. Genetic transformation of silver birch (Betula pendula) by particle bombardment.

    PubMed

    Valjakka, Maarit; Aronen, Tuija; Kangasjärvi, Jaakko; Vapaavuori, Elina; Häggman, Hely

    2000-05-01

    We used in vitro callus and shoot cultures as target material for genetic transformation of silver birch (Betula pendula Roth) by particle bombardment. Cultivation of in vitro shoot cultures before particle bombardment and a long selection period, combined with a high concentration of selective agent after bombardment, led to the production of transformed plantlets that were stable, and no escapes were found among the tree lines produced. Clonal variation in transformation efficiency was found in transient expression of the beta-glucuronidase gene in callus cultures and in plantlets transformed by stable integration of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) and neomycin phosphotransferase (npt2) genes.

  7. The weak effects of climatic change on Plantago pollen concentration: 17 years of monitoring in Northwestern Spain

    NASA Astrophysics Data System (ADS)

    González-Parrado, Zulima; Valencia-Barrera, Rosa Ma.; Vega-Maray, Ana Ma.; Fuertes-Rodríguez, Carmen Reyes; Fernández-González, Delia

    2014-09-01

    Plantago L. species are very common in nitrified areas such as roadsides and their pollen is a major cause of pollinosis in temperate regions. In this study, we sampled airborne pollen grains in the city of León (NW, Spain) from January 1995 to December 2011, by using a Burkard® 7-day-recording trap. The percentage of Plantago pollen compared to the total pollen count ranged from 11 % (1997) to 3 % (2006) in the period under study. Peak pollen concentrations were recorded in May and June. Our 17-year analysis failed to disclose significant changes in the seasonal trend of plantain pollen concentration. In addition, there were no important changes in the start dates of pollen release and the meteorological parameters analyzed did not show significant variations in their usual trends. We analyzed the influence of several meteorological parameters on Plantago pollen concentration to explain the differences in pollen concentration trends during the study. Our results show that temperature, sun hours, evaporation, and relative humidity are the meteorological parameters best correlated to the behavior of Plantago pollen grains. In general, the years with low pollen concentrations correspond to the years with less precipitation or higher temperatures. We calculated the approximate Plantago flowering dates using the cumulative sum of daily maximum temperatures and compared them with the real bloom dates. The differences obtained were 4 days in 2009, 3 days in 2010, and 1 day in 2011 considering the complete period of pollination.

  8. Characterization of Pollen Dispersion in the Neighborhood of Tokyo, Japan in the Spring of 2005 and 2006

    PubMed Central

    Ishibashi, Yoshinaga; Ohno, Hideki; Oh-ishi, Shuji; Matsuoka, Takeshi; Kizaki, Takako; Yoshizumi, Kunio

    2008-01-01

    The behavior of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) pollens in an urban area was examined through the measurements of the dispersion characteristics at the various sampling locations in both outdoor and indoor environments. Airborne pollens were counted continuously for three months during the Japanese cedar pollen and Japanese cypress seasons in 2005 and 2006 by the use of Durham’s pollen trap method in and around Tokyo, Japan. The dispersion of pollens at the rooftop of Kyoritsu Women’s University was observed to be at extremely high levels in 2005 compared with previously reported results during the past two decades. As for Japanese cedar pollen, the maximum level was observed as 440 counts cm−2 day−1 on 18 March 2005. Japanese cypress pollen dispersed in that area in the latter period was compared with the Japanese cedar pollen dispersions. The maximum dispersion level was observed to be 351 counts cm−2 day−1 on 7 April 2005. Total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 5,552 and 1,552 counts cm−2 for the three months (Feb., Mar. and Apr.) in 2005, respectively. However, the dispersion of both pollens in 2006 was very low. The total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 421 and 98 counts cm−2 for three months (Feb., Mar. and Apr.) in 2006, respectively. Moreover, the pollen deposition on a walking person in an urban area showed that the pollen counts on feet were observed to be extremely high compared with the ones on the shoulder, back and legs. These findings suggested that pollen fell on the surface of the paved road at first, rebounded to the ambient air and was deposited on the residents again. Furthermore, the regional distribution of the total pollen dispersion in the South Kanto area was characterized on 15–16 March 2005 and on 14–15 March 2006. Although the pollen levels in 2005 were much higher than in 2006, it

  9. Characterization of pollen dispersion in the neighborhood of Tokyo, Japan in the spring of 2005 and 2006.

    PubMed

    Ishibashi, Yoshinaga; Ohno, Hideki; Oh-ishi, Shuji; Matsuoka, Takeshi; Kizaki, Takako; Yoshizumi, Kunio

    2008-03-01

    The behavior of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) pollens in an urban area was examined through the measurements of the dispersion characteristics at the various sampling locations in both outdoor and indoor environments. Airborne pollens were counted continuously for three months during the Japanese cedar pollen and Japanese cypress seasons in 2005 and 2006 by the use of Durham's pollen trap method in and around Tokyo, Japan. The dispersion of pollens at the rooftop of Kyoritsu Women's University was observed to be at extremely high levels in 2005 compared with previously reported results during the past two decades. As for Japanese cedar pollen, the maximum level was observed as 440 counts cm(-2) day(-1) on 18 March 2005. Japanese cypress pollen dispersed in that area in the latter period was compared with the Japanese cedar pollen dispersions. The maximum dispersion level was observed to be 351 counts cm(-2) day(-1) on 7 April 2005. Total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 5,552 and 1,552 counts cm(-2) for the three months (Feb., Mar. and Apr.) in 2005, respectively. However, the dispersion of both pollens in 2006 was very low. The total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 421 and 98 counts cm(-2) for three months (Feb., Mar. and Apr.) in 2006, respectively. Moreover, the pollen deposition on a walking person in an urban area showed that the pollen counts on feet were observed to be extremely high compared with the ones on the shoulder, back and legs. These findings suggested that pollen fell on the surface of the paved road at first, rebounded to the ambient air and was deposited on the residents again. Furthermore, the regional distribution of the total pollen dispersion in the South Kanto area was characterized on 15-16 March 2005 and on 14-15 March 2006. Although the pollen levels in 2005 were much higher than in 2006, it was

  10. Large Eddy Simulation and Field Experiments of Pollen Transport in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chamecki, M.; Meneveau, C.; Parlange, M. B.; van Hout, R.

    2006-12-01

    Dispersion of airborne pollen by the wind has been a subject of interest for botanists and allergists for a long time. More recently, the development of genetically modified crops and questions about cross-pollination and subsequent contamination of natural plant populations has brought even more interest to this field. A critical question is how far from the source field pollen grains will be advected. Clearly the answer depends on the aerodynamic properties of the pollen, geometrical properties of the field, topography, local vegetation, wind conditions, atmospheric stability, etc. As a consequence, field experiments are well suited to provide some information on pollen transport mechanisms but are limited to specific field and weather conditions. Numerical simulations do not have this drawback and can be a useful tool to study pollen dispersal in a variety of configurations. It is well known that the dispersion of particles in turbulent fields is strongly affected by the large scale coherent structures. Large Eddy Simulation (LES) is a technique that allows us to study the typical distances reached by pollen grains and, at the same time, resolve the larger coherent structures present in the atmospheric boundary layer. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using LES. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of extreme importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. In both cases we make use of the theoretical profile for suspended particles derived by Kind (1992). Field experiments were performed to study the applicability of the theoretical profile to pollen grains and the results are encouraging. Airborne concentrations as well as ground deposition from the simulations are compared to experimental data to validate the

  11. Satellite Phenology Observations Inform Peak Season of Allergenic Grass Pollen Aerobiology across Two Continents

    NASA Astrophysics Data System (ADS)

    Huete, A. R.; Devadas, R.; Davies, J.

    2015-12-01

    Pollen exposure and prevalence of allergenic diseases have increased in many parts of the world during the last 30 years, with exposure to aeroallergen grass pollen expected to intensify with climate change, raising increased concerns for allergic diseases. The primary contributing factors to higher allergenic plant species presence are thought to be climate change, land conversion, and biotic mixing of species. Conventional methods for monitoring airborne pollen are hampered by a lack of sampling sites and heavily rely on meteorology with less attention to land cover updates and monitoring of key allergenic species phenology stages. Satellite remote sensing offers an alternative method to overcome the restrictive coverage afforded by in situ pollen networks by virtue of its synoptic coverage and repeatability of measurements that enable timely updates of land cover and land use information and monitoring landscape dynamics and interactions with human activity and climate. In this study, we assessed the potential of satellite observations of urban/peri-urban environments to directly inform landscape conditions conducive to pollen emissions. We found satellite measurements of grass cover phenological evolution to be highly correlated with in situ aerobiological grass pollen concentrations in five urban centres located across two hemispheres (Australia and France). Satellite greenness data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were found to be strongly synchronous with grass pollen aerobiology in both temperate grass dominated sites (France and Melbourne), as well as in Sydney, where multiple pollen peaks coincided with the presence of subtropical grasses. Employing general additive models (GAM), the satellite phenology data provided strong predictive capabilities to inform airborne pollen levels and forecast periods of grass pollen emissions at all five sites. Satellite phenology offer promising opportunities of improving public health risk

  12. A study of oak-pollen production and phenology in northern California: prediction of annual variation in pollen counts based on geographic and meterologic factors.

    PubMed

    Fairley, D; Batchelder, G L

    1986-08-01

    To assess the characteristics of oak-pollen production and dispersal, 9 years of weekly volumetric air sampling, with modified swing-shield rotoslide pollen samplers, were obtained in San Francisco and San Jose, Calif. The Mediterranean climate of coastal California supports 9 million acres of oaks of nine different species. The major pollen contributors in the two sampling areas are coast live oak (Quercus agrifolia Neé) and valley oak (Quercus lobata neé). Sampling data indicate that grains may be wind transported at least 16 km (10 miles). A strong correlation exists between pollen capture and total rainfall a full year before pollen release. The correlation is statistically significant, based on a Spearman rank test. A positive regression line slope demonstrates that the greater the precipitation, the stronger the stimulus for pollen production. The median count can be predicted within a factor of two with high probability a full year before release. During most seasons, the peak pollen collection from coast live oak and valley oak occurs in early April. A second peak production period, in mid-May, represents the conglomerate of other oak-pollen types. However, there are major yearly differences in the relative amounts of pollen released during these two periods. Consequently, individual oak pollinosis may depend as much on variable production by the major species as on the total quantity of airborne oak pollen. These data will help clinicians predict and prepare for the intensity of the oak-pollen season and explain seasonal variations in clinical symptoms from year to year. The question of cross-reacting and specific allergens among oak species can be answered by RAST-inhibition studies.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969-2006

    NASA Astrophysics Data System (ADS)

    Frei, Thomas; Gassner, Ewald

    2008-09-01

    As published by the Intergovernmental Panel on Climate Change (IPCC) global warming is a reality and its impact is huge like the increase of extreme weather events, glacier recession, sea level rise and also effects on human health. Among them allergies to airborne pollen might increase or change in pattern due to the invasion of new allergic plants or due to different behavior of plants like earlier flowering. In this study we used the longest Swiss airborne pollen data set to examine the influence of the temperature increase on the time of flowering. In the case of Basel, where pollen data for 38 years are available, it was shown that due to a temperature increase the start of flowering in the case of birch occurred about 15 days earlier. Apart from a shift of the start of the flowering there is also a trend towards higher annual birch pollen quantities and an increase of the highest daily mean pollen concentrations. Due to global warming and because symptoms may appear earlier in the year people suffering from a pollen allergy might face a new unaccustomed situation.

  14. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  15. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  16. Pollen Viability and Pollen Tube Attrition in Cranberry (Vaccinium macrocarpon)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The content of mature seed in a cranberry fruit increases with stigmatic pollen load. On average, however, only two seeds result for every tetrad of pollen deposited. What then is the fate of the two remaining pollen grains fused in each tetrad? Germination in vitro revealed that most of the grains ...

  17. [Allergenic pollens in Spain].

    PubMed

    Subiza Garrido-Lestache, J

    2004-01-01

    Allergenic pollens that cause rhinoconjuctivitis and/or asthma are those from trees or plants that pollinate through the air (anemophilic pollination) and not through insects (entomophilic pollination). Although pollen grains would seem to be too large to easily reach the intrapulmonary airways, the relationship between pollen counts and the presence of asthmatic symptoms is only too evident. This is probably because the allergens inducing seasonal asthma are not only found within pollen grains but also outside the grains in particles of less than 10 mm that are freely found in the atmosphere. The most important pollens producing pollinosis in Spain are those from cypress trees from January-March, birch trees in April (macizo galaico), Platanus hispanica (March-April), grasses and olive trees from April-June, Parietaria from April-July and Chenopodium and/or Salsola from July-September. By geographical areas, the main cause of pollinosis are grasses in the center and north of the peninsula, olive trees in the south (Jaén, Sevilla, Granada, Córdoba) and Parietaria in the Mediterranean coast (Barcelona, Murcia, Valencia).

  18. A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christos; Isukapalli, Sastry; Georgopoulos, Panos

    2011-04-01

    Allergic airway diseases represent a complex health problem which can be exacerbated by the synergistic action of pollen particles and air pollutants such as ozone. Understanding human exposures to aeroallergens requires accurate estimates of the spatial distribution of airborne pollen levels as well as of various air pollutants at different times. However, currently there are no established methods for estimating allergenic pollen emissions and concentrations over large geographic areas such as the United States. A mechanistic modeling system for describing pollen emissions and transport over extensive domains has been developed by adapting components of existing regional scale air quality models and vegetation databases. First, components of the Biogenic Emissions Inventory System (BEIS) were adapted to predict pollen emission patterns. Subsequently, the transport module of the Community Multiscale Air Quality (CMAQ) modeling system was modified to incorporate description of pollen transport. The combined model, CMAQ-pollen, allows for simultaneous prediction of multiple air pollutants and pollen levels in a single model simulation, and uses consistent assumptions related to the transport of multiple chemicals and pollen species. Application case studies for evaluating the combined modeling system included the simulation of birch and ragweed pollen levels for the year 2002, during their corresponding peak pollination periods (April for birch and September for ragweed). The model simulations were driven by previously evaluated meteorological model outputs and emissions inventories for the eastern United States for the simulation period. A semi-quantitative evaluation of CMAQ-pollen was performed using tree and ragweed pollen counts in Newark, NJ for the same time periods. The peak birch pollen concentrations were predicted to occur within two days of the peak measurements, while the temporal patterns closely followed the measured profiles of overall tree pollen

  19. Boreal tree pollen sensed by polarization lidar: Depolarizing biogenic chaff

    NASA Astrophysics Data System (ADS)

    Sassen, Kenneth

    2008-09-01

    Polarization (0.694 μm) lidar measurements show that tree pollen can generate strong laser depolarization in the backscatter from the lower atmosphere. Examples are given illustrating that linear depolarization ratios up to 0.3 are measured in plumes of paper birch pollen at the onset of boreal forest green-out. These pollen are ~25 μm in diameter and near-spherical in shape, but with lobes protruding from a surface membrane, which appears to produce the depolarization. Similar lidar findings are frequently observed during the summer at Fairbanks, Alaska, indicating that various types of seasonal pollen releases may be identified by polarization lidar. This scattering behavior is likely a general attribute of pollen and other suspended biogenic debris, which has implications for benefiting human health. This source of laser depolarization should not be confused with the presence of airborne dust or certain pollution particles, but is a natural background aerosol component caused by plant reproduction, as should be recognized in current global polarization lidar aerosol research using the CALIPSO satellite.

  20. Termination of the Last Glaciation in the Iberian Peninsula Inferred from the Pollen Sequence of Quintanar de la Sierra

    NASA Astrophysics Data System (ADS)

    Peñalba, M. Cristina; Arnold, Maurice; Guiot, Joël; Duplessy, Jean-Claude; de Beaulieu, Jacques-Louis

    1997-09-01

    A 4.5-m-thick late-glacial pollen sequence, supported by 17 AMS 14C dates, has been investigated at the Quintanar de la Sierra marshland (Iberian cordillera, north-central Spain). Pollen zones were defined that correspond to successive phases in vegetation history during the end of the Late Würm, late-glacial interstade, and Younger Dryas periods. A transfer function approach has been adopted to derive quantitative climate estimates from the pollen assemblage data. A first expansion of Juniperusand Hippophae,about 13,500 14C yr B.P., indicates the beginning of the late-glacial interstade which is characterized by a Juniperus-Betula-Pinussuccession that suggests higher temperatures and moisture than during full-glacial time. The Younger Dryas interval is recorded by a 120-cm-thick sediment unit that is dominated by herbaceous pollen. Transfer function estimates suggest that the climate during this period was cold, with low precipitation during most of the year, although not in summer. The Holocene arboreal recolonization in the area started about 10,000 14C yr B.P., with a renewed Juniperus-Betula-Pinussuccession related to a strong increase in annual temperature and precipitation. The start of this process was synchronous with mean sea-surface temperature changes, as recorded from the nearby SU 81-18 marine core. The strong affinity with other European late-glacial pollen sequences demonstrates that the pattern of climatic changes during the last glacial-interglacial transition was similar in both northwestern and southwestern Europe.

  1. Transport and radiative impacts of atmospheric pollen using online, observation-based emissions

    NASA Astrophysics Data System (ADS)

    Wozniak, M. C.; Steiner, A. L.; Solmon, F.; Li, Y.

    2015-12-01

    Atmospheric pollen emitted from trees and grasses exhibits both a high temporal variability and a highly localized spatial distribution that has been difficult to quantify in the atmosphere. Pollen's radiative impact is also not quantified because it is neglected in climate modeling studies. Here we couple an online, meteorological active pollen emissions model guided by observations of airborne pollen to understand the role of pollen in the atmosphere. We use existing pollen counts from 2003-2008 across the continental U.S. in conjunction with a tree database and historical meteorological data to create an observation-based phenological model that produces accurately scaled and timed emissions. These emissions are emitted and transported within the regional climate model (RegCM4) and the direct radiative effect is calculated. Additionally, we simulate the rupture of coarse pollen grains into finer particles by adding a second size mode for pollen emissions, which contributes to the shortwave radiative forcing and also has an indirect effect on climate.

  2. Emerging pollen allergens.

    PubMed

    Rodríguez, Rosalía; Villalba, Mayte; Batanero, Eva; Palomares, Oscar; Salamanca, Guillermo

    2007-01-01

    Numerous pollen allergens have been reported over the last few years. Most of them belong to well-known families of proteins but some others constitute the first member of new allergenic families. Some of the factors that can contribute to the detection and identification of new pollen allergens are: a) advances in the technology tools for molecular analysis; and b) the deep knowledge of many allergenic sources. The combination of these factors has provided vast information on the olive pollen allergogram and the identification of minor allergens that become major ones for a significant population. The close taxonomical relationship between olive tree and ash -both Oleaceae- has permitted to identify Fra e 1 (the Ole e 1-like allergen) in ash pollen and to detect the presence of protein homologues of Ole e 3 and Ole e 6. In the other hand, extensive areas of south Europe are suffering an increasing desertification. As a consequence of this, new botanical species are spontaneously growing in these areas or being used in greening ground programs: Chenopodium album and Salsola kali are some examples recently recognized as allergenic woods. The identification of the complete panel of allergens from the hypersensitizing sources might help to develop more accurate diagnosis, and efficient and safer therapy tools for Type-I allergic diseases.

  3. Fraxinus pollen and allergen concentrations in Ourense (South-western Europe).

    PubMed

    Vara, A; Fernández-González, M; Aira, M J; Rodríguez-Rajo, F J

    2016-05-01

    In temperate zones of North-Central Europe the sensitization to ash pollen is a recognized problem, also extended to the Northern areas of the Mediterranean basin. Some observations in Switzerland suggest that ash pollen season could be as important as birch pollen period. The allergenic significance of this pollen has been poorly studied in Southern Europe as the amounts of ash pollen are low. Due to the high degree of family relationship with the olive pollen major allergen (backed by a sequence identity of 88%), the Fraxinus pollen could be a significant cause of early respiratory allergy in sensitized people to olive pollen as consequence of cross-reactivity processes. Ash tree flowers in the Northwestern Spain during the winter months. The atmospheric presence of Ole e 1-like proteins (which could be related with the Fra a 1 presence) can be accurately detected using Ole e 1 antibodies. The correlation analysis showed high Spearman correlation coefficients between pollen content and rainfall (R(2)=-0.333, p<0.01) or allergen concentration and maximum temperature (R(2)=-0.271, p<0.01). In addiction CCA analysis showed not significant differences (p<0.05) between the component 1 and 2 variables. PCFA analysis plots showed that the allergen concentrations are related to the presence of the Fraxinus pollen in the air, facilitating the wind speed its submicronic allergen proteins dispersion. In order to forecast the Fraxinus allergy risk periods, two regression equations were developed with Adjusted R(2) values around 0.48-0.49. The t-test for dependent samples shows no significant differences between the observed data and the estimated by the equations. The combination of the airborne pollen content and the allergen quantification must be assessed in the epidemiologic study of allergic respiratory diseases.

  4. Characterization of protein expression of Platanus pollen following exposure to gaseous pollutants and vehicle exhaust particles.

    PubMed

    Lu, Senlin; Ren, Jingjin; Hao, Xiaojie; Liu, Dingyu; Zhang, Rongci; Wu, Minghong; Yi, Fei; Lin, Jun; Shinich, Yonemochi; Wang, Qingyue

    2014-01-01

    Being major ornamental street trees, species of Platanus are widely planted in the Shanghai urban area. A great deal of allergenic Platanus pollen is released from the trees and suspended in the atmosphere during its flowering season, ultimately causing allergic respiratory diseases. Few papers have focused on the distribution of this type of pollen and its expression of allergenic proteins. In order to investigate any differences in protein expression in Platanus pollen following exposure to gaseous and particulate pollutants, a special apparatus was designed. Exposure condition (such as temperature, humidity, and exposure time) of Platanus pollen and gaseous pollutants can be simulated using of this apparatus. Fresh Platanus orientalis pollen, pollutant gases (NO2, SO2, NH3), and typical urban ambient particles (vehicle exhaust particles, VEPs) were mixed in this device to examine possible changes that might occur in ambient airborne urban pollen following exposure to such pollutants. Our results showed that the fresh P. orientalis pollen became swollen, and new kinds of particles could be found on the surface of the pollen grains after exposure to the pollutants. The results of SDS-PAGE showed that five protein bands with molecular weights of 17-19, 34, 61, 82, and 144 kDa, respectively, were detected and gray scale of these brands increased after the pollen exposure to gaseous pollutants. The two-dimensional gel electrophoresis analysis demonstrated that a Platanus pollen allergenic protein (Pla a1, with a molecular weight of 18 kDa) increased in abundance following exposure to pollutant gases and VEPs, implying that air pollutants may exacerbate the allergenicity of pollen.

  5. Trans-disciplinary research in synthesis of grass pollen aerobiology and its importance for respiratory health in Australasia.

    PubMed

    Davies, Janet M; Beggs, Paul J; Medek, Danielle E; Newnham, Rewi M; Erbas, Bircan; Thibaudon, Michel; Katelaris, Connstance H; Haberle, Simon G; Newbigin, Edward J; Huete, Alfredo R

    2015-11-15

    Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included "marrying" ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology

  6. Assessment of the Olea pollen and its major allergen Ole e 1 concentrations in the bioearosol of two biogeographical areas

    NASA Astrophysics Data System (ADS)

    Moreno-Grau, S.; Aira, M. J.; Elvira-Rendueles, B.; Fernández-González, M.; Fernández-González, D.; García-Sánchez, A.; Martínez-García, M. J.; Moreno, J. M.; Negral, L.; Vara, A.; Rodríguez-Rajo, F. J.

    2016-11-01

    The Olea pollen is currently an important allergy source. In some regions of Southern Spain, olive pollen is the main cause of allergic sensitization exceeding 40% of the sensitized individuals. Due to the scarce presence of olive trees in Northern Spain, limited to some cultivated fields in the South of the Galicia region where they also grow wild, only 8% of the sensitized individuals showed positive results for Olea pollen. The aim of the paper was to assess the behaviour pattern of the Olea pollen and its aeroallergens in the atmosphere, as this information could help us to improve the understanding and prevention of clinical symptoms. Airborne Olea pollen and Ole e 1 allergens were quantified in Cartagena (South-eastern Spain) and Ourense (North-western Spain). A volumetric pollen trap and a Burkard Cyclone sampler were used for pollen and allergen quantification. The Olea flowering took place in April or May in both biometeorological sampling areas. The higher concentrations were registered in the Southern area of Spain, for both pollen and Ole e 1, with values 8 times higher for pollen concentrations and 40 times higher for allergens. An alternate bearing pattern could be observed, characterized by years with high pollen values and low allergen concentrations and vice versa. Moreover, during some flowering seasons the allergen concentrations did not correspond to the atmospheric pollen values. Variations in weather conditions or Long Distance Transport (LDT) processes could explain the discordance. The back trajectory analysis shows that the most important contributions of pollen and allergens in the atmosphere are coincident with air masses passing through potential source areas. The exposure to olive pollen may not be synonym of antigen exposure.

  7. Induction of Nitrate Assimilatory Enzymes in the Tree Betula pendula.

    PubMed

    Friemann, A; Lange, M; Hachtel, W; Brinkmann, K

    1992-07-01

    The coordinate appearance of the bispecific NAD(P)H-nitrate reductase (NR; EC 1.6.6.2) and nitrite reductase (NiR; EC 1.7.7.1) was investigated in leaves and roots from European white birch seedlings (Betula pendula Roth). Induction by nitrate and light of both enzymes was analyzed by in vitro assays and by measuring NR- and NiR-encoding mRNA pools with homologous cDNAs as probes. When birch seedlings were grown on a medium containing ammonium as the sole nitrogen source, low constitutive expression of NR and NiR was observed in leaves, whereas only NiR was significantly expressed in roots. Upon transfer of the seedlings to a nitrate-containing medium, mRNA pools and activities of NR and NiR dramatically increased in leaves and roots, with a more rapid induction in leaves. Peak accumulations of mRNA pools preceded the maximum activities of NR and NiR, suggesting that the appearance of both activities can be mainly attributed to an increased expression of NR and NiR genes. Expression of NR was strictly light-dependent in leaves and roots and was repressed by ammonium in roots but not in leaves. In contrast with NR, constitutive expression of NiR was not affected by light, and even a slight induction following the addition of nitrate was found in the dark in roots but not in leaves. No effect of ammonium on NiR expression was detectable in both organs. In leaves as well as in roots, NiR was induced more rapidly than NR, which appears to be a safety measure to prevent nitrite accumulation.

  8. Grass Pollen Allergens

    PubMed Central

    Augustin, Rosa

    1959-01-01

    Heat and pH stability studies and experiments with organic solvents show that the A-antigens discussed in the preceding paper (Augustin, 1959c) are much more labile than the I- (`inner ring') antigens. Breakdown products and/or aggregates are produced which no longer precipitate with antisera to the original extracts, but act as inhibitors. Solutions of pollen allergens, on the other hand, are found to withstand even autoclaving for 15 min. at 20 atm. and vigorous boiling over the naked flame of a bunsen burner. None of the carbohydrates tested has a demonstrable effect on skin reactivity which is, however, destroyed by crystalline pepsin, crystalline trypsin, a crystalline mould protease and a tissue protease (a partially purified extract from rabbit spleen). It follows that the bulk of the allergens—if not all—are proteins. The relation of skin reactivity, immuno-electrophoretic patterns, carbohydrate and protein reactions to the selective destruction of the pollen antigens is investigated. Pollen components prove to have a somewhat wider range of electrophoretic mobilities than serum proteins and are probably as complicated a mixture. The most and least highly negatively charged components are without skin reactivity in allergic subjects. The skin reactive allergens appear to have the mobilities of α- and β-globulins. Not all the hay fever subjects react equally to all the components, and Cocksfoot and Timothy activity patterns vary in different subjects. ImagesFIG. 5 PMID:13795119

  9. Atmospheric Poaceae pollen frequencies and associations with meteorological parameters in Brisbane, Australia: a 5-year record, 1994-1999

    NASA Astrophysics Data System (ADS)

    Green, Brett James; Dettmann, Mary; Yli-Panula, Eija; Rutherford, Shannon; Simpson, Rod

    Grass pollen is an important risk factor for allergic rhinitis and asthma in Australia and is the most prevalent pollen component of the aerospora of Brisbane, accounting for 71.6% of the annual airborne pollen load. A 5-year (June 1994-May 1999) monitoring program shows the grass pollen season to occur during the summer and autumn months (December-April), however the timing of onset and intensity of the season vary from year to year. During the pollen season, Poaceae counts exceeding 30 grains m-3 were recorded on 244 days and coincided with maximum temperatures of 28.1 +/- 2.0 °C. In this study, statistical associations between atmospheric grass pollen loads and several weather parameters, including maximum temperature, minimum temperature and precipitation, were investigated. Spearman's correlation analysis demonstrated that daily grass pollen counts were positively associated (P < 0.0001) with maximum and minimum temperature during each sampling year. Precipitation, although considered a less important daily factor (P < 0.05), was observed to remove pollen grains from the atmosphere during significant periods of rainfall. This study provides the first insight into the influence of meteorological variables, in particular temperature, on atmospheric Poaceae pollen counts in Brisbane. An awareness of these associations is critical for the prevention and management of allergy and asthma for atopic individuals within this region.

  10. Description of the immature stages of Kuwanina betula Wu & Liu, with a discussion of its placement in the Acanthococcidae family group (Hemiptera: Coccoidea).

    PubMed

    Wu, San-An; Nan, Nan

    2015-03-09

    The immature stages of Kuwanina betula Wu & Liu are described and illustrated. Based on morphological and molecular data (18S and 28S rDNA), it is argued that K. betula is closer to Pseudochermes Nitsche than to Kuwanina Cockerell in Fernald and so this species is transferred to Pseudochermes as P. betula (Wu & Liu) comb. nov..

  11. [Allergy, pollen and the environment].

    PubMed

    Terán, Luis Manuel; Haselbarth-López, Michelle Marie Margarete; Quiroz-García, David Leonor

    2009-01-01

    Allergic respiratory diseases such asthma and allergic rhinitis are a health problem throughout the world. In Mexico City, pollens are an important cause of allergic respiratory disease. Both, the geographic location- and the vegetation surrounding this City favor the distribution of pollens leading to respiratory disease in susceptible patients. Aerobiological studies have shown that during the mild dry winter there is a large amount of pollens in the environment with tree pollens being the most abundant of all. The most frequent tree pollens found in Mexico City include Fraxinus, Cupressaseae, Alnus, Liquidambar, Callistemon, Pinus, and Casuarina. In contrast, grass- and weed pollens predominate during the summer (rainy season) including Compositae, Cheno-Am, Ambrosia and Gramineae. An additional health problem in Mexico City is the air pollution that exerts a direct effect on individuals. This in turn increases pollen allergenicity by disrupting them leading to the release of their particles which then penetrate the human airways causing disease. Thus, the polluted environment along with global warming which is also known to increase pollen quantities by inducing longer pollen seasons may represent a health risk to Mexico City inhabitants.

  12. Application of the personal aeroallergen sampler to assess personal exposures to Japanese cedar and cypress pollens.

    PubMed

    Yamamoto, Naomichi; Matsuki, Hideaki; Yanagisawa, Yukio

    2007-11-01

    We have recently developed the Personal Aeroallergen Sampler (PAAS), a passive sampler for aeroallergens. In the present study, the applicability of the PAAS for personal exposure assessments of cedar and cypress pollens was investigated by comparing with existing reference samplers. To investigate the usability of the PAAS as a personal sampler for the airborne pollens, it was compared with the Institute of Occupational Medicine (IOM) sampler, a traditionally used active personal sampler. Overall, the result showed a good correlation between the two methods, that is, R(2)=0.8082, suggesting the usability of the PAAS for the personal pollen samplings. The ratio of the pollen numbers collected by the PAAS to the IOM sampler was approximately 30%, which was consistent with our previous study investigating ambient dust particles. Meanwhile, the comparability of the PAAS to the Durham sampler, the most widely used stationary pollen trap, was also assured. Furthermore, we exemplified the seasonal peak of the personal pollen exposures was not necessarily reflected by the outdoor concentrations, indicating insufficiency of the stationary outdoor monitoring to represent the personal pollen exposures. The PAAS, a simple passive method, could be used in future field studies to elucidate the detailed mechanisms of allergic airway diseases such as cedar pollinosis.

  13. [Genetic linkage map of Betula pendula Roth and Betula platyphylla Suk based on random amplified polymorphisms DNA markers].

    PubMed

    Jiang, Ting-Bo; Li, Shao-Chen; Gao, Fu-Ling; Ding, Bao-Jian; Qu, Yue-Jun; Tang, Xin-Hua; Liu, Gui-Feng; Jiang, Jing; Yang, Chuan-Ping

    2007-07-01

    Based on the genetic inheritance and segregation of random amplified polymorphism DNA (RAPDs) markers, the first mid-density linkage map for silver birch was constructed by using a pseudo-testcross mapping strategy. A segregating population including 80 progenies from the cross between Betula pendula Roth and B. platyphylla Suk was obtained. A set of 1,200 random oligonucleotide primers were screened, and 208 primers were selected to generate RAPD markers within a sample of 80 F1 progenies. A total of 364 segregating sites were identified. Among them, 307 belonged to 1 : 1 segregating site, and 36 belonged to 3 : 1 segregating site, others were found distorted from the normal 1 : 1 ratio. Altogether 307 sites segregating 1 : 1 (testcross configuration) were used to construct parent-specific linkage maps, 145 for B. pendula and 162 for B. platyphylla. The resulting linkage maps consisted of 145 marker sites in 14 groups (four or more sites per group), 6 triples and 6 pairs for B. pendula, which covered the map distance about 955.6 cM (Kosambi units). The average map distance between adjacent markers was 14.9 cM, and 162 linked marker site for B. platyphylla were mapped onto 15 groups (four or more sites per group), 4 triples and 6 pairs, which covered the map distance about 1,545.8 cM, and the average map distance between adjacent markers was 15.2 cM. Further study is warranted to integrate the two maps to one density map and to locate important genes on the maps.

  14. Ambrosia artemisiifolia L. pollen simulations over the Euro-CORDEX domain: model description and emission calibration

    NASA Astrophysics Data System (ADS)

    liu, li; Solmon, Fabien; Giorgi, Filippo; Vautard, Robert

    2014-05-01

    Ragweed Ambrosia artemisiifolia L. is a highly allergenic invasive plant. Its pollen can be transported over large distances and has been recognized as a significant cause of hayfever and asthma (D'Amato et al., 2007). In the context of the ATOPICA EU program we are studying the links between climate, land use and ecological changes on the ragweed pollen emissions and concentrations. For this purpose, we implemented a pollen emission/transport module in the RegCM4 regional climate model in collaboration with ATOPICA partners. The Abdus Salam International Centre for Theoretical Physics (ICTP) regional climate model, i.e. RegCM4 was adapted to incorporate the pollen emissions from (ORCHIDEE French) Global Land Surface Model and a pollen tracer model for describing pollen convective transport, turbulent mixing, dry and wet deposition over extensive domains, using consistent assumption regarding the transport of multiple species (Fabien et al., 2008). We performed two families of recent-past simulations on the Euro-Cordex domain (simulation for future condition is been considering). Hindcast simulations (2000~2011) were driven by the ERA-Interim re-analyses and designed to best simulate past periods airborne pollens, which were calibrated with parts of observations and verified by comparison with the additional observations. Historical simulations (1985~2004) were driven by HadGEM CMPI5 and designed to serve as a baseline for comparison with future airborne concentrations as obtained from climate and land-use scenarios. To reduce the uncertainties on the ragweed pollen emission, an assimilation-like method (Rouǐl et al., 2009) was used to calibrate release based on airborne pollen observations. The observations were divided into two groups and used for calibration and validation separately. A wide range of possible calibration coefficients were tested for each calibration station, making the bias between observations and simulations within an admissible value then

  15. Vegetation and climate in the Western Sayan Mts according to pollen data from Lugovoe Mire as a background for prehistoric cultural change in southern Middle Siberia

    NASA Astrophysics Data System (ADS)

    Blyakharchuk, Tatiana A.; Chernova, Natalia A.

    2013-09-01

    On the basis of pollen and spore analyses and radiocarbon dating of peat deposits of Lugovoe Mire in southern Middle Siberia, changes of vegetation and climate of the Western Sayan Mts and the Khakasia Republic (Russia) since 6000 yr 14C BP (5000 cal yr BC) are found to correspond with the development of archaeological cultures and with the pollen-based palaeoclimatic reconstruction of Levina and Orlova (1993) constructed for the forest-steppe zone of the south of West Siberia. Three phases in the development of the regional vegetation (Abies, Betula, and Pinus) are distinguished in the pollen diagram of Lugovoe Mire, which form the environmental background for the archaeological cultures developed in this region. The first penetration of ancient hunting-fishing tribes into this area occurred during the ‘Abies stage' of the vegetation. Bronze Age cultures practiced agriculture and animal husbandry mostly during the ‘Betula stage'. Beginning in the Iron Age, archaeological cultures bloomed in the study area on the background of expanding Pinus sylvestris forests. The origin of all these cultures was connected with migrations of people from the southwest or southeast. An important reason for these migrations was dry climatic phases at millennial intervals, which influenced especially strongly the more southerly homelands of the migrating ancient tribes.

  16. Cluster analysis of intradiurnal holm oak pollen cycles at peri-urban and rural sampling sites in southwestern Spain

    NASA Astrophysics Data System (ADS)

    Hernández-Ceballos, M. A.; García-Mozo, H.; Galán, C.

    2015-08-01

    The impact of regional and local weather and of local topography on intradiurnal variations in airborne pollen levels was assessed by analysing bi-hourly holm oak ( Quercus ilex subsp. ballota (Desf.) Samp.) pollen counts at two sampling stations located 40 km apart, in southwestern Spain (Cordoba city and El Cabril nature reserve) over the period 2010-2011. Pollen grains were captured using Hirst-type volumetric spore traps. Analysis of regional weather conditions was based on the computation of backward trajectories using the HYSPLIT model. Sampling days were selected on the basis of phenological data; rainy days were eliminated, as were days lying outside a given range of percentiles (P95-P5). Analysis of cycles for the study period, as a whole, revealed differences between sampling sites, with peak bi-hourly pollen counts at night in Cordoba and at midday in El Cabril. Differences were also noted in the influence of surface weather conditions (temperature, relative humidity and wind). Cluster analysis of diurnal holm oak pollen cycles revealed the existence of five clusters at each sampling site. Analysis of backward trajectories highlighted specific regional air-flow patterns associated with each site. Findings indicated the contribution of both nearby and distant pollen sources to diurnal cycles. The combined use of cluster analysis and meteorological analysis proved highly suitable for charting the impact of local weather conditions on airborne pollen-count patterns. This method, and the specific tools used here, could be used not only to study diurnal variations in counts for other pollen types and in other biogeographical settings, but also in a number of other research fields involving airborne particle transport modelling, e.g. radionuclide transport in emergency preparedness exercises.

  17. Cluster analysis of intradiurnal holm oak pollen cycles at peri-urban and rural sampling sites in southwestern Spain.

    PubMed

    Hernández-Ceballos, M A; García-Mozo, H; Galán, C

    2015-08-01

    The impact of regional and local weather and of local topography on intradiurnal variations in airborne pollen levels was assessed by analysing bi-hourly holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) pollen counts at two sampling stations located 40 km apart, in southwestern Spain (Cordoba city and El Cabril nature reserve) over the period 2010-2011. Pollen grains were captured using Hirst-type volumetric spore traps. Analysis of regional weather conditions was based on the computation of backward trajectories using the HYSPLIT model. Sampling days were selected on the basis of phenological data; rainy days were eliminated, as were days lying outside a given range of percentiles (P95-P5). Analysis of cycles for the study period, as a whole, revealed differences between sampling sites, with peak bi-hourly pollen counts at night in Cordoba and at midday in El Cabril. Differences were also noted in the influence of surface weather conditions (temperature, relative humidity and wind). Cluster analysis of diurnal holm oak pollen cycles revealed the existence of five clusters at each sampling site. Analysis of backward trajectories highlighted specific regional air-flow patterns associated with each site. Findings indicated the contribution of both nearby and distant pollen sources to diurnal cycles. The combined use of cluster analysis and meteorological analysis proved highly suitable for charting the impact of local weather conditions on airborne pollen-count patterns. This method, and the specific tools used here, could be used not only to study diurnal variations in counts for other pollen types and in other biogeographical settings, but also in a number of other research fields involving airborne particle transport modelling, e.g. radionuclide transport in emergency preparedness exercises.

  18. A late Pleistocene long pollen record from Lake Urmia, NW Iran

    NASA Astrophysics Data System (ADS)

    Djamali, Morteza; de Beaulieu, Jacques-Louis; Shah-hosseini, Madjid; Andrieu-Ponel, Valérie; Ponel, Philippe; Amini, Abdolhossein; Akhani, Hossein; Leroy, Suzanne A. G.; Stevens, Lora; Lahijani, Hamid; Brewer, Simon

    2008-05-01

    A palynological study based on two 100-m long cores from Lake Urmia in northwestern Iran provides a vegetation record spanning 200 ka, the longest pollen record for the continental interior of the Near East. During both penultimate and last glaciations, a steppe of Artemisia and Poaceae dominated the upland vegetation with a high proportion of Chenopodiaceae in both upland and lowland saline ecosystems. While Juniperus and deciduous Quercus trees were extremely rare and restricted to some refugia, Hippophaë rhamnoides constituted an important phanerophyte, particularly during the late last glacial period. A pronounced expansion in Ephedra shrub-steppe occurred at the end of the penultimate late-glacial period but was followed by extreme aridity that favoured an Artemisia steppe. Very high lake levels, registered by both pollen and sedimentary markers, occurred during the middle of the last glaciation and late part of the penultimate glaciation. The late-glacial to early Holocene transition is represented by a succession of Hippophaë, Ephedra, Betula, Pistacia and finally Juniperus and Quercus. The last interglacial period (Eemian), slightly warmer and moister than the Holocene, was followed by two interstadial phases similar in pattern to those recorded in the marine isotope record and southern European pollen sequences.

  19. [Cypress pollen allergy].

    PubMed

    Charpin, D; Calleja, M; Pichot, C; Penel, V; Hugues, B; Poncet, P

    2013-12-01

    Cypress belongs to the Cupressaceae family, which includes 140 species with non-deciduous foliage. The most important genera in allergic diseases are Cupressus sempervirens or Green cypress, Cupressus arizonica or Blue cypress, Juniperus oxycedrus, Juniperus communis and Thuya. Because J. oxycedrus pollinates in October, C. sempervirens in January and February, C. arizonica in February and March, J. communis in April, the symptomatic period is long-lasting. Because of global warming, the pollination period is tending to last longer and Cupressaceae species are becoming established further the north. In Mediterranean countries, cypress is by far the most important pollinating species, accounting for half of the total pollination. The major allergens belong to group 1. The other allergens from cypress and Juniper share 75 to 97 % structural homology with group 1 major allergens. The prevalence of cypress allergy in the general population ranges from 5 % to 13 %, according to exposure to the pollen. Among outpatients consulting an allergist, between 9 and 35 %, according to different studies, are sensitized to cypress pollen. Repeated cross-sectional studies performed at different time intervals have demonstrated a threefold increase in the percentage of cypress allergy. Risk factors include a genetic predisposition and/or a strong exposure to pollen, but air pollutants could play a synergistic role. The study of the natural history of cypress allergy allows the identification of a subgroup of patients who have no personal or family history of atopy, whose disease began later in life, with low total IgE and often monosensitization to cypress pollen. In these patients, the disease is allergic than rather atopic. In the clinical picture, rhinitis is the most prevalent symptom but conjunctivitis the most disabling. A cross-reactivity between cypress and peach allergy has been demonstrated. The pharmacological treatment of cypress allergy is not different from

  20. The correlation of the maximum intensity of fluorescence with pigment characteristics of leaves of Betula pendula

    NASA Astrophysics Data System (ADS)

    Zavoruev, V. V.; Zavorueva, E. N.

    2015-11-01

    Using fluorimeter Junior PAM (Heinz Walz GmbH, Germany) the fluorescence parameters of leaves of Betula pendula are investigated. A linear dependence of the maximum fluorescence (Fm) of leaves from the ratio of total chlorophylls concentration to concentration of carotenoids is obtained. Such dependence is found for samples collected during the period of vegetation and for simultaneous selection of colored leaves.

  1. Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels.

    PubMed

    Albertine, Jennifer M; Manning, William J; DaCosta, Michelle; Stinson, Kristina A; Muilenberg, Michael L; Rogers, Christine A

    2014-01-01

    One expected effect of climate change on human health is increasing allergic and asthmatic symptoms through changes in pollen biology. Allergic diseases have a large impact on human health globally, with 10-30% of the population affected by allergic rhinitis and more than 300 million affected by asthma. Pollen from grass species, which are highly allergenic and occur worldwide, elicits allergic responses in 20% of the general population and 40% of atopic individuals. Here we examine the effects of elevated levels of two greenhouse gases, carbon dioxide (CO2), a growth and reproductive stimulator of plants, and ozone (O3), a repressor, on pollen and allergen production in Timothy grass (Phleum pratense L.). We conducted a fully factorial experiment in which plants were grown at ambient and/or elevated levels of O3 and CO2, to simulate present and projected levels of both gases and their potential interactive effects. We captured and counted pollen from flowers in each treatment and assayed for concentrations of the allergen protein, Phl p 5. We found that elevated levels of CO2 increased the amount of grass pollen produced by ∼50% per flower, regardless of O3 levels. Elevated O3 significantly reduced the Phl p 5 content of the pollen but the net effect of rising pollen numbers with elevated CO2 indicate increased allergen exposure under elevated levels of both greenhouse gases. Using quantitative estimates of increased pollen production and number of flowering plants per treatment, we estimated that airborne grass pollen concentrations will increase in the future up to ∼200%. Due to the widespread existence of grasses and the particular importance of P. pratense in eliciting allergic responses, our findings provide evidence for significant impacts on human health worldwide as a result of future climate change.

  2. Grass Pollen Allergens

    PubMed Central

    Augustin, Rosa

    1959-01-01

    Grass pollen allergens are shown to remain associated with protein material and a yellow pigment during paper chromatography and during dialyses and ultrafiltrations of various types. Dialysable* allergens comprise only a fraction of 1 per cent of the total activity and the amount of activity extractable by diethylene glycol (DEG) and similar solvents is of the same order. Besides the allergens, the DEG and aqueous extracts contain large amounts of inositol, glucose and fructose, also some yellow pigments and phosphates. Larger amounts of free and combined amino acids are found in the aqueous than in the DEG extracts, but the reverse is true for sucrose. In addition the DEG extracts contain a yellow glucoside different from the dactylen of the aqueous extracts, a glucosan and an arabinose-galactose-pigment complex, only the latter being associated with any activity. The spontaneous release of the crystalline dactylen from originally clear aqueous pollen extracts is found not to be caused by enzymes. The washed crystals are found to be chromatographically and electrophoretically homogeneous and devoid of allergenic activity. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7 PMID:13640676

  3. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.

    PubMed

    McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura

    2017-03-06

    Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a 2-yr decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered by

  4. Ragweed pollen production and dispersion modelling within a regional climate system, calibration and application over Europe

    NASA Astrophysics Data System (ADS)

    Liu, Li; Solmon, Fabien; Vautard, Robert; Hamaoui-Laguel, Lynda; Zsolt Torma, Csaba; Giorgi, Filippo

    2016-05-01

    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hay fever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In this online approach pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000-2010. To reduce the large uncertainties notably due to the lack of information on ragweed density distribution, a calibration based on airborne pollen observations is used. Accordingly a cross validation is conducted and shows reasonable error and sensitivity of the calibration. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger and the model is better constrained. From these simulations health risks associated to common ragweed pollen

  5. The patterns of Corylus and Alnus pollen seasons and pollination periods in two Polish cities located in different climatic regions.

    PubMed

    Puc, Małgorzata; Kasprzyk, Idalia

    2013-01-01

    This study compares phenological observations of Corylus (hazel) and Alnus (alder) flowering with airborne pollen counts of these taxa recorded using volumetric spore traps (2009-2011). The work was carried out in the Polish cities of Szczecin and Rzeszów that are located in different climatic regions. Correlations between pollen concentrations and meteorological data were investigated using Spearman's rank correlation analysis. The timings of hazel and alder pollination and the occurrence of airborne pollen varied greatly and were significantly influenced by meteorological conditions (p < 0.05). The flowering synchronization of hazel and alder pollination in Szczecin and Rzeszów varied over the study period. Hazel and alder trees flowered notably earlier in stands located in places that were exposed to sunlight (insolated) and sheltered from the wind. On the other hand, a delay in the timing of pollination was observed in quite sunny but very windy sites. In Rzeszów, maximum hazel pollen concentrations did not coincide with the period of full pollination (defined as between 25 % hazel and alder and 75 % of flowers open). Conversely, in Szczecin, the highest hazel pollen concentrations were recorded during phenophases of the full pollination period. The period when the highest alder pollen concentrations were recorded varied between sites, with Rzeszów recording the highest concentrations at the beginning of pollination and Szczecin recording alder pollen throughout the full pollination period. Substantial amounts of hazel and alder pollen grains were recorded in the air of Rzeszów (but not Szczecin) before the onset of the respective pollen seasons.

  6. CHARACTERIZATION OF THE MAIZE POLLEN TRANSCRIPTOME

    EPA Science Inventory

    Pollen is a primary vehicle for transgene flow from engineered plants to their non-transgenic, native or weedy relatives. Hence, gene flow will be affected by pollen fitness (e.g., how well a particular pollen grain can outcompete other pollen present on the stigma and complete ...

  7. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    PubMed Central

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T.; House, James M.; Flagan, Richard C.; Avol, Edward L.; Gilliland, Frank D.; Guenther, Alex; Chung, Serena H.; Lamb, Brian K.; VanReken, Timothy M.

    2014-01-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  8. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2014-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF/CMAQ) modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California (USA) for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to

  9. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends to

  10. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease.

    PubMed

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T; House, James M; Flagan, Richard C; Avol, Edward L; Gilliland, Frank D; Guenther, Alex; Chung, Serena H; Lamb, Brian K; VanReken, Timothy M

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  11. City scale pollen concentration variability

    NASA Astrophysics Data System (ADS)

    van der Molen, Michiel; van Vliet, Arnold; Krol, Maarten

    2016-04-01

    Pollen are emitted in the atmosphere both in the country-side and in cities. Yet the majority of the population is exposed to pollen in cities. Allergic reactions may be induced by short-term exposure to pollen. This raises the question how variable pollen concentration in cities are in temporally and spatially, and how much of the pollen in cities are actually produced in the urban region itself. We built a high resolution (1 × 1 km) pollen dispersion model based on WRF-Chem to study a city's pollen budget and the spatial and temporal variability in concentration. It shows that the concentrations are highly variable, as a result of source distribution, wind direction and boundary layer mixing, as well as the release rate as a function of temperature, turbulence intensity and humidity. Hay Fever Forecasts based on such high resolution emission and physical dispersion modelling surpass traditional hay fever warning methods based on temperature sum methods. The model gives new insights in concentration variability, personal and community level exposure and prevention. The model will be developped into a new forecast tool to serve allergic people to minimize their exposure and reduce nuisance, coast of medication and sick leave. This is an innovative approach in hay fever warning systems.

  12. Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland)

    NASA Astrophysics Data System (ADS)

    Bogawski, Paweł; Grewling, Łukasz; Nowak, Małgorzata; Smith, Matt; Jackowiak, Bogdan

    2014-10-01

    A significant increase in summer temperatures has been observed for the period 1996-2011 in Poznań, Poland. The phenological response of four weed taxa, widely represented by anemophilous species ( Artemisia spp., Rumex spp. and Poaceae and Urticaceae species) to this recent climate warming has been analysed in Poznań by examining the variations in the course of airborne pollen seasons. Pollen data were collected by 7-day Hirst-type volumetric trap. Trends in pollen seasons were determined using Mann-Kendall test and Sen's slope estimator, whereas the relationships between meteorological and aerobiological data were established by Spearman's rank correlation coefficient. Significant trends in pollen data were detected. The duration of pollen seasons of all analysed taxa increased (from +2.0 days/year for Urticaceae to +3.8 days/year for Rumex), which can be attributed to a delay in pollen season end dates rather than earlier start dates. In addition, the intensity of Artemisia pollen seasons significantly decreased and correlates with mean July-September daily minimum temperatures ( r = -0.644, p < 0.01). In contrast, no significant correlations were found between temperature and characteristics of Rumex pollen seasons. The results of this study show that observed shifts in weed pollen seasons in Poznań, i.e. longer duration and later end dates, might be caused by the recorded increase in summer temperature. This influence was the strongest in relation to Artemisia, which is the taxon that flowers latest in the year. The general lack of significant correlations between Rumex and Urticaceae pollen seasons and spring and/or summer temperature suggests that other factors, e.g. land use practices, could also be partially responsible for the observed shifts in pollen seasons.

  13. Variations in Quercus sp. pollen seasons (1996-2011) in Poznań, Poland, in relation to meteorological parameters.

    PubMed

    Grewling, Lukasz; Jackowiak, Bogdan; Smith, Matt

    2014-01-01

    The aim of this study is to supply detailed information about oak (Quercus sp.) pollen seasons in Poznań, Poland, based on a 16-year aerobiological data series (1996-2011). The pollen data were collected using a volumetric spore trap of the Hirst design located in Poznań city center. The limits of the pollen seasons were calculated using the 95 % method. The influence of meteorological parameters on temporal variations in airborne pollen was examined using correlation analysis. Start and end dates of oak pollen seasons in Poznań varied markedly from year-to-year (14 and 17 days, respectively). Most of the pollen grains (around 75 % of the seasonal pollen index) were recorded within the first 2 weeks of the pollen season. The tenfold variation was observed between the least and the most intensive pollen seasons. These fluctuations were significantly related to the variation in the sum of rain during the period second fortnight of March to first fortnight of April the year before pollination (r = 0.799; p < 0.001). During the analyzing period, a significant advance in oak pollen season start dates was observed (-0.55 day/year; p = 0.021), which was linked with an increase in the mean temperature during the second half of March and first half of April (+0.2 °C; p = 0.014). Daily average oak pollen counts correlated positively with mean and maximum daily temperatures, and negatively with daily rainfall and daily mean relative humidity.

  14. Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia

    NASA Astrophysics Data System (ADS)

    Tian, Fang; Cao, Xianyong; Dallmeyer, Anne; Zhao, Yan; Ni, Jian; Herzschuh, Ulrike

    2017-01-01

    Temporal and spatial stability of the vegetation-climate relationship is a basic ecological assumption for pollen-based quantitative inferences of past climate change and for predicting future vegetation. We explore this assumption for the Holocene in eastern continental Asia (China, Mongolia). Boosted regression trees (BRT) between fossil pollen taxa percentages (Abies, Artemisia, Betula, Chenopodiaceae, Cyperaceae, Ephedra, Picea, Pinus, Poaceae and Quercus) and climate model outputs of mean annual precipitation (Pann) and mean temperature of the warmest month (Mtwa) for 9 and 6 ka (ka = thousand years before present) were set up and results compared to those obtained from relating modern pollen to modern climate. Overall, our results reveal only slight temporal differences in the pollen-climate relationships. Our analyses suggest that the importance of Pann compared with Mtwa for taxa distribution is higher today than it was at 6 ka and 9 ka. In particular, the relevance of Pann for Picea and Pinus increases and has become the main determinant. This change in the climate-tree pollen relationship parallels a widespread tree pollen decrease in north-central China and the eastern Tibetan Plateau. We assume that this is at least partly related to vegetation-climate disequilibrium originating from human impact. Increased atmospheric CO2 concentration may have permitted the expansion of moisture-loving herb taxa (Cyperaceae and Poaceae) during the late Holocene into arid/semi-arid areas. We furthermore find that the pollen-climate relationship between north-central China and the eastern Tibetan Plateau is generally similar, but that regional differences are larger than temporal differences. In summary, vegetation-climate relationships in China are generally stable in space and time, and pollen-based climate reconstructions can be applied to the Holocene. Regional differences imply the calibration-set should be restricted spatially.

  15. Interspecific variation in resistance of Asian, European, and North American birches (Betula spp.) to bronze birch borer (Coleoptera: Buprestidae).

    PubMed

    Nielsen, David G; Muilenburg, Vanessa L; Herms, Daniel A

    2011-06-01

    Bronze birch borer (Agrilus anxius Gory) is the key pest of birches (Betula spp.) in North America, several of which have been recommended for ornamental landscapes based on anecdotal reports of borer resistance that had not been confirmed experimentally. In a 20-yr common garden experiment initiated in 1979 in Ohio, North American birch species, including paper birch (Betula papyrifera Marshall), 'Whitespire' gray birch (Betula populifolia Marshall), and river birch (Betula nigra L.), were much more resistant to bronze birch borer than species indigenous to Europe and Asia, including European white birch (Betula pendula Roth), downy birch (Betula pubescens Ehrh.), monarch birch (Betula maximowicziana Regel), and Szechuan white birch (Betula szechuanica Jansson). Within 8 yr of planting, every European white, downy, and Szechuan birch had been colonized and killed, although 100% of monarch birch had been colonized and 88% of these plants were killed after nine years. Conversely, 97% of river birch, 76% of paper birch, and 73% Whitespire gray birch were alive 20 yr after planting, and river birch showed no evidence of colonization. This pattern is consistent with biogeographic theory of plant defense: North American birch species that share a coevolutionary history with bronze birch borer were much more resistant than naïve hosts endemic to Europe and Asia, possibly by virtue of evolution of targeted defenses. This information suggests that if bronze birch borer were introduced to Europe or Asia, it could threaten its hosts there on a continental scale. This study also exposed limitations of anecdotal observation as evidence of host plant resistance.

  16. Pollen Aquaporins: The Solute Factor.

    PubMed

    Pérez Di Giorgio, Juliana A; Soto, Gabriela C; Muschietti, Jorge P; Amodeo, Gabriela

    2016-01-01

    In the recent years, the biophysical properties and presumed physiological role of aquaporins (AQPs) have been expanded to specialized cells where water and solute exchange are crucial traits. Complex but unique processes such as stomatal movement or pollen hydration and germination have been addressed not only by identifying the specific AQP involved but also by studying how these proteins integrate and coordinate cellular activities and functions. In this review, we referred specifically to pollen-specific AQPs and analyzed what has been assumed in terms of transport properties and what has been found in terms of their physiological role. Unlike that in many other cells, the AQP machinery in mature pollen lacks plasma membrane intrinsic proteins, which are extensively studied for their high water capacity exchange. Instead, a variety of TIPs and NIPs are expressed in pollen. These findings have altered the initial understanding of AQPs and water exchange to consider specific and diverse solutes that might be critical to sustaining pollen's success. The spatial and temporal distribution of the pollen AQPs also reflects a regulatory mechanism that allowing a properly adjusting water and solute exchange.

  17. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.

    PubMed

    García-Mozo, H; Yaezel, L; Oteros, J; Galán, C

    2014-03-01

    Analysis of long-term airborne pollen counts makes it possible not only to chart pollen-season trends but also to track changing patterns in flowering phenology. Changes in higher plant response over a long interval are considered among the most valuable bioindicators of climate change impact. Phenological-trend models can also provide information regarding crop production and pollen-allergen emission. The interest of this information makes essential the election of the statistical analysis for time series study. We analysed trends and variations in the olive flowering season over a 30-year period (1982-2011) in southern Europe (Córdoba, Spain), focussing on: annual Pollen Index (PI); Pollen Season Start (PSS), Peak Date (PD), Pollen Season End (PSE) and Pollen Season Duration (PSD). Apart from the traditional Linear Regression analysis, a Seasonal-Trend Decomposition procedure based on Loess (STL) and an ARIMA model were performed. Linear regression results indicated a trend toward delayed PSE and earlier PSS and PD, probably influenced by the rise in temperature. These changes are provoking longer flowering periods in the study area. The use of the STL technique provided a clearer picture of phenological behaviour. Data decomposition on pollination dynamics enabled the trend toward an alternate bearing cycle to be distinguished from the influence of other stochastic fluctuations. Results pointed to show a rising trend in pollen production. With a view toward forecasting future phenological trends, ARIMA models were constructed to predict PSD, PSS and PI until 2016. Projections displayed a better goodness of fit than those derived from linear regression. Findings suggest that olive reproductive cycle is changing considerably over the last 30years due to climate change. Further conclusions are that STL improves the effectiveness of traditional linear regression in trend analysis, and ARIMA models can provide reliable trend projections for future years taking into

  18. Near-surface and columnar measurements with a micro pulse lidar of atmospheric pollen in Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Izquierdo, Rebeca; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; Baldasano, José Maria

    2016-06-01

    We present for the first time continuous hourly measurements of pollen near-surface concentration and lidar-derived profiles of particle backscatter coefficients and of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 27 and 31 March 2015. Daily average concentrations ranged from 1082 to 2830 pollen m-3. Platanus and Pinus pollen types represented together more than 80 % of the total pollen. Maximum hourly pollen concentrations of 4700 and 1200 m-3 were found for Platanus and Pinus, respectively. Every day a clear diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles with maxima usually reached between 12:00 and 15:00 UT. A method based on the lidar polarization capabilities was used to retrieve the contribution of the pollen to the total aerosol optical depth (AOD). On average the diurnal (09:00-17:00 UT) pollen AOD was 0.05, which represented 29 % of the total AOD. Maximum values of the pollen AOD and its contribution to the total AOD reached 0.12 and 78 %, respectively. The diurnal means of the volume and particle depolarization ratios in the pollen plume were 0.08 and 0.14, with hourly maxima of 0.18 and 0.33, respectively. The diurnal mean of the height of the pollen plume was found at 1.24 km with maxima varying in the range of 1.47-1.78 km. A correlation study is performed (1) between the depolarization ratios and the pollen near-surface concentration to evaluate the ability of the former parameter to monitor pollen release and (2) between the depolarization ratios as well as pollen AOD and surface downward solar fluxes, which cause the atmospheric turbulences responsible for the particle vertical motion, to examine the dependency of the depolarization ratios and the pollen AOD upon solar fluxes. For the volume depolarization ratio the first correlation study yields to correlation coefficients ranging 0.00-0.81 and the second to

  19. Atmospheric pollen count in Monterrey, Mexico.

    PubMed

    González-Díaz, Sandra N; Rodríguez-Ortiz, Pablo G; Arias-Cruz, Alfredo; Macías-Weinmann, Alejandra; Cid-Guerrero, Dagoberto; Sedo-Mejia, Giovanni A

    2010-01-01

    There are few reports of pollen count and identification in Mexico; therefore, it is important to generate more information on the subject. This study was designed to describe the prevalence of pollen in the city of Monterrey, Mexico, during the year 2004. Atmospheric pollen was collected with a Hirst air sampler, with an airflow of 10 L/minute during 2004. Pollen was identified with light microscopy; the average monthly pollen count as well as total was calculated from January 2004 to January 2005. The months with the highest concentration of pollen were February and March (289 and 142 grains/m(3) per day, respectively), and July and November had the lowest concentration (20 and 11 grains/m(3) per day, respectively). Most of the pollen recollected corresponded to tree pollen (72%). Fraxinus spp had the highest concentration during the year (19 grains/m(3) per day; 27.5% of the total concentration of pollen). Tree pollen predominated from January through March; with Fraxinus spp, Morus spp, Celtis spp, Cupressus spp, and Pinus spp as the most important. Weed pollen predominated in May, June, and December and the most frequently identified, were Amaranthaceae/Chenopodiaceae, Ambrosia spp, and Parietaria spp. The highest concentration of grass pollen was reported during the months of May, June, September, October, and December with Gramineae/Poaceae predominating. Tree pollen was the most abundant during the year, with the ash tree having the highest concentration. Weed and grass pollen were perennial with peaks during the year.

  20. Pollen Forecast and Dispersion Modelling

    NASA Astrophysics Data System (ADS)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  1. Late Quaternary vegetation and environments in the Verkhoyansk Mountains region (NE Asia) reconstructed from a 50-kyr fossil pollen record from Lake Billyakh

    NASA Astrophysics Data System (ADS)

    Müller, Stefanie; Tarasov, Pavel E.; Andreev, Andrei A.; Tütken, Thomas; Gartz, Steffi; Diekmann, Bernhard

    2010-08-01

    Here we present a detailed radiocarbon-dated 936 cm long pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) situated in the western part of the Verkhoyansk Mountains, about 140 km south of the Arctic Circle. A set of 53 surface pollen samples representing tundra, cold deciduous forest and taiga was collected in northern and central Yakutia communities to verify the accuracy of the quantitative biome reconstruction method and to obtain a more precise attribution of the identified pollen taxa to the main regional biomes. The adjusted method is then applied to the pollen record from Lake Billyakh to gain a reconstruction of vegetation and environments since about 50.7 kyr BP. The results of the pollen analysis and pollen-based biome reconstruction suggest that herbaceous tundra and steppe communities dominated the area from 50.7 to 13.5 kyr BP. Relatively low pollen concentrations and high percentages of herbaceous pollen taxa (mainly Cyperaceae, Poaceae and Artemisia) likely indicate a reduced vegetation cover and/or lower pollen production. On the other hand, extremely low percentages of drought-tolerant taxa, such as Chenopodiaceae and Ephedra, and the constant presence of various mesophyllous herbaceous ( Thalictrum, Rosaceae, Asteraceae) and shrubby taxa ( Betula sect. Nanae/Fruticosae, Duschekia fruticosa, Salix) in the pollen assemblages prevent an interpretation of the last glacial environments around Lake Billyakh as extremely arid. The lowest pollen percentages of woody taxa and the highest values of Artemisia pollen attest that the 31-15 kyr BP period as the driest and coldest interval of the entire record. A relative high content of taxa representing shrub tundra communities and the presence of larch pollen recorded prior to 31 kyr and after 13.5 kyr BP likely indicate interstadial climate amelioration associated with the middle and latest parts of the last glacial. An increase in pollen percentages of herbaceous taxa around 12 kyr BP

  2. Pollen Aquaporins: The Solute Factor

    PubMed Central

    Pérez Di Giorgio, Juliana A.; Soto, Gabriela C.; Muschietti, Jorge P.; Amodeo, Gabriela

    2016-01-01

    In the recent years, the biophysical properties and presumed physiological role of aquaporins (AQPs) have been expanded to specialized cells where water and solute exchange are crucial traits. Complex but unique processes such as stomatal movement or pollen hydration and germination have been addressed not only by identifying the specific AQP involved but also by studying how these proteins integrate and coordinate cellular activities and functions. In this review, we referred specifically to pollen-specific AQPs and analyzed what has been assumed in terms of transport properties and what has been found in terms of their physiological role. Unlike that in many other cells, the AQP machinery in mature pollen lacks plasma membrane intrinsic proteins, which are extensively studied for their high water capacity exchange. Instead, a variety of TIPs and NIPs are expressed in pollen. These findings have altered the initial understanding of AQPs and water exchange to consider specific and diverse solutes that might be critical to sustaining pollen’s success. The spatial and temporal distribution of the pollen AQPs also reflects a regulatory mechanism that allowing a properly adjusting water and solute exchange. PMID:27881985

  3. Bioassaying for ozone with pollen systems

    SciTech Connect

    Feder, W.A.

    1981-01-01

    Sensitivity to ozone of pollen germinating in vitro is closely correlated with ozone sensitivity of the pollen parent. Ozone-sensitive and tolerant pollen populations have been identified in tobacco, petunia, and tomato cultivars. The rate of tube elongation can be reversibly slowed or stopped by exposure to low concentrations of ozone. The performance of selected pollen populations can then be used to bioassay ozone in ambient air by introducing the air sample into a growth chamber where ozone-sensitive pollen in growing. Year-round pollen producion can be achieved in the greenhouse. Harvested pollen can be tested, packaged, and transported to user facilities without loss of vigor. Pollen populations are inexpensive to produce, respond reliably, and are simple to use as a bioassay for air quality.

  4. Pollen aquaporins: What are they there for?

    PubMed

    Pérez Di Giorgio, Juliana Andrea; Barberini, María Laura; Amodeo, Gabriela; Muschietti, Jorge Prometeo

    2016-09-01

    In order to provide more insight into the function of aquaporins during pollination, we characterized NIP4;1 and NIP4;2, 2 pollen-specific aquaporins of Arabidopsis thaliana. NIP4;1 and NIP4;2 displayed high amino acid identity. RT-PCR and GUS promoter analysis showed that they have different expression patterns. NIP4;1 is expressed at low levels in mature pollen, while NIP4;2 is highly expressed only during pollen tube growth. Single T-DNA nip4;1 and nip4;2 mutants and double amiRNA nip4;1 nip4;2 knockdowns showed reduced male fertility due to deficient pollen germination and pollen tube length. Functional assays in oocytes showed that NIP4;1 and NIP4;2 transport water and nonionic solutes. Here, the participation of the different pollen aquaporins in pollen hydration and pollen tube growth is discussed.

  5. National Allergy Bureau Pollen and Mold Report

    MedlinePlus

    ... Search Search AAAAI National Allergy Bureau Pollen and Mold Report Date: April 12, 2017 Location: San Antonio ( ... Service can automatically email you daily pollen and mold reports. Click here sign up! Return to Map ...

  6. Holocene rapid climatic changes in the Okhotsk Sea and Amur watershed based on pollen analysis

    NASA Astrophysics Data System (ADS)

    Kokfelt, U.; Tiedemann, R.; Nuernberg, D.; Biebow, N.; Kozdon, R.; Lembke, L.; Kaiser, A.

    2003-04-01

    Recent investigations in the Sea of Okhotsk reveal high resolution records of rapid past climatic and vegetation pattern changes within this marginal sea and the adjacent Amur river drainage basin. The watershed of the Amur undergoes exteme seasonal as well as longer term climatic changes. A humid SE-Asia monsoon regime in summer is contrasted by cold, dry continental climate of Siberia in wintertime. Thus this region is crucial for our understanding of complex changes and shifts of athmospheric systems in the subarctic Far East and western North Pacific region. Gravity core LV28-4-4 was recovered from the continental margin off NE Sakhalin. Our age model consists of 16 AMS radiocarbon control points from planktic foraminifera and benthic shell fragments fit together by ninth order polynomial regressions. According to this, sedimentation rates exceed 100cm/kyr. Thus to date our investigations gain a temporal resolution of 200-600 years between discrete samples. We use analysis of terrestrial pollen and freshwater algae as proxies for vegetation changes in the Amur catchment area and the adjacent Siberian hinterland. Within this 930 cm long sequence, four pollen zones were distinguished: Pollen zone I (12,600-11,800 years BP), which comprises the Younger Dryas event, was dominated by non-arboreale taxa such as grasses (gramineae) and sedges (cyperaceae). The following pollen zone II (11,800-8,500 years BP) was in general dominated by birch (Betula) and elder (Alnus). The rise of spruce-dominated taiga (Picea jezoensis and P. glehnii) is clearly seen to the end of this zone and shows the preboreal warming. The oldest part of the pollen zone II has distinctly high values of birch and spruce and very low values of gramineae and cyperaceae suggesting a period of intense warming. Pollenzone III (8,500-3,600 years BP) is dominated by darkneedled taiga components and increased oak (Quercus) values and reflects the Holocene climatic optimum. The latest pollen zone IV

  7. Final Pleistocene and Holocene pollen stratigraphic sequence from the Cloquet River area, St. Louis Co. , NE Minnesota

    SciTech Connect

    Hill, C.L.; Rapp, G.R. Jr.; Huber, J.K.

    1985-01-01

    A five-meter pollen sequence from a bog has been studied as part of a project concerned with the late-Quaternary paleoenvironmental setting and prehistory of northeastern Minnesota. The stratigraphic sequence is situated on an outwash plain derived from the Automba phase of glaciation (ca. 15,000 B.P.) and is located near a series of surface archaeological localities containing possible late Paleoindian lithic assemblages. Loss-on-ignition and particle size analyses reveal that the top section of the core, to a depth of about 350 cm, is composed predominantly of organics, the remaining 150 cm is dominated by mud. Radicarbon ages of 9270 +/- 190 B.P. (UCR-1825) for the 350-355 cm interval, and 9420 +/- 180 (UCR-1826) for the 350-364 cm interval, were obtained. Data derived from pollen counts made at 20 cm intervals throughout the sequence indicate the core can be divided into several pollen-stratigraphic zones. The lowest zone, from the base of the core to about 440 cm, contains Cyperaceae (initially at about 60% total pollen) and is also characterized by Picea and Salix. (ca5%). Above this, there is a zone which ends at about 360 cm and contains a Betula peak (>65%). These two zones are considered to reflect the presence of tundra-like and dwarf-birch tundra vegetational regimes in the area during the late Pleistocene. Several pollen stratigraphic zones above 360 cm provide an indication of the Holocene vegetational setting, and show the increasing dominance of Pinus. The paleoenvironmental record obtained from this core, along with studies of the geologic setting, late Quaternary glacial sequence, and physiographic situation of archaeological localities, may help to elucidate the conditions prevalent during this time and provide a basis for a clearer understanding of the prehistoric ecology of northeastern Minnesota.

  8. Use of Remote Sensing and Dust Modelling to Evaluate Ecosystem Phenology and Pollen Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Watts, Carol; Shaw, Patrick

    2007-01-01

    The impact of pollen release and downwind concentrations can be evaluated utilizing remote sensing. Previous NASA studies have addressed airborne dust prediction systems PHAiRS (Public Health Applications in Remote Sensing) which have determined that pollen forecasts and simulations are possible. By adapting the deterministic dust model (as an in-line system with the National Weather Service operational forecast model) used in PHAiRS to simulate downwind dispersal of pollen, initializing the model with pollen source regions from MODIS, assessing the results a rapid prototype concept can be produced. We will present the results of our effort to develop a deterministic model for predicting and simulating pollen emission and downwind concentration to study details or phenology and meteorology and their dependencies, and the promise of a credible real time forecast system to support public health and agricultural science and service. Previous studies have been done with PHAiRS research, the use of NASA data, the dust model and the PHAiRS potential to improve public health and environmental services long into the future.

  9. [The epidemiology of pollen allergy].

    PubMed

    Charpin, D; Caillaud, D

    2014-04-01

    The prevalence of seasonal allergic rhinitis can be established through surveys performed in a sample of the general population. These surveys are based on a questionnaire, which could lead to an overestimate of prevalence rates, and on measurements of specific IgE, which need to be interpreted in the light of the responses to the questionnaire. Such surveys are few in France and need to be updated. Risk factors for seasonal allergic rhinitis are genetic, epigenetic and environmental. Relationships between exposure to pollen and health can be documented through ecological and panel surveys. Panel surveys may give information on threshold levels and dose-response relationships. In addition to pollen exposure, global warming and air pollutants act as cofactors. Monitoring of both pollen exposure and its health effects should be encouraged and strengthened.

  10. Pollen Allergens for Molecular Diagnosis.

    PubMed

    Pablos, Isabel; Wildner, Sabrina; Asam, Claudia; Wallner, Michael; Gadermaier, Gabriele

    2016-04-01

    Pollen allergens are one of the main causes of type I allergies affecting up to 30% of the population in industrialized countries. Climatic changes affect the duration and intensity of pollen seasons and may together with pollution contribute to increased incidences of respiratory allergy and asthma. Allergenic grasses, trees, and weeds often present similar habitats and flowering periods compromising clinical anamnesis. Molecule-based approaches enable distinction between genuine sensitization and clinically mostly irrelevant IgE cross-reactivity due to, e. g., panallergens or carbohydrate determinants. In addition, sensitivity as well as specificity can be improved and lead to identification of the primary sensitizing source which is particularly beneficial regarding polysensitized patients. This review gives an overview on relevant pollen allergens and their usefulness in daily practice. Appropriate allergy diagnosis is directly influencing decisions for therapeutic interventions, and thus, reliable biomarkers are pivotal when considering allergen immunotherapy in the context of precision medicine.

  11. 50-kyr vegetation history in the western Verkhoyansk Mountains region (NE Asia) reconstructed from fossil pollen data

    NASA Astrophysics Data System (ADS)

    Müller, Stefanie; Tarasov, Pavel E.; Andreev, Andrei A.; Tütken, Thomas; Gartz, Steffi; Diekmann, Bernhard

    2010-05-01

    A detailed radiocarbon-dated pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) situated in the western part of the Verkhoyansk Mountains, about 140 km south of the Arctic Circle is presented. A set of 53 surface pollen samples representing tundra, cold-deciduous forest and taiga was collected in northern and central Yakutia communities to verify the accuracy of the quantitative biome reconstruction method and to obtain a more precise attribution of the identified pollen taxa to the main regional biomes. The adjusted method is then applied to the pollen record from Lake Billyakh to gain an objective reconstruction of vegetation and environments since about 50.7 kyr BP. The results of the pollen analysis and pollen-based biome reconstruction suggest that herbaceous tundra and steppe communities dominated the area from 50.7 to 13.5 kyr BP. The lowest pollen percentages of woody taxa and the highest values of Artemisia pollen attest that the 31-15 kyr BP period as the driest and coldest interval of the entire record. A relative high content of taxa representing shrub tundra communities and the presence of larch pollen recorded prior to 31 kyr and after 13.5 kyr BP likely indicate interstadial climate amelioration associated with the middle and latest parts of the last glacial. An increase in pollen percentages of herbaceous taxa around 12 kyr BP suggests broader distribution of drier communities in response to the colder and drier than present climate of the Younger Dryas. The onset of the Holocene is marked by the highest values of shrub taxa, mainly Betula sect. Nanae/Fruticosae. Pollen percentages of arboreal taxa increase gradually and reach maximum values after 7 kyr BP. The latter maximum mainly reflects the spread of Pinus sylvestris in central Yakutia as a response to the mid-Holocene climatic optimum. The quasi-continuous presence of larch, shrubby birch and alder pollen throughout the whole record is the most striking feature of the pollen

  12. A new approach used to explore associations of current Ambrosia pollen levels with current and past meteorological elements

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Fülöp, Andrea; Tusnády, Gábor

    2015-09-01

    The paper examines the sensitivity of daily airborne Ambrosia (ragweed) pollen levels of a current pollen season not only on daily values of meteorological variables during this season but also on the past meteorological conditions. The results obtained from a 19-year data set including daily ragweed pollen counts and ten daily meteorological variables are evaluated with special focus on the interactions between the phyto-physiological processes and the meteorological elements. Instead of a Pearson correlation measuring the strength of the linear relationship between two random variables, a generalised correlation that measures every kind of relationship between random vectors was used. These latter correlations between arrays of daily values of the ten meteorological elements and the array of daily ragweed pollen concentrations during the current pollen season were calculated. For the current pollen season, the six most important variables are two temperature variables (mean and minimum temperatures), two humidity variables (dew point depression and rainfall) and two variables characterising the mixing of the air (wind speed and the height of the planetary boundary layer). The six most important meteorological variables before the current pollen season contain four temperature variables (mean, maximum, minimum temperatures and soil temperature) and two variables that characterise large-scale weather patterns (sea level pressure and the height of the planetary boundary layer). Key periods of the past meteorological variables before the current pollen season have been identified. The importance of this kind of analysis is that a knowledge of the past meteorological conditions may contribute to a better prediction of the upcoming pollen season.

  13. BURSTING POLLEN is required to organize the pollen germination plaque and pollen tube tip in Arabidopsis thaliana.

    PubMed

    Hoedemaekers, Karin; Derksen, Jan; Hoogstrate, Suzanne W; Wolters-Arts, Mieke; Oh, Sung-Aeong; Twell, David; Mariani, Celestina; Rieu, Ivo

    2015-04-01

    Pollen germination may occur via the so-called germination pores or directly through the pollen wall at the site of contact with the stigma. In this study, we addressed what processes take place during pollen hydration (i.e. before tube emergence), in a species with extra-poral pollen germination, Arabidopsis thaliana. A T-DNA mutant population was screened by segregation distortion analysis. Histological and electron microscopy techniques were applied to examine the wild-type and mutant phenotypes. Within 1 h of the start of pollen hydration, an intine-like structure consisting of cellulose, callose and at least partly de-esterified pectin was formed at the pollen wall. Subsequently, this 'germination plaque' gradually extended and opened up to provide passage for the cytoplasm into the emerging pollen tube. BURSTING POLLEN (BUP) was identified as a gene essential for the correct organization of this plaque and the tip of the pollen tube. BUP encodes a novel Golgi-located glycosyltransferase related to the glycosyltransferase 4 (GT4) subfamily which is conserved throughout the plant kingdom. Extra-poral pollen germination involves the development of a germination plaque and BUP defines the correct plastic-elastic properties of this plaque and the pollen tube tip by affecting pectin synthesis or delivery.

  14. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  15. Proteomics of pollen development and germination.

    PubMed

    Dai, Shaojun; Wang, Tai; Yan, Xiufeng; Chen, Sixue

    2007-12-01

    In higher plants, pollen grains represent the vestiges of a highly reduced male gametophyte generation. After germination, the pollen tube delivers the sperm cells by tip-growing to the embryo sac for fertilization. Besides the intrinsic importance for sexual reproduction, pollen development and germination serve as an attractive system to address important questions related to cell division, cell differentiation, polar growth, cell-cell interaction, and cell fate. Recently, pollen functional specification has been well-studied using multidisciplinary approaches. Here, we review recent advances in proteomics of pollen development and germination.

  16. Waterlogging in late dormancy and the early growth phase affected root and leaf morphology in Betula pendula and Betula pubescens seedlings.

    PubMed

    Wang, Ai-Fang; Roitto, Marja; Sutinen, Sirkka; Lehto, Tarja; Heinonen, Jaakko; Zhang, Gang; Repo, Tapani

    2016-01-01

    The warmer winters of the future will increase snow-melt frequency and rainfall, thereby increasing the risk of soil waterlogging and its effects on trees in winter and spring at northern latitudes. We studied the morphology of roots and leaves of 1-year-old silver birch (Betula pendula Roth) and pubescent birch (Betula pubescens Ehrh.) seedlings exposed to waterlogging during dormancy or at the beginning of the growing season in a growth-chamber experiment. The experiment included 4-week dormancy (Weeks 1-4), a 4-week early growing season (Weeks 5-8) and a 4-week late growing season (Weeks 9-12). The treatments were: (i) no waterlogging, throughout the experiment ('NW'); (ii) 4-week waterlogging during dormancy (dormancy waterlogging 'DW'); (iii) 4-week waterlogging during the early growing season (growth waterlogging 'GW'); and (iv) 4-week DW followed by 4-week GW during the early growing season ('DWGW'). Dormancy waterlogging affected the roots of silver birch and GW the roots and leaf characteristics of both species. Leaf area was reduced in both species by GW and DWGW. In pubescent birch, temporarily increased formation of thin roots was seen in root systems of GW seedlings, which suggests an adaptive mechanism with respect to excess soil water. Additionally, the high density of non-glandular trichomes and their increase in DWGW leaves were considered possible morphological adaptations to excess water in the soil, as was the constant density of stem lenticels during stem-diameter growth. The higher density in glandular trichomes of DWGW silver birch suggests morphological acclimation in that species. The naturally low density of non-glandular trichomes, low density of stem lenticels in waterlogged seedlings and decrease in root growth seen in DWGW and DW silver birch seedlings explain, at least partly, why silver birch grows more poorly relative to pubescent birch in wet soils.

  17. Bioassaying for ozone with pollen systems.

    PubMed Central

    Feder, W A

    1981-01-01

    Sensitivity to ozone of pollen germinating in vitro is closely correlated with ozone sensitivity of the pollen parent. Ozone-sensitive and tolerant pollen populations have been identified in tobacco, petunia, and tomato cultivars. The rate of tube elongation can be reversibly slowed or stopped by exposure to low concentrations of ozone. Tube growth rates in the presence of a range of ozone dosages, of pollen populations exhibiting differing ozone sensitivity can be measured and different growth rates can be correlated with ozone dosages. The performance of selected pollen populations can then be used to bioassay ozone in ambient air by introducing the air sample into a growth chamber where ozone-sensitive pollen in growing. Petunia and tobacco pollen are especially useful because they store well at ordinary freezer temperatures and do not require special preparation prior to storage. Modified Brewbacker's growth medium is suitable for growth of both these pollen types. Four useful cultivars are Bel W-3, ozone-sensitive and Bel B, ozone-tolerant tobacco, and White Bountiful, ozone-sensitive and Blue Lagoon, ozone-tolerant petunia. Observations can be made directly by using a TV scanner, or by time lapse or interval photography. Year-round pollen production can be achieved in the greenhouse. Harvested pollen can be tested, packaged, and transported to user facilities without loss of vigor. Pollen populations are inexpensive to produce, respond reliably, and are simple to use as a bioassay for air quality. Images FIGURE 2. FIGURE 3. FIGURE 4. PMID:7460876

  18. Cytochemical localization of some hydrolases in the pollen and pollen tubes of Amaryllis vittata Ait.

    PubMed

    Sharma, D

    1982-01-01

    Some hydrolases are localized cytochemically in the pollen and pollen tubes of Amaryllis vittata Ait. The function of different enzymes is discussed in relation to pollen tubes morphogenesis. Activity of most of the enzymes was confined to colpus region, pollen wall and general cytoplasm of pollen and pollen tube. The activity of hydrolytic enzymes like acid monophosphoesterase and lipase and was nil in the exine of both germinated and ungerminated pollen, whereas intense reaction for esterase was observed in exine. Enzyme activity increased after germination which suggest the hydrolysis of stored metabolites and synthesis of proteins and other metabolites for the active growth of pollen tube. Intense reaction for enzymes like alkaline phosphomonoesterase, ATP-ase, 5-nucleotidase etc. at the tip region of pollen tube suggest their role in physiological processes associated with exchange of materials through intercellular transport during tube wall polysaccharide biogenesis.

  19. Pollen resistance to water in 80 angiosperm species: flower structures protect rain-susceptible pollen.

    PubMed

    Mao, Yun-Yun; Huang, Shuang-Quan

    2009-08-01

    Flowers exhibit adaptive responses to biotic and abiotic factors. It remains unclear whether pollen susceptibility to rain damage plays a role in the evolution of floral form. We investigated flower performance in rain and compared pollen longevity in dry conditions, pure water and solutions with different sucrose concentrations in 80 flowering species from 46 families with diverse floral shapes and pollination modes. A pollen viability test showed that pollen longevity in all studied species was greatly reduced by wetting. We found that pollen of species with complete protection by flower structures was susceptible to water damage and a high proportion of resistant pollen occurred in unprotected species. Flowers whose structures expose pollen to rain may also reduce rain damage through temporal patterns of pollen presentation. This prediction was supported by our direct measurement of pollen presentation duration on rainy days. Our observations showed that variation in pollen performance in water was associated with differences in floral forms. Water-resistant pollen and extended pollen presentation duration were favored by selection via rain contact in species in which pollen was not protected from rain. These findings support the functional hypothesis that flower structures protect susceptible pollen from rain, demonstrating that rain acts as a force shaping floral form.

  20. Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers.

    PubMed

    Wang, Nian; Thomson, Marian; Bodles, William J A; Crawford, Robert M M; Hunt, Harriet V; Featherstone, Alan Watson; Pellicer, Jaume; Buggs, Richard J A

    2013-06-01

    New sequencing technologies allow development of genome-wide markers for any genus of ecological interest, including plant genera such as Betula (birch) that have previously proved difficult to study due to widespread polyploidy and hybridization. We present a de novo reference genome sequence assembly, from 66× short read coverage, of Betula nana (dwarf birch) - a diploid that is the keystone woody species of subarctic scrub communities but of conservation concern in Britain. We also present 100 bp PstI RAD markers for B. nana and closely related Betula tree species. Assembly of RAD markers in 15 individuals by alignment to the reference B. nana genome yielded 44-86k RAD loci per individual, whereas de novo RAD assembly yielded 64-121k loci per individual. Of the loci assembled by the de novo method, 3k homologous loci were found in all 15 individuals studied, and 35k in 10 or more individuals. Matching of RAD loci to RAD locus catalogues from the B. nana individual used for the reference genome showed similar numbers of matches from both methods of RAD locus assembly but indicated that the de novo RAD assembly method may overassemble some paralogous loci. In 12 individuals hetero-specific to B. nana 37-47k RAD loci matched a catalogue of RAD loci from the B. nana individual used for the reference genome, whereas 44-60k RAD loci aligned to the B. nana reference genome itself. We present a preliminary study of allele sharing among species, demonstrating the utility of the data for introgression studies and for the identification of species-specific alleles.

  1. Isolation, Characterization and Anticancer Potential of Cytotoxic Triterpenes from Betula utilis Bark

    PubMed Central

    Joshi, Pushpa; Pal, Mahesh; Meena, Baleshwar; Upreti, D. K.; Rana, T. S.; Datta, Dipak

    2016-01-01

    Betula utilis, also known as Himalayan silver birch has been used as a traditional medicine for many health ailments like inflammatation, HIV, renal and bladder disorders as well as many cancers from ages. Here, we performed bio-guided fractionation of Betula utilis Bark (BUB), in which it was extracted in methanol and fractionated with hexane, ethyl acetate, chloroform, n-butanol and water. All six fractions were evaluated for their in-vitro anticancer activity in nine different cancer cell lines and ethyl acetate fraction was found to be one of the most potent fractions in terms of inducing cytotoxic activity against various cancer cell lines. By utilizing column chromatography, six triterpenes namely betulin, betulinic acid, lupeol, ursolic acid (UA), oleanolic acid and β-amyrin have been isolated from the ethyl acetate extract of BUB and structures of these compounds were unraveled by spectroscopic methods. β-amyrin and UA were isolated for the first time from Betula utilis. Isolated triterpenes were tested for in-vitro cytotoxic activity against six different cancer cell lines where UA was found to be selective for breast cancer cells over non-tumorigenic breast epithelial cells (MCF 10A). Tumor cell selective apoptotic action of UA was mainly attributed due to the activation of extrinsic apoptosis pathway via up regulation of DR4, DR5 and PARP cleavage in MCF-7 cells over non-tumorigenic MCF-10A cells. Moreover, UA mediated intracellular ROS generation and mitochondrial membrane potential disruption also play a key role for its anti cancer effect. UA also inhibits breast cancer migration. Altogether, we discovered novel source of UA having potent tumor cell specific cytotoxic property, indicating its therapeutic potential against breast cancer. PMID:27453990

  2. Isolation, Characterization and Anticancer Potential of Cytotoxic Triterpenes from Betula utilis Bark.

    PubMed

    Mishra, Tripti; Arya, Rakesh Kumar; Meena, Sanjeev; Joshi, Pushpa; Pal, Mahesh; Meena, Baleshwar; Upreti, D K; Rana, T S; Datta, Dipak

    2016-01-01

    Betula utilis, also known as Himalayan silver birch has been used as a traditional medicine for many health ailments like inflammatation, HIV, renal and bladder disorders as well as many cancers from ages. Here, we performed bio-guided fractionation of Betula utilis Bark (BUB), in which it was extracted in methanol and fractionated with hexane, ethyl acetate, chloroform, n-butanol and water. All six fractions were evaluated for their in-vitro anticancer activity in nine different cancer cell lines and ethyl acetate fraction was found to be one of the most potent fractions in terms of inducing cytotoxic activity against various cancer cell lines. By utilizing column chromatography, six triterpenes namely betulin, betulinic acid, lupeol, ursolic acid (UA), oleanolic acid and β-amyrin have been isolated from the ethyl acetate extract of BUB and structures of these compounds were unraveled by spectroscopic methods. β-amyrin and UA were isolated for the first time from Betula utilis. Isolated triterpenes were tested for in-vitro cytotoxic activity against six different cancer cell lines where UA was found to be selective for breast cancer cells over non-tumorigenic breast epithelial cells (MCF 10A). Tumor cell selective apoptotic action of UA was mainly attributed due to the activation of extrinsic apoptosis pathway via up regulation of DR4, DR5 and PARP cleavage in MCF-7 cells over non-tumorigenic MCF-10A cells. Moreover, UA mediated intracellular ROS generation and mitochondrial membrane potential disruption also play a key role for its anti cancer effect. UA also inhibits breast cancer migration. Altogether, we discovered novel source of UA having potent tumor cell specific cytotoxic property, indicating its therapeutic potential against breast cancer.

  3. Pollen selection under acid rain stress

    SciTech Connect

    Zhang, Y.

    1994-01-01

    To investigate whether acid rain stress induces pollen selection in nature, three different approaches were used, based on the assumption that the response of pollen grains to acid rain is controlled by an acid sensitive gene product. Germination of pollen from homozygous and heterozygous individuals under acid rain stress was examined to detect any differences in rate of germination between populations of homogeneous and heterogeneous pollen grains. In vitro and in vivo bulked segregant analysis using RAPDs was used to search for differences in DNA constitution between the survivors of acid rain stressed and non-acid rain stressed pollen populations in vitro and between the progenies of acid rain stressed and non-acid rain stressed populations during pollination, respectively. No evidence for the pollen selection under acid rain stress was obtained in any of the test systems. Inhibition of protein synthesis using cycloheximide led to significant reduction of tube elongation at 4 hr and had no effect on pollen germination at any time interval tested. Total proteins extracted from control and acid rain stressed pollen grain populations exhibited no differences. The reduction of corn pollen germination in vitro under acid rain stress was mainly due to pollen rupture. The present data indicates the reduction of pollen germination and tube growth under acid rain stress may be a physiological response rather than a genetic response. A simple, nontoxic, and effective method to separate germinated from ungerminated pollen grains has been developed using pollen from corn (Zea mays, L. cv. Pioneer 3747). The separated germinated pollen grains retained viability and continued tube growth when placed in culture medium.

  4. Differences in residual lignin properties between Betula verrucosa and Eucalyptus urograndis kraft pulps.

    PubMed

    Hänninen, Tuomas A; Kontturi, Eero; Isogai, Akira; Vuorinen, Tapani

    2008-10-01

    By comparing the ultrastructural features of two oxygen delignified hardwood kraft pulps (Eucalyptus urograndis and Betula verrucosa), we have demonstrated a marked difference in their residual lignin properties. In this study, properties such as crystallinity and crystal size of cellulose, molecular weights, carboxyl group contents, and carbohydrate compositions of the two kraft pulps were compared. The examined pulps were in our observations relatively similar. A significant difference, however, was observed in the size exclusion chromatography measurements, which indirectly suggested that a significant portion of residual lignin in eucalyptus pulp was associated with cellulose. Birch pulp, in contrast, exhibited a more conventional tendency for hardwood pulps: lignin mainly associated with hemicelluloses.

  5. The 'yellow snowepisode' of northern Fennoscandia, march 1991—A case study of long-distance transport of soil, pollen and stable organic compounds

    NASA Astrophysics Data System (ADS)

    Franzén, Lars G.; Hjelmroos, Mervi; Kållberg, Per; Brorström-Lunden, Eva; Juntto, Sirkka; Savolainen, Anna-Liisa

    The present paper describes a vast dustfall with snow in northern Fennoscandia, 10 March 1991. The area affected by dust deposition was at least 320,000 km 2. and the particulate mass received amounted to between 50 and 200 mgm -2. The total amounts of dust deposited in the investigated area sum up to approximately 50,000 tonnes. The dust consisted of soil particles, i.e. single mineral grains and loose ferric aggregates of mineral grains in addition to pollen and spores. Mineralogically, the dust was dominated by small rounded quartz grains. Median size of the dust particles was 2.72 μm. The total pollen concentration varied from 327 to 1172 pollen cm -2. The pollen types identified were divided in "Nordic/Central European" taxa and "Exotic" taxa. Pollen from the former group, e.g. Betula, Alnus and Corylus were believed to originate in the Alps and in the northern parts of Central Europe where these species were flowering. The latter category was considered to originate in more remote areas, many of them belonging to the taxa growing only around the Mediterranean. From a paleo-ecological point of view, long-distance transport such as this would count for an important potential source of error whenever interpreting Holocene pollen diagrams. The content of stable organic compounds showed that the dust was relatively clean, compared to other episodes, when the dust deposited had originated in heavily polluted regions. The small amounts of chlorinated hydrocarbons, polychlorinated biphenyles (PCB), polyaromated hydrocarbons (PAH) and other hydrocarbons found, are believed to have been adsorbed by the particle surfaces during transportation. The results of the study, along with meteorological data, lead to the conclusion that the material originated in North Africa. Dust mobilization was reported in Tunisia as well as in Algeria. This means that the dust was transported at least 7000 km before deposition.

  6. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  7. Identification and isolation of pharmacologically active triterpenes in Betuale cortex, Betula pendula Roth., Betulaceae.

    PubMed

    E Kovac-Besović, Elvira; Durić, Kemal; Kalodera, Zdenka; Sofić, Emin

    2009-02-01

    Betulae cortex, Betula pendula Roth., Betulaceae, comprise triterpene substances which are confirmed to posses very important pharmacological activities such as anti-inflammatory, anticancer and antiviral. In this study, extraction of triterpene substances from both, inner and external birch bark was carried out and after that qualitative analysis on betulin, betulinic acid, oleanolic acid and lupeol was performed by method of thin layer chromatography. By this separation method, applying system for development benzene-ethyl acetate-formic acid (36:12:5), is gained a good separation of examined triterpene substances from methanol extracts of inner and external birch bark as well as used standards. From obtained row triterpene mixtures, certain triterpene substances are isolated using method of dry column chromatography. To those substances infrared (IR) spectra were recorded and compared with IR spectra of adequate standards. The study encloses all obtained IR spectra and interpretations on the basis of which can be concluded that triterpene substances, betulin, betulin acid and lupeol isolated from external birch bark give identical characteristic signals and absorbance as referent standards. Method of dry column chromatography has resulted as simple, efficient, repeatable and economical for laboratory conditions. Beside this, a sufficient quantity of examined triterpene substances is also obtained for continuation of their further analytical analysis.

  8. Modular method of detection, localization, and counting of multiple-taxon pollen apertures using bag-of-words

    NASA Astrophysics Data System (ADS)

    Lozano-Vega, Gildardo; Benezeth, Yannick; Marzani, Franck; Boochs, Frank

    2014-09-01

    Accurate recognition of airborne pollen taxa is crucial for understanding and treating allergic diseases which affect an important proportion of the world population. Modern computer vision techniques enable the detection of discriminant characteristics. Apertures are among the important characteristics which have not been adequately explored until now. A flexible method of detection, localization, and counting of apertures of different pollen taxa with varying appearances is proposed. Aperture description is based on primitive images following the bag-of-words strategy. A confidence map is estimated based on the classification of sampled regions. The method is designed to be extended modularly to new aperture types employing the same algorithm by building individual classifiers. The method was evaluated on the top five allergenic pollen taxa in Germany, and its robustness to unseen particles was verified.

  9. [Identification of cattail pollen (puhuang), pine pollen (songhuafen) and its adulterants by ITS2 sequence].

    PubMed

    Ma, Xiao-Xi; Sun, Wei; Ren, Wei-Chao; Xiang, Li; Zhao, Bo; Zhang, Ya-Qin; Song, Ming; Mu, Ze-Jing; Chen, Shi-Lin

    2014-06-01

    DNA barcoding method was conducted for the authentication of pollen materials due to difficulty of discriminating pollen materials bearing morphological similarity. In this study, a specific focus was to identify cattail pollen (Puhuang) and pine pollen (Songhuafen) samples from their adulterants which are frequently mixed-together. Regions of the internal transcribed spacer (ITS2) from 60 samples were sequenced, and new primers for cattail pollen were designed according to the sequence information. The results from the NJ trees showed that the species of pine pollen, Puhuang and their adulterants can be classified as obvious monophyly. Therefore, we propose to adapt DNA barcoding methodology to accurately distinguish cattail pollen, pine pollen and their adulterant materials. It is a great help for drug regulatory agency to supervise the quality of medicinal materials.

  10. Heterospecific pollen deposition in Delphinium barbeyi: linking stigmatic pollen loads to reproductive output in the field

    PubMed Central

    Briggs, Heather M.; Anderson, Lucy M.; Atalla, Laila M.; Delva, André M.; Dobbs, Emily K.; Brosi, Berry J.

    2016-01-01

    Background and Aims Most pollinators are generalists and therefore are likely to transfer heterospecific pollen among co-flowering plants. Most work on the impacts of heterospecific pollen deposition on plant fecundity has utilized hand-pollination experiments in greenhouse settings, and we continue to know very little about the reproductive effects of heterospecific pollen in field settings. Methods We explored how patterns of naturally deposited heterospecific pollen relate to the reproductive output of Delphinium barbeyi, a common subalpine perennial herb in the Rocky Mountains (USA). We assessed a wide range of naturally occurring heterospecific pollen proportions and pollen load sizes, and linked stigmatic pollen deposition directly to seed set in individual carpels in the field. Key Results We found that heterospecific pollen deposition in D. barbeyi is common, but typically found at low levels across stigmas collected in our sites. Neither conspecific nor heterospecific pollen deposition was related to carpel abortion. By contrast, we saw a significant positive relationship between conspecific pollen amount and viable seed production, as well as a significant negative interaction between the effects of conspecific pollen and heterospecific pollen amount, whereby the effect of conspecific pollen on viable seed production became weaker with greater heterospecific deposition on stigmas. Conclusions To our knowledge, this is the first demonstration of a relationship between heterospecific pollen and seed production in a field setting. In addition, it is the first report of an interaction between conspecific and heterospecific pollen quantities on seed production. These findings, taken with the results from other studies, suggest that greenhouse hand-pollination studies and field studies should be more tightly integrated in future work to better understand how heterospecific pollen transfer can be detrimental for plant reproduction. PMID:26658101

  11. A Pollen Primer | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Several types of pollen cause mild to severe seasonal respiratory allergy, including allergic rhinitis and asthma. But helpful defenses ... Pollen Grass pollens are regional as well as seasonal. Their levels also are ... Bermuda grass Johnson grass Kentucky bluegrass Sweet ...

  12. Controlling Hay Fever Symptoms with Accurate Pollen Counts

    MedlinePlus

    ... Library ▸ Hay fever and pollen counts Share | Controlling Hay Fever Symptoms with Accurate Pollen Counts This article has ... Pongdee, MD, FAAAAI Seasonal allergic rhinitis known as hay fever is caused by pollen carried in the air ...

  13. In vitro pollen viability and pollen germination in cherry laurel (Prunus laurocerasus L.).

    PubMed

    Sulusoglu, Melekber; Cavusoglu, Aysun

    2014-01-01

    Pollen quality is important for growers and breeders. This study was carried out to determine in vitro pollen viability and pollen germination in seven genotypes of cherry laurel (Prunus laurocerasus L.). Two pollen viability tests, TTC (2,3,5-triphenyl tetrazolium chloride) and IKI (iodine potassium iodide), were used. Pollen traits of genotypes were studied using an in vitro medium containing 0%, 5%, 10%, 15%, and 20% sucrose to determine the best sucrose concentrations for germination. In the second step, the germinated pollen was counted 1, 4, 6, 10, 12, 24, and 48 hours later until there was no further germination. The viability rates were different according to genotypes and tests used. The IKI and TTC staining tests and pollen germination had low correlation (r(2) = 0.0614 and r(2) = 0.0015, resp.). Painted pollen rate was higher and pollen was well-stained with IKI test and pollen viability estimated with TTC staining test was better than that estimated with the IKI staining test. 15% sucrose gave the best germination rates in most of the genotypes. Pollen germination rates were recorded periodically from one hour to 48 hours in 15% sucrose and the results showed that pollen germination rates increased after 6 hours of being placed in culture media.

  14. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea.

    PubMed

    Jiang, Yunfei; Lahlali, Rachid; Karunakaran, Chithra; Kumar, Saroj; Davis, Arthur R; Bueckert, Rosalind A

    2015-11-01

    Pea (Pisum sativum L.) is a major legume crop grown in a semi-arid climate in Western Canada, where heat stress affects pollination, seed set and yield. Seed set and pod growth characteristics, along with in vitro percentage pollen germination, pollen tube growth and pollen surface composition, were measured in two pea cultivars (CDC Golden and CDC Sage) subjected to five maximum temperature regimes ranging from 24 to 36 °C. Heat stress reduced percentage pollen germination, pollen tube length, pod length, seed number per pod, and the seed-ovule ratio. Percentage pollen germination of CDC Sage was greater than CDC Golden at 36 °C. No visible morphological differences in pollen grains or the pollen surface were observed between the heat and control-treated pea. However, pollen wall (intine) thickness increased due to heat stress. Mid-infrared attenuated total reflectance (MIR-ATR) spectra revealed that the chemical composition (lipid, proteins and carbohydrates) of each cultivar's pollen grains responded differently to heat stress. The lipid region of the pollen coat and exine of CDC Sage was more stable compared with CDC Golden at 36 °C. Secondary derivatives of ATR spectra indicated the presence of two lipid types, with different amounts present in pollen grains from each cultivar.

  15. [A monoclonal antibody against ragweed pollen cross-reacting with yellow dock pollen].

    PubMed

    Shen, H D; Chang, L Y; Gong, Y J; Chang, H N; Han, S H

    1985-11-01

    Using monoclonal antibodies with different specificity against the major allergenic components of ragweed pollen, we analyzed their cross-reactivity with two tree pollens, two grass pollens and five other weed pollens which are common in Taiwan by the immunoblot method. It was found that besides reacting with AgE and AgK of the ragweed pollen, the monoclonal antibody 48-5 also reacted with antigens of yellow dock pollen with molecular weights of 40K, 38K, 24K, and 21K. In a preliminary study, sera of two patients containing IgE antibodies to ragweed pollen antigens also reacted to the 40K component of the yellow dock pollen. Furthermore, from the results of allergenic skin testings on 109 patients with bronchial asthma, we found that of 22 patients who had a positive reaction to a crude extract of ragweed pollen, 18(81.8%) also reacted to the crude extract of yellow dock pollen. In conclusion, our results suggest that there exists a common allergenic determinant between pollens of ragweed and yellow dock. It may play an important role in the expression of the sensitivity of patients to these two kinds of pollens.

  16. Some carbohydrates found in pollen and pollen substitutes are toxic to honey bees.

    PubMed

    Barker, R J

    1977-10-01

    Carbohydrates in some pollen substitutes (galactose, lactose, raffinose, stachyose, glucuronic acid, galacturonic acid, polygalacturonic acid, and pectin) were toxic to caged adult Apis mellifera L. These toxins can be diluted to safe levels by sucrose. Collected nectar apparently dilutes the toxic sugars in pollen thus permitting assimilation of essential nutrients from pollen.

  17. Cross-reactivity to olive tree pollen and orchard grass pollen in patients with pollinosis.

    PubMed

    Miyahara, S; Nakada, M; Nishizaki, K; Kawarai, Y; Nishioka, K; Hino, H

    1997-06-01

    We studied 92 patients with allergic rhinitis in Syodoshima, Japan, during the pollen season between April and June to evaluate the cross-reactivity to different antigens, including pollen from the olive tree (Olea europaea) and orchard grass (Dactylis glomerata). Olive tree pollen was present in the atmosphere for 23 days, from May 19 to June 12, 1994. Specific IgE antibodies for olive tree pollen antigen were present in 21 (26.9%) of the 78 patients with allergic rhinitis. Nine (24.3%) of the 37 patients with allergic rhinitis exhibited positive skin reactivity to an extract of olive tree pollen. Fifteen (88.2%) of the 17 patients who had IgE reactivity in their sera to olive tree pollen antigen demonstrated allergic reactions to an extract of olive tree pollen. Specific IgE antibodies for orchard grass pollen antigen were present in 43 (48.3%) of the 89 patients with allergic rhinitis and 20 (95.2%) of the 21 patients who had IgE reactivity in their sera to olive tree pollen antigen. The inhibition test using the CAP System revealed that the reactivity of the IgE antibody specific for olive tree pollen antigen was inhibited dose-dependently by an extract of orchard grass pollen. These findings show that there is a reaction in some patients with grass (Gramineae) pollinosis that might be induced by olive tree pollen.

  18. In Vitro Pollen Viability and Pollen Germination in Cherry Laurel (Prunus laurocerasus L.)

    PubMed Central

    Sulusoglu, Melekber; Cavusoglu, Aysun

    2014-01-01

    Pollen quality is important for growers and breeders. This study was carried out to determine in vitro pollen viability and pollen germination in seven genotypes of cherry laurel (Prunus laurocerasus L.). Two pollen viability tests, TTC (2,3,5-triphenyl tetrazolium chloride) and IKI (iodine potassium iodide), were used. Pollen traits of genotypes were studied using an in vitro medium containing 0%, 5%, 10%, 15%, and 20% sucrose to determine the best sucrose concentrations for germination. In the second step, the germinated pollen was counted 1, 4, 6, 10, 12, 24, and 48 hours later until there was no further germination. The viability rates were different according to genotypes and tests used. The IKI and TTC staining tests and pollen germination had low correlation (r2 = 0.0614 and r2 = 0.0015, resp.). Painted pollen rate was higher and pollen was well-stained with IKI test and pollen viability estimated with TTC staining test was better than that estimated with the IKI staining test. 15% sucrose gave the best germination rates in most of the genotypes. Pollen germination rates were recorded periodically from one hour to 48 hours in 15% sucrose and the results showed that pollen germination rates increased after 6 hours of being placed in culture media. PMID:25405230

  19. Personal pollen exposure compared to stationary measurements.

    PubMed

    Riediker, M; Keller, S; Wüthrich, B; Koller, T; Monn, C

    2000-01-01

    The aim of this study was to examine to what extent stationary outdoor pollen measurements are representative for estimating personal exposure to pollen. Ten subjects were studied during a total of 36 days in spring and summer Pollen was sampled using personal SKC total dust samplers and stationary Burkard pollen traps. The personal activity pattern was recorded quarter-hourly as well as the time spent outdoors. As a reference, SKC and Burkard samplers were run stationary and in parallel. Stationary comparison of the samplers showed good correlation (r = 0.981, p <0.001). However, the SKC sampler collected systematically about four times less pollen than the Burkard sampler. Taking into account the systematic difference between the sampling devices, the personal exposure data were about 30% of the stationary pollen concentrations with significant correlation (log-transformed data, r = 0.719, p <0.0001). Considering the average time the subjects spent outdoors (14% of sampling time), the indoor-outdoor ratio for pollen was 0.2. In conclusion, pollen reports are reliable for estimating personal exposure over a limited time period although personal pollen exposure is much lower.

  20. Simultaneous allergy to vine pollen and grape.

    PubMed

    Mur, P; Feo Brito, F; Bartolomé, B; Galindo, P A; Gómez, E; Borja, J; Alonso, A

    2006-01-01

    We report the case of an 18-year-old female student suffering from seasonal rhinoconjunctivitis with sensitization to pollens from vine and also from grass, olive, and Chenopodiaceae plants who had recently developed episodes of itching, maculopapular rash, and facial angioedema after eating grapes. Testing revealed positive reactions to vine pollen and grapes, and specific IgE were found for both allergens. Immunoblotting and inhibition assays revealed cross-reactivity between the allergenic structures of vine pollen and grape fruit and also among botanically unrelated pollens.

  1. Inter- and intra-specific variation in stem phloem phenolics of paper birch (Betula papyrifera) and European white birch (Betula pendula).

    PubMed

    Muilenburg, V L; Phelan, P L; Bonello, P; Herms, D A

    2011-11-01

    Outbreaks of bronze birch borer (BBB) (Agrilus anxius), a wood-boring beetle endemic to North America, have been associated with widespread mortality of birch (Betula spp.). There is substantial inter- and intra-specific variation in birch resistance to BBB. Species endemic to North America, such as paper birch (B. papyrifera), have coevolved with BBB and are more resistant than European and Asian birch species, such as European white birch (B. pendula), which lack an evolutionary history with BBB. Borer larvae feed on stem phloem tissue. Therefore, in search of potential resistance mechanisms against BBB, we compared the constitutive phenolic profile of stem phloem tissue of paper birch with that of European white birch. We also analyzed intraspecific variation in phenolic composition among clones and/or half-siblings of both species. Three phenolics (coumaroylquinic acid, betuloside pentoside A, and a diarylheptanoid hexoside) were detected only in paper birch, and concentrations of six other phenolics were significantly higher in paper birch. These differences may contribute to the high resistance of paper birch to BBB relative to European white birch. There was significant intraspecific variation in four of 17 phenolics found in paper birch and in five of 14 found in European white birch, but clones and half-siblings within each species could not be distinguished by phenolic composition using multivariate analysis.

  2. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century

    PubMed Central

    Hollesen, Jørgen; Buchwal, Agata; Rachlewicz, Grzegorz; Hansen, Birger U; Hansen, Marc O; Stecher, Ole; Elberling, Bo

    2015-01-01

    Growing season conditions are widely recognized as the main driver for tundra shrub radial growth, but the effects of winter warming and snow remain an open question. Here, we present a more than 100 years long Betula nana ring-width chronology from Disko Island in western Greenland that demonstrates a highly significant and positive growth response to both summer and winter air temperatures during the past century. The importance of winter temperatures for Betula nana growth is especially pronounced during the periods from 1910–1930 to 1990–2011 that were dominated by significant winter warming. To explain the strong winter importance on growth, we assessed the importance of different environmental factors using site-specific measurements from 1991 to 2011 of soil temperatures, sea ice coverage, precipitation and snow depths. The results show a strong positive growth response to the amount of thawing and growing degree-days as well as to winter and spring soil temperatures. In addition to these direct effects, a strong negative growth response to sea ice extent was identified, indicating a possible link between local sea ice conditions, local climate variations and Betula nana growth rates. Data also reveal a clear shift within the last 20 years from a period with thick snow depths (1991–1996) and a positive effect on Betula nana radial growth, to a period (1997–2011) with generally very shallow snow depths and no significant growth response towards snow. During this period, winter and spring soil temperatures have increased significantly suggesting that the most recent increase in Betula nana radial growth is primarily triggered by warmer winter and spring air temperatures causing earlier snowmelt that allows the soils to drain and warm quicker. The presented results may help to explain the recently observed ‘greening of the Arctic’ which may further accelerate in future years due to both direct and indirect effects of winter warming. PMID:25788025

  3. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    structures since its employment on a large scale during World War II. It is puzzling to consider how little airborne organizational structures and employment...future potential of airborne concepts by rethinking traditional airborne organizational structures and employment concepts. Using a holistic approach in... structures of airborne forces to model a “small and many” approach over a “large and few” approach, while incorporating a “swarming” concept. Utilizing

  4. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity.

    PubMed

    Sénéchal, Hélène; Visez, Nicolas; Charpin, Denis; Shahali, Youcef; Peltre, Gabriel; Biolley, Jean-Philippe; Lhuissier, Franck; Couderc, Rémy; Yamada, Ohri; Malrat-Domenge, Audrey; Pham-Thi, Nhân; Poncet, Pascal; Sutra, Jean-Pierre

    2015-01-01

    This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of "polluen," some methodological biases are underlined and research tracks in this field are proposed.

  5. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity

    PubMed Central

    Sénéchal, Hélène; Visez, Nicolas; Charpin, Denis; Shahali, Youcef; Peltre, Gabriel; Biolley, Jean-Philippe; Lhuissier, Franck; Couderc, Rémy; Yamada, Ohri; Malrat-Domenge, Audrey; Pham-Thi, Nhân; Poncet, Pascal; Sutra, Jean-Pierre

    2015-01-01

    This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of “polluen,” some methodological biases are underlined and research tracks in this field are proposed. PMID:26819967

  6. Reconstruction of vegetation and lake level at Moon Lake, North Dakota, from high-resolution pollen and diatom data

    SciTech Connect

    Grimm, E.C.; Laird, K.R.; Mueller, P.G. |

    1995-06-01

    High-resolution fossil-pollen and diatom data from Moon Lake, North Dakota, reveal major climate and vegetation changes near the western margin of the tall-grass prairie. Fourteen AMS radiocarbon dates provide excellent time control for the past {approximately}11,800 {sup 14}C years B.P. Picea dominated during the late-glacial until it abruptly declined {approximately}10,300 B.P. During the early Holocene ({approximately}10,300-8000 B.P.), deciduous trees and shrubs (Populus, Betula, Corylus, Quercus, and especially Ulmus) were common, but prairie taxa (Poaceae, Artemisia, and Chenopodiaceae/Amaranthaceae) gradually increased. During this period the diatoms indicate the lake becoming gradually more saline as water-level fell. By {approximately}8000 B.P., salinity had increased to the point that the diatoms were no longer sensitive to further salinity increases. However, fluctuating pollen percentages of mud-flat weeds (Ambrosia and Iva) indicate frequently changing water levels during the mid-Holocene ({approximately}8000-5000 B.P.). The driest millennium was 7000-6000 B.P., when Iva annua was common. After {approximately}3000 B.P. the lake became less-saline, and the diatoms were again sensitive to changing salinity. The Medieval Warm Period and Little Ice Age are clearly evident in the diatom data.

  7. Nickel and Copper Toxicity and Plant Response Mechanisms in White Birch (Betula papyrifera).

    PubMed

    Theriault, Gabriel; Nkongolo, Kabwe

    2016-08-01

    Nickel (Ni) and copper (Cu) are the most prevalent metals found in the soils in the Greater Sudbury Region (Canada) because of smelting emissions. The main objectives of the present study were to (1) determine the toxicity of nickel (Ni) and copper (Cu) at different doses in Betula papyrifera (white birch), (2) Characterize nickel resistance mechanism, and (3) assess segregating patterns for Ni and Cu resistance in B. papyrifera populations. This study revealed that B. papyrifera is resistant to Ni and Cu concentrations equivalent to the levels reported in metal-contaminated stands in the GSR. Resistant genotypes (RG) accumulate Ni in roots but not in leaves. Moderately susceptible (MSG) and susceptible genotypes (SG) show a high level of Ni translocation to leaves. Gene expression analysis showed differential regulation of genes in RG compared to MSG and SG. Analysis of segregation patterns suggests that resistance to Ni and Cu is controlled by single recessive genes.

  8. Formic acid aided hot water extraction of hemicellulose from European silver birch (Betula pendula) sawdust.

    PubMed

    Goldmann, Werner Marcelo; Ahola, Juha; Mikola, Marja; Tanskanen, Juha

    2017-02-11

    Hemicellulose has been extracted from birch (Betula pendula) sawdust by formic acid aided hot water extraction. The maximum amount of hemicellulose extracted was about 70mol% of the total hemicellulose content at 170°C, measured as the combined yield of xylose and furfural. Lower temperatures (130 and 140°C) favored hemicellulose hydrolysis rather than cellulose hydrolysis, even though the total hemicellulose yield was less than at 170°C. It was found that formic acid greatly increased the hydrolysis of hemicellulose to xylose and furfural at the experimental temperatures. The amount of lignin in the extract remained below the detection limit of the analysis (3g/L) in all cases. Formic acid aided hot water extraction is a promising technique for extracting hemicellulose from woody biomass, while leaving a solid residue with low hemicellulose content, which can be delignified to culminate in the three main isolated lignocellulosic fractions: cellulose, hemicellulose, and lignin.

  9. Betula pendula Roth leaves: gastroprotective effects of an HPLC-fingerprinted methanolic extract.

    PubMed

    Germanò, Maria Paola; Cacciola, Francesco; Donato, Paola; Dugo, Paola; Certo, Giovanna; D'Angelo, Valeria; Mondello, Luigi; Rapisarda, Antonio

    2013-01-01

    In this study, a methanolic extract of Betula pendula leaves (BLE) was investigated for its gastroprotective effects against 90% ethanol-induced ulcer in rats. Oral pretreatment of rats with BLE (100, 200 and 400 mg kg(- 1)) significantly reduced the incidence of gastric lesions induced by ethanol administration as compared with misoprostol (0.50 mg kg(- 1)). Furthermore, BLE inhibited the increase in malondialdehyde (MDA) and prevented depletion of total sulhydryl and non-protein sulhydryl groups in rat stomach homogenate when compared with ethanol group. With regard to the effect of lipid peroxidation in vitro, BLE showed the ability to reduce methyl linoleate autoxidation. Chemical characterisation of the main biologically active constituents of BLE was also achieved by means of high-performance liquid chromatography with photodiode array and mass spectrometry detection, showing the presence of myricetin-3-O-galactoside, quercetin glycosides, kaempferol glycosides.

  10. Ameliorative effect of betulin from Betula platyphylla bark on scopolamine-induced amnesic mice.

    PubMed

    Cho, Namki; Kim, Hyeon Woo; Lee, Hee Kyoung; Jeon, Byung Ju; Sung, Sang Hyun

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease induced by cholinergic neuron damage or amyloid-beta aggregation in the basal forebrain region and resulting in cognitive disorder. We previously reported on the neuroprotective effects of Betula platyphylla bark (BPB) in an amyloid-beta-induced amnesic mouse model. In this study, we obtained a cognitive-enhancing compound by assessing results using a scopolamine-induced amnesic mouse model. Our results show that oral treatment of mice with BPB and betulin significantly ameliorated scopolamine-induced memory deficits in both passive avoidance and Y-maze tests. In the Morris water maze test, administration of BPB and betulin significantly improved memory and cognitive function indicating the formation of working and reference memories in treated mice. Moreover, betulin significantly increased glutathione content in mouse hippocampus, and the increase was greater than that from betulinic acid treatment. We conclude that BPB and its active component betulin have potential as therapeutic, cognitive enhancer in AD.

  11. Antioxidant Activity of Sonoran Desert Bee Pollen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bee products have been consumed by mankind since antiquity and their health benefits are becoming more apparent. Bee pollen (pollen collected by honey bees) was collected in the high intensity ultraviolet (UV) Sonoran desert and was analyzed by the anti-2,2-diphenyl-1-picryhydrazyl (DPPH) assay and...

  12. Comprehensive Transcriptome Analysis of Response to Nickel Stress in White Birch (Betula papyrifera)

    PubMed Central

    Theriault, Gabriel; Michael, Paul; Nkongolo, Kabwe

    2016-01-01

    White birch (Betula papyrifera) is a dominant tree species of the Boreal Forest. Recent studies have shown that it is fairly resistant to heavy metal contamination, specifically to nickel. Knowledge of regulation of genes associated with metal resistance in higher plants is very sketchy. Availability and annotation of the dwarf birch (B. nana) enables the use of high throughout sequencing approaches to understanding responses to environmental challenges in other Betula species such as B. papyrifera. The main objectives of this study are to 1) develop and characterize the B. papyrifera transcriptome, 2) assess gene expression dynamics of B. papyrifera in response to nickel stress, and 3) describe gene function based on ontology. Nickel resistant and susceptible genotypes were selected and used for transcriptome analysis. A total of 208,058 trinity genes were identified and were assembled to 275,545 total trinity transcripts. The transcripts were mapped to protein sequences and based on best match; we annotated the B. papyrifera genes and assigned gene ontology. In total, 215,700 transcripts were annotated and were compared to the published B. nana genome. Overall, a genomic match for 61% transcripts with the reference genome was found. Expression profiles were generated and 62,587 genes were found to be significantly differentially expressed among the nickel resistant, susceptible, and untreated libraries. The main nickel resistance mechanism in B. papyrifera is a downregulation of genes associated with translation (in ribosome), binding, and transporter activities. Five candidate genes associated to nickel resistance were identified. They include Glutathione S–transferase, thioredoxin family protein, putative transmembrane protein and two Nramp transporters. These genes could be useful for genetic engineering of birch trees. PMID:27082755

  13. Comprehensive Transcriptome Analysis of Response to Nickel Stress in White Birch (Betula papyrifera).

    PubMed

    Theriault, Gabriel; Michael, Paul; Nkongolo, Kabwe

    2016-01-01

    White birch (Betula papyrifera) is a dominant tree species of the Boreal Forest. Recent studies have shown that it is fairly resistant to heavy metal contamination, specifically to nickel. Knowledge of regulation of genes associated with metal resistance in higher plants is very sketchy. Availability and annotation of the dwarf birch (B. nana) enables the use of high throughout sequencing approaches to understanding responses to environmental challenges in other Betula species such as B. papyrifera. The main objectives of this study are to 1) develop and characterize the B. papyrifera transcriptome, 2) assess gene expression dynamics of B. papyrifera in response to nickel stress, and 3) describe gene function based on ontology. Nickel resistant and susceptible genotypes were selected and used for transcriptome analysis. A total of 208,058 trinity genes were identified and were assembled to 275,545 total trinity transcripts. The transcripts were mapped to protein sequences and based on best match; we annotated the B. papyrifera genes and assigned gene ontology. In total, 215,700 transcripts were annotated and were compared to the published B. nana genome. Overall, a genomic match for 61% transcripts with the reference genome was found. Expression profiles were generated and 62,587 genes were found to be significantly differentially expressed among the nickel resistant, susceptible, and untreated libraries. The main nickel resistance mechanism in B. papyrifera is a downregulation of genes associated with translation (in ribosome), binding, and transporter activities. Five candidate genes associated to nickel resistance were identified. They include Glutathione S-transferase, thioredoxin family protein, putative transmembrane protein and two Nramp transporters. These genes could be useful for genetic engineering of birch trees.

  14. Endogenous Gibberellins of Pine Pollen

    PubMed Central

    Kamienska, Aniela; Durley, Richard C.; Pharis, Richard P.

    1976-01-01

    Gibberellins A1 and A34 (possibly A2) were found as products of metabolism of 1,2-[3H]GA4 during germination of Pinus attenuata pollen. The conversion from GA4 to GA1 and GA34 occurred as hydroxylations at atoms C-13 and C-2 of the ent-gibberellane skeleton, respectively. Percentage interconversion of the GA4 absorbed was in the range of 0.15 to 0.43% for GA1 and 1.54 to 3.22% for GA34. Identifications were made on a gas-liquid chromatograph with radioactive monitoring by comparison with standards. PMID:16659622

  15. Pollen tube guidance by attractant molecules: LUREs.

    PubMed

    Okuda, Satohiro; Higashiyama, Tetsuya

    2010-01-01

    Sexual reproduction in flowering plants requires pollen-tube guidance, which is thought to be mediated by chemoattractants derived from target ovules. To date, however, no convincing evidence has been reported of a particular molecule being the true attractant. Emerging data indicate that two synergid cells, which are on either side of the egg cell, emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen-tube guidance. Recently, it was demonstrated that LUREs (LURE1 and LURE2), cysteine-rich polypeptides secreted from the synergid cell, are the key molecules in pollen-tube guidance. In this review, we summarize the mechanism of pollen-tube guidance, with special focus on gametophytic guidance and the attractants.

  16. New insights into ragweed pollen allergens.

    PubMed

    Bordas-Le Floch, Véronique; Groeme, Rachel; Chabre, Henri; Baron-Bodo, Véronique; Nony, Emmanuel; Mascarell, Laurent; Moingeon, Philippe

    2015-11-01

    Pollen allergens from short ragweed (Ambrosia artemisiifolia) cause severe respiratory allergies in North America and Europe. To date, ten short ragweed pollen allergens belonging to eight protein families, including the recently discovered novel major allergen Amb a 11, have been recorded in the International Union of Immunological Societies (IUIS) allergen database. With evidence that other components may further contribute to short ragweed pollen allergenicity, a better understanding of the allergen repertoire is a requisite for the design of proper diagnostic tools and efficient immunotherapies. This review provides an update on both known as well as novel candidate allergens from short ragweed pollen, identified through a comprehensive characterization of the ragweed pollen transcriptome and proteome.

  17. Preservation of cycad and Ginkgo pollen

    USGS Publications Warehouse

    Frederiksen, N.O.

    1978-01-01

    Pollen grains of Ginkgo, Cycas, and Encephalartos were chemically treated together with pollen of Quercus, Alnus, and Pinus, the latter three genera being used as standards. The experiments showed that: (1) boiling the pollen for 8-10 hours in 10% KOH had little if any effect on any of the grains; (2) lengthy acetolysis treatment produced some degradation or corrosion, particularly in Ginkgo and Cycas, but the grains of even these genera remained easily recognizable; (3) oxidation with KMnO4 followed by H2O2 showed that pollen of Ginkgo, Cycas, and Encephalartos remains better preserved than that of Quercus and Alnus, and although Ginkgo and Encephalartos probably are slightly less resistant to oxidation than Pinus, no great differences exists between these monosulcate types and Pinus. Thus the experiments show that, at least for sediments low in bacteria, cycad and Ginkgo pollen should be well represented in the fossil record as far as their preservational capabilities are concerned. ?? 1978.

  18. Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna).

    PubMed

    Mercuri, Anna Maria; Torri, Paola; Fornaciari, Rita; Florenzano, Assunta

    2016-12-06

    Aerobiological data have especially demonstrated that there is correlation between climate warming and the pollination season of plants. This paper focuses on airborne pollen monitoring of Betulaceae and Poaceae, two of the main plant groups with anemophilous pollen and allergenic proprieties in Northern Italy. The aim is to investigate plant responses to temperature variations by considering long-term pollen series. The 15-year aerobiological analysis is reported from the monitoring station of Vignola (located near Modena, in the Emilia-Romagna region) that had operated in the years 1990-2004 with a Hirst spore trap. The Yearly Pollen Index calculated for these two botanical families has shown contrasting trends in pollen production and release. These trends were well identifiable but fairly variable, depending on both meteorological variables and anthropogenic causes. Based on recent reference literature, we considered that some oscillations in pollen concentration could have been a main effect of temperature variability reflecting global warming. The duration of pollen seasons of Betulaceae and Poaceae, depending on the different species included in each family, has not unequivocally been determined. Phenological responses were particularly evident in Alnus and especially in Corylus as a general moving up of the end of pollination. The study shows that these trees can be affected by global warming more than other, more tolerant, plants. The research can be a contribution to the understanding of phenological plant responses to climate change and suggests that alder and hazelnut trees have to be taken into high consideration as sensible markers of plant responses to climate change.

  19. Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna)

    PubMed Central

    Mercuri, Anna Maria; Torri, Paola; Fornaciari, Rita; Florenzano, Assunta

    2016-01-01

    Aerobiological data have especially demonstrated that there is correlation between climate warming and the pollination season of plants. This paper focuses on airborne pollen monitoring of Betulaceae and Poaceae, two of the main plant groups with anemophilous pollen and allergenic proprieties in Northern Italy. The aim is to investigate plant responses to temperature variations by considering long-term pollen series. The 15-year aerobiological analysis is reported from the monitoring station of Vignola (located near Modena, in the Emilia-Romagna region) that had operated in the years 1990–2004 with a Hirst spore trap. The Yearly Pollen Index calculated for these two botanical families has shown contrasting trends in pollen production and release. These trends were well identifiable but fairly variable, depending on both meteorological variables and anthropogenic causes. Based on recent reference literature, we considered that some oscillations in pollen concentration could have been a main effect of temperature variability reflecting global warming. The duration of pollen seasons of Betulaceae and Poaceae, depending on the different species included in each family, has not unequivocally been determined. Phenological responses were particularly evident in Alnus and especially in Corylus as a general moving up of the end of pollination. The study shows that these trees can be affected by global warming more than other, more tolerant, plants. The research can be a contribution to the understanding of phenological plant responses to climate change and suggests that alder and hazelnut trees have to be taken into high consideration as sensible markers of plant responses to climate change. PMID:27929423

  20. Quantifying Aerial Concentrations of Maize Pollen in the Atmospheric Surface Layer Using Remote-Piloted Airplanes and Lagrangian Stochastic Modeling

    NASA Astrophysics Data System (ADS)

    Aylor, Donald E.; Boehm, Matthew T.; Shields, Elson J.

    2006-07-01

    The extensive adoption of genetically modified crops has led to a need to understand better the dispersal of pollen in the atmosphere because of the potential for unwanted movement of genetic traits via pollen flow in the environment. The aerial dispersal of maize pollen was studied by comparing the results of a Lagrangian stochastic (LS) model with pollen concentration measurements made over cornfields using a combination of tower-based rotorod samplers and airborne radio-controlled remote-piloted vehicles (RPVs) outfitted with remotely operated pollen samplers. The comparison between model and measurements was conducted in two steps. In the first step, the LS model was used in combination with the rotorod samplers to estimate the pollen release rate Q for each sampling period. In the second step, a modeled value for the concentration Cmodel, corresponding to each RPV measured value Cmeasure, was calculated by simulating the RPV flight path through the LS model pollen plume corresponding to the atmospheric conditions, field geometry, wind direction, and source strength. The geometric mean and geometric standard deviation of the ratio Cmodel/Cmeasure over all of the sampling periods, except those determined to be upwind of the field, were 1.42 and 4.53, respectively, and the lognormal distribution corresponding to these values was found to fit closely the PDF of Cmodel/Cmeasure. Model output was sensitive to the turbulence parameters, with a factor-of-100 difference in the average value of Cmodel over the range of values encountered during the experiment. In comparison with this large potential variability, it is concluded that the average factor of 1.4 between Cmodel and Cmeasure found here indicates that the LS model is capable of accurately predicting, on average, concentrations over a range of atmospheric conditions.

  1. Immersion freezing of birch pollen washing water

    NASA Astrophysics Data System (ADS)

    Augustin, S.; Wex, H.; Niedermeier, D.; Pummer, B.; Grothe, H.; Hartmann, S.; Tomsche, L.; Clauss, T.; Voigtländer, J.; Ignatius, K.; Stratmann, F.

    2013-11-01

    Birch pollen grains are known to be ice nucleating active biological particles. The ice nucleating activity has previously been tracked down to biological macromolecules that can be easily extracted from the pollen grains in water. In the present study, we investigated the immersion freezing behavior of these ice nucleating active (INA) macromolecules. Therefore we measured the frozen fractions of particles generated from birch pollen washing water as a function of temperature at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). Two different birch pollen samples were considered, with one originating from Sweden and one from the Czech Republic. For the Czech and Swedish birch pollen samples, freezing was observed to start at -19 and -17 °C, respectively. The fraction of frozen droplets increased for both samples down to -24 °C. Further cooling did not increase the frozen fractions any more. Instead, a plateau formed at frozen fractions below 1. This fact could be used to determine the amount of INA macromolecules in the droplets examined here, which in turn allowed for the determination of nucleation rates for single INA macromolecules. The main differences between the Swedish birch pollen and the Czech birch pollen were obvious in the temperature range between -17 and -24 °C. In this range, a second plateau region could be seen for Swedish birch pollen. As we assume INA macromolecules to be the reason for the ice nucleation, we concluded that birch pollen is able to produce at least two different types of INA macromolecules. We were able to derive parameterizations for the heterogeneous nucleation rates for both INA macromolecule types, using two different methods: a simple exponential fit and the Soccer ball model. With these parameterization methods we were able to describe the ice nucleation behavior of single INA macromolecules from both the Czech and the Swedish birch pollen.

  2. The water regime of silver (Betula pendula Roth) and Karelian (Betula pendula var. carelica) birches under sufficient and limited soil moisture conditions.

    NASA Astrophysics Data System (ADS)

    Sazonova, T.; Pridacha, V.; Olchev, A.

    2012-04-01

    The sensitivity of the silver (Betula pendula Roth) and Karelian (Betula pendula var. carelica) birches to different soil moisture conditions was investigated using results of field measurements provided in 2008-11 at forest experimental sites of the Forest Research Institute of Karelian Research Center of RAS in Karelia, Russia. Karelian birch is a specific form of the silver birch and it is characterized by structural abnormalities of trunk tissues (thickenings on the trunk, the marble-like pattern and figured wood) that results in considerable reduction of number of xylem vessels and increase of parenchyma cell number (Novitskaya, 2008). For experimental study several three-, five- and seven-year old trees of the silver and Karelian birches were selected. The transpiration rate of the leaves (E) was determined using the portable photosynthesis system Li-6400XTR (Li-Cor, USA). Leaf water potential of photosynthesizing leaves (Ψ) was measured using the pressure chamber. Amount of available water in leaves (WCf), water deficit (WSD) and saturating leaf water content (WCs) were calculated using the following equations: WCf = (Wf -Wd)/ Wd (gwatergdryweight-1), WSD = (Ws - Wf)/(Ws - Wd) (%), WCs= (Ws- Wf) / Wd (gwatergdryweight-1), where Wf and Wd - fresh and dried leaf biomass, Ws - weight of the leaves at saturation. Comparisons of three and five years old birches showed that the differences between WSD and WCs of the Karelian and silver birch increased with tree age. It can be explained that the Karelian birch has increased parenchyma and significant amount of water can be additionally stored there. Comparisons of WSD and WCs of silver birches of both forms show that the differences between forms increase with growth of water deficit in plants. It was observed in both seasonal and daily patterns. The largest differences were indicated at the afternoon and at the end of growing season (from middle of August until September). These results also show that WSD and WCs

  3. Holocene pollen and sediment record from the tangle lakes area, central Alaska

    USGS Publications Warehouse

    Ager, Thomas A.; Sims, John D.

    1981-01-01

    Pollen and sediments have been analyzed from a 5.5 meter‐length core of lacustrine sediments from Tangle Lakes, in the Gulkana Upland south of the Alaska Range (63 ° 01 ‘ 46”; N. latitude, 146° 03 ‘ 48 “ W. longitude). Radiocarbon ages indicate that the core spans the last 4700 years. The core sediments are sandy silt and silty clay; the core shows distinct rhythmic laminations in the lower 398 cm. The laminae appear to be normally graded; peat fibers and macerated plant debris are more abundant near the tops of the laminae. Six volcanic‐ash layers are present in the upper 110 cm of the core.Present‐day vegetation of the Tangle Lakes area is mesic shrub tundra and open spruce woodland, with scattered patches of shrub willow (Salix), balsam poplar (P. balsamifera), spruce (Picea), paper birch (Betula papyrifera), and alder (Alnus). Pollen analysis of 27 core samples suggests that this vegetation type has persisted throughout the past 4700 years, except for an apparently substantial increase in Picea beginning about 3500 years B.P. Percentages of Picea pollen are very low (generally 1–3 percent) in the lower 2 meters of core (ca. 4700 to 3500 years B.P.), but rise to 13–18 percent in the upper 3.4 meters (ca. 3500 years B.P. to present). Previously reported data from this area indicate that Picea trees initially arrived in the Tangle Lakes area about 9100 years B.P., at least 2.5 to 3 thousand years after deglaciation of the region. The present investigation suggests that Picea trees became locally scarce or died out sometime after about 9000 years B.P. but before 4700 years B.P., then reinvaded the area about 3500 years B.P. If this extrapolated age for the Picea reinvasion is accurate it suggests that local expansion of the Picea population coincides with the onset of a Neoglacial interval of cooler, moister climate. This is an unexpected result, because intervals of cooler climate generally coincide with lowering of the altitudinal limit of

  4. Pollen competition between two sympatric Orchis species (Orchidaceae): the overtaking of conspecific of heterospecific pollen as a reproductive barrier.

    PubMed

    Luca, A; Palermo, A M; Bellusci, F; Pellegrino, G

    2015-01-01

    The frequency of hybrid formation in angiosperms depends on how and when heterospecific pollen is transferred to the stigma, and on the success of that heterospecific pollen at fertilising ovules. We applied pollen mixtures to stigmas to determine how pollen interactions affect siring success and the frequency of hybrid formation between two species of Mediterranean deceptive orchid. Plants of Orchis italica and O. anthropophora were pollinated with conspecific and heterospecific pollen (first conspecific pollen then heterospecific pollen and vice versa) and molecular analysis was used to check the paternity of the seeds produced. In this pair of Mediterranean orchids, competition between conspecific and heterospecific pollen functions as a post-pollination pre-zygotic barrier limiting the frequency of the formation of hybrids in nature. Flowers pollinated with heterospecific pollen can remain receptive for the arrival of conspecific pollen for a long time. There is always an advantage of conspecific pollen for fruit formation, whether it comes before or after heterospecific pollen, because it overtakes the heterospecific pollen. The conspecific pollen advantage exhibited in O. italica and O. anthropophora is likely to result from the reduced germination of heterospecific pollen or retarded growth of heterospecific pollen tubes in the stigma and ovary. Overall, the results indicate that our hybrid zone represents a phenomenon of little evolutionary consequence, and the conspecific pollen advantage maintains the genetic integrity of the parental species.

  5. Pollen grains for oral vaccination.

    PubMed

    Atwe, Shashwati U; Ma, Yunzhe; Gill, Harvinder Singh

    2014-11-28

    Oral vaccination can offer a painless and convenient method of vaccination. Furthermore, in addition to systemic immunity it has potential to stimulate mucosal immunity through antigen-processing by the gut-associated lymphoid tissues. In this study we propose the concept that pollen grains can be engineered for use as a simple modular system for oral vaccination. We demonstrate feasibility of this concept by using spores of Lycopodium clavatum (clubmoss) (LSs). We show that LSs can be chemically cleaned to remove native proteins to create intact clean hollow LS shells. Empty pollen shells were successfully filled with molecules of different sizes demonstrating their potential to be broadly applicable as a vaccination system. Using ovalbumin (OVA) as a model antigen, LSs formulated with OVA were orally fed to mice. LSs stimulated significantly higher anti-OVA serum IgG and fecal IgA antibodies compared to those induced by use of cholera toxin as a positive-control adjuvant. The antibody response was not affected by pre-neutralization of the stomach acid, and persisted for up to 7 months. Confocal microscopy revealed that LSs can translocate into mouse intestinal wall. Overall, this study lays the foundation of using LSs as a novel approach for oral vaccination.

  6. Comparison of Pollen Transfer Dynamics by Multiple Floral Visitors: Experiments with Pollen and Fluorescent Dye

    PubMed Central

    ADLER, LYNN S.; IRWIN, REBECCA E.

    2006-01-01

    • Background and Aims Most plant species are visited by a diversity of floral visitors. Pollen transfer of the four most common pollinating bee species and one nectar-robbing bee of the distylous plant Gelsemium sempervirens were compared. • Methods Naturally occurring pollen loads carried by the common floral visitor species of G. sempervirens were compared. In addition, dyed pollen donor flowers and sequences of four emasculated recipient flowers in field cages were used to estimate pollen transfer, and the utility of fluorescent dye powder as an analogue for pollen transfer was determined. • Key Results Xylocopa virginica, Osmia lignaria and Habropoda laboriosa carried the most G. sempervirens pollen on their bodies, followed by Bombus bimaculatus and Apis mellifera. However, B. bimaculatus, O. lignaria and H. laboriosa transferred significantly more pollen than A. mellifera. Nectar-robbing X. virginica transferred the least pollen, even when visiting legitimately. Dye particles were strongly correlated with pollen grains on a stigma, and therefore provide a good analogue for pollen in this system. The ratio of pollen : dye across stigmas was not affected by bee species or interactions between bee species and floral morphology. However, dye transfer was more sensitive than pollen transfer to differences in floral morphology. • Conclusions The results from this study add to a growing body of literature highlighting that floral visitors vary in pollination effectiveness, and that visitors carrying the most pollen on their bodies may not always be the most efficient at depositing pollen on stigmas. Understanding the magnitude of variability in pollinator quality is one important factor for predicting how different pollinator taxa may influence the evolution of floral traits. PMID:16299005

  7. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  8. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  9. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  10. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  11. Natural Sunflower Pollen as a Drug Delivery Vehicle.

    PubMed

    Mundargi, Raghavendra C; Potroz, Michael G; Park, Soohyun; Shirahama, Hitomi; Lee, Jae Ho; Seo, Jeongeun; Cho, Nam-Joon

    2016-03-02

    In nature, pollen grains play a vital role for encapsulation. Many pollen species exist which are often used as human food supplements. Dynamic image particle analysis, scanning electron microscopy, and confocal microscopy analysis confirmed the size, structural uniformity, and macromolecular encapsulation in sunflower pollen, paving the way to explore natural pollen grains for the encapsulation of therapeutic molecules.

  12. Chapter 25: Collecting pollen for genetic resources conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selection of pollen as a conservation target allows for the preservation of many diverse alleles within a genepool. Although it is possible to generate haploid plants from pollen grains, pollen is more commonly conserved as a gamete for gene conservation. The ease of pollen storage, shipment, and po...

  13. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  14. Thunderstorm-asthma and pollen allergy.

    PubMed

    D'Amato, G; Liccardi, G; Frenguelli, G

    2007-01-01

    Thunderstorms have been linked to asthma epidemics, especially during the pollen seasons, and there are descriptions of asthma outbreaks associated with thunderstorms, which occurred in several cities, prevalently in Europe (Birmingham and London in the UK and Napoli in Italy) and Australia (Melbourne and Wagga Wagga). Pollen grains can be carried by thunderstorm at ground level, where pollen rupture would be increased with release of allergenic biological aerosols of paucimicronic size, derived from the cytoplasm and which can penetrate deep into lower airways. In other words, there is evidence that under wet conditions or during thunderstorms, pollen grains may, after rupture by osmotic shock, release into the atmosphere part of their content, including respirable, allergen-carrying cytoplasmic starch granules (0.5-2.5 microm) or other paucimicronic components that can reach lower airways inducing asthma reactions in pollinosis patients. The thunderstorm-asthma outbreaks are characterized, at the beginning of thunderstorms by a rapid increase of visits for asthma in general practitioner or hospital emergency departments. Subjects without asthma symptoms, but affected by seasonal rhinitis can experience an asthma attack. No unusual levels of air pollution were noted at the time of the epidemics, but there was a strong association with high atmospheric concentrations of pollen grains such as grasses or other allergenic plant species. However, subjects affected by pollen allergy should be informed about a possible risk of asthma attack at the beginning of a thunderstorm during pollen season.

  15. A combinatorial morphospace for angiosperm pollen

    NASA Astrophysics Data System (ADS)

    Mander, Luke

    2016-04-01

    The morphology of angiosperm (flowering plant) pollen is extraordinarily diverse. This diversity results from variations in the morphology of discrete anatomical components. These components include the overall shape of a pollen grain, the stratification of the exine, the number and form of any apertures, the type of dispersal unit, and the nature of any surface ornamentation. Different angiosperm pollen morphotypes reflect different combinations of these discrete components. In this talk, I ask the following question: given the anatomical components of angiosperm pollen that are known to exist in the plant kingdom, how many unique biologically plausible combinations of these components are there? I explore this question from the perspective of enumerative combinatorics using an algorithm I have written in the Python programming language. This algorithm (1) calculates the number of combinations of these components; (2) enumerates those combinations; and (3) graphically displays those combinations. The result is a combinatorial morphospace that reflects an underlying notion that the process of morphogenesis in angiosperm pollen can be thought of as an n choose k counting problem. I compare the morphology of extant and fossil angiosperm pollen grains to this morphospace, and suggest that from a combinatorial point of view angiosperm pollen is not as diverse as it could be, which may be a result of developmental constraints.

  16. Pollen

    MedlinePlus

    ... palm maple (red) maple (silver) Phoenix palm poplar willow Some people, though, do show cross-reactivity among ... ash, box elder, cottonwood, maple, palm, poplar or willow trees. Avoid the outdoors between 5:00 a. ...

  17. Classification of pollen species using autofluorescence image analysis.

    PubMed

    Mitsumoto, Kotaro; Yabusaki, Katsumi; Aoyagi, Hideki

    2009-01-01

    A new method to classify pollen species was developed by monitoring autofluorescence images of pollen grains. The pollens of nine species were selected, and their autofluorescence images were captured by a microscope equipped with a digital camera. The pollen size and the ratio of the blue to red pollen autofluorescence spectra (the B/R ratio) were calculated by image processing. The B/R ratios and pollen size varied among the species. Furthermore, the scatter-plot of pollen size versus the B/R ratio showed that pollen could be classified to the species level using both parameters. The pollen size and B/R ratio were confirmed by means of particle flow image analysis and the fluorescence spectra, respectively. These results suggest that a flow system capable of measuring both scattered light and the autofluorescence of particles could classify and count pollen grains in real time.

  18. Pollen cultivation and preparation for proteomic studies.

    PubMed

    Pertl-Obermeyer, Heidi; Obermeyer, Gerhard

    2014-01-01

    The quality of the collected experimental data very much depends on the quality of the biological starting material. Especially the proteome analysis of a highly dynamic system like the germinating and tube-growing pollen grain needs several precautions which allow an accurate and acceptable interpretation of the obtained results. Optimized protocols for pollen collection, storage, and in vitro culture as well as pollen organelle separations are described which help to obtain well-defined and reproducible experimental conditions for the subsequent proteomic analysis.

  19. Pollen wall development in flowering plants.

    PubMed

    Blackmore, Stephen; Wortley, Alexandra H; Skvarla, John J; Rowley, John R

    2007-01-01

    The outer pollen wall, or exine, is more structurally complex than any other plant cell wall, comprising several distinct layers, each with its own organizational pattern. Since elucidation of the basic events of pollen wall ontogeny using electron microscopy in the 1970s, knowledge of their developmental genetics has increased enormously. However, self-assembly processes that are not under direct genetic control also play an important role in pollen wall patterning. This review integrates ultrastructural and developmental findings with recent models for self-assembly in an attempt to understand the origins of the morphological complexity and diversity that underpin the science of palynology.

  20. Bee Pollen: Chemical Composition and Therapeutic Application

    PubMed Central

    Komosinska-Vassev, Katarzyna; Olczyk, Pawel; Kaźmierczak, Justyna; Olczyk, Krystyna

    2015-01-01

    Bee pollen is a valuable apitherapeutic product greatly appreciated by the natural medicine because of its potential medical and nutritional applications. It demonstrates a series of actions such as antifungal, antimicrobial, antiviral, anti-inflammatory, hepatoprotective, anticancer immunostimulating, and local analgesic. Its radical scavenging potential has also been reported. Beneficial properties of bee pollen and the validity for their therapeutic use in various pathological condition have been discussed in this study and with the currently known mechanisms, by which bee pollen modulates burn wound healing process. PMID:25861358

  1. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  2. Visualization of plastids in pollen grains: involvement of FtsZ1 in pollen plastid division.

    PubMed

    Tang, Lay Yin; Nagata, Noriko; Matsushima, Ryo; Chen, Yuling; Yoshioka, Yasushi; Sakamoto, Wataru

    2009-04-01

    Visualizing organelles in living cells is a powerful method to analyze their intrinsic mechanisms. Easy observation of chlorophyll facilitates the study of the underlying mechanisms in chloroplasts, but not in other plastid types. Here, we constructed a transgenic plant enabling visualization of plastids in pollen grains. Combination of a plastid-targeted fluorescent protein with a pollen-specific promoter allowed us to observe the precise number, size and morphology of plastids in pollen grains of the wild type and the ftsZ1 mutant, whose responsible gene plays a central role in chloroplast division. The transgenic material presented in this work is useful for studying the division mechanism of pollen plastids.

  3. A pollen-specific RALF from tomato that regulates pollen tube elongation.

    PubMed

    Covey, Paul A; Subbaiah, Chalivendra C; Parsons, Ronald L; Pearce, Gregory; Lay, Fung T; Anderson, Marilyn A; Ryan, Clarence A; Bedinger, Patricia A

    2010-06-01

    Rapid Alkalinization Factors (RALFs) are plant peptides that rapidly increase the pH of plant suspension cell culture medium and inhibit root growth. A pollen-specific tomato (Solanum lycopersicum) RALF (SlPRALF) has been identified. The SlPRALF gene encodes a preproprotein that appears to be processed and released from the pollen tube as an active peptide. A synthetic SlPRALF peptide based on the putative active peptide did not affect pollen hydration or viability but inhibited the elongation of normal pollen tubes in an in vitro growth system. Inhibitory effects of SlPRALF were detectable at concentrations as low as 10 nm, and complete inhibition was observed at 1 mum peptide. At least 10-fold higher levels of alkSlPRALF, which lacks disulfide bonds, were required to see similar effects. A greater effect of peptide was observed in low-pH-buffered medium. Inhibition of pollen tube elongation was reversible if peptide was removed within 15 min of exposure. Addition of 100 nm SlPRALF to actively growing pollen tubes inhibited further elongation until tubes were 40 to 60 mum in length, after which pollen tubes became resistant to the peptide. The onset of resistance correlated with the timing of the exit of the male germ unit from the pollen grain into the tube. Thus, exogenous SlPRALF acts as a negative regulator of pollen tube elongation within a specific developmental window.

  4. Phosphoproteomics Profiling of Tobacco Mature Pollen and Pollen Activated in vitro *

    PubMed Central

    Fíla, Jan; Radau, Sonja; Matros, Andrea; Hartmann, Anja; Scholz, Uwe; Feciková, Jana; Mock, Hans-Peter; Čapková, Věra; Zahedi, René Peiman; Honys, David

    2016-01-01

    Tobacco mature pollen has extremely desiccated cytoplasm, and is metabolically quiescent. Upon re-hydration it becomes metabolically active and that results in later emergence of rapidly growing pollen tube. These changes in cytoplasm hydration and metabolic activity are accompanied by protein phosphorylation. In this study, we subjected mature pollen, 5-min-activated pollen, and 30-min-activated pollen to TCA/acetone protein extraction, trypsin digestion and phosphopeptide enrichment by titanium dioxide. The enriched fraction was subjected to nLC-MS/MS. We identified 471 phosphopeptides that carried 432 phosphorylation sites, position of which was exactly matched by mass spectrometry. These 471 phosphopeptides were assigned to 301 phosphoproteins, because some proteins carried more phosphorylation sites. Of the 13 functional groups, the majority of proteins were put into these categories: transcription, protein synthesis, protein destination and storage, and signal transduction. Many proteins were of unknown function, reflecting the fact that male gametophyte contains many specific proteins that have not been fully functionally annotated. The quantitative data highlighted the dynamics of protein phosphorylation during pollen activation; the identified phosphopeptides were divided into seven groups based on the regulatory trends. The major group comprised mature pollen-specific phosphopeptides that were dephosphorylated during pollen activation. Several phosphopeptides representing the same phosphoprotein had different regulation, which pinpointed the complexity of protein phosphorylation and its clear functional context. Collectively, we showed the first phosphoproteomics data on activated pollen where the position of phosphorylation sites was clearly demonstrated and regulatory kinetics was resolved. PMID:26792808

  5. Phosphoproteomics Profiling of Tobacco Mature Pollen and Pollen Activated in vitro.

    PubMed

    Fíla, Jan; Radau, Sonja; Matros, Andrea; Hartmann, Anja; Scholz, Uwe; Feciková, Jana; Mock, Hans-Peter; Čapková, Věra; Zahedi, René Peiman; Honys, David

    2016-04-01

    Tobacco mature pollen has extremely desiccated cytoplasm, and is metabolically quiescent. Upon re-hydration it becomes metabolically active and that results in later emergence of rapidly growing pollen tube. These changes in cytoplasm hydration and metabolic activity are accompanied by protein phosphorylation. In this study, we subjected mature pollen, 5-min-activated pollen, and 30-min-activated pollen to TCA/acetone protein extraction, trypsin digestion and phosphopeptide enrichment by titanium dioxide. The enriched fraction was subjected to nLC-MS/MS. We identified 471 phosphopeptides that carried 432 phosphorylation sites, position of which was exactly matched by mass spectrometry. These 471 phosphopeptides were assigned to 301 phosphoproteins, because some proteins carried more phosphorylation sites. Of the 13 functional groups, the majority of proteins were put into these categories: transcription, protein synthesis, protein destination and storage, and signal transduction. Many proteins were of unknown function, reflecting the fact that male gametophyte contains many specific proteins that have not been fully functionally annotated. The quantitative data highlighted the dynamics of protein phosphorylation during pollen activation; the identified phosphopeptides were divided into seven groups based on the regulatory trends. The major group comprised mature pollen-specific phosphopeptides that were dephosphorylated during pollen activation. Several phosphopeptides representing the same phosphoprotein had different regulation, which pinpointed the complexity of protein phosphorylation and its clear functional context. Collectively, we showed the first phosphoproteomics data on activated pollen where the position of phosphorylation sites was clearly demonstrated and regulatory kinetics was resolved.

  6. Fur versus feathers: pollen delivery by bats and hummingbirds and consequences for pollen production.

    PubMed

    Muchhala, Nathan; Thomson, James D

    2010-06-01

    One floral characteristic associated with bat pollination (chiropterophily) is copious pollen production, a pattern we confirmed in a local comparison of hummingbird- and bat-adapted flowers from a cloud forest site in Ecuador. Previous authors have suggested that wasteful pollen transfer by bats accounted for the pattern. Here we propose and test a new hypothesis: bats select for increased pollen production because they can efficiently transfer larger amounts of pollen, which leads to a more linear male fitness gain curve for bat-pollinated plants. Flight cage experiments with artificial flowers and flowers of Aphelandra acanthus provide support for this hypothesis; in both instances, the amount of pollen delivered to stigmas by birds is not related to the amount of pollen removed from anthers on the previous visit, while the same function for bats increases linearly. Thus, increased pollen production will be linearly related to increased male reproductive success for bat flowers, while for bird flowers, increased pollen production leads to rapidly diminishing fitness returns. We speculate that fur takes up and holds more pollen than feathers, which seem to readily shed excess grains. Our gain-curve hypothesis may also explain why evolutionary shifts from bird to bat pollination seem more common than shifts in the opposite direction.

  7. Design of a downscaling method to estimate continuous data from discrete pollen monitoring in Tunisia.

    PubMed

    Orlandi, Fabio; Oteros, Jose; Aguilera, Fátima; Ben Dhiab, Ali; Msallem, Monji; Fornaciari, Marco

    2014-07-01

    The study of microorganisms and biological particulate matter that transport passively through air is very important for an understanding of the real quality of air. Such monitoring is essential in several specific areas, such as public health, allergy studies, agronomy, indoor and outdoor conservation, and climate-change impact studies. Choosing the suitable monitoring method is an important step in aerobiological studies, so as to obtain reliable airborne data. In this study, we compare olive pollen data from two of the main air traps used in aerobiology, the Hirst and Cour air samplers, at three Tunisian sampling points, for 2009 to 2011. Moreover, a downscaling method to perform daily Cour air sampler data estimates is designed. While Hirst air samplers can offer daily, and even bi-hourly data, Cour air samplers provide data for longer discrete sampling periods, which limits their usefulness for daily monitoring. Higher quantities of olive pollen capture were generally detected for the Hirst air sampler, and a downscaling method that is developed in this study is used to model these differences. The effectiveness of this downscaling method is demonstrated, which allows the potential use of Cour air sampler data series. These results improve the information that new Cour data and, importantly, historical Cour databases can provide for the understanding of phenological dates, airborne pollination curves, and allergenicity levels of air.

  8. Biogeography of Alaska paper birch (Betula neoalaskana): latitudinal patterns in chemical defense and plant architecture.

    PubMed

    Stevens, Michael T; Brown, Sarah C; Bothwell, Helen M; Bryant, John P

    2016-02-01

    The latitudinal herbivory-defense hypothesis (LHDH) predicts that plants near the equator will be more heavily defended against herbivores than are plants at higher latitudes. Although this idea is widely found in the literature, recent studies have called this biogeographic pattern into question. We sought to evaluate the LHDH in a high-latitude terrestrial ecosystem where fire and mammalian herbivores may contribute to selection for higher levels of defensive chemistry. To address this objective, we collected seeds of Alaska paper birch (Betula neoalaskana) from nine locations along two north-south transects between 55 degrees N and 62 degrees N latitudes in western, interior Canada. The birch seeds were planted in pots in a common garden in Madison, Wisconsin, USA. From the resulting seedlings, we determined levels of chemical defense by assessing the density of resin glands, which have been shown to be negatively correlated with browsing. To assess plant architectural traits such as height, mean individual leaf area, and root-to-shoot ratio, we harvested a subset of the birch seedlings. Further, we used these traits to examine growth-defense trade-offs. Contrary to the LHDH, we found a positive correlation between chemical defense and latitude. Investigating relationships with fire, we found a strong positive correlation between resin gland density and percentage of area annually burned (PAAB) around each collection location and also between PAAB and latitude. Additionally, birch seedlings originating from higher latitudes were shorter, smaller-leaved, and rootier than their lower-latitude counterparts. Growth-defense trade-offs were observed in negative correlations between resin gland density and height and leaf size. Seedlings with higher resin gland densities also allocated less biomass to shoots and more to roots. These results further call into question the LHDH and provide specific information about latitudinal trends in plant defense at high, northern

  9. Molecular biomarkers for grass pollen immunotherapy

    PubMed Central

    Popescu, Florin-Dan

    2014-01-01

    Grass pollen allergy represents a significant cause of allergic morbidity worldwide. Component-resolved diagnosis biomarkers are increasingly used in allergy practice in order to evaluate the sensitization to grass pollen allergens, allowing the clinician to confirm genuine sensitization to the corresponding allergen plant sources and supporting an accurate prescription of allergy immunotherapy (AIT), an important approach in many regions of the world with great plant biodiversity and/or where pollen seasons may overlap. The search for candidate predictive biomarkers for grass pollen immunotherapy (tolerogenic dendritic cells and regulatory T cells biomarkers, serum blocking antibodies biomarkers, especially functional ones, immune activation and immune tolerance soluble biomarkers and apoptosis biomarkers) opens new opportunities for the early detection of clinical responders for AIT, for the follow-up of these patients and for the development of new allergy vaccines. PMID:25237628

  10. Quarternary Pollen Analysis in Secondary School Ecology

    ERIC Educational Resources Information Center

    Slater, F. M.

    1972-01-01

    Describes techniques for studying historic changes in climate by analysis of pollen preserved in peat bogs. Illustrates the methodology and data analysis techniques by reference to results from English research. (AL)

  11. Deglacial-postglacial paleoclimatic reconstruction in NE Japan based on pollen records from Tashiro Marsh

    NASA Astrophysics Data System (ADS)

    Hayashibara, K.; Minoura, K.; Yamanoi, T.; Nishi, H.

    2011-12-01

    -boreal coniferous and broad-leaved plants (e.g. Abies, Picea, Tsuga, Pinus and Betula) dominated. After that, sub-boreal coniferous retreated and cool-temperate broad-leaved plants (e.g. Quercus, Carpinus, Juglans and Pterocarya) dominated. At about 8.4 cal ka BP, Quercus had a little decrease and Fagus increased greatly and it keeps high rate still now. We applied the best modern analogue technique for determining climate indices quantitatively from pollen records. From 11.3 cal ka BP, annual temperature started to increase and reached maximum at about 8.8 cal ka BP by 8~9°C. Annual precipitation mainly reflect winter precipitation, which shows a sudden increase at about 8 cal ka BP. This abrupt increase correspond to the beginning of intrusion of the Tsushima Current into the Japan Sea, showing the establishment of modern winter climate in NE Japan at that time.

  12. Accumulative response of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) to heavy metals enhanced by Pb-Zn ore mining and processing plants: Explicitly spatial considerations of ordinary kriging based on a GIS approach.

    PubMed

    Pająk, Marek; Halecki, Wiktor; Gąsiorek, Michał

    2017-02-01

    Plants have an accumulative response to heavy metals present in soils or deposited from airborne sources of emissions. Therefore, their tissues are very often used in studies of heavy metal contamination originating from different sources as a bioindicator of environmental pollution. This research was undertaken to examine accumulation capacities of Pb, Zn, Cd, Cu and Cr in washed and unwashed needles of Scots pine (Pinus sylvestris L.) and leaves of silver birch (Betula pendula Roth) growing in a contaminated area. We collected needles of Scots pine and leaves of silver birch in an area around a sedimentation pond and metallurgic plant processing Pb and Zn ores near Olkusz, Poland. Concentrations of heavy metals, which have been linked with exposure to emissions, were determined from foliar samples collected at 33 sites. These sites were established at various distances (0.5-3.6 km) from the pond and metallurgic plant so as to identify the predominant accumulative response of plants. Spatial gradients for Pb and Zn were calculated using an ordinary kriging interpolation algorithm. A spatial pattern was identified by a GIS method to visualize maps over the Pb-Zn ore mining area. The accumulation of Zn (R(2) = 0.74, p < 0.05) and Pb (R(2) = 0.85, p < 0.01) in plant tissues correlated with soil concentrations. This tendency was not found in the case of Cu, Cd and Cr.

  13. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  14. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  15. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  16. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  17. Juniper Pollen Hotspots in the Southwest

    NASA Technical Reports Server (NTRS)

    Bunderson, L. D.; VandeWater, P.; Luvall, J.; Levetin, E.

    2013-01-01

    Rationale: Juniperus pollen is a major allergen in Texas, Oklahoma, and New Mexico. While the bulk of pollen may be released in rural areas, large amounts of pollen can be transported to urban areas. Major juniper species in the region include: Juniperus ashei, J. virginiana, J. pinchotii, and J. monosperma. Pollen release is virtually continuous beginning in late September with J. pinchotii and ending in May with J. monosperma. Urban areas in the region were evaluated for the potential of overlapping seasons in order to inform sensitive individuals. Methods: Burkard volumetric pollen traps were established for two consecutive spring seasons at 6 sites in northern New Mexico and 6 sites for two consecutive winter and fall seasons in Texas and Oklahoma Standard methods were used in the preparation and analysis of slides. Results: The Dallas-Fort Worth Metroplex is home to over 6 million people. It is adjacent to populations of J. pinchotii, J. virginiana, and J. ashei. Peak concentration near Dallas for J. ashei in 2011 was 5891 pollen grains/m3 in January 7th. The peak date for J. pinchotii at an upwind sampling location in San Marcos, TX was November 1, 2010 and peak for J. virginiana at a nearby station in Tulsa, OK was November 1, 2010 and peak for J. virginiana at a nearby station in Tulsa, OK was February 20, 2011. Amarillo, TX is adjacent to J. pinchotii, J. ashei, and J. monosperma populations and may be subject to juniper pollen from September through May. Conclusions: Considering the overlapping distributions of juniper trees and the overlapping temporal release of pollen, sensitive patients may benefit from avoiding hotspots.

  18. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  19. Holocene volcanic influence on climate-forced vegetation changes on Kamchatka, based on pollen data

    NASA Astrophysics Data System (ADS)

    Dirksen, V.; Dirksen, O.

    2009-04-01

    Pollen data from volcanic-affected areas on Kamchatka (Northern Volcanic Group, Eastern Volcanic Zone and Southern Kamchatka) have been overviewed, and compared with pollen records from the sites with negligible volcanic influence that allowed some asynchronous trends in vegetation dynamics during the Holocene to be found. Pollen data from sites within Central Kamchatka Depression (Esso, Kirganik etc.), far from recently active volcanoes, show that shrub pine (Pinus pumila), which started to spread from ca. 5.5 ka (all ages are given as14C kyr BP) in response to climate warming and weakening of maritime influence, had the highest rates of advance during last 3 ka that agrees well with the late Holocene coniferous forest expansion overall the Central Kamchatka Depression. Meanwhile, shrub pine spreading around the Tolbachik volcano (Northern Volcanic Group) decelerated after ca. 1.8 ka and ceased completely by ca. 1.5 ka while other coniferous, spruce (Picea ajanensis) and larch (Larix cajanderi), were in progress. Such a local degradation of shrub pine, which is rather sensitive species to ashfalls, is likely caused by volcanic impact: since ca. 2 ka there was a pulse of volcanic activity of numerous monogenetic eruptive centers at the Tolbachinsky Dol lava field. Asynchronous shift of stone birch (Betula ermanii) forest along the Pacific coast of Kamchatka could be also regarded as volcanic-forced phenomenon. First appearance of stone birch forest at the eastern coast of the peninsula occurred between 8-6 ka under warmer conditions and strengthened climate continentality. However, birch advance in particular areas along the Pacific coast appears to have been not caused by spatial heterogeneity of climatic patterns: the earliest (ca. 8 ka) evidences of stone birch forest establishment are recorded near Petropavlovsk-Kamchatsky city and at the Uzon-Geizernaya Depression, while the latest (ca. 6 ka) - nearby the Maly Semyachik and Karymsky volcanoes; northern records

  20. Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter?

    PubMed Central

    Di Pasquale, Garance; Salignon, Marion; Le Conte, Yves; Belzunces, Luc P.; Decourtye, Axel; Kretzschmar, André; Suchail, Séverine; Brunet, Jean-Luc; Alaux, Cédric

    2013-01-01

    Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens) and diversity (polyfloral pollen diet) on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level), and on the tolerance to the microsporidian parasite Nosemaceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification), phenoloxidase (immunity) and alkaline phosphatase (metabolism)). We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context) of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health. PMID:23940803

  1. Plant Sterol Diversity in Pollen from Angiosperms.

    PubMed

    Villette, Claire; Berna, Anne; Compagnon, Vincent; Schaller, Hubert

    2015-08-01

    Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ(5)-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.

  2. Pollen as atmospheric cloud condensation nuclei

    NASA Astrophysics Data System (ADS)

    Steiner, Allison L.; Brooks, Sarah D.; Deng, Chunhua; Thornton, Daniel C. O.; Pendleton, Michael W.; Bryant, Vaughn

    2015-05-01

    Anemophilous (wind-dispersed) pollen grains are emitted in large quantities by vegetation in the midlatitudes for reproduction. Pollen grains are coarse particles (5-150 µm) that can rupture when wet to form submicron subpollen particles (SPP) that may have a climatic role. Laboratory CCN experiments of six fresh pollen samples show that SPP activate as CCN at a range of sizes, requiring supersaturations from 0.81 (± 0.07)% for 50 nm particles, 0.26 (± 0.03)% for 100 nm particles, and 0.12 (± 0.00)% for 200 nm particles. Compositional analyses indicate that SPP contain carbohydrates and proteins. The SPP contribution to global CCN is uncertain but could be important depending on pollen concentrations outside the surface layer and the number of SPP generated from a single pollen grain. The production of hygroscopic SPP from pollen represents a novel, biologically driven cloud formation pathway that may influence cloud optical properties and lifetimes, thereby influencing climate.

  3. Thunderstorm asthma due to grass pollen.

    PubMed

    Suphioglu, C

    1998-08-01

    It is widely known and accepted that grass pollen is a major outdoor cause of hay fever. Moreover, grass pollen is also responsible for triggering allergic asthma, gaining impetus as a result of the 1987/1989 Melbourne and 1994 London thunderstorm-associated asthma epidemics. However, grass pollen is too large to gain access into the lower airways to trigger the asthmatic response and micronic particles <5 micro m are required to trigger the response. We have successfully shown that ryegrass pollen ruptures upon contact with water, releasing about 700 starch granules which not only contain the major allergen Lol p 5, but have been shown to trigger both in vitro and in vivo IgE-mediated responses. Furthermore, starch granules have been isolated from the Melbourne atmosphere with 50-fold increase following rainfall. Free grass pollen allergen molecules have been recently shown to interact with other particles including diesel exhaust carbon particles, providing a further transport mechanism for allergens to gain access into lower airways. In this review, implication and evidence for grass pollen as a trigger of thunderstorm-associated asthma is presented. Such information is critical and mandatory for patient education and training in their allergen avoidance programs. More importantly, patients with serum IgE to group 5 allergens are at high risk of allergic asthma, especially those not protected by medication. Therefore, a system to determine the total atmospheric allergen load and devising of an effective asthma risk forecast is urgently needed and is subject to current investigation.

  4. Gametophytic Pollen Tube Guidance: Attractant Peptides, Gametic Controls, and Receptors.

    PubMed

    Higashiyama, Tetsuya; Yang, Wei-Cai

    2017-01-01

    Pollen tube guidance in flowering plants is a unique and critical process for successful sexual reproduction. The pollen tube that grows from pollen, which is the male gametophyte, precisely navigates to the embryo sac, which is the female gametophyte, within the pistil. Recent advances have clarified the molecular framework of gametophytic pollen tube guidance. Multiple species-specific attractant peptides are secreted from synergid cells, the proper development and function of which are regulated by female gametes. Multiple receptor-like kinases on the pollen tube tip are involved in sensing species-specific attractant peptides. In this Update article, recent progress in our understanding of the mechanism of gametophytic pollen tube guidance is reviewed, including attraction by synergid cells, control of pollen tube guidance by female gametes, and directional growth of the pollen tube by directional cue sensing. Future directions in the study of pollen tube guidance also are discussed.

  5. Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods

    PubMed Central

    Nguyen, Diem; Boberg, Johanna; Cleary, Michelle; Bruelheide, Helge; Hönig, Lydia; Koricheva, Julia; Stenlid, Jan

    2017-01-01

    Foliar fungi of silver birch (Betula pendula) in an experimental Finnish forest were investigated across a gradient of tree species richness using molecular high-throughput sequencing and visual macroscopic assessment. We hypothesized that the molecular approach detects more fungal taxa than visual assessment, and that there is a relationship among the most common fungal taxa detected by both techniques. Furthermore, we hypothesized that the fungal community composition, diversity, and distribution patterns are affected by changes in tree diversity. Sequencing revealed greater diversity of fungi on birch leaves than the visual assessment method. One species showed a linear relationship between the methods. Species-specific variation in fungal community composition could be partially explained by tree diversity, though overall fungal diversity was not affected by tree diversity. Analysis of specific fungal taxa indicated tree diversity effects at the local neighbourhood scale, where the proportion of birch among neighbouring trees varied, but not at the plot scale. In conclusion, both methods may be used to determine tree diversity effects on the foliar fungal community. However, high-throughput sequencing provided higher resolution of the fungal community, while the visual macroscopic assessment detected functionally active fungal species. PMID:28150710

  6. Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods

    NASA Astrophysics Data System (ADS)

    Nguyen, Diem; Boberg, Johanna; Cleary, Michelle; Bruelheide, Helge; Hönig, Lydia; Koricheva, Julia; Stenlid, Jan

    2017-02-01

    Foliar fungi of silver birch (Betula pendula) in an experimental Finnish forest were investigated across a gradient of tree species richness using molecular high-throughput sequencing and visual macroscopic assessment. We hypothesized that the molecular approach detects more fungal taxa than visual assessment, and that there is a relationship among the most common fungal taxa detected by both techniques. Furthermore, we hypothesized that the fungal community composition, diversity, and distribution patterns are affected by changes in tree diversity. Sequencing revealed greater diversity of fungi on birch leaves than the visual assessment method. One species showed a linear relationship between the methods. Species-specific variation in fungal community composition could be partially explained by tree diversity, though overall fungal diversity was not affected by tree diversity. Analysis of specific fungal taxa indicated tree diversity effects at the local neighbourhood scale, where the proportion of birch among neighbouring trees varied, but not at the plot scale. In conclusion, both methods may be used to determine tree diversity effects on the foliar fungal community. However, high-throughput sequencing provided higher resolution of the fungal community, while the visual macroscopic assessment detected functionally active fungal species.

  7. Comprehensive transcriptome analysis of developing xylem responding to artificial bending and gravitational stimuli in Betula platyphylla.

    PubMed

    Wang, Chao; Zhang, Nan; Gao, Caiqiu; Cui, Zhiyuan; Sun, Dan; Yang, Chuanping; Wang, Yucheng

    2014-01-01

    Betula platyphylla Suk (birch) is a fast-growing woody species that is important in pulp industries and the biofuels. However, as an important pulp species, few studies had been performed on its wood formation. In the present study, we investigated the molecular responses of birch xylem to artificial bending and gravitational stimuli. After trunks of birch trees were subjected to bending for 8 weeks, the cellulose content was significantly greater in tension wood (TW) than in opposite wood (OW) or normal wood (NW), whereas the lignin content in TW was significantly lower than that in OW and NW. In addition, TW grew more rapidly than OW and generated TW-specific fibers with an additional G-layer. Three transcriptome libraries were constructed from TW, OW and NW of B. platyphylla, respectively, after the plants were subjected to artificial bending. Overall, 80,909 nonredundant unigenes with a mean size of 768 nt were assembled. Expression profiles were generated, and 9,684 genes were found to be significantly differentially expressed among the TW, OW and NW libraries. These included genes involved in secondary cell wall structure, wood composition, and cellulose or lignin biosynthesis. Our study showed that during TW formation, genes involved in cellulose synthesis were induced, while the expression of lignin synthesis-related genes decreased, resulting in increased cellulose content and decreased lignin levels in TW. In addition, fasciclin-like arabinogalactan proteins play important role in TW formation. These findings may provide important insights into wood formation at the molecular level.

  8. Impact of ozone on the growth of birch (Betula pendula) saplings.

    PubMed

    Karlsson, P E; Uddling, J; Skärby, L; Wallin, G; Selldén, G

    2003-01-01

    Saplings of one half-sib family of birch, Betula pendula, were exposed to three levels of ozone in open-top chambers (OTCs) during two growing seasons 1997-1998. The ozone treatments were non-filtered air (NF, accumulated daylight AOT40 over the two growing seasons of 3.0 l l-1 h), non-filtered air with extra ozone (NF+, accumulated daylight AOT40 of 27.3 l l-1 h) and non-filtered air with additional extra ozone (NF++, accumulated daylight AOT40 of 120 l l-1 h). The birch saplings, including the roots, were harvested after the first and second growing seasons. After the first growing season, the NF++ treatment reduced the total wood biomass by 22%, relative to the NF treatment. There was no further reduction of the total wood biomass in the NF++ treatment after the second growing season. The root biomass was reduced by 30% after the first growing season. The shoot/root ratio, as well as the proportional biomass of leaves, were increased by ozone during both years. The ozone impact on the relative growth rate was estimated to -2% per 10 l l-1 h daylight AOT40 per growing season.

  9. Seasonal and within-stem variations of neutral lipids in silver birch (Betula pendula) wood.

    PubMed

    Piispanen, Riikka; Saranpää, Pekka

    2004-09-01

    Neutral lipids were analyzed in stem wood of a 7-year-old clone and in five 35-70-year-old mature trees of silver birch (Betula pendula Roth). In young trees and in mature wood of old trees, the free fatty acid fraction comprised less than 5% of the concentration of triacylglycerols (TG). The concentration of free linoleic acid was lowest in March when the young trees were dormant and highest during midsummer and September. In mature trees, the TG concentration increased toward the pith, indicating that living parenchyma cells close to the pith have a large TG storage capacity. The TG concentration (mean 0.51 +/- 0.02% of wood dry mass) remained constant throughout the year in young trees, whereas the concentration of beta-sitosterol, the dominant free sterol (mean 82.5 +/- 0.4% of total free sterols), decreased during spring and early summer when the temperature gradually increased, and increased during autumn when the trees became dormant. In young trees, we detected a seasonal interconversion between the free and esterified forms of beta-sitosterol and campesterol, and within the steryl ester fraction between squalene and betulaprenol-7. The concentration of esterified sterols/isoprenoids was exceptionally high, especially in the inner regions of mature stem wood (mean 0.6 +/- 0.03% of wood dry mass). No heartwood formation was detected.

  10. Insusceptibility of oxygen-evolving complex to high light in Betula platyphylla.

    PubMed

    Huang, Wei; Zhang, Shi-Bao; Hu, Hong

    2015-03-01

    High mountain plants growing at high altitude have to regularly cope with high light and high UV radiation that can lead to photodamage of oxygen-evolving complex (OEC). However, the underlying mechanism of photoprotection for OEC in high mountain plants is unclear. Sun leaves of Betula platyphylla were used to examine whether cyclic electron flow (CEF) around photosystem I (PSI) plays an important role in photoprotection for OEC. Our results indicated that the value of ETRI/ETRII ratio significantly increased under high light. With increasing light intensity, non-photochemical quenching (NPQ) gradually increased, and the fraction of P700 that is oxidized in a given state gradually increased. These results indicated that CEF was significantly activated under high light. After treatment with a high light of 1600 μmol photons m(-2) s(-1) for 8 h, the OEC activity did not decline, but the maximum quantum yield of PSII (F v /F m ) ratio significantly decreased. These results suggested that CEF-dependent generation of proton gradient across thylakoid membrane protected OEC activity against high light. Furthermore, the stability of PSI activity during exposure to high light suggested that the high CEF activity in B. platyphylla played an important role in photoprotection for PSI activity.

  11. Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra.

    PubMed

    Deslippe, Julie R; Simard, Suzanne W

    2011-11-01

    • Shrubs are expanding in Arctic tundra, but the role of mycorrhizal fungi in this process is unknown. We tested the hypothesis that mycorrhizal networks are involved in interplant carbon (C) transfer within a tundra plant community. • Here, we installed below-ground treatments to control for C transfer pathways and conducted a (13)CO(2)-pulse-chase labelling experiment to examine C transfer among and within plant species. • We showed that mycorrhizal networks exist in tundra, and facilitate below-ground transfer of C among Betula nana individuals, but not between or within the other tundra species examined. Total C transfer among conspecific B. nana pairs was 10.7 ± 2.4% of photosynthesis, with the majority of C transferred through rhizomes or root grafts (5.2 ± 5.3%) and mycorrhizal network pathways (4.1 ± 3.3%) and very little through soil pathways (1.4 ± 0.35%). • Below-ground C transfer was of sufficient magnitude to potentially alter plant interactions in Arctic tundra, increasing the competitive ability and mono-dominance of B. nana. C transfer was significantly positively related to ambient temperatures, suggesting that it may act as a positive feedback to ecosystem change as climate warms.

  12. Evidence of antagonistic interactions between rhizosphere microorganisms and mycorrhizal fungi associated with birch ( Betula pubescens)

    NASA Astrophysics Data System (ADS)

    Stark, Sari; Kytöviita, Minna-Maarit

    2005-09-01

    We studied the role of carbon availability in the relationship between soil rhizosphere microorganisms and mycorrhizal fungi (Basidiomycetes) associated with birch ( Betula pubescens L.) seedlings in a greenhouse experiment through artificial herbivory (clipping), glucose addition and microbial toxin treatments. Artificial herbivory significantly decreased the amount of ergosterol, a fungus-specific sterol, in the birch roots and microbial respiration in the soil. Reduction in plant's photosynthetic ability thus reduced availability of carbon for both mycorrhizal fungi and rhizosphere microorganisms. Adding glucose, a carbon source easily assimilable by soil microorganisms, significantly enhanced microbial respiration, and counteracted the negative effects of clipping on microbial respiration. At the same time, the amount of ergosterol in the birch roots was decreased, indicating that enhanced activity of rhizosphere microorganisms had a negative impact on the mycorrhizal fungi. The outcome of glucose addition on mycorrhizal fungi did not interact with the clipping treatment. A fungal and bacterial toxin treatment did not affect microbial respiration, but significantly increased the birch root growth and amount of ergosterol in the treatment without the glucose addition. Our results show that rhizosphere microorganisms may have antagonistic effects on mycorrhizal fungi associated with the birch. We suggest that the antagonistic interactions between rhizosphere microorganisms and mycorrhizal fungi may have an important role in the functions of mycorrhizal systems and its significance in natural systems should be further investigated.

  13. Hormesis and Paradoxical Effects of Drooping Birch (Betula pendula Roth) Parameters Under Motor Traffic Pollution.

    PubMed

    Erofeeva, Elena A

    2015-01-01

    Various plant indexes are used or recommended for bioindication. However, the nonmonotonic dose-response dependences (hormesis and paradoxical effects) of these indexes are insufficiently explored upon exposure to pollution. We studied the dependences of these Betula pendula indexes on the intensity of motor traffic pollution. Regression analysis did not reveal any dependence of chlorophyll and carotenoid content on traffic intensity (in 2008 and 2010-2013). Lipid peroxidation rate had different versions of paradoxical effects in 2008 and 2010 to 2012 and increased in comparison with control under an increase in pollution level in 2013. In 2010 to 2012, all dose-response dependences for total protein and thiol group content were biphasic and multiphasic paradoxical effects. In 2013, an increase in traffic intensity induced a linear reduction in protein content and an increase in thiol group level in comparison with the control. In most cases, the studied phenological indexes and seed production decreased monotonically in comparison with the control following an increase in traffic intensity. Only in 2010 and 2013, share of fallen leaves had hormesis and paradoxical effect accordingly. Fluctuating asymmetry had a paradoxical effect and hormesis in 2008 and 2012, accordingly, and increased in comparison with the control under an increase in the level of pollution in 2010 to 2011.

  14. Hormesis and Paradoxical Effects of Drooping Birch (Betula pendula Roth) Parameters Under Motor Traffic Pollution

    PubMed Central

    2015-01-01

    Various plant indexes are used or recommended for bioindication. However, the nonmonotonic dose–response dependences (hormesis and paradoxical effects) of these indexes are insufficiently explored upon exposure to pollution. We studied the dependences of these Betula pendula indexes on the intensity of motor traffic pollution. Regression analysis did not reveal any dependence of chlorophyll and carotenoid content on traffic intensity (in 2008 and 2010-2013). Lipid peroxidation rate had different versions of paradoxical effects in 2008 and 2010 to 2012 and increased in comparison with control under an increase in pollution level in 2013. In 2010 to 2012, all dose–response dependences for total protein and thiol group content were biphasic and multiphasic paradoxical effects. In 2013, an increase in traffic intensity induced a linear reduction in protein content and an increase in thiol group level in comparison with the control. In most cases, the studied phenological indexes and seed production decreased monotonically in comparison with the control following an increase in traffic intensity. Only in 2010 and 2013, share of fallen leaves had hormesis and paradoxical effect accordingly. Fluctuating asymmetry had a paradoxical effect and hormesis in 2008 and 2012, accordingly, and increased in comparison with the control under an increase in the level of pollution in 2010 to 2011. PMID:26676071

  15. Wood properties of Populus and Betula in long-term exposure to elevated CO₂ and O₃.

    PubMed

    Kostiainen, Katri; Saranpää, Pekka; Lundqvist, Sven-Olof; Kubiske, Mark E; Vapaavuori, Elina

    2014-06-01

    We studied the interactive effects of elevated concentrations of CO2 and O3 on radial growth and wood properties of four trembling aspen (Populus tremuloides Michx.) clones and paper birch (Betula papyrifera Marsh.) saplings. The material for the study was collected from the Aspen FACE (free-air CO2 enrichment) experiment in Rhinelander (WI, USA). Trees had been exposed to four treatments [control, elevated CO2 (560 ppm), elevated O3 (1.5 times ambient) and combined CO2 + O3 ] during growing seasons 1998-2008. Most treatment responses were observed in the early phase of experiment. Our results show that the CO2- and O3-exposed aspen trees displayed a differential balance between efficiency and safety of water transport. Under elevated CO2, radial growth was enhanced and the trees had fewer but hydraulically more efficient larger diameter vessels. In contrast, elevated O3 decreased radial growth and the diameters of vessels and fibres. Clone-specific decrease in wood density and cell wall thickness was observed under elevated CO2 . In birch, the treatments had no major impacts on wood anatomy or wood density. Our study indicates that short-term impact studies conducted with young seedlings may not give a realistic view of long-term ecosystem responses.

  16. Decreased anthocyanidin reductase expression strongly decreases silver birch (Betula pendula) growth and alters accumulation of phenolics.

    PubMed

    Kosonen, Minna; Lännenpää, Mika; Ratilainen, Milla; Kontunen-Soppela, Sari; Julkunen-Tiitto, Riitta

    2015-12-01

    Phenolics, formed via a complex phenylpropanoid pathway, are important defensive agents in plants and are strongly affected by nitrogen (N) fertilization. Proanthocyanidins (PAs) are one possible endpoint of the phenylpropanoid pathway, and anthocyanidin reductase (ANR) represents a key enzyme in PA biosynthesis. In this study, the expression of silver birch (Betula pendula) anthocyanidin reductase BpANR was inhibited using the RNA interference (RNAi) method, in three consequent BpANR RNAi (ANRi birches) lines. The growth, the metabolites of the phenylpropanoid pathway, and the number of resin glands of the ANRi birches were studied when grown at two N levels. ANRi birches showed decreased growth and reduction in PA content, while the accumulation of total phenolics in both stems and leaves increased. Moreover, ANRi birches produced more resin glands than did wild-type (WT) birches. The response of ANRi birches to N depletion varied compared with that of WT birches, and in particular, the concentrations of some phenolics in stems increased in WT birches and decreased in ANRi birches. Because the inhibition of PAs biosynthesis via ANR seriously affected birch growth and resulted in accumulation of the precursors, the native level of PAs in plant tissues is assumed to be the prerequisite for normal plant growth. This draws attention to the real plant developmental importance of PAs in plant tissues.

  17. Expression of xyloglucan endotransglycosylases of Gerbera hybrida and Betula pendula in Pichia pastoris.

    PubMed

    Toikkanen, Jaana H; Niku-Paavola, Marja-Leena; Bailey, Michael; Immanen, Juha; Rintala, Eija; Elomaa, Paula; Helariutta, Yrjö; Teeri, Teemu H; Fagerström, Richard

    2007-06-15

    The plant enzyme xyloglucan endotransglycosylase (XET; EC 2.4.1.207, xyloglucan:xyloglucosyl transferase) participates in selective modification of plant cell walls during cell growth. XETs are potential catalysts in various applications. Here, sequences encoding two XETs from Gerbera hybrida and Betula pendula are reported. The encoded proteins, which are 51% identical at the amino acid level, were expressed in the yeast Pichia pastoris in secreted form with the aid of mating factor alpha signal sequence. XET production in shake flask cultivations was better at 22 degrees C than at 30 degrees C. Both the yield of protein of expected molecular mass and the XET activity improved at the lower temperature. Under all cultivation conditions studied, higher amounts of XET from B. pendula (BXET) were expressed than XET from G. hybrida (GXET). Both XET enzymes were produced in 16l fed-batch bioreactor cultures. GXET was produced in methanol-limited fed-batch cultivation in minimal medium, and BXET in temperature-limited fed-batch (TLFB) in minimal or complex medium. Production was highest in TLFB in complex medium. BXET was purified from the culture filtrate and characterized. Based on the specific activity of the purified protein, 60-70 mg l(-1) BXET was produced in the TLFB in complex medium.

  18. A new SBP-box gene BpSPL1 in silver birch (Betula pendula).

    PubMed

    Lännenpää, Mika; Jänönen, Isto; Hölttä-Vuori, Maarit; Gardemeister, Marika; Porali, Ilkka; Sopanen, Tuomas

    2004-03-01

    The SBP-box gene family represents a group of plant-specific genes encoding putative transcription factors. Thus far, SBP-domain protein binding sites have been found in the promoters of Arabidopsis APETALA1 and Antirrhinum SQUAMOSA. A putative SBP-domain binding element has been observed in the promoter of BpMADS5, a close homologue of Arabidopsis FRUITFULL in silver birch (Betula pendula). A novel SBP-box gene from birch named BpSPL1 has been cloned and characterized. The nucleotide sequence of BpSPL1 is similar to Antirrhinum SBP2 and Arabidopsis SPL3, apart from the unique finding that BpSPL1 does not contain an intron typical to all other known SBP-box genes studied thus far. According to Northern blot analysis, BpSPL1 is expressed in birch inflorescences as well as in shoots and leaves. Studies using electrophoretic mobility shift assay demonstrate that there are nuclear proteins in birch inflorescences which specifically bind to the SBP binding element of the promoter of BpMADS5. BpSPL1 expressed in Escherichia coli also specifically binds to this element. According to Southern blot analysis, there are at least two SBP-box genes in birch. The results suggest that SBP-box genes are involved in the regulation of flower development in birch.

  19. DNA sequence variation in BpMADS2 gene in two populations of Betula pendula.

    PubMed

    Järvinen, Pia; Lemmetyinen, Juha; Savolainen, Outi; Sopanen, Tuomas

    2003-02-01

    The PISTILLATA (PI) homologue, BpMADS2, was isolated from silver birch (Betula pendula Roth) and used to study nucleotide polymorphism. Two regions (together about 2450 bp) comprising mainly untranslated sequences were sequenced from 10 individuals from each of two populations in Finland. The nucleotide polymorphism was low in the BpMADS2 locus, especially in the coding region. The synonymous site overall nucleotide diversity (pis) was 0.0043 and the nonsynonymous nucleotide diversity (pia) was only 0.000052. For the whole region, the pi values for the two populations were 0.0039 and 0.0045, and for the coding regions, the pi values were only 0 and 0.00066 (for the corresponding coding regions of Arabidopsis thaliana PI world-wide pi was 0.0021). Estimates of pi or theta did not differ significantly between the two populations, and the two populations were not diverged from each other. Two classes of BpMADS2 alleles were present in both populations, suggesting that this gene exhibits allelic dimorphism. In addition to the nucleotide site variation, two microsatellites were also associated within the haplotypes. This allelic dimorphism might be the result of postglacial re-colonization partly from northwestern, partly from southeastern/eastern refugia. The sequence comparison detected five recombination events in the regions studied. The large number of microsatellites in all of the three introns studied suggests that BpMADS2 is a hotspot for microsatellite formation.

  20. Hydraulic responses to environmental perturbations in Tsuga canadensis and Betula lenta.

    PubMed

    Daley, Michael J; Phillips, Nathan G; Pettijohn, Justin C; Hadley, Julian

    2008-09-01

    Eastern hemlock (Tsuga canadensis (L). Carr.) is a late-successional species found across the northeastern United States of America that is currently threatened by the exotic pest, hemlock woolly adelgid (Adelges tsugae Annand). Because whole-tree physiological characteristics may scale to influence ecosystem processes, we considered whole-tree hydraulic controls in eastern hemlock and the replacement species black birch (Betula lenta L.). Through a series of misting perturbations, whole-tree resistances (R), capacitances (C) and time constants (tau) were determined from time series sap flux data in eastern hemlock and black birch. Black birch trees responded more rapidly to environmental perturbations than eastern hemlock. Utilizing the step function after applied treatments, whole-tree tau ranged between 9.4 and 24.8 min in eastern hemlock trees compared with 5.9 to 10.5 min in black birch. Species was not a significant predictor of R or C when controlling for tree size. In both species, R decreased with sapwood area and C increased. Our tau results indicate that the loss and replacement of eastern hemlock by black birch will decrease the lag between transpiration and absorption of water from the soil and potentially alter the diurnal pattern of carbon and water uptake.

  1. Marking live conifer pollen for long-distance dispersal experiments.

    PubMed

    Williams, Claire G; von Aderkas, Patrick

    2011-01-01

    Long-distance dispersal (LDD) theory requires a method for marking live LDD pollen. Such a method must complement more intensive sampling methods inclusive of molecular cytogenetics, proteomics and genomics. We developed a new method for marking live Pinus taeda pollen using two dyes, rhodamine 123 and aniline blue, dissolved in a sucrose solution. Marked and unmarked pollen were compared with respect to in vitro germination, storage, terminal velocity, and in vivo pollen tube penetration of ovules. We found that: (1) both types of marked pollen retained their capacity for germination, (2) both types of marked pollen had similar aerodynamic properties when compared to unmarked pollen controls, (3) marked pollen retained its germination capacity for 48 h, and (4) of the marked pollen, only the aniline-marked pollen penetrated ovules during pollination. Germination declined rapidly for both types of marked pollen after 48 h and before 37 days at -20°C storage, while unmarked pollen lots retained 93% germination at all stages. This method for marking live P. taeda pollen is feasible for tracing LDD pollen only if released and deposited within 48 h of dye treatment.

  2. Marking live conifer pollen for long-distance dispersal experiments.

    PubMed

    Williams, Claire G; von Aderkas, Patrick

    2011-01-01

    Study of long-distance dispersal (LDD) theory requires a method for marking live LDD pollen. Such a method must complement the more intensive sampling methods involving molecular cytogenetics, proteomics, and genomics. We have developed a new method for marking live Pinus taeda pollen using two dyes, rhodamine 123 and aniline blue, dissolved in a sucrose solution. Marked and unmarked pollen were compared with respect to in vitro germination, storage, terminal velocity and in vivo pollen-tube penetration of ovules. We found that: (1) both types of marked pollen retained their capacity for germination, (2) both types of marked pollen had similar aerodynamic properties as unmarked pollen controls, (3) marked pollen retained its germination capacity for 48 h, and (4) of the marked pollen, only the aniline-marked pollen penetrated ovules during pollination. Germination declined rapidly for both types of marked pollen after 48 h and before 37 days at -20°C storage, while the unmarked pollen lots retained 93% germination at all stages. Our method for marking live P. taeda pollen is feasible for tracing LDD pollen if released and deposited within 48 h of dye treatment.

  3. Does an 'oversupply' of ovules cause pollen limitation?

    PubMed

    Rosenheim, Jay A; Schreiber, Sebastian J; Williams, Neal M

    2016-04-01

    Lifetime seed production can be constrained by shortfalls of pollen receipt ('pollen limitation'). The ovule oversupply hypothesis states that, in response to unpredictable pollen availability, plants evolve to produce more ovules than they expect to be fertilized, and that this results in pollen limitation of seed production. Here, we present a cartoon model and a model of optimal plant reproductive allocations under stochastic pollen receipt to evaluate the hypothesis that an oversupply of ovules leads to increased pollen limitation. We show that an oversupply of ovules has two opposing influences on pollen limitation of whole-plant seed production. First, ovule oversupply increases the likelihood that pollen receipt limits the number of ovules that can be fertilized ('prezygotic pollen limitation'). Second, ovule oversupply increases the proportion of pollen grains received that are used to fertilize ovules ('pollen use efficiency'). As a result of these opposing influences, ovule oversupply has only a modest effect on the degree to which lifetime seed production is constrained by pollen receipt, producing a small decrease in the incidence of pollen limitation. Ovule oversupply is not the cause of the pollen limitation problem, but rather is part of the evolutionary solution to that problem.

  4. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  5. A 12,000-Yr Pollen Record off Cape Hatteras: Pollen Sources and Mechanisms of Pollen Dispersion

    NASA Technical Reports Server (NTRS)

    Naughton, F.; Keigwin, L.; Peteet, D.; Costas, S.; Desprat, S.; Oliveira, D.; de Vernal, A.; Voelker, A.; Abrantes, F.

    2015-01-01

    Integrating both marine and terrestrial signals from the same sediment core is one of the primary challenges for understanding the role of ocean-atmosphere coupling throughout past climate changes. It is therefore vital to understand how the pollen signal of a given marine record reflects the vegetation changes of the neighboring continent. The comparison between the pollen record of marine core JPC32 (KNR178JPC32) and available terrestrial pollen sequences from eastern North America over the last 12,170 years indicates that the pollen signature off Cape Hatteras gives an integrated image of the regional vegetation encompassing the Pee Dee river, Chesapeake and Delaware hydrographic basins and is reliable in reconstructing the past climate of the adjacent continent. Extremely high quantities of pollen grains included in the marine sediments off Cape Hatteras were transferred from the continent to the sea, at intervals 10,100-8800 cal yr BP, 8300-7500 cal yr BP, 5800- 4300 cal yr BP and 2100-730 cal yr BP, during storm events favored by episodes of rapid sea-level rise in the eastern coast of US. In contrast, pollen grains export was reduced during 12,170-10,150 cal yr BP and 4200- 2200 cal yr BP, during episodes of intense continental dryness and slow sea level rise episodes or lowstands in the eastern coast of US. The near absence of reworked pollen grains in core JPC32 contrasts with the high quantity of reworked material in nearby but deeper located marine sites, suggesting that the JPC32 recordwas not affected by the DeepWestern Boundary Current (DWBC) since the end of the Younger Dryas and should be considered a key site for studying past climate changes in the western North Atlantic.

  6. Ultraviolet radiation environment of pollen and its effect on pollen germination. Final report

    SciTech Connect

    Not Available

    1981-12-01

    The damage to pollen caused by natural ultraviolet radiation was investigated. Experimental and literature research into the UV radiation environment is reported. Viability and germination of wind and insect pollinated species were determined. Physiological, developmental, and protective factors influencing UV sensitivity of binucleate, advanced binucleate, and trinucleate pollen grains are compared.

  7. Exposure to grass pollen--but not birch pollen--affects lung function in Swedish children.

    PubMed

    Gruzieva, O; Pershagen, G; Wickman, M; Melén, E; Hallberg, J; Bellander, T; Lõhmus, M

    2015-09-01

    Allergic response to pollen is increasing worldwide, leading to high medical and social costs. However, the effect of pollen exposure on lung function has rarely been investigated. Over 1800 children in the Swedish birth cohort BAMSE were lung-function- and IgE-tested at the age of 8 and 16 years old. Daily concentrations for 9 pollen types together with measurements for ozone, NO2 , PM10 , PM2.5 were estimated for the index day as well as up to 6 days before the testing. Exposure to grass pollen during the preceding day was associated with a reduced forced expiratory volume in 8-yr-olds; -32.4 ml; 95% CI: -50.6 to -14.2, for an increase in three pollen counts/m³. Associations appeared stronger in children sensitized to pollen allergens. As the grass species flower late in the pollen season, the allergy care routines might be weakened during this period. Therefore, allergy information may need to be updated to increase awareness among grass pollen-sensitized individuals.

  8. The ultraviolet radiation environment of pollen and its effect on pollen germination

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The damage to pollen caused by natural ultraviolet radiation was investigated. Experimental and literature research into the UV radiation environment is reported. Viability and germination of wind and insect pollinated species were determined. Physiological, developmental, and protective factors influencing UV sensitivity of binucleate, advanced binucleate, and trinucleate pollen grains are compared.

  9. Differences in concentrations of allergenic pollens and spores at different heights on an agricultural farm in West Bengal, India.

    PubMed

    Chakraborty, P; Gupta-Bhattacharya, S; Chowdhury, I; Majumdar, M R; Chanda, S

    2001-01-01

    The aim of the study was to assess the vertical profile of the major airborne pollen and spore concentration in the lower heights (up to six meters) and to check their allergenic potential causing respiratory allergy in agricultural workers. The study was conducted using rotorod samplers mounted at different heights at weekly intervals for two consecutive years (November 1997-October 1999). The major pollen grains and fungal spores (from mass culture) were collected in bulk and studied by skin-prick tests to detect allergenicity. Of the recorded pollen, 10 major and perennial types (e.g., Poaceae, Cheno-Amaranthaceae, Cyperaceae, Areca, etc.) were considered for comparative analyses. The tree pollen count showed more or less good correlation with increasing heights, whereas herb/shrub members are dominant at lower heights during all the three seasons (winter, summer and rains). The 10 major and perennial fungal spore types included Aspergilli group, Cladosporium, Nigrospora, etc. The smaller spores were dominant at greater heights and larger spores and conidia were more prevalent at lower levels. The total spore count was higher just after the rainy season during winter. In terms of allergenicity, Saccharum officinarum (sugar cane) of Poaceae, showed highest reactivity (70.58%) in skin test carried out in 189 adult agricultural field workers with respiratory disorders living inside the study area. Among fungal spores, Aspergillus japonicus was the strongest allergen, evoking 74.07% positive reactions. Drechslera oryzae, the pathogen causing brown spot of rice was also found to be a potent allergen.

  10. Optimized method for growing in vitro Arabidopsis thaliana pollen tubes.

    PubMed

    Borassi, Cecilia; Di Giorgio, Juliana Pérez; Scarpin, María R; Muschietti, Jorge; Estevez, José M

    2015-01-01

    Pollen tubes elongate by tip growth toward the ovule to deliver the sperm cells during fertilization. Since pollen tubes from several species can be grown in vitro maintaining their polarity, pollen tube growth is a suitable model system to study cell polarity and tip growth. A. thaliana pollen tubes germinated in vitro for 6 h can reach up to 800 μm. By studying the phenotype of mutants of T-DNA insertion lines, genes involved in pollen tube growth can be identified. Moreover, components involved in the regulation of pollen tube growth such as calcium ions and reactive oxygen species (ROS) can be analyzed.

  11. Biosynthesis of anther cuticle and pollen exine in rice

    PubMed Central

    Li, Hui

    2010-01-01

    The lipidic structures, anther cuticle (outer anther surface) and pollen exine (outer pollen wall), play a key protective role for the male gametophyte and pollen grain development. We recently identified ancient cytochrome P450 family member CYP704B2 in rice and proposed a common fatty acid ω-hydroxylation pathway for synthesizing anther cuticle and pollen exine during plant male reproductive development. Here, we propose developmental model of pollen exine formation and discuss key genes required for pollen exine synthesis in the important crop plant rice. PMID:20930527

  12. Holocene environmental changes in southern Kamchatka, Far Eastern Russia, inferred from a pollen and testate amoebae peat succession record

    NASA Astrophysics Data System (ADS)

    Klimaschewski, A.; Barnekow, L.; Bennett, K. D.; Andreev, A. A.; Andrén, E.; Bobrov, A. A.; Hammarlund, D.

    2015-11-01

    High resolution palaeoenvironmental records in Far-Eastern Russia are rare, and the Kamchatka Peninsula is among the least studied areas of the region. This paper describes a record spanning the last ca. 11,000 yr, obtained from a bog in the southern part of Kamchatka. The radiocarbon dated core was analysed for pollen, testate amoebae, charcoal and loss-on-ignition (LOI). The vegetation during the early Holocene was dominated by grasses (Poaceae), birch (Betula) and heath (Ericaceae p. p.). Around 10,300 cal yr BP there was a substantial change in the vegetation cover to shrub alder (Alnus viridis s.l.) stands with sedges and ferns (Polypodiophyta) as well as herbs such as meadow rue (Thalictrum) in the understory. In the surroundings of Utka peatlands started to form. The variations in the vegetation cover were most probably caused by climatic changes. At the beginning of sediment accumulation, before 10,300 cal yr BP, the composition of the vegetation points to cooler summers and/or decreased annual precipitation. Around 10,300 cal yr BP, changes in vegetation occurred due to rising temperatures and/or changed water regimes. Increased abundancies of dry indicating testate amoebae after 9100 cal yr BP point to intermediate to dry soil conditions. Between 8600 and 7700 cal yr BP tree alder (Alnus incana) was widely spread at the site which probably indicates optimal environmental conditions. The tephra layer at 381-384.5 cm (ca. 8500 cal yr BP) produces a strong impact on the testate amoebae assemblages. At 7700 cal yr BP there was a sudden drop of A. incana in the local vegetation. From this time on, A. incana and also A. viridis decrease continuously whereas Betula gradually increases. The upper part of the sequence (after 6300 cal yr BP) shows higher abundancies of meadowsweet (Filipendula) and sweet gale (Myrica) pollen. After 6300 cal yr BP, changes in testate amoebae demonstrate variable soil moisture conditions at the site. Between 3700 and 1800 cal yr BP

  13. Analysis of Allergenic Pollen by FTIR Microspectroscopy.

    PubMed

    Zimmerman, B; Tafintseva, V; Bağcıoğlu, M; Høegh Berdahl, M; Kohler, A

    2016-01-05

    Fourier transform infrared (FTIR) spectroscopy is a powerful tool for the identification and characterization of pollen and spores. However, interpretation and multivariate analysis of infrared microscopy spectra of single pollen grains are hampered by Mie-type scattering. In this paper, we introduce a novel sampling setup for infrared microspectroscopy of pollens preventing strong Mie-type scattering. Pollen samples were embedded in a soft paraffin layer between two sheets of polyethylene foils without any further sample pretreatment. Single-grain infrared spectra of 13 different pollen samples, belonging to 11 species, were obtained and analyzed by the new approach and classified by sparse partial least-squares regression (PLSR). For the classification, chemical and physical information were separated by extended multiplicative signal correction and used together to build a classification model. A training set of 260 spectra and an independent test set of 130 spectra were used. Robust sparse classification models allowing the biochemical interpretation of the classification were obtained by the sparse PLSR, because only a subset of variables was retained for the analysis. With accuracy values of 95% and 98%, for the independent test set and full cross-validation respectively, the method is outperforming the previously published studies on development of an automated pollen analysis. Since the method is compatible with standard air-samplers, it can be employed with minimal modification in regular aerobiology studies. When compared with optical microscopy, which is the benchmark method in pollen analysis, the infrared microspectroscopy method offers better taxonomic resolution, as well as faster, more economical, and bias-free measurement.

  14. Bees associate colour cues with differences in pollen rewards.

    PubMed

    Nicholls, Elizabeth; de Ibarra, Natalie Hempel

    2014-08-01

    In contrast to the wealth of knowledge concerning sucrose-rewarded learning, the question of whether bees learn when they collect pollen from flowers has been little addressed. The nutritional value of pollen varies considerably between species, and it may be that bees learn the features of flowers that produce pollen best suited to the dietary requirements of their larvae. It is still unknown, however, whether a non-ingestive reward pathway for pollen learning exists, and how foraging bees sense differences between pollen types. Here we adopt a novel experimental approach testing the learning ability of bees with pollen rewards. Bumblebees were reared under controlled laboratory conditions. To establish which pollen rewards are distinguishable, individual bees were given the choice of collecting two types of pollen, diluted to varying degrees with indigestible α-cellulose. Bees preferentially collected a particular pollen type, but this was not always the most concentrated sample. Preferences were influenced by the degree of similarity between samples and also by the period of exposure, with bees more readily collecting samples of lower pollen concentration after five trials. When trained differentially, bees were able to associate an initially less-preferred contextual colour with the more concentrated sample, whilst their pollen preferences did not change. Successful learning of contextual cues seems to maintain pollen foraging preferences over repeated exposures, suggesting that fast learning of floral cues may preclude continuous sampling and evaluation of alternative reward sources, leading to constancy in pollen foraging.

  15. Surface Pollen Distribution from Alpine Vegetation in Eastern Tibet, China.

    PubMed

    Zhang, Yun; Kong, Zhaochen; Yang, Zhenjing; Wang, Li; Duan, Xiaohong

    2017-04-03

    We explore the relationship between modern pollen spectra and vegetation patterns in the Eastern Tibet, China in order to provide information on the representation of pollen taxa and improve the general knowledge of vertical pollen transport. Forty-two modern pollen samples collected in surface soil along two altitudinal transects allowed conclusions on vertical pollen dispersal from the alpine region of Dingqing County, Changdu district in Tibet. Discriminant analyses and detrended correspondence analysis (DCA) of 24 pollen taxa were used to further discuss the difference of modern pollen spectra in these alpine vegetation zones. The surface pollen assemblage is divided into three pollen zones, such as subalpine shrub meadow, montane coniferous forest and shrub steppe with sparse trees. Altitude and precipitation are two primary factors contributing to changes in surface pollen assemblage from alpine vegetation in the eastern Tibet. Large amounts of spruce pollen at higher elevations above the timberline might be introduced from lower elevations by upslope winds. Therefore, the interpretation of spruce pollen in the fossil record must take into account long distance upward wind transport. Moreover, the destruction of coniferous forest in the study area is well illustrated in the modern pollen rain.

  16. Quantification of Juniperus Ashei Pollen Production for the Development of Forecasting Models

    NASA Technical Reports Server (NTRS)

    Bunderson, L. D.; Levetin, E.

    2010-01-01

    Juniperus ashei pollen is considered one of the most allergenic species of Cupressaceae in North America. Juniperus ashei is distributed throughout central Texas, Northern Mexico, the Arbuckle Mountains of south central Oklahoma, and the Ozark Mountains of northern Arkansas and southwestern Missouri. The large amount of airborne pollen that J. ashei produces affects inhabitants of cities and towns adjacent to juniper woodland areas and because juniper pollen can be transported over long distances, it affects populations that are far away. In order to create a dynamic forecast system for allergy and asthma sufferers, pollen production must be estimated. Estimation of pollen production requires the estimation of male cone production. Two locations in the Arbuckle Mountains of Oklahoma and 4 locations in the Edwards Plateau region of Texas were chosen as sampling sites. Trees were measured to determine approximate size. Male to female ratio was determined and pollen cone production was estimated using a qualitative scale from 0 to 2. Cones were counted from harvested 1/8 sections of representative trees. The representative trees were measured and approximate surface area of the tree was calculated. Using the representative tree data, the number of cones per square meter was calculated for medium production (1) and high production (2) trees. These numbers were extrapolated to calculate cone production in other trees sampled. Calibration was achieved within each location's sub-plot by counting cones on 5 branches collected from 5 sides of both high production and medium production trees. The total area sampled in each location was 0.06 hectare and total cone production varied greatly from location to location. The highest production area produced 5.8 million cones while the lowest production area produced 72,000 cones. A single representative high production tree in the Arbuckle Mountains produced 1.38 million cones. The number of trees per location was relatively

  17. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  18. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  19. Dynamic size spectrometry of airborne microorganisms: Laboratory evaluation and calibration

    NASA Astrophysics Data System (ADS)

    Qian, Yinge; Willeke, Klaus; Ulevicius, Vidmantas; Grinshpun, Sergey A.; Donnelly, Jean

    Bioaerosol samplers need to be calibrated for the microorganisms of interest. The Aerosizer, a relatively new aerodynamic size spectrometer, is shown to be a suitable dynamic instrument for the evaluation and calibration of such samplers in the laboratory, prior to their use in the field. It provides the necessary reference count against which the microbiological response of the sampler can be compared. It measures the health-significant aerodynamic diameters of microorganisms down to 0.5 μm, thus including most of the bacteria, fungi and pollen found in outdoor and indoor air environments. Comparison tests with a laser size spectrometer indicate that the suspension of microorganisms needs to be washed several times before aerosolization to avoid coating of the airborne microorganisms with nutrients and microbial slime from the suspension, and to reduce the residue particles to sizes below the lowest size of the aerosolized microorganisms.

  20. Regulation of Pollen Tube Growth by Transglutaminase

    PubMed Central

    Cai, Giampiero; Serafini-Fracassini, Donatella; Del Duca, Stefano

    2013-01-01

    In pollen tubes, cytoskeleton proteins are involved in many aspects of pollen germination and growth, from the transport of sperm cells to the asymmetrical distribution of organelles to the deposition of cell wall material. These activities are based on the dynamics of the cytoskeleton. Changes to both actin filaments and microtubules are triggered by specific proteins, resulting in different organization levels suitable for the different functions of the cytoskeleton. Transglutaminases are enzymes ubiquitous in all plant organs and cell compartments. They catalyze the post-translational conjugation of polyamines to different protein targets, such as the cytoskeleton. Transglutaminases are suggested to have a general role in the interaction between pollen tubes and the extracellular matrix during fertilization and a specific role during the self-incompatibility response. In such processes, the activity of transglutaminases is enhanced, leading to the formation of cross-linked products (including aggregates of tubulin and actin). Consequently, transglutaminases are suggested to act as regulators of cytoskeleton dynamics. The distribution of transglutaminases in pollen tubes is affected by both membrane dynamics and the cytoskeleton. Transglutaminases are also secreted in the extracellular matrix, where they may take part in the assembly and/or strengthening of the pollen tube cell wall. PMID:27137368

  1. Effect of water absorption on pollen adhesion.

    PubMed

    Lin, Haisheng; Lizarraga, Leonardo; Bottomley, Lawrence A; Carson Meredith, J

    2015-03-15

    Pollens possess a thin liquid coating, pollenkitt, which plays a major role in adhesion by forming capillary menisci at interfaces. Unfortunately, the influence of humidity on pollenkitt properties and capillary adhesion is unknown. Because humidity varies widely in the environment, the answers have important implications for better understanding plant reproduction, allergy and asthma, and pollen as atmospheric condensation nuclei. Here, pollenkitt-mediated adhesion of sunflower pollen to hydrophilic and hydrophobic surfaces was measured as a function of humidity. The results quantify for the first time the significant water absorption of pollenkitt and the resulting complex dependence of adhesion on humidity. On hydrophilic Si, adhesion increased with increasing RH for pollens with or without pollenkitt, up to 200nN at 70% RH. In contrast, on hydrophobic PS, adhesion of pollenkitt-free pollen is independent of RH. Surprisingly, when pollenkitt was present adhesion forces on hydrophobic PS first increased with RH up to a maximum value at 35% RH (∼160nN), and then decreased with further increases in RH. Independent measurement of pollenkitt properties is used with models of capillary adhesion to show that humidity-dependent changes in pollenkitt wetting and viscosity are responsible for this complex adhesion behavior.

  2. Seventeen-year trends in spring and autumn phenophases of Betula pubescens in a boreal environment

    NASA Astrophysics Data System (ADS)

    Poikolainen, Jarmo; Tolvanen, Anne; Karhu, Jouni; Kubin, Eero

    2016-08-01

    Trends in the timing of spring and autumn phenophases of Betula pubescens were investigated in the southern, middle, and northern boreal zones in Finland. The field observations were carried out at 21 sites in the Finnish National Phenological Network in 1997-2013. The effective temperature sum of the thermal growth period, i.e. the sum of the positive differences between diurnal mean temperatures and 5 °C (ETS1), increased annually on average by 6-7 degree day units. Timing of bud burst remained constant in the southern and middle boreal zones but advanced annually by 0.5 day in the northern boreal zone. The effective temperature sum at bud burst (ETS2) showed no trend in the southern and middle boreal zones, whereas ETS2 increased on average from 20-30 to 50 degree day units in the northern boreal zone, almost to the same level as in the other zones. Increase in ETS2 indicates that the trees did not start their growth in very early spring despite warmer spring temperatures. The timing of leaf colouring and leaf fall remained almost constant in the southern boreal zones, whereas these advanced annually by 0.3 and 0.6 day in the middle boreal zone and by 0.6 and 0.4 day in the northern boreal zone, respectively. The duration of the growth period remained constant in all boreal zones. The results indicate high buffering capacity of B. pubescens against temperature changes. The study also shows the importance of the duration of phenological studies: some trends in spring phenophases had levelled out, while new trends in autumn phases had emerged after earlier studies in the same network for a shorter observation period.

  3. Tolerance of an Expanding Subarctic Shrub, Betula glandulosa, to Simulated Caribou Browsing

    PubMed Central

    Champagne, Emilie; Tremblay, Jean-Pierre; Côté, Steeve D.

    2012-01-01

    Densification of the shrub layer has been reported in many subarctic regions, raising questions about the implication for large herbivores and their resources. Shrubs can tolerate browsing and their level of tolerance could be affected by browsing and soils productivity, eventually modifying resource availability for the caribou. Our objective was to assess the compensatory growth potential of a subarctic shrub, Betula glandulosa Michx., in relation with caribou browsing and nutriment availability for the plants. We used a simulated browsing (0, 25 and 75% of available shoots) and nitrogen-fertilisation (0 and 10 g m−2) experiment to test two main hypotheses linking tolerance to resource availability, the Compensatory Continuum Hypothesis and the Growth Rate Hypothesis as well as the predictions from the Limiting Resource Model. We seek to explicitly integrate the relative browsing pressure in our predictions since the amount of tissues removed could affect the capacity of long-lived plants to compensate. Birches fully compensated for moderate browsing with an overall leaf biomass similar to unbrowsed birches but undercompensated under heavy browsing pressure. The main mechanism explaining compensation appears to be the conversion of short shoots into long shoots. The leaf area increased under heavy browsing pressure but only led to undercompensation. Fertilisation for two consecutive years did not influence the response of birch, thus we conclude that our results support the LRM hypothesis of equal tolerance under both high and low nitrogen availability. Our results highlight that the potential for compensatory growth in dwarf birch is surpassed under heavy browsing pressure independently of the fertilisation regime. In the context of the worldwide decline in caribou herds, the reduction in browsing pressure could act synergistically with global climate change to promote the current shrub expansion reported in subarctic regions. PMID:23272191

  4. Regeneration of Betula albosinensis in strip clearcut and uncut forests of the Qinling Mountains in China.

    PubMed

    Guo, Yaoxin; Li, Gang; Hu, Youning; Kang, Di; Wang, Dexiang; Yang, Gaihe

    2013-01-01

    To contribute to a better understanding of the regeneration strategy of Betula albosinensis forests and the likely reasons behind either the successful recovery or failure after strip clearcutting, we compared the population structures and spatial patterns of B. albosinensis in eight B. albosinensis stands in Qinling Mountains, China. Four cut and four uncut stands were selected, and each sampled using a single large plot (0.25 ha). Results indicated that, on the one hand, B. albosinensis recruitment was scarce (average of 48 stems ha(-1)) in the uncut stands, relative to the mature population (average of 259 stems ha(-1)), suggesting a failure of recruitment. On the other hand, the subsequent regeneration approximately 50 years after the strip clearcutting showed that the density of the target species seedlings and saplings has increased significantly, and the current average density of seedlings and saplings was 156 stems ha(-1). The clumped spatial pattern of B. albosinensis suggested that their regeneration was highly dependent on canopy disturbance. However, recruitment remained poor in the uncut stands because most gaps were small in scale. The successful regeneration of sunlight-loving B. albosinensis after strip clearcutting was attributed to the exposed land and availability of more sunlight. Bamboo density did not influence B. albosinensis recruitment in the uncut stands. However, stand regeneration was impeded after strip clearcutting; thus, removing bamboo is essential in improving the competitive status of B. albosinensis at the later stage of forest regeneration after clearcutting. The moderate severity of disturbance resulting from strip clearcutting reversed the degeneration trend of primary B. albosinensis stands. This outcome can help strike a balance between forest conservation and the demand for wood products by releasing space and exposing the forested land for recruitment. Life history traits and spatiotemporal disturbance magnitude are

  5. Betula pendula leaves: polyphenolic characterization and potential innovative use in skin whitening products.

    PubMed

    Germanò, M P; Cacciola, F; Donato, P; Dugo, P; Certo, G; D'Angelo, V; Mondello, L; Rapisarda, A

    2012-07-01

    The research of new tyrosinase inhibitors is currently important for the development of skin whitening agents; particularly, birch leaves extracts are included in many skin cosmetic products. In this study, the potential ability of Betula pendula leaves ethanolic extract (BE) was evaluated on mushroom tyrosinase activity. Results showed that BE was capable to inhibit dose-dependently l-DOPA oxidation catalyzed by tyrosinase. The inhibition kinetics, analyzed by Lineweaver-Burk plots, showed a noncompetitive inhibition of BE towards the enzyme, using l-DOPA as substrate. The inhibitory mechanism of BE as studied by spectrophotometric analysis, demonstrated its ability to chelate copper ion in the active site of tyrosinase. In addition, BE exhibited Fe(2+)-chelating ability (IC(50)=614.12±2.14 μg/mL), reducing power and radical-scavenging properties (IC(50)=137.22±1.98 μg/mL). These results suggest the usefulness of birch leaves extracts in cosmetic and pharmaceutical industries for their skin-whitening and antioxidant effects. Determination of the polyphenolic compounds in BE extracts was afterward achieved by means of high-performance liquid chromatography (HPLC) with photodiode array (PDA) and mass spectrometry (MS) detection. A total of 25 compounds were positively identified, through the complementary analytical information, and are reported in such a matrix for the first time. Knowledge on the qualitative composition and contents of these natural sources in fact represents mandatory information, for rational consumption and correlation of the beneficial effects to the specific amounts.

  6. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula

    PubMed Central

    Ibrahim, Mohamed A.; Mäenpää, Maarit; Hassinen, Viivi; Kontunen-Soppela, Sari; Malec, Lukáš; Rousi, Matti; Pietikäinen, Liisa; Tervahauta, Arja; Kärenlampi, Sirpa; Holopainen, Jarmo K.; Oksanen, Elina J.

    2010-01-01

    Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 °C) while daytime temperature was kept at a constant 22 °C. VOC emissions were collected during the daytime and analysed by gas chromatography–mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and β-ocimene increased from 6 °C to 14 °C, while several other monoterpenes and the SQTs (Z,E)-α-farnesene and (E,E)-α-farnesene increased up to 18 °C. Total monoterpene and sesquiterpene emission peaked at 18 °C, whereas isoprene emissions decreased at 22 °C. Leaf area increased across the temperature range of 6–22 °C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees. PMID:20181662

  7. Comprehensive Transcriptome Analysis of Developing Xylem Responding to Artificial Bending and Gravitational Stimuli in Betula platyphylla

    PubMed Central

    Wang, Chao; Zhang, Nan; Gao, Caiqiu; Cui, Zhiyuan; Sun, Dan; Yang, Chuanping; Wang, Yucheng

    2014-01-01

    Betula platyphylla Suk (birch) is a fast-growing woody species that is important in pulp industries and the biofuels. However, as an important pulp species, few studies had been performed on its wood formation. In the present study, we investigated the molecular responses of birch xylem to artificial bending and gravitational stimuli. After trunks of birch trees were subjected to bending for 8 weeks, the cellulose content was significantly greater in tension wood (TW) than in opposite wood (OW) or normal wood (NW), whereas the lignin content in TW was significantly lower than that in OW and NW. In addition, TW grew more rapidly than OW and generated TW-specific fibers with an additional G-layer. Three transcriptome libraries were constructed from TW, OW and NW of B. platyphylla, respectively, after the plants were subjected to artificial bending. Overall, 80,909 nonredundant unigenes with a mean size of 768 nt were assembled. Expression profiles were generated, and 9,684 genes were found to be significantly differentially expressed among the TW, OW and NW libraries. These included genes involved in secondary cell wall structure, wood composition, and cellulose or lignin biosynthesis. Our study showed that during TW formation, genes involved in cellulose synthesis were induced, while the expression of lignin synthesis-related genes decreased, resulting in increased cellulose content and decreased lignin levels in TW. In addition, fasciclin-like arabinogalactan proteins play important role in TW formation. These findings may provide important insights into wood formation at the molecular level. PMID:24586282

  8. Regeneration of Betula albosinensis in Strip Clearcut and Uncut Forests of the Qinling Mountains in China

    PubMed Central

    Guo, Yaoxin; Li, Gang; Hu, Youning; Kang, Di; Wang, Dexiang; Yang, Gaihe

    2013-01-01

    To contribute to a better understanding of the regeneration strategy of Betula albosinensis forests and the likely reasons behind either the successful recovery or failure after strip clearcutting, we compared the population structures and spatial patterns of B. albosinensis in eight B. albosinensis stands in Qinling Mountains, China. Four cut and four uncut stands were selected, and each sampled using a single large plot (0.25 ha). Results indicated that, on the one hand, B. albosinensis recruitment was scarce (average of 48 stems ha−1) in the uncut stands, relative to the mature population (average of 259 stems ha−1), suggesting a failure of recruitment. On the other hand, the subsequent regeneration approximately 50 years after the strip clearcutting showed that the density of the target species seedlings and saplings has increased significantly, and the current average density of seedlings and saplings was 156 stems ha−1. The clumped spatial pattern of B. albosinensis suggested that their regeneration was highly dependent on canopy disturbance. However, recruitment remained poor in the uncut stands because most gaps were small in scale. The successful regeneration of sunlight-loving B. albosinensis after strip clearcutting was attributed to the exposed land and availability of more sunlight. Bamboo density did not influence B. albosinensis recruitment in the uncut stands. However, stand regeneration was impeded after strip clearcutting; thus, removing bamboo is essential in improving the competitive status of B. albosinensis at the later stage of forest regeneration after clearcutting. The moderate severity of disturbance resulting from strip clearcutting reversed the degeneration trend of primary B. albosinensis stands. This outcome can help strike a balance between forest conservation and the demand for wood products by releasing space and exposing the forested land for recruitment. Life history traits and spatiotemporal disturbance magnitude are

  9. Physiological Adjustments of Leaf Respiration to Atmospheric Warming in Betula alleghaniensis and Quercus rubra

    SciTech Connect

    Vollmar, A.; Gunderson, C.

    2006-01-01

    Global air temperatures are predicted to rise 1° to 4.5° Celsius by the year 2100. This climatic change is expected to have a great effect on the succession and migration of temperate deciduous forest species. Most physiologically based models of forest response to climatic change focus on the ecosystems as a whole instead of on individual tree species, assuming that the effects of warming on respiration are generally the same for each species, and that processes can not adjust to a changing climate. Experimental data suggest that physiological adjustments are possible, but there is a lack of data in deciduous species. In order to correctly model the effects of climate change on temperate species, species-specific respiration acclimation (adjustment) to rising temperatures is being determined in this experiment. Two temperate deciduous tree species Betula alleghaniensis (BA) and Quercus rubra (QR) were grown over a span of four years in open-top chambers and subjected to two different temperature treatments; ambient and ambient plus 4° Celsius (E4). Between 0530 hours and 1100 hours, respiration was measured over a range of leaf temperatures on several comparable, fully expanded leaves in each treatment. Circular punches were taken from the leaves and dried at 60°C to determine leaf mass per area (LMA). Respiration rates at a common temperature decreased by 15-18% in both species, and the entire resperation versus temperature curve shifted by at least 4°C, indicating a large degree of physiological acclimation. Foliar mass per area decreased with increasing growth temperature for both species. It can be concluded that there is a relationship between leaf respiration and foliar mass as it relates to respiratory acclimation, and that these two species had similar patterns of adjustment to warming.

  10. Tolerance of an expanding subarctic shrub, Betula glandulosa, to simulated caribou browsing.

    PubMed

    Champagne, Emilie; Tremblay, Jean-Pierre; Côté, Steeve D

    2012-01-01

    Densification of the shrub layer has been reported in many subarctic regions, raising questions about the implication for large herbivores and their resources. Shrubs can tolerate browsing and their level of tolerance could be affected by browsing and soils productivity, eventually modifying resource availability for the caribou. Our objective was to assess the compensatory growth potential of a subarctic shrub, Betula glandulosa Michx., in relation with caribou browsing and nutriment availability for the plants. We used a simulated browsing (0, 25 and 75% of available shoots) and nitrogen-fertilisation (0 and 10 g m(-2)) experiment to test two main hypotheses linking tolerance to resource availability, the Compensatory Continuum Hypothesis and the Growth Rate Hypothesis as well as the predictions from the Limiting Resource Model. We seek to explicitly integrate the relative browsing pressure in our predictions since the amount of tissues removed could affect the capacity of long-lived plants to compensate. Birches fully compensated for moderate browsing with an overall leaf biomass similar to unbrowsed birches but undercompensated under heavy browsing pressure. The main mechanism explaining compensation appears to be the conversion of short shoots into long shoots. The leaf area increased under heavy browsing pressure but only led to undercompensation. Fertilisation for two consecutive years did not influence the response of birch, thus we conclude that our results support the LRM hypothesis of equal tolerance under both high and low nitrogen availability. Our results highlight that the potential for compensatory growth in dwarf birch is surpassed under heavy browsing pressure independently of the fertilisation regime. In the context of the worldwide decline in caribou herds, the reduction in browsing pressure could act synergistically with global climate change to promote the current shrub expansion reported in subarctic regions.

  11. Forecasting plant phenology: evaluating the phenological models for Betula pendula and Padus racemosa spring phases, Latvia

    NASA Astrophysics Data System (ADS)

    Kalvāns, Andis; Bitāne, Māra; Kalvāne, Gunta

    2015-02-01

    A historical phenological record and meteorological data of the period 1960-2009 are used to analyse the ability of seven phenological models to predict leaf unfolding and beginning of flowering for two tree species—silver birch Betula pendula and bird cherry Padus racemosa—in Latvia. Model stability is estimated performing multiple model fitting runs using half of the data for model training and the other half for evaluation. Correlation coefficient, mean absolute error and mean squared error are used to evaluate model performance. UniChill (a model using sigmoidal development rate and temperature relationship and taking into account the necessity for dormancy release) and DDcos (a simple degree-day model considering the diurnal temperature fluctuations) are found to be the best models for describing the considered spring phases. A strong collinearity between base temperature and required heat sum is found for several model fitting runs of the simple degree-day based models. Large variation of the model parameters between different model fitting runs in case of more complex models indicates similar collinearity and over-parameterization of these models. It is suggested that model performance can be improved by incorporating the resolved daily temperature fluctuations of the DDcos model into the framework of the more complex models (e.g. UniChill). The average base temperature, as found by DDcos model, for B. pendula leaf unfolding is 5.6 °C and for the start of the flowering 6.7 °C; for P. racemosa, the respective base temperatures are 3.2 °C and 3.4 °C.

  12. Wood anatomical analysis of Alnus incana and Betula pendula injured by a debris-flow event.

    PubMed

    Arbellay, Estelle; Stoffel, Markus; Bollschweiler, Michelle

    2010-10-01

    Vessel chronologies in ring-porous species have been successfully employed in the past to extract the climate signal from tree rings. Environmental signals recorded in vessels of ring-porous species have also been used in previous studies to reconstruct discrete events of drought, flooding and insect defoliation. However, very little is known about the ability of diffuse-porous species to record environmental signals in their xylem cells. Moreover, time series of wood anatomical features have only rarely been used to reconstruct former geomorphic events. This study was therefore undertaken to characterize the wood anatomical response of diffuse-porous Alnus incana (L.) Moench and Betula pendula Roth to debris-flow-induced wounding. Tree microscopic response to wounding was assessed through the analysis of wood anatomical differences between injured rings formed in the debris-flow event year and uninjured rings formed in the previous year. The two ring types were examined close and opposite to the injury in order to determine whether wound effects on xylem cells decrease with increasing tangential distance from the injury. Image analysis was used to measure vessel parameters as well as fiber and parenchyma cell (FPC) parameters. The results of this study indicate that injured rings are characterized by smaller vessels as compared with uninjured rings. By contrast, FPC parameters were not found to significantly differ between injured and uninjured rings. Vessel and FPC parameters mainly remained constant with increasing tangential distance from the injury, except for a higher proportion of vessel lumen area opposite to the injury within A. incana. This study highlights the existence of anatomical tree-ring signatures-in the form of smaller vessels-related to past debris-flow activity and addresses a new methodological approach to date injuries inflicted on trees by geomorphic processes.

  13. BpMADS4 has a central role in inflorescence initiation in silver birch (Betula pendula).

    PubMed

    Elo, Annakaisa; Lemmetyinen, Juha; Novak, Anu; Keinonen, Kaija; Porali, Ilkka; Hassinen, Minna; Sopanen, Tuomas

    2007-09-01

    Acceleration of flowering would be beneficial for breeding trees with a long juvenile phase; conversely, inhibition of flowering would prevent the spread of transgenes from the genetically modified trees. We have previously isolated and characterized several MADS genes from silver birch (Betula pendula Roth). In this study, we investigated the more detailed function of one of them, BpMADS4, a member of the APETALA1/FRUITFULL group of MADS genes. The expression of BpMADS4 starts at very early stage of the male and female inflorescence development and the activity is high in the apex of the developing inflorescence. Later, some expression is detected in the bracts and in the flower initials. Ectopic expression of BpMADS4 accelerates flowering dramatically in normally flowering clones and also in the early-flowering birch clone, in which the earliest line flowered about 11 days after rooting, when the saplings were only 3 cm high. The birches transformed with the BpMADS4 antisense construct showed remarkable delay in flowering and the number of flowering individuals was reduced. Two of the transformed lines did not show any signs of flower development during our 2-year study, whereas all the control plants formed inflorescences within 107 days. Our results show that BpMADS4 has a critical role in the initiation of birch inflorescence development and that BpMADS4 seems to be involved in the transition from vegetative to reproductive development. Therefore, BpMADS4 provides a promising tool for the genetic enhancement of forest trees.

  14. Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula).

    PubMed

    Elo, Annakaisa; Lemmetyinen, Juha; Turunen, Marja-Leena; Tikka, Liisa; Sopanen, Tuomas

    2001-05-01

    Despite intensive research on genetic regulation of flower development there are still only a few studies on the early phases of this process in perennial plants like trees. The aim of this study has been to identify genes that regulate early stages of inflorescence development in silver birch (Betula pendula Roth) and to follow the expression of these genes during development of the unisexual birch inflorescences. Here we describe the cloning and characterization of 3 cDNAs representing MADS-box genes designated BpMADS3, BpMADS4 and BpMADS5, all belonging to the AP1/SQUA group of plant MADS-box genes. According to RNA blot analysis, all 3 genes are active during the development of both male and female inflorescences. However, differences in patterns of expression suggest that they play different roles. BpMADS3 is most similar in sequence to AP1 and SQUA, but it seems to have the highest expression at late developmental stages. BpMADS4 is most similar in sequence to the Arabidopsis gene FRUITFULL, but is expressed, in addition to developing inflorescences, in shoots and roots. BpMADS5 is also similar to FRUITFULL; its expression seems to be inflorescence-specific and continues during fruit development. Ectopic expression of either BpMADS3, BpMADS4 or BpMADS5 with the CaMV 35S promoter in tobacco results in extremely early flowering. All of these birch genes seem to act early during the transition to reproductive phase and might be involved in the determination of the identity of the inflorescence or flower meristem. They could apparently be used to accelerate flowering in various plant species.

  15. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula.

    PubMed

    Ibrahim, Mohamed A; Mäenpää, Maarit; Hassinen, Viivi; Kontunen-Soppela, Sari; Malec, Lukás; Rousi, Matti; Pietikäinen, Liisa; Tervahauta, Arja; Kärenlampi, Sirpa; Holopainen, Jarmo K; Oksanen, Elina J

    2010-06-01

    Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 degrees C) while daytime temperature was kept at a constant 22 degrees C. VOC emissions were collected during the daytime and analysed by gas chromatography-mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and beta-ocimene increased from 6 degrees C to 14 degrees C, while several other monoterpenes and the SQTs (Z,E)-alpha-farnesene and (E,E)-alpha-farnesene increased up to 18 degrees C. Total monoterpene and sesquiterpene emission peaked at 18 degrees C, whereas isoprene emissions decreased at 22 degrees C. Leaf area increased across the temperature range of 6-22 degrees C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees.

  16. Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue.

    PubMed

    Johansson, Tomas; Le Quéré, Antoine; Ahren, Dag; Söderström, Bengt; Erlandsson, Rikard; Lundeberg, Joakim; Uhlén, Mathias; Tunlid, Anders

    2004-02-01

    In order to obtain information on genes specifically expressed in the ectomycorrhizal symbiosis, 3,555 expressed sequence tags (ESTs) were analyzed from a cDNA library constructed from ectomycorrhiza formed between the basidiomycete Paxillus involutus and birch (Betula pendula). cDNA libraries from saprophytically growing fungus (3,964 ESTs) and from axenic plants (2,532 ESTs) were analyzed in parallel. By clustering all the EST obtained, a nonredundant set of 2,284 unique transcripts of either fungal or plant origin were identified. The expression pattern of these genes was analyzed using cDNA microarrays. The analyses showed that the plant and fungus responded to the symbiosis by altering the expression levels of a number of enzymes involved in carbon metabolism. Several plant transcripts with sequence similarities to genes encoding enzymes in the tricarboxylic cycle and electron transport chain were down regulated as compared with the levels in free-living roots. In the fungal partner, a number of genes encoding enzymes in the lipid and secondary metabolism were down regulated in mycorrhiza as compared with the saprophytically growing mycelium. A substantial number of the ESTs analyzed displayed significant sequence similarities to proteins involved in biotic stress responses, but only a few of them showed differential expression in the mycorrhizal tissue, including plant and fungal metallothioneins and a plant defensin homologue. Several of the genes that were differentially expressed in the mycorrhizal root tissue displayed sequence similarity to genes that are known to regulate growth and development of plant roots and fungal hyphae, including transcription factors and Rho-like GTPases.

  17. Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene.

    PubMed

    Ruonala, Raili; Rinne, Päivi L H; Baghour, Mourad; Moritz, Thomas; Tuominen, Hannele; Kangasjärvi, Jaakko

    2006-05-01

    In many trees, a short photoperiod (SD) triggers substantial physiological adjustments necessary for over-wintering. We have used transgenic ethylene-insensitive birches (Betula pendula), which express the Arabidopsis ethylene receptor gene ETR1 carrying the dominant mutation etr1-1, to investigate the role of ethylene in SD-induced responses in the shoot apical meristem (SAM). Under SD, the ethylene-insensitive trees ceased elongation growth comparably to the wild-type. In contrast, the formation of terminal buds, which in trees is typically induced by SD, was abolished. However, although delayed, endo-dormancy did eventually develop in the ethylene-insensitive trees. This, together with the rapid resumption of growth in the ethylene-insensitive trees after transfer from non-permissive to permissive conditions suggests that ethylene facilitates the SD-induced terminal bud formation, as well as growth arrest. In addition, apical buds of the ethylene-insensitive birch did not accumulate abscisic acid (ABA) under SD, suggesting interaction between ethylene and ABA signalling in the bud. Alterations in SAM functioning were further exemplified by reduced apical dominance and early flowering in ethylene-insensitive birches. Gene expression analysis of shoot apices revealed that the ethylene-insensitive birch lacked the marked increase in expression of a beta-xylosidase gene typical to the SD-exposed wild-type. The ethylene-dependent beta-xylosidase gene expression is hypothesized to relate to modification of cell walls in terminal buds during SD-induced growth cessation. Our results suggest that ethylene is involved in terminal bud formation and in the timely suppression of SAM activity, not only in the shoot apex, but also in axillary and reproductive meristems.

  18. Expression of senescence-associated genes in the leaves of silver birch (Betula pendula).

    PubMed

    Sillanpää, Maarit; Kontunen-Soppela, Sari; Luomala, Eeva-Maria; Sutinen, Sirkka; Kangasjärvi, Jaakko; Häggman, Hely; Vapaavuori, Elina

    2005-09-01

    Development was monitored throughout the entire life span of silver birch (Betula pendula Roth.) leaves. The focus was on senescence-related changes in photosynthesis and gene expression. The youngest fully developed leaves were compared with older senescing leaves in two silver birch lines: the wild-type line R and a late-senescing line R3.1. Line R3.1 was found among transgenic lines produced with a plasmid containing sense-RbcS and nptII under the control of the 35S CaMV promoter. Compared with the wild type, line R3.1 showed no general change in the mRNA levels of RbcS or Rubisco protein; therefore, it can be considered a line whose phenotype is due to insertional mutagenesis. Leaf senescence started earlier in line R than in line R3.1. Senescence was characterized by declining photosynthesis as indicated by decreases in chlorophyll fluorescence, the amount and activity of Rubisco, and the level of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS1) mRNA. Some well-known senescence-associated genes (SAGs) encoding cysteine proteinases (Cyp1, Cyp2) and a pathogenesis-related gene (Pr1) were associated with leaf senescence. The expression pattern of Cyp1 indicated that it could serve as a molecular marker of leaf senescence in silver birch. Several genes related to energy metabolism, antioxidants and phenylpropanoid biosynthesis showed enhanced expression during leaf senescence. A distinct pattern in transcript abundance during leaf development was revealed for some of the identified SAGs.

  19. [Spatial variation of non-structural carbohydrates in Betula platyphylla and Tilia amurensis stems].

    PubMed

    Zhang, Hai-Yan; Wang, Chuan-Kuan; Wang, Xing-Chang; Cheng, Fang-Yan

    2013-11-01

    Taking the two diffuse-porous tree species Betula platyphylla and Tilia amurensis in a temperate forest in Northeast China as test objects, this paper studied the spatial variation of the non-structural carbohydrates (NSC) concentrations in the stem xylem after leaf-fall. For the two tree species, the concentrations of total non-structural carbohydrate (TNC, soluble sugars plus starch) and soluble sugars in the stem xylem decreased gradually with the increasing depth from cambium to pith, whereas the starch concentration showed little radial variation. There was still a substantial amount of NSC in the inner wood close to pith. The concentrations of the NSC in the two species stems decreased gradually from the stump to the breast height, and then increased vertically. The maximum concentrations of the TNC, soluble sugars, and starch occurred at different heights, depending on the species and the TNC components. The ratio of sugar to starch showed a contrasting vertical trend for the two species, i. e., increasing from the stump to the top for B. platyphylla, but decreasing for T. amurensis. The estimation error of the stem NSC storage was mainly from the axial variation, and then, from the radial variation of NSC concentration. The TNC concentration (1.0% dry mass) in the stem of shade-intolerant species B. platyphylla was significantly lower than that (4.3% dry mass) of shade-tolerant species T. amurensis, which could be related to their different life-history strategies. Applying the sampling protocols considering the axial and radial variations of NSC could effectively reduce the potential uncertainty in estimating the NSC storage at tree or stand level.

  20. Occupational Allergy to Peach (Prunus persica) Tree Pollen and Potential Cross-Reactivity between Rosaceae Family Pollens.

    PubMed

    Jiang, Nannan; Yin, Jia; Mak, Philip; Wen, Liping

    2015-10-01

    Orchard workers in north China are highly exposed to orchard pollens, especially peach and other Rosaceae family pollens during pollination season. The aim of this study was to investigate whether occupational allergy to peach tree pollen as a member of Rosaceae family is IgE-mediated and to evaluate the cross-reactivity among Rosaceae family pollens. Allergen skin test and conjunctival challenge test were performed; enzyme linked immune-sorbent assay (ELISA), inhibiting ELISA, western immunoblotting and inhibiting western immunoblotting were done with Rosaceae family orchard pollens, including peach, apricot, cherry, apple and pear tree pollens. Mass spectrometry was also performed to probe the main allergen component and cross-reactive protein. Sensitizations to peach pollen were found in both skin test and conjunctival challenge in the patients. Serum specific IgE to three pollens (peach, apricot and cherry) were detected through ELISA. When peach pollen used as solid phase, ELISA inhibition revealed other four kinds of pollens capable of inducing partial to strong inhibitions (45% to 87%), with the strongest inhibition belonging to apricot pollen (87%). Western blotting showed predominant IgE binding to a 20 KD protein among these pollens, which appeared to be a cross-reactive allergen component through western blotting inhibition. It was recognized as a protein homologous to glutathione s-transferase 16 from Arabidopsis thaliana. Peach and other Rosaceae family tree pollen may serve as a potential cause of IgE mediated occupational respiratory disease in orchard workers in north China.

  1. Forecasting plant phenology: evaluating the degree-day method for Betula pendula and Padus racemosa spring phases in Latvia

    NASA Astrophysics Data System (ADS)

    Bitāne, Māra; Kalvans, Andis; Kalvāne, Gunta

    2013-04-01

    A phenological and meteorological data series for period 1960-2009 were used to evaluate the usefulness of the degree-day approach for forecasting beginning of leaf unfolding and flowering for two tree species - silver birch Betula pendula and bird cherry Padus racemosa in Latvia (Kalvane et al, 2009). The degree days - sum of the active temperatures accumulated after the winter calm period - were calculated for a range of base temperatures (0, 3, 5, 7 and 10oC). The results were compared to the timing of the phenological events observed at eight stations in order to evaluate year-to-year as well as regional variations. Different base temperatures gave surprisingly similar results. The most appropriate threshold temperatures was found to be +7° C for both the budburst and flowering of silver birch, +3oC for the budburst of bird cherry and +5oC for flowering of bird cherry. Giving the most appropriate estimated base temperatures, it is found that the budburst of the Betula pendula takes place when 70 degree-days after the winter calm is accumulated and the flowering takes place when 85 degree days are accumulated. The respective degree day values for the Padus racemosa are 117 and 164. The conclusions should be considered as indicative because the exact locations of the phenological observations originating from the network of the volunteers are not known exactly. The research is supported by the European Union through the European Social Fund Mobilitas grant No MJD309 and grant No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060. Key words: phenology, degree day, Betula pendula, Padus racemosa, Latvia References: Kalvane, G., Romanovskaja, D., Briede, A., Baksiene, E. 2009. Influence of the climate change to the phenological changes in Latvia and Lithuania. Climate Research. Vol. 39, 209-219.

  2. The New Airborne Disease

    PubMed Central

    Goldsmith, John R.

    1970-01-01

    Community air pollution is the new airborne disease of our generation's communities. It is caused by the increasing use of fuel, associated with both affluence and careless waste. Photochemical air pollution of the California type involves newly defined atmospheric reactions, is due mostly to motor vehicle exhaust, is oxidizing, and produces ozone, plant damage, impairment of visibility and eye and respiratory symptoms. Aggravation of asthma, impairment of lung function among persons with chronic respiratory disease and a possible causal role, along with cigarette smoking in emphysema and chronic bronchitis, are some of the effects of photochemical pollution. More subtle effects of pollution include impairment of oxygen transport by the blood due to carbon monoxide and interference with porphyrin metabolism due to lead. Carbon monoxide exposures may affect survival of patients who are in hospitals because of myocardial infarction. While many uncertainties in pollution-health reactions need to be resolved, a large number of people in California have health impairment due to airborne disease of this new type. PMID:5485227

  3. [Hypersensitivity to pollen of Olea europea in patients with pollen allergy in Zadar County, Croatia].

    PubMed

    Skitarelić, Natasa; Mazzi, Antun; Skitarelić, Neven; Misulić, Josko; Vuletić, Ana

    2010-06-01

    Olive pollen is one of the most common respiratory allergens in the Mediterranean countries. The aim of this study was to establish the frequency of hypersensitivity to the pollen of Olea europea in pollen allergic patients in the County of Zadar. The study included 671 patients with pollen allergy; 61 % were male and 39 % female. 53.5 % were children aged from 4 to 14 years and 46.5 % adolescents and adults from 15 to 59 years. We took their case history, clinically examined them, and tested using the skin prick test and enzymo-immunologic UniCAP test for specific IgE antibodies. For statistical analysis we used the chi-square test. Hypersensitivity to Olea europea pollen was confirmed in 8.8 % patients with pollen allergy. Among them, the most prevalent symptom was rhinitis (58 %). Most hypersensitive patients were urban residents. Only 3 % patients lived on an island. Judging by available data, our findings show the lowest hypersensitivity to olive pollen in the Mediterranean. A comparison with our two earlier studies did not show any fluctuation in this kind of hypersensitivity.

  4. The revised edition of korean calendar for allergenic pollens.

    PubMed

    Oh, Jae-Won; Lee, Ha-Baik; Kang, Im-Joo; Kim, Seong-Won; Park, Kang-Seo; Kook, Myung-Hee; Kim, Bong-Seong; Baek, Hey-Sung; Kim, Joo-Hwa; Kim, Ja-Kyung; Lee, Dong-Jin; Kim, Kyu-Rang; Choi, Young-Jin

    2012-01-01

    The old calendar of pollens did not reflect current pollen distribution and concentrations that can be influenced by changes of weather and environment of each region in South Korea. A new pollen calendar of allergenic pollens was made based on the data on pollen concentrations obtained in eight regions nationwide between 1997 and 2009. The distribution of pollen was assessed every day at 8 areas (Seoul, Guri, Busan, Daegu, Jeonju, Kwangju, Kangneung, and Jeju) for 12 years between July 1, 1997 and June 30, 2009. Pollens were collected by using Burkard 7-day sampler (Burkard Manufacturing Co Ltd, UK). Pollens which were stained with Calberla's fuchsin staining solution were identified and counted. Pine became the highest pollen in May, and the pollen concentrations of oak and birch also became high. Ragweed appeared in the middle of August and showed the highest pollen concentration in the middles of September. Japanese hop showed a high concentration between the middle of August and the end of September, and mugwort appeared in the middles of August and its concentration increased up until early September. In Kangneung, birch appeared earlier, pine showed a higher pollen concentration than in the other areas. In Daegu, Oriental thuja and alder produced a large concentration of pollens. Pine produced a large concentration of pollens between the middle of April and the end of May. Weeds showed higher concentrations in September and mugwort appeared earlier than ragweed. In Busan the time of flowering is relatively early, and alder and Oriental thuja appeared earliest among all areas. In Kwangju, Oriental thuja and hazelnut appeared in early February. Japanese cedar showed the highest pollen concentration in March in Jeju. In conclusion, update information on pollen calendar in South Korea should be provided for allergic patients through the website to manage and prevent the pollinosis.

  5. Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina).

    PubMed

    Gassmann, María I; Pérez, Claudio F

    2006-05-01

    Long range transport of airborne pollen has been seldom studied in South America. Backward trajectories of Celtis and Nothofagus pollen grains trapped over a meteorological station outside Mar del Plata City were calculated in one-hour steps using the regional hybrid model developed by the NOAA (HYSPLIT 4.5) and the data of the NCEP filed in the NOAA server. Results showed that the observed trajectories agree with the location of vegetation sources of the collected tree species. In the case of Celtis, the transport was associated to anticyclones located east of the city, generating winds with a N-NE component, which produce pollen cloud advection from the Celtis forests located some tens of kilometers to the N and NE of the city. The sources of Nothofagus pollen correspond to a narrow strip on the Andes slopes between 39 degrees and 55 degrees S, at least 1100 km to the SW of Mar del Plata. The transport was associated to eastward displacement of the troughs corresponding to the Westerlies circulation and the presence of an anticyclone system that brings back Nothofagus pollen towards Mar del Plata area.

  6. Pollen Biology of Ornamental Ginger (Hedychium spp. J. Koenig)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An improved in vitro pollen germination assay was developed to assess the viability of stored Hedychium pollen. The effect of polyethylene glycol (PEG) (10, 15, and 20% w/v) on pollen germination and tube growth was evaluated for H. longicornutum and two commercial Hedychium cultivars, ‘Orange Brush...

  7. Hygroscopic weight gain of pollen grains from Juniperus species

    NASA Astrophysics Data System (ADS)

    Bunderson, Landon D.; Levetin, Estelle

    2015-05-01

    Juniperus pollen is highly allergenic and is produced in large quantities across Texas, Oklahoma, and New Mexico. The pollen negatively affects human populations adjacent to the trees, and since it can be transported hundreds of kilometers by the wind, it also affects people who are far from the source. Predicting and tracking long-distance transport of pollen is difficult and complex. One parameter that has been understudied is the hygroscopic weight gain of pollen. It is believed that juniper pollen gains weight as humidity increases which could affect settling rate of pollen and thus affect pollen transport. This study was undertaken to examine how changes in relative humidity affect pollen weight, diameter, and settling rate. Juniperus ashei, Juniperus monosperma, and Juniperus pinchotii pollen were applied to greased microscope slides and placed in incubation chambers under a range of temperature and humidity levels. Pollen on slides were weighed using an analytical balance at 2- and 6-h intervals. The size of the pollen was also measured in order to calculate settling rate using Stokes' Law. All pollen types gained weight as humidity increased. The greatest settling rate increase was exhibited by J. pinchotii which increased by 24 %.

  8. Identification of two highly specific pollen promoters using transcriptomic data.

    PubMed

    Muñoz-Strale, Daniela; León, Gabriel

    2014-10-01

    The mature pollen grain displays a highly specialized function in angiosperms. Accordingly, the male gametophyte development involves many specific biological activities, making it a complex and unique process in plants. In order to accomplish this, during pollen development, a massive transcriptomic remodeling takes place, indicating the switch from a sporophytic to a gametophytic program and involving the expression of many pollen specific genes. Using microarray databases we selected genes showing pollen-specific accumulation of their mRNAs and confirmed this through RT-PCR. We selected five genes (POLLEN SPECIFIC GENE1-5) to investigate the pollen specificity of their expression. Transcriptional fusions between the putative promoters of these genes and the uidA reporter gene in Arabidopsis confirmed the pollen specific expression for at least two of these genes. The expression of the cytotoxin Barnase controlled by these promoters generated pollen specific ablation and male sterility. Through the selection of pollen specific genes from public datasets, we were able to identify promoter regions that confer pollen expression. The use of the cytotoxin Barnase allowed us to demonstrate its expression is exclusively limited to the pollen. These new promoters provide a powerful tool for the expression of genes exclusively in pollen.

  9. Hygroscopic weight gain of pollen grains from Juniperus species.

    PubMed

    Bunderson, Landon D; Levetin, Estelle

    2015-05-01

    Juniperus pollen is highly allergenic and is produced in large quantities across Texas, Oklahoma, and New Mexico. The pollen negatively affects human populations adjacent to the trees, and since it can be transported hundreds of kilometers by the wind, it also affects people who are far from the source. Predicting and tracking long-distance transport of pollen is difficult and complex. One parameter that has been understudied is the hygroscopic weight gain of pollen. It is believed that juniper pollen gains weight as humidity increases which could affect settling rate of pollen and thus affect pollen transport. This study was undertaken to examine how changes in relative humidity affect pollen weight, diameter, and settling rate. Juniperus ashei, Juniperus monosperma, and Juniperus pinchotii pollen were applied to greased microscope slides and placed in incubation chambers under a range of temperature and humidity levels. Pollen on slides were weighed using an analytical balance at 2- and 6-h intervals. The size of the pollen was also measured in order to calculate settling rate using Stokes' Law. All pollen types gained weight as humidity increased. The greatest settling rate increase was exhibited by J. pinchotii which increased by 24 %.

  10. 7 CFR 201.78 - Pollen control for hybrids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Pollen control for hybrids. 201.78 Section 201.78... REGULATIONS Additional Requirements for the Certification of Plant Materials of Certain Crops § 201.78 Pollen... branches, or any combination thereof, shedding pollen. (c) Sorghum. Shedders in the seed parent, at any...

  11. 7 CFR 201.78 - Pollen control for hybrids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Pollen control for hybrids. 201.78 Section 201.78... REGULATIONS Additional Requirements for the Certification of Plant Materials of Certain Crops § 201.78 Pollen... branches, or any combination thereof, shedding pollen. (c) Sorghum. Shedders in the seed parent, at any...

  12. 7 CFR 201.78 - Pollen control for hybrids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Pollen control for hybrids. 201.78 Section 201.78... REGULATIONS Additional Requirements for the Certification of Plant Materials of Certain Crops § 201.78 Pollen... branches, or any combination thereof, shedding pollen. (c) Sorghum. Shedders in the seed parent, at any...

  13. 7 CFR 201.78 - Pollen control for hybrids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Pollen control for hybrids. 201.78 Section 201.78... REGULATIONS Additional Requirements for the Certification of Plant Materials of Certain Crops § 201.78 Pollen... branches, or any combination thereof, shedding pollen. (c) Sorghum. Shedders in the seed parent, at any...

  14. 7 CFR 201.78 - Pollen control for hybrids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pollen control for hybrids. 201.78 Section 201.78... REGULATIONS Additional Requirements for the Certification of Plant Materials of Certain Crops § 201.78 Pollen... branches, or any combination thereof, shedding pollen. (c) Sorghum. Shedders in the seed parent, at any...

  15. Effects of NO2 and Ozone on Pollen Allergenicity

    PubMed Central

    Frank, Ulrike; Ernst, Dieter

    2016-01-01

    This mini-review summarizes the available data of the air pollutants NO2 and ozone on allergenic pollen from different plant species, focusing on potentially allergenic components of the pollen, such as allergen content, protein release, IgE-binding, or protein modification. Various in vivo and in vitro studies on allergenic pollen are shown and discussed. PMID:26870080

  16. Aerodynamics of saccate pollen and its implications for wind pollination.

    PubMed

    Schwendemann, Andrew B; Wang, George; Mertz, Meredith L; McWilliams, Ryan T; Thatcher, Scott L; Osborn, Jeffrey M

    2007-08-01

    Pollen grains of many wind-pollinated plants contain 1-3 air-filled bladders, or sacci. Sacci are thought to help orient the pollen grain in the pollination droplet. Sacci also increase surface area of the pollen grain, yet add minimal mass, thereby increasing dispersal distance; however, this aerodynamic hypothesis has not been tested in a published study. Using scanning electron and transmission electron microscopy, mathematical modeling, and the saccate pollen of three extant conifers with structurally different pollen grains (Pinus, Falcatifolium, Dacrydium), we developed a computational model to investigate pollen flight. The model calculates terminal settling velocity based on structural characters of the pollen grain, including lengths, widths, and depths of the main body and sacci; angle of saccus rotation; and thicknesses of the saccus wall, endoreticulations, intine, and exine. The settling speeds predicted by the model were empirically validated by stroboscopic photography. This study is the first to quantitatively demonstrate the adaptive significance of sacci for the aerodynamics of wind pollination. Modeling pollen both with and without sacci indicated that sacci can reduce pollen settling speeds, thereby increasing dispersal distance, with the exception of pollen grains having robust endoreticulations and those with thick saccus walls. Furthermore, because the mathematical model is based on structural characters and error propagation methods show that the model yields valid results when sample sizes are small, the flight dynamics of fossil pollen can be investigated. Several fossils were studied, including bisaccate (Pinus, Pteruchus, Caytonanthus), monosaccate (Gothania), and nonsaccate (Monoletes) pollen types.

  17. Glutathione synthesis is essential for pollen germination in vitro

    PubMed Central

    2011-01-01

    Background The antioxidant glutathione fulfills many important roles during plant development, growth and defense in the sporophyte, however the role of this important molecule in the gametophyte generation is largely unclear. Bioinformatic data indicate that critical control enzymes are negligibly transcribed in pollen and sperm cells. Therefore, we decided to investigate the role of glutathione synthesis for pollen germination in vitro in Arabidopsis thaliana accession Col-0 and in the glutathione deficient mutant pad2-1 and link it with glutathione status on the subcellular level. Results The depletion of glutathione by buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, reduced pollen germination rates to 2-5% compared to 71% germination in wildtype controls. The application of reduced glutathione (GSH), together with BSO, restored pollen germination and glutathione contents to control values, demonstrating that inhibition of glutathione synthesis is responsible for the decrease of pollen germination in vitro. The addition of indole-3-acetic acid (IAA) to media containing BSO restored pollen germination to control values, which demonstrated that glutathione depletion in pollen grains triggered disturbances in auxin metabolism which led to inhibition of pollen germination. Conclusions This study demonstrates that glutathione synthesis is essential for pollen germination in vitro and that glutathione depletion and auxin metabolism are linked in pollen germination and early elongation of the pollen tube, as IAA addition rescues glutathione deficient pollen. PMID:21439079

  18. Diversity and conservation in maize pollen: Phenotypes and transcripts

    EPA Science Inventory

    In addition to its crucial role in seed production, pollen serves as a vector for gene flow between plant populations. Recently, pollen was identified as a mechanism for introduction of transgenes into non-transgenic populations. To investigate the genetic basis for pollen fitn...

  19. Pollen Germination--A Challenging and Educational Experiment.

    ERIC Educational Resources Information Center

    Tse, H. L. H.; Chan, G. Y. S.

    2001-01-01

    Summarizes the recent research on pollen germination and introduces some basic studies on pollen tube growth that can be conducted in a secondary school laboratory. Discusses the use of a light microscope and refrigerator to study pollen. (Contains 13 references.) (Author/YDS)

  20. Immunochemical quantitation of airborne short ragweed, Alternaria, antigen E, and Alt-I allergens: a two-year prospective study

    SciTech Connect

    Agarwal, M.K.; Swanson, M.C.; Reed, C.E.; Yunginger, J.W.

    1983-07-01

    We conducted a 2 yr prospective study to measure atmospheric short ragweed and Alternaria allergens by RAST inhibition analysis of eluates from filter sheets exposed in air samplers. In both years ragweed pollen and Alternaria spore counts, obtained with a rotoslide sampler, correlated significantly with immunochemically measured airborne ragweed and Alternaria allergenic activity. Airborne levels of the purified allergens AgE and Alt-I were successfully quantitated; these levels correlated closely with total airborne ragweed and Alternaria allergenic activities, respectively, and also with ragweed pollen and Alternaria spore counts. Eluates from filter sheets exposed during late summer and fall produced positive wheal-and-flare skin tests in patients with fall hay fever. In both years immunochemical measurements of allergenic activity due to airborne short ragweed correlated closely with mean symptom score indices in groups of short ragweed-sensitive individuals. Measurable levels of atmospheric ragweed allergenic activity were noted before and after the ragweed pollination season, and at these times we noted small increases in mean symptom score indices in the short ragweed-sensitive groups. Thus immunochemical analyses provide important information concerning levels of environmental allergens.