Science.gov

Sample records for airborne betula pollen

  1. Quantification of airborne birch (Betula sp.) pollen grains and allergens in Krakow.

    PubMed

    Madeja, Jacek; Wypasek, Ewa; Plytycz, Barbara; Sarapata, Krzysztof; Harmata, Krystyna

    2005-01-01

    Birch (Betula sp.) pollen grains are the main cause of seasonal allergies in northern and central Europe. The allergen particles released from the grains are often well distributed in the air. Due to their size, airborne protein particles can easily penetrate into the lower parts of the respiratory airways and may lead to symptoms of asthma. The purpose of this paper was to quantify both Betula sp. pollen grains and allergens in the air. Materials for the investigation were collected in the spring of 2003 with two Hirst-type pollen volumetric traps. Tapes from one trap served for routine birch pollen grain counts, while those from the second for the immunodetection of birch allergens. As birch pollen allergen concentration is seen as dark spots on X-ray films densitometric measurements of the spots were used to quantify birch-pollen antigen concentrations in the air. In most instances, birch pollen counts corresponded with birch pollen allergen levels. However, on several occasions outside the pollen season, only grains or only allergens were detected. Apart from sampling variability, this could be due to faulty/dead pollen grains or submicronic airborne allergen particles. Counting intact pollen grains and antibody-based detection of allergen molecules are efficient tools in controlled allergen avoidance.

  2. Analysis of Airborne Betula Pollen in Finland; a 31-Year Perspective

    PubMed Central

    Yli-Panula, Eija; Fekedulegn, Desta Bey; Green, Brett James; Ranta, Hanna

    2009-01-01

    In this 31-year retrospective study, we examined the influence of meteorology on airborne Betula spp. (birch) pollen concentrations in Turku, Finland. The seasonal incidence of airborne birch pollen in Turku occurred over a brief period each year during spring (April 30 – May 31). Mean peak concentrations were restricted to May (May 5 to 13). Statistically significant increases in the annual accumulated birch pollen sum and daily maximum values were observed over the study period. Birch pollen counts collected in April were retrospectively shown to increase over the duration of the study. Increases in April temperature values were also significantly associated with the earlier onset of the birch pollen season. Furthermore, the number of days where daily birch pollen concentrations exceeded 10 and 1,000 grains/m3 also increased throughout the study period. These data demonstrate that increases in temperature, especially during months preceding the onset of the birch pollen season, favor preseason phenological development and pollen dispersal. Birch pollen derived from other geographical locations may also contribute to the aerospora of Turku, Finland. To date, the public health burden associated with personal exposure to elevated birch pollen loads remains unclear and is the focus of future epidemiological research. PMID:19578456

  3. Influence of meteorological parameters and air pollution on hourly fluctuation of birch (Betula L.) and ash (Fraxinus L.) airborne pollen.

    PubMed

    Puc, Małgorzata

    2012-01-01

    Pollen grains are one of the most important groups of atmospheric biological particles that originate allergic processes. Knowledge of intradiurnal variation of the atmospheric pollen may be useful for the treatment and prevention of pollen allergies. Intradiurnal fluctuation of hourly pollen counts in 24 h are related to the daily rhythm of anther opening, and modified by various interacting factors. Flowering and pollen production of individual species are influenced by genetic, phenological, ecological, meteorological and climatic factors. Estimation of the intradiurnal variability in the pollen count permits evaluation of the threat posed by allergens over a given area. Measurements performed in Szczecin over a period of 7 years (2006-2012) permitted analysis of hourly variation of the pollen count of birch (Betula) and ash (Fraxinus) in 24 h, and evaluation of the impact of weather conditions and the concentration of gas air pollutants on the intradiurnal patterns of both taxa. Aerobiological monitoring was conducted using a Hirst volumetric trap (Lanzoni VPPS 2000). Consecutive phases during the day were defined as 1, 5, 25, 50, 75, 95, 99% of annual total pollen. The analysis revealed that 50% of total daily pollen was noted at 14:00 for Betula and Fraxinus. The hourly distribution of birch pollen count skewed to the left and the majority of pollen of this taxon appears in the air in the first 12 hours of the day. However, for ash, the hourly distribution of pollen count skewed to the right. Statistically significant correlation was noted between the Betula and Fraxinus pollen concentration and the mean air temperature, relative humidity, wind speed, air pressure, total radiation and nitrogen oxides (NO(x)).

  4. The effect of meteorological factors on airborne Betula pollen concentrations in Lublin (Poland).

    PubMed

    Piotrowska, Krystyna; Kubik-Komar, Agnieszka

    2012-12-01

    The present study investigated the pattern of the birch atmospheric pollen seasons in Lublin in the period 2001-2010. Pollen monitoring was conducted using a Lanzoni VPPS 2000 sampler. The atmospheric pollen seasons were determined with the 98% method. Regression analysis was used to determine correlations between meteorological conditions and the pattern of the birch pollen season. On average, the birch pollen season started on 12 April, ended on 13 May, and lasted 32 days. The peak value and the Seasonal Pollen Index showed the greatest variation in particular years. All the seasons were right-skewed. During the study years, a trend was found towards earlier occurrence of the seasonal peak. Regression equations were developed for the following parameters of the atmospheric pollen season: start, duration, peak value and average pollen concentration during the season. The obtained model fit was at a level of 64-81%. Statistical analysis shows that minimum temperature of February and March and total rainfall in June in the year preceding pollen release have the greatest effect on the birch atmospheric pollen season in Lublin. Low temperatures in February promote the occurrence of high pollen concentrations.

  5. Short-term prediction of Betula airborne pollen concentration in Vigo (NW Spain) using logistic additive models and partially linear models

    NASA Astrophysics Data System (ADS)

    Cotos-Yáñez, Tomas R.; Rodríguez-Rajo, F. J.; Jato, M. V.

    Betula pollen is a common cause of pollinosis in localities in NW Spain and between 13% and 60% of individuals who are immunosensitive to pollen grains respond positively to its allergens. It is important in the case of all such people to be able to predict pollen concentrations in advance. We therefore undertook an aerobiological study in the city of Vigo (Pontevedra, Spain) from 1995 to 2001, using a Hirst active-impact pollen trap (VPPS 2000) situated in the city centre. Vigo presents a temperate maritime climate with a mean annual temperature of 14.9 °C and 1,412 mm annual total precipitation. This paper analyses two ways of quantifying the prediction of pollen concentration: first by means of a generalized additive regression model with the object of predicting whether the series of interest exceeds a certain threshold; second using a partially linear model to obtain specific prediction values for pollen grains. Both models use a self-explicative part and another formed by exogenous meteorological factors. The models were tested with data from 2001 (year in which the total precipitation registered was almost twice the climatological average overall during the flowering period), which were not used in formulating the models. A highly satisfactory classification and good forecasting results were achieved with the first and second approaches respectively. The estimated line taking into account temperature and a calm S-SW wind, corresponds to the real line recorded during 2001, which gives us an idea of the proposed model's validity.

  6. Copenhagen--a significant source of birch (Betula) pollen?

    PubMed

    Skjøth, Carsten Ambelas; Sommer, Janne; Brandt, Jørgen; Hvidberg, Martin; Geels, Camilla; Hansen, Kaj Mantzius; Hertel, Ole; Frohn, Lise M; Christensen, Jesper H

    2008-07-01

    Current aerobiological research applies the hypothesis that the main source of atmospheric birch (Betula) pollen is forest trees. Our results indicate that the measured levels in Copenhagen are not only due to birch trees in Danish forests but that the urban areas also seem to be a significant source of birch pollen. A number of episodes in 2003 with enhanced pollen levels in Copenhagen seem to be associated with parks and gardens inside and just outside the city. Our results also indicate one long-range transport episode from remote sources in Poland and Germany. Finally, our results show that the pollen levels vary considerably over the day and geographically between Copenhagen and the city of Roskilde, 40 km away. We suggest, that these differences in time and space in the pollen levels are mapped using an integrated monitoring strategy.

  7. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in US

    PubMed Central

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G.

    2013-01-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause Allergic Airway Disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The Growing Degree Hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994–2000 and 2001–2011 showed that birch and oak trees were observed to flower 1–2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6%–248%. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be March 1, 8°C, and 1879 hours respectively for birch; March 1, 5°C, and 4760 hours respectively for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions. PMID:23793955

  8. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States.

    PubMed

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G

    2014-07-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994-2000 and 2001-2011 showed that birch and oak trees were observed to flower 1-2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6%-248%. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.

  9. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G.

    2014-07-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994-2000 and 2001-2011 showed that birch and oak trees were observed to flower 1-2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6 %-248 %. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.

  10. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  11. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  12. Are the birch trees in Southern England a source of Betula pollen for North London?

    PubMed

    Skjøth, C A; Smith, M; Brandt, J; Emberlin, J

    2009-01-01

    Birch pollen is highly allergenic. Knowledge of daily variations, atmospheric transport and source areas of birch pollen is important for exposure studies and for warnings to the public, especially for large cities such as London. Our results show that broad-leaved forests with high birch tree densities are located to the south and west of London. Bi-hourly Betula pollen concentrations for all the days included in the study, and for all available days with high birch pollen counts (daily average birch pollen counts>80 grains/m3), show that, on average, there is a peak between 1400 hours and 1600 hours. Back-trajectory analysis showed that, on days with high birch pollen counts (n=60), 80% of air masses arriving at the time of peak diurnal birch pollen count approached North London from the south in a 180 degree arc from due east to due west. Detailed investigations of three Betula pollen episodes, with distinctly different diurnal patterns compared to the mean daily cycle, were used to illustrate how night-time maxima (2200-0400 hours) in Betula pollen counts could be the result of transport from distant sources or long transport times caused by slow moving air masses. We conclude that the Betula pollen recorded in North London could originate from sources found to the west and south of the city and not just trees within London itself. Possible sources outside the city include Continental Europe and the Betula trees within the broad-leaved forests of Southern England.

  13. Are the Pyrenees a barrier for the transport of birch (Betula) pollen from Central Europe to the Iberian Peninsula?

    PubMed

    Izquierdo, Rebeca; Alarcón, Marta; Mazón, Jordi; Pino, David; De Linares, Concepción; Aguinagalde, Xabier; Belmonte, Jordina

    2017-01-01

    This work provides a first assessment of the possible barrier effect of the Pyrenees on the atmospheric transport of airborne pollen from Europe to the North of the Iberian Peninsula. Aerobiological data recorded in three Spanish stations located at the eastern, central and western base of the Pyrenees in the period 2004-2014 have been used to identify the possible long range transport episodes of Betula pollen. The atmospheric transport routes and the origin regions have been established by means of trajectory analysis and a source receptor model. Betula pollen outbreaks were associated with the meteorological scenario characterized by the presence of a high-pressure system overm over Morocco and Southern Iberian Peninsula. France and Central Europe have been identified as the probable source areas of Betula pollen that arrives to Northern Spain. However, the specific source areas are mainly determined by the particular prevailing atmospheric circulation of each location. Finally, the Weather Research and Forecasting model highlighted the effect of the orography on the atmospheric transport patterns, showing paths through the western and easternmost lowlands for Vitoria-Gasteiz and Bellaterra respectively, and the direct impact of air flows over Vielha through the Garona valley. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Forecasting model of Corylus, Alnus, and Betula pollen concentration levels using spatiotemporal correlation properties of pollen count.

    PubMed

    Nowosad, Jakub; Stach, Alfred; Kasprzyk, Idalia; Weryszko-Chmielewska, Elżbieta; Piotrowska-Weryszko, Krystyna; Puc, Małgorzata; Grewling, Łukasz; Pędziszewska, Anna; Uruska, Agnieszka; Myszkowska, Dorota; Chłopek, Kazimiera; Majkowska-Wojciechowska, Barbara

    The aim of the study was to create and evaluate models for predicting high levels of daily pollen concentration of Corylus, Alnus, and Betula using a spatiotemporal correlation of pollen count. For each taxon, a high pollen count level was established according to the first allergy symptoms during exposure. The dataset was divided into a training set and a test set, using a stratified random split. For each taxon and city, the model was built using a random forest method. Corylus models performed poorly. However, the study revealed the possibility of predicting with substantial accuracy the occurrence of days with high pollen concentrations of Alnus and Betula using past pollen count data from monitoring sites. These results can be used for building (1) simpler models, which require data only from aerobiological monitoring sites, and (2) combined meteorological and aerobiological models for predicting high levels of pollen concentration.

  15. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula

    NASA Astrophysics Data System (ADS)

    Nowosad, Jakub

    2016-06-01

    Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries.

  16. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula.

    PubMed

    Nowosad, Jakub

    2016-06-01

    Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries.

  17. Comparison of Alnus, Corylus and Betula pollen counts in Lublin (Poland) and Skien (Norway).

    PubMed

    Piotrowska, Krystyna

    2004-01-01

    Symptoms of pollen allergy in springtime in Middle and Northern Europe are mainly caused by pollen grains of birch, hazel and alder. The aim of the present study was the pollen fall comparison of the mentioned taxa in Lublin (Poland) and Skien (Norway). These sites are located approximately 1,200 km away apart by air. The pollen monitoring was carried out by gravimetric method in 1999-2000. The start and end of pollen seasons were defined by the 90% method. The beginning of pollen seasons for Corylus and Betula were observed 1-3 weeks earlier in Lublin than in Skien, but pollen grains of Alnus appeared simultaneously in both towns. In 1999, annual totals of Alnus, Corylus and Betula pollen grains were considerably less numerous in Skien than in Lublin. No important differences were observed among the pollen fall amounts of the mentioned taxa in 2000. The maximum values of pollen grains were defined in different terms. The results of investigations differed as regards the years compared as well as the sites.

  18. Fifteen years' record of airborne allergenic pollen and meteorological parameters in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Gioulekas, Dimitrios; Balafoutis, Christos; Damialis, Athanasios; Papakosta, Despoina; Gioulekas, George; Patakas, Dimitrios

    . A pollen calendar has been constructed for the area of Thessaloniki and relationships between pollen transport and meteorological parameters have been assessed. Daily airborne pollen records were collected over a 15-year period (1987-2001), using a Burkard continuous volumetric pollen trap, located in the centre of the city. Sixteen allergenic pollen types were identified. Simultaneously, daily records of five main meteorological parameters (mean air temperature, relative humidity, rainfall, sunshine, wind speed) were made, and then correlated with fluctuations of the airborne pollen concentrations. For the first time in Greece, a pollen calendar has been constructed for 16 pollen types, from which it appears that 24.9% of the total pollen recorded belong to Cupressaceae, 20.8% to Quercus spp., 13.6% to Urticaceae, 9.1% to Oleaceae, 8.9% to Pinaceae, 6.3% to Poaceae, 5.4% to Platanaceae, 3.0% to Corylus spp., 2.5% to Chenopodiaceae and 1.4% to Populus spp. The percentages of Betula spp., Asteraceae (Artemisia spp. and Ambrosia spp.), Salix spp., Ulmaceae and Alnus spp. were each lower than 1%. A positive correlation between pollen transport and both mean temperature and sunshine was observed, whereas usually no correlation was found between pollen and relative humidity or rainfall. Finally, wind speed was generally found to have a significant positive correlation with the concentrations of 8 pollen types. For the first time in the area of Thessaloniki, and more generally in Greece, 15-year allergenic pollen records have been collected and meteorological parameters have been recorded. The airborne pollen concentration is strongly influenced by mean air temperature and sunshine duration. The highest concentrations of pollen grains are observed during spring (May).

  19. Airborne pollen in Funchal city, (Madeira Island, Portugal) - First pollinic calendar and allergic risk assessment.

    PubMed

    Camacho, Irene Câmara

    2015-01-01

    Nowadays, pollen calendars are useful tools for clinical guidance intended for allergy sufferers, because they can be used to prevent and manage allergic respiratory diseases, thus improving the quality of life. An aeropalinological study was performed in the city of Funchal with the purpose of establishing a pollen calendar and determining allergic risk, based on a seven year study (2003-2009). The airborne pollen monitoring was carried out with a Hirst type volumetric spore trap, following well-established guidelines. The mean annual pollen index was 1,635.09 and comprised 42 different pollen types. Airborne pollen levels were higher between March - June, accounting for 57.9% of the annual counts. Arboreal pollen grains (52.72%) prevailed in the atmosphere together with herbs and grasses (44.64%), while fern spores (2.29%) and unidentified pollen (0.35%) were scarce. The main pollen types were Urticaceae (20.64%), Poaceae (16.02%), Cupressaceae (13.61%), Pinaceae (9.07%), Myrtaceae (5.93%) and Ericaceae (5.02%). The pollen calendar comprised a total of 14 taxa and is similar to Mediterranean regions, with the exception of Olea europaea, Quercus sp., Betula sp. and Alnus sp. pollen types which are rare or absent. The main pollen season of major pollen taxa is significantly longer in Funchal (on average 239 days) than other European sites, especially for Urticaceae and Poaceae, but the pollen peaks were substantially lower. The pollen calendar for Funchal is the first ever created for Madeira region. Taking into account the low pollen index and number of allergy-risk days recorded (39 days in 7 years), the air quality of Funchal can be considered good.

  20. Temporal and spatiotemporal autocorrelation of daily concentrations of Alnus, Betula, and Corylus pollen in Poland.

    PubMed

    Nowosad, J; Stach, A; Kasprzyk, I; Grewling, Ł; Latałowa, M; Puc, M; Myszkowska, D; Weryszko-Chmielewska, E; Piotrowska-Weryszko, K; Chłopek, K; Majkowska-Wojciechowska, B; Uruska, A

    The aim of the study was to determine the characteristics of temporal and space-time autocorrelation of pollen counts of Alnus, Betula, and Corylus in the air of eight cities in Poland. Daily average pollen concentrations were monitored over 8 years (2001-2005 and 2009-2011) using Hirst-designed volumetric spore traps. The spatial and temporal coherence of data was investigated using the autocorrelation and cross-correlation functions. The calculation and mathematical modelling of 61 correlograms were performed for up to 25 days back. The study revealed an association between temporal variations in Alnus, Betula, and Corylus pollen counts in Poland and three main groups of factors such as: (1) air mass exchange after the passage of a single weather front (30-40 % of pollen count variation); (2) long-lasting factors (50-60 %); and (3) random factors, including diurnal variations and measurements errors (10 %). These results can help to improve the quality of forecasting models.

  1. Temporal variability in airborne pollen concentrations.

    PubMed

    Raynor, G S; Hayes, J V; Ogden, E C

    1976-06-01

    Tests were conducted to determine the relationship between concentrations of airborne pollens and sampling time, using sequential rotoslide samplers at urban and rural locations. Short-period data showed an increase in variability with time between samples. Two-hour data showed a stronger trend for the first 12 hours but better agreement as the time between samples approached one day.

  2. Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland)

    NASA Astrophysics Data System (ADS)

    Puc, Małgorzata

    2012-03-01

    Birch pollen is one of the main causes of allergy during spring and early summer in northern and central Europe. The aim of this study was to create a forecast model that can accurately predict daily average concentrations of Betula sp. pollen grains in the atmosphere of Szczecin, Poland. In order to achieve this, a novel data analysis technique—artificial neural networks (ANN)—was used. Sampling was carried out using a volumetric spore trap of the Hirst design in Szczecin during 2003-2009. Spearman's rank correlation analysis revealed that humidity had a strong negative correlation with Betula pollen concentrations. Significant positive correlations were observed for maximum temperature, average temperature, minimum temperature and precipitation. The ANN resulted in multilayer perceptrons 366 8: 2928-7-1:1, time series prediction was of quite high accuracy (SD Ratio between 0.3 and 0.5, R > 0.85). Direct comparison of the observed and calculated values confirmed good performance of the model and its ability to recreate most of the variation.

  3. Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland).

    PubMed

    Puc, Małgorzata

    2012-03-01

    Birch pollen is one of the main causes of allergy during spring and early summer in northern and central Europe. The aim of this study was to create a forecast model that can accurately predict daily average concentrations of Betula sp. pollen grains in the atmosphere of Szczecin, Poland. In order to achieve this, a novel data analysis technique--artificial neural networks (ANN)--was used. Sampling was carried out using a volumetric spore trap of the Hirst design in Szczecin during 2003-2009. Spearman's rank correlation analysis revealed that humidity had a strong negative correlation with Betula pollen concentrations. Significant positive correlations were observed for maximum temperature, average temperature, minimum temperature and precipitation. The ANN resulted in multilayer perceptrons 366 8: 2928-7-1:1, time series prediction was of quite high accuracy (SD Ratio between 0.3 and 0.5, R > 0.85). Direct comparison of the observed and calculated values confirmed good performance of the model and its ability to recreate most of the variation.

  4. Spatial variability in airborne pollen concentrations.

    PubMed

    Raynor, G S; Ogden, E C; Hayes, J V

    1975-03-01

    Tests were conducted to determine the relationship between airborne pollen concentrations and distance. Simultaneous samples were taken in 171 tests with sets of eight rotoslide samplers spaced from one to 486 M. apart in straight lines. Use of all possible pairs gave 28 separation distances. Tests were conducted over a 2-year period in urban and rural locations distant from major pollen sources during both tree and ragweed pollen seasons. Samples were taken at a height of 1.5 M. during 5-to 20-minute periods. Tests were grouped by pollen type, location, year, and direction of the wind relative to the line. Data were analyzed to evaluate variability without regard to sampler spacing and variability as a function of separation distance. The mean, standard deviation, coefficient of variation, ratio of maximum to the mean, and ratio of minimum to the mean were calculated for each test, each group of tests, and all cases. The average coefficient of variation is 0.21, the maximum over the mean, 1.39 and the minimum over the mean, 0.69. No relationship was found with experimental conditions. Samples taken at the minimum separation distance had a mean difference of 18 per cent. Differences between pairs of samples increased with distance in 10 of 13 groups. These results suggest that airborne pollens are not always well mixed in the lower atmosphere and that a sample becomes less representative with increasing distance from the sampling location.

  5. The airborne pollen calendar for Lublin, central-eastern Poland.

    PubMed

    Piotrowska-Weryszko, Krystyna; Weryszko-Chmielewska, Elżbieta

    2014-01-01

    An aerobiological study was conducted to investigate the quantity and quality of pollen in the atmosphere of Lublin in central-eastern Poland. Pollen monitoring was carried out in the period 2001-2012 using a Hirst-type volumetric spore trap. The atmospheric pollen season in Lublin lasted, on average, from the end of January to the beginning of October. The mean air temperature during the study period was found to be higher by 1.1 °C than the mean temperature in the period 1951-2000. 56 types of pollen of plants belonging to 41 families were identified. 28 types represented woody plants and 28 represented herbaceous plants. The study distinguished 5 plant taxa the pollen of which was present most abundantly in the air of Lublin, which altogether accounted for 73.4%: Betula, Urtica, Pinus, Poaceae, and Alnus. The mean annual pollen index was 68 706; the largest amount of pollen was recorded in April and accounted for 33.3% of the annual pollen index. The pollen calendar included 28 allergenic plant taxa. The pollen of woody plants had the highest percentage in the pollen spectrum, on average 58.4%. The parameters of the pollen calendar for Lublin were compared with the calendar for central-eastern Europe with regard to the start of the pollen season of particular taxa. The pollen calendar for Lublin was demonstrated to show greater similarity to the calendar for Münster (Germany) than to the calendar for Bratislava (Slovakia).

  6. Airborne birch pollen antigens in different particle sizes.

    PubMed

    Rantio-Lehtimäki, A; Viander, M; Koivikko, A

    1994-01-01

    Two particle samplers for ambient air, situated together: a static size-selective bio-aerosol sampler (SSBAS) and a Burkard pollen and spore trap were compared in sampling intact birch pollen grains through one flowering period of Betula (a total of 44 days). The SSBAS trapped pollen grains three times more efficiently than the Burkard trap, but the variations in pollen counts were significantly correlated. In contrast, birch pollen antigenic activity and the pollen count in the Burkard samples were not closely correlated. The antigenic concentration was occasionally high both before and after the pollination period. There was a high birch pollen antigenic activity in particle size classes where intact pollen grains were absent, even on days when the pollen count was very low. Correspondingly, on days with high birch pollen counts in the air, pollen antigenic activity was on several occasions low, indicating that pollen grains were empty of antigenic material. The small particle size classes are especially important to allergic patients because they are able to penetrate immediately into the alveoli and provoke asthmatic reactions. Therefore, aerobiological information systems based on pollen and spore counts should be supplemented with information concerning antigenic activities in the air.

  7. Pollen Raman spectra database: application to the identification of airborne pollen.

    PubMed

    Guedes, A; Ribeiro, H; Fernández-González, M; Aira, M J; Abreu, I

    2014-02-01

    Raman microspectroscopy allows a non-destructive identification of airborne particles. However, the identification of particles such as pollen is hindered by the absence of a spectral library. Although reference spectra of pollen have been published before, they have always been limited to a certain number of species. In this work, Raman spectra of 34 pollen types are presented and were used to build a pollen spectra primary library. Afterward, the applicability of this database for detecting and identifying pollen in airborne samples was tested. Airborne pollen samples collected during April, May and August were compared with blank pollen spectra by means of Hit Quality Index. Although a much larger library would be required, our results showed that all first hits correspond to the same blank pollen species of the questioned sample from the air. This possibility is an innovative idea and a promising line of investigation for future RAMAN technology development in the area of aerobiology.

  8. Mismatch in aeroallergens and airborne grass pollen concentrations

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Hernández-Ceballos, M. A.; Galán, C.

    2016-11-01

    An accurate estimation of the allergen concentration in the atmosphere is essential for allergy sufferers. The major cause of pollinosis all over Europe is due to grass pollen and Phl p 5 has the highest rates of sensitization (>50%) in patients with grass pollen-induced allergy. However, recent research has shown that airborne pollen does not always offer a clear indicator of exposure to aeroallergens. This study aims to evaluate relations between airborne grass pollen and Phl p 5 concentrations in Córdoba (southern Spain) and to study how meteorological parameters influence these atmospheric records. Monitoring was carried out from 2012 to 2014. Hirst-type volumetric spore trap was used for pollen collection, following the protocol recommended by the Spanish Aerobiology Network (REA). Aeroallergen sampling was performed using a low-volume cyclone sampler, and allergenic particles were quantified by ELISA assay. Besides, the influence of main meteorological factors on local airborne pollen and allergen concentrations was surveyed. A significant correlation was observed between grass pollen and Phl p 5 allergen concentrations during the pollen season, but with some sporadic discrepancy episodes. The cumulative annual Pollen Index also varied considerably. A significant correlation has been obtained between airborne pollen and minimum temperature, relative humidity and precipitation, during the three studied years. However, there is no clear relationship between allergens and weather variables. Our findings suggest that the correlation between grass pollen and aeroallergen Phl p 5 concentrations varies from year-to-year probably related to a complex interplay of meteorological variables.

  9. Predicting onset and duration of airborne allergenic pollen season in the United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Bielory, Leonard; Cai, Ting; Mi, Zhongyuan; Georgopoulos, Panos

    2015-02-01

    Allergenic pollen is one of the main triggers of Allergic Airway Disease (AAD) affecting 5%-30% of the population in industrialized countries. A modeling framework has been developed using correlation and collinearity analyses, simulated annealing, and stepwise regression based on nationwide observations of airborne pollen counts and climatic factors to predict the onsets and durations of allergenic pollen seasons of representative trees, weeds and grass in the contiguous United States. Main factors considered are monthly, seasonal and annual mean temperatures and accumulative precipitations, latitude, elevation, Growing Degree Day (GDD), Frost Free Day (FFD), Start Date (SD) and Season Length (SL) in the previous year. The estimated mean SD and SL for birch (Betula), oak (Quercus), ragweed (Ambrosia), mugwort (Artemisia) and grass (Poaceae) pollen season in 1994-2010 are mostly within 0-6 days of the corresponding observations for the majority of the National Allergy Bureau (NAB) monitoring stations across the contiguous US. The simulated spatially resolved maps for onset and duration of allergenic pollen season in the contiguous US are consistent with the long term observations.

  10. Airborne pollen survey in Bangkok, Thailand: A 35-year update.

    PubMed

    Songnuan, Wisuwat; Bunnag, Chaweewan; Soontrapa, Kitipong; Pacharn, Punchama; Wangthan, Unchalee; Siriwattanakul, Umaporn; Malainual, Nat

    2015-09-01

    Pollen allergy is a growing global health issue. While airborne pollen counts are reported daily in several countries, such information is lacking in Thailand. This study aimed to survey airborne pollens at five sites in Bangkok, comparing data with the previous study performed 35 years ago in 1980. Sample collection was done using the ROTOROD® sampler by exposing the rods for one hour each day twice a week from May 2012-April 2013. Overall, we found that the average pollen count was relatively high throughout the year, at an average of 242 grains/m3. The highest peak was found in September (700 grains/m3). Interestingly, we found that the pollen count was noticeably lower in 2012-2013 when compared to the 1980 study. We also observed the approximate shift of pollen peaks about one to two months earlier in the 2012-2013 study. However, the major groups of airborne pollens did not change significantly. Grass, sedge, amaranthus pollens and fern spores still dominated. The unidentified pollen group was the only group with a higher pollen count when compared to the previous study.

  11. Airborne pollen of allergenic herb species in Toledo (Spain).

    PubMed

    Vaquero, Consolación; Rodríguez-Torres, Alfonso; Rojo, Jesús; Pérez-Badia, Rosa

    2013-01-01

    This study analysed airborne pollen counts for allergenic herb taxa in Toledo (central Spain), a major tourist city receiving over 2 million visitors per year, located in the region of Castilla-La Mancha. The taxa selected were Chenopodiaceae-Amaranthaceae, Plantago, Poaceae and Urticaceae, all of which produce allergenic pollen giving rise to serious symptoms in pollen-allergy sufferers. Aerobiological data were recorded over a 6-year period (2005 to 2010) using the sampling and analysis procedures recommended by the Spanish Aerobiology Network. The abundance and the temporal (annual, daily and intradiurnal) distribution of these pollen types were analysed, and the influence of weather-related factors on airborne pollen counts was assessed. Pollen from herbaceous species accounted for 20.9% of total airborne pollen in Toledo, the largest contributor being Poaceae, with 8.5% of the total pollen count; this family was also the leading cause of respiratory allergies. Examination of intradiurnal variation revealed three distinct distribution patterns: (1) peak daily counts for Chenopodiaceae-Amaranthaceae and Plantago were recorded during the hottest part of the day, i.e. from 1400 to 1600 hours; (2) Urticaceae displayed two peaks (1400-1600 and 2200 hours); and (3) Poaceae counts remained fairly stable throughout the day. Two main risk periods were identified for allergies: spring, with allergies caused by Urticaceae, Plantago and Poaceae pollen, and summer, due to Chenopodiaceae-Amaranthaceae pollen.

  12. Airborne pollen and suicide mortality in Tokyo, 2001-2011.

    PubMed

    Stickley, Andrew; Sheng Ng, Chris Fook; Konishi, Shoko; Koyanagi, Ai; Watanabe, Chiho

    2017-05-01

    Prior research has indicated that pollen might be linked to suicide mortality although the few studies that have been undertaken to date have produced conflicting findings and been limited to Western settings. This study examined the association between the level of airborne pollen and suicide mortality in Tokyo, Japan in the period from 2001 to 2011. The daily number of suicide deaths was obtained from the Japanese Ministry of Health, Labour and Welfare, with pollen data being obtained from the Tokyo Metropolitan Institute of Public Health. A time-stratified case-crossover study was performed to examine the association between different levels of pollen concentration and suicide mortality. During the study period there were 5185 male and 2332 female suicides in the pollen season (February to April). For men there was no association between airborne pollen and suicide mortality. For women, compared to when there was no airborne pollen, the same-day (lag 0) pollen level of 30 to <100 grains per cm(2) was associated with an approximately 50% increase in the odds for suicide (e.g. 30 to <50 grains per cm(2): odds ratio 1.574, 95% confidence interval 1.076-2.303, p=0.020). The estimates remained fairly stable after adjusting for air pollutants and after varying the cut-points that defined the pollen levels. Our results indicate that pollen is associated with female suicide mortality in Tokyo.

  13. Models for forecasting airborne Cupressaceae pollen levels in central Spain.

    PubMed

    Sabariego, Silvia; Cuesta, Pedro; Fernández-González, Federico; Pérez-Badia, Rosa

    2012-03-01

    The influence of meteorological variables on airborne Cupressaceae pollen levels in central Spain was analyzed, and prediction models based on polynomial and multiple regressions were used to predict pollen counts throughout the pollen season. The Cupressaceae pollen type was selected in view of both its abundance in the atmosphere of the central Iberian Peninsula (particularly from January to March) and its allergenic importance. Sampling was performed uninterruptedly over a 5-year period, using a Hirst volumetric sampler and the sampling method established by the Spanish Aerobiology Network. Temperature displayed the strongest (positive) correlation with Cupressaceae pollen counts. Polynomial and multiple regression analysis showed that maximum temperature was the most influential variable included in prediction models. The prediction equations obtained for the study period were reasonably satisfactory, accounting for 48% and 59% of the variation in airborne pollen levels.

  14. Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air

    NASA Astrophysics Data System (ADS)

    Castellano-Méndez, M.; Aira, M. J.; Iglesias, I.; Jato, V.; González-Manteiga, W.

    2005-05-01

    An increasing percentage of the European population suffers from allergies to pollen. The study of the evolution of air pollen concentration supplies prior knowledge of the levels of pollen in the air, which can be useful for the prevention and treatment of allergic symptoms, and the management of medical resources. The symptoms of Betula pollinosis can be associated with certain levels of pollen in the air. The aim of this study was to predict the risk of the concentration of pollen exceeding a given level, using previous pollen and meteorological information, by applying neural network techniques. Neural networks are a widespread statistical tool useful for the study of problems associated with complex or poorly understood phenomena. The binary response variable associated with each level requires a careful selection of the neural network and the error function associated with the learning algorithm used during the training phase. The performance of the neural network with the validation set showed that the risk of the pollen level exceeding a certain threshold can be successfully forecasted using artificial neural networks. This prediction tool may be implemented to create an automatic system that forecasts the risk of suffering allergic symptoms.

  15. Ambrosia airborne pollen concentration modelling and evaluation over Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Viovy, Nicolas; Khvorostyanov, Dmitry; Colette, Augustin

    2014-05-01

    Native from North America, Ambrosia artemisiifolia L. (Common Ragweed) is an invasive annual weed introduced in Europe in the mid-nineteenth century. It has a very high spreading potential throughout Europe and releases very allergenic pollen leading to health problems for sensitive persons. Because of its health effects, it is necessary to develop modelling tools to be able to forecast ambrosia air pollen concentration and to inform allergy populations of allergenic threshold exceedance. This study is realised within the framework of the ATOPICA project (https://www.atopica.eu/) which is designed to provide first steps in tools and estimations of the fate of allergies in Europe due to changes in climate, land use and air quality. To calculate and predict airborne concentrations of ambrosia pollen, a chain of models has been built. Models have been developed or adapted for simulating the phenology (PMP phonological modelling platform), inter-annual production (ORCHIDEE vegetation model), release and airborne processes (CHIMERE chemical transport model) of ragweed pollen. Airborne pollens follow processes similar to air quality pollutants in CHIMERE with some adaptations. The detailed methodology, formulations and input data will be presented. A set of simulations has been performed to simulate airborne concentrations of pollens over long time periods on a large European domain. Hindcast simulations (2000 - 2012) driven by ERA-Interim re-analyses are designed to best simulate past periods airborne pollens. The modelled pollen concentrations are calibrated with observations and validated against additional observations. Then, 20-year long historical simulations (1986 - 2005) are carried out using calibrated ambrosia density distribution and climate model-driven weather in order to serve as a control simulation for future scenarios. By comparison with multi-annual observed daily pollen counts we have shown that the model captures well the gross features of the pollen

  16. Characterisation of particulate matter on airborne pollen grains.

    PubMed

    Ribeiro, Helena; Guimarães, Fernanda; Duque, Laura; Noronha, Fernando; Abreu, Ilda

    2015-11-01

    A characterization of the physical-chemical composition of the atmospheric PM adsorbed to airborne pollen was performed. Airborne pollen was sampled using a Hirst-type volumetric spore sampler and observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image was taken of each pollen grain and EDS spectra were obtained for individually adsorbed particles. All images were analysed and the size parameters of the particles adsorbed to pollen was determined. The measured particles' equivalent diameter varied between 0.1 and 25.8 μm, mostly in the fine fraction. The dominant particulates identified were Si-rich, Organic-rich, SO-rich, Metals & Oxides and Cl-rich. Significant daily differences were observed in the physical-chemical characteristics of particles adsorbed to the airborne pollen wall. These differences were correlated with weather parameters and atmospheric PM concentration. Airborne pollen has the ability to adsorb fine particles that may enhance its allergenicity.

  17. Characterization of PR-10 genes from eight Betula species and detection of Bet v 1 isoforms in birch pollen

    PubMed Central

    Schenk, Martijn F; Cordewener, Jan HG; America, Antoine HP; van't Westende, Wendy PC; Smulders, Marinus JM; Gilissen, Luud JWJ

    2009-01-01

    Background Bet v 1 is an important cause of hay fever in northern Europe. Bet v 1 isoforms from the European white birch (Betula pendula) have been investigated extensively, but the allergenic potency of other birch species is unknown. The presence of Bet v 1 and closely related PR-10 genes in the genome was established by amplification and sequencing of alleles from eight birch species that represent the four subgenera within the genus Betula. Q-TOF LC-MSE was applied to identify which PR-10/Bet v 1 genes are actually expressed in pollen and to determine the relative abundances of individual isoforms in the pollen proteome. Results All examined birch species contained several PR-10 genes. In total, 134 unique sequences were recovered. Sequences were attributed to different genes or pseudogenes that were, in turn, ordered into seven subfamilies. Five subfamilies were common to all birch species. Genes of two subfamilies were expressed in pollen, while each birch species expressed a mixture of isoforms with at least four different isoforms. Isoforms that were similar to isoforms with a high IgE-reactivity (Bet v 1a = PR-10.01A01) were abundant in all species except B. lenta, while the hypoallergenic isoform Bet v 1d (= PR-10.01B01) was only found in B. pendula and its closest relatives. Conclusion Q-TOF LC-MSE allows efficient screening of Bet v 1 isoforms by determining the presence and relative abundance of these isoforms in pollen. B. pendula contains a Bet v 1-mixture in which isoforms with a high and low IgE-reactivity are both abundant. With the possible exception of B. lenta, isoforms identical or very similar to those with a high IgE-reactivity were found in the pollen proteome of all examined birch species. Consequently, these species are also predicted to be allergenic with regard to Bet v 1 related allergies. PMID:19257882

  18. Characterization of PR-10 genes from eight Betula species and detection of Bet v 1 isoforms in birch pollen.

    PubMed

    Schenk, Martijn F; Cordewener, Jan H G; America, Antoine H P; Van't Westende, Wendy P C; Smulders, Marinus J M; Gilissen, Luud J W J

    2009-03-03

    Bet v 1 is an important cause of hay fever in northern Europe. Bet v 1 isoforms from the European white birch (Betula pendula) have been investigated extensively, but the allergenic potency of other birch species is unknown. The presence of Bet v 1 and closely related PR-10 genes in the genome was established by amplification and sequencing of alleles from eight birch species that represent the four subgenera within the genus Betula. Q-TOF LC-MSE was applied to identify which PR-10/Bet v 1 genes are actually expressed in pollen and to determine the relative abundances of individual isoforms in the pollen proteome. All examined birch species contained several PR-10 genes. In total, 134 unique sequences were recovered. Sequences were attributed to different genes or pseudogenes that were, in turn, ordered into seven subfamilies. Five subfamilies were common to all birch species. Genes of two subfamilies were expressed in pollen, while each birch species expressed a mixture of isoforms with at least four different isoforms. Isoforms that were similar to isoforms with a high IgE-reactivity (Bet v 1a = PR-10.01A01) were abundant in all species except B. lenta, while the hypoallergenic isoform Bet v 1d (= PR-10.01B01) was only found in B. pendula and its closest relatives. Q-TOF LC-MSE allows efficient screening of Bet v 1 isoforms by determining the presence and relative abundance of these isoforms in pollen. B. pendula contains a Bet v 1-mixture in which isoforms with a high and low IgE-reactivity are both abundant. With the possible exception of B. lenta, isoforms identical or very similar to those with a high IgE-reactivity were found in the pollen proteome of all examined birch species. Consequently, these species are also predicted to be allergenic with regard to Bet v 1 related allergies.

  19. Effect of air pollutant NO₂ on Betula pendula, Ostrya carpinifolia and Carpinus betulus pollen fertility and human allergenicity.

    PubMed

    Cuinica, Lázaro G; Abreu, Ilda; Esteves da Silva, Joaquim

    2014-03-01

    Pollen of Betula pendula, Ostrya carpinifolia and Carpinus betulus was exposed in vitro to two levels of NO2 (about 0.034 and 0.067 ppm) - both below current atmospheric hour-limit value acceptable for human health protection in Europe (0.11 ppm for NO2). Experiments were performed under artificial solar light with temperature and relative humidity continuously monitored. The viability, germination and total soluble proteins of all the pollen samples exposed to NO2 decreased significantly when compared with the non-exposed. The polypeptide profiles of all the pollen samples showed bands between 15 and 70 kDa and the exposure to NO2 did not produce any detectable changes in these profiles. However, the immunodetection assays indicated higher IgE recognition by patient sera sensitized to the pollen extracts from all exposed samples in comparison to the non-exposed samples. The common reactive bands to the three pollen samples correspond to 58 and 17 kDa proteins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Influence of wind on daily airborne pollen counts in Catalonia (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    tareq Majeed, Husam; Periago, Cristina; Alarcón, Marta; De Linares, Concepción; Belmonte, Jordina

    2016-04-01

    The aim of this study is to analize the influence of wind (speed and direction) on the daily airborne pollen counts recorded in Catalonia (NE Iberian Peninsula) of 21 pollen taxa recorded at 6 aerobiological stations: Barcelona, Bellaterra, Girona, Lleida Manresa, and Tarragona for the period 2004-2014. The taxa studied are Alnus, Betula, Castanea, Cupressaceae, Fagus, Fraxinus, Olea, Pinus, Platanus, total Quercus, Quercus deciduous type, Quercus evergreen type, Ulmus, Corylus, Pistacia, Artemisia, Chenopodiaceae/Amaranthaceae, Plantago, Poaceae, Polygonaceae, and Urticaceae. The mean daily wind direction was divided into 8 sectors: N, NE, E, SE, S, SW, W and NW. For each sector, the correlation between the daily pollen concentrations and wind speed using Spearman's rank correlation coefficient was computed and compared with the wind rose charts. The results showed that Tarragona was the station with more significant correlations followed by Bellaterra, Lleida and Manresa. On the other hand, Artemisia was the most correlated taxon with mainly negative values, and Fagus was the least. The W wind direction showed the largest number of significant correlations, mostly positive, while the N direction was the least and negatively correlated.

  1. Spatial and temporal variations in airborne Ambrosia pollen in Europe.

    PubMed

    Sikoparija, B; Skjøth, C A; Celenk, S; Testoni, C; Abramidze, T; Alm Kübler, K; Belmonte, J; Berger, U; Bonini, M; Charalampopoulos, A; Damialis, A; Clot, B; Dahl, Å; de Weger, L A; Gehrig, R; Hendrickx, M; Hoebeke, L; Ianovici, N; Kofol Seliger, A; Magyar, D; Mányoki, G; Milkovska, S; Myszkowska, D; Páldy, A; Pashley, C H; Rasmussen, K; Ritenberga, O; Rodinkova, V; Rybníček, O; Shalaboda, V; Šaulienė, I; Ščevková, J; Stjepanović, B; Thibaudon, M; Verstraeten, C; Vokou, D; Yankova, R; Smith, M

    2017-01-01

    The European Commission Cooperation in Science and Technology (COST) Action FA1203 "SMARTER" aims to make recommendations for the sustainable management of Ambrosia across Europe and for monitoring its efficiency and cost-effectiveness. The goal of the present study is to provide a baseline for spatial and temporal variations in airborne Ambrosia pollen in Europe that can be used for the management and evaluation of this noxious plant. The study covers the full range of Ambrosia artemisiifolia L. distribution over Europe (39°N-60°N; 2°W-45°E). Airborne Ambrosia pollen data for the principal flowering period of Ambrosia (August-September) recorded during a 10-year period (2004-2013) were obtained from 242 monitoring sites. The mean sum of daily average airborne Ambrosia pollen and the number of days that Ambrosia pollen was recorded in the air were analysed. The mean and standard deviation (SD) were calculated regardless of the number of years included in the study period, while trends are based on those time series with 8 or more years of data. Trends were considered significant at p < 0.05. There were few significant trends in the magnitude and frequency of atmospheric Ambrosia pollen (only 8% for the mean sum of daily average Ambrosia pollen concentrations and 14% for the mean number of days Ambrosia pollen were recorded in the air). The direction of any trends varied locally and reflected changes in sources of the pollen, either in size or in distance from the monitoring station. Pollen monitoring is important for providing an early warning of the expansion of this invasive and noxious plant.

  2. Quantitative DNA Analyses for Airborne Birch Pollen.

    PubMed

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future.

  3. Quantitative DNA Analyses for Airborne Birch Pollen

    PubMed Central

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R.

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future. PMID:26492534

  4. Airborne pollen of Olea in five regions of Portugal.

    PubMed

    Ribeiro, Helena; Cunha, Mário; Abreu, Ilda

    2005-01-01

    The aim of this work was to study spatial and temporal distribution of Olea europeae airborne pollen in different Portuguese regions: Reguengos de Monsaraz (south); Bairrada (west); Braga (northwest); Valença do Douro and Foz Côa (north-east). Airborne pollen sampling was conducted from 1998-2003 using "Cour" type samplers located in each region. The main pollen season (MPS) of Olea lasted on average 36 days and occurred from late April until middle-to-end of June. During the studied period, inter-annual variations among and within regions, concerning the total annual pollen counts and the beginning, peak and ending dates of the MPS, were reported. Reguengos de Monsaraz and Bairrada registered the earliest MPS starting date, followed by Valença do Douro and Foz-Côa, and the latest date was verified in Braga that also had the shortest MPS. Reguengos de Monsaraz presented the longest MPS with the highest differences in the beginning and ending dates, but minimum differences in the dates of the maximum pollen peak. Our results showed an increase in the Olea annual pollen index, from north to south, and from the west to the east regions of the country.

  5. Does cutting of mugwort stands affect airborne pollen concentrations?

    PubMed

    Rantio-Lehtimäki, A; Helander, M L; Karhu, K

    1992-08-01

    Pollen of mugwort (Artemisia vulgaris L.) is the most important allergenic pollen in urban areas of south and central Finland in late summer. The purpose of this study was to investigate, experimentally, whether the cutting of mugwort stands affects its airborne pollen concentrations. Experimental plots were either cut (4 plots) or uncut (4 plots) in 2 previous seasons: 4 of them were small (less than 0.5 hectare) and 4 large (greater than 5 hectares). Finally, the plots were divided randomly into 2 groups according to a third variable, cutting in the study season, 1989. Samples were taken on 2 rainless mornings at the peak mugwort flowering time. Two rotorod type samplers were used at heights of 1 and 2 m from ground level, simulating the inhalation heights of children and adults, respectively. The results indicate that cutting mugwort stands significantly reduces airborne pollen concentrations, but the treated areas have to be large, since in the town area there are plenty of mugwort pollen sources. The pollen concentrations at the 2 heights tested did not differ significantly.

  6. Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe

    NASA Astrophysics Data System (ADS)

    Emberlin, J.; Detandt, M.; Gehrig, R.; Jaeger, S.; Nolard, N.; Rantio-Lehtimäki, A.

    2002-07-01

    A shift in the timing of birch pollen seasons is important because it is well known to be a significant aeroallergen, especially in NW Europe where it is a notable cause of hay fever and pollen-related asthma. The research reported in this paper aims to investigate temporal patterns in the start dates of Betula (birch) pollen seasons at selected sites across Europe. In particular it investigates relationships between the changes in start dates and changes in spring temperatures over approximately the last 20 years. Daily birch pollen counts were used from Kevo, Turku, London, Brussels, Zurich and Vienna, for the core period from 1982 to 1999 and, in some cases, from 1970 to 2000. The sites represent a range of biogeographical situations from just within the Arctic Circle through to North West Maritime and Continental Europe. Pollen samples were taken with Hirst-type volumetric spore traps. Weather data were obtained from the sites nearest to the pollen traps. The timing of birch pollen seasons is known to depend mostly on a non-linear balance between the winter chilling required to break dormancy, and spring temperatures. Pollen start dates and monthly mean temperatures for January through to May were compiled to 5-year running means to examine trends. The start dates for the next 10 years were calculated from regression equations for each site, on the speculative basis that the current trends would continue. The analyses show regional contrasts. Kevo shows a marked trend towards cooler springs and later starts. If this continues the mean start date will become about 6 days later over the next 10 years. Turku exhibits cyclic patterns in start dates. A current trend towards earlier starts is expected to continue until 2007, followed by another fluctuation. London, Brussels, Zurich and Vienna show very similar patterns in the trends towards earlier start dates. If the trend continues the mean start dates at these sites will advance by about 6 days over the next 10

  7. Airborne castanea pollen forecasting model for ecological and allergological implementation.

    PubMed

    Astray, G; Fernández-González, M; Rodríguez-Rajo, F J; López, D; Mejuto, J C

    2016-04-01

    Castanea sativa Miller belongs to the natural vegetation of many European deciduous forests prompting impacts in the forestry, ecology, allergological and chestnut food industry fields. The study of the Castanea flowering represents an important tool for evaluating the ecological conservation of North-Western Spain woodland and the possible changes in the chestnut distribution due to recent climatic change. The Castanea pollen production and dispersal capacity may cause hypersensitivity reactions in the sensitive human population due to the relationship between patients with chestnut pollen allergy and a potential cross reactivity risk with other pollens or plant foods. In addition to Castanea pollen's importance as a pollinosis agent, its study is also essential in North-Western Spain due to the economic impact of the industry around the chestnut tree cultivation and its beekeeping interest. The aim of this research is to develop an Artificial Neural Networks for predict the Castanea pollen concentration in the atmosphere of the North-West Spain area by means a 20years data set. It was detected an increasing trend of the total annual Castanea pollen concentrations in the atmosphere during the study period. The Artificial Neural Networks (ANNs) implemented in this study show a great ability to predict Castanea pollen concentration one, two and three days ahead. The model to predict the Castanea pollen concentration one day ahead shows a high linear correlation coefficient of 0.784 (individual ANN) and 0.738 (multiple ANN). The results obtained improved those obtained by the classical methodology used to predict the airborne pollen concentrations such as time series analysis or other models based on the correlation of pollen levels with meteorological variables.

  8. Can serum white birch (Betula verrucosa) pollen antigen (Bet v 1) immunoglobulin E measurement distinguish between sensitization and allergy?

    PubMed

    Ciprandi, Giorgio; Comite, Paola; Ferrero, Francesca; Minale, Paola; Voltolini, Susanna; Bignardi, Donatella; Fontana, Vincenzo; Bruzzone, Marco; Troise, Costantino; Mussap, Michele

    2015-12-01

    In clinical practice, it is fundamental to distinguish between sensitization and allergy, mainly with respect to polysensitized patients. The aim of this study was to evaluate whether serum immunoglobulin E (IgE) to white birch (Betula verrucosa) pollen antigen (Bet v 1) assessment might be able to differentiate simple sensitization from true allergy. In total, 197 subjects (100 females; mean age 44.9 years) with serum Bet v 1 IgE positivity and history of nasal symptoms were evaluated. Subjects were subdivided in 2 groups: allergic and sensitized. Allergic patients were 58.4% of the total; they had higher serum Bet v 1 IgE levels than sensitized subjects (p < 0.001). A serum IgE to Bet v 1 value >8.94 kilo units of allergen per liter (kUA/L) was able to differentiate between sensitization and allergy (area under the receiver operating characteristic curve [AUC] = 0.76; diagnostic odds ratio, ie, degree of agreement between health status and dichotomized IgE levels [DOR] = 6.5). Gender and season when the blood was drawn influenced IgE levels. Serum Bet v 1 IgE measurement may be able to differentiate sensitization from allergy in subjects with sensitization to Betulaceae pollen allergens. Thus, Bet v 1 IgE measurement should be considered a useful step in the management of patients with allergic rhinitis due to Betulaceae pollen allergens. © 2015 ARS-AAOA, LLC.

  9. Proteomic profiling of birch (Betula verrucosa) pollen extracts from different origins.

    PubMed

    Erler, Anja; Hawranek, Thomas; Krückemeier, Leif; Asam, Claudia; Egger, Matthias; Ferreira, Fátima; Briza, Peter

    2011-04-01

    Pollen of the European white birch is a major source of spring pollinosis in Europe. Pollen-allergy diagnosis and treatment by specific immunotherapy commonly rely on extracts of natural origin. To gain insight into the protein content and its variability, we evaluated the profile of allergenic and non-allergenic proteins in extracts of pollen from different origins by MS-based proteomics. Aqueous extracts prepared from commercially available Swedish birch pollen, pollen collected from Austrian trees and a commercial skin prick extract were analyzed by 1-DE, 2-DE, immunoblotting and mass spectrometry, resulting in a complete inventory of extractable, disease-relevant pollen proteins. A main focus of this study was on the isoform distribution of Bet v 1, the major allergen of birch pollen. Using a combination of intact mass determination and peptide sequencing, five isoforms (a, b, d, f and j) were unequivocally identified in Swedish and Austrian birch pollen extracts, while the skin prick extract contained only isoforms a, b and d. Using the same methods as for Bet v 1, divergencies in the sequence of birch profilin (Bet v 2), a plant panallergen, were solved. The molecular characterization of pollen extracts is relevant for standardization and development of new reagents for specific immunotherapy.

  10. Diurnal variation of airborne pollen at two different heights.

    PubMed

    Alcázar, P; Galán, C; Cariñanos, P; Domínguez-Vilches, E

    1999-01-01

    The diurnal variation in airborne pollen concentrations in the air of Córdoba at two different heights (1.5 m and 15 m) was studied during 2 consecutive years with the help of two Hirst volumetric samplers. According to pollen percentages obtained every hour, we determined whether every taxon studied presented a morning or an afternoon pattern, and whether this model was homogeneous (with a slight difference between the time of maximum and minimum reading) or heterogeneous (with a large difference between the two readings). We observed that the taxa that had many species in the area, such as Plantago, Poaceae, and Chenopodiaceae-Amaranthaceae showed a homogeneous model, while those taxa with few species present, such as Cupressaceae and Urticaceae showed a more heterogeneous model. Furthermore, the pattern of the plants with a large presence in the study area was more heterogeneous at 1.5 m because the pollen collected at this height is released from anthers. In the sampler placed at 15 m we detected airborne pollen, found that the curves were smoother and also observed a slight time delay for the taxa that were highly present in the area of study.

  11. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport

  12. Enhanced airborne radioactivity during a pine pollen release episode.

    PubMed

    Tschiersch, J; Frank, G; Roth, P; Wagenpfeil, F; Watterson, F; Watterson, J

    1999-07-01

    A single episode of pine pollen release in the highly contaminated area of Novozybkov, Russian Federation, which led to enhanced atmospheric concentrations of 137Cs is discussed. The pollen grains were sampled by a rotating arm impactor and analysed by gamma-spectrometry for 137Cs activity and by image analysis for their size. In the vicinity of a forest, a maximum concentration of 4.5+/-0.4 mBq m(-3) was measured, and a mean activity per pollen grain of 260+/-80 nBq was determined. The emission rate of the Novozybkov mixed pine forest was estimated to be approximately 400 Bq m(-2) per year. Because of the large size of pine pollen grains (about 50 microm) and the short emission period of 5-8 days per year, the estimated potential annual inhalation doses are very low. Biological emissions including pollen release may be a source of increased airborne radionuclide concentrations at larger distances from the source areas as well.

  13. Airborne pollen and spores of León (Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-González, Delia; Suarez-Cervera, María; Díaz-González, Tomás; Valencia-Barrera, Rosa María

    1993-06-01

    A qualitative and quantitative analysis of airborne pollen and spores was carried out over 2 years (from September 1987 to August 1989) in the city of León. Slides were prepared daily using a volumetric pollen trap, which was placed on the Faculty of Veterinary Science building (University of León) 12m above ground-level. Fifty-one pollen types were observed; the most important of these were: Cupressaceae during the winter, Pinus and Quercus in spring, and Poaceae, Leguminosae and Chenopodiaceae in the summer. The results also showed the existence of a rich mould spore assemblage in the atmosphere. The group of Amerospores ( Penicillium, Aspergillus and Cladosporium) as well as Dictyospores ( Alternaria) were the most abundant; Puccinia was common in the air in August. Fluctuations in the total pollen and spores m3 of air were compared with meteorological parameters (temperature, relative humidity and rainfall). From the daily sampling of the atmosphere of León, considering the maximum and minimum temperature and duration of rainfall, the start of the pollen grain season was observed generally to coincide with a rise in temperature in the absence of rain.

  14. Modelling airborne concentration and deposition rate of maize pollen

    NASA Astrophysics Data System (ADS)

    Jarosz, Nathalie; Loubet, Benjamin; Huber, Laurent

    2004-10-01

    The introduction of genetically modified (GM) crops has reinforced the need to quantify gene flow from crop to crop. This requires predictive tools which take into account meteorological conditions, canopy structure as well as pollen aerodynamic characteristics. A Lagrangian Stochastic (LS) model, called SMOP-2D (Stochastic Mechanistic model for Pollen dispersion and deposition in 2 Dimensions), is presented. It simulates wind dispersion of pollen by calculating individual pollen trajectories from their emission to their deposition. SMOP-2D was validated using two field experiments where airborne concentration and deposition rate of pollen were measured within and downwind from different sized maize (Zea mays) plots together with micrometeorological measurements. SMOP-2D correctly simulated the shapes of the concentration profiles but generally underestimated the deposition rates in the first 10 m downwind from the source. Potential explanations of this discrepancy are discussed. Incorrect parameterisation of turbulence in the transition from the crop to the surroundings is probably the most likely reason. This demonstrates that LS models for particle transfer need to be coupled with air-flow models under complex terrain conditions.

  15. Climate warming and the decline of Taxus airborne pollen in urban pollen rain (Emilia Romagna, northern Italy).

    PubMed

    Mercuri, A M; Torri, P; Casini, E; Olmi, L

    2013-01-01

    Woody plant performance in a changing global environment has always been at the centre of palaeoenvironmental and long-term climate reconstructions carried out by means of pollen analysis. In Mediterranean regions, Taxus constitutes the highest percentage in past pollen diagrams from cold or cool periods, and therefore it is generally considered a good index to infer climate features from past records. However, a comparison of these inferences with the true current trends in pollen production has not been attemped until now. This study reports the decline of airborne pollen of Taxus observed in Emilia Romagna, a region of northern Italy, during the period 1990-2007. Phenological observations on four male specimens and microscopic examination of fresh pollen were made in order to check Taxus flowering time and pollen morphology. Airborne pollen was monitored through continuous sampling with a Hirst volumetric sampler. In the 18-year long period of investigation, Taxus pollen production has decreased, while total woody pollen abundance in air has increased. The trend of the Taxus pollen season shows a delay at the beginning, a shortening of the pollen period, and an advance of the end of the pollen season. This was interpreted as a response to climate warming. In particular, Taxus follows the behaviour of winter-flowering plants, and therefore earlier pollination is favoured at low autumn temperatures, while late pollination occurs more often, most likely after warm autumn temperatures.

  16. An Electrostatic-Barrier-Forming Window that Captures Airborne Pollen Grains to Prevent Pollinosis

    PubMed Central

    Takikawa, Yoshihiro; Matsuda, Yoshinori; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Toyoda, Hideyoshi

    2017-01-01

    An electrostatic-barrier-forming window (EBW) was devised to capture airborne pollen, which can cause allergic pollinosis. The EBW consisted of three layers of insulated conductor wires (ICWs) and two voltage generators that supplied negative charges to the two outer ICW layers and a positive charge to the middle ICW layer. The ICWs generated an attractive force that captured pollen of the Japanese cedar, Cryptomeria japonica, from air blown through the EBW. The attractive force was directly proportional to the applied voltage. At ≥3.5 kV, the EBW exerted sufficient force to capture all pollen carried at an air flow of 3 m/s, and pollen-free air passed through the EBW. The findings demonstrated that the electrostatic barrier that formed inside the EBW was very effective at capturing airborne pollen; thus, it could allow a home to remain pollen-free and healthy despite continuous pollen exposure. PMID:28098835

  17. An Electrostatic-Barrier-Forming Window that Captures Airborne Pollen Grains to Prevent Pollinosis.

    PubMed

    Takikawa, Yoshihiro; Matsuda, Yoshinori; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Toyoda, Hideyoshi

    2017-01-15

    An electrostatic-barrier-forming window (EBW) was devised to capture airborne pollen, which can cause allergic pollinosis. The EBW consisted of three layers of insulated conductor wires (ICWs) and two voltage generators that supplied negative charges to the two outer ICW layers and a positive charge to the middle ICW layer. The ICWs generated an attractive force that captured pollen of the Japanese cedar, Cryptomeria japonica, from air blown through the EBW. The attractive force was directly proportional to the applied voltage. At ≥3.5 kV, the EBW exerted sufficient force to capture all pollen carried at an air flow of 3 m/s, and pollen-free air passed through the EBW. The findings demonstrated that the electrostatic barrier that formed inside the EBW was very effective at capturing airborne pollen; thus, it could allow a home to remain pollen-free and healthy despite continuous pollen exposure.

  18. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Liu, Li; Solmon, Fabien; Viovy, Nicolas; Khvorostyanov, Dmitry; Essl, Franz; Chuine, Isabelle; Colette, Augustin; Semenov, Mikhail A.; Schaffhauser, Alice; Storkey, Jonathan; Thibaudon, Michel; Epstein, Michelle M.

    2015-08-01

    Common ragweed (Ambrosia artemisiifolia) is an invasive alien species in Europe producing pollen that causes severe allergic disease in susceptible individuals. Ragweed plants could further invade European land with climate and land-use changes. However, airborne pollen evolution depends not only on plant invasion, but also on pollen production, release and atmospheric dispersion changes. To predict the effect of climate and land-use changes on airborne pollen concentrations, we used two comprehensive modelling frameworks accounting for all these factors under high-end and moderate climate and land-use change scenarios. We estimate that by 2050 airborne ragweed pollen concentrations will be about 4 times higher than they are now, with a range of uncertainty from 2 to 12 largely depending on the seed dispersal rate assumptions. About a third of the airborne pollen increase is due to on-going seed dispersal, irrespective of climate change. The remaining two-thirds are related to climate and land-use changes that will extend ragweed habitat suitability in northern and eastern Europe and increase pollen production in established ragweed areas owing to increasing CO2. Therefore, climate change and ragweed seed dispersal in current and future suitable areas will increase airborne pollen concentrations, which may consequently heighten the incidence and prevalence of ragweed allergy.

  19. Airborne ragweed (Ambrosia artemisiifolia L.) pollen content in the city of Zagreb and implications on pollen allergy.

    PubMed

    Peternel, Renata; Music Milanovic, Sanja; Srnec, Lidija

    2008-01-01

    The increasing problem of sensitization to Ambrosia pollen in Europe has stimulated studies on Ambrosia pollen occurrence and pollinosis in Croatia. The aim of this study was to analyze the ragweed pollen pattern in Zagreb and to determine the incidence of sensitization to this pollen types in patients with seasonal respiratory allergy. The study was performed in the city of Zagreb during the 2002-2005 seasons. Skin prick test were performed on a total of 750 patients aged 18-80 in Zagreb between 2 January - 31 December 2004. The mean 4-year rate of ragweed pollen in the Zagreb atmosphere was 14.8% of all plant pollen. The highest rate of airborne ragweed pollen was recorded in August and September. 365 patients were allergic to ragweed pollen; 20.3% of them monosensitized; 10.9% allergic to Ambrosia and Artemisia pollen. Almost all study patients suffered the most severe symptoms in August and September. The highest proportion of allergic patients were recorded in the 31-50 age group and the lowest proportion in the >50 age group. Forecasting of allergenic pollen season in an area is a crucial pursuit for all developed countries, in order to minimize clinical symptoms in patients suffering from respiratory allergy. This can be achieved through public announcements by mass media (radio, television, internet, etc.) aiming to protect allergic individuals.

  20. Airborne pollen assemblages and weather regime in the central-eastern Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Yuecong; Ge, Yawen; Xu, Qinghai; Bunting, Jane M.; Lv, Suqing; Wang, Junting; Li, Zetao

    2015-04-01

    This paper presents the results of pollen trapping studies designed to quantify the pollen assemblages carried in the winds of the Loess Plateau in Luochuan and Hunyuan. The one-year-collection samples analysis results show that pollen assemblages can be more sensitive to the change of climate than the vegetation composition, because of the change of pollen production. The analysis results of pollen traps in different weather regimes indicate that the pollen influx coming from dust weather contribute more to the total pollen influx than that coming from non-dust weather. The wind speed is the most important influenced factor to pollen assemblages, then the mean temperature and the mean relative humidity, the wind direction also contributes some. Strong wind coming from dust direction can make the percent and influx of Artemisia and Chenopodiaceae increase obviously with averagely higher than over 2.7 times in dust weather than in non-dust samples. The influences of wind speed and wind direction are not serious to some arboreal pollen such as Rosaceae, Quercus, Betula, Pinus and Ostryopsis, which are mainly influenced by temperature or the relative humidity such as Salix, Hippophae, Carpinus, Brassicaceae, Cupressaceae, Fabaceae.

  1. Relationships among Indoor, Outdoor, and Personal Airborne Japanese Cedar Pollen Counts

    PubMed Central

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy. PMID:26110813

  2. Relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts.

    PubMed

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy.

  3. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing.

    PubMed

    Kraaijeveld, Ken; de Weger, Letty A; Ventayol García, Marina; Buermans, Henk; Frank, Jeroen; Hiemstra, Pieter S; den Dunnen, Johan T

    2015-01-01

    Pollen monitoring is an important and widely used tool in allergy research and creation of awareness in pollen-allergic patients. Current pollen monitoring methods are microscope-based, labour intensive and cannot identify pollen to the genus level in some relevant allergenic plant groups. Therefore, a more efficient, cost-effective and sensitive method is needed. Here, we present a method for identification and quantification of airborne pollen using DNA sequencing. Pollen is collected from ambient air using standard techniques. DNA is extracted from the collected pollen, and a fragment of the chloroplast gene trnL is amplified using PCR. The PCR product is subsequently sequenced on a next-generation sequencing platform (Ion Torrent). Amplicon molecules are sequenced individually, allowing identification of different sequences from a mixed sample. We show that this method provides an accurate qualitative and quantitative view of the species composition of samples of airborne pollen grains. We also show that it correctly identifies the individual grass genera present in a mixed sample of grass pollen, which cannot be achieved using microscopic pollen identification. We conclude that our method is more efficient and sensitive than current pollen monitoring techniques and therefore has the potential to increase the throughput of pollen monitoring.

  4. Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas.

    PubMed

    Maya-Manzano, José María; Fernández-Rodríguez, Santiago; Smith, Matt; Tormo-Molina, Rafael; Reynolds, Andrew M; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Sadyś, Magdalena

    2016-11-15

    The pollen grains of Quercus spp. (oak trees) are allergenic. This study investigates airborne Quercus pollen in SW Spain with the aim identifying favourable conditions for atmospheric transport and potential sources areas. Two types of Quercus distribution maps were produced. Airborne Quercus pollen concentrations were measured at three sites located in the Extremadura region (SW Spain) for 3 consecutive years. The seasonal occurrence of Quercus pollen in the air was investigated, as well as days with pollen concentrations ≥80Pm(-3). The distance that Quercus pollen can be transported in appreciable numbers was calculated using clusters of back trajectories representing the air mass movement above the source areas (oak woodlands), and by using a state-of-the-art dispersion model. The two main potential sources of Quercus airborne pollen captured in SW Spain are Q. ilex subsp. ballota and Q. suber. The minimum distances between aerobiological stations and Quercus woodlands have been estimated as: 40km (Plasencia), 66km (Don Benito), 62km (Zafra) from the context of this study. Daily mean Quercus pollen concentration can exceed 1,700Pm(-3), levels reached not less than 24 days in a single year. High Quercus pollen concentration were mostly associated with moderate wind speed events (6-10ms(-1)), whereas that a high wind speed (16-20ms(-1)) seems to be associated with low concentrations.

  5. On the causes of variability in amounts of airborne grass pollen in Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    de Morton, Julian; Bye, John; Pezza, Alexandre; Newbigin, Edward

    2011-07-01

    In Melbourne, Australia, airborne grass pollen is the predominant cause of hay fever (seasonal rhinitis) during late spring and early summer, with levels of airborne grass pollen also influencing hospital admissions for asthma. In order to improve predictions of conditions that are potentially hazardous to susceptible individuals, we have sought to better understand the causes of diurnal, intra-seasonal and inter-seasonal variability of atmospheric grass pollen concentrations (APC) by analysing grass pollen count data for Melbourne for 16 grass pollen seasons from 1991 to 2008 (except 1994 and 1995). Some of notable features identified in this analysis were that on days when either extreme (>100 pollen grains m-3) or high (50-100 pollen grains m-3) levels of grass pollen were recorded the winds were of continental origin. In contrast, on days with a low (<20 pollen grains m-3) concentration of grass pollen, winds were of maritime origin. On extreme and high grass pollen days, a peak in APC occurred on average around 1730 hours, probably due to a reduction in surface boundary layer turbulence. The sum of daily APC for each grass pollen season was highly correlated ( r = 0.79) with spring rainfall in Melbourne for that year, with about 60% of a declining linear trend across the study period being attributable to a reduction of meat cattle and sheep (and hence grazing land) in rural areas around Melbourne. Finally, all of the ten extreme pollen events (3 days or more with APC > 100 pollen grains m-3) during the study period were characterised by an average downward vertical wind anomaly in the surface boundary layer over Melbourne. Together these findings form a basis for a fine resolution atmospheric general circulation model for grass pollen in Melbourne's air that can be used to predict daily (and hourly) APC. This information will be useful to those sectors of Melbourne's population that suffer from allergic problems.

  6. What are the most important variables for Poaceae airborne pollen forecasting?

    PubMed

    Navares, Ricardo; Aznarte, José Luis

    2017-02-01

    In this paper, the problem of predicting future concentrations of airborne pollen is solved through a computational intelligence data-driven approach. The proposed method is able to identify the most important variables among those considered by other authors (mainly recent pollen concentrations and weather parameters), without any prior assumptions about the phenological relevance of the variables. Furthermore, an inferential procedure based on non-parametric hypothesis testing is presented to provide statistical evidence of the results, which are coherent to the literature and outperform previous proposals in terms of accuracy. The study is built upon Poaceae airborne pollen concentrations recorded in seven different locations across the Spanish province of Madrid.

  7. Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Sabariego, Silvia; Fernández-González, Federico; Pérez-Badia, Rosa

    2016-03-01

    Aerobiological research into airborne pollen diversity and seasonal variations in pollen counts has become increasingly important over recent decades due to the growing incidence of asthma, rhinitis and other pollen-related allergic conditions. Airborne pollen in Guadalajara (Castilla-La Mancha, Spain) was studied over a 6-year period (2008-2013) using a Hirst-type volumetric spore trap. The highest pollen concentrations were recorded from February to June, coinciding with the pollen season of the pollen types that most contribute to the local airborne pollen spectrum: Cupressaceae (32.2%), Quercus (15.1%), Platanus (13.2%), Olea (8.3%), Populus (7.8%) and Poaceae (7.2%). These are therefore critical months for allergy sufferers. The pollen calendar was typically Mediterranean and comprised 25 pollen types. Between January and March, Cupressaceae pollen concentrations exceeded allergy risk thresholds on 38 days. Other woody species such as Olea and Platanus have a shorter pollen season, and airborne concentrations exceeded allergy risk thresholds on around 13 days in each case. Poaceae pollen concentrations attained allergy risk levels on 26 days between May and July. Other highly allergenic pollen types included Urticaceae and Chenopodiaceae-Amaranthaceae, though these are less abundant than other pollen types in Guadalajara and did not exceed risk thresholds on more than 3 and 5 days, respectively.

  8. Airborne pollen of ornamental tree species in the NW of Spain.

    PubMed

    Aira, María Jesús; Rodríguez-Rajo, Francisco Javier; Fernández-González, María; Jato, Victoria

    2011-02-01

    This study analyzed airborne pollen counts for the tree taxa most widely used for ornamental purposes in the northwestern Iberian Peninsula (Platanus, Cupressaceae, Olea, Myrtaceae, Cedrus, and Casuarina) at four sites (Vigo, Ourense, Santiago, and Lugo), using aerobiological data recorded over a long period (1993-2007). The abundance and the temporal and spatial distribution of these pollen types were analyzed, and the influence of weather-related factors on airborne pollen counts was assessed. Platanus (in Ourense) and Olea (in Vigo) were the taxa contributing most to pollen counts. In general terms, the results may be taken as indicators of potential risk for pollen-allergy sufferers and therefore used in planning future green areas.

  9. Environmental Factors Affecting Asthma and Allergies: Predicting and Simulating Downwind Exposure to Airborne Pollen

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey; Estes, Sue; Sprigg, William A.; Nickovic, Slobodan; Huete, Alfredo; Solano, Ramon; Ratana, Piyachat; Jiang, Zhangyan; Flowers, Len; Zelicoff, Alan

    2009-01-01

    This slide presentation reviews the environmental factors that affect asthma and allergies and work to predict and simulate the downwind exposure to airborne pollen. Using a modification of Dust REgional Atmosphere Model (DREAM) that incorporates phenology (i.e. PREAM) the aim was to predict concentrations of pollen in time and space. The strategy for using the model to simulate downwind pollen dispersal, and evaluate the results. Using MODerate-resolution Imaging Spectroradiometer (MODIS), to get seasonal sampling of Juniper, the pollen chosen for the study, land cover on a near daily basis. The results of the model are reviewed.

  10. Time series predictions with neural nets: Application to airborne pollen forecasting

    NASA Astrophysics Data System (ADS)

    Arizmendi, C. M.; Sanchez, J. R.; Ramos, N. E.; Ramos, G. I.

    1993-09-01

    Pollen allergy is a common disease causing rhinoconjunctivitis (hay fever) in 5 10% of the population. Medical studies have indicated that pollen related diseases could be highly reduced if future pollen contents in the air could be predicted. In this work we have developed a new forecasting method that applies the ability of neural nets to predict the future behaviour of chaotic systems in order to make accurate predictions of the airborne pollen concentration. The method requires that the neural net be fed with non-zero values, which restricts the method predictions to the period following the start of pollen flight. The operational method outlined here constitutes a different point of view with respect to the more generally used forecasts of time series analysis, which require input of many meteorological parameters. Excellent forecasts were obtained training a neural net by using only the time series pollen concentration values.

  11. The long range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark

    NASA Astrophysics Data System (ADS)

    Ambelas Skjoth, C.; Sommer, J.; Stach, A.; Smith, M.; Brandt, J.; Christensen, J. H.; Frohn, L. M.; Geels, C.; Hansen, K. M.; Hedegaard, G. B.

    2009-04-01

    In Denmark, where birch pollen is considered to be among the most important allergenic pollen, about one million people suffer from seasonal allergic rhinitis. In Denmark, the official reported pollen forecast is based on the daily weather forecast, the pollen calendar and local 24-h measurements. Birch pollen has the potential for long-range transport but the present Danish pollen forecast does not account for birch pollen being transported into the country from distant sources.. Long-range transport episodes are intermittent and often out of the main pollen season, where individuals in general will be medically unprotected. Here we use an integrated approach to investigate whether or not Denmark receives significant quantities of birch pollen from Poland and Germany before local trees start to flower. In 2006 we used a combination of phenological observations and pollen measurements in Poland (Poznań) and Denmark (Copenhagen). Seasonal and diurnal variations in birch pollen measurement from Copenhagen (2000-2006) were examined with the aim of identifying pre-seasonal episodes originating from long-range transport. The 2.5% accumulation method was used for identifying start of season. If daily pollen counts exceeded 30 grains/m3 either before the local flowering season began or on the actual start day, the episode was chosen for investigation with back trajectory analysis. A birch forest inventory for Northern Europe was produced and implemented in DEHM-Pollen along with a simple unified pollen release model SUPREME to investigate the 2006 campaign in detail. In 2006, full flowering took place in Poznan between 20th and 28th of April and daily concentrations varied between 739 and 2169 grains/m3. In Copenhagen phenological observations showed that local flowering was initiated the 2nd of May. In Copenhagen several episodes with pollen concentrations at 108, 244 and 41 grains/m3 were recorded the 23rd, 26th and 27th of April, respectively. Back-trajectory analysis

  12. Effect of air temperature on forecasting the start of the Betula pollen season at two contrasting sites in the south of Europe (1995-2001).

    PubMed

    Rodríguez-Rajo, F J; Frenguelli, G; Jato, M V

    2003-05-01

    In order to survive periods of adverse cold climatic conditions, plant requirements are satisfied by means of physiological adaptations to prevent cells from freezing. Thus, the growth of woody plants in temperate regions slows down and they enter into a physiological state called dormancy. In order to identify the chilling and heat requirements to overcome the dormancy period of Betula in the south of Europe, a comparative study was carried out with aerobiological pollen data of a 7-year (1995-2001) period in Vigo (Spain) and Perugia (Italy). To satisfy chilling requirements, base temperatures of 7 degrees C and 5.75 degrees C showed a lower standard variation coefficient: 3.94% and 2.36% in Perugia and Vigo respectively. In the case of heat accumulation, the sum of mean temperatures in Perugia and the sum of maximum temperatures in Vigo were the parameters that showed a minor coefficient of variation (11.13% and 14.51% respectively).

  13. Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics.

    PubMed

    Maya-Manzano, J M; Sadyś, M; Tormo-Molina, R; Fernández-Rodríguez, S; Oteros, J; Silva-Palacios, I; Gonzalo-Garijo, A

    2017-04-15

    Airborne bio-aerosol content (mainly pollen and spores) depends on the surrounding vegetation and weather conditions, particularly wind direction. In order to understand this issue, maps of the main land cover in influence areas of 10km in radius surrounding pollen traps were created. Atmospheric content of the most abundant 14 pollen types was analysed in relation to the predominant wind directions measured in three localities of SW of Iberian Peninsula, from March 2011 to March 2014. Three Hirst type traps were used for aerobiological monitoring. The surface area for each land cover category was calculated and wind direction analysis was approached by using circular statistics. This method could be helpful for estimating the potential risk of exposure to various pollen types. Thus, the main land cover was different for each monitoring location, being irrigated crops, pastures and hardwood forests the main categories among 11 types described. Comparison of the pollen content with the predominant winds and land cover shows that the atmospheric pollen concentration is related to some source areas identified in the inventory. The study found that some pollen types (e.g. Plantago, Fraxinus-Phillyrea, Alnus) come from local sources but other pollen types (e.g. Quercus) are mostly coming from longer distances. As main conclusions, airborne particle concentrations can be effectively split by addressing wind with circular statistics. By combining circular statistics and GIS method with aerobiological data, we have created a useful tool for understanding pollen origin. Some pollen loads can be explained by immediate surrounding landscape and observed wind patterns for most of the time. However, other factors like medium or long-distance transport or even pollen trap location within a city, may occasionally affect the pollen load recorded using an air sampler. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula.

    PubMed

    Silva-Palacios, Inmaculada; Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-02-01

    Cupressaceae includes species cultivated as ornamentals in the urban environment. This study aims to investigate airborne pollen data for Cupressaceae on the southwestern Iberian Peninsula over a 21-year period and to analyse the trends in these data and their relationship with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1993 to 2013 in Badajoz (SW Spain). The main pollen season for Cupressaceae lasted, on average, 58 days, ranging from 55 to 112 days, from 24 January to 22 March. Furthermore, a short-term forecasting model has been developed for daily pollen concentrations. The model proposed to forecast the airborne pollen concentration is described by one equation. This expression is composed of two terms: the first term represents the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term is obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological parameters multiplied by a fitting coefficient. Temperature was the main meteorological factor by its influence over daily pollen forecast, being the rain the second most important factor. This model represents a good approach to a continuous balance model of Cupressaceae pollen concentration and is supported by a close agreement between the observed and predicted mean concentrations. The novelty of the proposed model is the analysis of meteorological parameters that are not frequently used in Aerobiology.

  15. Regional and seasonal variation in airborne grass pollen levels between cities of Australia and New Zealand

    PubMed Central

    Beggs, Paul J.; Erbas, Bircan; Jaggard, Alison K.; Campbell, Bradley C.; Vicendese, Don; Johnston, Fay H.; Godwin, Ian; Huete, Alfredo R.; Green, Brett J.; Burton, Pamela K.; Bowman, David M. J. S.; Newnham, Rewi M.; Katelaris, Constance H.; Haberle, Simon G.; Newbigin, Ed; Davies, Janet M.

    2016-01-01

    Although grass pollen is widely regarded as the major outdoor aeroallergen source in Australia and New Zealand (NZ), no assemblage of airborne pollen data for the region has been previously compiled. Grass pollen count data collected at 14 urban sites in Australia and NZ over periods ranging from 1 to 17 years were acquired, assembled and compared, revealing considerable spatiotemporal variability. Although direct comparison between these data is problematic due to methodological differences between monitoring sites, the following patterns are apparent. Grass pollen seasons tended to have more than one peak from tropics to latitudes of 37°S and single peaks at sites south of this latitude. A longer grass pollen season was therefore found at sites below 37°S, driven by later seasonal end dates for grass growth and flowering. Daily pollen counts increased with latitude; subtropical regions had seasons of both high intensity and long duration. At higher latitude sites, the single springtime grass pollen peak is potentially due to a cooler growing season and a predominance of pollen from C3 grasses. The multiple peaks at lower latitude sites may be due to a warmer season and the predominance of pollen from C4 grasses. Prevalence and duration of seasonal allergies may reflect the differing pollen seasons across Australia and NZ. It must be emphasized that these findings are tentative due to limitations in the available data, reinforcing the need to implement standardized pollen-monitoring methods across Australasia. Furthermore, spatiotemporal differences in grass pollen counts indicate that local, current, standardized pollen monitoring would assist with the management of pollen allergen exposure for patients at risk of allergic rhinitis and asthma. PMID:27069303

  16. Regional and seasonal variation in airborne grass pollen levels between cities of Australia and New Zealand.

    PubMed

    Medek, Danielle E; Beggs, Paul J; Erbas, Bircan; Jaggard, Alison K; Campbell, Bradley C; Vicendese, Don; Johnston, Fay H; Godwin, Ian; Huete, Alfredo R; Green, Brett J; Burton, Pamela K; Bowman, David M J S; Newnham, Rewi M; Katelaris, Constance H; Haberle, Simon G; Newbigin, Ed; Davies, Janet M

    Although grass pollen is widely regarded as the major outdoor aeroallergen source in Australia and New Zealand (NZ), no assemblage of airborne pollen data for the region has been previously compiled. Grass pollen count data collected at 14 urban sites in Australia and NZ over periods ranging from 1 to 17 years were acquired, assembled and compared, revealing considerable spatiotemporal variability. Although direct comparison between these data is problematic due to methodological differences between monitoring sites, the following patterns are apparent. Grass pollen seasons tended to have more than one peak from tropics to latitudes of 37°S and single peaks at sites south of this latitude. A longer grass pollen season was therefore found at sites below 37°S, driven by later seasonal end dates for grass growth and flowering. Daily pollen counts increased with latitude; subtropical regions had seasons of both high intensity and long duration. At higher latitude sites, the single springtime grass pollen peak is potentially due to a cooler growing season and a predominance of pollen from C3 grasses. The multiple peaks at lower latitude sites may be due to a warmer season and the predominance of pollen from C4 grasses. Prevalence and duration of seasonal allergies may reflect the differing pollen seasons across Australia and NZ. It must be emphasized that these findings are tentative due to limitations in the available data, reinforcing the need to implement standardized pollen-monitoring methods across Australasia. Furthermore, spatiotemporal differences in grass pollen counts indicate that local, current, standardized pollen monitoring would assist with the management of pollen allergen exposure for patients at risk of allergic rhinitis and asthma.

  17. Pollen season and climate: is the timing of birch pollen release in the UK approaching its limit?

    PubMed

    Newnham, R M; Sparks, T H; Skjøth, C A; Head, K; Adams-Groom, B; Smith, M

    2013-05-01

    In light of heightened interest in the response of pollen phenology to temperature, we investigated recent changes to the onset of Betula (birch) pollen seasons in central and southern England, including a test of predicted advancement of the Betula pollen season for London. We calculated onset of birch pollen seasons using daily airborne pollen data obtained at London, Plymouth and Worcester, determined trends in the start of the pollen season and compared timing of the birch pollen season with observed temperature patterns for the period 1995-2010. We found no overall change in the onset of birch pollen in the study period although there was evidence that the response to temperature was nonlinear and that a lower asymptotic start of the pollen season may exist. The start of the birch pollen season was strongly correlated with March mean temperature. These results reinforce previous findings showing that the timing of the birch pollen season in the UK is particularly sensitive to spring temperatures. The climate relationship shown here persists over both longer decadal-scale trends and shorter, seasonal trends as well as during periods of 'sign-switching' when cooler spring temperatures result in later start dates. These attributes, combined with the wide geographical coverage of airborne pollen monitoring sites, some with records extending back several decades, provide a powerful tool for the detection of climate change impacts, although local site factors and the requirement for winter chilling may be confounding factors.

  18. Analysis of airborne pollen grains in Bilecik, Turkey.

    PubMed

    Türe, Cengiz; Böcük, Harun

    2009-04-01

    In this study, pollen grains in the atmosphere of Bilecik were studied for a continuous period of 2 years (2005 and 2006) by using Durham sampler. During this period, pollen grains belonging to 46 taxa were recorded, 26 of which belonged to arboreal plants and 20 to non-arboreal. Of total 14,269 pollen grains determined in Bilecik atmosphere, 6,675 were recorded in 2005 and 7,594 were in 2006. From these, 75.74% were arboreal, 21.80% were non-arboreal and 2.47% unidentifiable. Pinus sp., Poaceae, Cupressaceae, Platanus sp., Quercus sp., Salix sp., Ailanthus sp., Fagus sp., Urticaceae, Chenopodiaceae/Amaranthaceae were the main pollen producers in the atmosphere of Bilecik, respectively. Pollen concentrations reached their highest levels in May. Atmospheric pollen concentrations in February, March, September, October and November were less than those in other months.

  19. Atmospheric dispersion of airborne pollen evidenced by near-surface and columnar measurements in Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël.; Izquierdo, Rebeca; Jorba, Oriol; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; De Linares, Concepción; Baldasano, José Maria

    2016-10-01

    Hourly measurements of pollen near-surface concentration and lidar-derived profiles of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 27 - 31 March, 2015, are presented. Maximum hourly pollen concentrations of 4700 and 1200 m-3 h-1 were found for Platanus and Pinus, respectively, which represented together more than 80 % of the total pollen. . The pollen concentration was found positively correlated with temperature (correlation coefficient, r, of 0.95) and wind speed (r = 0.82) and negatively correlated with relative humidity (r = -0.18). The ground concentration shows a clear diurnal cycle although pollen activity is also detected during nighttime in three occasions and is clearly associated with periods of strong wind speeds. Everyday a clear diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles of the volume depolarization ratio with maxima usually reached between 12 and 15 UT. On average the volume depolarization ratios in the pollen plume ranged between 0.08 and 0.22. Except in the cases of nocturnal pollen activity, the correlation coefficients between volume depolarization ratio and near-surface concentration are high (>0.68). The dispersion of the Platanus and Pinus in the atmosphere was simulated with the Nonhydrostatic Multiscale Meteorological Model on the B grid at the Barcelona Supercomputing Center with a newly developed Chemical Transport Model (NMMB/BSC-CTM). Model near-surface daily pollen concentrations were compared to our observations at two sites: in Barcelona and Bellaterra (12 km NE of Barcelona). Model hourly pollen concentrations were compared to our observations in Barcelona. Better results are obtained for Pinus than for Platanus. Guidelines are proposed to improve the dispersion of airborne pollen by atmospheric models.

  20. The Macroecology of Airborne Pollen in Australian and New Zealand Urban Areas

    PubMed Central

    Haberle, Simon G.; Bowman, David M. J. S.; Newnham, Rewi M.; Johnston, Fay H.; Beggs, Paul J.; Buters, Jeroen; Campbell, Bradley; Erbas, Bircan; Godwin, Ian; Green, Brett J.; Huete, Alfredo; Jaggard, Alison K.; Medek, Danielle; Murray, Frank; Newbigin, Ed; Thibaudon, Michel; Vicendese, Don; Williamson, Grant J.; Davies, Janet M.

    2014-01-01

    The composition and relative abundance of airborne pollen in urban areas of Australia and New Zealand are strongly influenced by geographical location, climate and land use. There is mounting evidence that the diversity and quality of airborne pollen is substantially modified by climate change and land-use yet there are insufficient data to project the future nature of these changes. Our study highlights the need for long-term aerobiological monitoring in Australian and New Zealand urban areas in a systematic, standardised, and sustained way, and provides a framework for targeting the most clinically significant taxa in terms of abundance, allergenic effects and public health burden. PMID:24874807

  1. The macroecology of airborne pollen in Australian and New Zealand urban areas.

    PubMed

    Haberle, Simon G; Bowman, David M J S; Newnham, Rewi M; Johnston, Fay H; Beggs, Paul J; Buters, Jeroen; Campbell, Bradley; Erbas, Bircan; Godwin, Ian; Green, Brett J; Huete, Alfredo; Jaggard, Alison K; Medek, Danielle; Murray, Frank; Newbigin, Ed; Thibaudon, Michel; Vicendese, Don; Williamson, Grant J; Davies, Janet M

    2014-01-01

    The composition and relative abundance of airborne pollen in urban areas of Australia and New Zealand are strongly influenced by geographical location, climate and land use. There is mounting evidence that the diversity and quality of airborne pollen is substantially modified by climate change and land-use yet there are insufficient data to project the future nature of these changes. Our study highlights the need for long-term aerobiological monitoring in Australian and New Zealand urban areas in a systematic, standardised, and sustained way, and provides a framework for targeting the most clinically significant taxa in terms of abundance, allergenic effects and public health burden.

  2. Concentrations of airborne pollen grains in Sivrihisar (Eskisehir), Turkey.

    PubMed

    Erkara, Ismuhan Potoglu

    2008-03-01

    Pollen grains in the atmosphere of Sivrihisar were studied for a continuous period of 2 years (1 January 2005-31 December 2006) using a Durham sampler. During this period, pollen grains belonging to 41 taxa were recorded, 24 of which belonged to arboreal plants and 17 to non-arboreal. From these, 23,219 were identified in 2005 and 34,154 in 2006. Of the total pollen grains, 90.46% were arboreal, 9.43% non-arboreal, and 0.1% unidentifiable. The majority of the investigated allergic pollen grains were from Pinaceae, Cupressaceae, Fraxinus spp., Cedrus spp., Artemisia spp., Poaceae, Chenopodiaceae/Amaranthaceae, Populus spp., Quercus spp., Urticaceae and Asteraceae, respectively. Pollen concentrations reached their highest levels in May. This information was then established into a calendar form according to the pollens determined in 2005-2006, in terms of annual, monthly and weekly numbers of taxa fall per cm2. A comparison between the results and the meteorological factors revealed a close relationship between pollen concentrations in the air and meteorological conditions. An increase in pollination was also linked to increasing temperatures and the wind. It was therefore concluded that high temperatures and relative humidity were also effective in increasing the number of pollens in the air.

  3. Airborne pollen in European and Asian parts of Istanbul.

    PubMed

    Celenk, Sevcan; Bicakci, Adem; Tamay, Zeynep; Guler, Nermin; Altunoglu, M Kemal; Canitez, Yakup; Malyer, Hulusi; Sapan, Nihat; Ones, Ulker

    2010-05-01

    Pollen concentrations in the atmosphere of Istanbul, a city located between two continents, has been monitored for 1 year as part of a larger research program. The sampling sites were located in two different continents: the Asian part (AS) and the European part (EP). The sampling was performed in AS and EP of the city by using Hirst type volumetric method, and pollen grains of 58 and 62 taxa were identified in the two parts, respectively. The pollen spectrum reflected the floristic diversity of the region. The main pollen producers at the sites were characterized by some allergenic pollen and were identified as Cupressaceae/Taxaceae, Urticaceae, Pistacia sp., Quercus sp., Platanus sp., Fraxinus sp., and Xanthium sp. These pollen types contributed to the total pollen sum with a percentage of more than 80% at both monitoring sites. The highest amount of pollen grains was recorded in April. The greatest number of species was recorded in May, when 42 types (AS) and 44 types (EP) were present.

  4. Airborne pollen grains in Bursa, Turkey, 1999-2000,.

    PubMed

    Bicakci, Adem; Tatlidil, Sevcan; Sapan, Nihat; Malyer, Hulusi; Canitez, Yakup

    2003-01-01

    In this study, pollen grains were sampled by using a Lanzoni trap (Lanzoni VPPS 2000) in atmosphere of Bursa in 1999 and 2000. During two years. a total of 13,991 pollen grains/m3 which belonged to 59 taxa and unidentified pollen grains were recorded. A total of 7.768 pollen grains were identified in 1999 and a total of 6.223 in 2000. From these taxa, 36 belong to arboreal and 23 taxa to non-arboreal plants. Total pollen grains consist of 78.61% arboreal. 20.37% non-arboreal plants and 1.03% unidentified pollen grains. In the region investigated, Pinus sp., Olea sp., Platanus sp., Gramineae, Cupressaceae/Taxaceae, Quercus sp., Acer sp.. Morus sp. Xanthium sp., Castanea sp., Chenopodiaceae/Amaranthaceae, Corvlus sp., Artemisia sp., Urtica sp.and Fraxinus sp. were responsible for the greatest amounts of pollen. During the study period the pollen concentration reached its highest level in April.

  5. Allergenic airborne pollen and spores in Anchorage, Alaska

    SciTech Connect

    Anderson, J.H.

    1985-05-01

    Major aeroallergens in Anchorage are birch, alder, poplar, spruce, grass pollen, Cladosporium, and unspecified fungus spores. Lesser pollens are sorrel, willow, pine, juniper, sedge, lamb's-quarters, wormwood, plantain, and others. The aero-flora is discussed in terms of the frequency of allergenically significant events and within-season and year-to-year dynamics.

  6. Head-high, airborne pollen grains from different areas of metropolitan Delhi.

    PubMed

    Malik, P; Singh, A B; Babu, C R; Gangal, S V

    1990-05-01

    A survey of airborne pollen grains from four zones of metropolitan Delhi was conducted for 1 year (February 1988-January 1989) at human height level (5'-6'). Sampling was carried out in different inhabited areas in the four zones using Burkard Volumetric Personal Samplers. Sampling was carried out at weekly intervals, three times a day (7, 14, & 20 h) for 15 min. Poaceae, Ricinus, Cheno-Amaranth, Morus, Artemisia, Myrtaceae, Parthenium, Prosopis and Cannabis are important pollen contributors to the atmosphere, especially at lower heights. In general, pollen concentration was low at human height. Quantitative zonal variations have been recorded within an urban city.

  7. A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain).

    PubMed

    Fernández-Llamazares, Alvaro; Belmonte, Jordina; Delgado, Rosario; De Linares, Concepción

    2014-04-01

    Airborne pollen records are a suitable indicator for the study of climate change. The present work focuses on the role of annual pollen indices for the detection of bioclimatic trends through the analysis of the aerobiological spectra of 11 taxa of great biogeographical relevance in Catalonia over an 18-year period (1994-2011), by means of different parametric and non-parametric statistical methods. Among others, two non-parametric rank-based statistical tests were performed for detecting monotonic trends in time series data of the selected airborne pollen types and we have observed that they have similar power in detecting trends. Except for those cases in which the pollen data can be well-modeled by a normal distribution, it is better to apply non-parametric statistical methods to aerobiological studies. Our results provide a reliable representation of the pollen trends in the region and suggest that greater pollen quantities are being liberated to the atmosphere in the last years, specially by Mediterranean taxa such as Pinus, Total Quercus and Evergreen Quercus, although the trends may differ geographically. Longer aerobiological monitoring periods are required to corroborate these results and survey the increasing levels of certain pollen types that could exert an impact in terms of public health.

  8. Does insect netting affect the containment of airborne pollen from (GM-) plants in greenhouses?

    PubMed

    van Hengstum, Thomas; Hooftman, Danny A P; den Nijs, Hans C M; van Tienderen, Peter H

    2012-09-01

    Greenhouses are a well-accepted containment strategy to grow and study genetically modified plants (GM) before release into the environment. Various containment levels are requested by national regulations to minimize GM pollen escape. We tested the amount of pollen escaping from a standard greenhouse, which can be used for EU containment classes 1 and 2. More specifically, we investigated the hypothesis whether pollen escape could be minimized by insect-proof netting in front of the roof windows, since the turbulent airflow around the mesh wiring could avoid pollen from escaping. We studied the pollen flow out of greenhouses with and without insect netting of two non-transgenic crops, Ryegrass (Loliummultiflorum) and Corn (Zea Mays). Pollen flow was assessed with Rotorod(®) pollen samplers positioned inside and outside the greenhouse' roof windows. A significant proportion of airborne pollen inside the greenhouse leaves through roof windows. Moreover, the lighter pollen of Lolium escaped more readily than the heavier pollen of Maize. In contrast to our expectations, we did not identify any reduction in pollen flow with insect netting in front of open windows, even under induced airflow conditions. We conclude that insect netting, often present by default in greenhouses, is not effective in preventing pollen escape from greenhouses of wind-pollinated plants for containment classes 1 or 2. Further research would be needed to investigate whether other alternative strategies, including biotic ones, are more effective. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10453-011-9237-8) contains supplementary material, which is available to authorized users.

  9. Detection of airborne allergen (Pla a 1) in relation to Platanus pollen in Córdoba, South Spain.

    PubMed

    Alcázar, Purificación; Galán, Carmen; Torres, Carmen; Domínguez-Vilches, Eugenio

    2015-01-01

    Córdoba is one of the Spanish cities with the highest records of plane tree pollen grains in the air. Clinical studies have identified Platanus as a major cause of pollinosis. This fact provokes an important public health problem during early spring when these trees bloom. The objective of the study is to evaluate the correlation between airborne pollen counts and Pla a 1 aeroallergen concentrations in Córdoba, to elucidate if airborne pollen can be an accurate measure that helps to explain the prevalence of allergenic symptoms. Pollen sampling was performed during 2011-2012 using a Hirst-type sampler. Daily average concentration of pollen grains (pollen grains/m 3 ) was obtained following the methodology proposed by the Spanish Aerobiology Network. A multi-vial cyclone was used for the aeroallergen quantification. Allergenic particles were measured by ELISA using specific antibodies Pla a 1. The trend of Platanus pollen was characterized by a marked seasonality, reaching high concentrations in a short period of time. Airborne pollen and aeroallergen follow similar trends. The overlapping profile between both variables during both years shows that pollen and Pla a 1 are significantly correlated. The highest significant correlation coefficients were obtained during 2011 and for the post peak. Although some studies have found notable divergence between pollen and allergen concentrations in the air, in the case of Platanus in Córdoba, similar aerobiological dynamics between pollen and Pla a 1 have been found. Allergenic activity was found only during the plane tree pollen season, showing a close relationship with daily pollen concentrations. The obtained pollen potency was similar for both years of study. The results suggest that the allergenic response in sensitive patients to plane tree pollen coincide with the presence and magnitude of airborne pollen.

  10. Flowering phenology and potential pollen emission of three Artemisia species in relation to airborne pollen data in Poznań (Western Poland).

    PubMed

    Bogawski, Paweł; Grewling, Łukasz; Frątczak, Agata

    Artemisia pollen is an important allergen in Europe. In Poznań (Western Poland), three Artemisia species, A. vulgaris, A. campestris and A. absinthium, are widely distributed. However, the contributions of these species to the total airborne pollen are unknown. The aim of the study was to determine the flowering phenology and pollen production of the three abovementioned species and to construct a model of potential Artemisia pollen emission in the study area. Phenological observations were conducted in 2012 at six sites in Poznań using a BBCH phenological scale. Pollen production was estimated by counting the pollen grains per flower and recalculating the totals per inflorescence, plant and population in the study area. Airborne pollen concentrations were obtained using a Hirst-type volumetric trap located in the study area. Artemisia vulgaris began to flower the earliest, followed by A. absinthium and then A. campestris. The flowering of A. vulgaris corresponded to the first peak in the airborne pollen level, and the flowering of A. campestris coincided with the second pollen peak. The highest amounts of pollen per single plant were produced by A. vulgaris and A. absinthium. A. campestris produced considerably less pollen, however, due to its common occurrence, it contributed markedly (30 %) to the summation of total of recorded pollen. A. vulgaris is the most important pollen source in Poznań, but the roles of two other Artemisia species cannot be ignored. In particular, A. campestris should be considered as an important pollen contributor and likely might be one of the main causes of allergic reactions during late summer.

  11. The dynamics of the Corylus, Alnus, and Betula pollen seasons in the context of climate change (SW Poland).

    PubMed

    Malkiewicz, Małgorzata; Drzeniecka-Osiadacz, Anetta; Krynicka, Justyna

    2016-12-15

    The changes in the main features of early spring tree or shrub pollen seasons are important due to the significant impact on the occurrence of pollen-related allergy symptoms. This study shows the results of pollen monitoring for a period of eleven years (2003-2013) using a Burkard volumetric spore trap. The main characteristics of the hazel, alder, and birch pollination season were studied in Wrocław (SW Poland). The statistical analyses do not show a significant trend of annual total pollen count or shift in timing of the pollen season in the period of analysis. The research confirms a great impact (at the statistically significant level of 0.05) of the heat resources on pollination season (the value of the correlation coefficient ranges from -0.63 up to -0.87). Meteorological variables (e.g. sum of temperature for selected period) were compiled to 5-year running means to examine trends. Changes in the pollination period features due to climate change including both timing and intensity of pollen productivity, would have important consequences for allergy sufferers. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. © 2012 Blackwell Publishing Ltd.

  13. Alternative statistical methods for interpreting airborne Alder ( Alnus glutimosa (L.) Gaertner) pollen concentrations

    NASA Astrophysics Data System (ADS)

    González Parrado, Zulima; Valencia Barrera, Rosa M.; Fuertes Rodríguez, Carmen R.; Vega Maray, Ana M.; Pérez Romero, Rafael; Fraile, Roberto; Fernández González, Delia

    2009-01-01

    This paper reports on the behaviour of Alnus glutinosa (alder) pollen grains in the atmosphere of Ponferrada (León, NW Spain) from 1995 to 2006. The study, which sought to determine the effects of various weather-related parameters on Alnus pollen counts, was performed using a volumetric method. The main pollination period for this taxon is January-February. Alder pollen is one of the eight major airborne pollen allergens found in the study area. An analysis was made of the correlation between pollen counts and major weather-related parameters over each period. In general, the strongest positive correlation was with temperature, particularly maximum temperature. During each period, peak pollen counts occurred when the maximum temperature fell within the range 9°C-14°C. Finally, multivariate analysis showed that the parameter exerting the greatest influence was temperature, a finding confirmed by Spearman correlation tests. Principal components analysis suggested that periods with high pollen counts were characterised by high maximum temperature, low rainfall and an absolute humidity of around 6 g m-3. Use of this type of analysis in conjunction with other methods is essential for obtaining an accurate record of pollen-count variations over a given period.

  14. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain.

    PubMed

    García-Mozo, Herminia; Oteros, Jose Antonio; Galán, Carmen

    2016-04-01

    Airborne pollen concentrations strongly correlate with flowering intensity of wind-pollinated species growing at and around monitoring sites. The pollen spectrum, and the variations in its composition and concentrations, is influenced by climatic features and by available nutritional resources but it is also determined by land use and its changes. The first factor influence is well known on aerobiological researches but the impact of land cover changes has been scarcely studied until now. This paper reports on a study carried out in Southern Spain (Córdoba city) examining airborne pollen trends over a 15-year period and it explores the possible links both to changes in land use and to climate variations. The Seasonal-Trend Decomposition procedure based on Loess (STL) which decomposes long-term data series into smaller seasonal component patterns was applied. Trends were compared with recorded changes in land use at varying distances from the city in order to determine their possible influence on pollen-count variations. The influence of climate-related factors was determined by means of non-parametric correlation analysis. The STL method proved highly effective for extracting trend components from pollen time series, because their features vary widely and can change quickly in a short term. Results revealed mixed trends depending on the taxa and reflecting fluctuations in land cover and/or climate. A significant rising trend in Olea pollen counts was observed, attributable both to the increasing olive-growing area but also to changes in temperature and rainfall. Poaceae pollen concentrations also increased, due largely to an expansion of heterogeneous agricultural areas and to an increase in pollen season length positively influenced by rainfall and temperature. By contrast, the significant declining trend observed for pollen from ruderal taxa, such as Amaranthaceae, Rumex, Plantago and Urticaceae, may be linked to changes in urban planning strategies with a

  15. Short term effects of airborne pollen concentrations on asthma epidemic

    PubMed Central

    Tobias, A; Galan, I; Banegas, J; Aranguez, E

    2003-01-01

    Methods: This study, based on time series analysis adjusting for meteorological factors and air pollution variables, assessed the short term effects of different types of allergenic pollen on asthma hospital emergencies in the metropolitan area of Madrid (Spain) for the period 1995–8. Results: Statistically significant associations were found for Poaceae pollen (lag of 3 days) and Plantago pollen (lag of 2 days), representing an increase in the range between the 99th and 95th percentiles of 17.1% (95% confidence interval (CI) 3.2 to 32.8) and 15.9% (95% CI 6.5 to 26.2) for Poaceae and Plantago, respectively. A positive association was also observed for Urticaceae (lag of 1 day) with an 8.4% increase (95% CI 2.8 to 14.4). Conclusions: There is an association between pollen levels and asthma related emergencies, independent of the effect of air pollutants. The marked relationship observed for Poaceae and Plantago pollens suggests their implication in the epidemic distribution of asthma during the period coinciding with their abrupt release into the environment. PMID:12885991

  16. Immunologic, spectrophotometric and nucleic acid based methods for the detection and quantification of airborne pollen

    PubMed Central

    Rittenour, William R.; Hamilton, Robert G.; Beezhold, Donald H.; Green, Brett J.

    2015-01-01

    Microscopic identification of pollen morphological phenotypes has been the traditional method used to identify and quantify pollen collected by air monitoring stations worldwide. Although this method has enabled a semi-standardized approach for the assessment of pollen exposure, limitations including labor intensiveness, required expertise, examiner bias, and the inability to differentiate species, genera, and in some cases families have limited data derived from the these stations. Recent advances in chemical, biochemical and molecular detection methods have provided standardized alternatives to this microscopic approach. In this review, we examine the applicability of alternative methodologies, in particular nucleic acid based assays involving the quantitative polymerase chain reaction, for the standardized detection of airborne pollen. PMID:22342607

  17. Pla a_1 aeroallergen immunodetection related to the airborne Platanus pollen content.

    PubMed

    Fernández-González, M; Guedes, A; Abreu, I; Rodríguez-Rajo, F J

    2013-10-01

    Platanus hispanica pollen is considered an important source of aeroallergens in many Southern European cities. This tree is frequently used in urban green spaces as ornamental specie. The flowering period is greatly influenced by the meteorological conditions, which directly affect its allergenic load in the atmosphere. The purpose of this study is to develop equations to predict the Platanus allergy risk periods as a function of the airborne pollen, the allergen concentration and the main meteorological parameters. The study was conducted by means two volumetric pollen samplers; a Lanzoni VPPS 2000 for the Platanus pollen sampling and a Burkard multivial Cyclone Sampler to collect the aeroallergen particles (Pla a_1). In addiction the Dot-Blot and the Raman spectroscopy methods were used to corroborate the results. The Pla a_1 protein is recorded in the atmosphere after the presence of the Platanus pollen, which extend the Platanus pollen allergy risk periods. The Platanus pollen and the Pla a 1 allergens concentration are associated with statistical significant variations of some meteorological variables: in a positive way with the mean and maximum temperature whereas the sign of the correlation coefficient is negative with the relative humidity. The lineal regression equation elaborated in order to forecast the Platanus pollen content in the air explain the 64.5% of variance of the pollen presence in the environment, whereas the lineal regression equation elaborated in order to forecast the aeroallergen a 54.1% of the Pla a_1 presence variance. The combination of pollen count and the allergen quantification must be assessed in the epidemiologic study of allergic respiratory diseases to prevent the allergy risk periods.

  18. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, S.; Ambelas Skjøth, C.; Tormo-Molina, R.; Brandao, R.; Caeiro, E.; Silva-Palacios, I.; Gonzalo-Garijo, Á.; Smith, M.

    2012-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (southwestern Spain) and Évora (southeastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.

  19. Gamma, Gaussian and logistic distribution models for airborne pollen grains and fungal spore season dynamics.

    PubMed

    Kasprzyk, I; Walanus, A

    2014-01-01

    The characteristics of a pollen season, such as timing and magnitude, depend on a number of factors such as the biology of the plant and environmental conditions. The main aim of this study was to develop mathematical models that explain dynamics in atmospheric concentrations of pollen and fungal spores recorded in Rzeszów (SE Poland) in 2000-2002. Plant taxa with different characteristics in the timing, duration and curve of their pollen seasons, as well as several fungal taxa were selected for this analysis. Gaussian, gamma and logistic distribution models were examined, and their effectiveness in describing the occurrence of airborne pollen and fungal spores was compared. The Gaussian and differential logistic models were very good at describing pollen seasons with just one peak. These are typically for pollen types with just one dominant species in the flora and when the weather, in particular temperature, is stable during the pollination period. Based on s parameter of the Gaussian function, the dates of the main pollen season can be defined. In spite of the fact that seasonal curves are often characterised by positive skewness, the model based on the gamma distribution proved not to be very effective.

  20. Airborne pollen and fungal spores in Garki, Abuja (North-Central Nigeria).

    PubMed

    Ezike, Dimphna Nneka; Nnamani, Catherine V; Ogundipe, Oluwatoyin T; Adekanmbi, Olushola H

    2016-01-01

    The ambient atmosphere is dominated with pollen and spores, which trigger allergic reactions and diseases and impact negatively on human health. A survey of pollen and fungal spores constituents of the atmosphere of Garki, Abuja (North-Central Nigeria) was carried out for 1 year (June 1, 2011-May 31, 2012). The aim of the study was to determine the prevalence and abundance of pollen and fungal spores in the atmosphere and their relationship with meteorological parameters. Airborne samples were trapped using modified Tauber-like pollen trap, and the recipient solutions were subjected to acetolysis. Results revealed the abundance of fungal spores, pollen, fern spores, algal cysts and diatoms in decreasing order of dominance. The atmosphere was qualitatively and quantitatively dominated by pollen during the period of late rainy/harmattan season than the rainy season. Numerous fungal spores were trapped throughout the sampling periods among which Alternaria spp., Fusarium spp., Cladosporium spp. and Curvularia spp. dominated. These fungi have been implicated in allergic diseases and are dermatophytic, causing diverse skin diseases. Other pathogenic fungi found in the studied aeroflora were Dreschlera spp., Helminthosporium spp., Torula spp., Pithomyces spp., Tetraploa spp., Nigrospora ssp., Spadicoides spp., Puccinia spp. and Erysiphe graminis. Total pollen and fungal spores counts do not show significant correlation with meteorological parameters.

  1. Elliptical pollen corona from North American boreal paper birch trees (Betula papyrifera): strong fall orientations for near-spherical particles.

    PubMed

    Sassen, Kenneth

    2011-10-01

    It has only recently been realized that solar corona can be generated by dispersions of tree pollen grains suspended in the atmosphere, and these studies have come almost exclusively from Scandinavia. Using corona photographic and surface pollen analyses, it is shown here that paper birch trees in the interior of Alaska regularly generate solar corona during the boreal green-out in mid-May. Although near-spherical in shape, these ~27 μm average diameter particles have three surface protrusions involved in germination that are indicated to aid in the generation of elliptical corona, for which a strong preferential particle orientation is needed. For observations at solar elevation angles of ~35°-40°, an axis ratio of about 1.2 and average radius of 2.5° (for the second-order red band) are found. Because oriented particles of a particular shape tend to fall slower than randomly oriented ones, this microdesign promotes the lateral spread of pollen and enhances tree reproductive opportunities, an especially important trait for pioneering species.

  2. Association between airborne pollen and epidemic asthma in Madrid, Spain: a case-control study.

    PubMed

    Galán, Iñaki; Prieto, Alicia; Rubio, María; Herrero, Teresa; Cervigón, Patricia; Cantero, Jose Luis; Gurbindo, Maria Dolores; Martínez, María Isabel; Tobías, Aurelio

    2010-05-01

    BACKGROUND Despite the fact that airborne pollen is an important factor in precipitating asthma attacks, its implication in increases of epidemic asthma in usual meteorological conditions has not been reported. A study was undertaken to estimate the relationship between various types of aeroallergens and seasonal epidemic asthma in the region of Madrid, Spain. METHODS A case-control study was carried out in individuals aged 4-79 years who received emergency healthcare for asthma during 2001 in a base hospital covering a population of 750 000 inhabitants of Madrid. A skin prick test was performed with grass pollen, plantain pollen, olive pollen, cypress pollen, plane tree pollen, dust mites and Alternaria and the prevalence of skin reactivity was compared between subjects with asthma requiring emergency care for asthma within (cases) and outside (controls) the seasonal epidemic period. Data were analysed using logistic regression adjusting for age and sex. RESULTS The response rate was 61.7% for cases (n=95) and 51.6% for controls (n=146). The OR of sensitisation to grass pollen for cases compared with controls was 9.9 (95% CI 4.5 to 21.5); plantain pollen: 4.5 (95% CI 2.5 to 8.2); olive pollen: 7.3 (95% CI 3.5 to 15.2); plane tree pollen: 3.6 (95% CI 2.0 to 6.4); cypress pollen: 3.5 (95% CI 2.0 to 6.2); dust mites: 1.1 (95% CI 0.6 to 1.9); Alternaria: 0.9 (95% CI 0.5 to 1.9). The association with grasses was maintained after adjusting simultaneously for the remaining aeroallergens (OR 5.0 (95% CI 1.5 to 16.4)); this was the only one that retained statistical significance (p=0.007). CONCLUSIONS These results suggest that allergy to pollen, particularly grass pollen, is associated with the epidemic increase in asthma episodes during the months of May and June in the Madrid area of Spain.

  3. Models to predict the start of the airborne pollen season

    NASA Astrophysics Data System (ADS)

    Siniscalco, Consolata; Caramiello, Rosanna; Migliavacca, Mirco; Busetto, Lorenzo; Mercalli, Luca; Colombo, Roberto; Richardson, Andrew D.

    2015-07-01

    Aerobiological data can be used as indirect but reliable measures of flowering phenology to analyze the response of plant species to ongoing climate changes. The aims of this study are to evaluate the performance of several phenological models for predicting the pollen start of season (PSS) in seven spring-flowering trees ( Alnus glutinosa, Acer negundo, Carpinus betulus, Platanus occidentalis, Juglans nigra, Alnus viridis, and Castanea sativa) and in two summer-flowering herbaceous species ( Artemisia vulgaris and Ambrosia artemisiifolia) by using a 26-year aerobiological data set collected in Turin (Northern Italy). Data showed a reduced interannual variability of the PSS in the summer-flowering species compared to the spring-flowering ones. Spring warming models with photoperiod limitation performed best for the greater majority of the studied species, while chilling class models were selected only for the early spring flowering species. For Ambrosia and Artemisia, spring warming models were also selected as the best models, indicating that temperature sums are positively related to flowering. However, the poor variance explained by the models suggests that further analyses have to be carried out in order to develop better models for predicting the PSS in these two species. Modeling the pollen season start on a very wide data set provided a new opportunity to highlight the limits of models in elucidating the environmental factors driving the pollen season start when some factors are always fulfilled, as chilling or photoperiod or when the variance is very poor and is not explained by the models.

  4. Models to predict the start of the airborne pollen season.

    PubMed

    Siniscalco, Consolata; Caramiello, Rosanna; Migliavacca, Mirco; Busetto, Lorenzo; Mercalli, Luca; Colombo, Roberto; Richardson, Andrew D

    2015-07-01

    Aerobiological data can be used as indirect but reliable measures of flowering phenology to analyze the response of plant species to ongoing climate changes. The aims of this study are to evaluate the performance of several phenological models for predicting the pollen start of season (PSS) in seven spring-flowering trees (Alnus glutinosa, Acer negundo, Carpinus betulus, Platanus occidentalis, Juglans nigra, Alnus viridis, and Castanea sativa) and in two summer-flowering herbaceous species (Artemisia vulgaris and Ambrosia artemisiifolia) by using a 26-year aerobiological data set collected in Turin (Northern Italy). Data showed a reduced interannual variability of the PSS in the summer-flowering species compared to the spring-flowering ones. Spring warming models with photoperiod limitation performed best for the greater majority of the studied species, while chilling class models were selected only for the early spring flowering species. For Ambrosia and Artemisia, spring warming models were also selected as the best models, indicating that temperature sums are positively related to flowering. However, the poor variance explained by the models suggests that further analyses have to be carried out in order to develop better models for predicting the PSS in these two species. Modeling the pollen season start on a very wide data set provided a new opportunity to highlight the limits of models in elucidating the environmental factors driving the pollen season start when some factors are always fulfilled, as chilling or photoperiod or when the variance is very poor and is not explained by the models.

  5. An algorithm and a device for counting airborne pollen automatically using laser optics

    NASA Astrophysics Data System (ADS)

    Kawashima, Shigeto; Clot, Bernard; Fujita, Toshio; Takahashi, Yuichi; Nakamura, Kimihito

    Airborne pollen is important in relation to the social issues of pollinosis and of the environmental effects of genetically modified plants. Existing methods for pollen counting involve counting and classifying the grains that adhere to a sampling surface, requiring much time and skilled labor. We therefore have developed a method of automatically monitoring pollen, using a laser-optics instrument. In this instrument, the sideways and forward scattering of laser light by each particle is recorded in real time for computer processing. A field experiment was conducted in 2005, comparing our method with that of the older Hirst method. A scatter plot was made of the forward scattering vs. the sideways scattering for each particle. An algorithm was developed to find the optimum rectangular region of the plot for each type of pollen, and a count of points inside this region was taken as the count for that type of pollen. For the three most common types of pollen found in the field test (Urticaceae, Poaceae, and Ambrosia), the daily counts from this algorithm were compared with the daily counts from the Hirst-type (Burkard) sampler. There was a very high correlation (determination coefficient approximately 0.8) between the results of the two methods.

  6. Effect of micro-scale wind on the measurement of airborne pollen concentrations using volumetric methods on a building rooftop

    NASA Astrophysics Data System (ADS)

    Miki, Kenji; Kawashima, Shigeto; Fujita, Toshio; Nakamura, Kimihito; Clot, Bernard

    2017-06-01

    Evaluating airborne pollen concentrations is important for the understanding of the spatiotemporal dispersion of pollen grains. Using two identical pollen monitors in parallel, we performed two experiments in order to study the influences of a) the physical characteristics (orientation) of the air inlet and b) the presence of obstacles in proximity to the monitors on airborne pollen concentration data. The first experiment consisted of an evaluation of airborne pollen concentrations using two different types of orifices; 1) a vertically oriented inlet and 2) a wind vane intake, both attached to the same type of automatic pollen sampler. The second experiment investigated the relationship between vertical wind speed and horizontal wind direction around an obstacle with the goal of studying the impact of micro-scale wind on pollen sampling efficiency. The results of the two experiments suggest that the wind path near an obstacle might be redirected in a vertical direction before or after the wind flows over the obstacle, which causes measurement errors of airborne pollen concentrations that are proportional to the vertical wind speed, especially when a vertically oriented inlet is used.

  7. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Galán, C.

    2016-12-01

    Olea europaea L. pollen is the second-largest cause of pollinosis in the southern Iberian Peninsula. Airborne-pollen monitoring networks provide essential data on pollen dynamics over a given study area. Recent research, however, has shown that airborne pollen levels alone do not always provide a clear indicator of actual exposure to aeroallergens. This study sought to evaluate correlations between airborne concentrations of olive pollen and Ole e 1 allergen levels in Córdoba (southern Spain), in order to determine whether atmospheric pollen concentrations alone are sufficient to chart changes in hay fever symptoms. The influence of major weather-related variables on local airborne pollen and allergen levels was also examined. Monitoring was carried out from 2012 to 2014. Pollen sampling was performed using a Hirst-type sampler, following the protocol recommended by the Spanish Aerobiology Network. A multi-vial cyclone sampler was used to collect aeroallergens, and allergenic particles were quantified by ELISA assay. Significant positive correlations were found between daily airborne allergen levels and atmospheric pollen concentrations, although there were occasions when allergen was detected before and after the pollen season and in the absence of airborne pollen. The correlation between the two was irregular, and pollen potency displayed year-on-year variations and did not necessarily match pollen-season-intensity.

  8. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Santiago; Skjøth, Carsten Ambelas; Tormo-Molina, Rafael; Brandao, Rui; Caeiro, Elsa; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Smith, Matt

    2014-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.

  9. Wind dynamics' influence on south Spain airborne olive-pollen during African intrusions.

    PubMed

    García-Mozo, H; Hernández-Ceballos, M A; Trigo, M M; Galán, C

    2017-12-31

    Given its proximity to northern Africa, southern Spain is regularly affected by high-altitude African intrusions. This determines a well-defined wind dynamics at surface levels. Although this weather event-mainly recorded in spring and summer-coincides with the flowering season of many wind pollinated species, its potential influence on long term airborne pollen transport has been not investigated in detail. We analyse their influence on olive pollen transport at surface level in south Spain. Daily and bi-hourly olive pollen data from 2010 to 2015, recorded at two sites 150km apart, Málaga (coast) and Córdoba (inland), were analysed together with 1) air masses at 300m above ground level (m.a.g.l.), 2) surface wind direction and 3) surface wind speed over the same period. Air masses at 3000m.a.g.l. were used to identify the periods under the influence of African intrusions. The combined analysis has enabled the identification of different pollen patterns and source contributions. In Málaga, hourly pollen peaks were recorded during the early morning coinciding with the arrival of north-westerly winds (developing sea-land breezes), with a minimal impact of local pollen sources; in Córdoba, by contrast, pollen concentrations reflected the joint contribution of local and long term sources, being the maximum concentrations associated with the arrival of southerly air masses in the afternoon. These results help to understand the potential distant sources and back-trajectories of olive pollen detected. In our case pollen from sources located at the west-northwest areas in the case of Malaga, and from the south in Cordoba. These results reinforce the idea that combined studies between synoptic meteorological and aerobiological data together with different atmospheric height air masses data, offer us a better explanation and understanding of the behaviour and the potential sources of recorded airborne data in a given place. Copyright © 2017 Elsevier B.V. All rights

  10. [A new counting method for airborne Japanese red cedar and grass pollen allergens by the immunoblotting technique].

    PubMed

    Takahashi, Y; Katagiri, S; Inouye, S; Sakaguchi, M

    1990-12-01

    We devised a new counting method of pollen allergen particles which improved the fluorescence immunoblotting technique by Schumacher et al (1988). And by which airborne pollen allergens became visible under 10X magnifier or naked eyes. Airborne pollen allergens collected on the Burkard's sampling tape were transferred onto nitrocellulose membrane and were reacted with anti Cry j I rabbit serum or anti Lol p I rabbit serum, and then treated with alkaline phosphatase conjugated F(ab')2 anti rabbit IgG. Finally, bluish purple spots were obtained by staining with BCIP/NBT phosphatase substrate system. This technique does not require any skillful morphological observation, and is more suitable to measure the amounts of airborne pollen allergen for given pollinosis patients because total pollen allergen particles with common antigenicity are measured. In Japanese red cedar pollen counts, we could not count the spots more than 400 grains per 0.16 cm2 of the sample trapping area due to many overlapping spots. In this case, we tried to calculate the value from the ratio of bluish purple coloured area to one pollen area. However, a more suitable method for estimating the content of pollinosis caused airborne allergens may be colorimetric quantitation using densitometry and displaying the value as allergen content.

  11. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-03-01

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities’ fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents.

  12. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    PubMed Central

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-01-01

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities’ fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents. PMID:28300143

  13. Masting in oaks: Disentangling the effect of flowering phenology, airborne pollen load and drought

    NASA Astrophysics Data System (ADS)

    Fernández-Martínez, Marcos; Belmonte, Jordina; Maria Espelta, Josep

    2012-08-01

    Quercus species exhibit an extreme inter-annual variability in seed production often synchronized over large geographical areas (masting). Since this reproductive behavior is mostly observed in anemophilous plants, pollination efficiency is suggested as one hypothesis to explain it, although resource-based hypotheses are also suggested as alternatives. We analyzed the effect of flowering phenology, airborne pollen presence and meteorological conditions in the pattern of acorn production in mixed evergreen-deciduous oak forests (Quercus ilex and Quercus pubescens) in NE Spain for twelve years (1998-2009). In both oaks, higher temperatures advanced the onset of flowering and increased the amount of airborne pollen. Nevertheless, inter-annual differences in pollen production did not influence acorn crop size. Acorn production was enhanced by a delay in flowering onset in Q. ilex but not in Q. pubescens. This suggests that in perennial oaks a larger number of photosynthates produced before flowering could benefit reproduction while the lack of effects on deciduous oaks could be because these species flush new leaves and flowers at the same time. Notwithstanding this effect, spring water deficit was the most relevant factor in explaining inter-annual variability in acorn production in both species. Considering that future climate scenarios predict progressive warmer and dryer spring seasons in the Mediterranean Basin, this might result in earlier onsets of flowering and higher water deficits that would constrain acorn production.

  14. Transport of airborne Picea schrenkiana pollen on the northern slope of Tianshan Mountains (Xinjiang, China) and its implication for paleoenvironmental reconstruction.

    PubMed

    Pan, Yanfang; Yan, Shun; Behling, Hermann; Mu, Guijin

    2013-06-01

    The understanding of airborne pollen transportation is crucial for the reconstruction of the paleoenvironment. Under favorable conditions, a considerable amount of long-distance-transported pollen can be deposited far from its place of origin. In extreme arid regions, in most cases, such situations occur and increase the difficulty to interpret fossil pollen records. In this study, three sets of Cour airborne pollen trap were installed on the northern slope of Tianshan Mountains to collect airborne Picea schrenkiana (spruce) pollen grains from July 2001 to July 2006. The results indicate that Picea pollen disperses extensively and transports widely in the lower atmosphere far away from spruce forest. The airborne Picea pollen dispersal period is mainly concentrated between mid-May and July. In desert area, weekly Picea pollen began to increase and peaked suddenly in concentration. Also, annual pollen indices do not decline even when the distance increased was probably related to the strong wind may pick up the deposited pollen grains from the topsoil into the air stream, leading to an increase of pollen concentration in the air that is irrelevant to the normal and natural course of pollen transport and deposition. This, in turn, may lead to erroneous interpretations of the pollen data in the arid region. This study provided insight into the shift in the Picea pollen season regarding climate change in arid areas. It is recorded that the pollen pollination period starts earlier and the duration became longer. The results also showed that the temperature of May and June was positively correlated with the Picea pollen production. Furthermore, the transport of airborne Picea pollen data is useful for interpreting fossil pollen records from extreme arid regions.

  15. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change.

    PubMed

    García de León, David; García-Mozo, Herminia; Galán, Carmen; Alcázar, Purificación; Lima, Mauricio; González-Andújar, José L

    2015-10-15

    Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Long-term monitoring of airborne pollen in Alaska and the Yukon: Possible implications for global change

    SciTech Connect

    Anderson, J.H.

    1992-03-01

    Airborne pollen and spores have been sampled since 1978 in Fairbanks and 1982 Anchorage and other Alaska-Yukon locations for medical and ecological purposes. Comparative analyses of pre- and post-1986 data subsets reveal that after 1986 (1) pollen is in the air earlier, (2) the multiyear average of degree-days promoting pollen onset is little changed while (3) annual variation in degree-days at onset is greater, (4) pollen and spore annual productions are considerably higher, and (5) there is more year-to-year variation in pollen production. These changes probably reflect directional changes in certain weather variables, and there is some indication that they are of global change significance, i.e., related to increasing atmospheric greenhouse gases. Correlations with pollen data suggest that weather variables of high influence are temperatures during specific periods following pollen dispersal in the preceding year and the average temperature in April of the current year. Annual variations in pollen dispersal might be roughly linked to the 11 year sunspot cycle through air temperature mediators. Weather in 1990, apparent pollen production cycles under endogenous control, and the impending sunspot maximum portend a very severe pollen season in 199 existing but unfunded sampling projects.

  17. Airborne grass and ragweed pollen in the southern Panonnian Valley--consideration of rural and urban environment.

    PubMed

    Sikoparija, Branko; Radisic, Predrag; Pejak, Tatjana; Simic, Smiljka

    2006-01-01

    The aims of this study were to describe and compare the characteristics of grass and ragweed airborne pollen in rural and urban areas in the southern Panonnian Valley. Airborne pollen data were collected by using Hirst type volumetric samplers simultaneously in rural and urban localities. If rural and urban environment are considered, both grass and ragweed daily pollen concentrations showed a significant degree of association. Observed parameters (pollen index, maximum daily concentration, number of days during which the pollen is recorded in the air and start day of main pollen season), showed year-to-year variations for both grass and ragweed aeropollen. Average values of these parameters were higher in the rural environment, but the difference was statistically significant only for grass pollen index. Such a low difference indicates the possibility for conducting dose response clinical trials based on data obtained from one sampling station. The least year-to-year variations as well as the least difference between rural and urban environment, have been observed in the case of start date of the MPS. Such a situation suggests the possibility for using data obtained in one type of environment for the development of long-term forecast models for an entire region.

  18. Deciduous vegetation (Betula glandulosa) as a biomonitor of airborne PCB contamination from a local source in the Arctic.

    PubMed

    Luttmer, Carol; Ficko, Sarah; Reimer, Kenneth; Zeeb, Barbara

    2013-02-15

    Concentrations of polychlorinated biphenyls (PCBs) were measured in the new-year growth of dwarf birch (Betula glandulosa) before (2001-2002), during (2003-2004), and for six years after (2005-2010) the screening and containerization of PCB-contaminated soils (>50 μg/g PCBs) at a remote Arctic radar site. During the remediation activities, ambient air PCB concentrations were measured using active air samplers for comparison to the passive samplers (dwarf birch). PCB concentrations measured by the active samplers reached a maximum of 0.037 μg/m(3) which was below the project criteria of 0.15 μg/m(3) indicating minimal source emissions. During the same time period, PCB concentrations in the dwarf birch (passive samplers) showed significant increases of 2-14 fold compared to the baseline data from previous years. The birch data also showed significant changes between monitoring events within the 2003 and 2004 sampling seasons (June to September) and decreases when ambient air concentrations were low, indicating the sensitivity of new-year growth to reflect net accumulation and ambient conditions at a temporal scale of approximately two weeks. The dwarf birch PCB concentrations remained elevated compared to baseline levels for two years after the remediation was completed. In the third year following remediation, concentrations decreased to below baseline levels reflecting the overall remediation and source removal at the site. Spatial variations observed in dwarf birch PCB concentrations are likely due to the influence of wind direction on contaminant dispersal and deposition. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  19. Airborne pollen in three European cities: Detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories

    NASA Astrophysics Data System (ADS)

    Makra, LáSzló; SáNta, TamáS.; Matyasovszky, IstváN.; Damialis, Athanasios; Karatzas, Kostas; Bergmann, Karl-Christian; Vokou, Despoina

    2010-12-01

    The long-range transport of particulates can substantially contribute to local air pollution. The importance of airborne pollen has grown due to the recent climate change; the lengthening of the pollen season and rising mean airborne pollen concentrations have increased health risks. Our aim is to identify atmospheric circulation pathways influencing pollen levels in three European cities, namely Thessaloniki, Szeged, and Hamburg. Trajectories were computed using the HYSPLIT model. The 4 day, 6 hourly three-dimensional (3-D) backward trajectories arriving at these locations at 1200 UT are produced for each day over a 5 year period. A k-means clustering algorithm using the Mahalanobis metric was applied in order to develop trajectory types. The delimitation of the clusters performed by the 3-D function "convhull" is a novel approach. The results of the cluster analysis reveal that the main pathways for Thessaloniki contributing substantially to the high mean Urticaceae pollen levels cover western Europe and the Mediterranean. The key pathway patterns for Ambrosia for Szeged are associated with backward trajectories coming from northwestern Europe, northeastern Europe, and northern Europe. A major pollen source identified is a cluster over central Europe, namely the Carpathian basin with peak values in Hungary. The principal patterns for Poaceae for Hamburg include western Europe and the mid-Atlantic region. Locations of the source areas coincide with the main habitat regions of the species in question. Critical daily pollen number exceedances conditioned on the clusters were also evaluated using two statistical indices. An attempt was made to separate medium- and long-range airborne pollen transport.

  20. Airborne Pollen Concentrations and Emergency Room Visits for Myocardial Infarction: A Multicity Case-Crossover Study in Ontario, Canada.

    PubMed

    Weichenthal, Scott; Lavigne, Eric; Villeneuve, Paul J; Reeves, François

    2016-04-01

    Few studies have examined the acute cardiovascular effects of airborne allergens. We conducted a case-crossover study to evaluate the relationship between airborne allergen concentrations and emergency room visits for myocardial infarction (MI) in Ontario, Canada. In total, 17,960 cases of MI were identified between the months of April and October during the years 2004-2011. Daily mean aeroallergen concentrations (pollen and mold spores) were assigned to case and control periods using central-site monitors in each city along with daily measurements of meteorological data and air pollution (nitrogen dioxide and ozone). Odds ratios and their 95% confidence intervals were estimated using conditional logistic regression models adjusting for time-varying covariates. Risk of MI was 5.5% higher (95% confidence interval (CI): 3.4, 7.6) on days in the highest tertile of total pollen concentrations compared with days in the lowest tertile, and a significant concentration-response trend was observed (P < 0.001). Higher MI risk was limited to same-day pollen concentrations, with the largest risks being observed during May (odds ratio = 1.16, 95% CI: 1.00, 1.35) and June (odds ratio = 1.10, 95% CI: 1.00, 1.22), when tree and grass pollen are most common. Mold spore concentrations were not associated with MI. Our findings suggest that airborne pollen might represent a previously unidentified environmental risk factor for myocardial infarction.

  1. The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark.

    PubMed

    Skjøth, C A; Sommer, J; Stach, A; Smith, M; Brandt, J

    2007-08-01

    Birch pollen is highly allergic and has the potential for episodically long-range transport. Such episodes will in general occur out of the main pollen season. During this time, allergy patients are unprotected and high pollen concentrations will therefore have a full allergenic impact. To show that Denmark obtains significant quantities of birch pollen from Poland or Germany before the local trees start to flower. Simultaneous observations of pollen concentrations and phenology in the potential source area in Poland as well as in Denmark were performed in 2006. The Danish pollen records from 2000 to 2006 were analysed for possible long-range transport episodes and analysed with trajectories in combination with a birch tree source map. In 2006, high pollen concentrations were observed in Denmark with bi-hourly concentrations above 500 grains/m(3) before the local trees began to flower. Poland was identified as a source region. The analysis of the historical pollen record from Copenhagen shows significant pre-seasonal pollen episodes almost every year from 2000 to 2006. In all episodes, trajectory analysis identified Germany or Poland as source regions. Denmark obtains significant pre-seasonal quantities of birch pollen from either Poland or Germany almost every year. Forecasting of birch pollen quantities relevant to allergy patients must therefore, take into account long-range transport. This cannot be based on measured concentrations in Denmark. The most effective way to improve the current Danish pollen forecasts is to extend the current forecasts with atmospheric transport models that take into account pollen emission and transport from countries such as Germany and Poland. Unless long-range transport is taken into account, pre-seasonal pollen episodes will have a full allergic impact, as the allergy patients in general will be unprotected during that time.

  2. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Gioulekas, Dimitrios; Lazopoulou, Chariklia; Balafoutis, Christos; Vokou, Despina

    2005-01-01

    We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from differe nt plant taxa prominent in the Thessaloniki area for a 4-year period (1996- 1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).

  3. The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe

    NASA Astrophysics Data System (ADS)

    de Weger, Letty A.; Pashley, Catherine H.; Šikoparija, Branko; Skjøth, Carsten A.; Kasprzyk, Idalia; Grewling, Łukasz; Thibaudon, Michel; Magyar, Donat; Smith, Matt

    2016-12-01

    The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands, airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and to describe the conditions that facilitated this possible long distance transport. Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500 m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the airstream moving to northwest Europe where they were deposited at ground level and recorded by monitoring sites. The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources but transported long distances from potential source regions in east Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.

  4. The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe.

    PubMed

    de Weger, Letty A; Pashley, Catherine H; Šikoparija, Branko; Skjøth, Carsten A; Kasprzyk, Idalia; Grewling, Łukasz; Thibaudon, Michel; Magyar, Donat; Smith, Matt

    2016-12-01

    The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands, airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and to describe the conditions that facilitated this possible long distance transport. Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500 m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the airstream moving to northwest Europe where they were deposited at ground level and recorded by monitoring sites. The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources but transported long distances from potential source regions in east Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.

  5. Airborne pollen and fungal spore sampling on the central California coast: the San Luis Obispo pollen project.

    PubMed

    McLean, A C; Parker, L; von Reis, J; von Reis, J

    1991-10-01

    A semiarid coastal location in San Luis Obispo, California was surveyed for 3 years (1986-1988) using a Rotorod sampler. Significant year-to-year variations in predominant pollen occurred, and abundant levels of fungal spores were observed. Coincidently, a large wildlands fire that may have affected pollen levels occurred in the region shortly before sampling began. The entire survey period took place during a drought.

  6. Annual and intradiurnal variation of dominant airborne pollen and the effects of meteorological factors in Çeşme (Izmir, Turkey).

    PubMed

    Uguz, Ulas; Guvensen, Aykut; Tort, Nedret Sengonca

    2017-09-30

    In this present study, airborne pollen in Çeşme was investigated between February 17, 2012 and February 17, 2014 using the volumetric method. Çeşme, one of Turkey's most important tourism centers, which attracts numerous local and foreign tourists each year, is a district of Izmir, a province in the western part of Turkey. During the 2-year study, 12,905 pollen grains belonging to 64 taxa (33 arboreal, 31 non-arboreal plants) were detected. However, the 2-year data results revealed that the taxa with the pollen concentration more than 4% in the atmosphere were Cupressaceae/Taxaceae (4268 pollen, 33.07%), Olea europaea (1614 pollen grains, 12.51%), Pinaceae (1085 pollen grains, 8.41%), Quercus spp. (1081 pollen grains, 8.38%), Pistacia spp. (743 pollen grains, 5.76%), and Poaceae (557 pollen grains, 4.32%), all of which comprised 72.44% of the total count. The relationship between the daily pollen counts belonging to these six taxa and the hourly average temperature (°C), daily precipitation (mm), relative humidity (%), and wind speed (km/h) was assessed using the Spearman correlation test, and significant results were determined. During the study, the intradiurnal distribution of the aforementioned pollen varied. The highest pollen concentration was detected between 11:00 a.m. and 6:00 p.m. (first year 30.3%; second year 30.1%).

  7. Trends and threshold exceedances analysis of airborne pollen concentrations in Metropolitan Santiago Chile.

    PubMed

    Toro A, Richard; Córdova J, Alicia; Canales, Mauricio; Morales S, Raul G E; Mardones P, Pedro; Leiva G, Manuel A

    2015-01-01

    Pollen is one of the primary causes of allergic rhinoconjunctivitis in urban centers. In the present study, the concentrations of 39 different pollens in the Santiago de Chile metropolitan area over the period 2009-2013 are characterized. The pollen was monitored daily using Burkard volumetric equipment. The contribution of each type of pollen and the corresponding time trends are evaluated. The concentrations of the pollens are compared with the established threshold levels for the protection of human health. The results show that the total amount of pollen grains originating from trees, grasses, weeds and indeterminate sources throughout the period of the study was 258,496 grains m-3, with an annual average of 51,699 ± 3,906 grains m-3 year-1. The primary source of pollen is Platanus orientalis, which produces 61.8% of the analyzed pollen. Grass pollen is the third primary component of the analyzed pollen, with a contribution of 5.82%. Among the weeds, the presence of Urticacea (3.74%) is remarkable. The pollination pattern of the trees is monophasic, and the grasses have a biphasic pattern. The trends indicate that the total pollen and tree pollen do not present a time trend that is statistically significant throughout the period of the study, whereas the grass pollen and weed pollen concentrations in the environment present a statistically significant decreasing trend. The cause of this decrease is unclear. The pollen load has doubled over the past decade. When the observed concentrations of the pollens were compared with the corresponding threshold levels, the results indicated that over the period of the study, the pollen concentrations were at moderate, high and very high levels for an average of 293 days per year. Systematic counts of the pollen grains are an essential method for diagnosing and treating patients with pollinosis and for developing forestation and urban planning strategies.

  8. Trends and threshold exceedances analysis of airborne pollen concentrations in Metropolitan Santiago Chile

    PubMed Central

    Toro A., Richard; Córdova J., Alicia; Canales, Mauricio; Morales S., Raul G. E.; Mardones P., Pedro; Leiva G., Manuel A.

    2015-01-01

    Pollen is one of the primary causes of allergic rhinoconjunctivitis in urban centers. In the present study, the concentrations of 39 different pollens in the Santiago de Chile metropolitan area over the period 2009–2013 are characterized. The pollen was monitored daily using Burkard volumetric equipment. The contribution of each type of pollen and the corresponding time trends are evaluated. The concentrations of the pollens are compared with the established threshold levels for the protection of human health. The results show that the total amount of pollen grains originating from trees, grasses, weeds and indeterminate sources throughout the period of the study was 258,496 grains m-3, with an annual average of 51,699 ± 3,906 grains m-3 year-1. The primary source of pollen is Platanus orientalis, which produces 61.8% of the analyzed pollen. Grass pollen is the third primary component of the analyzed pollen, with a contribution of 5.82%. Among the weeds, the presence of Urticacea (3.74%) is remarkable. The pollination pattern of the trees is monophasic, and the grasses have a biphasic pattern. The trends indicate that the total pollen and tree pollen do not present a time trend that is statistically significant throughout the period of the study, whereas the grass pollen and weed pollen concentrations in the environment present a statistically significant decreasing trend. The cause of this decrease is unclear. The pollen load has doubled over the past decade. When the observed concentrations of the pollens were compared with the corresponding threshold levels, the results indicated that over the period of the study, the pollen concentrations were at moderate, high and very high levels for an average of 293 days per year. Systematic counts of the pollen grains are an essential method for diagnosing and treating patients with pollinosis and for developing forestation and urban planning strategies. PMID:25946339

  9. Adaptation and Impairment of DNA Repair Function in Pollen of Betula verrucosa and Seeds of Oenothera biennis from Differently Radionuclide-contaminated Sites of Chernobyl

    PubMed Central

    Boubriak, I. I.; Grodzinsky, D. M.; Polischuk, V. P.; Naumenko, V. D.; Gushcha, N. P.; Micheev, A. N.; McCready, S. J.; Osborne, D. J.

    2008-01-01

    Background and Aims The plants that have remained in the contaminated areas around Chernobyl since 1986 encapsulate the effects of radiation. Such plants are chronically exposed to radionuclides that they have accumulated internally as well as to α-, β- and γ-emitting radionuclides from external sources and from the soil. This radiation leads to genetic damage that can be countered by DNA repair systems. The objective of this study is to follow DNA repair and adaptation in haploid cells (birch pollen) and diploid cells (seed embryos of the evening primrose) from plants that have been growing in situ in different radionuclide fall-out sites in monitored regions surrounding the Chernobyl explosion of 1986. Methods Radionuclide levels in soil were detected using gamma-spectroscopy and radiochemistry. DNA repair assays included measurement of unscheduled DNA synthesis, electrophoretic determination of single-strand DNA breaks and image analysis of rDNA repeats after repair intervals. Nucleosome levels were established using an ELISA kit. Key Results Birch pollen collected in 1987 failed to perform unscheduled DNA synthesis, but pollen at γ/β-emitter sites has now recovered this ability. At a site with high levels of combined α- and γ/β-emitters, pollen still exhibits hidden damage, as shown by reduced unscheduled DNA synthesis and failure to repair lesions in rDNA repeats properly. Evening primrose seed embryos generated on plants at the same γ/β-emitter sites now show an improved DNA repair capacity and ability to germinate under abiotic stresses (salinity and accelerated ageing). Again those from combined α- and γ/β-contaminated site do not show this improvement. Conclusions Chronic irradiation at γ/β-emitter sites has provided opportunities for plant cells (both pollen and embryo cells) to adapt to ionizing irradiation and other environmental stresses. This may be explained by facilitation of DNA repair function. PMID:17981881

  10. Aerobiology of Artemisia airborne pollen in Murcia (SE Spain) and its relationship with weather variables: annual and intradiurnal variations for three different species. Wind vectors as a tool in determining pollen origin

    NASA Astrophysics Data System (ADS)

    Giner, M. Munuera; Carrión García, José S.; García Sellés, Javier

    Detailed results from a 2-year survey of airborne pollen concentrations of Artemisia in Murcia are presented. Three consecutive pollen seasons of Artemisia occurring each year, related to three different species (A.campestris, A.herba-alba and A.barrelieri), were observed. A winter blooming of Artemisia could explain the incidence of subsequent pollinosis in the Murcia area. With regard to meteorological parameters, mathematical analyses showed relationships between daily pollen concentrations of Artemisia in summer-autumn and precipitations that occurred 6-8 weeks before. The cumulative percentage of insolation from 1 March seemed to be related to blooming onsets. Once pollination has begun, meteorological factors do not seem to influence pollen concentrations significantly. Intradiurnal patterns of pollen concentrations were similar for late summer and winter species (A. campestris and A.barrelieri). During autumn blooming (A.herba-alba), the intradiurnal pattern was particularly erratic. Theoretical values of wind run were obtained for each pollen season by the graphical sum of hourly wind vectors. When theoretical wind run was mapped onto the vegetation pattern, supposed pollen source locations were obtained for each hour. By comparing supposed hourly pollen origins with the intradiurnal patterns of pollen concentrations, it can be seen that this simple model explains variations in mean pollen concentrations throughout the day.

  11. Analysis of high allergenicity airborne pollen dispersion: common ragweed study case in Lithuania.

    PubMed

    Šaulienė, Ingrida; Veriankaitė, Laura

    2012-01-01

    The appearance of ragweed pollen in the air became more frequent in northerly countries. Attention of allergologists and aerobiologists in these countries is focused on the phenomenon that Ambrosia plants found relatively sporadic but the amount of pollen is high in particular days. Over the latter decade, a matter of particular concern has been Ambrosia pollen, whose appearance in the air is determined by the plants dispersing it and meteorological processes that alter pollen release, dissemination, transport or deposition on surfaces. Pollen data used in this study were collected in three pollen-trapping sites in Lithuania. The data corresponding to 2006-2011 years of pollen monitoring were documented graphically and evaluated statistically. Analysis of the pollen data suggests that although the number of ragweed plants identified has not increased over the latter decade, the total pollen count has been on the increase during the recent period. The highest atmospheric pollen load is established on the last days of August and first days of September. The estimated effect of meteorological parameters on pollen dispersal in the air showed that in Lithuania ragweed pollen is recorded when the relative air humidity is about 70%, and the minimal air temperature is not less than 12°C. Analysis of wind change effect on pollen count indicates that pollen is most often recorded in the air when the changes in wind speed are low (1-2 m/s). We have established a regularity exhibiting an increase in ragweed pollen count conditioned by south-eastern winds in Lithuania.

  12. The influence from synoptic weather on the variation of air pollution and pollen exposure

    NASA Astrophysics Data System (ADS)

    Grundström, Maria; Dahl, Åslög; Chen, Deliang; Pleijel, Håkan

    2014-05-01

    Exposure to elevated air pollution levels can make people more susceptible to allergies or result in more severe allergic reactions for people with an already pronounced sensitivity to pollen. The aim of this study was to investigate the relationships between urban air pollution (nitrogen oxides, ozone and particles) and airborne Betula pollen in Gothenburg, Sweden, during the pollen seasons for the years 2001-2012. Further, the influence from atmospheric weather pattern on pollen/pollution related risk, using Lamb Weather Types (LWT), was also considered. Daily LWTs were obtained by comparing the variation in atmospheric pressure from a 16 point grid over a given region on earth (scale ~1000km) and essentially describe the air mass movement for the region. They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E... etc.). LWTs with dry and calm meteorological character e.g. limited precipitation and low to moderate wind speeds (A, NE, E, SE) were associated with strongly elevated air pollution and pollen levels where Betula was exceptionally high in LWTs NE and E. The co-variation between Betula pollen and ozone was strong and significant during situations with LWTs A, NE, E and SE. The most important conclusion from this study was that LWTs A, NE, E and SE were associated with high pollen and air pollution levels and can therefore be classified as high risk weather situations for combined air pollution and pollen exposure. Our study shows that LWTs have the potential to be developed into an objective tool for integrated air quality forecasting and a warning system for risk of high exposure situations.

  13. Seasonal prevalence of air-borne pollen and spores in Kuala Lumpur, Malaysia.

    PubMed

    Ho, T M; Tan, B H; Ismail, S; Bujang, M K

    1995-06-01

    Aerosampling using Rotorod samplers was conducted in the Institute for Medical Research, Kuala Lumpur, Malaysia, from December 1991 to November 1993. Samples were collected twice a week between 10.00 hours to 12.00 hours. Rods were stained and examined microscopically. A total of 8 and 20 types of pollens and mold spores were collected, respectively. More mold spores were collected than pollens. Grass pollen constituted more than 40 percent of total pollen counts. Gramineae pollen counts peaked in March and September. The most abundant mold spore was Cladosporium followed by Rust, Nigrospora, Curvularia and Smut. Cladosporium counts peaked in February and August. Rust counts peaked in June and December whereas counts for Nigrospora peaked in February and October. Highest counts of Smut were recorded in March and October. Curvularia counts peaked in January, June and September.

  14. Environmental behaviour of airborne Amaranthaceae pollen in the southern part of the Iberian Peninsula, and its role in future climate scenarios.

    PubMed

    Cariñanos, Paloma; Alcázar, Purificación; Galán, Carmen; Domínguez, Eugenio

    2014-02-01

    The Amaranthaceae family includes a number of species which, through a series of specific adaptations, thrive in salty soils, arid environments and altered human settlements. Their ability to tolerate high temperatures favours summer flowering, giving rise to the widespread involvement of Amaranthaceae pollen grains in summer allergies, both in Mediterranean Europe and in areas with arid climates. This study analysed a 21-year set of historical airborne Amaranthaceae pollen records for an area located in the southern part of the Iberian Peninsula, in order to chart species' environmental reaction to changing climate conditions which occurred in the last decades. Airborne pollen data were collected from January 1991 to December 2011 using a Hirst-type volumetric impact sampler. Results showed that Amaranthaceae pollen remained in the atmosphere for over 6 months along the year, from early spring until early autumn. The annual Pollen Index ranged from barely 200 grains to almost 2000 grains, and was strongly influenced by rainfall during the flowering period, which prompted the development of new individuals and thus an increase in pollen production. A trend was noted towards increasingly early pollen peak dates; peaks were recorded in August-September in years with summer rainfall, but as early as May-June in years when over 50% of annual rainfall was recorded in the months prior to flowering. The gradual decline in the annual Pollen Index over later years is attributable not only to growing urbanisation of the area but also to a change in rainfall distribution pattern. High maximum temperatures in spring were also directly related to the peak date and the Pollen Index. This ability to adapt to changeable and occasionally stressful and restrictive, environmental conditions places Amaranthaceae at a competitive advantage with respect to other species sharing the same ecological niche. An increased presence of Amaranthaceae is likely to have a greater impact on future

  15. Masting by Betula-species; applying the resource budget model to north European data sets

    NASA Astrophysics Data System (ADS)

    Ranta, Hanna; Oksanen, Annukka; Hokkanen, Tatu; Bondestam, Kristoffer; Heino, Saini

    2005-01-01

    Masting, the intermittent production of large crops of flowers by a plant population, is a common feature among trees in boreal and temperate forests. The pollen of many broadleaved trees causes allergic diseases, which are major causes of increasing health-care costs in industrialised countries. As the prevalence and severity of allergic diseases are connected with the concentrations of airborne pollen, an universal model predicting the intensity of the coming flowering would be a valuable tool for pollen information services, and ultimately for allergic people and allergologists. We investigated whether a resource budget model created in Japan explains the fluctuations in the annual pollen sums of Betula-species in north European data sets (10 12 years at 4 sites, 20 years at 10 sites). Using the shorter data sets, the model explained 76 92% of the annual fluctuations at five study sites. Using the 20-year data set, the percentage for southern Finland was much lower, only 48%, compared with the 85% of the 12-year data set. The annual pollen sums have been higher during the 1990s than in the 1980s, which may explain the ineffectiveness of the model, while applied to the 20-year data set. Our results support the resource budget model: the masting of birch species is regulated by weather factors together with the system of resource allocation among years. The model can serve pollen information service. However, only the 10 most recent years should be used to avoid interference from trends in changing vegetation and/or climate.

  16. [Sensitization to airborne ragweed pollen--a cause of allergic respiratory diseases in Germany?].

    PubMed

    Boehme, M W J; Gabrio, T; Dierkesmann, R; Felder-Kennel, A; Flicker-Klein, A; Joggerst, B; Kersting, G; König, M; Link, B; Maisner, V; Wetzig, J; Weidner, U; Behrendt, H

    2009-07-01

    Allergic skin and respiratory diseases show a high prevalence in most industrial countries. In addition, during the last years ragweed colonization has increased in Europe. Ambrosia pollen ( AMBROSIA ARTEMISIIFOLIA L. - common ragweed) are highly allergenic. Due to the late flowering time (august/September) of ragweed this can result in increasing health threats for allergic populations. This is of particular importance for those who already are sensitive to some grass or tree pollen. These individuals can then suffer from allergies during nearly the whole year. The present study examined the prevalence of sensitization to ragweed in German children and possible health implications. Between 2004 and 2007 sera of 1323 10-years old children in Baden Württemberg were tested in-vitro for specific IgE-antibodies against common aeroallergens including ragweed pollen. Specific IgE-antibodies to extracts of common ragweed pollen were present in 10 - 17 % of the tested sera depending on the year of investigation. The determined specific IgE-antibodies may be the result of a direct sensitization to ragweed pollen or correspond to cross-reactivity to other plants of the asteraceae subfamily or some nutritional allergens. The detection of sensitization to ragweed pollen does not prove actual allergic disease. However, a ragweed derived allergy should be considered in the differential diagnosis when allergic symptoms are present in direct connection to the flowering-time of ragweed. Ragweed plants should be removed and the spread of the plant 'restricted', as experiences in other countries with already wide spreading show.

  17. Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra

    DTIC Science & Technology

    2009-02-01

    26 Figure 20. EEM spectra of Clostridium perfringens vegetative cells, dry. ................................. 27 Figure 21. EEM...spectra of Clostridium perfringens vegetative cells, in water........................... 28 Figure 22. EEM spectra of pecan pollen, dry...Staphylococcus aureus (dry), and Clostridium perfringens (dry and in water), respectively. The spectra were corrected for the lamp intensity, except for M

  18. [Respiratory symptoms and sensitization to airborne pollen of ragweed and mugwort of adults in Southwest Germany].

    PubMed

    Boehme, M W J; Kompauer, I; Weidner, U; Piechotowski, I; Gabrio, T; Behrendt, H

    2013-08-01

    Allergic diseases of the respiratory tract are common atopic diseases in the population. Pollen of plants are one of their main causes. Pollen of trees, grasses, and weeds like mugwort are of particular importance in this context. The purpose of the present study was to determine the association between typical respiratory symptoms due to pollen allergens and the sensitization to pollen of ragweed and mugwort in adults. 1039 participants (18 to 66 years) from Southwest Germany were included in this cross-sectional study. Complains typically for aeroallergens were recorded by questionnaire. In-vitro existing sensitizations were determined for grasses/early bloomer (gx1), trees (tx6), mugwort (w6 and Art-v1) and ragweed (w1 and Amb-a1) by testing for specific IgE-antibodies. In a screening test with a mixed allergen sample (sx1) 36.0 % of the participants showed an aeroallergen sensitization. Consecutive investigations of these 374 positive samples revealed a sensitization to grasses/early bloomer, trees, ragweed (w1), mugwort (w6) and the major allergens ragweed (Amb-a1) and mugwort (Art-v1) in 61.8 %, 54.5 %, 29.9 %, 24.3 %, 1.9 %, and 12.3 %, respectively. This corresponds to 22.2 %, 19.6 %, 10.8 %, 8.7 %, 0.7 % and 4.4 %, respectively, in the whole study population. The participants tested positively stated significantly more disorders. On average, 51.1 % had known hay fever, 65.2 % sneezing without cold and 41.5 % sneezing due to contact with grasses or flowers. In contrast, participants tested negatively stated disorders in only 4.4 %, 32.5 %, and 3.9 %, respectively. In Southwest Germany, sensitizations to plant pollen mainly are still caused by grasses, trees, and weeds like mugwort. A sensitization to pollen of ragweed alone is rare until now. However, in case of continuous allergic disorders of the respiratory tract in late summer, a sensitization to ragweed can be important for differential diagnostics. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Variations in pollen counts largely explained by climate and weather

    NASA Astrophysics Data System (ADS)

    Jung, Stephan; Damialis, Athanasios; Estrella, Nicole; Jochner, Susanne; Menzel, Annette

    2017-04-01

    The interaction between climate and vegetation is well studied within phenology. Climatic / weather conditions affect e.g. flowering date, length of vegetation period, start and end of the season and the plant growth. Besides phenological stages also pollen counts can be used to investigate the interaction between climate and vegetation. Pollen emission and distribution is directly influenced by temperature, wind speed, wind direction and humidity/precipitation. The objective of this project is to study daily/sub daily variations in pollen counts of woody and herbaceous plant species along an altitudinal gradient with different climatic conditions during the vegetation period. Measurements of pollen were carried out with three volumetric pollen traps installed at the altitudes 450 m a.s.l (Freising), 700 m a.s.l (Garmisch-Partenkirchen), and 2700 m a.s.l (Schneefernerhaus near Zugspitze) representing gradient from north of Munich towards the highest mountain of Germany. Airborne pollen concentrations were recorded during the years 2014-2015. The altitudinal range of these three stations accompanied by different microclimates ("space for time approach") can be used as proxy for climate change and to assess its impact on pollen counts and thus allergenic risk for human health. For example the pollen season is shortened and pollen amount is reduced at higher sites. For detailed investigations pollen of the species Plantago, Quercus, Poaceae, Cupressaceae, Cyperacea, Betula and Platanus were chosen, because those are found in appropriate quantities. In general, pollen captured in the pollen traps to a certain extent has its origin from the immediate surrounding. Thus, it mirrors local species distribution. But furthermore the distance of pollen transport is also based on (micro-) climatic conditions, land cover and topography. The pollen trap shortly below the summit of Zugspitze (Schneefernerhaus) has an alpine environment without vegetation nearby. Therefore, this

  20. A principal component regression model to forecast airborne concentration of Cupressaceae pollen in the city of Granada (SE Spain), during 1995-2006.

    PubMed

    Ocaña-Peinado, Francisco M; Valderrama, Mariano J; Bouzas, Paula R

    2013-05-01

    The problem of developing a 2-week-on ahead forecast of atmospheric cypress pollen levels is tackled in this paper by developing a principal component multiple regression model involving several climatic variables. The efficacy of the proposed model is validated by means of an application to real data of Cupressaceae pollen concentration in the city of Granada (southeast of Spain). The model was applied to data from 11 consecutive years (1995-2005), with 2006 being used to validate the forecasts. Based on the work of different authors, factors as temperature, humidity, hours of sun and wind speed were incorporated in the model. This methodology explains approximately 75-80% of the variability in the airborne Cupressaceae pollen concentration.

  1. Airborne pollen sampling in Manoa Valley, Hawaii: effect of rain, humidity and wind.

    PubMed

    Massey, D G; Fournier-Massey, G

    1984-05-01

    Kramer-Collins pollen sampling was conducted over 24 hours for 25 consecutive months at two valley sites in Honolulu. Of 1,059 expected samples, 699 (66.0%) were collected. Only 25 were considered excellent, i.e., eight three-hour collection bands. Twenty eight were considered good, ie., two to six bands. The difficulties in the study were associated with the weather directly (17.5%), the power source (3.9%), inadequancy of the samplers (63.1%) and the inexperience of technicians (15.3%). Sampler problems were also indirectly attributable to the high humidity, rain and wind, which differed at the two sites.

  2. Threat of allergenic airborne grass pollen in Szczecin, NW Poland: the dynamics of pollen seasons, effect of meteorological variables and air pollution.

    PubMed

    Puc, Małgorzata

    2011-09-01

    The dynamics of Poaceae pollen season, in particularly that of the Secale genus, in Szczecin (western Poland) 2004-2008 was analysed to establish a relationship between the meteorological variables, air pollution and the pollen count of the taxa studied. Consecutive phases during the pollen season were defined for each taxon (1, 2.5, 5, 25, 50, 75, 95, 97.5, 99% of annual total), and duration of the season was determined using the 98% method. On the basis of this analysis, the temporary differences in the dynamics of the seasons were most evident for Secale in 2005 and 2006 with the longest main pollen season (90% total pollen). The pollen season of Poaceae started the earliest in 2007, when thermal conditions were the most favourable. Correlation analysis with meteorological factors demonstrated that the relative humidity, mean and maximum air temperature, and rainfall were the factors influencing the average daily pollen concentrations in the atmosphere; also, the presence of air pollutants such as ozone, PM(10) and SO(2) was statistically related to the pollen count in the air. However, multiple regression models explained little part of the total variance. Atmospheric pollution induces aggravation of symptoms of grass pollen allergy.

  3. Environmental factors affecting the start of pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain).

    PubMed

    Rodriguez-Rajo, Francisco Javier; Dopazo, Angeles; Jato, Victoria

    2004-01-01

    Alnus pollen is an early component of the annual atmospheric aerosol of the north-west regions of Spain, which causes the first occurrence of allergic symptoms. Seasonal and intra-daily variation of Alnus pollination, and the influence that main meteorological parameters exert, was studied in this paper. Monitoring was carried out from 1993-2002, by using two Lanzoni VPPS 2000 volumetric samplers. Once the atmospheric behaviour of this pollen had been identified, the final objective was to elaborate predictive models to determine the onset of the Alnus pollen season and its concentrations during the pollination period in two localities of north-west Spain (Santiago and Ourense). Winter chilling required to overcome the bud-dormancy period was similar in both cities, with around 800 Chilling Hours (C.H.) and 5.5 degrees C threshold temperature. Calculation of heat requirement for bud growth was carried out with maximum temperature, with around 50 Growth Degree Days (G.D.D. degrees C) needed, with 6 degrees C threshold temperature. Data from 2002 were used in order to determine the real validity of the models. This year was not taken into account to establish the aforementioned models. The variation between the predicted start of the pollen season and the observed season was smallest in Ourense. Verifying the proposed models for predicting daily mean concentrations of Alnus pollen during the pollen season shows that the predicted curves fits the observed variations of daily mean concentrations.

  4. Risk of exposure to airborne Ambrosia pollen from local and distant sources in Europe - an example from Denmark.

    PubMed

    Sommer, Janne; Smith, Matt; Šikoparija, Branko; Kasprzyk, Idalia; Myszkowska, Dorota; Grewling, Łukasz; Skjøth, Carsten A

    2015-01-01

    Ambrosia artemisiifolia L. is a noxious invasive alien species in Europe. It is an important aeroallergen and millions of people are exposed to its pollen. The main aim of this study is to show that atmospheric concentrations of Ambrosia pollen recorded in Denmark can be derived from local or more distant sources. This was achieved by using a combination of pollen measurements, air mass trajectory calculations using the HYPLIT model and mapping all known Ambrosia locations in Denmark and relating them to land cover types. The annual pollen index recorded in Copenhagen during a 15-year period varied from a few pollen grains to more than 100. Since 2005, small quantities of Ambrosia pollen has been observed in the air every year. We have demonstrated, through a combination of Lagrangian back-trajectory calculations and atmospheric pollen measurements, that pollen arrived in Denmark via long-distance transport from centres of Ambrosia infection, such as the Pannonian Plain and Ukraine. Combining observations with results from a local scale dispersion model show that it is possible that Ambrosia pollen could be derived from local sources identified within Denmark. The high allergenic capacity of Ambrosia pollen means that only small amounts of pollen are relevant for allergy sufferers, and just a few plants will be sufficient to produce enough pollen to affect pollen allergy sufferers within a short distance from the source. It is necessary to adopt control measures to restrict Ambrosia numbers. Recommendations for the removal of all Ambrosia plants can effectively reduce the amount of local pollen, as long as the population of Ambrosia plants is small.

  5. Silvical characteristics of sweet birch (Betula lenta)

    Treesearch

    William B. Leak

    1958-01-01

    Sweet birch (Betula lenta) is also known as black birch and cherry birch. It is commercially less important than the two principal members of the genus, yellow birch (Betula alleghaniensis) and paper birch (Betula papyrifera).

  6. [Airborne Japanese cedar allergens studied by immunoblotting technique using anti-Cry j I monoclonal antibody--comparison with actual pollen counts and effect of wind speed and directions].

    PubMed

    Iwaya, M; Murakami, G; Matsuno, M; Onoue, Y; Takayanagi, M; Kayahara, M; Adachi, Y; Adachi, Y; Okada, T; Kenda, S

    1995-07-01

    We collected airborne particles of Japanese cedar pollen with Burkard's sampling tape in Toyama from February to April 1992. The tape was cut into two pieces in parallel to time axis. The one of piece of the tapes was stained with glycerin-jerry and stained pollens were counted with a microscope. The other piece was treated according to the immunoblotting technique. The airborne pollen allergens, reacting with anti-Cry j I monoclonal antibody, were stained as blue spots. The spots were classified by diameter into two groups, large spots (> 50 microns) and small spots (< 50 microns). There were significant correlations found between the airborne Cry j I allergen spots (in large and small) and actual pollen counts obtained with the Burkard's sampler and the Durham's sampler (r = 0.729, 0.586 in large spots and r = 0.676, 0.489 in small spots, p < 0.001). The counts of small spots stayed in high level even in April when actual pollen counts decreased. We concluded that this discrepancy was caused by allergenic crushed cedar pollen particles staying floating longer than actual pollens. Secondly we set a gauge of wind speed and direction at the same point as the samplers. The actual pollen counts and large spots counts were significantly larger in the wind (SE wind in Toyama city) from cedar trees blooming area than other areas. However small spots counts did not differ significantly according to wind directions. Wind speed did not effect on actual pollen counts, large spots counts and small spots count.

  7. [Sensitization to Castanea sativa pollen and pollinosis in northern Extremadura (Spain)].

    PubMed

    Cosmes Martín, P M; Moreno Ancillo, A; Domínguez Noche, C; Gutiérrez Vivas, A; Belmonte Soler, J; Roure Nolla, J M

    2005-01-01

    Castanea sativa pollen allergy has generally been considered to be uncommon and clinically insignificant. In our geographical area (Plasencia, Cáceres, Spain) Castanea sativa pollen is a major pollen. To determine the atmospheric fluctuations and prevalence of patients sensitized to Castanea pollen in our region and to compare this sensitization with sensitizations to other pollens. Patients with respiratory symptoms attending our outpatient clinic for the first time in 2003 were studied. The patients underwent skin prick tests with commercial extracts of a battery of inhalants including Castanea sativa pollen. Serologic specific IgE to Castanea sativa pollen was determined using the CAP system (Pharmacia and Upjohn, Uppsala, Sweden). Airborne pollen counts in our city were obtained using Cour collection apparatus over a 4-year period (2000 to 2003). The most predominant pollens detected were (mean of the maximal weekly concentrations over 4 years in pollen grains/m3): Quercus 968, Poacea 660, Olea 325, Platanus 229, Pinus 126, Cupresaceae 117, Plantago 109, Alnus 41, Populus 40, Castanea 32. We studied 346 patients (mean age: 24.1 years). In 210 patients with a diagnosis of pollinosis, the percentages of sensitization were: Dactylis glomerata 80.4%, Olea europea 71.9%, Fraxinus excelsior 68%, Plantago lanceolata 62.8%, Chenopodium album 60.9%, Robinia pseudoacacia 49%, Artemisia vulgaris 43.8%, Platanus acerifolia 36.6%, Parietaria judaica 36.1%, Populus nigra 32.3%, Betula alba 27.6%, Quercus ilex 21.4%, Alnus glutinosa 20.9%, Cupressus arizonica 7.6% and Castanea sativa 7.1%. Fifteen patients were sensitized to Castanea sativa and 14 had seasonal rhinoconjunctivitis and asthma. Ten patients had serum specific IgE to Castanea pollen (maximum value: 17.4 Ku/l). Castanea pollen is present in our area in large amounts from the 23rd to the 28th weeks of the year, with a peak pollen count in the 25th week. The most important allergenic pollens in northern Extremadura

  8. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications

    NASA Astrophysics Data System (ADS)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  9. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    PubMed

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  10. Airborne pollen of Carya, Celtis, Cupressus, Fraxinus and Pinus in the metropolitan area of Monterrey Nuevo Leon, Mexico.

    PubMed

    Rocha-Estrada, Alejandra; Alvarado-Vázquez, Marco Antonio; Torres-Cepeda, Teresa Elizabeth; Foroughbakhch-Pournavab, Rahim; Hernández-Piñero, Jorge Luis

    2008-01-01

    The concentration of pollen grains in the atmosphere over the metropolitan area of Monterrey, Nuevo Leon, Mexico, was analyzed throughout a year from March 2003-February 2004, focused on the genus Carya, Celtis, Cupressus, Fraxinus and Pinus owing to their interest as etiological pollinosis agents in diverse regions of the world. A 7-day Hirst type volumetric spore and pollen trap was located on a building roof of the city at 15 m from ground level for continuous sampling. The total quantity of pollen recorded for the study period was 21,083 grains/m(3), corresponding to 49.75 % of the taxa of interest. February and March were the months with higher pollen amounts in the air with 7,525 and 2,781 grains/m(3), respectively, and amounted to 49 % of total year through pollen. Fraxinus was the genus which contributed to the largest amount of pollen with 28 % of total grains (5,935 grains/m(3)) followed by Cupressus with 13 % (2,742 grains/ m(3)). Celtis, Pinus and Carya contributed with 5.3 % , 2.7 % , and 0.6 % of total pollen, respectively. These results indicate that Fraxinus and Cupressus are present in the area in sufficient quantity to indicate likely involvement in the origin of allergic disorders in the human population.

  11. Platanus pollen allergen, Pla a 1: quantification in the atmosphere and influence on a sensitizing population.

    PubMed

    Fernández-González, D; González-Parrado, Z; Vega-Maray, A M; Valencia-Barrera, R M; Camazón-Izquierdo, B; De Nuntiis, P; Mandrioli, P

    2010-11-01

    The allergic response in susceptible patients does not always coincide with the presence and magnitude of airborne pollen counts. The prevalence of allergy to Platanus is currently moderate, although the percentage of monosensitized patients is low. This hinders accurate interpretation of the relationship between the amount of pollen inhaled and the patient's symptoms. This study aims to investigate the relationship between the atmospheric concentration pattern of Pla a 1 aeroallergen and the Platanus pollen. The pollen sampling was carried out using a Hirst-type volumetric trap (Burkard(©) ) for pollen grains and a Burkard Cyclone sampler (Burkard(©) ) for Pla a 1 allergen. Serum-specific IgE levels to Acer sp., Artemisia vulgaris, Betula alba, Chenopodium album, Cupressus arizonica, Cynodon dactylon, Fraxinus excelsior, Lolium perenne, Pinus sp., Plantago lanceolata, Platanus acerifolia, Populus sp., Quercus ilex and Taraxacum officinale allergens were determined using the EAST System (Hytec specific IgE EIA kit; Hycor Biomedical, Kassel, Germany). The aerobiological dynamics of Platanus pollen grains and Pla a 1 differed considerably, particularly during the Platanus pollination period. Of the 118 subjects tested, sera from 34 contained specific IgE to Platanus pollen and all of them had specific IgE to other pollen types. The presence of the aeroallergen Pla a 1 in the atmosphere appears to be independent of Platanus pollen counts over the same period, which may be contributing to allergic symptoms and sensitization. The number of polysensitized patients displaying allergy to Platanus suggested that allergic symptoms were caused by co-sensitization or cross-reactivity involving a number of allergenic particles. © 2010 Blackwell Publishing Ltd.

  12. Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City.

    PubMed

    Ríos, B; Torres-Jardón, R; Ramírez-Arriaga, E; Martínez-Bernal, A; Rosas, I

    2016-05-01

    Pollen is an important cause of allergic respiratory ailments in the Mexico City Metropolitan Area (MCMA). However, very little is known if ambient air temperature correlates with the early blooming of plants observed in other urban areas around the world. A research study was conducted during the dry season of 2012-2013 at three representative sites of the MCMA with different urban characteristics with the aim to understand the relationships between the profusion and diversity of pollen against temperature and other meteorological variables and degree of urbanization. Pollen samples were collected using a Hirst-type trap sampler in the sites: Merced (highly urbanized), Iztapalapa (medium-high urbanized) and Coyoacan (moderately urbanized). Urbanization levels were determined using a composite index based on population density, proportion of surface covered by construction and asphalt, and urban heat island intensity. A set of representative pollen sampling tapes were assayed under a light microscope at magnification of ×1,000 and converted to grains per cubic meter. The most representative pollen types found in the three sites were, regardless of urbanization levels were: Fraxinus, Cupressaceae/Taxodiaceae, Casuarina, Alnus, Myrtaceae, and Pinus. Total pollen concentration was greatest in the moderately urbanized area, although earlier blooming took place at the highly urbanized zone. Total pollen concentration in the medium-high urbanized site has the lowest because the green areas in this zone of MCMA are few. In a diurnal basis, the most abundant pollen types peaked near midday or in the afternoon evening at the three sites. A Spearman test showed a positive correlation among bihourly pollen concentrations, temperature and relative humidity in all sites, but wind speed just correlated in Iztapalapa and Coyoacan. The results obtained suggest that Urban Heat Island Intensity can disturb flowering periods and pollen concentrations, largely in the highly urbanized

  13. Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City

    NASA Astrophysics Data System (ADS)

    Ríos, B.; Torres-Jardón, R.; Ramírez-Arriaga, E.; Martínez-Bernal, A.; Rosas, I.

    2016-05-01

    Pollen is an important cause of allergic respiratory ailments in the Mexico City Metropolitan Area (MCMA). However, very little is known if ambient air temperature correlates with the early blooming of plants observed in other urban areas around the world. A research study was conducted during the dry season of 2012-2013 at three representative sites of the MCMA with different urban characteristics with the aim to understand the relationships between the profusion and diversity of pollen against temperature and other meteorological variables and degree of urbanization. Pollen samples were collected using a Hirst-type trap sampler in the sites: Merced (highly urbanized), Iztapalapa (medium-high urbanized) and Coyoacan (moderately urbanized). Urbanization levels were determined using a composite index based on population density, proportion of surface covered by construction and asphalt, and urban heat island intensity. A set of representative pollen sampling tapes were assayed under a light microscope at magnification of ×1,000 and converted to grains per cubic meter. The most representative pollen types found in the three sites were, regardless of urbanization levels were: Fraxinus, Cupressaceae/Taxodiaceae, Casuarina, Alnus, Myrtaceae, and Pinus. Total pollen concentration was greatest in the moderately urbanized area, although earlier blooming took place at the highly urbanized zone. Total pollen concentration in the medium-high urbanized site has the lowest because the green areas in this zone of MCMA are few. In a diurnal basis, the most abundant pollen types peaked near midday or in the afternoon evening at the three sites. A Spearman test showed a positive correlation among bihourly pollen concentrations, temperature and relative humidity in all sites, but wind speed just correlated in Iztapalapa and Coyoacan. The results obtained suggest that Urban Heat Island Intensity can disturb flowering periods and pollen concentrations, largely in the highly urbanized

  14. Effect of thunderstorms and airborne grass pollen on the incidence of acute asthma in England, 1990-94.

    PubMed

    Newson, R; Strachan, D; Archibald, E; Emberlin, J; Hardaker, P; Collier, C

    1997-08-01

    Thunderstorms and prior grass pollen counts were investigated as predictors of daily hospital admissions for asthma in England. This study was motivated by reports in the literature of spectacular asthma epidemics associated with thunderstorms, particularly in the grass pollen season. Asthma admissions for two age groups (0-14 years and 15 and over) were measured using the Hospital Episodes System (HES) in the 14 regional health authorities (RHAs) in England. Thunderstorms were measured daily in each RHA using densities of sferics (lightning flashes). Relative asthma excesses for moderate positive and exceptionally high sferic densities, with or without previous high grass pollen counts, were measured using log linear autoregression--allowing for weekly, seasonal, and longer term background variation--and pooled over RHAs by calculating geometric means. Relative risks from all RHAs were pooled to form geometric means. Exceptional sferic densities were associated with a relative excess risk of around 25% in both age groups. Moderate sferic densities were associated with a smaller excess, statistically significant in the two age groups taken together. In five RHAs in which grass pollen counts were available, high pollen counts for the previous five days were associated with an amplification of the excess associated with thunderstorms. Very large sferic densities are associated with moderate rises in hospital admissions for acute asthma. However, typical thunderstorm days are not associated with spectacular asthma epidemics of the scale previously reported in the literature. Thunderstorm-associated excesses are amplified after a run of high pollen counts.

  15. Effect of thunderstorms and airborne grass pollen on the incidence of acute asthma in England, 1990-94

    PubMed Central

    Newson, R.; Strachan, D.; Archibald, E.; Emberlin, J.; Hardaker, P.; Collier, C.

    1997-01-01

    BACKGROUND: Thunderstorms and prior grass pollen counts were investigated as predictors of daily hospital admissions for asthma in England. This study was motivated by reports in the literature of spectacular asthma epidemics associated with thunderstorms, particularly in the grass pollen season. METHODS: Asthma admissions for two age groups (0-14 years and 15 and over) were measured using the Hospital Episodes System (HES) in the 14 regional health authorities (RHAs) in England. Thunderstorms were measured daily in each RHA using densities of sferics (lightning flashes). Relative asthma excesses for moderate positive and exceptionally high sferic densities, with or without previous high grass pollen counts, were measured using log linear autoregression--allowing for weekly, seasonal, and longer term background variation--and pooled over RHAs by calculating geometric means. RESULTS: Relative risks from all RHAs were pooled to form geometric means. Exceptional sferic densities were associated with a relative excess risk of around 25% in both age groups. Moderate sferic densities were associated with a smaller excess, statistically significant in the two age groups taken together. In five RHAs in which grass pollen counts were available, high pollen counts for the previous five days were associated with an amplification of the excess associated with thunderstorms. CONCLUSION: Very large sferic densities are associated with moderate rises in hospital admissions for acute asthma. However, typical thunderstorm days are not associated with spectacular asthma epidemics of the scale previously reported in the literature. Thunderstorm-associated excesses are amplified after a run of high pollen counts. 


 PMID:9337825

  16. Seed galls of Semudobia betulae (Diptera: Cecidomyiidae) on species of birch (Betula spp.)

    Treesearch

    Vaclav Skuhravy

    1991-01-01

    Semudobia betulae Winnertz, described in 1853, is the most common species of gall insect occurring on the genus Betula in the Palearctic and Nearctic regions of the world. S. betulae has been observed on four species of Betula according to Barnes (1951) and on 14 additional species according to Roskam (1977). At the Arboretum of...

  17. Allergenic pollen and pollen allergy in Europe.

    PubMed

    D'Amato, G; Cecchi, L; Bonini, S; Nunes, C; Annesi-Maesano, I; Behrendt, H; Liccardi, G; Popov, T; van Cauwenberge, P

    2007-09-01

    The allergenic content of the atmosphere varies according to climate, geography and vegetation. Data on the presence and prevalence of allergenic airborne pollens, obtained from both aerobiological studies and allergological investigations, make it possible to design pollen calendars with the approximate flowering period of the plants in the sampling area. In this way, even though pollen production and dispersal from year to year depend on the patterns of preseason weather and on the conditions prevailing at the time of anthesis, it is usually possible to forecast the chances of encountering high atmospheric allergenic pollen concentrations in different areas. Aerobiological and allergological studies show that the pollen map of Europe is changing also as a result of cultural factors (for example, importation of plants such as birch and cypress for urban parklands), greater international travel (e.g. colonization by ragweed in France, northern Italy, Austria, Hungary etc.) and climate change. In this regard, the higher frequency of weather extremes, like thunderstorms, and increasing episodes of long range transport of allergenic pollen represent new challenges for researchers. Furthermore, in the last few years, experimental data on pollen and subpollen-particles structure, the pathogenetic role of pollen and the interaction between pollen and air pollutants, gave new insights into the mechanisms of respiratory allergic diseases.

  18. Reevaluation of pollen quantitation by an automatic pollen counter.

    PubMed

    Muradil, Mutarifu; Okamoto, Yoshitaka; Yonekura, Syuji; Chazono, Hideaki; Hisamitsu, Minako; Horiguchi, Shigetoshi; Hanazawa, Toyoyuki; Takahashi, Yukie; Yokota, Kunihiko; Okumura, Satoshi

    2010-01-01

    Accurate and detailed pollen monitoring is useful for selection of medication and for allergen avoidance in patients with allergic rhinitis. Burkard and Durham pollen samplers are commonly used, but are labor and time intensive. In contrast, automatic pollen counters allow simple real-time pollen counting; however, these instruments have difficulty in distinguishing pollen from small nonpollen airborne particles. Misidentification and underestimation rates for an automatic pollen counter were examined to improve the accuracy of the pollen count. The characteristics of the automatic pollen counter were determined in a chamber study with exposure to cedar pollens or soil grains. The cedar pollen counts were monitored in 2006 and 2007, and compared with those from a Durham sampler. The pollen counts from the automatic counter showed a good correlation (r > 0.7) with those from the Durham sampler when pollen dispersal was high, but a poor correlation (r < 0.5) when pollen dispersal was low. The new correction method, which took into account the misidentification and underestimation, improved this correlation to r > 0.7 during the pollen season. The accuracy of automatic pollen counting can be improved using a correction to include rates of underestimation and misidentification in a particular geographical area.

  19. Modification of a pollen trap design to capture airborne conidia of Entomophaga maimaiga and detection of conidia by quantitative PCR

    Treesearch

    Tonya D. Bittner; Ann E. Hajek; Andrew M. Liebhold; Harold Thistle; Dan Cullen

    2017-01-01

    The goal of this study was to develop effective and practical field sampling methods for quantification of aerial deposition of airborne conidia of Entomophaga maimaiga over space and time. This important fungal pathogen is a major cause of larval death in invasive gypsy moth (Lymantria dispar) populations in the United States...

  20. Integration of Airborne Aerosol Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic,Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; VandeWater, Peter K.; hide

    2011-01-01

    This slide presentation reviews the study that used a model to forecast pollen to assist in warning for asthma populations. Using MODIS daily reflectances to input to a model, PREAM, adapted from the Dust REgional Atmospheric Modeling (DREAM) system, a product of predicted pollen is produced. Using the pollen from Juniper the PREAM model was shown to be an assist in alerting the public of pollen bursts, and reduce the health impact on asthma populations.

  1. A Six-Year Study on the Changes in Airborne Pollen Counts and Skin Positivity Rates in Korea: 2008–2013

    PubMed Central

    Park, Hye Jung; Lee, Jae-Hyun; Park, Kyung Hee; Kim, Kyu Rang; Han, Mae Ja; Choe, Hosoeng

    2016-01-01

    Purpose The occurrence of pollen allergy is subject to exposure to pollen, which shows regional and temporal variations. We evaluated the changes in pollen counts and skin positivity rates for 6 years, and explored the correlation between their annual rates of change. Materials and Methods We assessed the number of pollen grains collected in Seoul, and retrospectively reviewed the results of 4442 skin-prick tests conducted at the Severance Hospital Allergy-Asthma Clinic from January 1, 2008 to December 31, 2013. Results For 6 years, the mean monthly total pollen count showed two peaks, one in May and the other in September. Pollen count for grasses also showed the same trend. The pollen counts for trees, grasses, and weeds changed annually, but the changes were not significant. The annual skin positivity rates in response to pollen from grasses and weeds increased significantly over the 6 years. Among trees, the skin positivity rates in response to pollen from walnut, popular, elm, and alder significantly increased over the 6 years. Further, there was a significant correlation between the annual rate of change in pollen count and the rate of change in skin positivity rate for oak and hop Japanese. Conclusion The pollen counts and skin positivity rates should be monitored, as they have changed annually. Oak and hop Japanese, which showed a significant correlation with the annual rate of change in pollen count and the rate of change in skin positivity rate over the 6 years may be considered the major allergens in Korea. PMID:26996572

  2. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen

    PubMed Central

    Obersteiner, Andrea; Gilles, Stefanie; Frank, Ulrike; Beck, Isabelle; Häring, Franziska; Ernst, Dietrich; Rothballer, Michael; Hartmann, Anton; Traidl-Hoffmann, Claudia; Schmid, Michael

    2016-01-01

    Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress. PMID:26910418

  3. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen.

    PubMed

    Obersteiner, Andrea; Gilles, Stefanie; Frank, Ulrike; Beck, Isabelle; Häring, Franziska; Ernst, Dietrich; Rothballer, Michael; Hartmann, Anton; Traidl-Hoffmann, Claudia; Schmid, Michael

    2016-01-01

    Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress.

  4. [Japanese cedar pollen in house dust].

    PubMed

    Enomoto, T; Ohnishi, S; Dake, Y; Sakoda, T; Saitoh, Y; Sogo, H; Seno, S; Fujiki, Y; Fujimura, S

    2001-06-01

    Caring for oneself against Japanese cedar pollinosis is important as well as receiving medical-care. Although the importance of avoiding pollen is described in the guideline for nasal allergy medical treatment, however, there is no information for effective dust cleaning for the home. This study examined how many cedar pollens were included in indoor dust in order to obtain basic data whether dust removal for cedar pollen is available for pollinosis suffers. As a result, the study found that there were many Japanese cedar pollens in indoor dust even before the pollen season. Cedar pollen increased with the increasing number of airborne pollen. The highest number of pollen found in one week was approximately 450 pollens in a square meter of a living room floor. The study concluded that cleaning is one of the best way to remove Japanese cedar pollens found in indoor dust.

  5. Predicting tree pollen season start dates using thermal conditions.

    PubMed

    Myszkowska, Dorota

    2014-01-01

    Thermal conditions at the beginning of the year determine the timing of pollen seasons of early flowering trees. The aims of this study were to quantify the relationship between the tree pollen season start dates and the thermal conditions just before the beginning of the season and to construct models predicting the start of the pollen season in a given year. The study was performed in Krakow (Southern Poland); the pollen data of Alnus, Corylus and Betula were obtained in 1991-2012 using a volumetric method. The relationship between the tree pollen season start, calculated by the cumulated pollen grain sum method, and a 5-day running means of maximum (for Alnus and Corylus) and mean (for Betula) daily temperature was found and used in the logistic regression models. The estimation of model parameters indicated their statistically significance for all studied taxa; the odds ratio was higher in models for Betula, comparing to Alnus and Corylus. The proposed model makes the accuracy of prediction in 83.58 % of cases for Alnus, in 84.29 % of cases for Corylus and in 90.41 % of cases for Betula. In years of model verification (2011 and 2012), the season start of Alnus and Corylus was predicted more precisely in 2011, while in case of Betula, the model predictions achieved 100 % of accuracy in both years. The correctness of prediction indicated that the data used for the model arrangement fitted the models well and stressed the high efficacy of model prediction estimated using the pollen data in 1991-2010.

  6. Integration of Airborne Aerosol Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; VandeWater, Peter K.; Levetin, Estelle; hide

    2009-01-01

    The residual signal indicates that the pollen event may influence the seasonal signal to an extent that would allow detection, given accurate QA filtering and BRDF corrections. MODIS daily reflectances increased during the pollen season. The DREAM model (PREAM) was successfully modified for use with pollen and may provide 24-36 hour running pollen forecasts. Publicly available pollen forecasts are linked to general weather patterns and roughly-known species phenologies. These are too coarse for timely health interventions. PREAM addresses this key data gap so that targeting intervention measures can be determined temporally and geospatially. The New Mexico Department of Health (NMDOH) as part of its Environmental Public Health Tracking Network (EPHTN) would use PREAM a tool for alerting the public in advance of pollen bursts to intervene and reduce the health impact on asthma populations at risk.

  7. Bee Pollen

    MedlinePlus

    ... nectar and bee saliva. Pollens come from many plants, so the contents of bee pollen can vary ... joint pain (rheumatism), painful urination, prostate conditions, and radiation ... or other ingredients in bee pollen are effective as treatment.

  8. Integration for Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.

    2008-01-01

    The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.

  9. Integration for Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.

    2008-01-01

    The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.

  10. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula.

    PubMed

    Huang, Haijiao; Wang, Shan; Jiang, Jing; Liu, Guifeng; Li, Huiyu; Chen, Su; Xu, Huanwen

    2014-08-01

    The involvement of APETALA1 (AP1) in the flowering transition has been the focus of much research. Here, we produced Betula platyphylla × Betula pendula (birch) lines that overexpressed BpAP1 using Agrobacterium-mediated transformation; we obtained five independent 35S::BpAP1 transgenic lines. Polymerase chain reaction (PCR), Southern, northern and western analyses were used to identify the transformants. As determined by quantitative real-time PCR (qRT-PCR), BpAP1 expression in roots, shoots, leaves and terminal buds of 35S::BpAP1 transgenic lines was significantly higher than that in the wild type (WT, P < 0.01). The average height of 2-year-old 35S::BpAP1 plants was significantly lower (41.17%) than that of non-transgenic plants. In the 35S::BpAP1 lines, inflorescences emerged successively beginning 2 months after transplanting. In addition, the length-diameter ratio of fully developed male and female inflorescences were both significantly less than those of the WT (P < 0.05), i.e. the morphological characteristic was stubby. The male inflorescences emerged early, with empty, draped anthers, and pollen was rarely produced, whereas the female floret structure was not different from WT. The pistils developed normally and could accept pollen, leading to the production of hybrid progeny (F1 ). F1 plants completed flowering within only 1 year after sowing. We demonstrate that BpAP1 can be inherited through sexual reproduction. Overexpression of BpAP1 caused early flowering and dwarfism; these lines had an obviously shortened juvenile phase. These results greatly increase our understanding of the mechanisms underlying the flowering transition and enhance genetic studies of birch traits, and they open up new possibilities for the breeding of birch and other woody plants.

  11. The allergen profile of beech and oak pollen.

    PubMed

    Egger, C; Focke, M; Bircher, A J; Scherer, K; Mothes-Luksch, N; Horak, F; Valenta, R

    2008-10-01

    Beech and oak pollen are potential allergen sources with a world-wide distribution. We aimed to characterize the allergen profile of beech and oak pollen and to study cross-reactivities with birch and grass pollen allergens. Sera from tree pollen-allergic patients with evidence for beech and oak pollen sensitization from Basel, Switzerland, (n=23) and sera from birch pollen-allergic patients from Vienna, Austria, (n=26) were compared in immunoblot experiments for IgE reactivity to birch (Betula pendula syn. verrucosa), beech (Fagus sylvatica) and oak (Quercus alba) pollen allergens. Subsequently, beech and oak pollen allergens were characterized by IgE inhibition experiments with purified recombinant and natural allergens and with allergen-specific antibody probes. Birch-, beech- and oak pollen-specific IgE levels were determined by ELISA. Beech and oak pollen contain allergens that cross-react with the birch pollen allergens Bet v 1, Bet v 2 and Bet v 4 and with the berberine bridge enzyme-like allergen Phl p 4 from timothy grass pollen. Sera from Swiss and Austrian patients exhibited similar IgE reactivity profiles to birch, beech and oak pollen extracts. IgE levels to beech and oak pollen allergens were lower than those to birch pollen allergens. IgE reactivity to beech pollen is mainly due to cross-reactivity with birch pollen allergens, and a Phl p 4-like molecule represented another predominant IgE-reactive structure in oak pollen. The characterization of beech and oak pollen allergens and their cross-reactivity is important for the diagnosis and treatment of beech and oak pollen allergy.

  12. Recent pollen spectra and zonal vegetation in the western USSR

    NASA Astrophysics Data System (ADS)

    Peterson, G. M.

    The relationship of modern pollen spectra to present-day vegetation is critical to the reconstruction of vegetation and climate from fossil pollen spectra. This study uses isopoll maps to illustrate the pollen-vegetation relationships in the Soviet Union west of 100°E and presents descriptive statistics for 544 modern samples of arboreal pollen and for 370 samples of herb pollen obtained from the Soviet palynological literature. Data are assembled from this large geographic region and presented in a standardized form on a scale which can be used to relate quantitative pollen data to zonal vegetation and climatic variables and to make comparisons with other regions. In order to show the relationship between pollen types and major ecotones in forested and non-forested areas, the pollen data are presented as percentages of a sum including both arboreal and non-arboreal pollen. Major pollen types which attain values of 10% or more in at least one vegetation zone include Betula (birch), Cyperaceae (sedges), Picea (spruce), Pinus (total pine), Pinus sibirica, Ericaceae (heath family), Gramineae (grasses), Artemisia (sage), and Chenopodiaceae (i.e., saltbush, Russian thistle, pigweed family). Samples from the tundra and forest-tundra have high values of Ericaceae (heath family), birch, alder, and sedge pollen. In the boreal forest, pine, spruce, and birch pollen predominate. In the mixed and deciduous forests, Tilia (linden), Quercus (oak), Ulmus (elm), and Corylus (hazel) pollen attain maximum values. In the forest-steppe and steppe zones, arboreal pollen decreases in importance and is replaced by non-arboreal pollen types. Pollen of Artemisia and Chenopodiaceae predominates in the semi-desert zones. In spite of variation in the pollen spectra arising from the use of different sediment types (soil, peat, and river sediments), and human disturbance of vegetation, the pollen spectra are clearly related to zonal vegetation. Pollen spectra from the western USSR show

  13. THE DISPERSION OF HERBACEOUS PLANT POLLEN IN ITO CITY, SHIZUOKA.

    PubMed

    Fujii, Mayumi; Makiyama, Kiyoshi; Okazaki, Kenji; Hisamatsu, Kenichi

    2016-08-01

    Airborne pollen was examined in Ito City, Shizuoka for the purpose of treatment and prophylaxis pollen allergies because the patients with pollen allergy to herbaceous plants have recently increased. Setting up a Durham's sampler, we measured airborne pollen identified and classified: Poaceae, Polygonaceae, Amaranthaceae, Urticaceae, Cannabaceae, Ambrosia and Artemisia indica.We studied whether each airborne pollen count has something to do with weather condition (2004-2015). Average total airborne Poaceae pollen count and standard deviation from January to June was 19.4±5.5 cells/cm(2), average total airborne Polygonaceae pollen count and standard deviation from April to September was 11.6±13.4 cells/cm(2). Airborne Poaceae, Amaranthaceae, Cannabaceae, Uriticaceae. Ambrosia and Artamisia indica pollen count from July to Deccember in order: 34.0±15.5 cells/cm(2), 1.3±1.1 cells/cm(2), 8.7±6.4cells/cm(2), 4.9±6.4 cells/cm(2), 10.5±7.8 cells/cm(2), and 13.6±16.3 cells/cm(2).Cannabaceae admitted that its airborne pollen count has negative correlation to the rainfall.Artemisia indica admitted that its airborne pollen count has negative correlation to the average temperature. Herbaceous plants pollen doesn't cause allergies because it is much less than tree pollen in ItoCity.It is thought that the diversity of the plants keep the people from having a serious allergy to pollen with awarm weather in this area.

  14. Predicting days of high allergenic risk during Betula pollination using weather types.

    PubMed

    Laaidi, K

    2001-09-01

    The aim of this study was to build up a picture of the influence of meteorological conditions on pollen and pollinosis, taking account of weather types, pollen concentrations in the air and pollinosis symptoms, with the aim of preventing allergic responses. The study took place in Burgundy from 1996 to 1998, during the pollination of the birch (Betula), which is the most important arborean allergen in this region. We used daily pollen data from four Hirst volumetric traps, identified weather types by Bénichou's classification, and obtained data on the occurrence of rhinitis, conjunctivitis, asthma and coughing from a sample of 100 patients. These data were analysed by multiple-component analysis. The results show that pollen dispersal is favoured by windy conditions, low relative humidity, precipitation below 2 mm and temperatures above 6 degrees C. Such weather also favours pollinosis, but other particular meteorological situations, even if they do not assist pollen dispersal, can act directly on the development of symptoms: a decrease of temperature (3 degrees C) led to the development of rhinitis and conjunctivitis, while strong winds were associated with many cases of conjunctivitis and asthma, owing to the irritant effect of cold or wind; asthma was favoured by temperature inversions with fog, probably because such weather corresponds to high levels of pollution, which act on bronchial hyperreactivity. Because the weather types favouring pollination and pollinosis are predicted by the meteorological office, this can constitute a tool for reducing the effect of high-risk allergenic days.

  15. Predicting days of high allergenic risk during Betula pollination using weather types

    NASA Astrophysics Data System (ADS)

    Laaidi, K.

      The aim of this study was to build up a picture of the influence of meteorological conditions on pollen and pollinosis, taking account of weather types, pollen concentrations in the air and pollinosis symptoms, with the aim of preventing allergic responses. The study took place in Burgundy from 1996 to 1998, during the pollination of the birch (Betula), which is the most important arborean allergen in this region. We used daily pollen data from four Hirst volumetric traps, identified weather types by Bénichou's classification, and obtained data on the occurrence of rhinitis, conjunctivitis, asthma and coughing from a sample of 100 patients. These data were analysed by multiple-component analysis. The results show that pollen dispersal is favoured by windy conditions, low relative humidity, precipitation below 2 mm and temperatures above 6°C. Such weather also favours pollinosis, but other particular meteorological situations, even if they do not assist pollen dispersal, can act directly on the development of symptoms: a decrease of temperature (3°C) led to the development of rhinitis and conjunctivitis, while strong winds were associated with many cases of conjunctivitis and asthma, owing to the irritant effect of cold or wind; asthma was favoured by temperature inversions with fog, probably because such weather corresponds to high levels of pollution, which act on bronchial hyperreactivity. Because the weather types favouring pollination and pollinosis are predicted by the meteorological office, this can constitute a tool for reducing the effect of high-risk allergenic days.

  16. Silvical characteristics of paper birch (Betula papyrifera

    Treesearch

    Russell J. Hutnik; Frank E. Cunningham

    1961-01-01

    Paper birch (Betula papyrifera Marsh) is commonly known also as white birch. The bark, which gives not only name but also unique character to this tree, is distinguishable from the white bark of other species by its pearly surface, its creamy cast, and its chalky whiteness that rubs off onto clothing. This bark separates easily into papery thin...

  17. Modern pollen deposition in Long Island Sound

    USGS Publications Warehouse

    Beuning, Kristina R.M.; Fransen, Lindsey; Nakityo, Berna; Mecray, Ellen L.; Bucholtz ten Brink, Marilyn R.

    2000-01-01

    Palynological analyses of 20 surface sediment samples collected from Long Island Sound show a pollen assemblage dominated by Carya, Betula, Pinus, Quercus, Tsuga, and Ambrosia, as is consistent with the regional vegetation. No trends in relative abundance of these pollen types occur either from west to east or associated with modern riverine inputs throughout the basin. Despite the large-scale, long-term removal of fine-grained sediment from winnowed portions of the eastern Sound, the composition of the pollen and spore component of the sedimentary matrix conforms to a basin-wide homogeneous signal. These results strongly support the use of select regional palynological boundaries as chronostratigraphic tools to provide a framework for interpretation of the late glacial and Holocene history of the Long Island Sound basin sediments.

  18. Impact and correlation of environmental conditions on pollen counts in Karachi, Pakistan.

    PubMed

    Perveen, Anjum; Khan, Muneeba; Zeb, Shaista; Imam, Asif Ali

    2015-02-01

    A quantitative and qualitative survey of airborne pollen was performed in the city of Karachi, and the pollen counts were correlated with different climatic conditions. The aim of the study was to determine the possible effect of meteorological factors on airborne pollen distribution in the atmosphere of Karachi city. Pollen sampling was carried out by using Burkard spore Trap for the period of August 2009 to July 2010, and a total of 2,922 pollen grains/m(3) were recorded. In this survey, 22 pollen types were recognized. The highest pollen count was contributed by Poaceae pollen type (1,242 pollen grains/m(3)) followed by Amaranthaceae/Chenopodiaceae (948 pollen grains/m(3)), Cyperus rotundus (195 pollen grains/m(3)) and Prosopis juliflora (169 pollen grains/m(3)). Peak pollen season was in August showing a total of 709 pollen grains/m(3) and lowest pollen count was observed in January-2010. Pearson's chi-square test was performed for the possible correlation of pollen counts and climatic factors. The test revealed significant positive correlation of wind speed with pollen types of Amaranthaceae/Chenopodiaceae; Brassica campestris; Asteraceae; and Thuja orientalis. While the correlation of "average temperature" showed significant positive value with Asteraceae and Tamarix indica pollen types. Negative correlation was observed between humidity/ precipitation and pollen types of Brassica campestris; Daucus carota; Ephedra sp.; and Tamarix indica. In the light of above updated data one could identify various aeroallergens present in the air of Karachi city.

  19. Increasing allergy potency of Zinnia pollen grains in polluted areas.

    PubMed

    Chehregani, Abdolkarim; Majde, Ahmad; Moin, Mostafa; Gholami, Mansour; Ali Shariatzadeh, Mohammad; Nassiri, Hosein

    2004-06-01

    There is much evidence that allergic symptoms represent a major health problem in polluted cities. The aim of this research is to elucidate some microscopic effects of air pollutants on pollen structure, proteins, and allergenicity. A scanning electron microscopy study of pollen grains indicated that in polluted areas, airborne particles accumulate on the surface of pollen grains and change the shape and tectum of pollen. Also, many vesicles are released from polluted pollen grains and the pollen material agglomerates on the surface of pollen grains. SDS-PAGE revealed that different proteins exist in mature and immature pollen grains. There were no significant differences between protein bands of polluted and nonpolluted pollen grains, but in polluted pollen, protein content decreases in response to air pollution, causing the release of pollen proteins. The results indicate that mature pollen have more allergenicity than immature pollen. According to the experiments polluted pollen grains are more effective than nonpolluted pollen grains in inducing allergic symptoms. Air pollutants can cause allergic symptoms, but when associated with allergen pollen grains, their allergenicity power is increased.

  20. Tree pollen spectra and pollen allergy risk in the Osijek-Baranja County.

    PubMed

    Sikora, Magdalena; Valek, Marina; Šušić, Zdenka; Santo, Vera; Brdarić, Dario

    2013-01-01

    The forests of north-eastern Croatia, as well as various plants and trees in the parks and streets of the Osijek-Baranja County, produce large amounts of pollen during the pollen season, which can cause allergy symptoms in pollen sensitive individuals. The aim of this study was to determine the most frequent types of pollen in this area and estimate possible health risks, especially the risk of allergy. In 2009 and 2010, the staff of the Health Ecology Department of the Osijek Public Health Institute monitored tree pollen concentrations in four cities from the Osijek - Baranja County (Osijek, Našice, Đakovo and Beli Manastir) using a Burkard volumetric instrument. The results were affected by weather conditions. Windy and sunny days facilitated the transfer of pollen, whereas during rainy days, the concentration of pollen grains decreased. High pollen concentrations of Cupressaceae/Taxaceae, Betulaceae, Salicaceae and Aceraceae could be the cause for symptoms of pollen allergy. In 2009, conifers, birch and poplar pollen were dominant at all monitoring stations with 5000 pollen grains (PG), 3188 PG and 3113 PG respectively. The highest number of pollen grains was recorded at measuring site Osijek. The variations in airborne pollen concentration between pollen seasons were recorded at all monitoring stations. The most obvious variations were recorded at measuring site Osijek. The usual pollination period lasts two to three months, which means that most pollen grains remain present from February to early June. However, the Cupressaceae / Taxaceae pollination periods last the longest and their pollen grains remain present until the end of summer. The risk of allergy was determined at four monitored measuring stations and the obtained data confirmed that the largest number of days with a high health risk was at the Đakovo measuring station for a species of birch. The research information aims to help allergologists and individuals allergic to plant pollen develop

  1. Towards a "crime pollen calendar" - pollen analysis on corpses throughout one year.

    PubMed

    Montali, Elisa; Mercuri, Anna Maria; Trevisan Grandi, Giuliana; Accorsi, Carla Alberta

    2006-11-22

    A palynological study was carried out on 28 corpses brought in one year (June 2003-May 2004) to the morgue of the Institute of Legal Medicine of Parma (Northern Italy). This preliminary research focuses on the date of death, which was known for all corpses examined. Pollen sampling and analyses were made with the first aim of comparing the pollen grains found on corpses with those diffused in the atmosphere in the region in the same season as the known date of death. Eyebrows, hair-line near the forehead, facial skin and nasal cavities were sampled. Most of the corpses had trapped pollen grains, with the exception of two December corpses. All pollen grains were found with cytoplasm and in a good state of preservation. In this way, a series of reference data was collected for the area where the deaths occurred, and we examined whether pollen grains on corpses could be an index of the season of death. To verify this hypothesis, the pollen analyses were compared with data reported in the airborne pollen calendars of Parma and the region around. Pollen calendars record pollen types and their concentrations in the air, month by month. The quantity of pollen recorded on corpses did not prove to be directly related to the quantity of pollen in the air. But qualitatively, many pollen types which are seasonal markers were found on corpses. Main corpse/air discrepancies were also observed due to the great influence that the local environmental conditions of the death scene have in determining the pollen trapped by a corpse. Qualitative plus quantitative pollen data from corpses appeared helpful in indicating the season of death. A preliminary sketch of a "crime pollen calendar" in a synthetic graphic form was made by grouping the corpse pollen records into three main seasons: A, winter/spring; B, spring/summer; C, summer/autumn. Trends match the general seasonal trend of pollen types in the air.

  2. Detection of pollen grains in multifocal optical microscopy images of air samples.

    PubMed

    Landsmeer, Sander H; Hendriks, Emile A; de Weger, Letty A; Reiber, Johan H C; Stoel, Berend C

    2009-06-01

    Pollen is a major cause of allergy and monitoring pollen in the air is relevant for diagnostic purposes, development of pollen forecasts, and for biomedical and biological researches. Since counting airborne pollen is a time-consuming task and requires specialized personnel, an automated pollen counting system is desirable. In this article, we present a method for detecting pollen in multifocal optical microscopy images of air samples collected by a Burkard pollen sampler, as a first step in an automated pollen counting procedure. Both color and shape information was used to discriminate pollen grains from other airborne material in the images, such as fungal spores and dirt. A training set of 44 images from successive focal planes (stacks) was used to train the system in recognizing pollen color and for optimization. The performance of the system has been evaluated using a separate set of 17 image stacks containing 65 pollen grains, of which 86% was detected. The obtained precision of 61% can still be increased in the next step of classifying the different pollen in such a counting system. These results show that the detection of pollen is feasible in images from a pollen sampler collecting ambient air. This first step in automated pollen detection may form a reliable basis for an automated pollen counting system.

  3. Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae).

    PubMed

    Goleva, Irina; Zebitz, Claus P W

    2013-11-01

    , and A. hippocastanum and Betula pendula pollen is recommended to be used as dispersible pollen in greenhouses.

  4. Allergenic pollen in the atmosphere of Kayseri, Turkey.

    PubMed

    Ince, Ali; Kart, Levent; Demir, Ramazan; Ozyurt, M Sabri

    2004-01-01

    Airborne pollen are important allergens that cause sensitization in allergic rhinoconjunctivitis and asthma. Our aim was to detect the pollen in the atmosphere of Kayseri, to present a pollen calendar, and to detect the allergenic level of these pollen by performing skin tests on patients. Atmospheric pollen were collected by Durham gravimetric samplers in Kayseri between March and November in the years 1996 and 1997. In our study, we observed pollen belonging to 43 different taxa. The total number of pollen per cm2 was found to be 1,330.8 in 1996 and 1,182.5 in 1997. Most of the pollen were from the taxa Pinus, Poaceae, Chenopodiaceae/Amaranthaceae, Cupressaceae, Populus and Quercus in decreasing order. In the skin tests, pollen of the taxa Poaceae and Chenopodiaceae were found to give the most frequent allergic reactions. It was concluded that preparing an airborne pollen calendar could be useful for medical practice. Nevertheless the skin test data did not really correlate with the aerobiologic data, as skin test reactivity is related to the allergenicity of the pollen and not just to ambient exposure.

  5. A Method of Recording and Predicting the Pollen Count.

    ERIC Educational Resources Information Center

    Buck, M.

    1985-01-01

    A hair dryer, plastic funnel, and microscope slide can be used for predicting pollen counts on a day-to-day basis. Materials, methods for assembly, collection technique, meteorological influences, and daily patterns are discussed. Data collected using the apparatus suggest that airborne grass products other than pollen also affect hay fever…

  6. Pollen grains as allergenic environmental factors--new approach to the forecasting of the pollen concentration during the season.

    PubMed

    Myszkowska, Dorota; Majewska, Renata

    2014-01-01

    It is important to monitor the threat of allergenic pollen during the whole season, because of practical application in allergic rhinitis treatment, especially in the specific allergen immunotherapy. The aim of the study was to propose the forecast models predicting the pollen occurrence in the defined pollen concentration categories related to the patient exposure and symptom intensity. The study was performed in Cracow (southern Poland), pollen data were collected using the volumetric method in 1991-2012. For all independent variables (meteorological elements) and the daily pollen concentrations the running mean for periods: 2-, 3-, 4-, 5-, 6- and 7 days before the predicted day were calculated. The multinomial logistic regression was used to find the relation between the probability of the pollen concentration occurrence in the selected categories and meteorological elements and pollen concentration in days preceding the predicted daily concentration. The models were constructed for each taxon using data in 1991-2011 (without 1992 and 1996 due to missing data in these years) and 1998-2011 pollen seasons. The days classified among the lowest category (0-10 PG/m3) (pollen grains/m 3 of air) dominated for all the studied taxa. The percentage of the obtained predictions of the pollen occurrence fluctuated between 35-78% which is a sufficient value of model predictions. Considering the studied taxon, the best model accuracy was obtained for models forecasting Betula pollen concentration (both data series), and Poaceae (both data series). The application of the recommended threshold values during the predictive models construction seems to be really useful to estimate the real threat of allergen exposure. It was indicated that the polynomial logistic regression models could be a practical tool for effective forecasting in biological monitoring of pollen exposure.

  7. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco)

    NASA Astrophysics Data System (ADS)

    Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M. Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed

    2013-03-01

    Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m3. Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.

  8. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco).

    PubMed

    Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed

    2013-03-01

    Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m(3). Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.

  9. The pollen season dynamics and the relationship among some season parameters (start, end, annual total, season phases) in Kraków, Poland, 1991-2008.

    PubMed

    Myszkowska, D; Jenner, B; Stępalska, D; Czarnobilska, E

    2011-09-01

    The dynamics of 15 taxa pollen seasons in Kraków, in 1991-2008 was monitored using a Burkard volumetric spore trap of the Hirst design. The highest daily pollen concentrations were achieved in the first half of May, and they were caused mainly by Betula and Pinus pollen. The second period of the high concentrations took place from the middle of July to the end of August (mainly Urtica pollen). Tree pollen seasons were shorter (18-24 days) in comparison with the most herbaceous pollen seasons (73-89 days), except at Artemisia and Ambrosia seasons (30 and 24 days, respectively). The season phases (percentyles) of the spring and late-summer taxa were the most variable in the consecutive years. The highest annual sums were noted for Urtica, Poaceae (herbaceous pollen seasons) and for Betula, Pinus, Alnus (tree pollen seasons), and the highest variability of annual totals was stated for Urtica, Populus, Fraxinus and the lowest for Ambrosia, Corylus, Poaceae. For the plants that pollinate in the middle of the pollen season (Quercus, Pinus and Rumex), the date of the season start seems not to be related to the season end, while for late pollen seasons, especially for Ambrosia and Artemisia, the statistically negative correlation between the start and the end season dates was found. Additionally, for the most studied taxa, the increase in annual pollen totals was observed. The presented results could be useful for the allergological practice and general botanical knowledge.

  10. Aerobiology of Juniperus Pollen in Oklahoma, Texas, and New Mexico

    NASA Technical Reports Server (NTRS)

    Levetin, Estelle; Bunderson, Landon; VandeWater, Pete; Luvall, Jeff

    2014-01-01

    Pollen from members of the Cupressaceae are major aeroallergens in many parts of the world. In the south central and southwest United States, Juniperus pollen is the most important member of this family with J. ashei (JA) responsible for severe winter allergy symptoms in Texas and Oklahoma. In New Mexico, pollen from J. monosperma (JM) and other Juniperus species are important contributors to spring allergies, while J. pinchotii (JP) pollinates in the fall affecting sensitive individuals in west Texas, southwest Oklahoma and eastern New Mexico. Throughout this region, JA, JM, and JP occur in dense woodland populations. Generally monitoring for airborne allergens is conducted in urban areas, although the source for tree pollen may be forested areas distant from the sampling sites. Improved pollen forecasts require a better understanding of pollen production at the source. The current study was undertaken to examine the aerobiology of several Juniperus species at their source areas for the development of new pollen forecasting initiatives.

  11. The NH2-terminal amino acid sequence of the immunochemically partial identical major allergens of Alder (Alnus glutinosa) Aln g I, birch (Betula verrucosa) Bet v I, hornbeam (Carpinus betulus) Car b I and oak (Quercus alba) Que a I pollens.

    PubMed

    Ipsen, H; Hansen, O C

    1991-11-01

    The tree pollen major allergens (Aln g I), Bet v I, Car b I and Que a I, were purified to near homogeneity. Rabbit antibodies raised towards the major allergen Bet v I react with the major allergens of alder, hazel, hornbeam and oak, although with distinct variation in affinity. Immunochemically the major allergens seem to resemble one another more within than between the botanically established families of the fagale order. The physico-chemical parameters (molecular weight, pI values, amino acid composition and NH2-terminal amino acid sequence) of the major allergens exhibit a higher degree of consistency than do the immunochemical parameters, indicating that nuances in the allergens' secondary and tertiary structures are likely to govern the immunochemical differences.

  12. Pollen calendar of the city of Salamanca (Spain). Aeropalynological analysis for 1981-1982 and 1991-1992.

    PubMed

    Hernández Prieto, M; Lorente Toledano, F; Romo Cortina, A; Dávila González, I; Laffond Yges, E; Calvo Bullón, A

    1998-01-01

    We report a study on the contents of airborne pollen in the city of Salamanca (Spain) aimed at establishing a pollen calendar for the city for the yearly periods of maximum concentrations, relating these with quantifiable atmospheric variables over two two-year periods with an interval of 10 years between them: 1981-82 and 1991-92. The pollen was captured with Burkard spore-traps, based on Hirst's volumetric method. Determinations were made daily and were used to make preparations, previously stained with basic fuscin, for study under light microscopy at x 1,000 magnification. 946 preparations were analyzed, corresponding to the same number of days distributed over 150 weeks of the periods studied. The results afforded the identification of 48 different types of pollen grain: Grasses (Poaceae), Olea europea (olive), Quercus rotundifolia (Holm-oak), other Quercus spp. (Q. pyrenaica, Q. suber, Q. faginea, etc.), Cupressaceae (Cupressus sempervivens, C. arizonica, Juniperus communis etc.), Plantago (Plantago lanceolata, Plantago media, etc.), Pinaceae (Pinus communis, Abies alba, etc.), Rumex sp. (osier), Urtica dioica (nettle), Parietaria (Parietaria officinalis, P. judaica), Chenopodio-Amaranthaceae (Chenopodium sp., Amaranthus sp., Salsola kali, etc.), Artemisia vulgaris (Artemisia), other Compositae (Taraxacum officinalis, Hellianthus sp. etc.), Castanea sativa (Chestnut), Ligustrum sp. (privet), Betula sp. (birch), Alnus sp. (common alder), Fraxinus sp (ash), Populus sp. (poplar), Salix sp. (willow), Ulmus sp. (elm), Platanus sp. (plantain, plane), Carex sp. (sweet flag), Erica sp. (common heather), Leguminosae or Fabaceae:--Papillionaceae (Medicago sp.; Cercis sp., Robina sp.)--Cesalpinoideae Acacia sp. (Acacia),--Mimosoideae: Sophora japonica, Umbelliferae (Foeniculum sp., Cirsium sp., etc.), Centaurea sp., Cistus sp. (rock rose), Typha sp (bulrush), Mirtaceae (Myrtus communis), Juglans regia (Walnut), Galium verum, Filipendula sp. (spirea/drop wort), Rosaceae

  13. Concentric Ring Method for generating pollen maps. Quercus as case study.

    PubMed

    Oteros, Jose; Valencia, Rosa Mª; Del Río, Sara; Vega, Ana Mª; García-Mozo, Herminia; Galán, Carmen; Gutiérrez, Pablo; Mandrioli, Paolo; Fernández-González, Delia

    2017-01-15

    Mapping pollen concentrations is of great interest to study the health impact and ecological implications or for forestry or agronomical purposes. A deep knowledge about factors affecting airborne pollen is essential for predicting and understanding its dynamics. The present work sought to predict annual Quercus pollen over the Castilla and León region (Central and Northern Spain). Also to understand the relationship between airborne pollen and landscape. Records of Quercus and Quercus pyrenaica pollen types were collected at 13 monitoring sites over a period of 8years. They were analyzed together with land use data applying the Concentric Ring Method (CRM), a technique that we developed to study the relationship between airborne particle concentrations and emission sources in the region. The maximum correlation between the Quercus pollen and forms of vegetation was determined by shrubland and "dehesa" areas. For the specific Qi pyrenaica model (Q. pyrenaica pollen and Q. pyrenaica forest distribution), the maximum influence of emission sources on airborne pollen was observed at 14km from the pollen trap location with some positive correlations up to a distance of 43km. Apart from meteorological behavior, the local features of the region can explain pollen dispersion patterns. The method that we develop here proved to be a powerful tool for multi-source pollen mapping based on land use.

  14. Variations and trends of Fagaceae pollen in Northern Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Canu, Annalisa; Pellizzaro, Grazia; Arca, Bachisio; Vargiu, Arnoldo

    2016-04-01

    The aim of this study is to analyze variations in the start and the end dates of pollen season, date of maximum concentration peak, pollen season duration, pollen concentration value and Seasonal Pollen Index of airborne Fagaceae pollen series recorded in Sassari, Northern Italy, and to evaluate their relation to meteorological data. Daily pollen concentration data were measured from 1986 to 2008 in a urban area of northern Sardinia (Italy) using a Burkard seven-day recording volumetric spore trap. The date of the peak occurrence was defined as the day when the cumulated daily pollen values reached the 50 % of the total annual pollen concentration. Meteorological data were recorded during the same period by an automatic weather station. Cumulative Degree days were calculated, for each year, from different starting dates using the daily averaging method. The correlation between meteorological variables and the different characteristics of pollen seasons was analyzed using Spearman's correlation tests. In the city of Sassari the Fagaceae airborne pollen content was mainly due to Quercus. The main pollen season took place from April to June. The longest pollen season appeared in the year 2002. The cumulative counts varied over the years, with a mean value of 5,336 pollen grains, a lowest total of 550 in 1986 and a highest total of 8,678 in 2001. Daily pollen concentrations presented positive correlation with temperature, and negative with relative humidity (p<0,0001) and with rainfall. In addition, Cumulative Degree days were significantly correlated with the dates of maximum concentration peak (p<0,0001).

  15. Aerodynamics and pollen ultrastructure in Ephedra.

    PubMed

    Bolinder, Kristina; Niklas, Karl J; Rydin, Catarina

    2015-03-01

    Pollen dispersal is affected by the terminal settling velocity (Ut) of the grains, which is determined by their size, bulk density, and by atmospheric conditions. The likelihood that wind-dispersed pollen is captured by ovulate organs is influenced by the aerodynamic environment created around and by ovulate organs. We investigated pollen ultrastructure and Ut of Ephedra foeminea (purported to be entomophilous), and simulated the capture efficiency of its ovules. Results were compared with those from previously studied anemophilous Ephedra species.• Ut was determined using stroboscopic photography of pollen in free fall. The acceleration field around an "average" ovule was calculated, and inflight behavior of pollen grains was predicted using computer simulations. Pollen morphology and ultrastructure were investigated using SEM and STEM.• Pollen wall ultrastructure was correlated with Ut in Ephedra. The relative proportion and amount of granules in the infratectum determine pollen bulk densities, and (together with overall size) determine Ut and thus dispersal capability. Computer simulations failed to reveal any functional traits favoring anemophilous pollen capture in E. foeminea.• The fast Ut and dense ultrastructure of E. foeminea pollen are consistent with functional traits that distinguish entomophilous species from anemophilous species. In anemophilous Ephedra species, ovulate organs create an aerodynamic microenvironment that directs airborne pollen to the pollination drops. In E. foeminea, no such microenvironment is created. Ephedroid palynomorphs from the Cretaceous share the ultrastructural characteristics of E. foeminea, and at least some may, therefore, have been produced by insect-pollinated plants. © 2015 Botanical Society of America, Inc.

  16. Viability and seasonal distribution patterns of Scots pine pollen in Finland.

    PubMed

    Pulkkinen, P.; Rantio-Lehtimäki, A.

    1995-01-01

    Germination ability and airborne counts of Scots pine (Pinus sylvestris L.) pollen were studied during the spring of 1993 at Turku in southern Finland (60 degrees 32' N, 22 degrees 28' E) and at Utsjoki in northern Finland (69 degrees 45' N, 27 degrees 01' E). Pollen waas trapped from the beginning of May to the end of June in a high-volume air sampler. Germination tests were performed to determine the in vitro pollen viability of the trapped pollen. Airborne pine pollen counts were obtained from a continuously operating Burkard trap located near each high-volume sampler. When male flowering began, phenological observations were carried out on pollen grains collected in rotored samplers located in pine and spruce stands and open fields near Turku and Utsjoki. In southern Finland, the peak period of pine pollen production was short, lasting for only 3 days, but it accounted for about 80% of the total germinating pine pollen yield for the year. The peak count was on May 20, with over 2000 germinating pollen grains per cubic meter of air. Pollen germination rates of up to 70% were obtained during the week preceding the local pollen peak, and rates reached almost 90% on the peak day. Pollen viability remained at 45 to 65% for 1 week after the peak. There was no significant difference between the pollen counts for day and night, indicating that during the main pollen season, the pollen source was close to Turku. Before the local pollen peak, the counts of living pine pollen were low, indicating that pine pollen transported over long distances was of little ecological importance in 1993 in the Turku area. In northern Finland, the first pollen grains were caught on July 4, and the peak day was July 13. However, no viable pollen was observed during this period, indicating that there was little gene drift from southern to northern Finland in 1993.

  17. Four Novel Cellulose Synthase (CESA) Genes from Birch (Betula platyphylla Suk.) Involved in Primary and Secondary Cell Wall Biosynthesis

    PubMed Central

    Liu, Xuemei; Wang, Qiuyu; Chen, Pengfei; Song, Funan; Guan, Minxiao; Jin, Lihua; Wang, Yucheng; Yang, Chuanping

    2012-01-01

    Cellulose synthase (CESA), which is an essential catalyst for the generation of plant cell wall biomass, is mainly encoded by the CesA gene family that contains ten or more members. In this study; four full-length cDNAs encoding CESA were isolated from Betula platyphylla Suk., which is an important timber species, using RT-PCR combined with the RACE method and were named as BplCesA3, −4, −7 and −8. These deduced CESAs contained the same typical domains and regions as their Arabidopsis homologs. The cDNA lengths differed among these four genes, as did the locations of the various protein domains inferred from the deduced amino acid sequences, which shared amino acid sequence identities ranging from only 63.8% to 70.5%. Real-time RT-PCR showed that all four BplCesAs were expressed at different levels in diverse tissues. Results indicated that BplCESA8 might be involved in secondary cell wall biosynthesis and floral development. BplCESA3 appeared in a unique expression pattern and was possibly involved in primary cell wall biosynthesis and seed development; it might also be related to the homogalacturonan synthesis. BplCESA7 and BplCESA4 may be related to the formation of a cellulose synthase complex and participate mainly in secondary cell wall biosynthesis. The extremely low expression abundance of the four BplCESAs in mature pollen suggested very little involvement of them in mature pollen formation in Betula. The distinct expression pattern of the four BplCesAs suggested they might participate in developments of various tissues and that they are possibly controlled by distinct mechanisms in Betula. PMID:23202892

  18. Four novel cellulose synthase (CESA) genes from Birch (Betula platyphylla Suk.) involved in primary and secondary cell Wall biosynthesis.

    PubMed

    Liu, Xuemei; Wang, Qiuyu; Chen, Pengfei; Song, Funan; Guan, Minxiao; Jin, Lihua; Wang, Yucheng; Yang, Chuanping

    2012-09-25

    Cellulose synthase (CESA), which is an essential catalyst for the generation of plant cell wall biomass, is mainly encoded by the CesA gene family that contains ten or more members. In this study; four full-length cDNAs encoding CESA were isolated from Betula platyphylla Suk., which is an important timber species, using RT-PCR combined with the RACE method and were named as BplCesA3, -4, -7 and -8. These deduced CESAs contained the same typical domains and regions as their Arabidopsis homologs. The cDNA lengths differed among these four genes, as did the locations of the various protein domains inferred from the deduced amino acid sequences, which shared amino acid sequence identities ranging from only 63.8% to 70.5%. Real-time RT-PCR showed that all four BplCesAs were expressed at different levels in diverse tissues. Results indicated that BplCESA8 might be involved in secondary cell wall biosynthesis and floral development. BplCESA3 appeared in a unique expression pattern and was possibly involved in primary cell wall biosynthesis and seed development; it might also be related to the homogalacturonan synthesis. BplCESA7 and BplCESA4 may be related to the formation of a cellulose synthase complex and participate mainly in secondary cell wall biosynthesis. The extremely low expression abundance of the four BplCESAs in mature pollen suggested very little involvement of them in mature pollen formation in Betula. The distinct expression pattern of the four BplCesAs suggested they might participate in developments of various tissues and that they are possibly controlled by distinct mechanisms in Betula.

  19. Influence of wind velocity on pollen concentration in urban canopy layer

    NASA Astrophysics Data System (ADS)

    Pospisil, J.; Jícha, M.

    2009-09-01

    POLLEN RELEASE Temperature is the basic parameter for prediction of the beginning of the pollen season and identification days with good potential for pollen release. Different approaches are used for determination of the start of the pollen season: i) the sum of daily pollen counts = x criterion (Arnold 2002), ii) the mean temperature method during pre-defined period (Sparks, 2000), iii) the temperature sum method (Jones 1992). Another parameters influencing pollen release are: day light length, morning temperature gradient, relative humidity. The mentioned parameters enable to create the "statistical” model for determination of timing of pollen potential release. But, the correct determination of pollen release timing is only the first step to correct prediction of pollen concentration in air. The above mentioned collection of parameters isn't complete for correct pollen production prediction without inclusion of the actual wind velocity. The wind velocity directly influences the pollen release rate from mother plant and subsequently transport of pollen grains. From this reason, influence of wind conditions has to be considered as exactly as possible in complex prediction models. WIND VELOCITY AND POLLEN CONCENTRATION Results of in-situ measurements were used for carried out analysis of the relation between wind velocity and pollen concentration in an urban canopy layer. The mean daily wind velocities and the mean daily pollen concentrations were used as the input data describing the pollen season 2005 in an inner part of the city of Brno (pop. 400 000). The mean daily pollen concentrations were matched to corresponding mean daily wind velocity and depicted in graphs. This procedure was done for all locally monitored aeroallergens, namely Alnus, Ambrosia, Betula, Artemis, Corylus, Fraxinus, Poaceae and Quercus. Only days with significant pollen concentration (above 10% of maximal pollen season concentration) were considered for detail analysis. Clear

  20. Polarization Analysis of Light Scattered by Pollen Grains of Cryptomeria japonica

    NASA Astrophysics Data System (ADS)

    Iwai, Toshiaki

    2013-06-01

    Pollinosis to airborne pollen grains is a severe problem that concerns the whole world. Almost spring allergies in Japan are caused by pollen grains of Japan cedar (Cryptomeria japonica) during the period of pollination from February to May. One of the key technologies in a pollen monitoring and forecast system is a pollen sensor. The pollen grain of Japan cedar is identified by introducing the degree of polarization to the optical sensor based on the scattered intensity. The detectability and discriminability in identifying the pollen grains of Japan cedar from the polystyrene spherical particles and the Kanto loam grains are achieved up to 95 and 86%, respectively.

  1. Atmospheric pollen season in Zagreb (Croatia) and its relationship with temperature and precipitation.

    PubMed

    Peternel, Renata; Srnec, Lidija; Culig, Josip; Zaninović, Ksenija; Mitić, Bozena; Vukusić, Ivan

    2004-05-01

    The number of individuals allergic to plant pollen has recently been on a constant increase, especially in large cities and industrial areas. Therefore, monitoring of airborne pollen types and concentrations during the pollen season is of the utmost medical importance. The research reported in this paper aims to determine the beginning, course and end of the pollen season for the plants in the City of Zagreb, to identify allergenic plants, and to assess the variation in airborne pollen concentration as a function of temperature and precipitation changes for the year 2002. A volumetric Hirst sampler was used for airborne pollen sampling. Qualitative and quantitative pollen analysis was performed under a light microscope (magnification x400). In the Zagreb area, 12 groups of highly allergenic plants (alder, hazel, cypress, birch, ash, hornbeam, grasses, elder, nettles, sweet chestnut, artemisia and ambrosia) were identified. Birch pollen predominated in spring, the highest concentrations being recorded in February and March. Grass pollen prevailed in May and June, and pollen of herbaceous plants of the genus Urtica (nettle) and of ambrosia in July, August and September. Air temperature was mostly higher or considerably higher than the annual average in those months, which resulted in a many days with high and very high airborne pollen concentrations. The exception was April, when these concentrations were lower because of high levels of precipitation. This also held for the first half of August and the second half of September. Pollen-sensitive individuals were at high risk from February till October because of the high airborne pollen concentrations, which only showed a transient decrease when the temperature fell or there was precipitation.

  2. Atmospheric pollen season in Zagreb (Croatia) and its relationship with temperature and precipitation

    NASA Astrophysics Data System (ADS)

    Peternel, Renata; Srnec, Lidija; Čulig, Josip; Zaninović, Ksenija; Mitić, Božena; Vukušić, Ivan

    . The number of individuals allergic to plant pollen has recently been on a constant increase, especially in large cities and industrial areas. Therefore, monitoring of airborne pollen types and concentrations during the pollen season is of the utmost medical importance. The research reported in this paper aims to determine the beginning, course and end of the pollen season for the plants in the City of Zagreb, to identify allergenic plants, and to assess the variation in airborne pollen concentration as a function of temperature and precipitation changes for the year 2002. A volumetric Hirst sampler was used for airborne pollen sampling. Qualitative and quantitative pollen analysis was performed under a light microscope (magnification ×400). In the Zagreb area, 12 groups of highly allergenic plants (alder, hazel, cypress, birch, ash, hornbeam, grasses, elder, nettles, sweet chestnut, artemisia and ambrosia) were identified. Birch pollen predominated in spring, the highest concentrations being recorded in February and March. Grass pollen prevailed in May and June, and pollen of herbaceous plants of the genus Urtica (nettle) and of ambrosia in July, August and September. Air temperature was mostly higher or considerably higher than the annual average in those months, which resulted in a many days with high and very high airborne pollen concentrations. The exception was April, when these concentrations were lower because of high levels of precipitation. This also held for the first half of August and the second half of September. Pollen-sensitive individuals were at high risk from February till October because of the high airborne pollen concentrations, which only showed a transient decrease when the temperature fell or there was precipitation.

  3. Role of macrophage migration inhibitory factor (MIF) in pollen-induced allergic conjunctivitis and pollen dermatitis in mice.

    PubMed

    Nagata, Yuka; Yoshihisa, Yoko; Matsunaga, Kenji; Rehman, Mati Ur; Kitaichi, Nobuyoshi; Kitaichi, Nobuyuki; Shimizu, Tadamichi

    2015-01-01

    Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis.

  4. Role of Macrophage Migration Inhibitory Factor (MIF) in Pollen-Induced Allergic Conjunctivitis and Pollen Dermatitis in Mice

    PubMed Central

    Nagata, Yuka; Yoshihisa, Yoko; Matsunaga, Kenji; Rehman, Mati Ur; Kitaichi, Nobuyuki; Shimizu, Tadamichi

    2015-01-01

    Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis. PMID:25647395

  5. Effects of acidity on tree pollen germination and tube growth

    SciTech Connect

    Jacobson, J.S.; Van Rye, D.M.; Lassoie, J.P.

    1985-01-01

    Several studies have indicated that pollen germination and tube growth are adversely affected by air pollutants. Pollutants may inhibit the function of pollen by reducing the number of pollen grains which germinate, by reducing the maximum length to which the pollen tubes grow, or by interfering with the formation of the generative cell. The paper reports on studies that are attempting to determine the effects acid rain may have on these crucial stages in the life histories of northeastern tree species. The first stage of this work assessed the effects of acidity in the growth medium on in vitro pollen germination for four deciduous forest species common to central New York State, Betula lutea (yellow birch), B. lenta (black birch), Acer saccharum (sugar maple), and Cornus florida (flowering dogwood). Measurements were taken at the end of the growth period to determine the percentage of grains which had germinated, and to estimate the average tube length. To determine the effects of pollen on the growth medium, the pH of the germination drop was measured at the end of the growth period.

  6. Relationship between Pollen Counts and Weather Variables in East-Mediterranean Coast of Turkey

    PubMed Central

    Karakoç, Gülbin Bingöl; Yilmaz, Mustafa; Pinar, Münevver; Kendirli, Seval Güneçer; Çakan, Halil

    2004-01-01

    Background: Aeroallergen sampling provides information regarding the onset, duration and severity of the pollen season that clinicians use to guide allergen selection for skin testing and treatment. Objectives: This atmospheric survey reports (1) airborne pollen contributions in Adana in one-year period (2) pollen onset, duration and peak level (3) the relationship between airborne pollen and selected meteorological variables and; (4) effects on symptoms in pollen allergic children. Methods: Pollen sampling was performed with a volumetric Burkard Spore Trap. Meteorological data were measured daily from April 2001 to April 2002. Asthma symptom scores were investigated in 186 pollen allergic children that were on follow up in pediatric allergy outpatient clinics during same period. Results: Average measurements included 82.5% tree pollen, 7.7% grass pollen and 9.8% herb pollen 54 taxa were identified during one year. The most prominent tree pollens were Cupressaceae, Eucalyptus and Pinus. The most common herb was Chenopodiaceae pollen family. When airborne pollen levels were examined in relation to single meteorological conditions; daily variations in total pollen counts were not significantly correlated with any variable studied (humidity, rainfall, temperature and wind) (p>0.05). On the other hand, statistically significant relationship between pollen concentration and symptom scores were found (p>0.05). Positive correlations were seen between both Gramineae and Herb pollen, and humidity and rainfall from March to July. However, positive correlations were detected between tree pollen counts and temperature and humidity in May and June. Conclusion: This survey is the first volumetric airborne pollen analysis conducted in the survey area in Adana. This study suggested that the effects of weather on pollen count and symptom scores in this population could not be clearly identified with the evaluation of one-year data. However, pollen counts had effect on allergic

  7. Comparison of fluorescence spectroscopy and FTIR in differentiation of plant pollens

    NASA Astrophysics Data System (ADS)

    Mularczyk-Oliwa, Monika; Bombalska, Aneta; Kaliszewski, Miron; Włodarski, Maksymilian; Kopczyński, Krzysztof; Kwaśny, Mirosław; Szpakowska, Małgorzata; Trafny, Elżbieta A.

    2012-11-01

    Spectroscopic techniques are under investigation on possibility of differentiation of airborne particles. This paper describes pollen discrimination among others bio-particles in laboratory conditions. Pollen samples were characterized with UV-Vis fluorescence, drift and KBr pellet techniques of infrared spectroscopy. Principal Component Analysis of UV-Vis fluorescence and FTIR spectra revealed that pollens can be distinguished from other bio-materials with use of these methods. Both methods resulted in similar classification capability. Combined FTIR and fluorescence data analysis did not improve the discrimination between pollen allergens and other airborne biological materials.

  8. Can we improve pollen season definitions by using the symptom load index in addition to pollen counts?

    PubMed

    Bastl, Katharina; Kmenta, Maximilian; Geller-Bernstein, Carmi; Berger, Uwe; Jäger, Siegfried

    2015-09-01

    Airborne pollen measurements are the foundation of aerobiological research and provide essential raw data for various disciplines. Pollen itself should be considered a relevant factor in air quality. Symptom data shed light on the relationship of pollen allergy and pollination. The aim of this study is to assess the spatial variation of local, regional and national symptom datasets. Ten pollen season definitions are used to calculate the symptom load index for the birch and grass pollen seasons (2013-2014) in Austria. (1) Local, (2) regional and (3) national symptom datasets are used to examine spatial variations and a consistent pattern was found. In conclusion, national datasets are suitable for first insights where no sufficient local or regional dataset is available and season definitions based on percentages provide a practical solution, as they can be applied in regions with different pollen loads and produce more constant results.

  9. Pollensomes as Natural Vehicles for Pollen Allergens.

    PubMed

    Prado, Noela; De Linares, Concepción; Sanz, María L; Gamboa, Pedro; Villalba, Mayte; Rodríguez, Rosalía; Batanero, Eva

    2015-07-15

    Olive (Olea europaea) pollen constitutes one of the most important allergen sources in the Mediterranean countries and some areas of the United States, South Africa, and Australia. Recently, we provided evidence that olive pollen releases nanovesicles of respirable size, named generically pollensomes, during in vitro germination. Olive pollensomes contain allergens, such as Ole e 1, Ole e 11, and Ole e 12, suggesting a possible role in allergy. The aim of this study was to assess the contribution of pollensomes to the allergic reaction. We show that pollensomes exhibit allergenic activity in terms of patients' IgE-binding capacity, human basophil activation, and positive skin reaction in sensitized patients. Furthermore, allergen-containing pollensomes have been isolated from three clinically relevant nonphylogenetically related species: birch (Betula verrucosa), pine (Pinus sylvestris), and ryegrass (Lolium perenne). Most interesting, pollensomes were isolated from aerobiological samples collected with an eight-stage cascade impactor collector, indicating that pollensomes secretion is a naturally occurring phenomenon. Our findings indicate that pollensomes may represent widespread vehicles for pollen allergens, with potential implications in the allergic reaction.

  10. Ragweed pollen in France: origin, diffusion, exposure.

    PubMed

    Thibaudon, M; Hamberger, C; Guilloux, L; Massot, R

    2010-12-01

    To detect the origin of ragweed pollen and to measure the impact of this pollen exposure on allergic patients, so their sensitivity can be noted (using specific IgE production: sIgEw1) in order to inform the population about an "allergy" against those ragweed pollen grains. To measure population exposure to ragweed pollen, the R.N.S.A (National Aerobiological Monitoring Network, a French association) has a pollen trap network located in urban areas. These traps allow continuous recording of airborne pollen, the light microscope analysis (with a bi-hourly time step) allows one to know the daily concentrations of ragweed grains and the circadian rhythm of grains impaction. It is thus possible to follow the evolution of pollination during each day ofeach season and to compare seasons and years at each station. Biomnis is a biological laboratory which performs more than 85% of ragweed specific IgE assay in France. It seems to be clear that when allergists ask ragweed IgE for a patient, it is because they think that this patient seems to be allergic to this specific pollen. The statistical analysis of results about specific IgE (for ragweed) from the Allergology laboratories Biomnis (located in Lyon and Paris) can determine the number ofpatients sensitized to ragweed in French departments. The distribution ofsensitized patients to ragweed is compared to ragweed pollen distribution studied by the R.N.S.A from the year 2005 to 2008 in France, whatever the ragweed plant' origin: local (closed topollen trap) or imported (by wind). The biological database (Health impact) allows a correlation between the geographical distribution ofragweed pollen and the number ofpatients with specific IgE against ragweed (sIgEw1), i.e., whose sensitization is due to local plants. That also permits one to estimate the expected number of allergy cases in the next years, because the sensitivity precedes the allergy.

  11. [Allergic responses to date palm and pecan pollen in Israel].

    PubMed

    Waisel, Y; Keynan, N; Gil, T; Tayar, D; Bezerano, A; Goldberg, A; Geller-Bernstein, C; Dolev, Z; Tamir, R; Levy, I

    1994-03-15

    Date palm (Phoenix dactylifera) and pecan (Carya illinoensis) trees are commonly planted in Israel for fruit, for shade, or as ornamental plants. Pollen grains of both species are allergenic; however, the extent of exposure to such pollen and the incidence of allergic response have not been studied here. We therefore investigated skin-test responses to pollen extracts of 12 varieties of palm and 9 of pecan in 705 allergic patients living in 3 cities and 19 rural settlements. Sensitivity to the pollen extracts of both species was much higher among residents of rural than of urban communities. Moreover, there was a definite relationship between the abundance of these trees in a region and the incidence of skin responders to their pollen. Sensitivity was frequent in settlements rich in these 2 species, such as those with nearby commercial date or pecan plantations. In general, sensitivity to date pollen extracts was lower than to pecan. However, differences in skin responses to pollen extracts of various clones were substantiated. Air sampling revealed that pollen pollution decreased considerably with distance from the trees. At approximately 100 m from a source concentrations of airborne pollen were low. Since planting of male palm and pecan trees in population centers would increase pollen pollution, it should be avoided.

  12. Pollen dispersal in sugar beet production fields.

    PubMed

    Darmency, Henri; Klein, Etienne K; De Garanbé, Thierry Gestat; Gouyon, Pierre-Henri; Richard-Molard, Marc; Muchembled, Claude

    2009-04-01

    Pollen-mediated gene flow has important implications for biodiversity conservation and for breeders and farmers' activities. In sugar beet production fields, a few sugar beet bolters can produce pollen as well as be fertilized by wild and weed beet. Since the crop, the wild beets, and the weed beets are the same species and intercross freely, the question of pollen flow is an important issue to determine the potential dispersal of transgenes from field to field and to wild habitats. We report here an experiment to describe pollen dispersal from a small herbicide-resistant sugar beet source towards male sterile target plants located along radiating lines up to 1,200 m away. Individual dispersal functions were inferred from statistical analyses and compared. Pollen limitation, as expected in root-production fields, was confirmed at all the distances from the pollen source. The number of resistant seeds produced by bait plants best fitted a fat-tailed probability distribution curve of pollen grains (power-law) dependent on the distance from the pollen source. A literature survey confirmed that power-law function could fit in most cases. The b coefficient was lower than 2. The number of fertilized flowers by background (herbicide-susceptible) pollen grains was uniform across the whole field. Airborne pollen had a fertilization impact equivalent to that of one adjacent bolter. The individual dispersal function from different pollen sources can be integrated to provide the pollen cloud composition for a given target plant, thus allowing modeling of gene flow in a field, inter-fields in a small region, and also in seed-production area. Long-distance pollen flow is not negligible and could play an important role in rapid transgene dispersal from crop to wild and weed beets in the landscape. The removing of any bolting, herbicide-resistant sugar beet should be compulsory to prevent the occurrence of herbicide-resistant weed beet, thus preventing gene flow to wild

  13. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis.

    PubMed

    Zhang, Wenbo; Wei, Rui; Chen, Su; Jiang, Jing; Li, Huiyu; Huang, Haijiao; Yang, Guang; Wang, Shuo; Wei, Hairong; Liu, Guifeng

    2015-06-01

    We cloned a Cinnamoyl-CoA Reductase gene (BpCCR1) from an apical meristem and first internode of Betula platyphylla and characterized its functions in lignin biosynthesis, wood formation and tree growth through transgenic approaches. We generated overexpression and suppression transgenic lines and analyzed them in comparison with the wild-type in terms of lignin content, anatomical characteristics, height and biomass. We found that BpCCR1 overexpression could increase lignin content up to 14.6%, and its underexpression decreased lignin content by 6.3%. Surprisingly, modification of BpCCR1 expression led to conspicuous changes in wood characteristics, including xylem vessel number and arrangement, and secondary wall thickness. The growth of transgenic trees in terms of height was also significantly influenced by the modification of BpCCR1 genes. We discuss the functions of BpCCR1 in the context of a phylogenetic tree built with CCR genes from multiple species.

  14. Reduction in allergenicity of grass pollen by genetic engineering.

    PubMed

    Bhalla, P L; Swoboda, I; Singh, M B

    2001-01-01

    Hay fever and allergic asthma triggered by grass pollen allergens affect approximately 20% of the population in cool temperate climates. Ryegrass is the dominant source of allergens due to its prodigious airborne pollen production. Lol p 5 or group 5 is among the most important and widespread grass pollen allergen because it reacts with IgE antibodies of more than 90% of grass pollen-allergic patients, contains most of the grass pollen-specific IgE epitopes and elicits strong biological responses. Significant efforts have been made in developing diagnostic and therapeutic reagents for designing new and more effective immunotherapeutic strategies for treatment of allergic diseases. An alternative approach to this problem could be to reduce the amount of allergen content in the source plant. High velocity microprojectile bombardment was used to genetically engineer ryegrass. Antisense construct targeted to one of major allergen, Lol p 5, was introduced. The expression of antisense RNA was regulated by a pollen-specific promoter. Pollen was analysed for IgE reactivity. Analysis of proteins with allergen-specific monoclonal and polyclonal antibodies did not detect Lol p 5 in the transgenic pollen. The transgenic pollen showed remarkably reduced allergenicity as reflected by low IgE binding capacity of pollen extract as compared to control pollen. The transgenic ryegrass plants in which Lol p 5 gene expression is perturbed showed normal fertile pollen development. Our studies showed that it is possible to selectively 'switch off' allergen production in pollen of ryegrass demonstrating feasibility of genetic engineering of plants for reduced allergenicity. Copyright 2001 S. Karger AG, Basel

  15. Poaceae, Secale spp. and Artemisia spp. pollen in the air at two sites of different degrees of urbanisation.

    PubMed

    Kruczek, Aleksandra; Puc, Małgorzata; Wolski, Tomasz

    2017-03-21

    Among herbal plants, most cases of allergic reactions, like seasonal inflammation of nasal mucosa, conjunctivitis and pollen asthma, are related to the allergens from grass pollen. As the blossoming and pollination of rye is known to start the pollen season of grasses, information about the airborne rye pollen count permits alerting the people allergic to certain allergens contained in rye pollen. An important cause of allergy is also the pollen from wormwood, blossoming in late summer, as its two main allergens produce cross-reactions with many other plant allergens. The aim of the study was to evaluate the risk of allergic reactions in persons with pollinosis on the basis of the pollen calendar, analysis of concentrations of pollen grains of grass and rye, and comparison of diurnal pattern of airborne pollen grain concentrations at two sites with different degrees of urbanisation (Gudowo in the country and the city of Szczecin) in 2012-2014. The concentration of pollen was measured by the volume method. Length of the pollination season was determined by the method of 98%, assuming that the beginning and the end of the pollen season are the days on which 1% and 99% of the annual sum of pollen appeared. The first pollen grains to appear in the air are those produced by rye, followed by those produced by grass and wormwood. The pollen seasons of grasses and wormwood started about one week earlier in Gudowo than in Szczecin, while the pollen season of rye started at almost the same time in the country and in the city. Airborne pollen counts of grasses, rye and wormwood were much higher in the country than in the city. The differences most probably result from the different floristic composition at these two sites and reflect the local contribution of the taxa studied in the country. The risk of allergy caused by the pollen of the taxa analysed was much higher in Gudowo (in the country), than in Szczecin city.

  16. Chloroplast DNA phylogeography of Betula maximowicziana, a long-lived pioneer tree species and noble hardwood in Japan.

    PubMed

    Tsuda, Yoshiaki; Ide, Yuji

    2010-05-01

    Betula maximowicziana is an ecologically and economically important tree species in Japan. In order to examine the phylogeographical pattern of the species in detail, maternally inherited chloroplast (cp) DNA variations of 25 natural populations of Betula maximowicziana and a total of 12 populations of three related species were evaluated by PCR-RFLP analysis. Two main haplotypic groups of B. maximowicziana populations (northern and southern) were detected, with the main boundary passing through the Tohoku region in northeastern Japan; in addition there was high genetic differentiation among the 25 populations studied (GST = 0.950, G'ST =0:977). The phylogeographical pattern exhibited by B. maximowicziana was much more similar to that of alpine plants than to that of beech and oak. Comparison of the patterns of genetic structure obtained from the cpDNA with previously and newly acquired data on bi-parentally inherited nuclear DNA indicates that the nuclear genome was transferred via pollen from the northern haplotypic group to the southern group more frequently than it moved in the opposite direction. Although common haplotypes were detected among B. maximowicziana and the two related species examined, these haplotypes were not shared sympatrically, suggesting very rare hybridization among the species currently occurring in their natural populations.

  17. Estimates of common ragweed pollen emission and dispersion over Europe using RegCM-pollen model

    NASA Astrophysics Data System (ADS)

    Liu, L.; Solmon, F.; Vautard, R.; Hamaoui-Laguel, L.; Torma, Cs. Zs.; Giorgi, F.

    2015-11-01

    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hayfever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In the online model environment where climate is integrated with dispersion and vegetation production, pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000-2010. To reduce the large uncertainties notably due to ragweed density distribution on pollen emission, a calibration based on airborne pollen observations is used. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger. From these simulations health risks associated common ragweed pollen spread are then evaluated through calculation of exposure time above health

  18. Allergenic pollen season variations in the past two decades under changing climate in the United States.

    PubMed

    Zhang, Yong; Bielory, Leonard; Mi, Zhongyuan; Cai, Ting; Robock, Alan; Georgopoulos, Panos

    2015-04-01

    Many diseases are linked with climate trends and variations. In particular, climate change is expected to alter the spatiotemporal dynamics of allergenic airborne pollen and potentially increase occurrence of allergic airway disease. Understanding the spatiotemporal patterns of changes in pollen season timing and levels is thus important in assessing climate impacts on aerobiology and allergy caused by allergenic airborne pollen. Here, we describe the spatiotemporal patterns of changes in the seasonal timing and levels of allergenic airborne pollen for multiple taxa in different climate regions at a continental scale. The allergenic pollen seasons of representative trees, weeds and grass during the past decade (2001-2010) across the contiguous United States have been observed to start 3.0 [95% Confidence Interval (CI), 1.1-4.9] days earlier on average than in the 1990s (1994-2000). The average peak value and annual total of daily counted airborne pollen have increased by 42.4% (95% CI, 21.9-62.9%) and 46.0% (95% CI, 21.5-70.5%), respectively. Changes of pollen season timing and airborne levels depend on latitude, and are associated with changes of growing degree days, frost free days, and precipitation. These changes are likely due to recent climate change and particularly the enhanced warming and precipitation at higher latitudes in the contiguous United States.

  19. Allergenic pollen season variations in the past two decades under changing climate in the United States

    PubMed Central

    Zhang, Yong; Bielory, Leonard; Mi, Zhongyuan; Cai, Ting; Robock, Alan; Georgopoulos, Panos

    2014-01-01

    Many diseases are linked with climate trends and variations. In particular, climate change is expected to alter the spatiotemporal dynamics of allergenic airborne pollen and potentially increase occurrence of allergic airway disease. Understanding the spatiotemporal patterns of changes in pollen season timing and levels is thus important in assessing climate impacts on aerobiology and allergy caused by allergenic airborne pollen. Here we describe the spatiotemporal patterns of changes in the seasonal timing and levels of allergenic airborne pollen for multiple taxa in different climate regions at a continental scale. The allergenic pollen seasons of representative trees, weeds and grass during the past decade (2001–2010) across the contiguous United States have been observed to start 3.0 (95% Confidence Interval (CI), 1.1–4.9) days earlier on average than in the 1990s (1994–2000). The average peak value and annual total of daily counted airborne pollen have increased by 42.4% (95% CI, 21.9%–62.9%) and 46.0% (95% CI, 21.5%–70.5%), respectively. Changes of pollen season timing and airborne levels depend on latitude, and are associated with changes of growing degree days, frost free days, and precipitation. These changes are likely due to recent climate change and particularly the enhanced warming and precipitation at higher latitudes in the contiguous United States. PMID:25266307

  20. Intradiurnal variations of allergenic tree pollen in the atmosphere of Toledo (central Spain).

    PubMed

    Pérez-Badia, Rosa; Vaquero, Consolación; Sardinero, Santiago; Galán, Carmen; García-Mozo, Herminia

    2010-01-01

    To study the impact of inhaling airborne pollen on health, it is important to know not only their average daily concentrations but also the intradiurnal behaviour of these biological particles. This study reports the bi-hourly distribution of the arboreal airborne pollen types more abundant in the atmosphere of Toledo (central Spain), many of them triggering important allergic processes in Toledo citizens and tourist visitors. Knowledge of bi-hourly pattern atmospheric variation pollen may help pollinosis patients to adopt preventive measures and plan their outdoor activities accordingly. Intradiurnal variation has been studied for the arboreal pollen types: Cupressaceae, Fraxinus, Olea, Platanus, Populus, Quercus and Ulmus, during the period 2005-2008. The main hourly pollen concentrations were observed during sunlight hours and the maximum pollen values obtained at midday and in the afternoon, except for pollen types Quercus and Platanus, whose maximum pollen concentrations were obtained during the night. The statistical analyses performed to compare pollen concentration and main hourly meteorological variables proved to be significant for most of the taxa. The results show a significant and positive effect of temperature, solar radiation and wind speed on the daily variability undergone by atmospheric pollen. Relative humidity influenced in a negative way on the intradiurnal variation of pollen in the atmosphere of Toledo.

  1. Modeling olive pollen intensity in the Mediterranean region through analysis of emission sources.

    PubMed

    Rojo, J; Orlandi, F; Pérez-Badia, R; Aguilera, F; Ben Dhiab, A; Bouziane, H; Díaz de la Guardia, C; Galán, C; Gutiérrez-Bustillo, A M; Moreno-Grau, S; Msallem, M; Trigo, M M; Fornaciari, M

    2016-05-01

    Aerobiological monitoring of Olea europaea L. is of great interest in the Mediterranean basin because olive pollen is one of the most represented pollen types of the airborne spectrum for the Mediterranean region, and olive pollen is considered one of the major cause of pollinosis in this region. The main aim of this study was to develop an airborne-pollen map based on the Pollen Index across a 4-year period (2008-2011), to provide a continuous geographic map for pollen intensity that will have practical applications from the agronomical and allergological points of view. For this purpose, the main predictor variable was an index based on the distribution and abundance of potential sources of pollen emission, including intrinsic information about the general atmospheric patterns of pollen dispersal. In addition, meteorological variables were included in the modeling, together with spatial interpolation, to allow the definition of a spatial model of the Pollen Index from the main olive cultivation areas in the Mediterranean region. The results show marked differences with respect to the dispersal patterns associated to the altitudinal gradient. The findings indicate that areas located at an altitude above 300ma.s.l. receive greater amounts of olive pollen from shorter-distance pollen sources (maximum influence, 27km) with respect to areas lower than 300ma.s.l. (maximum influence, 59km).

  2. [Prospective study of pollen dispersal prediction and identifying the usefulness of different parameters].

    PubMed

    Maeda, Masanori; Maguchi, Shiro; Nakamaru, Yuji; Takagi, Dai; Fukuda, Satoshi

    2006-05-01

    Birch pollen is the major pollen allergen in Hokkaido, Northern Japan. We reported a Betula masting model based on the resource budget model hypothesis. In addition to weather conditions, cumulative hours of sunlight and mean temperature from May to July of the previous year, this model used the amount of annual pollen dispersed in previous and penultimate years as a parameter based on data from 1990 to 2000. We compared the predicted and observed amount of pollen dispersed for 3 years from 2001 to 2003 and evaluated the usefulness of each parameter in this model. Birch pollen was measured using the Durham sampler at the Hokkaido University Graduate School of Medicine Research Institute in Sapporo. The difference between predicted and observed amounts of pollen dispersal was about 200-500 grains cm(-2). The annual pollen dispersed in the previous year was found to be the most useful parameter. This model is useful in predicting whether the amount of birch pollen will be less than average, about average, more than average, or much more than average.

  3. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

    NASA Astrophysics Data System (ADS)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2017-02-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  4. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

    NASA Astrophysics Data System (ADS)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2016-08-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  5. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing.

    PubMed

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2017-02-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture-for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments-as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series-daily Poaceae pollen concentrations over the period 2006-2014-was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  6. 16 Pollen Allergens Differ From Nonallergenic Pollen Proteins by Their Lower Extent of Evolutionary Conservation

    PubMed Central

    Radauer, Christian; Guhslc, Eva; Bublin, Merima; Breiteneder, Heimo

    2012-01-01

    Background Pollen contains hundreds of different proteins. However, only a small fraction of them have been identified to be allergenic. We aimed to test the hypothesis that most pollen proteins are non-allergenic due to their high extent of sequence conservation among non-related species. Methods Data on the composition of pollen proteomes of birch (Betula pendula), pellitory (Parientaria judaica) and timothy grass (Phleum pratense) were obtained from the literature. Sequences were downloaded from UniProt and manually classified into allergens and non-allergens. Complete proteome sequences of 3 dicotyledonous species (Arabidopsis thaliana, Populus trichocarpa and Vitis vinifera), 2 monocotyledons (Oryza sativa subsp. japonica and Zea mays) and one moss (Physcomitrella patents) were downloaded from ENSEMBL Plants. Sequences of pollen proteins were compared to these proteomes by using BLAST and the hits yielding the highest sequence identity recorded taking into account only sequence alignments at least 40 residues in length. The distributions of maximum sequence identities of allergens and non-allergens from each species were compared using the Mann-Whitney test. Results Allergens from birch and pellitory pollen were significantly (P < 0.001) less similar to proteins from monocots than non-allergenic pollen proteins. Median sequence identities to the nearest rice and maize homologues were 49 and 52% for birch allergens, 86 and 85% for birch non-allergens, 37 and 37% for pellitory allergens, and 87 and 89% for pellitory non-allergens. Similarly, timothy grass pollen allergens were significantly (P < 0.0001) less similar to dicot proteins than non-allergenic pollen proteins. Median sequence identities to the nearest homologues were 43 to 44% for allergens and 81 to 83% for non-allergens. A comparison of all 3 pollen proteomes to sequences from the moss P. patens yielded similarly significant differences. Conclusions Pollen allergens belong to evolutionary less

  7. Regional forecast model for the Olea pollen season in Extremadura (SW Spain).

    PubMed

    Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Silva-Palacios, Inmaculada; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-10-01

    The olive tree (Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.

  8. Regional forecast model for the Olea pollen season in Extremadura (SW Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Silva-Palacios, Inmaculada; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-10-01

    The olive tree ( Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.

  9. Allergies, asthma, and pollen

    MedlinePlus

    ... hay fever (allergic rhinitis) and asthma include: Some trees Some grasses Weeds Ragweed ... pollen at different times of the year. Most trees produce pollen in the spring. Grasses usually produce ...

  10. Titanium dioxide (TiO2) fine particle capture and BVOC emissions of Betula pendula and Betula pubescens at different wind speeds

    NASA Astrophysics Data System (ADS)

    Räsänen, Janne V.; Leskinen, Jari T. T.; Holopainen, Toini; Joutsensaari, Jorma; Pasanen, Pertti; Kivimäenpää, Minna

    2017-03-01

    Trees are known to affect air quality by capturing a remarkable amount of particles from the atmosphere. However, the significance of trees in removing very fine particles (diameter less than 0.5 μm) is not well understood. We determined particle capture efficiency (Cp) of two birch species: Betula pendula and Betula pubescens by using inert titanium dioxide fine particles (TiO2, geometric mean diameter 0.270 μm) at three wind speeds (1, 3 and 6 ms-1) in a wind tunnel. Capture efficiencies were determined by measuring densities of TiO2 particles on leaf surfaces by scanning electron microscopy. In addition, the particle intake into an inner structure of leaves was studied by transmission electron microscopy. The effects of fine particle exposure and wind speed on emission rates of biogenic volatile organic compounds (BVOCs) were measured. Particles were captured (Cp) equally efficiently on foliage of B. pendula (0.0026 ± 0.0005) % and B. pubescens (0.0025 ± 0.0006) %. Increasing wind speed significantly decreased Cp. Increasing wind speed increased deposition velocity (Vg) on B. pendula but not on B. pubescens. Particles were deposited more efficiently on the underside of B. pendula leaves, whereas deposition was similar on the upper and under sides of B. pubescens leaves. TiO2 particles were found inside three of five B. pendula leaves exposed to particles at a wind speed of 1 ms-1 indicating that particles can penetrate into the plant structure. Emission rates of several mono-, homo- and sesquiterpenes were highest at a wind speed of 3 ms-1 in B. pendula. In B. pubescens, emission rates of a few monoterpenes and nonanal decreased linearly with wind speed, but emission rates of sesquiterpenes were lowest at 3 ms-1 and increased at 6 ms-1. Emission rates of a few green leaf volatile compounds increased with increasing wind speed in both species. The results of this study suggest that the surface structure of trees is less important for capturing particles with

  11. Large Eddy Simulation of Pollen Transport in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chamecki, Marcelo; Meneveau, Charles; Parlange, Marc B.

    2007-11-01

    The development of genetically modified crops and questions about cross-pollination and contamination of natural plant populations enhanced the importance of understanding wind dispersion of airborne pollen. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using large eddy simulation. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of great importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. The velocity field is discretized using a pseudospectral approach. However the application of the same discretization scheme to the pollen equation generates unphysical solutions (i.e. negative concentrations). The finite-volume bounded scheme SMART is used for the pollen equation. A conservative interpolation scheme to determine the velocity field on the finite volume surfaces was developed. The implementation is validated against field experiments of point source and area field releases of pollen.

  12. Nutrient status: a missing factor in phenological and pollen research?

    PubMed Central

    Jochner, Susanne; Höfler, Josef; Beck, Isabelle; Göttlein, Axel; Ankerst, Donna Pauler; Traidl-Hoffmann, Claudia; Menzel, Annette

    2013-01-01

    Phenology ranks among the best ecosystem processes for fingerprinting climate change since temperature explains a high percentage of the interannual or spatial variation in phenological onset dates. However, roles of other environmental variables, such as foliar nutrient concentrations, are far from adequately understood. This observational study examined the effects of air temperature and 11 nutrients on spring phenology of Betula pendula Roth (birch) along an urban–rural gradient in Munich, Germany, during the years 2010/2011. Moreover, the influence of temperature, nutrients, and air pollutants (NO2 and O3) on the amounts of pollen and catkin biomass in 2010 was evaluated. In addition to the influence of higher temperatures advancing phenological onset dates, higher foliar concentrations of potassium, boron, zinc, and calcium were statistically significantly linked to earlier onset dates. Since flushing of leaves is a turgor-driven process and all the influential nutrients are involved in cell extension, membrane function, and stability, there might be a reasonable physiological interpretation of the observed association. The amounts of pollen were negatively correlated with temperature, atmospheric NO2, and foliar iron concentration, suggesting that these variables restrict pollen production. The results of this study suggested an influence of nutritional status on both phenology and pollen production. The interaction of urbanization and climate change should be considered in the assessment of the impact of global warming on ecosystems and human health. PMID:23630329

  13. Definition of main pollen season using a logistic model.

    PubMed

    Ribeiro, Helena; Cunha, Mário; Abreu, Ilda

    2007-01-01

    This paper proposes a method to unify the definition of the main pollen season based on statistical analysis. For this, an aerobiological study was carried out in Porto region (Portugal), from 2003-2005 using a 7-day Hirst-type volumetric spore trap. To define the main pollen season, a non-linear logistic regression model was fitted to the values of the accumulated sum of the daily airborne pollen concentration from several allergological species. An important feature of this method is that the main pollen season will be characterized by the model parameters calculated. These parameters are identifiable aspects of the flowering phenology, and determine not only the beginning and end of the main pollen season, but are also influenced by the meteorological conditions. The results obtained with the proposed methodology were also compared with two of the most used percentage methods. The logistic model fitted well with the sum of accumulated pollen. The explained variance was always higher than 97%, and the exponential part of the predicted curve was well adjusted to the time when higher atmospheric pollen concentration was sampled. The comparison between the different methods tested showed large divergence in the duration and end dates of the main pollen season of the studied species.

  14. Pollen tube development.

    PubMed

    Johnson, Mark A; Kost, Benedikt

    2010-01-01

    Pollen tubes grow rapidly in a strictly polarized manner as they transport male reproductive cells through female flower tissues to bring about fertilization. Vegetative pollen tube cells are an excellent model system to investigate processes underlying directional cell expansion. In this chapter, we describe materials and methods required for (1) the identification of novel factors essential for polarized cell growth through the isolation and analysis of Arabidopsis mutants with defects in pollen tube growth and (2) the detailed functional characterization of pollen tube proteins based on transient transformation and microscopic analysis of cultured tobacco pollen tubes.

  15. Increasing Juniperus virginiana L. pollen in the Tulsa atmosphere: long-term trends, variability, and influence of meteorological conditions.

    PubMed

    Flonard, Michaela; Lo, Esther; Levetin, Estelle

    2017-09-15

    In the Tulsa area, the Cupressaceae is largely represented by eastern red cedar (Juniperus virginiana L.). The encroachment of this species into the grasslands of Oklahoma has been well documented, and it is believed this trend will continue. The pollen is known to be allergenic and is a major component of the Tulsa atmosphere in February and March. This study examined airborne Cupressaceae pollen data from 1987 to 2016 to determine long-term trends, pollen seasonal variability, and influence of meteorological variables on airborne pollen concentrations. Pollen was collected through means of a Burkard sampler and analyzed with microscopy. Daily pollen concentrations and yearly pollen metrics showed a high degree of variability. In addition, there were significant increases over time in the seasonal pollen index and in peak concentrations. These increases parallel the increasing population of J. virginiana in the region. Pollen data were split into pre- and post-peak categories for statistical analyses, which revealed significant differences in correlations of the two datasets when analyzed with meteorological conditions. While temperature and dew point, among others were significant in both datasets, other factors, like relative humidity, were significant only in one dataset. Analyses using wind direction showed that southerly and southwestern winds contributed to increased pollen concentrations. This study confirms that J. virginiana pollen has become an increasing risk for individuals sensitive to this pollen and emphasizes the need for long-term aerobiological monitoring in other areas.

  16. A biology-driven receptor model for daily pollen allergy risk in Korea based on Weibull probability density function.

    PubMed

    Kim, Kyu Rang; Kim, Mijin; Choe, Ho-Seong; Han, Mae Ja; Lee, Hye-Rim; Oh, Jae-Won; Kim, Baek-Jo

    2017-02-01

    Pollen is an important cause of respiratory allergic reactions. As individual sanitation has improved, allergy risk has increased, and this trend is expected to continue due to climate change. Atmospheric pollen concentration is highly influenced by weather conditions. Regression analysis and modeling of the relationships between airborne pollen concentrations and weather conditions were performed to analyze and forecast pollen conditions. Traditionally, daily pollen concentration has been estimated using regression models that describe the relationships between observed pollen concentrations and weather conditions. These models were able to forecast daily concentrations at the sites of observation, but lacked broader spatial applicability beyond those sites. To overcome this limitation, an integrated modeling scheme was developed that is designed to represent the underlying processes of pollen production and distribution. A maximum potential for airborne pollen is first determined using the Weibull probability density function. Then, daily pollen concentration is estimated using multiple regression models. Daily risk grade levels are determined based on the risk criteria used in Korea. The mean percentages of agreement between the observed and estimated levels were 81.4-88.2 % and 92.5-98.5 % for oak and Japanese hop pollens, respectively. The new models estimated daily pollen risk more accurately than the original statistical models because of the newly integrated biological response curves. Although they overestimated seasonal mean concentration, they did not simulate all of the peak concentrations. This issue would be resolved by adding more variables that affect the prevalence and internal maturity of pollens.

  17. A biology-driven receptor model for daily pollen allergy risk in Korea based on Weibull probability density function

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Rang; Kim, Mijin; Choe, Ho-Seong; Han, Mae Ja; Lee, Hye-Rim; Oh, Jae-Won; Kim, Baek-Jo

    2017-02-01

    Pollen is an important cause of respiratory allergic reactions. As individual sanitation has improved, allergy risk has increased, and this trend is expected to continue due to climate change. Atmospheric pollen concentration is highly influenced by weather conditions. Regression analysis and modeling of the relationships between airborne pollen concentrations and weather conditions were performed to analyze and forecast pollen conditions. Traditionally, daily pollen concentration has been estimated using regression models that describe the relationships between observed pollen concentrations and weather conditions. These models were able to forecast daily concentrations at the sites of observation, but lacked broader spatial applicability beyond those sites. To overcome this limitation, an integrated modeling scheme was developed that is designed to represent the underlying processes of pollen production and distribution. A maximum potential for airborne pollen is first determined using the Weibull probability density function. Then, daily pollen concentration is estimated using multiple regression models. Daily risk grade levels are determined based on the risk criteria used in Korea. The mean percentages of agreement between the observed and estimated levels were 81.4-88.2 % and 92.5-98.5 % for oak and Japanese hop pollens, respectively. The new models estimated daily pollen risk more accurately than the original statistical models because of the newly integrated biological response curves. Although they overestimated seasonal mean concentration, they did not simulate all of the peak concentrations. This issue would be resolved by adding more variables that affect the prevalence and internal maturity of pollens.

  18. A biology-driven receptor model for daily pollen allergy risk in Korea based on Weibull probability density function

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Rang; Kim, Mijin; Choe, Ho-Seong; Han, Mae Ja; Lee, Hye-Rim; Oh, Jae-Won; Kim, Baek-Jo

    2016-07-01

    Pollen is an important cause of respiratory allergic reactions. As individual sanitation has improved, allergy risk has increased, and this trend is expected to continue due to climate change. Atmospheric pollen concentration is highly influenced by weather conditions. Regression analysis and modeling of the relationships between airborne pollen concentrations and weather conditions were performed to analyze and forecast pollen conditions. Traditionally, daily pollen concentration has been estimated using regression models that describe the relationships between observed pollen concentrations and weather conditions. These models were able to forecast daily concentrations at the sites of observation, but lacked broader spatial applicability beyond those sites. To overcome this limitation, an integrated modeling scheme was developed that is designed to represent the underlying processes of pollen production and distribution. A maximum potential for airborne pollen is first determined using the Weibull probability density function. Then, daily pollen concentration is estimated using multiple regression models. Daily risk grade levels are determined based on the risk criteria used in Korea. The mean percentages of agreement between the observed and estimated levels were 81.4-88.2 % and 92.5-98.5 % for oak and Japanese hop pollens, respectively. The new models estimated daily pollen risk more accurately than the original statistical models because of the newly integrated biological response curves. Although they overestimated seasonal mean concentration, they did not simulate all of the peak concentrations. This issue would be resolved by adding more variables that affect the prevalence and internal maturity of pollens.

  19. Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen

    PubMed Central

    Bhalla, Prem L.; Swoboda, Ines; Singh, Mohan B.

    1999-01-01

    Type 1 allergic reactions, such as hay fever and allergic asthma, triggered by grass pollen allergens are a global health problem that affects ≈20% of the population in cool, temperate climates. Ryegrass is the dominant source of allergens because of its prodigious production of airborne pollen. Lol p 5 is the major allergenic protein of ryegrass pollen, judging from the fact that almost all of the individuals allergic to grass pollen show presence of serum IgE antibodies against this protein. Moreover, nearly two-thirds of the IgE reactivity of ryegrass pollen has been attributed to this protein. Therefore, it can be expected that down-regulation of Lol p 5 production can significantly reduce the allergic potential of ryegrass pollen. Here, we report down-regulation of Lol p 5 with an antisense construct targeted to the Lol p 5 gene in ryegrass. The expression of antisense RNA was regulated by a pollen-specific promoter. Immunoblot analysis of proteins with allergen-specific antibodies did not detect Lol p 5 in the transgenic pollen. The transgenic pollen showed remarkably reduced allergenicity as reflected by low IgE-binding capacity of pollen extract as compared with that of control pollen. The transgenic ryegrass plants in which Lol p 5 gene expression is perturbed showed normal fertile pollen development, indicating that genetic engineering of hypoallergenic grass plants is possible. PMID:10500236

  20. Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen.

    PubMed

    Bhalla, P L; Swoboda, I; Singh, M B

    1999-09-28

    Type 1 allergic reactions, such as hay fever and allergic asthma, triggered by grass pollen allergens are a global health problem that affects approximately 20% of the population in cool, temperate climates. Ryegrass is the dominant source of allergens because of its prodigious production of airborne pollen. Lol p 5 is the major allergenic protein of ryegrass pollen, judging from the fact that almost all of the individuals allergic to grass pollen show presence of serum IgE antibodies against this protein. Moreover, nearly two-thirds of the IgE reactivity of ryegrass pollen has been attributed to this protein. Therefore, it can be expected that down-regulation of Lol p 5 production can significantly reduce the allergic potential of ryegrass pollen. Here, we report down-regulation of Lol p 5 with an antisense construct targeted to the Lol p 5 gene in ryegrass. The expression of antisense RNA was regulated by a pollen-specific promoter. Immunoblot analysis of proteins with allergen-specific antibodies did not detect Lol p 5 in the transgenic pollen. The transgenic pollen showed remarkably reduced allergenicity as reflected by low IgE-binding capacity of pollen extract as compared with that of control pollen. The transgenic ryegrass plants in which Lol p 5 gene expression is perturbed showed normal fertile pollen development, indicating that genetic engineering of hypoallergenic grass plants is possible.

  1. Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART.

    PubMed

    Zink, Katrin; Vogel, Heike; Vogel, Bernhard; Magyar, Donát; Kottmeier, Christoph

    2012-07-01

    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic plant that is spreading throughout Europe. Ragweed pollen can be transported over large distances by the wind. Even low pollen concentrations of less than 10 pollen m(-3) can lead to health problems in sensitive persons. Therefore, forecasting the airborne concentrations of ragweed pollen is becoming more and more important for public health. The question remains whether distant pollen sources need to be considered in reliable forecasts. We used the extended numerical weather prediction system COSMO-ART to simulate the release and transport of ragweed pollen in central Europe. A pollen episode (September 12-16, 2006) in north-eastern Germany was modeled in order to find out where the pollen originated. For this purpose, several different source regions were taken into account and their individual impact on the daily mean pollen concentration and the performance of the forecast were studied with the means of a 2 × 2 contingency table and skill scores. It was found that the majority of the pollen originated in local areas, but up to 20% of the total pollen load came from distant sources in Hungary. It is concluded that long-distance transport should not be neglected when predicting pollen concentrations.

  2. Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART

    NASA Astrophysics Data System (ADS)

    Zink, Katrin; Vogel, Heike; Vogel, Bernhard; Magyar, Donát; Kottmeier, Christoph

    2012-07-01

    Common ragweed ( Ambrosia artemisiifolia L.) is a highly allergenic plant that is spreading throughout Europe. Ragweed pollen can be transported over large distances by the wind. Even low pollen concentrations of less than 10 pollen m-3 can lead to health problems in sensitive persons. Therefore, forecasting the airborne concentrations of ragweed pollen is becoming more and more important for public health. The question remains whether distant pollen sources need to be considered in reliable forecasts. We used the extended numerical weather prediction system COSMO-ART to simulate the release and transport of ragweed pollen in central Europe. A pollen episode (September 12-16, 2006) in north-eastern Germany was modeled in order to find out where the pollen originated. For this purpose, several different source regions were taken into account and their individual impact on the daily mean pollen concentration and the performance of the forecast were studied with the means of a 2 × 2 contingency table and skill scores. It was found that the majority of the pollen originated in local areas, but up to 20% of the total pollen load came from distant sources in Hungary. It is concluded that long-distance transport should not be neglected when predicting pollen concentrations.

  3. Christmas tree allergy: mould and pollen studies.

    PubMed

    Wyse, D M; Malloch, D

    1970-12-05

    A history of respiratory or other allergic symptoms during the Christmas season is occasionally obtained from allergic patients and can be related to exposure to conifers at home or in school. Incidence and mechanism of production of these symptoms were studied. Of 1657 allergic patients, respiratory and skin allergies to conifers occurred in 7%. This seasonal syndrome includes sneezing, wheezing and transitory skin rashes. The majority of patients develop their disease within 24 hours, but 15% experience symptoms after several days' delay. Mould and pollen studies were carried out in 10 test sites before, during and after tree placement in the home. Scrapings from pine and spruce bark yielded large numbers of Penicillium, Epicoccum and Alternaria, but these failed to become airborne. No significant alteration was discovered in the airborne fungi in houses when trees were present. Pollen studies showed release into air of weed, grass and tree pollens while Christmas trees were in the house. Oleoresins of the tree balsam are thought to be the most likely cause of the symptoms designated as Christmas tree allergy.

  4. Variability within the 10-Year Pollen Rain of a Seasonal Neotropical Forest and Its Implications for Paleoenvironmental and Phenological Research

    PubMed Central

    Haselhorst, Derek S.; Moreno, J. Enrique; Punyasena, Surangi W.

    2013-01-01

    Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1–3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen

  5. Variability within the 10-year pollen rain of a seasonal neotropical forest and its implications for paleoenvironmental and phenological research.

    PubMed

    Haselhorst, Derek S; Moreno, J Enrique; Punyasena, Surangi W

    2013-01-01

    Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1-3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen traps

  6. Heterogeneity in ragweed pollen exposure is determined by plant composition at small spatial scales.

    PubMed

    Katz, Daniel S W; Carey, Tiffany S

    2014-07-01

    Pollen allergies are one of the most common health problems in the United States and over 20% of Americans are sensitized to the pollen produced by common ragweed (Ambrosia artemisiifolia L.). Despite the importance of allergenic pollen to public health, no research has linked land use and plant populations to spatial heterogeneity in airborne pollen concentrations. In order to quantify these relationships and elucidate the processes which lead to pollen exposure, we surveyed ragweed stem density in Detroit (Michigan, USA) as a function of land use. We then deployed 34 pollen collectors throughout the city and recorded ragweed cover in the immediate vicinity of each pollen collector. We found that ragweed populations were highest in vacant lots, a common land cover type in Detroit. Because ragweed population density was so strongly correlated to vacant lots, for which spatially explicit data were available, we were able to investigate whether observed ragweed pollen concentrations were a function of land use at the spatial scales of 10 m and 1 km. Both relationships were significant, and the combination of these two variables predicts a large portion of airborne ragweed pollen concentrations (R(2)=0.48). These results emphasize the important role of pollen production within the urban environment and show that management of allergenic pollen producing plants must be considered at multiple spatial scales. Our findings also demonstrate that there is too much spatial heterogeneity for a pollen collector at any given site to portray the allergenic pollen load experienced by different individuals within the same city. Finally, we discuss how spatial correlations between socio-economic status, vacant lots, and ragweed could help to explain the disproportionate amount of allergies and ragweed sensitization experienced by low income and minority populations in Detroit. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effects of CO₂ on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates.

    PubMed

    Silva, M; Ribeiro, H; Abreu, I; Cruz, A; Esteves da Silva, J C G

    2015-05-01

    Atmospheric gaseous pollutants can induce qualitative and quantitative changes in airborne pollen characteristics. In this work, it was investigated the effects of carbon dioxide (CO2) on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates. Pollen was collected directly from the anthers and in vitro exposed to three CO2 levels (500, 1000, and 3000 ppm) for 6 and 24 h in an environmental chamber. Pollen fertility was determined using viability and germination assays, total soluble protein was determined with Coomassie Protein Assay Reagent, and the antigenic and allergenic properties were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunological techniques using patients' sera. Also, pollen fructose, sucrose, and glucose values were determined. Carbon dioxide exposure affected negatively pollen fertility, total soluble protein content, and fructose content. The patient sera revealed increased IgE reactivity to proteins of A. negundo pollen exposed to increasing levels of the pollutant. No changes were detected in the SDS-PAGE protein profiles and in sucrose and glucose levels. Our results indicate that increase in atmospheric CO2 concentrations can have a negative influence of some features of A. negundo airborne pollen that can influence the reproductive processes as well as respiratory pollen allergies in the future.

  8. [Birch pollen allergy].

    PubMed

    Lavaud, F; Fore, M; Fontaine, J-F; Pérotin, J M; de Blay, F

    2014-02-01

    In the North-East of France, birch is the main tree responsible of spring pollen allergy. However, the epidemiology of sensitization to birch pollen remains unclear. Monosensitization to birch pollen seems rare because of the frequency of cross-reactions with other pollens of the same botanical family via the major allergen Bet v 1. Around one third of patients with allergic rhinoconjunctivitis due to birch pollen are also asthmatics and a half suffer from a food allergy, essentially an oral syndrome due to rosaceae fruits eaten raw. The molecular allergens of birch pollen are well-known and have been cloned. They are available for use in in vitro diagnostic tests and also in clinical trials of specific immunotherapy.

  9. Pollen, vegetation, and climate relationships along the Dalton Highway, Alaska, USA: a basis for holocene paleoecological and paleoclimatic studies

    SciTech Connect

    Short, S.K.; Andrews, J.T.; Webber, P.J.

    1986-01-01

    The Dalton Highway extends from Fairbanks, in the interior of Alaska, to Prudhoe Bay on the Arctic Coastal Plain. Over this 600-km transect, July temperatures vary from 17 to 5/sup 0/C. Studies of vegetation along the Dalton Highway identified nine major zones. During the vegetation survey moss polsters were collected within the survey quadrats. Two hundred and nineteen individual moss polsters document regional variations in the modern pollen spectra along this vegetation/climate transect. Treeline is distinguished by a change from dominance by spruce and shrub (especially alder) pollen to the south to herb and shrub (especially willow) pollen dominance to the north; a shift from high modern pollen concentration values to very low values is also noted. Discriminant analysis indicated that the vegetation zones are also defined by different pollen assemblages, suggesting that former changes in vegetation during the Holocene, as recorded in peat deposits, could be interpreted from pollen diagrams. Transfer functions were developed to examine the statistical association between the modern pollen rain and several climatic parameters. The correlation between pollen taxa and mean July temperature was r = 0.84. The most important taxa in the equation are Picea, Alnus, Pinus, Sphagnum, and Betula. 59 references, 7 figures, 4 tables.

  10. [Aerobiological study of anemophilous pollens in the city of Toluca, Mexico].

    PubMed

    Cid-Del Prado, María Luz; Piedras-Gutiérrez, Berenice; Visoso-Salgado, Ángel; Becerril-Ángeles, Martín

    2015-01-01

    Due to the high incidence of allergic diseases in Mexico, caused by exposure to pollens, there have been several studies of plants and atmospheric pollens in various regions in the last decades. In the city of Toluca there have been two previous pollen samplings using gravimetric methodology, for which it is necessary to obtain new samplings with a standardized volumetric technique, in order to have updated and confident results of a region with considerable environmental changes in the last years. To determine the different types of pollens, seasonal variations and behavior in the four seasons of the year. A descriptive study, related to the identification of pollens by the suction and trapping of particles with the volumetric sampler type Hirst (Burkard) performed in the city of Toluca, Mexico, from October 1, 2004 to September 30, 2005. Twenty-nine different airborne pollen types were identified, which amounted a total of 13,542 pollen grains. During winter we found the largest number of pollens. The months with the highest and lowest amount of pollens were January and August, respectively. Pollens from trees predominated, mainly from the Cupressaceae (44%) and Pinaceae (13.8%) families, which were present in the atmosphere throughout the year. We identified a larger amount of pollens from trees in winter, mainly from the Cupressaceae family, and it is closely related to the number of trees planted of this species in the city.

  11. [Regional and extra-local pollen in tundra pollen samples].

    PubMed

    Vasil'chuk, A K

    2005-01-01

    Patterns of pollen spectra formation in the tundra zone of Eurasia were considered. Changes in total pollen concentration were traced in subfossil pollen samples of the tundra zone. The data on subfossil pollen spectra were used to evaluate the proportion between local and regional plus extra-local components of tundra pollen samples as well as the changes in concentration of pollen of Scots and Siberian stone pines as well as of tree and shrub birches. The diameter of dwarf birch pollen was determined in different tundra subzones of Western Siberia. The role of extra-local and regional pollen was considered for all vegetation subzones of tundra.

  12. Dating Fossil Pollen: A Simulation.

    ERIC Educational Resources Information Center

    Sheridan, Philip

    1992-01-01

    Describes a hands-on simulation in which students determine the age of "fossil" pollen samples based on the pollen types present when examined microscopically. Provides instructions for the preparation of pollen slides. (MDH)

  13. Pollen counts and their relationship to meteorological factors in Ankara, Turkey during 2005-2008

    NASA Astrophysics Data System (ADS)

    Kizilpinar, Ilginc; Civelek, Ersoy; Tuncer, Ayfer; Dogan, Cahit; Karabulut, Erdem; Sahiner, Umit M.; Yavuz, S. Tolga; Sackesen, Cansin

    2011-07-01

    Pollen plays an important role in the development and exacerbation of allergic diseases. We aimed to investigate the days with highest counts of the most allergenic pollens and to identify the meteorological factors affecting pollen counts in the atmosphere of Ankara, Turkey. Airborne pollen measurements were carried out from 2005 to 2008 with a Burkard volumetric 7-day spore trap. Microscope counts were converted into atmospheric concentrations and expressed as pollen grains/m3. Meteorological parameters were obtained from the State Meteorological Service. All statistical analyses were done with pollen counts obtained from March to October for each year. The percentages of tree, grass and weed pollens were 72.1% ( n = 24,923), 12.8% ( n = 4,433) and 15.1% ( n = 5,219), respectively. The Pinaceae family from tree taxa (39% to 57%) and the Chenopodiaceae/Amaranthaceae family from weed taxa, contributed the highest percentage of pollen (25% to 43%), while from the grass taxa, only the Poaceae family was detected from 2005 to 2008. Poaceae and Chenopodiaceae/Amaranthaceae families, which are the most allergenic pollens, were found in high numbers from May to August in Ankara. In multiple logistic regression analysis, wind speed (OR = 1.18, CI95% = 1.02-1.36, P = 0.023) for tree pollen, daily mean temperature (OR = 1.10, CI95% = 1.04-1.17, P = 0.001) and sunshine hours (OR = 1.15, CI95% = 1.01-1.30, P = 0.033) for grass pollen, and sunshine hours (OR = 3.79, CI95% = 1.03-13.92, P = 0.044) for weed pollen were found as significant risk factors for high pollen count. The pollen calendar and its association with meteorological factors depend mainly on daily temperature, sunshine hours and wind speed, which may help draw the attention of physicians and allergic patients to days with high pollen counts.

  14. Exploitation of pollen by mycorrhizal mycelial systems with special reference to nutrient recycling in boreal forests.

    PubMed Central

    Perez-Moreno, J.; Read, D. J.

    2001-01-01

    Very large quantities of pollen are released annually by wind-pollinated trees, which dominate northern forest ecosystems. Since pollen is enriched in both nitrogen and phosphorus, this recurrent pulse of deposition constitutes a significant potential source of these elements in what are known to be severely nutrient-limited systems. Here, we demonstrate for the first time, to our knowledge, that an ectomycorrhizal fungus, Paxillus involutus, is able to scavenge effectively for nitrogen and phosphorus in pollen and to return a significant proportion of each nutrient to its autotrophic host, Betula pendula. More than 75 and 96%, respectively, of the nitrogen and phosphorus were removed from pollen in microcosms containing the mycorrhizal fungus, 29 and 25%, respectively, being transferred to the plants. In contrast, in microcosms without the mycorrhizal fungus only 42 and 35%, respectively, of nitrogen and phosphorus were lost from the pollen, presumably as a result of export by saprotrophs, and only 12 and 7%, respectively, were transferred to the plants. We hypothesize that this process of resource recapture, by contributing significantly to the ability of the trees to sustain the necessary annual investment in pollen production, will have a major impact upon their reproductive capabilities and hence 'fitness'. PMID:11429131

  15. Surface pollen and its relationship to vegetation in the Zoige Basin, eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Furong; Zhao, Yan; Sun, Jinghui; Zhao, Wenwei; Guo, Xiaoli; Zhang, Ke

    2011-09-01

    We use a data set of 23 surface pollen samples from moss polsters in the Zoige Basin to explore the relationship between modern pollen assemblages and contemporary vegetation patterns. The surface pollen samples spanned four types of plant communities: Carex muliensis marsh, Stipa and Kobresia meadow, Carex-dominated forb meadow and Sibiraea angustata scrub. Principal-components analysis (PCA) was used to determine the relationships between modern pollen and vegetation and environmental variables. The results show that the pollen assemblages of surface moss samples generally reflect the features of the modern vegetation, basically similar in the vegetation types and the dominant genera; however, they don't show a very clear distinction between different communities. Our results also demonstrate that pollen representation of different families or genus varied. Some tree taxa, such as Pinus and Betula, and herb types, such as Artemisia are over-represented, while Asteraceae, Ranunculaceae and Cyperaceae are moderately represented, and Poaceae and Rosaceae are usually under-represented in our study region. PCA results indicate that the distribution of vegetation in the Zoige Basin is mainly controlled by precipitation and altitude.

  16. Seasonal variation of birch and grass pollen loads and allergen release at two sites in the German Alps

    NASA Astrophysics Data System (ADS)

    Jochner, Susanne; Lüpke, Marvin; Laube, Julia; Weichenmeier, Ingrid; Pusch, Gudrun; Traidl-Hoffmann, Claudia; Schmidt-Weber, Carsten; Buters, Jeroen T. M.; Menzel, Annette

    2015-12-01

    Less vegetated mountainous areas may provide better conditions for allergy sufferers. However, atmospheric transport can result in medically relevant pollen loads in such regions. The majority of investigations has focused on the pollen load, expressed as daily averages of pollen per cubic meter of air (pollen grains/m³); however, the severity of allergic symptoms is also determined by the actual allergen content of this pollen, its pollen potency, which may differ between high and low altitudes. We analysed airborne birch and grass pollen concentrations along with allergen content (birch: Bet v 1, grass: Phl p 5) at two different altitudes (734 and 2650 m a.s.l.) in the Zugspitze region (2009-2010). Back-trajectories were calculated for the high altitude site and for specific days with abrupt increases in pollen potency. We observed several days with medically relevant pollen concentrations at the highest site. In addition, a few days with pollen were not associated with allergens and vice versa. The calculated seasonal mean allergen release per pollen grain was 1.8-3.3 pg Bet v 1 and 5.7 pg Phl p 5 in the valley and 1.1-3.7 pg Bet v 1 and 0.7-1.5 pg Phl p 5 at the high altitude site. Back-trajectories revealed that high pollen potency at the higher site was generally associated with south-westerly to south-easterly (birch), or northerly (grass) wind directions. By investigating days with sudden increases in pollen potency, however, it was difficult to draw definitive conclusions on long- or short-range transport. Our findings suggest that people allergic to pollen might suffer less at higher altitudes and further indicate that a risk assessment relying on the actual concentration of airborne pollen does not necessarily reflect the actual allergy exposure of individuals.

  17. Wind tunnel and field assessment of pollen dispersal in soybean [Glycine max (L.) Merr.].

    PubMed

    Yoshimura, Yasuyuki

    2011-01-01

    Although genetically modified (GM) soybean has never been cultivated commercially in Japan, it is essential to set up the isolation distance required to prevent out-crossing between GM and conventional soybean in preparation for any future possibility of pollen transfer. The airborne soybean pollen was sampled using some Durham pollen samplers located in the range of 20 m from the field edge. In addition, the dispersal distance was assessed in a wind tunnel under constant air flow and then it was compared with the anticipated distances based on the pollen diameter. In the field, the maximum pollen density per day observed was 1.235 grains cm(-2) day(-1) at three observation points within 2.5 m from the field and inside the field the mean density did not reach the rate of 1 grain cm(-2 )day(-1) during 19 flowering days. The results of the wind tunnel experiment also showed that the plants had almost no airborne release of pollen and the dispersal distance was shorter than theoretical value due to clustered dispersal. This study showed little airborne pollen in and around the soybean field and the dispersal is restricted to a small area. Therefore, wind-mediated pollination appears to be negligible.

  18. In vitro pollen responses of two birch species to acidity and temperature

    SciTech Connect

    Hughes, R.N.; Cox, R.M.

    1993-10-01

    Paper birch (Betula papyrifera Marsh.) and mountain paper birch (Betula cordifolia Regel) near the Bay of Fundy coast frequently intercept acidic advection marine fogs. Chemical deposition by these fogs is thought to be a factor contributing to the observed foliar browning symptoms associated with a marked deterioration of these trees in the area. In vitro experiments were performed to test whether pollen germination in these two birch species would be affected by acidity at levels routinely found in the fog. The combined effect of temperature with acidity was also examined. Pollen germination in both species was inhibited below pH 5.6 (P < 0.0001) and the effect of incubation temperature was also significant (P < 0.01) in both species. There was no difference in in vitro pollen germination between species (P > 0.05) in response to acidity, based on combined data from 12 trees of each; the optimum germination temperature was 22{degrees}C for B. papyrifera and 21{degrees}C for B. cordifolia.

  19. Segregating random amplified polymorphic DNAs (RAPDs) in Betula alleghaniensis.

    PubMed

    Roy, A; Frascaria, N; Mackay, J; Bousquet, J

    1992-11-01

    Molecular markers are currently being developed for Betula alleghaniensis Britton using random amplified polymorphic DNA (RAPD). Arbitrarily designed 11-mer primers were tested on three intraspecific controlled crosses for which more than 15 full-sibs were available. Using two of these primers, we were able to genetically characterize a total of nine polymorphic RAPD markers. Segregation of these markers was consistent with a biparental diploid mode of inheritance, and all appeared dominant. RAPDs were valuable in detecting contaminants and, therefore, in assessing the validity of controlled crosses. Limitations of the technique are discussed in relation to the determination of parental genotypes and construction of linkage maps for hardwood species.

  20. Identification of genes associated with male sterility in a mutant of white birch (Betula platyphylla Suk.).

    PubMed

    Liu, Xuemei; Liu, Ying; Liu, Chuang; Guan, Minxiao; Yang, Chuanping

    2015-12-15

    White birch (Betula platyphylla Suk.) is a monoecious tree species with unisexual flowers. In this study, we used a spontaneous mutant genotype that produced normal-like male (NLM) inflorescences and mutant male (MM) inflorescences at different locations within the tree to investigate the genes necessary for pollen development. A cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis was used to identify genes differentially expressed between the two types of inflorescences. Of approximately 5000 transcript-derived fragments (TDFs) obtained, 323 were significantly differentially expressed, of which 141 were successfully sequenced. BLAST analyses revealed 51.8% of the sequenced TDFs showed significant homology with proteins of known or predicted functions, 10.6% showed significant homology with putative proteins without any known or predicted function, and the remaining 37.6% had no hits in the NCBI database. Further, in a functional categorization based on the BLAST analyses, the protein fate, metabolism, energy categories had in order the highest percentages of the proteins. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the known TDFs were mainly involved in metabolic (28.4%), signal transduction (23.5%) and folding, sorting and degradation (13.6%) pathways. Ten genes from the NLM and MM development stages in the mutant were analyzed by quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR). The information generated in this study can provide some useful clues to help understand male sterility in B. platyphylla. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Clinical characterization and IgE profiling of birch (Betula verrucosa)--allergic individuals suffering from allergic reactions to raw fruits and vegetables.

    PubMed

    Tolkki, Lauri; Alanko, Kristiina; Petman, Leena; Skydtsgaard, Mette Blem; Milvang, Pernille Gronager; Seppälä, Ulla; Ranki, Annamari

    2013-01-01

    Hypersensitivity to raw fruits and vegetables is often associated with respiratory allergy to birch (Betula verrucosa) pollen and is considered to be the most prevalent form of food allergy in adults sensitized to birch pollen. The aim of the study was to investigate the association of clinical allergy and IgE profiles in individuals with birch pollen allergy and hypersensitivity to raw fruits and vegetables. A total of 59 adults with clinical and skin prick test confirmed birch pollen allergy were included in the study. All the subjects were interviewed by using a structured questionnaire and were examined in vivo by the open test, with the appropriate fruits and vegetables. ImmunoCAP and ImmunoCAP ISAC were used as in vitro diagnostics to assess sensitization profiles for each individual, and principal components analysis was used to analyze the IgE data sets. Of 59 individuals, 54 (92%) had positive prick-prick test with raw potato, carrot, apple, and/or hazelnut, and the skin prick test was always positive when the corresponding skin challenge was defined as positive. Specific IgE in the ImmunoCAP and inhibition assays with rMal d 1 and rBet v 1 demonstrated that Bet v 1 is driving the sensitization against pathogenesis related-10 proteins. However, positive IgE in vitro results could not be used to predict clinical reactivity to raw fruits and vegetables. The present study showed that component-based IgE profiling does not enhance the diagnostic potential in case of pollen-food syndrome, which may be associated with other as yet unidentified components. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study

    NASA Astrophysics Data System (ADS)

    Buters, Jeroen T. M.; Thibaudon, Michel; Smith, Matt; Kennedy, Roy; Rantio-Lehtimäki, Auli; Albertini, Roberto; Reese, Gerald; Weber, Bernhard; Galan, Carmen; Brandao, Rui; Antunes, Celia M.; Jäger, Siegfried; Berger, Uwe; Celenk, Sevcan; Grewling, Łukasz; Jackowiak, Bogdan; Sauliene, Ingrida; Weichenmeier, Ingrid; Pusch, Gudrun; Sarioglu, Hakan; Ueffing, Marius; Behrendt, Heidrun; Prank, Marje; Sofiev, Mikhail; Cecchi, Lorenzo; Hialine Working Group

    2012-08-01

    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grains and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network). Pollen count was assessed with Hirst type pollen traps at 10 l min-1 at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800 l min-1 with a Chemvol® high-volume cascade impactor equipped with stages PM > 10 μm, 10 μm > PM > 2.5 μm, and in Germany also 2.5 μm > PM > 0.12 μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcɛR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen symptomatic patient. Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM > 10 μm fraction at all stations. Bet v 1 isoforms pattern did not vary substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long-range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration. Although Bet v 1 is a mixture of different

  3. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study

    NASA Astrophysics Data System (ADS)

    The HIALINE working Group; Buters, Jeroen T. M.; Thibaudon, Michel; Smith, Matt; Kennedy, Roy; Rantio-Lehtimäki, Auli; Albertini, Roberto; Reese, Gerald; Weber, Bernhard; Galan, Carmen; Brandao, Rui; Antunes, Celia M.; Jäger, Siegfried; Berger, Uwe; Celenk, Sevcan; Grewling, Łukasz; Jackowiak, Bogdan; Sauliene, Ingrida; Weichenmeier, Ingrid; Pusch, Gudrun; Sarioglu, Hakan; Ueffing, Marius; Behrendt, Heidrun; Prank, Marje; Sofiev, Mikhail; Cecchi, Lorenzo

    2012-08-01

    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grains and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network).Pollen count was assessed with Hirst type pollen traps at 10 l min-1 at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800 l min-1 with a Chemvol® high-volume cascade impactor equipped with stages PM > 10 μm, 10 μm > PM > 2.5 μm, and in Germany also 2.5 μm > PM > 0.12 μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcɛR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen symptomatic patient.Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM > 10 μm fraction at all stations. Bet v 1 isoforms pattern did not vary substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long-range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration.Although Bet v 1 is a mixture of different

  4. Immunological Interactive Effects between Pollen Grains and Their Cytoplasmic Granules on Brown Norway Rats.

    PubMed

    Abou Chakra, Oussama R; Sutra, Jean-Pierre; Rogerieux, Françoise; Peltre, Gabriel; Sénéchal, Hélène; Lacroix, Ghislaine

    2009-09-01

    : Grass pollen is one of the most important aeroallergen vectors in Europe. Under some meteorological factors, pollen grains can release pollen cytoplasmic granules (PCGs). PCGs induce allergic responses. Several studies have shown that during a period of thunderstorms the number of patients with asthma increases because of higher airborne concentrations of PCGs. : The aims of the study were to assess the allergenicity of interactive effects between pollen and PCGs and to compare it with allergenicity of Timothy grass pollen and PCGs in Brown Norway rats. : Rats were sensitized (day 0) and challenged (day 21) with pollen grains and/or PCGs. Four groups were studied: pollen-pollen (PP), PCGs-PCGs (GG), pollen-PCGs (PG), and PCGs-pollen (GP). Blood samples, bronchoalveolar lavage fluid, and bronchial lymph node were collected at day 25. IgE and IgG1 levels in sera were assessed by enzyme-linked immunosorbent assay. Alveolar cells, protein, and cytokine concentrations were quantified in bronchoalveolar lavage fluid. T-cell proliferation, in response to pollen or granules, was performed by lymph node assay. : Interactive effects between pollen and PCGs increased IgE and IgG1 levels when compared with those of the negative control. These increases were lower than those of the PP group but similar to the levels obtained by the GG group. Whatever was used in the sensitization and/or challenge phase, PCGs increased lymphocyte and Rantes levels compared with those of the pollen group. The interactive effects increased IL-1α and IL-1β compared with those of the PP and GG groups. : Immunologic interactive effects have been shown between pollen and PCGs. For humoral and cellular allergic responses, interactive effects between the 2 aeroallergenic sources used in this study seem to be influenced mainly by PCGs.

  5. Immunological Interactive Effects between Pollen Grains and Their Cytoplasmic Granules on Brown Norway Rats

    PubMed Central

    2009-01-01

    Background Grass pollen is one of the most important aeroallergen vectors in Europe. Under some meteorological factors, pollen grains can release pollen cytoplasmic granules (PCGs). PCGs induce allergic responses. Several studies have shown that during a period of thunderstorms the number of patients with asthma increases because of higher airborne concentrations of PCGs. Objective The aims of the study were to assess the allergenicity of interactive effects between pollen and PCGs and to compare it with allergenicity of Timothy grass pollen and PCGs in Brown Norway rats. Methods Rats were sensitized (day 0) and challenged (day 21) with pollen grains and/or PCGs. Four groups were studied: pollen-pollen (PP), PCGs-PCGs (GG), pollen-PCGs (PG), and PCGs-pollen (GP). Blood samples, bronchoalveolar lavage fluid, and bronchial lymph node were collected at day 25. IgE and IgG1 levels in sera were assessed by enzyme-linked immunosorbent assay. Alveolar cells, protein, and cytokine concentrations were quantified in bronchoalveolar lavage fluid. T-cell proliferation, in response to pollen or granules, was performed by lymph node assay. Results Interactive effects between pollen and PCGs increased IgE and IgG1 levels when compared with those of the negative control. These increases were lower than those of the PP group but similar to the levels obtained by the GG group. Whatever was used in the sensitization and/or challenge phase, PCGs increased lymphocyte and Rantes levels compared with those of the pollen group. The interactive effects increased IL-1α and IL-1β compared with those of the PP and GG groups. Conclusions Immunologic interactive effects have been shown between pollen and PCGs. For humoral and cellular allergic responses, interactive effects between the 2 aeroallergenic sources used in this study seem to be influenced mainly by PCGs. PMID:23283149

  6. Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Izquierdo, Rebeca; Belmonte, Jordina; Avila, Anna; Alarcón, Marta; Cuevas, Emilio; Alonso-Pérez, Silvia

    2011-01-01

    The Canary Islands, due to their geographical position, constitute an adequate site for the study of long-range pollen transport from the surrounding land masses. In this study, we analyzed airborne pollen counts at two sites: Santa Cruz de Tenerife (SCO), at sea level corresponding to the marine boundary layer (MBL), and Izaña at 2,367 m.a.s.l. corresponding to the free troposphere (FT), for the years 2006 and 2007. We used three approaches to describe pollen transport: (1) a classification of provenances with an ANOVA test to describe pollen count differences between sectors; (2) a study of special events of high pollen concentrations, taking into consideration the corresponding meteorological synoptic pattern responsible for transport and back trajectories; and (3) a source-receptor model applied to a selection of the pollen taxa to show pollen source areas. Our results indicate several extra-regional pollen transport episodes to Tenerife. The main provenances were: (1) the Mediterranean region, especially the southern Iberian Peninsula and Morocco, through the trade winds in the MBL. These episodes were characterized by the presence of pollen from trees ( Casuarina, Olea, Quercus perennial and deciduous types) mixed with pollen from herbs ( Artemisia, Chenopodiaceae/Amaranthaceae and Poaceae wild type). (2) The Saharan sector, through transport at the MBL level carrying pollen principally from herbs (Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type) and, in one case, Casuarina pollen, uplifted to the free troposphere. And (3) the Sahel, characterized by low pollen concentrations of Arecaceae, Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type in sporadic episodes. This research shows that sporadic events of long-range pollen transport need to be taken into consideration in Tenerife as possible responsible agents in respiratory allergy episodes. In particular, it is estimated that 89-97% of annual counts of the highly allergenous Olea

  7. Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands).

    PubMed

    Izquierdo, Rebeca; Belmonte, Jordina; Avila, Anna; Alarcón, Marta; Cuevas, Emilio; Alonso-Pérez, Silvia

    2011-01-01

    The Canary Islands, due to their geographical position, constitute an adequate site for the study of long-range pollen transport from the surrounding land masses. In this study, we analyzed airborne pollen counts at two sites: Santa Cruz de Tenerife (SCO), at sea level corresponding to the marine boundary layer (MBL), and Izaña at 2,367 m.a.s.l. corresponding to the free troposphere (FT), for the years 2006 and 2007. We used three approaches to describe pollen transport: (1) a classification of provenances with an ANOVA test to describe pollen count differences between sectors; (2) a study of special events of high pollen concentrations, taking into consideration the corresponding meteorological synoptic pattern responsible for transport and back trajectories; and (3) a source-receptor model applied to a selection of the pollen taxa to show pollen source areas. Our results indicate several extra-regional pollen transport episodes to Tenerife. The main provenances were: (1) the Mediterranean region, especially the southern Iberian Peninsula and Morocco, through the trade winds in the MBL. These episodes were characterized by the presence of pollen from trees (Casuarina, Olea, Quercus perennial and deciduous types) mixed with pollen from herbs (Artemisia, Chenopodiaceae/Amaranthaceae and Poaceae wild type). (2) The Saharan sector, through transport at the MBL level carrying pollen principally from herbs (Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type) and, in one case, Casuarina pollen, uplifted to the free troposphere. And (3) the Sahel, characterized by low pollen concentrations of Arecaceae, Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type in sporadic episodes. This research shows that sporadic events of long-range pollen transport need to be taken into consideration in Tenerife as possible responsible agents in respiratory allergy episodes. In particular, it is estimated that 89-97% of annual counts of the highly allergenous Olea

  8. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  9. Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens.

    PubMed

    Fernández-Fuego, D; Bertrand, A; González, A

    2017-09-20

    Metal detoxification in plants is a complex process that involves different mechanisms, such as the retention of metals to the cell wall and their chelation and subsequent compartmentalization in plant vacuoles. In order to identify the mechanisms involved in metal accumulation and tolerance in Betula pubescens, as well as the role of mycorrhization in these processes, mycorrhizal and non-mycorrhizal plants were grown in two industrial soils with contrasting concentrations of heavy metals. Mycorrhization increased metal uptake at low metal concentrations in the soil and reduced it at high metal concentrations, which led to an enhanced growth and biomass production of the host when growing in the most polluted soil. Our results suggest that the sequestration on the cell wall is the main detoxification mechanism in white birch exposed to acute chronic metal-stress, while phytochelatins play a role mitigating metal toxicity inside the cells. Given its high Mn and Zn root-to-shoot translocation rate, Betula pubescens is a very promising species for the phytoremediation of soils polluted with these metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Holocene environmental changes in the Alashan Gobi, NW China: Evidence from a pollen record in comparison to modern pollen spectra

    NASA Astrophysics Data System (ADS)

    Herzschuh, U.; Tarasov, P.; Hartmann, K.; Wuennemann, B.

    2003-04-01

    Pollen data of an early to mid-Holocene sediment record from the centre of the present dry Eastern Juyan lake, Alashan Gobi, northwestern China and comparisons with modern pollen spectra provide information about vegetation and climatic changes in a desert dominated region. The arid Alashan Plateau receives less than 80 mm annual precipitation and is covered by a typical desert vegetation comprising Calligonum mongolicum, Nitraria sphaerocarpa, Zygophyllum xanthoxylon, Ephedra przewalskii, Reaumuria soogorica, Artemisia tschernerviana, Haloxylon ammodendron and some other Chenopodiaceae being the main plant taxa. An 8.25 m long sediment core taken from the northwestern part of Juyan lake covers the the early and the mid-Holocene (11.0 to 2.0 cal. ka BP). Altogether 64 samples with a total of ca. 400 grains per sample were analysed. The most abundant taxa and their probable origin are the following: Betula (far transport from the adjacent mountains), Ulmus (riparian vegetation), Artemisia, Poaceae, Ephedra distachya-type, Ephedra fragilis-type (steppe vegetation or indefinable), Chenopodiaceae, Nitraria, Calligonum, Reaumuria (desert vegetation). According to 5 AMS datings and pollen spectra the record can be subdivided into two parts: 11.0 to 5.5 cal. ka BP with higher abundances of Chenopodiaceae and Ephedra and 5.5 to 2.0 cal. ka BP with more Artemisia and less Ephedra. Due to the varying Artemisia/Chenopodiaceae ratio and the similarly changing abundance of some desert taxa (Nitraria, Calligonum, Reaumuria) a division in periods with steppe vegetation mainly indicate wetter conditions while the abundance of desert vegetation may reflect somewhat drier conditions. According to the age model wetter conditions prevailed between about 8.2 7.5, 6.6 - 6.2, 5.6 4.8, 4.3 4.0 and 3.2 2.8 cal. ka BP. Many pollen surface samples from the Alashan Gobi and the adjacent areas (the Qilian Mountains in the south and Mongolia in the north) supply this investigation with Recent

  11. [Juniper pollen monitoring by Burkard sampler in Galveston, Texas, USA and Japanese cedar pollen counting in Fukuoka, Japan -- introduction of Pan American Aerobiology Association protocol counting technique].

    PubMed

    Kishikawa, Reiko; M-Horiuti, Terumi; Togawa, Akihisa; Kondoh, Yasuto; Janzy, Paul D; Goldblum, Randal M; Kotoh, Eiko; Shimoda, Teruhumi; Shoji, Shunsuke; Nishima, Sankei; Brooks, Edward G

    2004-06-01

    We have monitored Juniper pollen which caused winter allergy symptoms by Burkard sampler in Galveston, Texas. We identified and counted Juniper pollen grains by PAAA protocol which was a comprehensive guideline for the operation of Hirst-Type suction bioaerosol sampler, (original of Burkard sampler) in the USA. In Galveston we were able to detect the Mountain Cedar (Juniperus ashei) pollen from December to of January, and Eastern Red Cedar (Juniperus virginiana) which has cross reactivity to MC from almost middle of January to February. There is no MC vegetation in Galveston. We found the pollen grains were transported from west at Edward Plateau in West Texas where it was thickly wooded. Then, we tried to monitor Japanese Cedar (JC) pollen grains in Fukuoka, Japan according with the same method. We found the significant positive correlation between the pollen counts using one single longitudinal traverse counting technique in the PAAA protocol and the JC pollen counting on the whole of Melinex tape per 24 hours (R2=0.9212, p=0.0001), and the gravitational method that is Durham sampler's pollen counting in 2002 (R2=0.489, p=0.0001), and in 2003 (R2=0.948, p=0.0001) respectively. We suggested that we can use the PAAA protocol for airborne pollen investigation in Japan by Burkard sampler.

  12. All-optical automatic pollen identification: Towards an operational system

    NASA Astrophysics Data System (ADS)

    Crouzy, Benoît; Stella, Michelle; Konzelmann, Thomas; Calpini, Bertrand; Clot, Bernard

    2016-09-01

    We present results from the development and validation campaign of an optical pollen monitoring method based on time-resolved scattering and fluorescence. Focus is first set on supervised learning algorithms for pollen-taxa identification and on the determination of aerosol properties (particle size and shape). The identification capability provides a basis for a pre-operational automatic pollen season monitoring performed in parallel to manual reference measurements (Hirst-type volumetric samplers). Airborne concentrations obtained from the automatic system are compatible with those from the manual method regarding total pollen and the automatic device provides real-time data reliably (one week interruption over five months). In addition, although the calibration dataset still needs to be completed, we are able to follow the grass pollen season. The high sampling from the automatic device allows to go beyond the commonly-presented daily values and we obtain statistically significant hourly concentrations. Finally, we discuss remaining challenges for obtaining an operational automatic monitoring system and how the generic validation environment developed for the present campaign could be used for further tests of automatic pollen monitoring devices.

  13. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae)

    PubMed Central

    Wang, Nian; McAllister, Hugh A.; Bartlett, Paul R.; Buggs, Richard J. A.

    2016-01-01

    Background and Aims Betula L. (birch) is a genus of approx. 60 species, subspecies or varieties with a wide distribution in the northern hemisphere, of ecological and economic importance. A new classification of Betula has recently been proposed based on morphological characters. This classification differs somewhat from previously published molecular phylogenies, which may be due to factors such as convergent evolution, hybridization, incomplete taxon sampling or misidentification of samples. While chromosome counts have been made for many species, few have had their genome size measured. The aim of this study is to produce a new phylogenetic and genome size analysis of the genus. Methods Internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced for 76 Betula samples verified by taxonomic experts, representing approx. 60 taxa, of which approx. 24 taxa have not been included in previous phylogenetic analyses. A further 49 samples from other collections were also sequenced, and 108 ITS sequences were downloaded from GenBank. Phylogenetic trees were built for these sequences. The genome sizes of 103 accessions representing nearly all described species were estimated using flow cytometry. Key Results As expected for a gene tree of a genus where hybridization and allopolyploidy occur, the ITS tree shows clustering, but not resolved monophyly, for the morphological subgenera recently proposed. Most sections show some clustering, but species of the dwarf section Apterocaryon are unusually scattered. Betula corylifolia (subgenus Nipponobetula) unexpectedly clusters with species of subgenus Aspera. Unexpected placements are also found for B. maximowicziana, B. bomiensis, B. nigra and B. grossa. Biogeographical disjunctions were found within Betula between Europe and North America, and also disjunctions between North-east and South-west Asia. The 2C-values for Betula ranged from 0·88 to 5·33 pg, and polyploids are scattered widely throughout the

  14. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae).

    PubMed

    Wang, Nian; McAllister, Hugh A; Bartlett, Paul R; Buggs, Richard J A

    2016-05-01

    Betula L. (birch) is a genus of approx. 60 species, subspecies or varieties with a wide distribution in the northern hemisphere, of ecological and economic importance. A new classification of Betula has recently been proposed based on morphological characters. This classification differs somewhat from previously published molecular phylogenies, which may be due to factors such as convergent evolution, hybridization, incomplete taxon sampling or misidentification of samples. While chromosome counts have been made for many species, few have had their genome size measured. The aim of this study is to produce a new phylogenetic and genome size analysis of the genus. Internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced for 76 Betula samples verified by taxonomic experts, representing approx. 60 taxa, of which approx. 24 taxa have not been included in previous phylogenetic analyses. A further 49 samples from other collections were also sequenced, and 108 ITS sequences were downloaded from GenBank. Phylogenetic trees were built for these sequences. The genome sizes of 103 accessions representing nearly all described species were estimated using flow cytometry. As expected for a gene tree of a genus where hybridization and allopolyploidy occur, the ITS tree shows clustering, but not resolved monophyly, for the morphological subgenera recently proposed. Most sections show some clustering, but species of the dwarf section Apterocaryon are unusually scattered. Betula corylifolia (subgenus Nipponobetula) unexpectedly clusters with species of subgenus Aspera Unexpected placements are also found for B. maximowicziana, B. bomiensis, B. nigra and B. grossa Biogeographical disjunctions were found within Betula between Europe and North America, and also disjunctions between North-east and South-west Asia. The 2C-values for Betula ranged from 0·88 to 5·33 pg, and polyploids are scattered widely throughout the ITS phylogeny. Species with large genomes

  15. Comparison of modern pollen distribution between the northern and southern parts of the South China Sea.

    PubMed

    Luo, Chuanxiu; Chen, Muhong; Xiang, Rong; Liu, Jianguo; Zhang, Lanlan; Lu, Jun

    2015-04-01

    The authors conducted a palynological analysis based on different number of air pollen samples for the northern and southern parts of the South China Sea, respectively, in order to give a reference to reconstruct the paleoclimate of the area. (1) Fifteen air pollen samples were collected from the northern part of the South China Sea from August to September 2011, and 13 air pollen samples were collected from the southern part of the South China Sea in December 2011. The pollen types were more abundant in the north than in the south. The total pollen number and concentration in the north was 10 times more than that in the south, which may be because of the sampling season. Airborne pollen types and concentrations have a close relationship with wind direction and distance from the sampling point to the continent. (2) Seventy-four samples were collected from surface sediments in the northern part of the South China Sea in the autumn. Thirty-three samples were collected from surface sediments in the southern part of the South China Sea in the winter. Pollen concentrations in the north were nearly 10 times higher than that in the south. This is because trilete spores are transported by rivers from Hainan Island to the sea and also by the summer monsoon-forced marine current. (3) Ten air pollen samples and 10 surface sediments samples were selected for comparison. The pollen and spores in the air were mainly herbaceous and woody pollen, excluding fern spores, having seasonal pollen characteristics. Pollen in the surface sediments were mainly trilete, Pinus, and herbaceous, and may also show a combination of annual pollen characteristics.

  16. Comparison of modern pollen distribution between the northern and southern parts of the South China Sea

    NASA Astrophysics Data System (ADS)

    Luo, Chuanxiu; Chen, Muhong; Xiang, Rong; Liu, Jianguo; Zhang, Lanlan; Lu, Jun

    2015-04-01

    The authors conducted a palynological analysis based on different number of air pollen samples for the northern and southern parts of the South China Sea, respectively, in order to give a reference to reconstruct the paleoclimate of the area. (1) Fifteen air pollen samples were collected from the northern part of the South China Sea from August to September 2011, and 13 air pollen samples were collected from the southern part of the South China Sea in December 2011. The pollen types were more abundant in the north than in the south. The total pollen number and concentration in the north was 10 times more than that in the south, which may be because of the sampling season. Airborne pollen types and concentrations have a close relationship with wind direction and distance from the sampling point to the continent. (2) Seventy-four samples were collected from surface sediments in the northern part of the South China Sea in the autumn. Thirty-three samples were collected from surface sediments in the southern part of the South China Sea in the winter. Pollen concentrations in the north were nearly 10 times higher than that in the south. This is because trilete spores are transported by rivers from Hainan Island to the sea and also by the summer monsoon-forced marine current. (3) Ten air pollen samples and 10 surface sediments samples were selected for comparison. The pollen and spores in the air were mainly herbaceous and woody pollen, excluding fern spores, having seasonal pollen characteristics. Pollen in the surface sediments were mainly trilete, Pinus, and herbaceous, and may also show a combination of annual pollen characteristics.

  17. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  18. Large-scale climate variability and its effects on mean temperature and flowering time of Prunus and Betula in Denmark

    NASA Astrophysics Data System (ADS)

    Gormsen, A. K.; Hense, A.; Toldam-Andersen, T. B.; Braun, P.

    2005-08-01

    Large-scale climate variability largely affects average climatic conditions and therefore is likely to influence the phenology of plants. In NW-Europe, the North Atlantic Oscillation (NAO) particularly influences winter climate and, through climate interactions on plants, flowering time of all tree species. In Denmark, like in many other NW-European countries, flowering of most tree species has become earlier since the end of the 1980’s. To quantify a possible relation between NAO and flowering time of tree species, two sources of phenological information from the Copenhagen area (Denmark) were analysed, i.e. pollen counts of the genus Betula and observed first bloom dates of Prunus avium. The Winter NAO explained 29 and 37% of the variation of monthly mean temperature for February and March, respectively. The influence of temperature on flowering time was up to 56% to 60% for the February April mean. A direct correlation of Winter NAO-index and flowering time also revealed a clear relation but the time of influence was earlier (December to February). This was shown to be the likely result of a combination of direct and time-lagged effects of the NAO on air and sea surface temperature. The NAO signal is apparently stored in the North Sea and then influences temperature east up to the Baltic States. It is shown that Denmark is right in the centre of direct and time-lagged effects of the NAO. This offers the possibility of using the NAO-index for predicting flowering time of Prunus avium. The beginning of pollen flow appears to be influenced too much by short-term perturbations of the climate system decreasing the value of the NAO-index for prediction. However, it indicates a close relationship between natural climate variability, measured by the NAO index, and flowering time of tree species for Denmark.

  19. Effects of winter temperatures on two birch (Betula) species.

    PubMed

    Miller-Rushing, Abraham J; Primack, Richard B

    2008-04-01

    In Massachusetts, low winter temperatures delay the onset of flowering in black birch (Betula lenta L.), but not in gray birch (B. populifolia Marsh.). During the winter of 2006, male inflorescences and twigs of black birch had higher water contents than those of gray birch, and the inflorescences of black birch experienced greater frost kill than those of gray birch. Vessels diameters were greater in black than in gray birch, a difference associated with a higher incidence of winter xylem embolism, as indicated by reduced xylem hydraulic conductance. In both species, recovery of hydraulic conductance in twigs that survived the winter coincided with the development of root pressure. Frost kill to male inflorescences or associated damage to plant tissues may account for the difference between species in the effect of winter temperature on the time of first flowering. In a comparison of 24 birch species, sensitivity of the first flowering date to temperature was also correlated with water content in male inflorescences.

  20. Transcriptomic analysis of phenotypic changes in birch (Betula platyphylla) autotetraploids.

    PubMed

    Mu, Huai-Zhi; Liu, Zi-Jia; Lin, Lin; Li, Hui-Yu; Jiang, Jing; Liu, Gui-Feng

    2012-10-11

    Plant breeders have focused much attention on polyploid trees because of their importance to forestry. To evaluate the impact of intraspecies genome duplication on the transcriptome, a series of Betula platyphylla autotetraploids and diploids were generated from four full-sib families. The phenotypes and transcriptomes of these autotetraploid individuals were compared with those of diploid trees. Autotetraploids were generally superior in breast-height diameter, volume, leaf, fruit and stoma and were generally inferior in height compared to diploids. Transcriptome data revealed numerous changes in gene expression attributable to autotetraploidization, which resulted in the upregulation of 7052 unigenes and the downregulation of 3658 unigenes. Pathway analysis revealed that the biosynthesis and signal transduction of indoleacetate (IAA) and ethylene were altered after genome duplication, which may have contributed to phenotypic changes. These results shed light on variations in birch autotetraploidization and help identify important genes for the genetic engineering of birch trees.

  1. Transcriptomic Analysis of Phenotypic Changes in Birch (Betula platyphylla) Autotetraploids

    PubMed Central

    Mu, Huai-Zhi; Liu, Zi-Jia; Lin, Lin; Li, Hui-Yu; Jiang, Jing; Liu, Gui-Feng

    2012-01-01

    Plant breeders have focused much attention on polyploid trees because of their importance to forestry. To evaluate the impact of intraspecies genome duplication on the transcriptome, a series of Betula platyphylla autotetraploids and diploids were generated from four full-sib families. The phenotypes and transcriptomes of these autotetraploid individuals were compared with those of diploid trees. Autotetraploids were generally superior in breast-height diameter, volume, leaf, fruit and stoma and were generally inferior in height compared to diploids. Transcriptome data revealed numerous changes in gene expression attributable to autotetraploidization, which resulted in the upregulation of 7052 unigenes and the downregulation of 3658 unigenes. Pathway analysis revealed that the biosynthesis and signal transduction of indoleacetate (IAA) and ethylene were altered after genome duplication, which may have contributed to phenotypic changes. These results shed light on variations in birch autotetraploidization and help identify important genes for the genetic engineering of birch trees. PMID:23202935

  2. Genetic transformation of silver birch (Betula pendula) by particle bombardment.

    PubMed

    Valjakka, Maarit; Aronen, Tuija; Kangasjärvi, Jaakko; Vapaavuori, Elina; Häggman, Hely

    2000-05-01

    We used in vitro callus and shoot cultures as target material for genetic transformation of silver birch (Betula pendula Roth) by particle bombardment. Cultivation of in vitro shoot cultures before particle bombardment and a long selection period, combined with a high concentration of selective agent after bombardment, led to the production of transformed plantlets that were stable, and no escapes were found among the tree lines produced. Clonal variation in transformation efficiency was found in transient expression of the beta-glucuronidase gene in callus cultures and in plantlets transformed by stable integration of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) and neomycin phosphotransferase (npt2) genes.

  3. Mapped plant macrofossil and pollen records of late Quaternary vegetation change in eastern North America

    SciTech Connect

    Jackson, S.T.; Overpeck, J.T.; Webb, T. III ||

    1995-06-01

    We compiled a plant macrofossil database for 12 eastern North American tree and shrub taxa (Picea sp., P. glauca, P. mariana, Larix laricina, Abies balsamea, Tsuga canadensis, Pinus strobus, P. banksiana, P. resinosa, Betula papyrifera, B. alleghaniensis, B. Series Humiles) at 264 late Quaternary sites. Presence/absence maps for these taxa at 18,000, 15,000, 12,000, 9000, 6000, 3000, and 0 {sup 14}C yr B.P. show changes in geographic ranges of these species in response to climatic change. Comparison of the macrofossil maps with isopoll maps for corresponding taxa corroborates inferences from the pollen data, and reveals species-level patterns not apparent in the pollen maps.

  4. Region-Specific Sensitivity of Anemophilous Pollen Deposition to Temperature and Precipitation

    PubMed Central

    Donders, Timme H.; Hagemans, Kimberley; Dekker, Stefan C.; de Weger, Letty A.; de Klerk, Pim; Wagner-Cremer, Friederike

    2014-01-01

    Understanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values), and the North Atlantic Oscillation climate index. Spearman rank correlation analysis shows that specifically in Alnus, Betula, Corylus, Fraxinus, Quercus and Plantago both temperature in the year prior to (T-1), as well as in the growing season (T), are highly significant factors (TApril rs between 0.30 [P<0.05[ and 0.58 [P<0.0001]; TJuli-1 rs between 0.32 [P<0.05[ and 0.56 [P<0.0001]) in the annual pollen influx of wind-pollinated plants. Total annual pollen prediction models based on multiple climate variables yield R2 between 0.38 and 0.62 (P<0.0001). The effect of precipitation is minimal. A second trapping station in the SE Netherlands, shows consistent trends and annual variability, suggesting the climate factors are regionally relevant. Summer temperature is thought to influence the formation of reproductive structures, while temperature during the flowering season influences pollen release. This study provides a first predictive model for seasonal pollen forecasting, and also aides forensic studies. Furthermore, variations in pollen accumulation rates from a sub-fossil peat deposit are comparable with the pollen trap data. This suggests that high frequency variability pollen records from natural archives reflect

  5. Region-specific sensitivity of anemophilous pollen deposition to temperature and precipitation.

    PubMed

    Donders, Timme H; Hagemans, Kimberley; Dekker, Stefan C; de Weger, Letty A; de Klerk, Pim; Wagner-Cremer, Friederike

    2014-01-01

    Understanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values), and the North Atlantic Oscillation climate index. Spearman rank correlation analysis shows that specifically in Alnus, Betula, Corylus, Fraxinus, Quercus and Plantago both temperature in the year prior to (T-1), as well as in the growing season (T), are highly significant factors (TApril rs between 0.30 [P<0.05[ and 0.58 [P<0.0001]; TJuli-1 rs between 0.32 [P<0.05[ and 0.56 [P<0.0001]) in the annual pollen influx of wind-pollinated plants. Total annual pollen prediction models based on multiple climate variables yield R2 between 0.38 and 0.62 (P<0.0001). The effect of precipitation is minimal. A second trapping station in the SE Netherlands, shows consistent trends and annual variability, suggesting the climate factors are regionally relevant. Summer temperature is thought to influence the formation of reproductive structures, while temperature during the flowering season influences pollen release. This study provides a first predictive model for seasonal pollen forecasting, and also aides forensic studies. Furthermore, variations in pollen accumulation rates from a sub-fossil peat deposit are comparable with the pollen trap data. This suggests that high frequency variability pollen records from natural archives reflect

  6. Airborne physics

    NASA Astrophysics Data System (ADS)

    Featonby, David

    2007-01-01

    Flying is still a mystery to many, whether we explain it in terms of Bernoulli, or Coanda, and a massive jet becoming airborne can still be a source of wonder. Travelling by air has become a frequent occurrence and this provides an ideal opportunity to carry out experiments that are not possible in the school laboratory. The aircraft is a unique laboratory as it accelerates and later becomes a giant reduced pressure laboratory. The following selection will, I hope, both inspire fliers and get everyone thinking about what else could be tried safely whilst airborne.

  7. Seasonal and Spatial Variations of Indoor Pollen in a Hospital

    PubMed Central

    Tormo-Molina, Rafael; Gonzalo-Garijo, Ángela; Silva-Palacios, Inmaculada; Fernández-Rodríguez, Santiago

    2009-01-01

    The airborne indoor pollen in a hospital of Badajoz (Spain) was monitored over two years using a personal Burkard sampler. The air was sampled in four places indoors—one closed room and one open ward on each of the ground and the third floors—and one place outdoors at the entrance to the hospital. The results were compared with data from a continuous volumetric sampler. While 32 pollen types were identified, nearly 75% of the total counts were represented by just five of them. These were: Quercus, Cupressaceae, Poaceae, Olea, and Plantago. The average indoor concentration was 25.2 grains/m3, and the average indoor/outdoor ratio was 0.27. A strong seasonal pattern was found, with the highest levels in spring and winter, and the indoor concentrations were correlated with the outdoor one. Indoor air movement led to great homogeneity in the airborne pollen presence: the indoor results were not influenced by whether or not the room was isolated, the floor level, or the number of people in or transiting the site during sampling. The presence of ornamental vegetation in the area surrounding the building affected the indoor counts directly as sources of the pollen. PMID:20049254

  8. Molecular analysis confirms the long-distance transport of Juniperus ashei pollen

    PubMed Central

    Mohanty, Rashmi Prava; Buchheim, Mark Alan; Anderson, James; Levetin, Estelle

    2017-01-01

    Although considered rare, airborne pollen can be deposited far from its place of origin under a confluence of favorable conditions. Temporally anomalous records of Cupressacean pollen collected from January air samples in London, Ontario, Canada have been cited as a new case of long-distance transport. Data on pollination season implicated Juniperus ashei (mountain cedar), with populations in central Texas and south central Oklahoma, as the nearest source of the Cupressacean pollen in the Canadian air samples. This finding is of special significance given the allergenicity of mountain cedar pollen. While microscopy is used extensively to identify particles in the air spora, pollen from all members of the Cupressaceae, including Juniperus, are morphologically indistinguishable. Consequently, we implemented a molecular approach to characterize Juniperus pollen using PCR in order to test the long-distance transport hypothesis. Our PCR results using species-specific primers confirmed that the anomalous Cupressacean pollen collected in Canada was from J. ashei. Forward trajectory analysis from source areas in Texas and the Arbuckle Mountains in Oklahoma and backward trajectory analysis from the destination area near London, Ontario were completed using models implemented in HYSPLIT4 (Hybrid Single-Particle Lagrangian Integrated Trajectory). Results from these trajectory analyses strongly supported the conclusion that the J. ashei pollen detected in Canada had its origins in Texas or Oklahoma. The results from the molecular findings are significant as they provide a new method to confirm the long-distance transport of pollen that bears allergenic importance. PMID:28273170

  9. The weak effects of climatic change on Plantago pollen concentration: 17 years of monitoring in Northwestern Spain

    NASA Astrophysics Data System (ADS)

    González-Parrado, Zulima; Valencia-Barrera, Rosa Ma.; Vega-Maray, Ana Ma.; Fuertes-Rodríguez, Carmen Reyes; Fernández-González, Delia

    2014-09-01

    Plantago L. species are very common in nitrified areas such as roadsides and their pollen is a major cause of pollinosis in temperate regions. In this study, we sampled airborne pollen grains in the city of León (NW, Spain) from January 1995 to December 2011, by using a Burkard® 7-day-recording trap. The percentage of Plantago pollen compared to the total pollen count ranged from 11 % (1997) to 3 % (2006) in the period under study. Peak pollen concentrations were recorded in May and June. Our 17-year analysis failed to disclose significant changes in the seasonal trend of plantain pollen concentration. In addition, there were no important changes in the start dates of pollen release and the meteorological parameters analyzed did not show significant variations in their usual trends. We analyzed the influence of several meteorological parameters on Plantago pollen concentration to explain the differences in pollen concentration trends during the study. Our results show that temperature, sun hours, evaporation, and relative humidity are the meteorological parameters best correlated to the behavior of Plantago pollen grains. In general, the years with low pollen concentrations correspond to the years with less precipitation or higher temperatures. We calculated the approximate Plantago flowering dates using the cumulative sum of daily maximum temperatures and compared them with the real bloom dates. The differences obtained were 4 days in 2009, 3 days in 2010, and 1 day in 2011 considering the complete period of pollination.

  10. Characterization of Pollen Dispersion in the Neighborhood of Tokyo, Japan in the Spring of 2005 and 2006

    PubMed Central

    Ishibashi, Yoshinaga; Ohno, Hideki; Oh-ishi, Shuji; Matsuoka, Takeshi; Kizaki, Takako; Yoshizumi, Kunio

    2008-01-01

    The behavior of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) pollens in an urban area was examined through the measurements of the dispersion characteristics at the various sampling locations in both outdoor and indoor environments. Airborne pollens were counted continuously for three months during the Japanese cedar pollen and Japanese cypress seasons in 2005 and 2006 by the use of Durham’s pollen trap method in and around Tokyo, Japan. The dispersion of pollens at the rooftop of Kyoritsu Women’s University was observed to be at extremely high levels in 2005 compared with previously reported results during the past two decades. As for Japanese cedar pollen, the maximum level was observed as 440 counts cm−2 day−1 on 18 March 2005. Japanese cypress pollen dispersed in that area in the latter period was compared with the Japanese cedar pollen dispersions. The maximum dispersion level was observed to be 351 counts cm−2 day−1 on 7 April 2005. Total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 5,552 and 1,552 counts cm−2 for the three months (Feb., Mar. and Apr.) in 2005, respectively. However, the dispersion of both pollens in 2006 was very low. The total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 421 and 98 counts cm−2 for three months (Feb., Mar. and Apr.) in 2006, respectively. Moreover, the pollen deposition on a walking person in an urban area showed that the pollen counts on feet were observed to be extremely high compared with the ones on the shoulder, back and legs. These findings suggested that pollen fell on the surface of the paved road at first, rebounded to the ambient air and was deposited on the residents again. Furthermore, the regional distribution of the total pollen dispersion in the South Kanto area was characterized on 15–16 March 2005 and on 14–15 March 2006. Although the pollen levels in 2005 were much higher than in 2006, it

  11. Phylogenetic relationships of Betula species (Betulaceae) based on nuclear ADH and chloroplast matK sequences.

    PubMed

    Järvinen, Pia; Palmé, Anna; Orlando Morales, Luis; Lännenpää, Mika; Keinänen, Markku; Sopanen, Tuomas; Lascoux, Martin

    2004-11-01

    The phylogenetic relationships within the genus Betula (Betulaceae) were investigated using a part of the nuclear ADH gene and DNA sequences of the chloroplast matK gene with parts of its flanking regions. Two well-supported phylogenetic groups could be identified in the chloroplast DNA sequence: one containing the three American species B. lenta, B. alleghaniensis, and B. papyrifera and the other including all the other species studied. The ADH gene displayed more variation, and three main groups could be identified. In disagreement with the classical division of the genus Betula, B. schmidtii and B. nana grouped with the species in subgenus Betula, and B. ermanii grouped with species in subgenus Chamaebetula, including B. humilis and B. fruticosa. The ADH phylogeny suggests that several independent polyploidizations within the genus Betula could have taken place. The ADH and chloroplast phylogenies were in part incongruent due to the placement of B. papyrifera. The most likely reason for this seems to be cytoplasmic introgression.

  12. Satellite Phenology Observations Inform Peak Season of Allergenic Grass Pollen Aerobiology across Two Continents

    NASA Astrophysics Data System (ADS)

    Huete, A. R.; Devadas, R.; Davies, J.

    2015-12-01

    Pollen exposure and prevalence of allergenic diseases have increased in many parts of the world during the last 30 years, with exposure to aeroallergen grass pollen expected to intensify with climate change, raising increased concerns for allergic diseases. The primary contributing factors to higher allergenic plant species presence are thought to be climate change, land conversion, and biotic mixing of species. Conventional methods for monitoring airborne pollen are hampered by a lack of sampling sites and heavily rely on meteorology with less attention to land cover updates and monitoring of key allergenic species phenology stages. Satellite remote sensing offers an alternative method to overcome the restrictive coverage afforded by in situ pollen networks by virtue of its synoptic coverage and repeatability of measurements that enable timely updates of land cover and land use information and monitoring landscape dynamics and interactions with human activity and climate. In this study, we assessed the potential of satellite observations of urban/peri-urban environments to directly inform landscape conditions conducive to pollen emissions. We found satellite measurements of grass cover phenological evolution to be highly correlated with in situ aerobiological grass pollen concentrations in five urban centres located across two hemispheres (Australia and France). Satellite greenness data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were found to be strongly synchronous with grass pollen aerobiology in both temperate grass dominated sites (France and Melbourne), as well as in Sydney, where multiple pollen peaks coincided with the presence of subtropical grasses. Employing general additive models (GAM), the satellite phenology data provided strong predictive capabilities to inform airborne pollen levels and forecast periods of grass pollen emissions at all five sites. Satellite phenology offer promising opportunities of improving public health risk

  13. Large Eddy Simulation and Field Experiments of Pollen Transport in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chamecki, M.; Meneveau, C.; Parlange, M. B.; van Hout, R.

    2006-12-01

    Dispersion of airborne pollen by the wind has been a subject of interest for botanists and allergists for a long time. More recently, the development of genetically modified crops and questions about cross-pollination and subsequent contamination of natural plant populations has brought even more interest to this field. A critical question is how far from the source field pollen grains will be advected. Clearly the answer depends on the aerodynamic properties of the pollen, geometrical properties of the field, topography, local vegetation, wind conditions, atmospheric stability, etc. As a consequence, field experiments are well suited to provide some information on pollen transport mechanisms but are limited to specific field and weather conditions. Numerical simulations do not have this drawback and can be a useful tool to study pollen dispersal in a variety of configurations. It is well known that the dispersion of particles in turbulent fields is strongly affected by the large scale coherent structures. Large Eddy Simulation (LES) is a technique that allows us to study the typical distances reached by pollen grains and, at the same time, resolve the larger coherent structures present in the atmospheric boundary layer. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using LES. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of extreme importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. In both cases we make use of the theoretical profile for suspended particles derived by Kind (1992). Field experiments were performed to study the applicability of the theoretical profile to pollen grains and the results are encouraging. Airborne concentrations as well as ground deposition from the simulations are compared to experimental data to validate the

  14. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  15. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  16. [Forecast of total pollen counts of sugi (Cryptomeria japonica) from the amount of male flower development and the revised total pollen counts].

    PubMed

    Ogasawara, H; Adachi, O; Sakagami, M; Yoshimura, S; Fujitani, T

    2000-06-01

    We have successfully forecast the total pollen counts of sugi (Cryptomeria japonica) since 1996 by the amount of male flower development. The amount of male flower development was observed at 11 forests in the Tanba Mountains and 10 forests in the Chugoku Mountains depending on both in Hyogo Prefecture. The amount of male flower development on each tree was assigned to one of five classes by the number of male flowers per spring. After a large harvest of male flowers, the production of male flowers declined in the following years, especially at high altitudes. It was also followed by a decrease in the number of airborne pollen grains in the later pollen season. According to an analysis of weather conditions, total pollen counts were correlated with the high temperature between July 6 and 20 and the total pollen counts of the previous season. However, the amount of male flower development was the most significant indicator for forecasting total pollen counts. Decrease in total pollen counts due to abnormal weather during the pollen season was correlated with discrepancies in forest flowering time according to observations made in the Rokko Mountains. Increase in total pollen counts was connected by a development of the sugi forest areas. Twenty percent of mature sugi forests from 1992 which showed an annual increase were associated with an increase in total pollen counts. The accuracy of the forecast was improved by revising the total pollen counts for weather conditions during the dispersion stage, a decrease in the production of male flowers at high altitude, and an increase in the production of male flowers connected by a developing forest areas.

  17. A study of oak-pollen production and phenology in northern California: prediction of annual variation in pollen counts based on geographic and meterologic factors.

    PubMed

    Fairley, D; Batchelder, G L

    1986-08-01

    To assess the characteristics of oak-pollen production and dispersal, 9 years of weekly volumetric air sampling, with modified swing-shield rotoslide pollen samplers, were obtained in San Francisco and San Jose, Calif. The Mediterranean climate of coastal California supports 9 million acres of oaks of nine different species. The major pollen contributors in the two sampling areas are coast live oak (Quercus agrifolia Neé) and valley oak (Quercus lobata neé). Sampling data indicate that grains may be wind transported at least 16 km (10 miles). A strong correlation exists between pollen capture and total rainfall a full year before pollen release. The correlation is statistically significant, based on a Spearman rank test. A positive regression line slope demonstrates that the greater the precipitation, the stronger the stimulus for pollen production. The median count can be predicted within a factor of two with high probability a full year before release. During most seasons, the peak pollen collection from coast live oak and valley oak occurs in early April. A second peak production period, in mid-May, represents the conglomerate of other oak-pollen types. However, there are major yearly differences in the relative amounts of pollen released during these two periods. Consequently, individual oak pollinosis may depend as much on variable production by the major species as on the total quantity of airborne oak pollen. These data will help clinicians predict and prepare for the intensity of the oak-pollen season and explain seasonal variations in clinical symptoms from year to year. The question of cross-reacting and specific allergens among oak species can be answered by RAST-inhibition studies.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Ventilation scheme, room location and meteorological factors influence indoor birch pollen concentrations

    NASA Astrophysics Data System (ADS)

    Jochner, Susanne; Matiu, Michael; Michaelis, Rico; Menzel, Annette

    2017-04-01

    Allergenic pollen, often in co-occurrence with air pollutants from traffic and industries aggravating its pollen allergenicity, constitutes a major health risk for the urban population during the pollen season. Airborne pollen concentrations are traditionally monitored with fixed pollen traps mounted >10 m above ground on flat roof tops. However, the personal exposure of allergic people mostly depends on their main residences and the local emission patterns. Consequently, the assessment of indoor pollen is essential for human health since people stay most of the day inside buildings. In our study, hourly indoor birch pollen concentrations were measured on eight days in April 2015 with portable pollen traps in five rooms of a university building at Freising, Germany. A traditional pollen trap on the roof of the building provided the background birch pollen concentration which was compared to the respective outdoor values right in front of the rooms. The office and lab rooms were characterised by different aspects and window ventilation schemes. Meteorological data were equally measured at a nearby climate station and directly in front of the windows. The observed flowering phenology of 56 birch trees in the nearer surrounding partly explained daily peaks in airborne pollen concentrations. As expected, outdoor pollen concentrations were larger than indoor concentrations: Mean indoor/outdoor (I/O) ratio was highest (0.75) in a south oriented room with fully opened window and additional mechanical ventilation, followed by two rooms with fully opened windows orientated to the west and north (0.35, 0.12) and lowest in east oriented neighbouring rooms with tilted window (0.19) and with windows only opened for short ventilation (0.07). The latter two rooms even had a birch tree directly flowering in front of the façade. Hourly I/O ratios depended on meteorology and increased with outside temperature and wind speed oriented perpendicular to the window opening. As also

  19. Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969-2006

    NASA Astrophysics Data System (ADS)

    Frei, Thomas; Gassner, Ewald

    2008-09-01

    As published by the Intergovernmental Panel on Climate Change (IPCC) global warming is a reality and its impact is huge like the increase of extreme weather events, glacier recession, sea level rise and also effects on human health. Among them allergies to airborne pollen might increase or change in pattern due to the invasion of new allergic plants or due to different behavior of plants like earlier flowering. In this study we used the longest Swiss airborne pollen data set to examine the influence of the temperature increase on the time of flowering. In the case of Basel, where pollen data for 38 years are available, it was shown that due to a temperature increase the start of flowering in the case of birch occurred about 15 days earlier. Apart from a shift of the start of the flowering there is also a trend towards higher annual birch pollen quantities and an increase of the highest daily mean pollen concentrations. Due to global warming and because symptoms may appear earlier in the year people suffering from a pollen allergy might face a new unaccustomed situation.

  20. Modern pollen and stomate deposition in lake surface sediments from across the treeline on the Kola Peninsula, Russia.

    PubMed

    Gervais, B R.; MacDonald, G M.

    2001-04-01

    We sampled and analyzed surface sediments from 31 lakes along a latitudinal transect crossing the coniferous treeline on the Kola Peninsula, Russia. The major vegetation zones along the transect were tundra, birch-forest tundra, pine-forest tundra, and forest. The results indicate that the major vegetation types in our study area have distinct pollen spectra. Sum-of-squares cluster analysis and principal components analysis (PCA) groupings of pollen sites correspond to the major vegetation zones. PCA ordination of taxa indicates that the first axis separates taxa typical of the forest zone (Pinus, Picea) from taxa typical of tundra and forest-tundra zones (Polypodiaceae, Ericaceae, and Betula). The current position of the coniferous treeline, defined in our region by Pinus sylvestris, occurs roughly where Pinus pollen values reach 35% or greater. Arboreal pollen (AP)/non-arboreal pollen (NAP) ratios were calculated for each site and plotted against geographic distance along the transect. AP/NAP ratios of 7 or greater are found within pine-forest tundra and forest vegetation zones. Pinus stomates (dispersed stomatal guard cells) are absent from sites north of the coniferous treeline and all but two samples from the forested sites contain stomates. Stomate concentrations among the samples are highly variable and range from 10 to 458 per ml and positively correlate with the changing Pinus pollen values.

  1. Impact of meteorological variation on hospital visits of patients with tree pollen allergy

    PubMed Central

    2011-01-01

    Background Climate change could affect allergic diseases, especially due to pollen. However, there has been no epidemiologic study to demonstrate the relationship between meteorological factors, pollen, and allergic patients. We aimed to investigate the association between meteorological variations and hospital visits of patients with tree pollen allergy. Methods The study subjects were adult patients who received skin prick tests between April and July from 1999 to 2008. We reviewed the medical records for the test results of 4,715 patients. Patients with tree pollen allergy were defined as those sensitized to more than 1 of 12 tree pollen allergens. We used monthly means of airborne tree pollen counts and meteorological factors: maximum/average/minimum temperature, relative humidity, and precipitation. We analyzed the correlations between meteorological variations, tree pollen counts, and the patient numbers. Multivariable logistic regression analyses were used to investigate the associations between meteorological factors and hospital visits of patients. Results The minimum temperature in March was significantly and positively correlated with tree pollen counts in March/April and patient numbers from April through July. Pollen counts in March/April were also correlated with patient numbers from April through July. After adjusting for confounders, including air pollutants, there was a positive association between the minimum temperature in March and hospital visits of patients with tree pollen allergy from April to July(odds ratio, 1.14; 95% CI 1.03 to 1.25). Conclusions Higher temperatures could increase tree pollen counts, affecting the symptoms of patients with tree pollen allergy, thereby increasing the number of patients visiting hospitals. PMID:22115497

  2. Pollen Viability and Pollen Tube Attrition in Cranberry (Vaccinium macrocarpon)

    USDA-ARS?s Scientific Manuscript database

    The content of mature seed in a cranberry fruit increases with stigmatic pollen load. On average, however, only two seeds result for every tetrad of pollen deposited. What then is the fate of the two remaining pollen grains fused in each tetrad? Germination in vitro revealed that most of the grains ...

  3. [Allergenic pollens in Spain].

    PubMed

    Subiza Garrido-Lestache, J

    2004-01-01

    Allergenic pollens that cause rhinoconjuctivitis and/or asthma are those from trees or plants that pollinate through the air (anemophilic pollination) and not through insects (entomophilic pollination). Although pollen grains would seem to be too large to easily reach the intrapulmonary airways, the relationship between pollen counts and the presence of asthmatic symptoms is only too evident. This is probably because the allergens inducing seasonal asthma are not only found within pollen grains but also outside the grains in particles of less than 10 mm that are freely found in the atmosphere. The most important pollens producing pollinosis in Spain are those from cypress trees from January-March, birch trees in April (macizo galaico), Platanus hispanica (March-April), grasses and olive trees from April-June, Parietaria from April-July and Chenopodium and/or Salsola from July-September. By geographical areas, the main cause of pollinosis are grasses in the center and north of the peninsula, olive trees in the south (Jaén, Sevilla, Granada, Córdoba) and Parietaria in the Mediterranean coast (Barcelona, Murcia, Valencia).

  4. A mechanistic modeling system for estimating large scale emissions and transport of pollen and co-allergens

    PubMed Central

    Efstathiou, Christos; Isukapalli, Sastry

    2011-01-01

    Allergic airway diseases represent a complex health problem which can be exacerbated by the synergistic action of pollen particles and air pollutants such as ozone. Understanding human exposures to aeroallergens requires accurate estimates of the spatial distribution of airborne pollen levels as well as of various air pollutants at different times. However, currently there are no established methods for estimating allergenic pollen emissions and concentrations over large geographic areas such as the United States. A mechanistic modeling system for describing pollen emissions and transport over extensive domains has been developed by adapting components of existing regional scale air quality models and vegetation databases. First, components of the Biogenic Emissions Inventory System (BEIS) were adapted to predict pollen emission patterns. Subsequently, the transport module of the Community Multiscale Air Quality (CMAQ) modeling system was modified to incorporate description of pollen transport. The combined model, CMAQ-pollen, allows for simultaneous prediction of multiple air pollutants and pollen levels in a single model simulation, and uses consistent assumptions related to the transport of multiple chemicals and pollen species. Application case studies for evaluating the combined modeling system included the simulation of birch and ragweed pollen levels for the year 2002, during their corresponding peak pollination periods (April for birch and September for ragweed). The model simulations were driven by previously evaluated meteorological model outputs and emissions inventories for the eastern United States for the simulation period. A semi-quantitative evaluation of CMAQ-pollen was performed using tree and ragweed pollen counts in Newark, NJ for the same time periods. The peak birch pollen concentrations were predicted to occur within two days of the peak measurements, while the temporal patterns closely followed the measured profiles of overall tree pollen

  5. A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christos; Isukapalli, Sastry; Georgopoulos, Panos

    2011-04-01

    Allergic airway diseases represent a complex health problem which can be exacerbated by the synergistic action of pollen particles and air pollutants such as ozone. Understanding human exposures to aeroallergens requires accurate estimates of the spatial distribution of airborne pollen levels as well as of various air pollutants at different times. However, currently there are no established methods for estimating allergenic pollen emissions and concentrations over large geographic areas such as the United States. A mechanistic modeling system for describing pollen emissions and transport over extensive domains has been developed by adapting components of existing regional scale air quality models and vegetation databases. First, components of the Biogenic Emissions Inventory System (BEIS) were adapted to predict pollen emission patterns. Subsequently, the transport module of the Community Multiscale Air Quality (CMAQ) modeling system was modified to incorporate description of pollen transport. The combined model, CMAQ-pollen, allows for simultaneous prediction of multiple air pollutants and pollen levels in a single model simulation, and uses consistent assumptions related to the transport of multiple chemicals and pollen species. Application case studies for evaluating the combined modeling system included the simulation of birch and ragweed pollen levels for the year 2002, during their corresponding peak pollination periods (April for birch and September for ragweed). The model simulations were driven by previously evaluated meteorological model outputs and emissions inventories for the eastern United States for the simulation period. A semi-quantitative evaluation of CMAQ-pollen was performed using tree and ragweed pollen counts in Newark, NJ for the same time periods. The peak birch pollen concentrations were predicted to occur within two days of the peak measurements, while the temporal patterns closely followed the measured profiles of overall tree pollen

  6. Biometeorological and autoregressive indices for predicting olive pollen intensity.

    PubMed

    Oteros, J; García-Mozo, H; Hervás, C; Galán, C

    2013-03-01

    This paper reports on modelling to predict airborne olive pollen season severity, expressed as a pollen index (PI), in Córdoba province (southern Spain) several weeks prior to the pollen season start. Using a 29-year database (1982-2010), a multivariate regression model based on five indices-the index-based model-was built to enhance the efficacy of prediction models. Four of the indices used were biometeorological indices: thermal index, pre-flowering hydric index, dormancy hydric index and summer index; the fifth was an autoregressive cyclicity index based on pollen data from previous years. The extreme weather events characteristic of the Mediterranean climate were also taken into account by applying different adjustment criteria. The results obtained with this model were compared with those yielded by a traditional meteorological-based model built using multivariate regression analysis of simple meteorological-related variables. The performance of the models (confidence intervals, significance levels and standard errors) was compared, and they were also validated using the bootstrap method. The index-based model built on biometeorological and cyclicity indices was found to perform better for olive pollen forecasting purposes than the traditional meteorological-based model.

  7. Boreal tree pollen sensed by polarization lidar: Depolarizing biogenic chaff

    NASA Astrophysics Data System (ADS)

    Sassen, Kenneth

    2008-09-01

    Polarization (0.694 μm) lidar measurements show that tree pollen can generate strong laser depolarization in the backscatter from the lower atmosphere. Examples are given illustrating that linear depolarization ratios up to 0.3 are measured in plumes of paper birch pollen at the onset of boreal forest green-out. These pollen are ~25 μm in diameter and near-spherical in shape, but with lobes protruding from a surface membrane, which appears to produce the depolarization. Similar lidar findings are frequently observed during the summer at Fairbanks, Alaska, indicating that various types of seasonal pollen releases may be identified by polarization lidar. This scattering behavior is likely a general attribute of pollen and other suspended biogenic debris, which has implications for benefiting human health. This source of laser depolarization should not be confused with the presence of airborne dust or certain pollution particles, but is a natural background aerosol component caused by plant reproduction, as should be recognized in current global polarization lidar aerosol research using the CALIPSO satellite.

  8. Hybridizing pines with diluted pollen

    Treesearch

    Robert Z. Callaham

    1967-01-01

    Diluted pollens would have many uses by the tree breeder. Dilutions would be particularly advantageous in making many controlled pollinations with a limited amount of pollen. They also would be useful in artificial mass pollinations of orchards or single trees. Diluted pollens might help overcome troublesome genetic barriers to crossing. Feasibility o,f using diluted...

  9. Termination of the Last Glaciation in the Iberian Peninsula Inferred from the Pollen Sequence of Quintanar de la Sierra

    NASA Astrophysics Data System (ADS)

    Peñalba, M. Cristina; Arnold, Maurice; Guiot, Joël; Duplessy, Jean-Claude; de Beaulieu, Jacques-Louis

    1997-09-01

    A 4.5-m-thick late-glacial pollen sequence, supported by 17 AMS 14C dates, has been investigated at the Quintanar de la Sierra marshland (Iberian cordillera, north-central Spain). Pollen zones were defined that correspond to successive phases in vegetation history during the end of the Late Würm, late-glacial interstade, and Younger Dryas periods. A transfer function approach has been adopted to derive quantitative climate estimates from the pollen assemblage data. A first expansion of Juniperusand Hippophae,about 13,500 14C yr B.P., indicates the beginning of the late-glacial interstade which is characterized by a Juniperus-Betula-Pinussuccession that suggests higher temperatures and moisture than during full-glacial time. The Younger Dryas interval is recorded by a 120-cm-thick sediment unit that is dominated by herbaceous pollen. Transfer function estimates suggest that the climate during this period was cold, with low precipitation during most of the year, although not in summer. The Holocene arboreal recolonization in the area started about 10,000 14C yr B.P., with a renewed Juniperus-Betula-Pinussuccession related to a strong increase in annual temperature and precipitation. The start of this process was synchronous with mean sea-surface temperature changes, as recorded from the nearby SU 81-18 marine core. The strong affinity with other European late-glacial pollen sequences demonstrates that the pattern of climatic changes during the last glacial-interglacial transition was similar in both northwestern and southwestern Europe.

  10. Transport and radiative impacts of atmospheric pollen using online, observation-based emissions

    NASA Astrophysics Data System (ADS)

    Wozniak, M. C.; Steiner, A. L.; Solmon, F.; Li, Y.

    2015-12-01

    Atmospheric pollen emitted from trees and grasses exhibits both a high temporal variability and a highly localized spatial distribution that has been difficult to quantify in the atmosphere. Pollen's radiative impact is also not quantified because it is neglected in climate modeling studies. Here we couple an online, meteorological active pollen emissions model guided by observations of airborne pollen to understand the role of pollen in the atmosphere. We use existing pollen counts from 2003-2008 across the continental U.S. in conjunction with a tree database and historical meteorological data to create an observation-based phenological model that produces accurately scaled and timed emissions. These emissions are emitted and transported within the regional climate model (RegCM4) and the direct radiative effect is calculated. Additionally, we simulate the rupture of coarse pollen grains into finer particles by adding a second size mode for pollen emissions, which contributes to the shortwave radiative forcing and also has an indirect effect on climate.

  11. Emerging pollen allergens.

    PubMed

    Rodríguez, Rosalía; Villalba, Mayte; Batanero, Eva; Palomares, Oscar; Salamanca, Guillermo

    2007-01-01

    Numerous pollen allergens have been reported over the last few years. Most of them belong to well-known families of proteins but some others constitute the first member of new allergenic families. Some of the factors that can contribute to the detection and identification of new pollen allergens are: a) advances in the technology tools for molecular analysis; and b) the deep knowledge of many allergenic sources. The combination of these factors has provided vast information on the olive pollen allergogram and the identification of minor allergens that become major ones for a significant population. The close taxonomical relationship between olive tree and ash -both Oleaceae- has permitted to identify Fra e 1 (the Ole e 1-like allergen) in ash pollen and to detect the presence of protein homologues of Ole e 3 and Ole e 6. In the other hand, extensive areas of south Europe are suffering an increasing desertification. As a consequence of this, new botanical species are spontaneously growing in these areas or being used in greening ground programs: Chenopodium album and Salsola kali are some examples recently recognized as allergenic woods. The identification of the complete panel of allergens from the hypersensitizing sources might help to develop more accurate diagnosis, and efficient and safer therapy tools for Type-I allergic diseases.

  12. Fraxinus pollen and allergen concentrations in Ourense (South-western Europe).

    PubMed

    Vara, A; Fernández-González, M; Aira, M J; Rodríguez-Rajo, F J

    2016-05-01

    In temperate zones of North-Central Europe the sensitization to ash pollen is a recognized problem, also extended to the Northern areas of the Mediterranean basin. Some observations in Switzerland suggest that ash pollen season could be as important as birch pollen period. The allergenic significance of this pollen has been poorly studied in Southern Europe as the amounts of ash pollen are low. Due to the high degree of family relationship with the olive pollen major allergen (backed by a sequence identity of 88%), the Fraxinus pollen could be a significant cause of early respiratory allergy in sensitized people to olive pollen as consequence of cross-reactivity processes. Ash tree flowers in the Northwestern Spain during the winter months. The atmospheric presence of Ole e 1-like proteins (which could be related with the Fra a 1 presence) can be accurately detected using Ole e 1 antibodies. The correlation analysis showed high Spearman correlation coefficients between pollen content and rainfall (R(2)=-0.333, p<0.01) or allergen concentration and maximum temperature (R(2)=-0.271, p<0.01). In addiction CCA analysis showed not significant differences (p<0.05) between the component 1 and 2 variables. PCFA analysis plots showed that the allergen concentrations are related to the presence of the Fraxinus pollen in the air, facilitating the wind speed its submicronic allergen proteins dispersion. In order to forecast the Fraxinus allergy risk periods, two regression equations were developed with Adjusted R(2) values around 0.48-0.49. The t-test for dependent samples shows no significant differences between the observed data and the estimated by the equations. The combination of the airborne pollen content and the allergen quantification must be assessed in the epidemiologic study of allergic respiratory diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Characterization of protein expression of Platanus pollen following exposure to gaseous pollutants and vehicle exhaust particles.

    PubMed

    Lu, Senlin; Ren, Jingjin; Hao, Xiaojie; Liu, Dingyu; Zhang, Rongci; Wu, Minghong; Yi, Fei; Lin, Jun; Shinich, Yonemochi; Wang, Qingyue

    2014-01-01

    Being major ornamental street trees, species of Platanus are widely planted in the Shanghai urban area. A great deal of allergenic Platanus pollen is released from the trees and suspended in the atmosphere during its flowering season, ultimately causing allergic respiratory diseases. Few papers have focused on the distribution of this type of pollen and its expression of allergenic proteins. In order to investigate any differences in protein expression in Platanus pollen following exposure to gaseous and particulate pollutants, a special apparatus was designed. Exposure condition (such as temperature, humidity, and exposure time) of Platanus pollen and gaseous pollutants can be simulated using of this apparatus. Fresh Platanus orientalis pollen, pollutant gases (NO2, SO2, NH3), and typical urban ambient particles (vehicle exhaust particles, VEPs) were mixed in this device to examine possible changes that might occur in ambient airborne urban pollen following exposure to such pollutants. Our results showed that the fresh P. orientalis pollen became swollen, and new kinds of particles could be found on the surface of the pollen grains after exposure to the pollutants. The results of SDS-PAGE showed that five protein bands with molecular weights of 17-19, 34, 61, 82, and 144 kDa, respectively, were detected and gray scale of these brands increased after the pollen exposure to gaseous pollutants. The two-dimensional gel electrophoresis analysis demonstrated that a Platanus pollen allergenic protein (Pla a1, with a molecular weight of 18 kDa) increased in abundance following exposure to pollutant gases and VEPs, implying that air pollutants may exacerbate the allergenicity of pollen.

  14. Ambrosia pollen in Tulsa, Oklahoma: aerobiology, trends, and forecasting model development.

    PubMed

    Howard, Lauren Eileen; Levetin, Estelle

    2014-12-01

    Ambrosia pollen is an important aeroallergen in North America; the ability to predict daily pollen levels may provide an important benefit for sensitive individuals. To analyze the long-term Ambrosia pollen counts and develop a forecasting model to predict the next day's pollen concentration. Airborne pollen has been collected since December 1986 with a Burkard spore trap at the University of Tulsa. Summary statistics and season metrics were calculated for the 27 years of data. Concentration and previous-day meteorologic data from 1987 to 2011 were used to develop a multiple regression model to predict pollen levels for the following day. Model output was compared to 2012 and 2013 ragweed pollen data. The Tulsa ragweed season extends from the middle of August to late October. The mean start date is August 22, the mean peak date is September 10, and the mean end date is October 20. The mean cumulative season total is 11,599 pollen/m(3), and the mean daily concentration is 197 pollen/m(3). Previous-day meteorologic and phenologic data were positively related to pollen concentration (P < .001). Precipitation was modeled as a dichotomous variable. The final model included minimum temperature, dichotomous precipitation, dew point, and phenology variable (R = 0.7146, P < .001). Analysis of the model's accuracy revealed that the model was highly representative of the 2012 and 2013 seasons (R = 0.680, P < .001). Multiple regression models may be useful in explaining the variability of Ambrosia pollen levels. Further testing of the modeling parameters in different geographical areas is needed. Copyright © 2014 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Sea-land breeze in a coastal city and its effect on pollen transport.

    PubMed

    Gassmann, María I; Pérez, Claudio F; Gardiol, Jesús M

    2002-08-01

    This paper presents a statistical study of the sea-land breeze in Mar del Plata (Argentina) to characterize the periods of the year when the breeze affects pollen transport, particularly the dispersion of airborne Poaceae pollen between urban and rural areas. In order to analyse the sea breeze circulation, hourly data from coastal, urban and rural meteorological stations were used. The effect of the sea breeze on the particulate matter was analysed from syncronic hourly airborne pollen records from an urban and a rural area. A sea-land breeze appeared between spring and early autumn in the hours of greatest diurnal warming. Results showed that the surface wind direction most probably associated with this phenomenon is NE and E, the time of occurrence shifting to new directions following the counterclockwise rotation, according to theoretical models for the Southern Hemisphere. Poaceae emission takes place in the morning, during the hours of maximum insolation. However, after the occurrence of the breeze, a rise in pollen concentration between 2000 hours and 0200 hours is detected because of pollen reentrainment brought about by air recirculation. The results showed that breeze transport brings a regional component to pollen assemblage.

  16. Effect of repetitive mowing on common ragweed (Ambrosia artemisiifolia L.) pollen and seed production.

    PubMed

    Simard, Marie-Josée; Benoit, Diane Lyse

    2011-01-01

    Ambrosia artemisiifolia L (common ragweed) is a familiar roadside weed in southern Québec (Canada) that produces large amounts of airborne pollen responsible for multiple rhino-conjunctivitis (hay fever) cases. As roadside weeds are increasingly controlled by mowing alone, the effect of a mowing treatment on pollen production was evaluated. Ambrosia artemisiifolia plants were grown in a greenhouse at 4 densities (1, 3, 6 and 12 plants per 314 cm(2) pot) and either left intact or mowed (10 cm from the ground) when the plants reached 25 cm in height, i.e. twice during the life cycle of this annual plant. Pollen production per male inflorescence was collected in open-top bags and counted. Inflorescence mass, length, location on the plant and date of anthesis onset was noted. Above-ground plant biomass and seed production was also evaluated. Mowed plants produced less pollen per unit of inflorescence length than intact plants. Pollen production per plant was reduced by a factor of 8.84 by the double mowing treatment, while viable seed production per plant was reduced by a factor of 4.66, irrespective of density. Mowing twice has the potential to reduce airborne pollen loads but Ambrosia artemisiifolia seed banks are unlikely to be depleted by this management strategy.

  17. Trans-disciplinary research in synthesis of grass pollen aerobiology and its importance for respiratory health in Australasia.

    PubMed

    Davies, Janet M; Beggs, Paul J; Medek, Danielle E; Newnham, Rewi M; Erbas, Bircan; Thibaudon, Michel; Katelaris, Connstance H; Haberle, Simon G; Newbigin, Edward J; Huete, Alfredo R

    2015-11-15

    Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included "marrying" ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology

  18. Developmental selection within the angiosperm style: using gamete DNA to visualize interspecific pollen competition.

    PubMed

    Williams, J H; Friedman, W E; Arnold, M L

    1999-08-03

    Among flowering plants, females often have little control over the genetic relatedness of pollen deposited on stigmas. Thus, postpollination processes are of primary importance for mate discrimination. The ability to screen and select among male gametes during pollen tube growth within the female tissues of the stigma, style, and ovary is critical to the process of mate choice and reproductive isolation. However, direct evidence of the mechanistic/developmental processes associated with mate choice in flowering plants is sparse. We studied the contribution of postpollination, prefertilization processes to reproductive isolation in two wind-pollinated species of birch (Betula) that commonly hybridize in nature. We exploited the 3-fold difference in ploidy level between these two species to determine the paternity of individual pollen tubes growing within female reproductive tissues. We then tracked their developmental fate in conspecific, heterospecific, and mixed-species crosses. This design allowed a direct comparison of developmental processes responsible for reproductive isolation in both single-species and mixed-species pollinations. Our results have important implications for the population genetic outcome of hybridization dynamics in natural populations. Paternity analysis of progeny from mixed-species pollinations revealed that conspecific pollen tubes sired more than 98% of seedlings. Biased siring success was not the result of differential embryo abortion. We detected strong, early postpollination barriers such as pollen tube incompatibility, slower pollen tube growth, and delayed generative cell mitosis. Conspecific fertilization precedence was mediated by favorable or unfavorable male-female interactions, but there was no evidence for antagonistic male-male interactions.

  19. Assessment of the Olea pollen and its major allergen Ole e 1 concentrations in the bioearosol of two biogeographical areas

    NASA Astrophysics Data System (ADS)

    Moreno-Grau, S.; Aira, M. J.; Elvira-Rendueles, B.; Fernández-González, M.; Fernández-González, D.; García-Sánchez, A.; Martínez-García, M. J.; Moreno, J. M.; Negral, L.; Vara, A.; Rodríguez-Rajo, F. J.

    2016-11-01

    The Olea pollen is currently an important allergy source. In some regions of Southern Spain, olive pollen is the main cause of allergic sensitization exceeding 40% of the sensitized individuals. Due to the scarce presence of olive trees in Northern Spain, limited to some cultivated fields in the South of the Galicia region where they also grow wild, only 8% of the sensitized individuals showed positive results for Olea pollen. The aim of the paper was to assess the behaviour pattern of the Olea pollen and its aeroallergens in the atmosphere, as this information could help us to improve the understanding and prevention of clinical symptoms. Airborne Olea pollen and Ole e 1 allergens were quantified in Cartagena (South-eastern Spain) and Ourense (North-western Spain). A volumetric pollen trap and a Burkard Cyclone sampler were used for pollen and allergen quantification. The Olea flowering took place in April or May in both biometeorological sampling areas. The higher concentrations were registered in the Southern area of Spain, for both pollen and Ole e 1, with values 8 times higher for pollen concentrations and 40 times higher for allergens. An alternate bearing pattern could be observed, characterized by years with high pollen values and low allergen concentrations and vice versa. Moreover, during some flowering seasons the allergen concentrations did not correspond to the atmospheric pollen values. Variations in weather conditions or Long Distance Transport (LDT) processes could explain the discordance. The back trajectory analysis shows that the most important contributions of pollen and allergens in the atmosphere are coincident with air masses passing through potential source areas. The exposure to olive pollen may not be synonym of antigen exposure.

  20. Induction of Nitrate Assimilatory Enzymes in the Tree Betula pendula.

    PubMed

    Friemann, A; Lange, M; Hachtel, W; Brinkmann, K

    1992-07-01

    The coordinate appearance of the bispecific NAD(P)H-nitrate reductase (NR; EC 1.6.6.2) and nitrite reductase (NiR; EC 1.7.7.1) was investigated in leaves and roots from European white birch seedlings (Betula pendula Roth). Induction by nitrate and light of both enzymes was analyzed by in vitro assays and by measuring NR- and NiR-encoding mRNA pools with homologous cDNAs as probes. When birch seedlings were grown on a medium containing ammonium as the sole nitrogen source, low constitutive expression of NR and NiR was observed in leaves, whereas only NiR was significantly expressed in roots. Upon transfer of the seedlings to a nitrate-containing medium, mRNA pools and activities of NR and NiR dramatically increased in leaves and roots, with a more rapid induction in leaves. Peak accumulations of mRNA pools preceded the maximum activities of NR and NiR, suggesting that the appearance of both activities can be mainly attributed to an increased expression of NR and NiR genes. Expression of NR was strictly light-dependent in leaves and roots and was repressed by ammonium in roots but not in leaves. In contrast with NR, constitutive expression of NiR was not affected by light, and even a slight induction following the addition of nitrate was found in the dark in roots but not in leaves. No effect of ammonium on NiR expression was detectable in both organs. In leaves as well as in roots, NiR was induced more rapidly than NR, which appears to be a safety measure to prevent nitrite accumulation.

  1. Changing pollen types/concentrations/distribution in the United States: fact or fiction?

    PubMed

    Levetin, Estelle; Van de Water, Peter

    2008-09-01

    The buildup of greenhouse gases in the atmosphere has resulted in global climate change that is having a significant effect on many allergenic plants through increases in plant productivity and pollen allergenicity and shifts in plant phenology. Based on experimental studies, increased atmospheric levels of carbon dioxide have directly increased plant productivity. This has affected the total amount of pollen produced in some species. Research has also shown increased levels of birch allergen at warmer temperatures. Warmer temperatures have resulted in earlier flowering for many spring-flowering species in many countries, recorded through visual observations of flowering and by airborne pollen. Increases in the cumulative season totals of various pollen types also have been recorded; some of these increases may be explained by changes in plant distribution.

  2. Description of the immature stages of Kuwanina betula Wu & Liu, with a discussion of its placement in the Acanthococcidae family group (Hemiptera: Coccoidea).

    PubMed

    Wu, San-An; Nan, Nan

    2015-03-09

    The immature stages of Kuwanina betula Wu & Liu are described and illustrated. Based on morphological and molecular data (18S and 28S rDNA), it is argued that K. betula is closer to Pseudochermes Nitsche than to Kuwanina Cockerell in Fernald and so this species is transferred to Pseudochermes as P. betula (Wu & Liu) comb. nov..

  3. Grass Pollen Allergens

    PubMed Central

    Augustin, Rosa

    1959-01-01

    Heat and pH stability studies and experiments with organic solvents show that the A-antigens discussed in the preceding paper (Augustin, 1959c) are much more labile than the I- (`inner ring') antigens. Breakdown products and/or aggregates are produced which no longer precipitate with antisera to the original extracts, but act as inhibitors. Solutions of pollen allergens, on the other hand, are found to withstand even autoclaving for 15 min. at 20 atm. and vigorous boiling over the naked flame of a bunsen burner. None of the carbohydrates tested has a demonstrable effect on skin reactivity which is, however, destroyed by crystalline pepsin, crystalline trypsin, a crystalline mould protease and a tissue protease (a partially purified extract from rabbit spleen). It follows that the bulk of the allergens—if not all—are proteins. The relation of skin reactivity, immuno-electrophoretic patterns, carbohydrate and protein reactions to the selective destruction of the pollen antigens is investigated. Pollen components prove to have a somewhat wider range of electrophoretic mobilities than serum proteins and are probably as complicated a mixture. The most and least highly negatively charged components are without skin reactivity in allergic subjects. The skin reactive allergens appear to have the mobilities of α- and β-globulins. Not all the hay fever subjects react equally to all the components, and Cocksfoot and Timothy activity patterns vary in different subjects. ImagesFIG. 5 PMID:13795119

  4. Atmospheric Poaceae pollen frequencies and associations with meteorological parameters in Brisbane, Australia: a 5-year record, 1994-1999

    NASA Astrophysics Data System (ADS)

    Green, Brett James; Dettmann, Mary; Yli-Panula, Eija; Rutherford, Shannon; Simpson, Rod

    Grass pollen is an important risk factor for allergic rhinitis and asthma in Australia and is the most prevalent pollen component of the aerospora of Brisbane, accounting for 71.6% of the annual airborne pollen load. A 5-year (June 1994-May 1999) monitoring program shows the grass pollen season to occur during the summer and autumn months (December-April), however the timing of onset and intensity of the season vary from year to year. During the pollen season, Poaceae counts exceeding 30 grains m-3 were recorded on 244 days and coincided with maximum temperatures of 28.1 +/- 2.0 °C. In this study, statistical associations between atmospheric grass pollen loads and several weather parameters, including maximum temperature, minimum temperature and precipitation, were investigated. Spearman's correlation analysis demonstrated that daily grass pollen counts were positively associated (P < 0.0001) with maximum and minimum temperature during each sampling year. Precipitation, although considered a less important daily factor (P < 0.05), was observed to remove pollen grains from the atmosphere during significant periods of rainfall. This study provides the first insight into the influence of meteorological variables, in particular temperature, on atmospheric Poaceae pollen counts in Brisbane. An awareness of these associations is critical for the prevention and management of allergy and asthma for atopic individuals within this region.

  5. Airborne study of grass allergen (Lol p 1) in different-sized particles.

    PubMed

    De Linares, C; Díaz de la Guardia, C; Nieto Lugilde, D; Alba, F

    2010-01-01

    The Poaceae family is considered one of the main causes of pollen allergy in industrialized countries. The aim of this study is to establish the dynamics of the Poaceae allergens and determine their distribution in the different-sized particles in the atmosphere. The air of Granada (southern Spain) was sampled during the pollination period of Poaceae using a cascade impactor and a Hirst-type volumetric collector simultaneously. The sampled airborne allergens were analyzed by indirect ELISA and field emission scanning electron microscopy. Airborne pollen was evaluated with the Spanish Aerobiological Network methodology. Poaceae pollen and allergenic activity have parallel dynamics during the period of maximum pollination, which is reflected in the positive correlations between the 2 variables. In addition, the highest Lol p 1 concentrations were recorded in particle sizes lower than 3.3 mum (stage 4-F). The Spearman correlation test showed that airborne allergens are not dependent on meteorological factors, such as humidity, wind direction or sunshine, however, Lol p 1 allergen correlated positively with Poaceae pollen. The results of the present study confirm that the Lol p 1 allergen is detected more frequently with pollutants than with coarse particles with similar dynamics and a positive correlation between airborne pollen and aeroallergens. Moreover, Lol p 1 is released in stable weather conditions without large changes in humidity or temperature. Copyright 2009 S. Karger AG, Basel.

  6. [Genetic linkage map of Betula pendula Roth and Betula platyphylla Suk based on random amplified polymorphisms DNA markers].

    PubMed

    Jiang, Ting-Bo; Li, Shao-Chen; Gao, Fu-Ling; Ding, Bao-Jian; Qu, Yue-Jun; Tang, Xin-Hua; Liu, Gui-Feng; Jiang, Jing; Yang, Chuan-Ping

    2007-07-01

    Based on the genetic inheritance and segregation of random amplified polymorphism DNA (RAPDs) markers, the first mid-density linkage map for silver birch was constructed by using a pseudo-testcross mapping strategy. A segregating population including 80 progenies from the cross between Betula pendula Roth and B. platyphylla Suk was obtained. A set of 1,200 random oligonucleotide primers were screened, and 208 primers were selected to generate RAPD markers within a sample of 80 F1 progenies. A total of 364 segregating sites were identified. Among them, 307 belonged to 1 : 1 segregating site, and 36 belonged to 3 : 1 segregating site, others were found distorted from the normal 1 : 1 ratio. Altogether 307 sites segregating 1 : 1 (testcross configuration) were used to construct parent-specific linkage maps, 145 for B. pendula and 162 for B. platyphylla. The resulting linkage maps consisted of 145 marker sites in 14 groups (four or more sites per group), 6 triples and 6 pairs for B. pendula, which covered the map distance about 955.6 cM (Kosambi units). The average map distance between adjacent markers was 14.9 cM, and 162 linked marker site for B. platyphylla were mapped onto 15 groups (four or more sites per group), 4 triples and 6 pairs, which covered the map distance about 1,545.8 cM, and the average map distance between adjacent markers was 15.2 cM. Further study is warranted to integrate the two maps to one density map and to locate important genes on the maps.

  7. [Allergy, pollen and the environment].

    PubMed

    Terán, Luis Manuel; Haselbarth-López, Michelle Marie Margarete; Quiroz-García, David Leonor

    2009-01-01

    Allergic respiratory diseases such asthma and allergic rhinitis are a health problem throughout the world. In Mexico City, pollens are an important cause of allergic respiratory disease. Both, the geographic location- and the vegetation surrounding this City favor the distribution of pollens leading to respiratory disease in susceptible patients. Aerobiological studies have shown that during the mild dry winter there is a large amount of pollens in the environment with tree pollens being the most abundant of all. The most frequent tree pollens found in Mexico City include Fraxinus, Cupressaseae, Alnus, Liquidambar, Callistemon, Pinus, and Casuarina. In contrast, grass- and weed pollens predominate during the summer (rainy season) including Compositae, Cheno-Am, Ambrosia and Gramineae. An additional health problem in Mexico City is the air pollution that exerts a direct effect on individuals. This in turn increases pollen allergenicity by disrupting them leading to the release of their particles which then penetrate the human airways causing disease. Thus, the polluted environment along with global warming which is also known to increase pollen quantities by inducing longer pollen seasons may represent a health risk to Mexico City inhabitants.

  8. Application of the personal aeroallergen sampler to assess personal exposures to Japanese cedar and cypress pollens.

    PubMed

    Yamamoto, Naomichi; Matsuki, Hideaki; Yanagisawa, Yukio

    2007-11-01

    We have recently developed the Personal Aeroallergen Sampler (PAAS), a passive sampler for aeroallergens. In the present study, the applicability of the PAAS for personal exposure assessments of cedar and cypress pollens was investigated by comparing with existing reference samplers. To investigate the usability of the PAAS as a personal sampler for the airborne pollens, it was compared with the Institute of Occupational Medicine (IOM) sampler, a traditionally used active personal sampler. Overall, the result showed a good correlation between the two methods, that is, R(2)=0.8082, suggesting the usability of the PAAS for the personal pollen samplings. The ratio of the pollen numbers collected by the PAAS to the IOM sampler was approximately 30%, which was consistent with our previous study investigating ambient dust particles. Meanwhile, the comparability of the PAAS to the Durham sampler, the most widely used stationary pollen trap, was also assured. Furthermore, we exemplified the seasonal peak of the personal pollen exposures was not necessarily reflected by the outdoor concentrations, indicating insufficiency of the stationary outdoor monitoring to represent the personal pollen exposures. The PAAS, a simple passive method, could be used in future field studies to elucidate the detailed mechanisms of allergic airway diseases such as cedar pollinosis.

  9. Ambrosia artemisiifolia L. pollen simulations over the Euro-CORDEX domain: model description and emission calibration

    NASA Astrophysics Data System (ADS)

    liu, li; Solmon, Fabien; Giorgi, Filippo; Vautard, Robert

    2014-05-01

    Ragweed Ambrosia artemisiifolia L. is a highly allergenic invasive plant. Its pollen can be transported over large distances and has been recognized as a significant cause of hayfever and asthma (D'Amato et al., 2007). In the context of the ATOPICA EU program we are studying the links between climate, land use and ecological changes on the ragweed pollen emissions and concentrations. For this purpose, we implemented a pollen emission/transport module in the RegCM4 regional climate model in collaboration with ATOPICA partners. The Abdus Salam International Centre for Theoretical Physics (ICTP) regional climate model, i.e. RegCM4 was adapted to incorporate the pollen emissions from (ORCHIDEE French) Global Land Surface Model and a pollen tracer model for describing pollen convective transport, turbulent mixing, dry and wet deposition over extensive domains, using consistent assumption regarding the transport of multiple species (Fabien et al., 2008). We performed two families of recent-past simulations on the Euro-Cordex domain (simulation for future condition is been considering). Hindcast simulations (2000~2011) were driven by the ERA-Interim re-analyses and designed to best simulate past periods airborne pollens, which were calibrated with parts of observations and verified by comparison with the additional observations. Historical simulations (1985~2004) were driven by HadGEM CMPI5 and designed to serve as a baseline for comparison with future airborne concentrations as obtained from climate and land-use scenarios. To reduce the uncertainties on the ragweed pollen emission, an assimilation-like method (Rouǐl et al., 2009) was used to calibrate release based on airborne pollen observations. The observations were divided into two groups and used for calibration and validation separately. A wide range of possible calibration coefficients were tested for each calibration station, making the bias between observations and simulations within an admissible value then

  10. Vegetation and climate in the Western Sayan Mts according to pollen data from Lugovoe Mire as a background for prehistoric cultural change in southern Middle Siberia

    NASA Astrophysics Data System (ADS)

    Blyakharchuk, Tatiana A.; Chernova, Natalia A.

    2013-09-01

    On the basis of pollen and spore analyses and radiocarbon dating of peat deposits of Lugovoe Mire in southern Middle Siberia, changes of vegetation and climate of the Western Sayan Mts and the Khakasia Republic (Russia) since 6000 yr 14C BP (5000 cal yr BC) are found to correspond with the development of archaeological cultures and with the pollen-based palaeoclimatic reconstruction of Levina and Orlova (1993) constructed for the forest-steppe zone of the south of West Siberia. Three phases in the development of the regional vegetation (Abies, Betula, and Pinus) are distinguished in the pollen diagram of Lugovoe Mire, which form the environmental background for the archaeological cultures developed in this region. The first penetration of ancient hunting-fishing tribes into this area occurred during the ‘Abies stage' of the vegetation. Bronze Age cultures practiced agriculture and animal husbandry mostly during the ‘Betula stage'. Beginning in the Iron Age, archaeological cultures bloomed in the study area on the background of expanding Pinus sylvestris forests. The origin of all these cultures was connected with migrations of people from the southwest or southeast. An important reason for these migrations was dry climatic phases at millennial intervals, which influenced especially strongly the more southerly homelands of the migrating ancient tribes.

  11. Cluster analysis of intradiurnal holm oak pollen cycles at peri-urban and rural sampling sites in southwestern Spain

    NASA Astrophysics Data System (ADS)

    Hernández-Ceballos, M. A.; García-Mozo, H.; Galán, C.

    2015-08-01

    The impact of regional and local weather and of local topography on intradiurnal variations in airborne pollen levels was assessed by analysing bi-hourly holm oak ( Quercus ilex subsp. ballota (Desf.) Samp.) pollen counts at two sampling stations located 40 km apart, in southwestern Spain (Cordoba city and El Cabril nature reserve) over the period 2010-2011. Pollen grains were captured using Hirst-type volumetric spore traps. Analysis of regional weather conditions was based on the computation of backward trajectories using the HYSPLIT model. Sampling days were selected on the basis of phenological data; rainy days were eliminated, as were days lying outside a given range of percentiles (P95-P5). Analysis of cycles for the study period, as a whole, revealed differences between sampling sites, with peak bi-hourly pollen counts at night in Cordoba and at midday in El Cabril. Differences were also noted in the influence of surface weather conditions (temperature, relative humidity and wind). Cluster analysis of diurnal holm oak pollen cycles revealed the existence of five clusters at each sampling site. Analysis of backward trajectories highlighted specific regional air-flow patterns associated with each site. Findings indicated the contribution of both nearby and distant pollen sources to diurnal cycles. The combined use of cluster analysis and meteorological analysis proved highly suitable for charting the impact of local weather conditions on airborne pollen-count patterns. This method, and the specific tools used here, could be used not only to study diurnal variations in counts for other pollen types and in other biogeographical settings, but also in a number of other research fields involving airborne particle transport modelling, e.g. radionuclide transport in emergency preparedness exercises.

  12. Cluster analysis of intradiurnal holm oak pollen cycles at peri-urban and rural sampling sites in southwestern Spain.

    PubMed

    Hernández-Ceballos, M A; García-Mozo, H; Galán, C

    2015-08-01

    The impact of regional and local weather and of local topography on intradiurnal variations in airborne pollen levels was assessed by analysing bi-hourly holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) pollen counts at two sampling stations located 40 km apart, in southwestern Spain (Cordoba city and El Cabril nature reserve) over the period 2010-2011. Pollen grains were captured using Hirst-type volumetric spore traps. Analysis of regional weather conditions was based on the computation of backward trajectories using the HYSPLIT model. Sampling days were selected on the basis of phenological data; rainy days were eliminated, as were days lying outside a given range of percentiles (P95-P5). Analysis of cycles for the study period, as a whole, revealed differences between sampling sites, with peak bi-hourly pollen counts at night in Cordoba and at midday in El Cabril. Differences were also noted in the influence of surface weather conditions (temperature, relative humidity and wind). Cluster analysis of diurnal holm oak pollen cycles revealed the existence of five clusters at each sampling site. Analysis of backward trajectories highlighted specific regional air-flow patterns associated with each site. Findings indicated the contribution of both nearby and distant pollen sources to diurnal cycles. The combined use of cluster analysis and meteorological analysis proved highly suitable for charting the impact of local weather conditions on airborne pollen-count patterns. This method, and the specific tools used here, could be used not only to study diurnal variations in counts for other pollen types and in other biogeographical settings, but also in a number of other research fields involving airborne particle transport modelling, e.g. radionuclide transport in emergency preparedness exercises.

  13. Characterizing Betula litwinowii seedling microsites at the alpine-treeline ecotone, central Greater Caucasus Mountains, Georgia

    Treesearch

    Nicole M Hughes; Daniel M. Johnson; Maia Akhalkatsi; Otar Abdaladze

    2009-01-01

    Seedling establishment is an important factor dictating the altitudinal limits of treeline species. Factors that affect seedling mortality and survival, however, have yet to be fully characterized, especially for deciduous treeline species. Here we describe microsite characteristics of successfully established Betula litwinowii seedlings at the...

  14. Diversity in tree species in southeastern Ohio Betula nigra L. communities

    Treesearch

    Larry D. Cribben; Dina D. Scacchetti

    1976-01-01

    Quantitative data were obtained for arboreal species within 50 lowland forests in southeastern Ohio. Thirty-seven communities were dominated by Betula nigra L. and 13 were dominated by Acer saccharinum L. The acidic soils collected from B. nigra communities contained toxic concentrations of exchangeable aluminum...

  15. The correlation of the maximum intensity of fluorescence with pigment characteristics of leaves of Betula pendula

    NASA Astrophysics Data System (ADS)

    Zavoruev, V. V.; Zavorueva, E. N.

    2015-11-01

    Using fluorimeter Junior PAM (Heinz Walz GmbH, Germany) the fluorescence parameters of leaves of Betula pendula are investigated. A linear dependence of the maximum fluorescence (Fm) of leaves from the ratio of total chlorophylls concentration to concentration of carotenoids is obtained. Such dependence is found for samples collected during the period of vegetation and for simultaneous selection of colored leaves.

  16. Estimating the spread rate of urea formaldehyde adhesive on birch (Betula pendula Roth) veneer using fluorescence

    Treesearch

    Toni Antikainen; Anti Rohumaa; Christopher G. Hunt; Mari Levirinne; Mark Hughes

    2015-01-01

    In plywood production, human operators find it difficult to precisely monitor the spread rate of adhesive in real-time. In this study, macroscopic fluorescence was used to estimate spread rate (SR) of urea formaldehyde adhesive on birch (Betula pendula Roth) veneer. This method could be an option when developing automated real-time SR measurement for...

  17. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3

    Treesearch

    Johanna Riikonen; Kevin E. Percy; Minna Kivimaenpaa; Mark E. Kubiske; Neil D. Nelson; Elina Vapaavuori; David F. Karnosky

    2010-01-01

    Betula papyrifera trees were exposed to elevated concentrations of CO2 (1.4 x ambient), O3 (1.2 x ambient) or CO2 + O3 at the Aspen Free-air CO2 Enrichment Experiment. The treatment effects on leaf surface characteristics were studied...

  18. [Cypress pollen allergy].

    PubMed

    Charpin, D; Calleja, M; Pichot, C; Penel, V; Hugues, B; Poncet, P

    2013-12-01

    Cypress belongs to the Cupressaceae family, which includes 140 species with non-deciduous foliage. The most important genera in allergic diseases are Cupressus sempervirens or Green cypress, Cupressus arizonica or Blue cypress, Juniperus oxycedrus, Juniperus communis and Thuya. Because J. oxycedrus pollinates in October, C. sempervirens in January and February, C. arizonica in February and March, J. communis in April, the symptomatic period is long-lasting. Because of global warming, the pollination period is tending to last longer and Cupressaceae species are becoming established further the north. In Mediterranean countries, cypress is by far the most important pollinating species, accounting for half of the total pollination. The major allergens belong to group 1. The other allergens from cypress and Juniper share 75 to 97 % structural homology with group 1 major allergens. The prevalence of cypress allergy in the general population ranges from 5 % to 13 %, according to exposure to the pollen. Among outpatients consulting an allergist, between 9 and 35 %, according to different studies, are sensitized to cypress pollen. Repeated cross-sectional studies performed at different time intervals have demonstrated a threefold increase in the percentage of cypress allergy. Risk factors include a genetic predisposition and/or a strong exposure to pollen, but air pollutants could play a synergistic role. The study of the natural history of cypress allergy allows the identification of a subgroup of patients who have no personal or family history of atopy, whose disease began later in life, with low total IgE and often monosensitization to cypress pollen. In these patients, the disease is allergic than rather atopic. In the clinical picture, rhinitis is the most prevalent symptom but conjunctivitis the most disabling. A cross-reactivity between cypress and peach allergy has been demonstrated. The pharmacological treatment of cypress allergy is not different from

  19. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.

    PubMed

    McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura

    2017-03-06

    Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a 2-yr decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered by

  20. Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels.

    PubMed

    Albertine, Jennifer M; Manning, William J; DaCosta, Michelle; Stinson, Kristina A; Muilenberg, Michael L; Rogers, Christine A

    2014-01-01

    One expected effect of climate change on human health is increasing allergic and asthmatic symptoms through changes in pollen biology. Allergic diseases have a large impact on human health globally, with 10-30% of the population affected by allergic rhinitis and more than 300 million affected by asthma. Pollen from grass species, which are highly allergenic and occur worldwide, elicits allergic responses in 20% of the general population and 40% of atopic individuals. Here we examine the effects of elevated levels of two greenhouse gases, carbon dioxide (CO2), a growth and reproductive stimulator of plants, and ozone (O3), a repressor, on pollen and allergen production in Timothy grass (Phleum pratense L.). We conducted a fully factorial experiment in which plants were grown at ambient and/or elevated levels of O3 and CO2, to simulate present and projected levels of both gases and their potential interactive effects. We captured and counted pollen from flowers in each treatment and assayed for concentrations of the allergen protein, Phl p 5. We found that elevated levels of CO2 increased the amount of grass pollen produced by ∼50% per flower, regardless of O3 levels. Elevated O3 significantly reduced the Phl p 5 content of the pollen but the net effect of rising pollen numbers with elevated CO2 indicate increased allergen exposure under elevated levels of both greenhouse gases. Using quantitative estimates of increased pollen production and number of flowering plants per treatment, we estimated that airborne grass pollen concentrations will increase in the future up to ∼200%. Due to the widespread existence of grasses and the particular importance of P. pratense in eliciting allergic responses, our findings provide evidence for significant impacts on human health worldwide as a result of future climate change.

  1. Ability of pollen cytoplasmic granules to induce biased allergic responses in a rat model.

    PubMed

    Abou Chakra, Oussama; Rogerieux, Françoise; Poncet, Pascal; Sutra, Jean-Pierre; Peltre, Gabriel; Sénéchal, Hélène; Lacroix, Ghislaine

    2011-01-01

    Grass pollen is one of the most important aeroallergens in Europe. It highly contributes to respiratory allergic diseases, mainly allergic rhinitis. In contact to water or airborne pollutants, pollen grains can release pollen cytoplasmic granules (PCGs) containing allergens. Because of their size (<5 μm), PCGs may penetrate deeper into the lungs to induce higher allergic responses, such as asthma. They have been associated with thunderstorm-related asthma. The aim of this study was to evaluate, with Brown Norway rats, the allergenic potential of isolated PCGs and to compare it with the allergenicity of whole timothy grass pollen. Rats were sensitized (day 0) and challenged (day 21), in controlled comparative conditions, with pollen grains (0.5 mg) or PCGs (4.5 × 10⁷ and 0.5 mg). At day 25, blood samples, bronchoalveolar lavage fluid (BALF) and bronchial lymph node were collected. IgE and IgG1 levels in sera were assessed by ELISA. Alveolar cells, protein and cytokine concentrations were quantified in BALF. T cell proliferation, in response to pollen or granules, was performed by lymph node assay. The results showed that proliferative responses of lymph node cells were similar in PCG- and pollen-sensitized rats. IgE and IgG1 levels were higher in pollen- than in PCG-sensitized rats. However, eosinophils, lymphocytes and pro-allergy cytokines in BALF were higher in PCG- than in pollen-sensitized rats. Thus, PCGs, able to deeply penetrate in the respiratory tract, induced local and strong allergic and inflammatory responses more linked with asthma- than rhinitis-related allergic symptoms. Copyright © 2010 S. Karger AG, Basel.

  2. Grass Pollen Allergens

    PubMed Central

    Augustin, Rosa

    1959-01-01

    Grass pollen allergens are shown to remain associated with protein material and a yellow pigment during paper chromatography and during dialyses and ultrafiltrations of various types. Dialysable* allergens comprise only a fraction of 1 per cent of the total activity and the amount of activity extractable by diethylene glycol (DEG) and similar solvents is of the same order. Besides the allergens, the DEG and aqueous extracts contain large amounts of inositol, glucose and fructose, also some yellow pigments and phosphates. Larger amounts of free and combined amino acids are found in the aqueous than in the DEG extracts, but the reverse is true for sucrose. In addition the DEG extracts contain a yellow glucoside different from the dactylen of the aqueous extracts, a glucosan and an arabinose-galactose-pigment complex, only the latter being associated with any activity. The spontaneous release of the crystalline dactylen from originally clear aqueous pollen extracts is found not to be caused by enzymes. The washed crystals are found to be chromatographically and electrophoretically homogeneous and devoid of allergenic activity. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7 PMID:13640676

  3. Seven different genes encode a diverse mixture of isoforms of Bet v 1, the major birch pollen allergen.

    PubMed

    Schenk, Martijn F; Gilissen, Ludovicus Jwj; Esselink, Gerhard D; Smulders, Marinus Jm

    2006-07-04

    Pollen of the European white birch (Betula pendula, syn. B. verrucosa) is an important cause of hay fever. The main allergen is Bet v 1, member of the pathogenesis-related class 10 (PR-10) multigene family. To establish the number of PR-10/Bet v 1 genes and the isoform diversity within a single tree, PCR amplification, cloning and sequencing of PR-10 genes was performed on two diploid B. pendula cultivars and one interspecific tetraploid Betula hybrid. Sequences were attributed to putative genes based on sequence identity and intron length. Information on transcription was derived by comparison with homologous cDNA sequences available in GenBank/EMBL/DDJB. PCR-cloning of multigene families is accompanied by a high risk for the occurrence of PCR recombination artifacts. We screened for and excluded these artifacts, and also detected putative artifact sequences among database sequences. Forty-four different PR-10 sequences were recovered from B. pendula and assigned to thirteen putative genes. Sequence homology suggests that three genes were transcribed in somatic tissue and seven genes in pollen. The transcription of three other genes remains unknown. In total, fourteen different Bet v 1-type isoforms were identified in the three cultivars, of which nine isoforms were entirely new. Isoforms with high and low IgE-reactivity are encoded by different genes and one birch pollen grain has the genetic background to produce a mixture of isoforms with varying IgE-reactivity. Allergen diversity is even higher in the interspecific tetraploid hybrid, consistent with the presence of two genomes. Isoforms of the major birch allergen Bet v 1 are encoded by multiple genes, and we propose to name them accordingly. The present characterization of the Bet v 1 genes provides a framework for the screening of specific Bet v 1 genes among other B. pendula cultivars or Betula species, and for future breeding for trees with a reduced allergenicity. Investigations towards sensitization and

  4. A novel method to suppress the dispersal of Japanese cedar pollen by inducing morphologic changes with weak alkaline solutions.

    PubMed

    Ishii, K; Hamamoto, H; Sekimizu, K

    2007-10-01

    Inhalation of airborne pollen causes irritative symptoms in humans, known as pollinosis. The changing global climate and increased pollution contribute to enhance the release of pollen, thereby increasing the number of people suffering from allergies. We examined the effect of spraying weak alkaline solutions onto cedar trees, the main allergenic culprit in Japan, on pollen release. Weak alkaline solutions were sprayed onto Japanese cedar blossoms to disrupt the external walls of the pollen, and to induce swelling of the cytosolic components containing the nucleus. This morphologic change of the pollen grains depended on the pH of the suspending solution, with a threshold pH of near 7.5. As the breakdown of the external walls and swelling of the cytosolic components are inhibited by high osmolarity, the influx of water triggered the morphologic changes. Weak alkaline solutions sprayed onto cedar blossoms decreased the amount of pollen released from the anthers in a pH dependent manner. The addition of detergent to the sodium bicarbonate solution facilitated this effect on cedar pollen release. We suggest that spraying cedar and cypress forests with a weak alkaline solution might prevent the scattering of pollen that causes allergies in humans.

  5. Ragweed pollen production and dispersion modelling within a regional climate system, calibration and application over Europe

    NASA Astrophysics Data System (ADS)

    Liu, Li; Solmon, Fabien; Vautard, Robert; Hamaoui-Laguel, Lynda; Zsolt Torma, Csaba; Giorgi, Filippo

    2016-05-01

    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hay fever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In this online approach pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000-2010. To reduce the large uncertainties notably due to the lack of information on ragweed density distribution, a calibration based on airborne pollen observations is used. Accordingly a cross validation is conducted and shows reasonable error and sensitivity of the calibration. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger and the model is better constrained. From these simulations health risks associated to common ragweed pollen

  6. The patterns of Corylus and Alnus pollen seasons and pollination periods in two Polish cities located in different climatic regions.

    PubMed

    Puc, Małgorzata; Kasprzyk, Idalia

    2013-01-01

    This study compares phenological observations of Corylus (hazel) and Alnus (alder) flowering with airborne pollen counts of these taxa recorded using volumetric spore traps (2009-2011). The work was carried out in the Polish cities of Szczecin and Rzeszów that are located in different climatic regions. Correlations between pollen concentrations and meteorological data were investigated using Spearman's rank correlation analysis. The timings of hazel and alder pollination and the occurrence of airborne pollen varied greatly and were significantly influenced by meteorological conditions (p < 0.05). The flowering synchronization of hazel and alder pollination in Szczecin and Rzeszów varied over the study period. Hazel and alder trees flowered notably earlier in stands located in places that were exposed to sunlight (insolated) and sheltered from the wind. On the other hand, a delay in the timing of pollination was observed in quite sunny but very windy sites. In Rzeszów, maximum hazel pollen concentrations did not coincide with the period of full pollination (defined as between 25 % hazel and alder and 75 % of flowers open). Conversely, in Szczecin, the highest hazel pollen concentrations were recorded during phenophases of the full pollination period. The period when the highest alder pollen concentrations were recorded varied between sites, with Rzeszów recording the highest concentrations at the beginning of pollination and Szczecin recording alder pollen throughout the full pollination period. Substantial amounts of hazel and alder pollen grains were recorded in the air of Rzeszów (but not Szczecin) before the onset of the respective pollen seasons.

  7. CHARACTERIZATION OF THE MAIZE POLLEN TRANSCRIPTOME

    EPA Science Inventory

    Pollen is a primary vehicle for transgene flow from engineered plants to their non-transgenic, native or weedy relatives. Hence, gene flow will be affected by pollen fitness (e.g., how well a particular pollen grain can outcompete other pollen present on the stigma and complete ...

  8. CHARACTERIZATION OF THE MAIZE POLLEN TRANSCRIPTOME

    EPA Science Inventory

    Pollen is a primary vehicle for transgene flow from engineered plants to their non-transgenic, native or weedy relatives. Hence, gene flow will be affected by pollen fitness (e.g., how well a particular pollen grain can outcompete other pollen present on the stigma and complete ...

  9. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    PubMed Central

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T.; House, James M.; Flagan, Richard C.; Avol, Edward L.; Gilliland, Frank D.; Guenther, Alex; Chung, Serena H.; Lamb, Brian K.; VanReken, Timothy M.

    2014-01-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  10. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends to

  11. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2014-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF/CMAQ) modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California (USA) for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to

  12. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease.

    PubMed

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T; House, James M; Flagan, Richard C; Avol, Edward L; Gilliland, Frank D; Guenther, Alex; Chung, Serena H; Lamb, Brian K; VanReken, Timothy M

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  13. City scale pollen concentration variability

    NASA Astrophysics Data System (ADS)

    van der Molen, Michiel; van Vliet, Arnold; Krol, Maarten

    2016-04-01

    Pollen are emitted in the atmosphere both in the country-side and in cities. Yet the majority of the population is exposed to pollen in cities. Allergic reactions may be induced by short-term exposure to pollen. This raises the question how variable pollen concentration in cities are in temporally and spatially, and how much of the pollen in cities are actually produced in the urban region itself. We built a high resolution (1 × 1 km) pollen dispersion model based on WRF-Chem to study a city's pollen budget and the spatial and temporal variability in concentration. It shows that the concentrations are highly variable, as a result of source distribution, wind direction and boundary layer mixing, as well as the release rate as a function of temperature, turbulence intensity and humidity. Hay Fever Forecasts based on such high resolution emission and physical dispersion modelling surpass traditional hay fever warning methods based on temperature sum methods. The model gives new insights in concentration variability, personal and community level exposure and prevention. The model will be developped into a new forecast tool to serve allergic people to minimize their exposure and reduce nuisance, coast of medication and sick leave. This is an innovative approach in hay fever warning systems.

  14. Variations in Quercus sp. pollen seasons (1996-2011) in Poznań, Poland, in relation to meteorological parameters.

    PubMed

    Grewling, Lukasz; Jackowiak, Bogdan; Smith, Matt

    2014-01-01

    The aim of this study is to supply detailed information about oak (Quercus sp.) pollen seasons in Poznań, Poland, based on a 16-year aerobiological data series (1996-2011). The pollen data were collected using a volumetric spore trap of the Hirst design located in Poznań city center. The limits of the pollen seasons were calculated using the 95 % method. The influence of meteorological parameters on temporal variations in airborne pollen was examined using correlation analysis. Start and end dates of oak pollen seasons in Poznań varied markedly from year-to-year (14 and 17 days, respectively). Most of the pollen grains (around 75 % of the seasonal pollen index) were recorded within the first 2 weeks of the pollen season. The tenfold variation was observed between the least and the most intensive pollen seasons. These fluctuations were significantly related to the variation in the sum of rain during the period second fortnight of March to first fortnight of April the year before pollination (r = 0.799; p < 0.001). During the analyzing period, a significant advance in oak pollen season start dates was observed (-0.55 day/year; p = 0.021), which was linked with an increase in the mean temperature during the second half of March and first half of April (+0.2 °C; p = 0.014). Daily average oak pollen counts correlated positively with mean and maximum daily temperatures, and negatively with daily rainfall and daily mean relative humidity.

  15. Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland)

    NASA Astrophysics Data System (ADS)

    Bogawski, Paweł; Grewling, Łukasz; Nowak, Małgorzata; Smith, Matt; Jackowiak, Bogdan

    2014-10-01

    A significant increase in summer temperatures has been observed for the period 1996-2011 in Poznań, Poland. The phenological response of four weed taxa, widely represented by anemophilous species ( Artemisia spp., Rumex spp. and Poaceae and Urticaceae species) to this recent climate warming has been analysed in Poznań by examining the variations in the course of airborne pollen seasons. Pollen data were collected by 7-day Hirst-type volumetric trap. Trends in pollen seasons were determined using Mann-Kendall test and Sen's slope estimator, whereas the relationships between meteorological and aerobiological data were established by Spearman's rank correlation coefficient. Significant trends in pollen data were detected. The duration of pollen seasons of all analysed taxa increased (from +2.0 days/year for Urticaceae to +3.8 days/year for Rumex), which can be attributed to a delay in pollen season end dates rather than earlier start dates. In addition, the intensity of Artemisia pollen seasons significantly decreased and correlates with mean July-September daily minimum temperatures ( r = -0.644, p < 0.01). In contrast, no significant correlations were found between temperature and characteristics of Rumex pollen seasons. The results of this study show that observed shifts in weed pollen seasons in Poznań, i.e. longer duration and later end dates, might be caused by the recorded increase in summer temperature. This influence was the strongest in relation to Artemisia, which is the taxon that flowers latest in the year. The general lack of significant correlations between Rumex and Urticaceae pollen seasons and spring and/or summer temperature suggests that other factors, e.g. land use practices, could also be partially responsible for the observed shifts in pollen seasons.

  16. Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia

    NASA Astrophysics Data System (ADS)

    Tian, Fang; Cao, Xianyong; Dallmeyer, Anne; Zhao, Yan; Ni, Jian; Herzschuh, Ulrike

    2017-01-01

    Temporal and spatial stability of the vegetation-climate relationship is a basic ecological assumption for pollen-based quantitative inferences of past climate change and for predicting future vegetation. We explore this assumption for the Holocene in eastern continental Asia (China, Mongolia). Boosted regression trees (BRT) between fossil pollen taxa percentages (Abies, Artemisia, Betula, Chenopodiaceae, Cyperaceae, Ephedra, Picea, Pinus, Poaceae and Quercus) and climate model outputs of mean annual precipitation (Pann) and mean temperature of the warmest month (Mtwa) for 9 and 6 ka (ka = thousand years before present) were set up and results compared to those obtained from relating modern pollen to modern climate. Overall, our results reveal only slight temporal differences in the pollen-climate relationships. Our analyses suggest that the importance of Pann compared with Mtwa for taxa distribution is higher today than it was at 6 ka and 9 ka. In particular, the relevance of Pann for Picea and Pinus increases and has become the main determinant. This change in the climate-tree pollen relationship parallels a widespread tree pollen decrease in north-central China and the eastern Tibetan Plateau. We assume that this is at least partly related to vegetation-climate disequilibrium originating from human impact. Increased atmospheric CO2 concentration may have permitted the expansion of moisture-loving herb taxa (Cyperaceae and Poaceae) during the late Holocene into arid/semi-arid areas. We furthermore find that the pollen-climate relationship between north-central China and the eastern Tibetan Plateau is generally similar, but that regional differences are larger than temporal differences. In summary, vegetation-climate relationships in China are generally stable in space and time, and pollen-based climate reconstructions can be applied to the Holocene. Regional differences imply the calibration-set should be restricted spatially.

  17. Grass Pollen Allergens

    PubMed Central

    Augustin, Rosa; Hayward, Barbara J.

    1962-01-01

    Cocksfoot and Timothy pollen extracts are each found to contain at least fifteen components antigenic in rabbits. Most of these can also be allergens for man, but only a few are regularly so. These `principal' allergens have now been isolated in highly purified form. Procedures are given for a simple method of preparing extracts for clinical purposes and for the partial separation, concentration and purification of the allergens by means of differential extractions of the pollens and by means of ultrafiltration, isoelectric precipitation and salt fractionations (at acid and neutral pH) of the extracts. Isoelectric precipitations gave highly pigmented acid complexes, two of which moved as single sharp peaks at pH 7.4 in free electrophoresis, but proved to be hardly active by skin tests. Acid NaCl fractionation of the remainder resulted for Cocksfoot and Timothy in the isolation of a nearly white powder (T21.111121112 = T21B) which was weight for weight 1000–10,000 times as active as the pollen from which it had been derived. The powders have retained their activity for 7 years. By gel diffusion tests, they were found to contain two antigens (one in each preparation) which were immunologically partially related, but the Timothy preparation contained in addition the `innermost' `twin' antigens specific for Timothy that we had discovered previously in the crude extracts by gel diffusion methods. Skin reactions could be elicited in hay-fever subjects by prick tests with concentrations of 10-9–10-8 g./ml., which is equivalent to intradermal injections of 10-11–10-10 mg. and represents a 300-fold purification with respect to the concentrates of crude pollen extracts prepared by ultrafiltration and dialysis. Fractionation on DEAE-cellulose of one of the highly purified Timothy preparations (T21.11112112 = T21A) and other, crude Timothy and Cocksfoot extracts resulted in considerable and reproducible separation of the various antigens, with no indication of the

  18. Interspecific variation in resistance of Asian, European, and North American birches (Betula spp.) to bronze birch borer (Coleoptera: Buprestidae).

    PubMed

    Nielsen, David G; Muilenburg, Vanessa L; Herms, Daniel A

    2011-06-01

    Bronze birch borer (Agrilus anxius Gory) is the key pest of birches (Betula spp.) in North America, several of which have been recommended for ornamental landscapes based on anecdotal reports of borer resistance that had not been confirmed experimentally. In a 20-yr common garden experiment initiated in 1979 in Ohio, North American birch species, including paper birch (Betula papyrifera Marshall), 'Whitespire' gray birch (Betula populifolia Marshall), and river birch (Betula nigra L.), were much more resistant to bronze birch borer than species indigenous to Europe and Asia, including European white birch (Betula pendula Roth), downy birch (Betula pubescens Ehrh.), monarch birch (Betula maximowicziana Regel), and Szechuan white birch (Betula szechuanica Jansson). Within 8 yr of planting, every European white, downy, and Szechuan birch had been colonized and killed, although 100% of monarch birch had been colonized and 88% of these plants were killed after nine years. Conversely, 97% of river birch, 76% of paper birch, and 73% Whitespire gray birch were alive 20 yr after planting, and river birch showed no evidence of colonization. This pattern is consistent with biogeographic theory of plant defense: North American birch species that share a coevolutionary history with bronze birch borer were much more resistant than naïve hosts endemic to Europe and Asia, possibly by virtue of evolution of targeted defenses. This information suggests that if bronze birch borer were introduced to Europe or Asia, it could threaten its hosts there on a continental scale. This study also exposed limitations of anecdotal observation as evidence of host plant resistance.

  19. Effect of nitrogen dioxide and sulfur dioxide on viability and morphology of oak pollen.

    PubMed

    Ouyang, Yuhui; Xu, Zhaojun; Fan, Erzhong; Li, Ying; Zhang, Luo

    2016-01-01

    Nitrogen dioxide (NO2) and sulfur dioxide (SO2) generated by excessive coal combustion and motor vehicle emissions are major air pollutants in the large cities of China. The objective of our study was to determine the effects of the exposure of oak pollens (Quercusmongolica) to several concentrations of NO2 or SO2. Pollen grains were exposed to 0.5 ppm to 5.0 ppm NO2 or SO2 for 4 hours and assessed for morphological damage by field emission scanning electron microscopy and for viability using the trypan blue stain. Morphological changes in pollen grains were also examined after contact with acid solutions at pH 4.0 to pH 7.0. Exposure to NO2 or SO2 significantly damaged pollen grains at all concentrations investigated, compared to exposure to air; with exposure to concentrations of 0.5 ppm to 2 ppm resulting in fissures or complete breaks in the exine and a concentration of 5 ppm resulting in complete breakdown and release of pollen cytoplasmic granules. Significantly greater amounts of pollen grain were damaged after exposure to SO2 (15.5-20.4%) than after exposure to NO2 (7.1-14.7%). Similarly, exposure to NO2 or SO2 significantly decreased the viability of pollen grains, compared with exposure to air; with SO2 being slightly more detrimental than NO2. Exposure to acid solutions also induced pollen damage, which appeared to be pH-dependent (from 24.6% at pH 6.0 to 55.8% at pH 4.0; compared to 3.8% at pH 7.0). Short-term exposure of oak pollen to high concentrations of SO2 or NO2 significantly increases their fragility and disruption, leading to subsequent release of pollen cytoplasmic granules into the atmosphere. These results suggest that heightened air pollution during the oak pollen season may possibly increase the incidence of allergic airway disease in sensitized individuals by facilitating the bioavailability of airborne pollen allergens. © 2015 ARS-AAOA, LLC.

  20. Pollen Aquaporins: The Solute Factor.

    PubMed

    Pérez Di Giorgio, Juliana A; Soto, Gabriela C; Muschietti, Jorge P; Amodeo, Gabriela

    2016-01-01

    In the recent years, the biophysical properties and presumed physiological role of aquaporins (AQPs) have been expanded to specialized cells where water and solute exchange are crucial traits. Complex but unique processes such as stomatal movement or pollen hydration and germination have been addressed not only by identifying the specific AQP involved but also by studying how these proteins integrate and coordinate cellular activities and functions. In this review, we referred specifically to pollen-specific AQPs and analyzed what has been assumed in terms of transport properties and what has been found in terms of their physiological role. Unlike that in many other cells, the AQP machinery in mature pollen lacks plasma membrane intrinsic proteins, which are extensively studied for their high water capacity exchange. Instead, a variety of TIPs and NIPs are expressed in pollen. These findings have altered the initial understanding of AQPs and water exchange to consider specific and diverse solutes that might be critical to sustaining pollen's success. The spatial and temporal distribution of the pollen AQPs also reflects a regulatory mechanism that allowing a properly adjusting water and solute exchange.

  1. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.

    PubMed

    García-Mozo, H; Yaezel, L; Oteros, J; Galán, C

    2014-03-01

    Analysis of long-term airborne pollen counts makes it possible not only to chart pollen-season trends but also to track changing patterns in flowering phenology. Changes in higher plant response over a long interval are considered among the most valuable bioindicators of climate change impact. Phenological-trend models can also provide information regarding crop production and pollen-allergen emission. The interest of this information makes essential the election of the statistical analysis for time series study. We analysed trends and variations in the olive flowering season over a 30-year period (1982-2011) in southern Europe (Córdoba, Spain), focussing on: annual Pollen Index (PI); Pollen Season Start (PSS), Peak Date (PD), Pollen Season End (PSE) and Pollen Season Duration (PSD). Apart from the traditional Linear Regression analysis, a Seasonal-Trend Decomposition procedure based on Loess (STL) and an ARIMA model were performed. Linear regression results indicated a trend toward delayed PSE and earlier PSS and PD, probably influenced by the rise in temperature. These changes are provoking longer flowering periods in the study area. The use of the STL technique provided a clearer picture of phenological behaviour. Data decomposition on pollination dynamics enabled the trend toward an alternate bearing cycle to be distinguished from the influence of other stochastic fluctuations. Results pointed to show a rising trend in pollen production. With a view toward forecasting future phenological trends, ARIMA models were constructed to predict PSD, PSS and PI until 2016. Projections displayed a better goodness of fit than those derived from linear regression. Findings suggest that olive reproductive cycle is changing considerably over the last 30years due to climate change. Further conclusions are that STL improves the effectiveness of traditional linear regression in trend analysis, and ARIMA models can provide reliable trend projections for future years taking into

  2. Near-surface and columnar measurements with a micro pulse lidar of atmospheric pollen in Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Izquierdo, Rebeca; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; Baldasano, José Maria

    2016-06-01

    We present for the first time continuous hourly measurements of pollen near-surface concentration and lidar-derived profiles of particle backscatter coefficients and of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 27 and 31 March 2015. Daily average concentrations ranged from 1082 to 2830 pollen m-3. Platanus and Pinus pollen types represented together more than 80 % of the total pollen. Maximum hourly pollen concentrations of 4700 and 1200 m-3 were found for Platanus and Pinus, respectively. Every day a clear diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles with maxima usually reached between 12:00 and 15:00 UT. A method based on the lidar polarization capabilities was used to retrieve the contribution of the pollen to the total aerosol optical depth (AOD). On average the diurnal (09:00-17:00 UT) pollen AOD was 0.05, which represented 29 % of the total AOD. Maximum values of the pollen AOD and its contribution to the total AOD reached 0.12 and 78 %, respectively. The diurnal means of the volume and particle depolarization ratios in the pollen plume were 0.08 and 0.14, with hourly maxima of 0.18 and 0.33, respectively. The diurnal mean of the height of the pollen plume was found at 1.24 km with maxima varying in the range of 1.47-1.78 km. A correlation study is performed (1) between the depolarization ratios and the pollen near-surface concentration to evaluate the ability of the former parameter to monitor pollen release and (2) between the depolarization ratios as well as pollen AOD and surface downward solar fluxes, which cause the atmospheric turbulences responsible for the particle vertical motion, to examine the dependency of the depolarization ratios and the pollen AOD upon solar fluxes. For the volume depolarization ratio the first correlation study yields to correlation coefficients ranging 0.00-0.81 and the second to

  3. Atmospheric pollen count in Monterrey, Mexico.

    PubMed

    González-Díaz, Sandra N; Rodríguez-Ortiz, Pablo G; Arias-Cruz, Alfredo; Macías-Weinmann, Alejandra; Cid-Guerrero, Dagoberto; Sedo-Mejia, Giovanni A

    2010-01-01

    There are few reports of pollen count and identification in Mexico; therefore, it is important to generate more information on the subject. This study was designed to describe the prevalence of pollen in the city of Monterrey, Mexico, during the year 2004. Atmospheric pollen was collected with a Hirst air sampler, with an airflow of 10 L/minute during 2004. Pollen was identified with light microscopy; the average monthly pollen count as well as total was calculated from January 2004 to January 2005. The months with the highest concentration of pollen were February and March (289 and 142 grains/m(3) per day, respectively), and July and November had the lowest concentration (20 and 11 grains/m(3) per day, respectively). Most of the pollen recollected corresponded to tree pollen (72%). Fraxinus spp had the highest concentration during the year (19 grains/m(3) per day; 27.5% of the total concentration of pollen). Tree pollen predominated from January through March; with Fraxinus spp, Morus spp, Celtis spp, Cupressus spp, and Pinus spp as the most important. Weed pollen predominated in May, June, and December and the most frequently identified, were Amaranthaceae/Chenopodiaceae, Ambrosia spp, and Parietaria spp. The highest concentration of grass pollen was reported during the months of May, June, September, October, and December with Gramineae/Poaceae predominating. Tree pollen was the most abundant during the year, with the ash tree having the highest concentration. Weed and grass pollen were perennial with peaks during the year.

  4. Pollen Forecast and Dispersion Modelling

    NASA Astrophysics Data System (ADS)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  5. Late Quaternary vegetation and environments in the Verkhoyansk Mountains region (NE Asia) reconstructed from a 50-kyr fossil pollen record from Lake Billyakh

    NASA Astrophysics Data System (ADS)

    Müller, Stefanie; Tarasov, Pavel E.; Andreev, Andrei A.; Tütken, Thomas; Gartz, Steffi; Diekmann, Bernhard

    2010-08-01

    Here we present a detailed radiocarbon-dated 936 cm long pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) situated in the western part of the Verkhoyansk Mountains, about 140 km south of the Arctic Circle. A set of 53 surface pollen samples representing tundra, cold deciduous forest and taiga was collected in northern and central Yakutia communities to verify the accuracy of the quantitative biome reconstruction method and to obtain a more precise attribution of the identified pollen taxa to the main regional biomes. The adjusted method is then applied to the pollen record from Lake Billyakh to gain a reconstruction of vegetation and environments since about 50.7 kyr BP. The results of the pollen analysis and pollen-based biome reconstruction suggest that herbaceous tundra and steppe communities dominated the area from 50.7 to 13.5 kyr BP. Relatively low pollen concentrations and high percentages of herbaceous pollen taxa (mainly Cyperaceae, Poaceae and Artemisia) likely indicate a reduced vegetation cover and/or lower pollen production. On the other hand, extremely low percentages of drought-tolerant taxa, such as Chenopodiaceae and Ephedra, and the constant presence of various mesophyllous herbaceous ( Thalictrum, Rosaceae, Asteraceae) and shrubby taxa ( Betula sect. Nanae/Fruticosae, Duschekia fruticosa, Salix) in the pollen assemblages prevent an interpretation of the last glacial environments around Lake Billyakh as extremely arid. The lowest pollen percentages of woody taxa and the highest values of Artemisia pollen attest that the 31-15 kyr BP period as the driest and coldest interval of the entire record. A relative high content of taxa representing shrub tundra communities and the presence of larch pollen recorded prior to 31 kyr and after 13.5 kyr BP likely indicate interstadial climate amelioration associated with the middle and latest parts of the last glacial. An increase in pollen percentages of herbaceous taxa around 12 kyr BP

  6. Pollen mixing in pollen generalist solitary bees: a possible strategy to complement or mitigate unfavourable pollen properties?

    PubMed

    Eckhardt, Michael; Haider, Mare; Dorn, Silvia; Müller, Andreas

    2014-05-01

    Generalist herbivorous insects, which feed on plant tissue that is nutritionally heterogeneous or varies in its content of secondary metabolites, often benefit from dietary mixing through more balanced nutrient intake or reduced exposure to harmful secondary metabolites. Pollen is similarly heterogeneous as other plant tissue in its content of primary and secondary metabolites, suggesting that providing their offspring with mixed pollen diets might be a promising strategy for pollen generalist bees to complement nutrient imbalances or to mitigate harmful secondary metabolites of unfavourable pollen. In the present study, we compared larval performance of the pollen generalist solitary bee species Osmia cornuta (Megachilidae) on five experimental pollen diets that consisted of different proportions of unfavourable pollen diet of Ranunculus acris (Ranunculaceae) and favourable pollen diet of Sinapis arvensis (Brassicaceae). In addition, we microscopically analysed the pollen contained in the scopal brushes of field-collected females of O. cornuta and three closely related species to elucidate to what degree these pollen generalist bees mix pollen of different hosts in their brood cells. In striking contrast to a pure Ranunculus pollen diet, which had a lethal effect on most developing larvae of O. cornuta, larval survival, larval development time and adult body mass of both males and females remained nearly unaffected by the admixture of up to 50% of Ranunculus pollen diet to the larval food. Between 42% and 66% of all female scopal pollen loads analysed contained mixtures of pollen from two to six plant families, indicating that pollen mixing is a common behaviour in O. cornuta and the three related bee species. The present study provides the first evidence that the larvae of pollen generalist bees can benefit from the nutrient content of unfavourable pollen without being negatively affected by its unfavourable chemical properties if such pollen is mixed with

  7. Coconut (Cocos nucifera l.) pollen cryopreservation.

    PubMed

    Karun, A; Sjini, K K; Niral, V; Amarnth, C H; Remya, P; Rajesh, M K; Samsudeen, K; Jerard, B A; Engelmann, F

    2014-01-01

    Coconut genetic resources are threatened by pests and pathogens, natural hazards and human activities. Cryopreservation is the only method allowing the safe and cost-effective long-term conservation of recalcitrant seed species such as coconut. The objective of this work was to test the effect of cryopreservation and of cryostorage duration on coconut pollen germination and fertility. Pollen of two coconut varieties (West Coast Tall WWCTW and Chowghat Orange Dwarf CODC) was collected in March-May over three successive years, desiccated to 7.5 % moisture content (FW) and cryopreserved by direct immersion in liquid nitrogen. Germination and pollen tube length (PTL) of desiccated and cryopreserved pollen were not significantly different for both WCT and COD over the three harvest months of the three consecutive years of study. Pollen germination ranged from 24 to 32 % in desiccated pollen whereas it was between 26 and 29 % in cryopreserved COD pollen. In the case of WCT, germination ranged from 30 to 31 % in desiccated pollen, while it was between 28 and 32 % in cryopreserved pollen. PTL of cryopreserved pollen ranged between 224-390 nm and 226-396 mm for COD and WCT, respectively. Germination of COD pollen varied between 29.0 and 44.1 % after 4 years and 1.0/1.5 years cryostorage, respectively. Germination of WCT pollen did not change significantly between 0 and 6 years cryostorage, being comprised between 32 (24 h) and 40 % (1.5 years). Germination and vigour of cryopreserved pollen were generally higher compared to that of pollen dried in oven and non-cryopreserved. Normal seed set was observed in COD and WCT palms using pollen cryostored for 6 months and 4 years. Cryopreserved pollen of five Tall and five Dwarf accessions displayed 24-31 % and 25-49 % germination, respectively. These results show that it is now possible to establish pollen cryobanks to contribute to coconut germplasm long-term conservation.

  8. Pollen Aquaporins: The Solute Factor

    PubMed Central

    Pérez Di Giorgio, Juliana A.; Soto, Gabriela C.; Muschietti, Jorge P.; Amodeo, Gabriela

    2016-01-01

    In the recent years, the biophysical properties and presumed physiological role of aquaporins (AQPs) have been expanded to specialized cells where water and solute exchange are crucial traits. Complex but unique processes such as stomatal movement or pollen hydration and germination have been addressed not only by identifying the specific AQP involved but also by studying how these proteins integrate and coordinate cellular activities and functions. In this review, we referred specifically to pollen-specific AQPs and analyzed what has been assumed in terms of transport properties and what has been found in terms of their physiological role. Unlike that in many other cells, the AQP machinery in mature pollen lacks plasma membrane intrinsic proteins, which are extensively studied for their high water capacity exchange. Instead, a variety of TIPs and NIPs are expressed in pollen. These findings have altered the initial understanding of AQPs and water exchange to consider specific and diverse solutes that might be critical to sustaining pollen’s success. The spatial and temporal distribution of the pollen AQPs also reflects a regulatory mechanism that allowing a properly adjusting water and solute exchange. PMID:27881985

  9. Does stronger pollen competition improve offspring fitness when pollen load does not vary?

    PubMed

    Pélabon, Christophe; Hennet, Lauriane; Bolstad, Geir H; Albertsen, Elena; Opedal, Øystein H; Ekrem, Runa K; Armbruster, W Scott

    2016-03-01

    Competition among pollen grains from a single donor is expected to increase the quality of the offspring produced because of the recessive deleterious alleles expressed during pollen-tube growth. However, evidence for such an effect is inconclusive; a large number of studies suffer from confounding variation in pollen competition with variation in pollen load. In this study, we tested the effect of pollen competition on offspring performance independently of pollen-load variation. We compared seed mass and early seedling performance in Dalechampia scandens (Euphorbiaceae) between crosses in which variation in pollen competition was achieved, without variation in pollen load, by manipulating the dispersion of pollen grains on the stigmas. Despite a large sample size (211 crosses on 20 maternal plants), we failed to find an effect of pollen competition on seed characteristics or early seedling performance. Paternal effects were always limited, and pollen competition never reduced the within-father (residual) variance. These results suggest that limited within-donor variation in genetic quality of pollen grains reduces the potential benefits of pollen competition in the study population. The lack of paternal effects on early sporophyte performance further suggests that benefits of pollen competition among pollen from multiple donors should be limited as well, and it raises questions about the significance of pollen competition as a mechanism of sexual selection. © 2016 Botanical Society of America.

  10. National Allergy Bureau Pollen and Mold Report

    MedlinePlus

    ... Search Search AAAAI National Allergy Bureau Pollen and Mold Report Date: April 12, 2017 Location: San Antonio ( ... Service can automatically email you daily pollen and mold reports. Click here sign up! Return to Map ...

  11. Bioassaying for ozone with pollen systems

    SciTech Connect

    Feder, W.A.

    1981-01-01

    Sensitivity to ozone of pollen germinating in vitro is closely correlated with ozone sensitivity of the pollen parent. Ozone-sensitive and tolerant pollen populations have been identified in tobacco, petunia, and tomato cultivars. The rate of tube elongation can be reversibly slowed or stopped by exposure to low concentrations of ozone. The performance of selected pollen populations can then be used to bioassay ozone in ambient air by introducing the air sample into a growth chamber where ozone-sensitive pollen in growing. Year-round pollen producion can be achieved in the greenhouse. Harvested pollen can be tested, packaged, and transported to user facilities without loss of vigor. Pollen populations are inexpensive to produce, respond reliably, and are simple to use as a bioassay for air quality.

  12. Pollen aquaporins: What are they there for?

    PubMed

    Pérez Di Giorgio, Juliana Andrea; Barberini, María Laura; Amodeo, Gabriela; Muschietti, Jorge Prometeo

    2016-09-01

    In order to provide more insight into the function of aquaporins during pollination, we characterized NIP4;1 and NIP4;2, 2 pollen-specific aquaporins of Arabidopsis thaliana. NIP4;1 and NIP4;2 displayed high amino acid identity. RT-PCR and GUS promoter analysis showed that they have different expression patterns. NIP4;1 is expressed at low levels in mature pollen, while NIP4;2 is highly expressed only during pollen tube growth. Single T-DNA nip4;1 and nip4;2 mutants and double amiRNA nip4;1 nip4;2 knockdowns showed reduced male fertility due to deficient pollen germination and pollen tube length. Functional assays in oocytes showed that NIP4;1 and NIP4;2 transport water and nonionic solutes. Here, the participation of the different pollen aquaporins in pollen hydration and pollen tube growth is discussed.

  13. Shifting Weather Can Unleash Pollen 'Superburst'

    MedlinePlus

    ... 166183.html Shifting Weather Can Unleash Pollen 'Superburst' Trees, grasses and weeds may bloom all at once, ... news release. Usually, pollens come in waves. First, trees, then weeds, then grasses. But this year, they ...

  14. Holocene rapid climatic changes in the Okhotsk Sea and Amur watershed based on pollen analysis

    NASA Astrophysics Data System (ADS)

    Kokfelt, U.; Tiedemann, R.; Nuernberg, D.; Biebow, N.; Kozdon, R.; Lembke, L.; Kaiser, A.

    2003-04-01

    Recent investigations in the Sea of Okhotsk reveal high resolution records of rapid past climatic and vegetation pattern changes within this marginal sea and the adjacent Amur river drainage basin. The watershed of the Amur undergoes exteme seasonal as well as longer term climatic changes. A humid SE-Asia monsoon regime in summer is contrasted by cold, dry continental climate of Siberia in wintertime. Thus this region is crucial for our understanding of complex changes and shifts of athmospheric systems in the subarctic Far East and western North Pacific region. Gravity core LV28-4-4 was recovered from the continental margin off NE Sakhalin. Our age model consists of 16 AMS radiocarbon control points from planktic foraminifera and benthic shell fragments fit together by ninth order polynomial regressions. According to this, sedimentation rates exceed 100cm/kyr. Thus to date our investigations gain a temporal resolution of 200-600 years between discrete samples. We use analysis of terrestrial pollen and freshwater algae as proxies for vegetation changes in the Amur catchment area and the adjacent Siberian hinterland. Within this 930 cm long sequence, four pollen zones were distinguished: Pollen zone I (12,600-11,800 years BP), which comprises the Younger Dryas event, was dominated by non-arboreale taxa such as grasses (gramineae) and sedges (cyperaceae). The following pollen zone II (11,800-8,500 years BP) was in general dominated by birch (Betula) and elder (Alnus). The rise of spruce-dominated taiga (Picea jezoensis and P. glehnii) is clearly seen to the end of this zone and shows the preboreal warming. The oldest part of the pollen zone II has distinctly high values of birch and spruce and very low values of gramineae and cyperaceae suggesting a period of intense warming. Pollenzone III (8,500-3,600 years BP) is dominated by darkneedled taiga components and increased oak (Quercus) values and reflects the Holocene climatic optimum. The latest pollen zone IV

  15. Final Pleistocene and Holocene pollen stratigraphic sequence from the Cloquet River area, St. Louis Co. , NE Minnesota

    SciTech Connect

    Hill, C.L.; Rapp, G.R. Jr.; Huber, J.K.

    1985-01-01

    A five-meter pollen sequence from a bog has been studied as part of a project concerned with the late-Quaternary paleoenvironmental setting and prehistory of northeastern Minnesota. The stratigraphic sequence is situated on an outwash plain derived from the Automba phase of glaciation (ca. 15,000 B.P.) and is located near a series of surface archaeological localities containing possible late Paleoindian lithic assemblages. Loss-on-ignition and particle size analyses reveal that the top section of the core, to a depth of about 350 cm, is composed predominantly of organics, the remaining 150 cm is dominated by mud. Radicarbon ages of 9270 +/- 190 B.P. (UCR-1825) for the 350-355 cm interval, and 9420 +/- 180 (UCR-1826) for the 350-364 cm interval, were obtained. Data derived from pollen counts made at 20 cm intervals throughout the sequence indicate the core can be divided into several pollen-stratigraphic zones. The lowest zone, from the base of the core to about 440 cm, contains Cyperaceae (initially at about 60% total pollen) and is also characterized by Picea and Salix. (ca5%). Above this, there is a zone which ends at about 360 cm and contains a Betula peak (>65%). These two zones are considered to reflect the presence of tundra-like and dwarf-birch tundra vegetational regimes in the area during the late Pleistocene. Several pollen stratigraphic zones above 360 cm provide an indication of the Holocene vegetational setting, and show the increasing dominance of Pinus. The paleoenvironmental record obtained from this core, along with studies of the geologic setting, late Quaternary glacial sequence, and physiographic situation of archaeological localities, may help to elucidate the conditions prevalent during this time and provide a basis for a clearer understanding of the prehistoric ecology of northeastern Minnesota.

  16. Use of Remote Sensing and Dust Modelling to Evaluate Ecosystem Phenology and Pollen Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Watts, Carol; Shaw, Patrick

    2007-01-01

    The impact of pollen release and downwind concentrations can be evaluated utilizing remote sensing. Previous NASA studies have addressed airborne dust prediction systems PHAiRS (Public Health Applications in Remote Sensing) which have determined that pollen forecasts and simulations are possible. By adapting the deterministic dust model (as an in-line system with the National Weather Service operational forecast model) used in PHAiRS to simulate downwind dispersal of pollen, initializing the model with pollen source regions from MODIS, assessing the results a rapid prototype concept can be produced. We will present the results of our effort to develop a deterministic model for predicting and simulating pollen emission and downwind concentration to study details or phenology and meteorology and their dependencies, and the promise of a credible real time forecast system to support public health and agricultural science and service. Previous studies have been done with PHAiRS research, the use of NASA data, the dust model and the PHAiRS potential to improve public health and environmental services long into the future.

  17. Use of Remote Sensing and Dust Modelling to Evaluate Ecosystem Phenology and Pollen Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Watts, Carol; Shaw, Patrick

    2007-01-01

    The impact of pollen release and downwind concentrations can be evaluated utilizing remote sensing. Previous NASA studies have addressed airborne dust prediction systems PHAiRS (Public Health Applications in Remote Sensing) which have determined that pollen forecasts and simulations are possible. By adapting the deterministic dust model (as an in-line system with the National Weather Service operational forecast model) used in PHAiRS to simulate downwind dispersal of pollen, initializing the model with pollen source regions from MODIS, assessing the results a rapid prototype concept can be produced. We will present the results of our effort to develop a deterministic model for predicting and simulating pollen emission and downwind concentration to study details or phenology and meteorology and their dependencies, and the promise of a credible real time forecast system to support public health and agricultural science and service. Previous studies have been done with PHAiRS research, the use of NASA data, the dust model and the PHAiRS potential to improve public health and environmental services long into the future.

  18. [The epidemiology of pollen allergy].

    PubMed

    Charpin, D; Caillaud, D

    2014-04-01

    The prevalence of seasonal allergic rhinitis can be established through surveys performed in a sample of the general population. These surveys are based on a questionnaire, which could lead to an overestimate of prevalence rates, and on measurements of specific IgE, which need to be interpreted in the light of the responses to the questionnaire. Such surveys are few in France and need to be updated. Risk factors for seasonal allergic rhinitis are genetic, epigenetic and environmental. Relationships between exposure to pollen and health can be documented through ecological and panel surveys. Panel surveys may give information on threshold levels and dose-response relationships. In addition to pollen exposure, global warming and air pollutants act as cofactors. Monitoring of both pollen exposure and its health effects should be encouraged and strengthened.

  19. Pollen Allergens for Molecular Diagnosis.

    PubMed

    Pablos, Isabel; Wildner, Sabrina; Asam, Claudia; Wallner, Michael; Gadermaier, Gabriele

    2016-04-01

    Pollen allergens are one of the main causes of type I allergies affecting up to 30% of the population in industrialized countries. Climatic changes affect the duration and intensity of pollen seasons and may together with pollution contribute to increased incidences of respiratory allergy and asthma. Allergenic grasses, trees, and weeds often present similar habitats and flowering periods compromising clinical anamnesis. Molecule-based approaches enable distinction between genuine sensitization and clinically mostly irrelevant IgE cross-reactivity due to, e. g., panallergens or carbohydrate determinants. In addition, sensitivity as well as specificity can be improved and lead to identification of the primary sensitizing source which is particularly beneficial regarding polysensitized patients. This review gives an overview on relevant pollen allergens and their usefulness in daily practice. Appropriate allergy diagnosis is directly influencing decisions for therapeutic interventions, and thus, reliable biomarkers are pivotal when considering allergen immunotherapy in the context of precision medicine.

  20. Pine pollens frozen five years produce seed

    Treesearch

    R.Z. Callaham; R.J. Steinhoff

    1966-01-01

    Deep-freezing of pine pollen offers a means of prolonging its storage life. Early work showed that pollen could be frozen without losing its viability. A study was started in 1958 at the Institute of Forest Genetics at Placerville to determine how long frozen pollen of several pines would remain viable. This paper reports in vitro germination and in vivo seed...

  1. 50-kyr vegetation history in the western Verkhoyansk Mountains region (NE Asia) reconstructed from fossil pollen data

    NASA Astrophysics Data System (ADS)

    Müller, Stefanie; Tarasov, Pavel E.; Andreev, Andrei A.; Tütken, Thomas; Gartz, Steffi; Diekmann, Bernhard

    2010-05-01

    A detailed radiocarbon-dated pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) situated in the western part of the Verkhoyansk Mountains, about 140 km south of the Arctic Circle is presented. A set of 53 surface pollen samples representing tundra, cold-deciduous forest and taiga was collected in northern and central Yakutia communities to verify the accuracy of the quantitative biome reconstruction method and to obtain a more precise attribution of the identified pollen taxa to the main regional biomes. The adjusted method is then applied to the pollen record from Lake Billyakh to gain an objective reconstruction of vegetation and environments since about 50.7 kyr BP. The results of the pollen analysis and pollen-based biome reconstruction suggest that herbaceous tundra and steppe communities dominated the area from 50.7 to 13.5 kyr BP. The lowest pollen percentages of woody taxa and the highest values of Artemisia pollen attest that the 31-15 kyr BP period as the driest and coldest interval of the entire record. A relative high content of taxa representing shrub tundra communities and the presence of larch pollen recorded prior to 31 kyr and after 13.5 kyr BP likely indicate interstadial climate amelioration associated with the middle and latest parts of the last glacial. An increase in pollen percentages of herbaceous taxa around 12 kyr BP suggests broader distribution of drier communities in response to the colder and drier than present climate of the Younger Dryas. The onset of the Holocene is marked by the highest values of shrub taxa, mainly Betula sect. Nanae/Fruticosae. Pollen percentages of arboreal taxa increase gradually and reach maximum values after 7 kyr BP. The latter maximum mainly reflects the spread of Pinus sylvestris in central Yakutia as a response to the mid-Holocene climatic optimum. The quasi-continuous presence of larch, shrubby birch and alder pollen throughout the whole record is the most striking feature of the pollen

  2. A new approach used to explore associations of current Ambrosia pollen levels with current and past meteorological elements

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Fülöp, Andrea; Tusnády, Gábor

    2015-09-01

    The paper examines the sensitivity of daily airborne Ambrosia (ragweed) pollen levels of a current pollen season not only on daily values of meteorological variables during this season but also on the past meteorological conditions. The results obtained from a 19-year data set including daily ragweed pollen counts and ten daily meteorological variables are evaluated with special focus on the interactions between the phyto-physiological processes and the meteorological elements. Instead of a Pearson correlation measuring the strength of the linear relationship between two random variables, a generalised correlation that measures every kind of relationship between random vectors was used. These latter correlations between arrays of daily values of the ten meteorological elements and the array of daily ragweed pollen concentrations during the current pollen season were calculated. For the current pollen season, the six most important variables are two temperature variables (mean and minimum temperatures), two humidity variables (dew point depression and rainfall) and two variables characterising the mixing of the air (wind speed and the height of the planetary boundary layer). The six most important meteorological variables before the current pollen season contain four temperature variables (mean, maximum, minimum temperatures and soil temperature) and two variables that characterise large-scale weather patterns (sea level pressure and the height of the planetary boundary layer). Key periods of the past meteorological variables before the current pollen season have been identified. The importance of this kind of analysis is that a knowledge of the past meteorological conditions may contribute to a better prediction of the upcoming pollen season.

  3. A new approach used to explore associations of current Ambrosia pollen levels with current and past meteorological elements.

    PubMed

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Fülöp, Andrea; Tusnády, Gábor

    2015-09-01

    The paper examines the sensitivity of daily airborne Ambrosia (ragweed) pollen levels of a current pollen season not only on daily values of meteorological variables during this season but also on the past meteorological conditions. The results obtained from a 19-year data set including daily ragweed pollen counts and ten daily meteorological variables are evaluated with special focus on the interactions between the phyto-physiological processes and the meteorological elements. Instead of a Pearson correlation measuring the strength of the linear relationship between two random variables, a generalised correlation that measures every kind of relationship between random vectors was used. These latter correlations between arrays of daily values of the ten meteorological elements and the array of daily ragweed pollen concentrations during the current pollen season were calculated. For the current pollen season, the six most important variables are two temperature variables (mean and minimum temperatures), two humidity variables (dew point depression and rainfall) and two variables characterising the mixing of the air (wind speed and the height of the planetary boundary layer). The six most important meteorological variables before the current pollen season contain four temperature variables (mean, maximum, minimum temperatures and soil temperature) and two variables that characterise large-scale weather patterns (sea level pressure and the height of the planetary boundary layer). Key periods of the past meteorological variables before the current pollen season have been identified. The importance of this kind of analysis is that a knowledge of the past meteorological conditions may contribute to a better prediction of the upcoming pollen season.

  4. BURSTING POLLEN is required to organize the pollen germination plaque and pollen tube tip in Arabidopsis thaliana.

    PubMed

    Hoedemaekers, Karin; Derksen, Jan; Hoogstrate, Suzanne W; Wolters-Arts, Mieke; Oh, Sung-Aeong; Twell, David; Mariani, Celestina; Rieu, Ivo

    2015-04-01

    Pollen germination may occur via the so-called germination pores or directly through the pollen wall at the site of contact with the stigma. In this study, we addressed what processes take place during pollen hydration (i.e. before tube emergence), in a species with extra-poral pollen germination, Arabidopsis thaliana. A T-DNA mutant population was screened by segregation distortion analysis. Histological and electron microscopy techniques were applied to examine the wild-type and mutant phenotypes. Within 1 h of the start of pollen hydration, an intine-like structure consisting of cellulose, callose and at least partly de-esterified pectin was formed at the pollen wall. Subsequently, this 'germination plaque' gradually extended and opened up to provide passage for the cytoplasm into the emerging pollen tube. BURSTING POLLEN (BUP) was identified as a gene essential for the correct organization of this plaque and the tip of the pollen tube. BUP encodes a novel Golgi-located glycosyltransferase related to the glycosyltransferase 4 (GT4) subfamily which is conserved throughout the plant kingdom. Extra-poral pollen germination involves the development of a germination plaque and BUP defines the correct plastic-elastic properties of this plaque and the pollen tube tip by affecting pectin synthesis or delivery.

  5. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  6. A group-1 grass pollen allergen influences the outcome of pollen competition in maize.

    PubMed

    Valdivia, Elene R; Wu, Yajun; Li, Lian-Chao; Cosgrove, Daniel J; Stephenson, Andrew G

    2007-01-17

    Worldwide, 400 million people suffer from hay fever and seasonal asthma. The major causative agents of these allergies are pollen specific proteins called the group-1 grass pollen allergens. Although details of their antigenicity have been studied for 40 years with an eye towards immunotherapy, their function in the plant has drawn scant attention. Zea m 1 constitutes a class of abundant grass pollen allergens coded for by several genes that loosen the walls of grass cells, including the maize stigma and style. We have examined the impact of a transposon insertion into one of these genes (EXPB1, the most abundant isoform of Zea m 1) on the production of Zea m 1 protein, pollen viability, and pollen tube growth, both in vitro and in vivo. We also examined the effect of the insertional mutation on the competitive ability of the pollen by experimentally varying the sizes of the pollen load deposited onto stigmas using pollen from heterozygous plants and then screening the progeny for the presence of the transposon using PCR. We found that the insertional mutation reduced the levels of Zea m 1 in maize pollen, but had no effect on pollen viability, in vitro pollen tube growth or the proportion of progeny sired when small pollen loads are deposited onto stigmas. However, when large pollen loads are deposited onto the stigmas, the transposon mutation is vastly underrepresented in the progeny, indicating that this major pollen allergen has a large effect on pollen tube growth rates in vivo, and plays an important role in determining the outcome of the pollen-pollen competition for access to the ovules. We propose that the extraordinary abundance (4% of the extractable protein in maize pollen) of this major pollen allergen is the result of selection for a trait that functions primarily in providing differential access to ovules.

  7. Proteomics of pollen development and germination.

    PubMed

    Dai, Shaojun; Wang, Tai; Yan, Xiufeng; Chen, Sixue

    2007-12-01

    In higher plants, pollen grains represent the vestiges of a highly reduced male gametophyte generation. After germination, the pollen tube delivers the sperm cells by tip-growing to the embryo sac for fertilization. Besides the intrinsic importance for sexual reproduction, pollen development and germination serve as an attractive system to address important questions related to cell division, cell differentiation, polar growth, cell-cell interaction, and cell fate. Recently, pollen functional specification has been well-studied using multidisciplinary approaches. Here, we review recent advances in proteomics of pollen development and germination.

  8. Isolation, Characterization and Anticancer Potential of Cytotoxic Triterpenes from Betula utilis Bark.

    PubMed

    Mishra, Tripti; Arya, Rakesh Kumar; Meena, Sanjeev; Joshi, Pushpa; Pal, Mahesh; Meena, Baleshwar; Upreti, D K; Rana, T S; Datta, Dipak

    2016-01-01

    Betula utilis, also known as Himalayan silver birch has been used as a traditional medicine for many health ailments like inflammatation, HIV, renal and bladder disorders as well as many cancers from ages. Here, we performed bio-guided fractionation of Betula utilis Bark (BUB), in which it was extracted in methanol and fractionated with hexane, ethyl acetate, chloroform, n-butanol and water. All six fractions were evaluated for their in-vitro anticancer activity in nine different cancer cell lines and ethyl acetate fraction was found to be one of the most potent fractions in terms of inducing cytotoxic activity against various cancer cell lines. By utilizing column chromatography, six triterpenes namely betulin, betulinic acid, lupeol, ursolic acid (UA), oleanolic acid and β-amyrin have been isolated from the ethyl acetate extract of BUB and structures of these compounds were unraveled by spectroscopic methods. β-amyrin and UA were isolated for the first time from Betula utilis. Isolated triterpenes were tested for in-vitro cytotoxic activity against six different cancer cell lines where UA was found to be selective for breast cancer cells over non-tumorigenic breast epithelial cells (MCF 10A). Tumor cell selective apoptotic action of UA was mainly attributed due to the activation of extrinsic apoptosis pathway via up regulation of DR4, DR5 and PARP cleavage in MCF-7 cells over non-tumorigenic MCF-10A cells. Moreover, UA mediated intracellular ROS generation and mitochondrial membrane potential disruption also play a key role for its anti cancer effect. UA also inhibits breast cancer migration. Altogether, we discovered novel source of UA having potent tumor cell specific cytotoxic property, indicating its therapeutic potential against breast cancer.

  9. Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers.

    PubMed

    Wang, Nian; Thomson, Marian; Bodles, William J A; Crawford, Robert M M; Hunt, Harriet V; Featherstone, Alan Watson; Pellicer, Jaume; Buggs, Richard J A

    2013-06-01

    New sequencing technologies allow development of genome-wide markers for any genus of ecological interest, including plant genera such as Betula (birch) that have previously proved difficult to study due to widespread polyploidy and hybridization. We present a de novo reference genome sequence assembly, from 66× short read coverage, of Betula nana (dwarf birch) - a diploid that is the keystone woody species of subarctic scrub communities but of conservation concern in Britain. We also present 100 bp PstI RAD markers for B. nana and closely related Betula tree species. Assembly of RAD markers in 15 individuals by alignment to the reference B. nana genome yielded 44-86k RAD loci per individual, whereas de novo RAD assembly yielded 64-121k loci per individual. Of the loci assembled by the de novo method, 3k homologous loci were found in all 15 individuals studied, and 35k in 10 or more individuals. Matching of RAD loci to RAD locus catalogues from the B. nana individual used for the reference genome showed similar numbers of matches from both methods of RAD locus assembly but indicated that the de novo RAD assembly method may overassemble some paralogous loci. In 12 individuals hetero-specific to B. nana 37-47k RAD loci matched a catalogue of RAD loci from the B. nana individual used for the reference genome, whereas 44-60k RAD loci aligned to the B. nana reference genome itself. We present a preliminary study of allele sharing among species, demonstrating the utility of the data for introgression studies and for the identification of species-specific alleles.

  10. Isolation, Characterization and Anticancer Potential of Cytotoxic Triterpenes from Betula utilis Bark

    PubMed Central

    Joshi, Pushpa; Pal, Mahesh; Meena, Baleshwar; Upreti, D. K.; Rana, T. S.; Datta, Dipak

    2016-01-01

    Betula utilis, also known as Himalayan silver birch has been used as a traditional medicine for many health ailments like inflammatation, HIV, renal and bladder disorders as well as many cancers from ages. Here, we performed bio-guided fractionation of Betula utilis Bark (BUB), in which it was extracted in methanol and fractionated with hexane, ethyl acetate, chloroform, n-butanol and water. All six fractions were evaluated for their in-vitro anticancer activity in nine different cancer cell lines and ethyl acetate fraction was found to be one of the most potent fractions in terms of inducing cytotoxic activity against various cancer cell lines. By utilizing column chromatography, six triterpenes namely betulin, betulinic acid, lupeol, ursolic acid (UA), oleanolic acid and β-amyrin have been isolated from the ethyl acetate extract of BUB and structures of these compounds were unraveled by spectroscopic methods. β-amyrin and UA were isolated for the first time from Betula utilis. Isolated triterpenes were tested for in-vitro cytotoxic activity against six different cancer cell lines where UA was found to be selective for breast cancer cells over non-tumorigenic breast epithelial cells (MCF 10A). Tumor cell selective apoptotic action of UA was mainly attributed due to the activation of extrinsic apoptosis pathway via up regulation of DR4, DR5 and PARP cleavage in MCF-7 cells over non-tumorigenic MCF-10A cells. Moreover, UA mediated intracellular ROS generation and mitochondrial membrane potential disruption also play a key role for its anti cancer effect. UA also inhibits breast cancer migration. Altogether, we discovered novel source of UA having potent tumor cell specific cytotoxic property, indicating its therapeutic potential against breast cancer. PMID:27453990

  11. A Simple, Inexpensive Pollen Trap

    Treesearch

    P. E. Hoekstra

    1965-01-01

    Pollen plays a role of vital importance in the sexual reproduction of all plants but it is especially important in forestry. With few exceptions, sexual reproduction is the only link between succeeding generations in the forest. To be sure, vegetative reproduction is important for special purposes, but it will probably not be used on a mass scale in timber...

  12. Bioassaying for ozone with pollen systems.

    PubMed Central

    Feder, W A

    1981-01-01

    Sensitivity to ozone of pollen germinating in vitro is closely correlated with ozone sensitivity of the pollen parent. Ozone-sensitive and tolerant pollen populations have been identified in tobacco, petunia, and tomato cultivars. The rate of tube elongation can be reversibly slowed or stopped by exposure to low concentrations of ozone. Tube growth rates in the presence of a range of ozone dosages, of pollen populations exhibiting differing ozone sensitivity can be measured and different growth rates can be correlated with ozone dosages. The performance of selected pollen populations can then be used to bioassay ozone in ambient air by introducing the air sample into a growth chamber where ozone-sensitive pollen in growing. Petunia and tobacco pollen are especially useful because they store well at ordinary freezer temperatures and do not require special preparation prior to storage. Modified Brewbacker's growth medium is suitable for growth of both these pollen types. Four useful cultivars are Bel W-3, ozone-sensitive and Bel B, ozone-tolerant tobacco, and White Bountiful, ozone-sensitive and Blue Lagoon, ozone-tolerant petunia. Observations can be made directly by using a TV scanner, or by time lapse or interval photography. Year-round pollen production can be achieved in the greenhouse. Harvested pollen can be tested, packaged, and transported to user facilities without loss of vigor. Pollen populations are inexpensive to produce, respond reliably, and are simple to use as a bioassay for air quality. Images FIGURE 2. FIGURE 3. FIGURE 4. PMID:7460876

  13. Brassinosteroids promote Arabidopsis pollen germination and growth.

    PubMed

    Vogler, Frank; Schmalzl, Christina; Englhart, Maria; Bircheneder, Martin; Sprunck, Stefanie

    2014-09-01

    Pollen tubes are among the fastest tip-growing plant cells and represent an excellent experimental system for studying the dynamics and spatiotemporal control of polarized cell growth. However, investigating pollen tube tip growth in the model plant Arabidopsis remains difficult because in vitro pollen germination and pollen tube growth rates are highly variable and largely different from those observed in pistils, most likely due to growth-promoting properties of the female reproductive tract. We found that in vitro grown Arabidopsis pollen respond to brassinosteroid (BR) in a dose-dependent manner. Pollen germination and pollen tube growth increased nine- and fivefold, respectively, when media were supplemented with 10 µM epibrassinolide (epiBL), resulting in growth kinetics more similar to growth in vivo. Expression analyses show that the promoter of one of the key enzymes in BR biosynthesis, CYP90A1/CPD, is highly active in the cells of the reproductive tract that form the pathway for pollen tubes from the stigma to the ovules. Pollen tubes grew significantly shorter through the reproductive tract of a cyp90a1 mutant compared to the wild type, or to a BR perception mutant. Our results show that epiBL promotes pollen germination and tube growth in vitro and suggest that the cells of the reproductive tract provide BR compounds to stimulate pollen tube growth.

  14. Differences in residual lignin properties between Betula verrucosa and Eucalyptus urograndis kraft pulps.

    PubMed

    Hänninen, Tuomas A; Kontturi, Eero; Isogai, Akira; Vuorinen, Tapani

    2008-10-01

    By comparing the ultrastructural features of two oxygen delignified hardwood kraft pulps (Eucalyptus urograndis and Betula verrucosa), we have demonstrated a marked difference in their residual lignin properties. In this study, properties such as crystallinity and crystal size of cellulose, molecular weights, carboxyl group contents, and carbohydrate compositions of the two kraft pulps were compared. The examined pulps were in our observations relatively similar. A significant difference, however, was observed in the size exclusion chromatography measurements, which indirectly suggested that a significant portion of residual lignin in eucalyptus pulp was associated with cellulose. Birch pulp, in contrast, exhibited a more conventional tendency for hardwood pulps: lignin mainly associated with hemicelluloses.

  15. Mapped plant-macrofossil and pollen records of late quaternary vegetation change in Eastern North America

    NASA Astrophysics Data System (ADS)

    Jackson, Stephen T.; Overpeck, Jonathan T.; Webb-, Thompson; Keattch, Sharen E.; Anderson, Katherine H.

    Macrofossil presence/absence maps and isopoll maps in 3000-year intervals show how ranges and abundance maxima for 12 eastern North American tree and shrub taxa ( Picea, P. glauca, P. mariana, Larix laricina, Abies balsamea, Tsuga canadensis, Pinus strobus, P. resinosa, P. banksiana, Betula papyrifera, B. alleghaniensis, B. Series Humiles) have changed from the last glacial maximum to the present. The macrofossil maps corroborate patterns shown by the isopoll maps and provide spatial detail and taxonomic resolution. The macrofossils confirm the inference from pollen data that unglaciated southeastern North America was cooler during the last glacial maximum (18 and 15 ka) than simulated by the COHMAP experiments with the NCAR CCM0 general circulation model. The geographic distribution of macrofossil occurrences during the Late glacial (12 and 9 ka) indicate that migration lag of boreal species did not occur at regional to subcontinental scales, and that pollen assemblages lacking modern analogs resulted from climate gradients lacking modern analogs. Early Holocene (9 and 6 ka) macrofossil maps show rapid northward expansion of tree species ranges into deglaciated regions. The data also show modest contractions of northern range limits of temperate species and expansions of southern range limits of boreal species in response to cooling trends during the late Holocene (3 and 0 ka). Comparison of modern macrofossil maps of nine of these taxa with corresponding range maps confirm that the macrofossils record the geographic ranges accurately. Comparison of the modern macrofossil maps with maps of tree growing-stock volume shows that for some taxa ( Abies, Tsuga) macrofossil occurrences were most frequent in regions of maximum tree abundance. Comparison of modern isopoll maps with the modern range and growing-stock volume maps indicate that, in contrast to the macrofossil data, the pollen data provide poorer resolution of range limits for most taxa, but better indications

  16. Characterization of Profilin Polymorphism in Pollen with a Focus on Multifunctionality

    PubMed Central

    Jimenez-Lopez, Jose C.; Morales, Sonia; Castro, Antonio J.; Volkmann, Dieter; Rodríguez-García, María I.; Alché, Juan de D.

    2012-01-01

    Profilin, a multigene family involved in actin dynamics, is a multiple partners-interacting protein, as regard of the presence of at least of three binding domains encompassing actin, phosphoinositide lipids, and poly-L-proline interacting patches. In addition, pollen profilins are important allergens in several species like Olea europaea L. (Ole e 2), Betula pendula (Bet v 2), Phleum pratense (Phl p 12), Zea mays (Zea m 12) and Corylus avellana (Cor a 2). In spite of the biological and clinical importance of these molecules, variability in pollen profilin sequences has been poorly pointed out up until now. In this work, a relatively high number of pollen profilin sequences have been cloned, with the aim of carrying out an extensive characterization of their polymorphism among 24 olive cultivars and the above mentioned plant species. Our results indicate a high level of variability in the sequences analyzed. Quantitative intra-specific/varietal polymorphism was higher in comparison to inter-specific/cultivars comparisons. Multi-optional posttranslational modifications, e.g. phosphorylation sites, physicochemical properties, and partners-interacting functional residues have been shown to be affected by profilin polymorphism. As a result of this variability, profilins yielded a clear taxonomic separation between the five plant species. Profilin family multifunctionality might be inferred by natural variation through profilin isovariants generated among olive germplasm, as a result of polymorphism. The high variability might result in both differential profilin properties and differences in the regulation of the interaction with natural partners, affecting the mechanisms underlying the transmission of signals throughout signaling pathways in response to different stress environments. Moreover, elucidating the effect of profilin polymorphism in adaptive responses like actin dynamics, and cellular behavior, represents an exciting research goal for the future. PMID

  17. Cytochemical localization of some hydrolases in the pollen and pollen tubes of Amaryllis vittata Ait.

    PubMed

    Sharma, D

    1982-01-01

    Some hydrolases are localized cytochemically in the pollen and pollen tubes of Amaryllis vittata Ait. The function of different enzymes is discussed in relation to pollen tubes morphogenesis. Activity of most of the enzymes was confined to colpus region, pollen wall and general cytoplasm of pollen and pollen tube. The activity of hydrolytic enzymes like acid monophosphoesterase and lipase and was nil in the exine of both germinated and ungerminated pollen, whereas intense reaction for esterase was observed in exine. Enzyme activity increased after germination which suggest the hydrolysis of stored metabolites and synthesis of proteins and other metabolites for the active growth of pollen tube. Intense reaction for enzymes like alkaline phosphomonoesterase, ATP-ase, 5-nucleotidase etc. at the tip region of pollen tube suggest their role in physiological processes associated with exchange of materials through intercellular transport during tube wall polysaccharide biogenesis.

  18. Pollen resistance to water in 80 angiosperm species: flower structures protect rain-susceptible pollen.

    PubMed

    Mao, Yun-Yun; Huang, Shuang-Quan

    2009-08-01

    Flowers exhibit adaptive responses to biotic and abiotic factors. It remains unclear whether pollen susceptibility to rain damage plays a role in the evolution of floral form. We investigated flower performance in rain and compared pollen longevity in dry conditions, pure water and solutions with different sucrose concentrations in 80 flowering species from 46 families with diverse floral shapes and pollination modes. A pollen viability test showed that pollen longevity in all studied species was greatly reduced by wetting. We found that pollen of species with complete protection by flower structures was susceptible to water damage and a high proportion of resistant pollen occurred in unprotected species. Flowers whose structures expose pollen to rain may also reduce rain damage through temporal patterns of pollen presentation. This prediction was supported by our direct measurement of pollen presentation duration on rainy days. Our observations showed that variation in pollen performance in water was associated with differences in floral forms. Water-resistant pollen and extended pollen presentation duration were favored by selection via rain contact in species in which pollen was not protected from rain. These findings support the functional hypothesis that flower structures protect susceptible pollen from rain, demonstrating that rain acts as a force shaping floral form.

  19. Pollen selection under acid rain stress

    SciTech Connect

    Zhang, Y.

    1994-01-01

    To investigate whether acid rain stress induces pollen selection in nature, three different approaches were used, based on the assumption that the response of pollen grains to acid rain is controlled by an acid sensitive gene product. Germination of pollen from homozygous and heterozygous individuals under acid rain stress was examined to detect any differences in rate of germination between populations of homogeneous and heterogeneous pollen grains. In vitro and in vivo bulked segregant analysis using RAPDs was used to search for differences in DNA constitution between the survivors of acid rain stressed and non-acid rain stressed pollen populations in vitro and between the progenies of acid rain stressed and non-acid rain stressed populations during pollination, respectively. No evidence for the pollen selection under acid rain stress was obtained in any of the test systems. Inhibition of protein synthesis using cycloheximide led to significant reduction of tube elongation at 4 hr and had no effect on pollen germination at any time interval tested. Total proteins extracted from control and acid rain stressed pollen grain populations exhibited no differences. The reduction of corn pollen germination in vitro under acid rain stress was mainly due to pollen rupture. The present data indicates the reduction of pollen germination and tube growth under acid rain stress may be a physiological response rather than a genetic response. A simple, nontoxic, and effective method to separate germinated from ungerminated pollen grains has been developed using pollen from corn (Zea mays, L. cv. Pioneer 3747). The separated germinated pollen grains retained viability and continued tube growth when placed in culture medium.

  20. Effect of O3 and NO2 atmospheric pollutants on Platanus x acerifolia pollen: Immunochemical and spectroscopic analysis.

    PubMed

    Ribeiro, Helena; Costa, Célia; Abreu, Ilda; Esteves da Silva, Joaquim C G

    2017-12-01

    In the present study, the effects of two important oxidizing atmospheric pollutants (O3 and NO2) on the allergenic properties and chemical composition of Platanus x acerifolia pollen were studied. Pollen samples were subjected to O3 and/or NO2 under in vitro conditions for 6h at atmospheric concentration levels (O3: 0.061ppm; NO2: 0.025ppm and the mixture of O3 and NO2: 0.060 and 0.031ppm respectively). Immunoblotting (using Pla a 1 and Pla a 2 antibodies), infrared and X-ray photoelectron spectroscopy techniques were used. Immunochemical analysis showed that pollen allergenicity changes were different according to the pollutant tested (gas or mixture of gasses) and that the same pollutant gas may interact in a different manner with each specific allergen. The spectroscopy results showed modifications in the FTIR spectral features of bands assigned to proteins, lipids, and polysaccharides of the pollen exposed to the pollutants, as well as in the XPS spectra high-resolution components C 1s, N 1s, and O 1s. This indicates that while airborne, the pollen wall suffers further modifications of its components induced by air pollution, which can compromise the pollen function. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The 'yellow snowepisode' of northern Fennoscandia, march 1991—A case study of long-distance transport of soil, pollen and stable organic compounds

    NASA Astrophysics Data System (ADS)

    Franzén, Lars G.; Hjelmroos, Mervi; Kållberg, Per; Brorström-Lunden, Eva; Juntto, Sirkka; Savolainen, Anna-Liisa

    The present paper describes a vast dustfall with snow in northern Fennoscandia, 10 March 1991. The area affected by dust deposition was at least 320,000 km 2. and the particulate mass received amounted to between 50 and 200 mgm -2. The total amounts of dust deposited in the investigated area sum up to approximately 50,000 tonnes. The dust consisted of soil particles, i.e. single mineral grains and loose ferric aggregates of mineral grains in addition to pollen and spores. Mineralogically, the dust was dominated by small rounded quartz grains. Median size of the dust particles was 2.72 μm. The total pollen concentration varied from 327 to 1172 pollen cm -2. The pollen types identified were divided in "Nordic/Central European" taxa and "Exotic" taxa. Pollen from the former group, e.g. Betula, Alnus and Corylus were believed to originate in the Alps and in the northern parts of Central Europe where these species were flowering. The latter category was considered to originate in more remote areas, many of them belonging to the taxa growing only around the Mediterranean. From a paleo-ecological point of view, long-distance transport such as this would count for an important potential source of error whenever interpreting Holocene pollen diagrams. The content of stable organic compounds showed that the dust was relatively clean, compared to other episodes, when the dust deposited had originated in heavily polluted regions. The small amounts of chlorinated hydrocarbons, polychlorinated biphenyles (PCB), polyaromated hydrocarbons (PAH) and other hydrocarbons found, are believed to have been adsorbed by the particle surfaces during transportation. The results of the study, along with meteorological data, lead to the conclusion that the material originated in North Africa. Dust mobilization was reported in Tunisia as well as in Algeria. This means that the dust was transported at least 7000 km before deposition.

  2. Identification and isolation of pharmacologically active triterpenes in Betuale cortex, Betula pendula Roth., Betulaceae.

    PubMed

    E Kovac-Besović, Elvira; Durić, Kemal; Kalodera, Zdenka; Sofić, Emin

    2009-02-01

    Betulae cortex, Betula pendula Roth., Betulaceae, comprise triterpene substances which are confirmed to posses very important pharmacological activities such as anti-inflammatory, anticancer and antiviral. In this study, extraction of triterpene substances from both, inner and external birch bark was carried out and after that qualitative analysis on betulin, betulinic acid, oleanolic acid and lupeol was performed by method of thin layer chromatography. By this separation method, applying system for development benzene-ethyl acetate-formic acid (36:12:5), is gained a good separation of examined triterpene substances from methanol extracts of inner and external birch bark as well as used standards. From obtained row triterpene mixtures, certain triterpene substances are isolated using method of dry column chromatography. To those substances infrared (IR) spectra were recorded and compared with IR spectra of adequate standards. The study encloses all obtained IR spectra and interpretations on the basis of which can be concluded that triterpene substances, betulin, betulin acid and lupeol isolated from external birch bark give identical characteristic signals and absorbance as referent standards. Method of dry column chromatography has resulted as simple, efficient, repeatable and economical for laboratory conditions. Beside this, a sufficient quantity of examined triterpene substances is also obtained for continuation of their further analytical analysis.

  3. Variation of chemical composition of the lipophilic extracts from yellow birch (Betula alleghaniensis) foliage.

    PubMed

    Lavoie, Jean-Michel; Stevanovic, Tatjana

    2005-06-15

    The occurrence of biologically active compounds identified for the first time in the lipophilic extracts of yellow birch (Betula alleghaniensis Britt.) foliage led to the quantification of the seasonal variation of their concentrations. Yellow birch foliage was collected from late June until late September 2003 in two different regions of Quebec. The extraction yields using hexane as a solvent were determined, and the extracts were analyzed by GC-MS to identify their molecular composition. In terms of both extraction yields and the concentration of the targeted molecules present in the extracts, mid-September has been determined as the best time to collect foliage samples. A total of 14 constituents were identified in these extracts. This is the first report of the presence of all of these constituents in yellow birch foliage and of some of them in the genus Betula. The most important compounds identified in yellow birch foliage extracts are triterpene squalene and aliphatic hydrocarbon tetracosan, aliphatic alcohol phytol, fatty acids hexadecanoic and octadecanoic, pentacyclic triterpenes alpha- and beta-amyrin, and phytosterol stigmast-5-en-3-ol.

  4. Resistance to the birch leafminer Fenusa pusilla (Hymenoptera: Tenthredinidae) within the genus Betula.

    PubMed

    Hoch, W A; Zeldin, E L; McCown, B H

    2000-12-01

    Thirteen Betula species were tested for resistance to the birch leafminer, Femusa pusilla (Lepeletier), using no-choice assays. Birch leafminers were able to oviposit into expanding leaves of all Betula individuals tested. Larvae did not survive within any of the tested individuals of three species, B. alleghaniensis (Britt.), B. grossa (S. & Z.), and B. lenta (L.). Leafminer eggs deposited into the leaves of these species hatched, and larvae fed for a short period before dying. These three species were classified as highly resistant to birch leafminer, based on very low percent of mines (0.6-3.1%) with a diameter >3 mm. Eight species, B. papyrifera (Marsh), B. pendula (Roth), B. turkestanica (Litvin), B. glandulifira (Regal), B. ermanii (Cham.), B. platyphylla variety japonica [(Miq.) Hara], B. populifolia (Marsh) and B. maximowicziana (Regal) were classified as susceptible, with percent of mines >3 mm diameter of 87-94%. Two species, B. costata (Trautv.) and B. davurica (Pall.), displayed intermediate and variable resistance. B. davurica exhibited a mechanism of resistance not observed in the other species, Eggs oviposited into the leaves of resistant B. davurica individuals became surrounded by an area of discolored and necrotic tissue, and died. This response resembles the programmed cell death associated with a hypersensitive response.

  5. Rapid phytochemical analysis of birch (Betula) and poplar (Populus) foliage by near-infrared reflectance spectroscopy.

    PubMed

    Rubert-Nason, Kennedy F; Holeski, Liza M; Couture, John J; Gusse, Adam; Undersander, Daniel J; Lindroth, Richard L

    2013-02-01

    Poplar (Populus) and birch (Betula) species are widely distributed throughout the northern hemisphere, where they are foundation species in forest ecosystems and serve as important sources of pulpwood. The ecology of these species is strongly linked to their foliar chemistry, creating demand for a rapid, inexpensive method to analyze phytochemistry. Our study demonstrates the feasibility of using near-infrared reflectance spectroscopy (NIRS) as an inexpensive, high-throughput tool for determining primary (e.g., nitrogen, sugars, starch) and secondary (e.g., tannins, phenolic glycosides) foliar chemistry of Populus and Betula species, and identifies conditions necessary for obtaining reliable quantitative data. We developed calibrations with high predictive power (residual predictive deviations ≤ 7.4) by relating phytochemical concentrations determined with classical analytical methods (e.g., spectrophotometric assays, liquid chromatography) to NIR spectra, using modified partial least squares regression. We determine that NIRS, although less sensitive and precise than classical methods for some compounds, provides useful predictions in a much faster, less expensive manner than do classical methods.

  6. Pollen development in Annona cherimola Mill. (Annonaceae). Implications for the evolution of aggregated pollen

    PubMed Central

    Lora, Jorge; Testillano, Pilar S; Risueño, Maria C; Hormaza, Jose I; Herrero, Maria

    2009-01-01

    Background In most flowering plants, pollen is dispersed as monads. However, aggregated pollen shedding in groups of four or more pollen grains has arisen independently several times during angiosperm evolution. The reasons behind this phenomenon are largely unknown. In this study, we followed pollen development in Annona cherimola, a basal angiosperm species that releases pollen in groups of four, to investigate how pollen ontogeny may explain the rise and establishment of this character. We followed pollen development using immunolocalization and cytochemical characterization of changes occurring from anther differentiation to pollen dehiscence. Results Our results show that, following tetrad formation, a delay in the dissolution of the pollen mother cell wall and tapetal chamber is a key event that holds the four microspores together in a confined tapetal chamber, allowing them to rotate and then bind through the aperture sites through small pectin bridges, followed by joint sporopollenin deposition. Conclusion Pollen grouping could be the result of relatively minor ontogenetic changes beneficial for pollen transfer or/and protection from desiccation. Comparison of these events with those recorded in the recent pollen developmental mutants in Arabidopsis indicates that several failures during tetrad dissolution may convert to a common recurring phenotype that has evolved independently several times, whenever this grouping conferred advantages for pollen transfer. PMID:19874617

  7. Airborne bistatic radar applications

    NASA Astrophysics Data System (ADS)

    Foster, James A.

    1987-09-01

    Applications of bistatic radar when one or both of the units are airborne are discussed. Scenarios that merit deeper consideration are covert strike and head-on SAR using a stand-off illuminator, either airborne or space-based; area air defense with passive ground-based receivers and stand-off illuminators; an airborne picket line to detect stealth aircraft and missiles; AWACS aircraft providing mutual support in ECM environments; and passive surveillance of hostile air space using illuminators of opportunity and an airborne receiver. Scenarios considered impractical are bistatic air-to-air missile guidance using an aircraft other than the launch aircraft as illuminator; passive interdiction using illuminators of opportunity; and scenarios involving a ground based illuminator and an aircraft as the receiver.

  8. Waterlogging in late dormancy and the early growth phase affected root and leaf morphology in Betula pendula and Betula pubescens seedlings.

    PubMed

    Wang, Ai-Fang; Roitto, Marja; Sutinen, Sirkka; Lehto, Tarja; Heinonen, Jaakko; Zhang, Gang; Repo, Tapani

    2016-01-01

    The warmer winters of the future will increase snow-melt frequency and rainfall, thereby increasing the risk of soil waterlogging and its effects on trees in winter and spring at northern latitudes. We studied the morphology of roots and leaves of 1-year-old silver birch (Betula pendula Roth) and pubescent birch (Betula pubescens Ehrh.) seedlings exposed to waterlogging during dormancy or at the beginning of the growing season in a growth-chamber experiment. The experiment included 4-week dormancy (Weeks 1-4), a 4-week early growing season (Weeks 5-8) and a 4-week late growing season (Weeks 9-12). The treatments were: (i) no waterlogging, throughout the experiment ('NW'); (ii) 4-week waterlogging during dormancy (dormancy waterlogging 'DW'); (iii) 4-week waterlogging during the early growing season (growth waterlogging 'GW'); and (iv) 4-week DW followed by 4-week GW during the early growing season ('DWGW'). Dormancy waterlogging affected the roots of silver birch and GW the roots and leaf characteristics of both species. Leaf area was reduced in both species by GW and DWGW. In pubescent birch, temporarily increased formation of thin roots was seen in root systems of GW seedlings, which suggests an adaptive mechanism with respect to excess soil water. Additionally, the high density of non-glandular trichomes and their increase in DWGW leaves were considered possible morphological adaptations to excess water in the soil, as was the constant density of stem lenticels during stem-diameter growth. The higher density in glandular trichomes of DWGW silver birch suggests morphological acclimation in that species. The naturally low density of non-glandular trichomes, low density of stem lenticels in waterlogged seedlings and decrease in root growth seen in DWGW and DW silver birch seedlings explain, at least partly, why silver birch grows more poorly relative to pubescent birch in wet soils. © The Author 2015. Published by Oxford University Press. All rights reserved. For

  9. Modular method of detection, localization, and counting of multiple-taxon pollen apertures using bag-of-words

    NASA Astrophysics Data System (ADS)

    Lozano-Vega, Gildardo; Benezeth, Yannick; Marzani, Franck; Boochs, Frank

    2014-09-01

    Accurate recognition of airborne pollen taxa is crucial for understanding and treating allergic diseases which affect an important proportion of the world population. Modern computer vision techniques enable the detection of discriminant characteristics. Apertures are among the important characteristics which have not been adequately explored until now. A flexible method of detection, localization, and counting of apertures of different pollen taxa with varying appearances is proposed. Aperture description is based on primitive images following the bag-of-words strategy. A confidence map is estimated based on the classification of sampled regions. The method is designed to be extended modularly to new aperture types employing the same algorithm by building individual classifiers. The method was evaluated on the top five allergenic pollen taxa in Germany, and its robustness to unseen particles was verified.

  10. Pollen-induced allergic rhinitis in 1360 Italian children: comorbidities and determinants of severity.

    PubMed

    Dondi, Arianna; Tripodi, Salvatore; Panetta, Valentina; Asero, Riccardo; Businco, Andrea Di Rienzo; Bianchi, Annamaria; Carlucci, Antonio; Ricci, Giampaolo; Bellini, Federica; Maiello, Nunzia; del Giudice, Michele Miraglia; Frediani, Tullio; Sodano, Simona; Dello Iacono, Iride; Macrì, Francesco; Massaccesi, Valerio; Caffarelli, Carlo; Rinaldi, Laura; Patria, Maria Francesca; Varin, Elena; Peroni, Diego; Chinellato, Iolanda; Chini, Loredana; Moschese, Viviana; Lucarelli, Sandra; Bernardini, Roberto; Pingitore, Giuseppe; Pelosi, Umberto; Tosca, Mariangela; Paravati, Francesco; La Grutta, Stefania; Meglio, Paolo; Calvani, Mauro; Plebani, Mario; Matricardi, Paolo Maria

    2013-12-01

    Pollen-induced allergic rhinoconjunctivitis (AR) is highly prevalent and rapidly evolving during childhood. General practitioners may not be fully aware of the nature and severity of symptoms experienced by patients and might underestimate the prevalence of moderate or severe disease. Thus, the relevance of early diagnosis and intervention may be overlooked. To investigate the severity of pollen-induced AR and its determinants in Italian children referred to allergy specialists and who had never received specific immunotherapy (SIT). Children (age 4-18 yr) affected by pollen-induced AR who had never undergone SIT were recruited between May 2009 and June 2011 in 16 pediatric outpatient clinics in 14 Italian cities. Recruited children's parents answered standardized questionnaires on atopic diseases (International Study of Allergy and Asthma in Childhood, Allergic Rhinitis and its Impact on Asthma, Global Initiative for Asthma). The children underwent skin-prick test (SPT) with several airborne allergens and six food allergens. Information on socio-demographic factors, parental history of allergic diseases, education, perinatal events, breastfeeding, nutrition and environmental exposure in early life was collected through an informatics platform shared by the whole network of clinical centers (AllergyCARD™). Among the 1360 recruited patients (68% males, age 10.5 ± 3.4 yr), 695 (51%) had moderate-to-severe AR, 533 (39%) asthma, and 325 (23.9%) oral allergy syndrome (OAS). Reported onset of pollen-induced AR was on average at 5.3 ± 2.8 yr, and its mean duration from onset was 5.2 ± 3.3 yr. Only 6.2% of the patients were pollen-monosensitized, and 84.9% were sensitized to ≥3 pollens. A longer AR duration was significantly associated with moderate-to-severe AR symptoms (p 0.004), asthma (p 0.030), and OAS comorbidities (p < 0.001). This nationwide study may raise awareness of the severity of pollen-induced AR among Italian children who have never received pollen

  11. Ragweed pollen source inventory for France - The second largest centre of Ambrosia in Europe

    NASA Astrophysics Data System (ADS)

    Thibaudon, Michel; Šikoparija, Branko; Oliver, Gilles; Smith, Matt; Skjøth, Carsten A.

    2014-02-01

    France, in particular the Rhône-Alpes region, is one of the three main centres of ragweed (Ambrosia) in Europe. The aim of this study is to develop a gridded ragweed pollen source inventory for all of France that can be used in assessments, eradication plans and by atmospheric models for describing concentrations of airborne ragweed pollen. The inventory combines information about spatial variations in annual Ambrosia pollen counts, knowledge of ragweed ecology, detailed land cover information and a Digital Elevation Model. The ragweed inventory consists of a local infection level on a scale of 0-100% (where 100% is the highest plant abundance per area in the studied region) and a European infection level between 0% and 100% (where 100% relates to the highest identified plant abundance in Europe using the same methodology) that has been distributed onto the EMEP grid with 5 km × 5 km resolution. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were recorded at Roussillon in the Rhône-Valley. This is reflected by the inventory, where the European infection level has been estimated to reach 67.70% of the most infected areas in Europe i.e. Kecskemét in central Hungary. The inventory shows that the Rhône Valley is the most heavily infected part of France. Central France is also infected, but northern and western parts of France are much less infected. The inventory can be entered into atmospheric transport models, in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the dispersion of ragweed pollen within France as well as potential long-distance transport from France to other European countries.

  12. [Identification of cattail pollen (puhuang), pine pollen (songhuafen) and its adulterants by ITS2 sequence].

    PubMed

    Ma, Xiao-Xi; Sun, Wei; Ren, Wei-Chao; Xiang, Li; Zhao, Bo; Zhang, Ya-Qin; Song, Ming; Mu, Ze-Jing; Chen, Shi-Lin

    2014-06-01

    DNA barcoding method was conducted for the authentication of pollen materials due to difficulty of discriminating pollen materials bearing morphological similarity. In this study, a specific focus was to identify cattail pollen (Puhuang) and pine pollen (Songhuafen) samples from their adulterants which are frequently mixed-together. Regions of the internal transcribed spacer (ITS2) from 60 samples were sequenced, and new primers for cattail pollen were designed according to the sequence information. The results from the NJ trees showed that the species of pine pollen, Puhuang and their adulterants can be classified as obvious monophyly. Therefore, we propose to adapt DNA barcoding methodology to accurately distinguish cattail pollen, pine pollen and their adulterant materials. It is a great help for drug regulatory agency to supervise the quality of medicinal materials.

  13. Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction

    Treesearch

    Joseph N.T. Darbah; Mark E. Kubiske; Neil Nelson; Elina Oksanan; Elina Vapaavuori; David F. Karnosky

    2008-01-01

    We studied the effects of long-term exposure (nine years) of birch (Betula papyrifera) trees to elevated CO2 and/or O3 on reproduction and seedling development at the Aspen FACE (Free-Air Carbon Dioxide Enrichment) site in Rhinelander, WI. We found that elevated CO2 increased both...

  14. The influence of log soaking temperature on surface quality and integrity performance of birch (Betula pendula Roth) veneer

    Treesearch

    Anti Rohumaa; Toni Antikainen; Christopher G. Hunt; Charles R. Frihart; Mark Hughes

    2016-01-01

    Wood material surface properties play an important role in adhesive bond formation and performance. In the present study, a test method was developed to evaluate the integrity of the wood surface, and the results were used to understand bond performance. Materials used were rotary cut birch (Betula pendula Roth) veneers, produced from logs soaked at 20 or 70 °C prior...

  15. Decomposition of Betula papyrifera leaf litter under the independent and interactive effects of elevated CO2 and O3

    Treesearch

    William F.J. Parsons; Richard L. Lindroth; James G. Bockheim

    2004-01-01

    Litter decay dynamics of paper birch (Betula papyrifera) were assessed at the Aspen free-air CO2 enrichment (FACE) facility in northern Wisconsin, USA. Leaf litter was decomposed for 12 months under factorial combinations of 360 vs. 560 µLCO2 L-1, crossed with 36 vs. 55 nLO...

  16. Heterospecific pollen deposition in Delphinium barbeyi: linking stigmatic pollen loads to reproductive output in the field

    PubMed Central

    Briggs, Heather M.; Anderson, Lucy M.; Atalla, Laila M.; Delva, André M.; Dobbs, Emily K.; Brosi, Berry J.

    2016-01-01

    Background and Aims Most pollinators are generalists and therefore are likely to transfer heterospecific pollen among co-flowering plants. Most work on the impacts of heterospecific pollen deposition on plant fecundity has utilized hand-pollination experiments in greenhouse settings, and we continue to know very little about the reproductive effects of heterospecific pollen in field settings. Methods We explored how patterns of naturally deposited heterospecific pollen relate to the reproductive output of Delphinium barbeyi, a common subalpine perennial herb in the Rocky Mountains (USA). We assessed a wide range of naturally occurring heterospecific pollen proportions and pollen load sizes, and linked stigmatic pollen deposition directly to seed set in individual carpels in the field. Key Results We found that heterospecific pollen deposition in D. barbeyi is common, but typically found at low levels across stigmas collected in our sites. Neither conspecific nor heterospecific pollen deposition was related to carpel abortion. By contrast, we saw a significant positive relationship between conspecific pollen amount and viable seed production, as well as a significant negative interaction between the effects of conspecific pollen and heterospecific pollen amount, whereby the effect of conspecific pollen on viable seed production became weaker with greater heterospecific deposition on stigmas. Conclusions To our knowledge, this is the first demonstration of a relationship between heterospecific pollen and seed production in a field setting. In addition, it is the first report of an interaction between conspecific and heterospecific pollen quantities on seed production. These findings, taken with the results from other studies, suggest that greenhouse hand-pollination studies and field studies should be more tightly integrated in future work to better understand how heterospecific pollen transfer can be detrimental for plant reproduction. PMID:26658101

  17. Inter- and intra-specific variation in stem phloem phenolics of paper birch (Betula papyrifera) and European white birch (Betula pendula).

    PubMed

    Muilenburg, V L; Phelan, P L; Bonello, P; Herms, D A

    2011-11-01

    Outbreaks of bronze birch borer (BBB) (Agrilus anxius), a wood-boring beetle endemic to North America, have been associated with widespread mortality of birch (Betula spp.). There is substantial inter- and intra-specific variation in birch resistance to BBB. Species endemic to North America, such as paper birch (B. papyrifera), have coevolved with BBB and are more resistant than European and Asian birch species, such as European white birch (B. pendula), which lack an evolutionary history with BBB. Borer larvae feed on stem phloem tissue. Therefore, in search of potential resistance mechanisms against BBB, we compared the constitutive phenolic profile of stem phloem tissue of paper birch with that of European white birch. We also analyzed intraspecific variation in phenolic composition among clones and/or half-siblings of both species. Three phenolics (coumaroylquinic acid, betuloside pentoside A, and a diarylheptanoid hexoside) were detected only in paper birch, and concentrations of six other phenolics were significantly higher in paper birch. These differences may contribute to the high resistance of paper birch to BBB relative to European white birch. There was significant intraspecific variation in four of 17 phenolics found in paper birch and in five of 14 found in European white birch, but clones and half-siblings within each species could not be distinguished by phenolic composition using multivariate analysis.

  18. Cross-reactivity to olive tree pollen and orchard grass pollen in patients with pollinosis.

    PubMed

    Miyahara, S; Nakada, M; Nishizaki, K; Kawarai, Y; Nishioka, K; Hino, H

    1997-06-01

    We studied 92 patients with allergic rhinitis in Syodoshima, Japan, during the pollen season between April and June to evaluate the cross-reactivity to different antigens, including pollen from the olive tree (Olea europaea) and orchard grass (Dactylis glomerata). Olive tree pollen was present in the atmosphere for 23 days, from May 19 to June 12, 1994. Specific IgE antibodies for olive tree pollen antigen were present in 21 (26.9%) of the 78 patients with allergic rhinitis. Nine (24.3%) of the 37 patients with allergic rhinitis exhibited positive skin reactivity to an extract of olive tree pollen. Fifteen (88.2%) of the 17 patients who had IgE reactivity in their sera to olive tree pollen antigen demonstrated allergic reactions to an extract of olive tree pollen. Specific IgE antibodies for orchard grass pollen antigen were present in 43 (48.3%) of the 89 patients with allergic rhinitis and 20 (95.2%) of the 21 patients who had IgE reactivity in their sera to olive tree pollen antigen. The inhibition test using the CAP System revealed that the reactivity of the IgE antibody specific for olive tree pollen antigen was inhibited dose-dependently by an extract of orchard grass pollen. These findings show that there is a reaction in some patients with grass (Gramineae) pollinosis that might be induced by olive tree pollen.

  19. In Vitro Pollen Viability and Pollen Germination in Cherry Laurel (Prunus laurocerasus L.)

    PubMed Central

    Sulusoglu, Melekber; Cavusoglu, Aysun

    2014-01-01

    Pollen quality is important for growers and breeders. This study was carried out to determine in vitro pollen viability and pollen germination in seven genotypes of cherry laurel (Prunus laurocerasus L.). Two pollen viability tests, TTC (2,3,5-triphenyl tetrazolium chloride) and IKI (iodine potassium iodide), were used. Pollen traits of genotypes were studied using an in vitro medium containing 0%, 5%, 10%, 15%, and 20% sucrose to determine the best sucrose concentrations for germination. In the second step, the germinated pollen was counted 1, 4, 6, 10, 12, 24, and 48 hours later until there was no further germination. The viability rates were different according to genotypes and tests used. The IKI and TTC staining tests and pollen germination had low correlation (r2 = 0.0614 and r2 = 0.0015, resp.). Painted pollen rate was higher and pollen was well-stained with IKI test and pollen viability estimated with TTC staining test was better than that estimated with the IKI staining test. 15% sucrose gave the best germination rates in most of the genotypes. Pollen germination rates were recorded periodically from one hour to 48 hours in 15% sucrose and the results showed that pollen germination rates increased after 6 hours of being placed in culture media. PMID:25405230

  20. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea.

    PubMed

    Jiang, Yunfei; Lahlali, Rachid; Karunakaran, Chithra; Kumar, Saroj; Davis, Arthur R; Bueckert, Rosalind A

    2015-11-01

    Pea (Pisum sativum L.) is a major legume crop grown in a semi-arid climate in Western Canada, where heat stress affects pollination, seed set and yield. Seed set and pod growth characteristics, along with in vitro percentage pollen germination, pollen tube growth and pollen surface composition, were measured in two pea cultivars (CDC Golden and CDC Sage) subjected to five maximum temperature regimes ranging from 24 to 36 °C. Heat stress reduced percentage pollen germination, pollen tube length, pod length, seed number per pod, and the seed-ovule ratio. Percentage pollen germination of CDC Sage was greater than CDC Golden at 36 °C. No visible morphological differences in pollen grains or the pollen surface were observed between the heat and control-treated pea. However, pollen wall (intine) thickness increased due to heat stress. Mid-infrared attenuated total reflectance (MIR-ATR) spectra revealed that the chemical composition (lipid, proteins and carbohydrates) of each cultivar's pollen grains responded differently to heat stress. The lipid region of the pollen coat and exine of CDC Sage was more stable compared with CDC Golden at 36 °C. Secondary derivatives of ATR spectra indicated the presence of two lipid types, with different amounts present in pollen grains from each cultivar. © 2015 John Wiley & Sons Ltd.

  1. Some carbohydrates found in pollen and pollen substitutes are toxic to honey bees.

    PubMed

    Barker, R J

    1977-10-01

    Carbohydrates in some pollen substitutes (galactose, lactose, raffinose, stachyose, glucuronic acid, galacturonic acid, polygalacturonic acid, and pectin) were toxic to caged adult Apis mellifera L. These toxins can be diluted to safe levels by sucrose. Collected nectar apparently dilutes the toxic sugars in pollen thus permitting assimilation of essential nutrients from pollen.

  2. In vitro pollen viability and pollen germination in cherry laurel (Prunus laurocerasus L.).

    PubMed

    Sulusoglu, Melekber; Cavusoglu, Aysun

    2014-01-01

    Pollen quality is important for growers and breeders. This study was carried out to determine in vitro pollen viability and pollen germination in seven genotypes of cherry laurel (Prunus laurocerasus L.). Two pollen viability tests, TTC (2,3,5-triphenyl tetrazolium chloride) and IKI (iodine potassium iodide), were used. Pollen traits of genotypes were studied using an in vitro medium containing 0%, 5%, 10%, 15%, and 20% sucrose to determine the best sucrose concentrations for germination. In the second step, the germinated pollen was counted 1, 4, 6, 10, 12, 24, and 48 hours later until there was no further germination. The viability rates were different according to genotypes and tests used. The IKI and TTC staining tests and pollen germination had low correlation (r(2) = 0.0614 and r(2) = 0.0015, resp.). Painted pollen rate was higher and pollen was well-stained with IKI test and pollen viability estimated with TTC staining test was better than that estimated with the IKI staining test. 15% sucrose gave the best germination rates in most of the genotypes. Pollen germination rates were recorded periodically from one hour to 48 hours in 15% sucrose and the results showed that pollen germination rates increased after 6 hours of being placed in culture media.

  3. [A monoclonal antibody against ragweed pollen cross-reacting with yellow dock pollen].

    PubMed

    Shen, H D; Chang, L Y; Gong, Y J; Chang, H N; Han, S H

    1985-11-01

    Using monoclonal antibodies with different specificity against the major allergenic components of ragweed pollen, we analyzed their cross-reactivity with two tree pollens, two grass pollens and five other weed pollens which are common in Taiwan by the immunoblot method. It was found that besides reacting with AgE and AgK of the ragweed pollen, the monoclonal antibody 48-5 also reacted with antigens of yellow dock pollen with molecular weights of 40K, 38K, 24K, and 21K. In a preliminary study, sera of two patients containing IgE antibodies to ragweed pollen antigens also reacted to the 40K component of the yellow dock pollen. Furthermore, from the results of allergenic skin testings on 109 patients with bronchial asthma, we found that of 22 patients who had a positive reaction to a crude extract of ragweed pollen, 18(81.8%) also reacted to the crude extract of yellow dock pollen. In conclusion, our results suggest that there exists a common allergenic determinant between pollens of ragweed and yellow dock. It may play an important role in the expression of the sensitivity of patients to these two kinds of pollens.

  4. Personal pollen exposure compared to stationary measurements.

    PubMed

    Riediker, M; Keller, S; Wüthrich, B; Koller, T; Monn, C

    2000-01-01

    The aim of this study was to examine to what extent stationary outdoor pollen measurements are representative for estimating personal exposure to pollen. Ten subjects were studied during a total of 36 days in spring and summer Pollen was sampled using personal SKC total dust samplers and stationary Burkard pollen traps. The personal activity pattern was recorded quarter-hourly as well as the time spent outdoors. As a reference, SKC and Burkard samplers were run stationary and in parallel. Stationary comparison of the samplers showed good correlation (r = 0.981, p <0.001). However, the SKC sampler collected systematically about four times less pollen than the Burkard sampler. Taking into account the systematic difference between the sampling devices, the personal exposure data were about 30% of the stationary pollen concentrations with significant correlation (log-transformed data, r = 0.719, p <0.0001). Considering the average time the subjects spent outdoors (14% of sampling time), the indoor-outdoor ratio for pollen was 0.2. In conclusion, pollen reports are reliable for estimating personal exposure over a limited time period although personal pollen exposure is much lower.

  5. Simultaneous allergy to vine pollen and grape.

    PubMed

    Mur, P; Feo Brito, F; Bartolomé, B; Galindo, P A; Gómez, E; Borja, J; Alonso, A

    2006-01-01

    We report the case of an 18-year-old female student suffering from seasonal rhinoconjunctivitis with sensitization to pollens from vine and also from grass, olive, and Chenopodiaceae plants who had recently developed episodes of itching, maculopapular rash, and facial angioedema after eating grapes. Testing revealed positive reactions to vine pollen and grapes, and specific IgE were found for both allergens. Immunoblotting and inhibition assays revealed cross-reactivity between the allergenic structures of vine pollen and grape fruit and also among botanically unrelated pollens.

  6. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century

    PubMed Central

    Hollesen, Jørgen; Buchwal, Agata; Rachlewicz, Grzegorz; Hansen, Birger U; Hansen, Marc O; Stecher, Ole; Elberling, Bo

    2015-01-01

    Growing season conditions are widely recognized as the main driver for tundra shrub radial growth, but the effects of winter warming and snow remain an open question. Here, we present a more than 100 years long Betula nana ring-width chronology from Disko Island in western Greenland that demonstrates a highly significant and positive growth response to both summer and winter air temperatures during the past century. The importance of winter temperatures for Betula nana growth is especially pronounced during the periods from 1910–1930 to 1990–2011 that were dominated by significant winter warming. To explain the strong winter importance on growth, we assessed the importance of different environmental factors using site-specific measurements from 1991 to 2011 of soil temperatures, sea ice coverage, precipitation and snow depths. The results show a strong positive growth response to the amount of thawing and growing degree-days as well as to winter and spring soil temperatures. In addition to these direct effects, a strong negative growth response to sea ice extent was identified, indicating a possible link between local sea ice conditions, local climate variations and Betula nana growth rates. Data also reveal a clear shift within the last 20 years from a period with thick snow depths (1991–1996) and a positive effect on Betula nana radial growth, to a period (1997–2011) with generally very shallow snow depths and no significant growth response towards snow. During this period, winter and spring soil temperatures have increased significantly suggesting that the most recent increase in Betula nana radial growth is primarily triggered by warmer winter and spring air temperatures causing earlier snowmelt that allows the soils to drain and warm quicker. The presented results may help to explain the recently observed ‘greening of the Arctic’ which may further accelerate in future years due to both direct and indirect effects of winter warming. PMID:25788025

  7. Development and evaluation of microsatellite markers for the critically endangered birch Betula chichibuensis (Betulaceae).

    PubMed

    Igarashi, Yuji; Aihara, Hiroki; Handa, Yoshihiro; Katsumata, Hiroshi; Fujii, Masanori; Nakano, Koichiro; Hirao, Toshihide

    2017-05-01

    Microsatellite markers were developed and characterized for the critically endangered birch Betula chichibuensis (Betulaceae) to investigate the genetic structure of this species for conservation purposes. Sixteen microsatellite markers with di-, tri-, and tetranucleotide repeat motifs were developed and optimized using MiSeq paired-end sequencing. Of these, 14 were polymorphic, with two to five alleles per locus, in 47 individuals from two newly discovered populations of B. chichibuensis in Japan. Observed and unbiased expected heterozygosities per locus ranged from 0.000 to 0.617 and from 0.000 to 0.629, respectively. These markers were tested for cross-species amplification in B. maximowicziana, B. platyphylla var. japonica, and B. schmidtii.