Science.gov

Sample records for airborne carbon 14c

  1. Intramolecular labelling of sucrose made by leaves from [14C)carbon dioxide or [3-14C]serine.

    PubMed

    Bird, I F; Cornelius, M J; Keys, A J; Whittingham, C P

    1978-04-15

    Pea leaves were illuminated in air containing 150 or 1000p.p.m. of 14CO2 for various times. Alternatively, segments of wheat leaves were supplied with [3-14C]serine for 40 min in the light in air with 145, 326 or 944p.p.m. of 12CO2. Sucrose was extracted from the leaf material, hydrolysed with invertase, and 14C in the pairs of carbon atoms C-3+C-4, C-2+C-5 and C-1+C-6 in the glucose moiety was measured. The results obtained after metabolism of 14CO2 were consistent with the operation of the photosynthetic carbon-reduction cycle; the effects of CO2 concentration on distribution of 14C in the carbon chain of glucose after metabolism of [3-14C]serine is more easily explained by metabolism through the glycollate pathway than by the carbon-reduction cycle. PMID:656073

  2. Tracing terrestrial carbon: a novel application of ∆14C in a humic lake

    NASA Astrophysics Data System (ADS)

    Keaveney, Evelyn; Reimer, Paula J.; Foy, Robert H.

    2016-04-01

    Lakes play an important yet underrated role in global carbon cycles. Terrestrial carbon (C) is buried and/or remineralised in significant quantities, and lake function may also be affected by catchment inputs with potential feedbacks for regional and global C cycling. Changing deposition chemistry, land use and climate induced impacts on hydrology will affect soil biogeochemistry, terrestrial C export, and hence lake ecology. Autochthonous production in lakes is based on dissolved inorganic C (DIC). DIC in alkaline lakes is partially derived from weathering of carbonaceous bedrock, a proportion of which is 14C-free. The low 14C activity yields an artificial age offset leading samples to appear hundreds to thousands of years older than their actual age. Dissolved organic carbon (DOC) and particulate organic carbon (POC) can contain terrestrial inputs. The terrestrial inputs can be labile or detrital and their age depends to a first order on their depth in catchment soil/peat stocks. We present a pilot study that uses the radiocarbon (∆14C) method to determine the source of carbon buried in the surface sediment of Lower Lough Erne, a humic, alkaline lake in northwest Ireland. ∆14C, δ13C and δ15N values were measured from phytoplankton and other biota, dissolved inorganic, dissolved organic and particulate organic carbon. A novel radiocarbon method, Stepped Combustion1 was used to estimate the degree of the burial of terrestrial carbon in surface sediment, collected in 2011. The ∆14C values of the low temperature fractions were comparable to algal ∆14C, while the high temperature fractions were 14C-depleted (older than bulk sediment). The ∆14C end-member model indicated that ~64% of carbon in surface sediment was derived from detrital terrestrial carbon. The same proportion of detrital/labile carbon was found in surface sediment of Upper Lough Erne in 2014, despite the differences in lake type and collection date. The use of ∆14C in conjunction with

  3. Carbon cycling in a complex lake: a novel use of Δ14C

    NASA Astrophysics Data System (ADS)

    Keaveney, E. M.; Reimer, P. J.; Foy, R. H.

    2015-12-01

    Changing deposition chemistry, land use and climate induced impacts on hydrology will affect soil biogeochemistry and terrestrial C export and hence lake ecology with potential feedbacks for regional and global C cycling. Globally lakes bury and remineralise significant quantities of terrestrial C, and the associated flux of terrestrial C strongly influences their functioning. Primary production (autochthonous production) in lakes is based on dissolved inorganic C (DIC). DIC in alkaline lakes is partially derived from weathering of carbonaceous bedrock, a proportion of which is 14C-free. The low 14C activity yields an artificial age offset leading samples to appear hundreds to thousands of years older than their actual age. Dissolved organic carbon (DOC) and particulate organic carbon (POC) can contain terrestrial inputs. The terrestrial inputs can be labile or detrital; their age depends on their depth in catchment soil/peat stocks. We present a pilot study that uses the radiocarbon (∆14C) method to determine the source of carbon buried in the surface sediment of Lough Erne, a humic, alkaline lake in northwest Ireland. ∆14C, δ13C and δ15N values were measured from phytoplankton and other biota, dissolved inorganic, dissolved organic and particulate organic carbon. A novel radiocarbon method, Stepped Combustion1 was used to estimate the degree of the burial of terrestrial carbon in surface sediment. The ∆14C values of the low temperature fractions were comparable to algal ∆14C, while the high temperature fractions were 14C-depleted (older than bulk sediment). The ∆14C end-member model indicated that ~64% of carbon in surface sediment was derived from detrital terrestrial carbon. The use of ∆14C in conjunction with stepped combustion allows the quantification of the pathways of terrestrial carbon in the system, which has implications for regional and global carbon burial. 1McGeehin, J., Burr, G.S., Jull, A.J.T., Reines, D., Gosse, J., Davis, P.T., Muhs

  4. Laboratory Experiments to Evaluate Diffusion of 14C into Nevada Test Site Carbonate Aquifer Matrix

    SciTech Connect

    Ronald L. Hershey; William Howcroft; Paul W. Reimus

    2003-03-01

    Determination of groundwater flow velocities at the Nevada Test Site is important since groundwater is the principal transport medium of underground radionuclides. However, 14C-based groundwater velocities in the carbonate aquifers of the Nevada Test Site are several orders of magnitude slower than velocities derived from the Underground Test Area regional numerical model. This discrepancy has been attributed to the loss or retardation of 14C from groundwater into the surrounding aquifer matrix making 14C-based groundwater ages appear much older. Laboratory experiments were used to investigate the retardation of 14C in the carbonate aquifers at the Nevada Test Site. Three sets of experiments were conducted evaluating the diffusion of 14C into the carbonate aquifer matrix, adsorption and/or isotopic exchange onto the pore surfaces of the carbonate matrix, and adsorption and/or isotopic exchange onto the fracture surfaces of the carbonate aquifer. Experimental results a nd published aquifer matrix and fracture porosities from the Lower Carbonate Aquifer were applied to a 14C retardation model. The model produced an extremely wide range of retardation factors because of the wide range of published aquifer matrix and fracture porosities (over three orders of magnitude). Large retardation factors suggest that groundwater with very little measured 14C activity may actually be very young if matrix porosity is large relative to the fracture porosity. Groundwater samples collected from highly fractured aquifers with large effective fracture porosities may have relatively small correction factors, while samples from aquifers with a few widely spaced fractures may have very large correction factors. These retardation factors were then used to calculate groundwater velocities from a proposed flow path at the Nevada Test Site. The upper end of the range of 14C correction factors estimated groundwater velocities that appear to be at least an order of magnitude too high compared

  5. Characteristics of 14C and 13C of carbonate aerosols in dust storm events in China

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Jie, Dongmei; Shi, Meinan; Gao, Pan; Shen, Zhenxing; Uchida, Masao; Zhou, Liping; Liu, Kexin; Hu, Ke; Kitagawa, Hiroyuki

    2015-10-01

    In contrast with its decrease in western China deserts, the dust storm event in eastern China, Korea, and Japan shows an increase in frequency. Although the drylands in northeastern China have been recognized as an important dust source, the relative contributions of dust transport from the drylands and deserts are inconclusive, thus the quantification of dust storm sources in downwind area remains a challenge. We measured the 14C and 13C contents in carbonates of dust samples from six sites in China, which were collected for the duration of dust storm events in drylands, deserts, and urban areas. The δ13C of the dryland dust samples considerably varied in a range of - 9.7 to - 5.0‰, which partly overlapped the desert dust carbonate δ13C ranges. The 14C content of the dryland dust carbonates showed a narrow range of 60.9 ± 4.0 (as an average and 1 SD of five samples) percent modern carbon (pMC), indicating the enrichment of modern carbonate. Dust samples in desert regions contained relatively aged carbonates with the depleting 14C showing of 28.8 ± 3.3 pMC. After the long-range transport of the western China desert dust plume, the carbonates collected at the southern China remained the depletion of 14C (33.5 ± 5.3 pMC) as in the desert regions. On the other hand, the samples of dust storm events at the urban areas of eastern China showed an enrichment of 14C contents (46.2 ± 5.0 pMC, n = 7), which might be explained by the stronger contribution of modern-carbonate-rich dryland dust.

  6. [Quantifying soil autotrophic microbes-assimilated carbon input into soil organic carbon pools following continuous 14C labeling].

    PubMed

    Shi, Ran; Chen, Xiao-Juan; Wu, Xiao-Hong; Jian, Yan; Yuan, Hong-Zhao; Ge, Ti-Da; Sui, Fang-Gong; Tong, Cheng-Li; Wu, Jin-Shui

    2013-07-01

    Soil autotrophic microbe has been found numerous and widespread. However, roles of microbial autotrophic processes and the mechanisms of that in the soil carbon sequestration remain poorly understood. Here, we used soils incubated for 110 days in a closed, continuously labeled 14C-CO2 atmosphere to measure the amount of labeled C incorporated into the microbial biomass. The allocation of 14C-labeled assimilated carbon in variable soil C pools such as dissolved organic C (DOC) and microbial biomass C (MBC) were also examined over the 14C labeling span. The results showed that significant amounts of 14C-SOC were measured in paddy soils, which ranged from 69.06-133.81 mg x kg(-1), accounting for 0.58% to 0.92% of the total soil organic carbon (SOC). The amounts of 14C in the dissolved organic C (14C-DOC) and in the microbial biomass C (14C-MBC) were dependent on the soils, ranged from 2.54 to 8.10 mg x kg(-1), 19.50 to 49.16 mg x kg(-1), respectively. There was a significantly positive linear relationship between concentrations of 14C-SOC and 14C-MBC (R2 = 0.957**, P < 0.01). The 14C-DOC and 14C-MBC as proportions of total DOC, MBC, were 5.65%-24.91% and 4.23%-20.02%, respectively. Moreover, the distribution and transformation of microbes-assimilated-derived C had a greater influence on the dynamics of DOC and MBC than that on the dynamics of SOC. These data provide new insights into the importance of microorganisms in the fixation of atmospheric CO2 and of the potentially significant contributions made by microbial autotrophy to terrestrial C cycling.

  7. Applications of environmental 14C measured by AMS as a carbon tracer

    NASA Astrophysics Data System (ADS)

    Nakamura, Toshio; Nakai, Nobuyuki; Ohishi, Shoji

    1987-11-01

    AMS techniques have been applied to measure 14C concentrations, or Δ 14C values, of annual tree rings (1945-1983) of a Kiso hinoki tree grown in Gifu prefecture, and of acid-insoluble carbonaceous compounds extracted from cored sediments (surface to 30 cm deep) of Lake Biwa in Shiga prefecture. An increase in Δ 14C values was found for both tree rings and cored sediments, resulting from 14C artificially produced by nuclear weapon tests. Activities of 210Pb and 214Pb were measured to estimate the sedimentation rate of the Lake Biwa sediments and to provide a temporal control. A primitive model of carbon exchange between the troposphere, surface ocean water, and the biosphere was applied to the annual changes in Δ 14C of the hinoki tree rings and also of coral rings from Florida, USA. The times required to transfer bomb-carbon from the troposphere to surface sea water and to the biosphere were estimated to be about 11 and 23 years, respectively.

  8. Changes in14c activity over time during vacuum distillation of carbon from rock pore water

    USGS Publications Warehouse

    Davidson, G.R.; Yang, I.C.

    1999-01-01

    The radiocarbon activity of carbon collected by vacuum distillation from a single partially saturated tuff began to decline after approximately 60% of the water and carbon had been extracted. Disproportionate changes in 14C activity and ??13C during distillation rule out simple isotopic fractionation as a causative explanation. Additional phenomena such as matrix diffusion and ion exclusion in micropores may play a role in altering the isotopic value of extracted carbon, but neither can fully account for the observed changes. The most plausible explanation is that distillation recovers carbon from an adsorbed phase that is depleted in 14C relative to DIC in the bulk pore water. ?? 1999 by the Arizona Board of Regents on behalf of the University of Arizona.

  9. 14C activity and global carbon cycle changes over the past 50,000 years.

    PubMed

    Hughen, K; Lehman, S; Southon, J; Overpeck, J; Marchal, O; Herring, C; Turnbull, J

    2004-01-01

    A series of 14C measurements in Ocean Drilling Program cores from the tropical Cariaco Basin, which have been correlated to the annual-layer counted chronology for the Greenland Ice Sheet Project 2 (GISP2) ice core, provides a high-resolution calibration of the radiocarbon time scale back to 50,000 years before the present. Independent radiometric dating of events correlated to GISP2 suggests that the calibration is accurate. Reconstructed 14C activities varied substantially during the last glacial period, including sharp peaks synchronous with the Laschamp and Mono Lake geomagnetic field intensity minimal and cosmogenic nuclide peaks in ice cores and marine sediments. Simulations with a geochemical box model suggest that much of the variability can be explained by geomagnetically modulated changes in 14C production rate together with plausible changes in deep-ocean ventilation and the global carbon cycle during glaciation.

  10. Modelling of dead carbon fraction in speleothems: a step towards reliable speleothem 14C-chronologies

    NASA Astrophysics Data System (ADS)

    Lechleitner, Franziska A.; Jamieson, Robert A.; McIntyre, Cameron; Baldini, Lisa M.; Baldini, James U. L.; Eglinton, Timothy I.

    2015-04-01

    Over the past two decades, speleothems have become one of the most versatile and promising archives for the study of past continental climate. Very precise absolute dating is often possible using the U-Th method, resulting in paleoclimate records of exceptional resolution and accuracy. However, not all speleothems are amenable to this dating method for a variety of reasons (e.g. low U concentrations, high detrital Th etc). This has lead researchers to exclude many otherwise suitable speleothems and cave sites from further investigation. 14C-dating of speleothems has so far not been applicable, due to the 'dead carbon' problem. As drip water percolates through the karst, dissolving CaCO3, a variable amount of 14C-dead carbon is added to the solution. This results in a temporally variable and site-specific reservoir effect, ultimately undermining the development of speleothem 14C -chronologies. However, a number of recent studies have shown a clear link between karst hydrology and associated proxies (e.g., Mg/Ca and δ13C) and this 'dead carbon fraction' (DCF). We take advantage of this relationship to model DCF and its changes using Mg/Ca, δ13C and 14C data from published speleothem records. Using one record for calibration purposes, we build a transfer function for the DCF in relation to δ13C and Mg/Ca, which we then apply to other 14C records. Initial model results are promising; we are able to reconstruct general long-term average DCF within uncertainties of the calculated DCF from the U-Th chronology. Large shifts in DCF related to hydrology are also often detected. In a second step, we apply the model to a speleothem from southern Poland, which so far could not be dated, due to very low U-concentrations. To construct a 14C chronology, the stalagmite was sampled at 5 mm intervals. CaCO3 powders were graphitized and measured by Accelerator Mass Spectrometry (MICADAS) at ETH Zurich. Additional high-resolution (0.1 mm/sample) 14C measurements were performed on

  11. Stepped-combustion 14C dating of bomb carbon in lake sediment

    USGS Publications Warehouse

    McGeehin, J.; Burr, G.S.; Hodgins, G.; Bennett, S.J.; Robbins, J.A.; Morehead, N.; Markewich, H.

    2004-01-01

    In this study, we applied a stepped-combustion approach to dating post-bomb lake sediment from north-central Mississippi. Samples were combusted at a low temperature (400 ??C) and then at 900 ??C. The CO2 was collected separately for both combustions and analyzed. The goal of this work was to develop a methodology to improve the accuracy of 14C dating of sediment by combusting at a lower temperature and reducing the amount of reworked carbon bound to clay minerals in the sample material. The 14C fraction modern results for the low and high temperature fractions of these sediments were compared with well-defined 137Cs determinations made on sediment taken from the same cores. Comparison of "bomb curves" for 14C and 137Cs indicate that low temperature combustion of sediment improved the accuracy of 14C dating of the sediment. However, fraction modern results for the low temperature fractions were depressed compared to atmospheric values for the same time frame, possibly the result of carbon mixing and the low sedimentation rate in the lake system.

  12. A Brief Review of the Application of 14C in Terrestrial Carbon Cycle Studies

    SciTech Connect

    Guilderson, T; Mcfarlane, K

    2009-10-22

    An over-arching goal of the DOE TCP program is to understand the mechanistic controls over the fate, transport, and residence time of carbon in the terrestrial biosphere. Many of the modern process and modeling studies focus on seasonal to interannual variability. However, much of the carbon on the landscape and in soils is in separate reservoirs with turnover times that are multi-decadal to millennial. It is the controls on these longer term pools or reservoirs that is a critical unknown in the face of rising GHGs and climate change and uncertainties of the terrestrial biosphere as a future global sink or source of atmospheric CO{sub 2} [eg., Friedlingstein et al., 2006; Govindasamy et al., 2005; Thompson et al., 2004]. Radiocarbon measurements, in combination with other data, can provide insight into, and constraints on, terrestrial carbon cycling. Radiocarbon (t{sub 1/2} 5730yrs) is produced naturally in the stratosphere when secondary neutrons generated by cosmic rays collide with {sup 14}N atoms [Libby 1946; Arnold and Libby, 1949]. Upon formation, {sup 14}C is rapidly oxidized to CO and then to CO{sub 2}, and is incorporated into the carbon cycle. Due to anthropogenic activities, the amount of {sup 14}C in the atmosphere doubled in the mid/late 1950s and early 1960s from its preindustrial value of {sup 14}C/{sup 12}C ratio of 1.18 x 10{sup -12} [eg., Nydal and Lovseth, 1983]. Following the atmospheric weapons test ban in 1963, the {sup 14}C/{sup 12}C ratio, has decreased due to the net isotopic exchange between the ocean and terrestrial biosphere [eg., Levin and Hessheimer, 2000] and a dilution effect due to the burning of {sup 14}C-free fossil fuel carbon, the 'Suess Effect' [Suess, 1955]. In the carbon cycle literature, radiocarbon measurements are generally reported as {Delta}{sup 14}C, which includes a correction for mass dependent fractionation [Stuiver and Polach, 1977]. In the context of carbon cycle studies radiocarbon measurements can be used to

  13. Flux of carbon from 14C-enriched leaf litter throughout a forest soil mesocosm

    SciTech Connect

    Froberg, Mats J.; Hanson, Paul J; Trumbore, Susan E.; Swanston, Christopher W.; Todd Jr, Donald E

    2009-01-01

    The role of DOC for the build-up of soil organic carbon pools is still not well known, but it is thought to play a role in the transport of carbon to a greater depth where it becomes more stable. The aim of this study was to elucidate within-year dynamics of carbon transport from litter to the O (Oe and Oa) and A horizons. Mesocosms with constructed soil profiles were used to study dynamics of C transport from 14C-enriched (about 1000 ) leaf litter to the Oe/Oa and A horizons as well as the mineralization of leaf litter. The mesocosms were placed in the field for 17 months during which time fluxes and 14C content of DOC and CO2 were measured. Changes in 14C in leaf litter and bulk soil C pools were also recorded. Significant simultaneous release and immobilization of DOC occurring in both the O and A horizons was hypothesized. Contrary to our hypothesis, DOC released from the labeled Oi horizon was not retained within the Oe/Oa layer. DOC originating in the unlabeled Oe/Oa layer was also released for transport. Extensive retention of DOC occurred in the A horizon. DOC leaching from A horizon consisted of a mix of DOC from different sources, with a main fraction originating in the A horizon and a smaller fraction leached from the overlaying horizons. The C and 14C budget for the litter layer also indicated a surprisingly large amount of carbon with ambient Δ14C-signature to be respired from this layer. Data for this site also suggested significant contributions from throughfall to dissolved organic carbon (DOC) transport into and respiration from the litter layer. The results from this study showed that DOC retentionwas low in the O horizon and therefore not important for the O horizon carbon budget. In the A horizon DOC retention was extensive, but annual DOC input was small compared to C stocks and therefore not important for changes in soil C on an annual timescale.

  14. Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water.

    PubMed

    Zhang, Liwen; Petersen, Elijah J; Zhang, Wen; Chen, Yongsheng; Cabrera, Miguel; Huang, Qingguo

    2012-07-01

    Carbon nanotubes are often modified to be stable in the aqueous phase by adding extensive hydrophilic surface functional groups. The stability of such CNTs in water with soil or sediment is one critical factor controlling their environmental fate. We conducted a series of experiments to quantitatively assess the association between water dispersed multi-walled carbon nanotubes (MWCNTs) and three soil minerals (kaolinite, smectite, or shale) in aqueous solution under different sodium concentrations. (14)C-labeling was used in these experiments to unambiguously quantify MWCNTs. The results showed that increasing ionic strength strongly promoted the removal of MWCNTs from aqueous phase. The removal tendency is inversely correlated with the soil minerals' surface potential and directly correlated with their hydrophobicity. This removal can be interpreted by the extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory especially for kaolinite and smectite. Shale, which contains large and insoluble organic materials, sorbed MWCNTs the most strongly.

  15. Concentrations and 14C age of nonstructural carbon in California oaks

    NASA Astrophysics Data System (ADS)

    Czimczik, C. I.; Druffel-Rodriguez, K.; Trumbore, S. E.

    2008-12-01

    Plants store photosynthetic assimilates as nonstructural carbon (NSC), mainly glucose, fructose, sucrose, and starch. NSC fuels processes such as respiration and growth. Research suggests that NSC represents a significant fraction of a plant's annual C budget, but temporal dynamics of NSC are poorly understood. We used concentration and radiocarbon (14C) measurements of NSC to investigate how temporal dynamics of NSC vary with life strategy and throughout a species' range. In Mediterranean environments, oaks have developed two strategies (evergreen and deciduous) to cope with drought. Within California, the uncertainty of annual winter rain increases from north to south. We compared two evergreen and deciduous species: Coastal and Interior live oak (Quercus agrifolia and wislizenii) and Valley and Blue oak (Q. lobata and douglasii). Samples (4 mm cores to 20 cm depth at dbh) were taken in 2008 before leaf-out and fall at five sites which represent an inland to coast temperature gradient from high to low summer temperatures as well as a north- south precipitation gradient. Sugars were isolated by shaking in methanol-water and quantified using a spectrometric micro-plate technique. Starch was isolated by boiling in ethanol followed by HCl digestion and quantified manometrically. 14C contents were measured by AMS. Preliminary findings indicate that in live oaks, winter sugar concentrations are constant throughout the tree and across sites, while 14C concentrations increase towards a tree's center. This suggests that the NSC pool oaks is not well mixed. Future work will elucidate whether plants can access these older NSC stores.

  16. Factors Affecting 14C Ages of Lacustrine Carbonates: Timing and Duration of the Last Highstand Lake in the Lahontan Basin

    USGS Publications Warehouse

    Benson, L.

    1993-01-01

    Two processes contribute to inaccurate 14C age estimates of carbonates precipitated within the Lahontan basin, NevadaCalifornia: low initial 14C/C ratios in lake water (reservoir effect) and addition of modern carbon to calcium carbonate after its precipitation. The mast reliable set of 14C ages on carbonates from elevations > 1310 m in the Pyramid and Walker Lake subbasins indicate that lakes in all seven Lahontan subbasins coalesced ???14,200 14C yr B.P. forming Lake Lahontan. Lake Lahontan achieved its 1330-m highstand elevation by ???13,800 14 C yr B.P. and receded to 1310 m by ???13,700 14C yr B.P. Calculations, based on measured carbonate-accumulation rates, of the amount of time Lake Lahontan exceeded 1310 and 1330 m (500 and 50 yr) are consistent with this chronology. The timing of the Lake Lahontan highstand is of interest because of the linkage of highstand climates with proximity to the polar jet stream. The brevity of the Lahontan highstand is interpreted to indicate that the core of the southern branch of the polar jet stream remained only briefly over the Lahontan basin.

  17. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    NASA Astrophysics Data System (ADS)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y.-L.; Szidat, S.; Czimczik, C. I.

    2015-09-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to a vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average, 91 % of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our setup, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our setup were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  18. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    NASA Astrophysics Data System (ADS)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y. L.; Szidat, S.; Czimczik, C. I.

    2015-04-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average 91% of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our set-up, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our set-up were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  19. Release of (14)C-labelled carbon nanotubes from polycarbonate composites.

    PubMed

    Rhiem, Stefan; Barthel, Anne-Kathrin; Meyer-Plath, Asmus; Hennig, Michael P; Wachtendorf, Volker; Sturm, Heinz; Schäffer, Andreas; Maes, Hanna M

    2016-08-01

    Waste disposal of carbon nanotube (CNT) containing products is expected to be the most important pathway for release of CNTs into the environment. In the present work, the use of radiolabelled CNTs ((14)C-CNT) for polycarbonate polymer nanocomposites with 1 wt% (14)C-CNT content allowed for the first time to quantify and differentiate the CNT release according to the type of impact along the materials' ageing history. After an initial exposure of the nanocomposite by solar-like irradiation, further environmental impacts were applied to composite material. They aimed at mimicking disposal site conditions that may induce further ageing effects and CNT release. This study included shaking in water, rapid temperature changes, soaking in humic acid solution as well as waste water effluent, and, finally, gentle mechanical abrasion. All ageing impacts were applied sequentially, both on pristine (control) and on solar-irradiated nanocomposites. All experiments were accompanied by absolute quantification of radioactive release as well as chemical and morphological analyses of the nanocomposite surfaces using infra-red (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The morphological analysis showed that spectral irradiation can uncover CNT networks on the outer nanocomposite surface layers by polymer degradation. After having subjected the solar-irradiated nanocomposite to all studied disposal site effect, the total radioactive release was quantified to amount to 64 mg CNT/m(2), whereas only 0.8 mg CNT/m(2) were found for the un-irradiated control sample. Solar degradation of polymers was thus found to significantly increase the propensity of the studied polymer nanocomposites to release CNTs during ageing effects at the product's end-of-life typical for disposal sites. PMID:27194367

  20. Release of (14)C-labelled carbon nanotubes from polycarbonate composites.

    PubMed

    Rhiem, Stefan; Barthel, Anne-Kathrin; Meyer-Plath, Asmus; Hennig, Michael P; Wachtendorf, Volker; Sturm, Heinz; Schäffer, Andreas; Maes, Hanna M

    2016-08-01

    Waste disposal of carbon nanotube (CNT) containing products is expected to be the most important pathway for release of CNTs into the environment. In the present work, the use of radiolabelled CNTs ((14)C-CNT) for polycarbonate polymer nanocomposites with 1 wt% (14)C-CNT content allowed for the first time to quantify and differentiate the CNT release according to the type of impact along the materials' ageing history. After an initial exposure of the nanocomposite by solar-like irradiation, further environmental impacts were applied to composite material. They aimed at mimicking disposal site conditions that may induce further ageing effects and CNT release. This study included shaking in water, rapid temperature changes, soaking in humic acid solution as well as waste water effluent, and, finally, gentle mechanical abrasion. All ageing impacts were applied sequentially, both on pristine (control) and on solar-irradiated nanocomposites. All experiments were accompanied by absolute quantification of radioactive release as well as chemical and morphological analyses of the nanocomposite surfaces using infra-red (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The morphological analysis showed that spectral irradiation can uncover CNT networks on the outer nanocomposite surface layers by polymer degradation. After having subjected the solar-irradiated nanocomposite to all studied disposal site effect, the total radioactive release was quantified to amount to 64 mg CNT/m(2), whereas only 0.8 mg CNT/m(2) were found for the un-irradiated control sample. Solar degradation of polymers was thus found to significantly increase the propensity of the studied polymer nanocomposites to release CNTs during ageing effects at the product's end-of-life typical for disposal sites.

  1. Introducing the global carbon cycle to middle school students with a 14C research project

    NASA Astrophysics Data System (ADS)

    Brodman Larson, L.; Phillips, C. L.; LaFranchi, B. W.

    2012-12-01

    Global Climate Change (GCC) is currently not part of the California Science Standards for 7th grade. Required course elements, however, such as the carbon cycle, photosynthesis, and cellular respiration could be linked to global climate change. Here we present a lesson plan developed in collaboration with scientists from Lawrence Livermore National Laboratory, to involve 7th grade students in monitoring of fossil fuel emissions in the Richmond/San Pablo area of California. -The lesson plan is a Greenhouse Gas/Global Climate Change Unit, with an embedded research project in which students will collect plant samples from various locals for analysis of 14C, to determine if there is a correlation between location and how much CO2 is coming from fossil fuel combustion. Main learning objectives are for students to: 1) understand how fossil fuel emissions impact the global carbon cycle, 2) understand how scientists estimate fossil CO2 emissions, and 3) engage in hypothesis development and testing. This project also engages students in active science learning and helps to develop responsibility, two key factors for adolescentsWe expect to see a correlation between proximity to freeways and levels of fossil fuel emissions. This unit will introduce important GCC concepts to students at a younger age, and increase their knowledge about fossil fuel emissions in their local environment, as well as the regional and global impacts of fossil emissions.

  2. Testing the 14C ages and conservative behavior of dissolved 14C in a carbonate aquifer in Yucca Flat, Nevada (USA), using 36Cl from groundwater and packrat middens

    NASA Astrophysics Data System (ADS)

    Kwicklis, Edward; Farnham, Irene

    2014-09-01

    Corrected groundwater 14C ages from the carbonate aquifer in Yucca Flat at the former Nevada Test Site (now the Nevada National Security Site), USA, were evaluated by comparing temporal variations of groundwater 36Cl/Cl estimated with these 14C ages with published records of meteoric 36Cl/Cl variations preserved in packrat middens (piles of plant fragments, fecal matter and urine). Good agreement between these records indicates that the groundwater 14C ages are reasonable and that 14C is moving with chloride without sorbing to the carbonate rock matrix or fracture coatings, despite opposing evidence from laboratory experiments. The groundwater 14C ages are consistent with other hydrologic evidence that indicates significant basin infiltration ceased 8,000 to 10,000 years ago, and that recharge to the carbonate aquifer is from paleowater draining through overlying tuff confining units along major faults. This interpretation is supported by the relative age differences as well as hydraulic head differences between the alluvial and volcanic aquifers and the carbonate aquifer. The carbonate aquifer 14C ages suggest that groundwater velocities throughout much of Yucca Flat are about 2 m/yr, consistent with the long-held conceptual model that blocking ridges of low-permeability rock hydrologically isolate the carbonate aquifer in Yucca Flat from the outlying regional carbonate flow system.

  3. Revision of Fontes & Garnier's model for the initial 14C content of dissolved inorganic carbon used in groundwater dating

    USGS Publications Warehouse

    Han, Liang-Feng; Plummer, L. Niel

    2013-01-01

    The widely applied model for groundwater dating using 14C proposed by Fontes and Garnier (F&G) (Fontes and Garnier, 1979) estimates the initial 14C content in waters from carbonate-rock aquifers affected by isotopic exchange. Usually, the model of F&G is applied in one of two ways: (1) using a single 13C fractionation factor of gaseous CO2 with respect to a solid carbonate mineral, εg/s, regardless of whether the carbon isotopic exchange is controlled by soil CO2 in the unsaturated zone, or by solid carbonate mineral in the saturated zone; or (2) using different fractionation factors if the exchange process is dominated by soil CO2 gas as opposed to solid carbonate mineral (typically calcite). An analysis of the F&G model shows an inadequate conceptualization, resulting in underestimation of the initial 14C values (14C0) for groundwater systems that have undergone isotopic exchange. The degree to which the 14C0 is underestimated increases with the extent of isotopic exchange. Examples show that in extreme cases, the error in calculated adjusted initial 14C values can be more than 20% modern carbon (pmc). A model is derived that revises the mass balance method of F&G by using a modified model conceptualization. The derivation yields a “global” model both for carbon isotopic exchange dominated by gaseous CO2 in the unsaturated zone, and for carbon isotopic exchange dominated by solid carbonate mineral in the saturated zone. However, the revised model requires different parameters for exchange dominated by gaseous CO2 as opposed to exchange dominated by solid carbonate minerals. The revised model for exchange dominated by gaseous CO2 is shown to be identical to the model of Mook (Mook, 1976). For groundwater systems where exchange occurs both in the unsaturated zone and saturated zone, the revised model can still be used; however, 14C0 will be slightly underestimated. Finally, in carbonate systems undergoing complex geochemical reactions, such as oxidation of

  4. Strong carbon release from the deep ocean induced a major atmospheric 14C drop over Heinrich Stadial 1

    NASA Astrophysics Data System (ADS)

    Sarnthein, M.; Grootes, P. M.; Schneider, B.

    2012-12-01

    Using the modern global distributions of apparent 14C ventilation ages and DIC we established a transfer function to trace past changes in the carbon storage of ocean waters >2000 m water depth. On this basis we concluded that the LGM carbon inventory was approximately 730-980 Gt larger than during pre-industrial times. This amount compares well with an estimated glacial transfer of 530-700 Gt from both the atmosphere and terrestrial biosphere in addition to a major DIC relocation from ocean intermediate waters. We consider that the LGM atmosphere contained 190 ppm CO2 (~375 Gt C) with a 14C concentration 1.4 times higher than that of the standard modern atmosphere (fMC) (Reimer et al. 2009). The LGM deep ocean had an average reservoir age of 2100 yr, which means that its 14C concentration was 0.77 times that of the LGM atmosphere, 1.08 times that of the modern atmosphere (fMC). During the subsequent early deglac¬ial Heinrich Stadial 1, a large portion of this 14C depleted carbon was released to the atmosphere and terrestrial biosphere (Monnin et al. 2001; Ciais et al. 2012). Our estimates suggest that the ocean-atmosphere exchange, producing this deglacial transfer of deep-ocean carbon, was sufficient to account for a 190-permil drop in atmospheric 14C. Thus an alleged major 'mystery' of last deglacial times, the source of 14C-depleted additional atmospheric carbon, appears solved. -- Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., et al. (2012), Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nature Geoscience 5, 74-79. Monnin, E., et al. (2001), Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112-114. Reimer, P., et al. (2009), INTCAL09 and MARINE09 radiocarbon age calibration curves, 0-50,000 years cal. BP. Radiocarbon 51, 1111-1150.

  5. Dissolved Organic Carbon in Marginal, Damaged Peatlands: Using 14C to Understand DOC Losses

    NASA Astrophysics Data System (ADS)

    Luscombe, D.; Grand-Clement, E.; Garnett, M.; Anderson, K.; Gatis, N.; Benaud, P.; Brazier, R.

    2013-12-01

    Peatlands are widely represented throughout the world and act as an important store of carbon, as well as providing society with a range of other ecosystem services, such as drinking water or the support of rare habitats. However, the combination of historical management practices, and the predicted impact of climate change means that they are now largely under threat. In the shallow peatlands of Exmoor National Park (South West UK), peat cutting and intensive drainage in the 19th and 20th century for agricultural reclamation have changed the hydrological behaviour of the peat. This damage has dried out the upper layers, causing oxidation, erosion and vegetation change. In addition, their location on the southernmost limit of peatlands geographical extent in northern Europe makes them particularly vulnerable to the predicted changes in rainfall and temperature. Recent modelling work has shown that such marginal peatlands may disappear as early as 2050. Restoration programs are currently in place, aiming to restore the hydrological functioning of the peat. However, current dissolved organic carbon (DOC) losses from damaged peatlands are especially of concern, because of the contribution of the aquatic pathways in the C flux, and because of the impact on water quality. DOC has been shown to originate from the drainage of highly-aged organic matter. In stream waters, DOC from low flow tends to contain a larger component of older C compared to that of high flow. Both the impact of extensive drainage on where DOC is originating from and the effect of peatland restoration on this process remain poorly understood. We used 14C dating of DOC from streams and pore water, as well as from damaged peat, in order to gain a better understanding of the process and origin of DOC loss in drained shallow peatlands. This will further help us understand the potential for peatland restoration. Work was carried out in a small intensively monitored catchment in Exmoor. Samples were taken

  6. The incorporation of isotopic carbon (14C) into the cerebral glycogen of rabbits

    PubMed Central

    Coxon, R. V.; Gordon-Smith, E. C.; Henderson, J. R.

    1965-01-01

    1. The incorporation of 14C into the brain glycogen of conscious rabbits with labelled glucose, bicarbonate and glutamate as precursors has been studied. 2. Substantial incorporation from all these precursors was demonstrated after an interval of 5hr. from their injection. 3. With [14C]glucose maximal incorporation occurred at about 8hr. from the time of injection. 4. Hydrocortisone led to increased incorporation of 14C from labelled glucose. 5. Some comparisons between the turnover of brain glycogen and that of skeletal and cardiac muscle are reported. PMID:5881665

  7. Carbonation rates of peridotite in the Samail Ophiolite, Sultanate of Oman, constrained through 14C dating and stable isotopes

    NASA Astrophysics Data System (ADS)

    Mervine, Evelyn M.; Humphris, Susan E.; Sims, Kenneth W. W.; Kelemen, Peter B.; Jenkins, William J.

    2014-02-01

    Detailed 14C dating as well as stable C and O isotope analyses were conducted on carbonates formed during alteration of the peridotite layer of the Samail Ophiolite, Sultanate of Oman. 14C results obtained in this and previous studies indicate that surface travertines range in age from modern to >45,000 yr BP, indicating long-term deposition and preservation. Travertine deposition rates in two localities were ˜0.1 to 0.3 mm/yr between ˜30,000 and 45,000 yr BP. Using an estimate of total travertine area, this would result in a maximum of ˜1000 to 3000 m3/yr of travertine being deposited throughout the ophiolite during this time period. This travertine deposition would have sequestered a maximum of ˜1 to 3 × 106 kg CO2/yr. Ca-rich carbonate veins that are associated with the surface travertine deposits have ages ranging from ˜4000 to 36,000 yr BP (average: 15,000 yr BP). Mg-rich carbonate veins exposed in outcrops have ages ranging from ˜8000 to 45,000 yr BP (average: 35,000 yr BP). Detailed sampling from numerous locations (3 locations in this study and 10 locations in the previous studies) indicates that no carbonate veins from the natural peridotite weathering surface are older than the ˜50,000 yr BP dating limit of 14C. However, 14C dating of Mg-rich carbonate veins from three roadcut exposures (Qafeefah, Fanja, and Al-Wuqbah) indicates that a significant number of roadcut veins are 14C dead (>50,000 yr BP). A location weighted average indicates that ˜40% of veins sampled at the three roadcuts are 14C dead. An average including veins sampled at both roadcuts and outcrops indicates that overall ˜8% of Mg-rich carbonate veins are 14C dead. Mg-rich carbonate veins are estimated to sequester on the order of 107 kg CO2/yr throughout the ophiolite.

  8. Radiocarbon ( 14C) measurements to quantify sources of atmospheric carbon monoxide in urban air

    NASA Astrophysics Data System (ADS)

    Klouda, George A.; Connolly, Michael V.

    Atmospheric air samples were collected during the winter of 1989-1990 in Albuquerque, NM, U.S.A., for radiocarbon ( 14C) analysis of carbon monoxide (CO). An experimental sample design was prepared to target periods when the concentration of CO exceeds the 9 μl l-1 (volume fraction), 8 h National Ambient Air Quality Standard (NAAQS) and during periods of attainment. Sampling sites, time of day, sampling duration, and meteorology were carefully considered so that source impacts be optimal. A balanced sampling factorial design was used to yield maximum information from the constraints imposed; the number of samples was limited by the number of sample canisters available, time and resources. Radiocarbon measurements of urban CO, " clean-air" CO background from Niwot Ridge, Colorado, average (wood) logs and oxygenated-gasolines were used in a three-source model to calculate the contribution of wood burning to the total atmospheric CO burden in Albuquerque. Results show that the estimated fractional contribution of residential wood combustion (Θ' Rwc) ranged from 0 to 0.30 of CO concentrations corrected for " clean-air" background. For these same samples, the respective CO concentrations attributed to wood burning range from 0 to 0.90 μmol mol -1 (mole fraction), well below the NAAQS. In all cases, fossil CO is the predominant source of ambient CO concentrations ranging from 0.96 to 6.34 μmol mol -1 A final comment is made on the potential of fossil CO measurements as an indirect tracer of atmospheric benzene, relevant to exposure risk estimates of motor vehicle emissions and occupational health and safety standards.

  9. Carbon cycle dynamics and solar activity embedded in a high-resolution 14C speleothem record from Belize, Central America

    NASA Astrophysics Data System (ADS)

    Lechleitner, Franziska A.; Breitenbach, Sebastian F. M.; McIntyre, Cameron; Asmerom, Yemane; Prufer, Keith M.; Polyak, Victor; Culleton, Brendan J.; Kennett, Douglas J.; Eglinton, Timothy I.; Baldini, James U. L.

    2015-04-01

    Speleothem 14C has recently emerged as a potentially powerful proxy for climate reconstruction. Several studies have highlighted the link between karst hydrology and speleothem 14C content, and a number of possible causes for this relationship have been proposed, such as dripwater flow dynamics in the karst and changes in soil organic matter (SOM) turnover time (e.g. Griffiths et al., 2012). Here we present a high resolution 14C record for a stalagmite (YOK-I) from Yok Balum cave in southern Belize, Central America. YOK-I grew continuously over the last 2000 years, and has been dated very precisely with the U-Th method (40 dates, mean uncertainty < 10 years). The excellent chronological control for this stalagmite allows us to calculate 14C activity (a14C) at the time of speleothem deposition (a14Cinit), as well as the dead carbon fraction (DCF), predominantly a measure of the reservoir effect introduced by limestone dissolution in the karst (Genty et al., 2001). Both records show striking similarities to atmospheric a14C (IntCal13) and reconstructions of solar activity and 14C production rate. We infer close coupling between cave environment and atmosphere, with minimal signal dampening, an observation supported by monitoring data (Ridley et al., in press). DCF fluctuates between approximately 10% and 16% over the entire record, with distinctly lower DCF values and higher a14Cinit during a period of reduced rainfall between ca. 700-1100 AD (linked to the Classic Maya Collapse). This behavior is consistent with observations made elsewhere, and suggests that DCF responds to karst hydrological variability, specifically open-closed system transitions. YOK-I a14Cinit typically lags atmospheric values by 10-100 cal years. A shorter lag appears to be linked to periods of drought, suggesting a response of SOM dynamics above the cave to rainfall reduction. Specifically, drought is inferred to lead to reduced bioproductivity and soil carbon turnover, lowering contributions

  10. Reexposure and advection of 14C-depleted organic carbon from old deposits at the upper continental slope

    NASA Astrophysics Data System (ADS)

    Tesi, Tommaso; GoñI, Miguel A.; Langone, Leonardo; Puig, Pere; Canals, Miquel; Nittrouer, Charles A.; Durrieu de Madron, Xavier; Calafat, Antoni; Palanques, Albert; Heussner, Serge; Davies, Maureen H.; Drexler, Tina M.; Fabres, Joan; Miserocchi, Stefano

    2010-12-01

    Outcrops of old strata at the shelf edge resulting from erosive gravity-driven flows have been globally described on continental margins. The reexposure of old strata allows for the reintroduction of aged organic carbon (OC), sequestered in marine sediments for thousands of years, into the modern carbon cycle. This pool of reworked material represents an additional source of 14C-depleted organic carbon supplied to the ocean, in parallel with the weathering of fossil organic carbon delivered by rivers from land. To understand the dynamics and implications of this reexposure at the shelf edge, a biogeochemical study was carried out in the Gulf of Lions (Mediterranean Sea) where erosive processes, driven by shelf dense water cascading, are currently shaping the seafloor at the canyon heads. Mooring lines equipped with sediment traps and current meters were deployed during the cascading season in the southwestern canyon heads, whereas sediment cores were collected along the sediment dispersal system from the prodelta regions down to the canyon heads. Evidence from grain-size, X-radiographs and 210Pb activity indicate the presence in the upper slope of a shelly-coarse surface stratum overlying a consolidated deposit. This erosive discontinuity was interpreted as being a result of dense water cascading that is able to generate sufficient shear stress at the canyon heads to mobilize the coarse surface layer, eroding the basal strata. As a result, a pool of aged organic carbon14C = -944.5 ± 24.7‰; mean age 23,650 ± 3,321 ybp) outcrops at the modern seafloor and is reexposed to the contemporary carbon cycle. This basal deposit was found to have relatively high terrigenous organic carbon (lignin = 1.48 ± 0.14 mg/100 mg OC), suggesting that this material was deposited during the last low sea-level stand. A few sediment trap samples showed anomalously depleted radiocarbon concentrations (Δ14C = -704.4 ± 62.5‰) relative to inner shelf (Δ14C = -293.4 ± 134.0

  11. Coprecipitation of (14)C and Sr with carbonate precipitates: The importance of reaction kinetics and recrystallization pathways.

    PubMed

    Hodkin, David J; Stewart, Douglas I; Graham, James T; Burke, Ian T

    2016-08-15

    This study investigated the simultaneous removal of Sr(2+) and (14)CO3(2-) from pH>12 Ca(OH)2 solution by the precipitation of calcium carbonate. Initial Ca(2+):CO3(2-) ratios ranged from 10:1 to 10:100 (mM:mM). Maximum removal of (14)C and Sr(2+) both occurred in the system containing 10mM Ca(2+) and 1mM CO3(2-) (99.7% and 98.6% removal respectively). A kinetic model is provided that describes (14)C and Sr removal in terms of mineral dissolution and precipitation reactions. The removal of (14)C was achieved during the depletion of the initial TIC in solution, and was subsequently significantly affected by recrystallization of the calcite precipitate from an elongate to isotropic morphology. This liberated >46% of the (14)C back to solution. Sr(2+) removal occurred as Ca(2+) became depleted in solution and was not significantly affected by the recrystallization process. The proposed reaction could form the basis for low cost remediation scheme for (90)Sr and (14)C in radioactively contaminated waters (<$0.25 reagent cost per m(3) treated).

  12. Carbon and 14C distribution in tropical and subtropical agricultural soils

    NASA Astrophysics Data System (ADS)

    Prastowo, Erwin; Grootes, Pieter; Nadeau, Marie

    2016-04-01

    Paddy soil management affects, through the alternating anoxic and oxic conditions it creates, the transport and stabilisation of soil organic matter (SOM). Irrigation water may percolate more organic materials - dissolved (DOM) and colloidal - into the subsoil during anoxic conditions. Yet a developed ploughpan tends to prevent C from going deeper in the subsoil and partly decouple C distribution in top and sub soil. We investigate the influence of different soil type and environment. We observed the C and 14C distribution in paddy and non-paddy soil profiles in three different soil types from four different climatic regions of tropical Indonesia, and subtropical China. Locations were Sukabumi (Andosol, ca. 850 m a.s.l), Bogor (clayey Alisol, ca. 240 m a.s.l), and Ngawi (Vertisol, ca. 70 m a.s.l) in Jawa, Indonesia, and Cixi (Alisol(sandy), ca. 4 - 6 m a.s.l) in Zhejiang Province, China. We compared rice paddies with selected neighbouring non-paddy fields and employed AMS 14C as a tool to study C dynamics from bulk, alkali soluble-humic, and insoluble humin samples, and macrofossils (plant remains, charcoal). Our data suggest that vegetation type determines the quantity and quality of biomass introduced as litter and root material in top and subsoil, and thus contributes to the soil C content and profile, which fits the 14C signal distribution, as well as 13C in Ngawi with C4 sugar cane as upland crop. 14C concentrations for the mobile humic acid fraction were generally higher than for bulk samples from the same depth, except when recent plant and root debris led to high 14C levels in near-surface samples. The difference in sampling, - averaged layer for bulk sample and 1-cm layer thickness for point sample - shows gradients in C and 14C across the layers, which could be a reason for discrepancies between the two. High 14C concentrations - in Andosol Sukabumi up to 111 pMC - exceed the atmospheric 14CO2concentration in the sampling year in 2012 (˜ 103 pMC) and

  13. Recent AMS measurements of {sup 14}C in soil organic matter: Understanding controls of carbon storage and turnover in soils

    SciTech Connect

    Trumbore, S.E.; Torn, M.S.; Chadwick, O.A.

    1996-10-01

    Radiocarbon measurements are one of the best tools available for determining the rates of carbon and turnover of in soil organic matter. AMS measurements of radiocarbon are essential they allow measurement of {sup 14}C in archived soils with very low carbon content, in physically or chemically fractionated soil organic matter, in dissolved organic carbon leached from soils, as well as in CO{sub 2} and CH{sub 4} produced during decomposition. We report recent results demonstrating the importance of applying AMS soil radiocarbon measurements to questions of soil C dynamics. We used the increase in {open_quote}bomb{close_quote} {sup 14}C between archived an modem soil profiles sampled along an elevation transect in the Sierra Nevada mountains, California, to determine the role of temperature in determining the rate of turnover of fast-cycling soil organic matter. To study the role of soil mineralogy in determining how carbon is stabilized in {open_quote}passive{close_quote} soil organic matter pools, we compare soil mineralogy and C and {sup 14}C storage in soils along a chronosequence in the Hawaiian islands. Implications for the global C cycle will be discussed.

  14. [Quantifying rice (Oryza sativa L.) photo-assimilated carbon input into soil organic carbon pools following continuous 14C labeling].

    PubMed

    Nie, San-An; Zhou, Ping; Ge, Ti-Da; Tong, Cheng-Li; Xiao, He-Ai; Wu, Jin-Shui; Zhang, Yang-Zhu

    2012-04-01

    The microcosm experiment was carried out to quantify the input and distribution of photo-assimilated C into soil C pools by using a 14C continuous labeling technique. Destructive samplings of rice (Oryza sativa) were conducted after labeling for 80 days. The allocation of 14C-labeled photosynthates in plants and soil C pools such as dissolved organic C (DOC) and microbial biomass C (MBC) in rice-planted soil were examined over the 14C labeling span. The amounts of rice shoot and root biomass C was ranged from 1.86 to 5.60 g x pot(-1), 0.46 to 0.78 g x pot(-1) in different tested paddy soils after labeling for 80 days, respectively. The amount of 14C in the soil organic C (14C-SOC) was also dependent on the soils, ranged from 114.3 to 348.2 mg x kg(-1), accounting for 5.09% to 6.62% of the rice biomass 14C, respectively. The amounts of 14C in the dissolved organic C (14C-DOC) and in the microbial biomass C(14C-MBC), as proportions of 14C-SOC, were 2.21%-3.54% and 9.72% -17.2%, respectively. The 14C-DOC, 14C-MBC, and 14C-SOC as proportions of total DOC, MBC, and SOC, respectively, were 6.72% -14.64%, 1.70% -7.67%, and 0.73% -1.99%, respectively. Moreover, the distribution and transformation of root-derived C had a greater influence on the dynamics of DOC and MBC than on the dynamics of SOC. Further studies are required to ascertain the functional significance of soil microorganisms (such as C-sequestering bacteria and photosynthetic bacteria) in the paddy system. PMID:22720588

  15. Coral skeletal carbon isotopes (δ13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (δ13C) and radiocarbon (Δ14C) isotopes of coastal DIC are influenced by the δ13C and Δ14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, δ13C and Δ14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the δ13C and Δ14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both δ13C and Δ14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in δ13C and Δ14C than seawater DIC, and (3) the correlation of δ13C and Δ14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal δ13C and Δ14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change.

  16. Coral skeletal carbon isotopes (δ13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (??13C) and radiocarbon (??14C) isotopes of coastal DIC are influenced by the ??13C and ??14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, ??13C and ??14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the ??13C and ??14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both ??13C and ??14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in ??13C and ??14C than seawater DIC, and (3) the correlation of ??13C and ??14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal ??13C and ??14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change. ?? 2011 United States Geological Survey.

  17. 14C in cropland soil of a long-term field trial - experimental variability and implications for estimating carbon turnover

    NASA Astrophysics Data System (ADS)

    Leifeld, J.; Mayer, J.

    2015-07-01

    Because of their controlled nature, the presence of independent replicates, and their known management history, long-term field experiments are key to the understanding of factors controlling soil carbon. Together with isotope measurements, they provide profound insight into soil carbon dynamics. For soil radiocarbon, an important tracer for understanding these dynamics, experimental variability across replicates is usually not accounted for; hence, a relevant source of uncertainty for quantifying turnover rates is missing. Here, for the first time, radiocarbon measurements of five independent field replicates, and for different layers, of soil from the 66-year-old controlled field experiment ZOFE in Zurich, Switzerland, are used to address this issue. 14C variability was the same across three different treatments and for three different soil layers between the surface and 90 cm depths. On average, experimental variability in 14C content was 12 times the analytical error but still, on a relative basis, smaller than variability in soil carbon concentration. Despite a relative homogeneous variability across the field and along the soil profile, the curved nature of the relationship between radiocarbon content and modelled carbon mean residence time implies that the absolute error of calculated soil carbon turnover time increases with soil depth. In our field experiment findings on topsoil carbon turnover variability would, if applied to subsoil, tend to underweight turnover variability even if experimental variability in the subsoil isotope concentration is the same. Together, experimental variability in radiocarbon is an important component in an overall uncertainty assessment of soil carbon turnover.

  18. Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally enriched with 14C

    SciTech Connect

    Tipping, Ed; Chamberlain, Paul M.; Froberg, Mats J.; Hanson, Paul J; Jardine, Philip M

    2012-01-01

    The DyDOC model was used to simulate organic matter decomposition and dissolved organic matter (DOM) transport in deciduous forest soils at the Oak Ridge Reservation (ORR) in Tennessee, USA. The model application relied on extensive data from the Enriched Background Isotope study (EBIS), which made use of a local atmospheric enrichment of radiocarbon to establish a large-scale manipulation experiment with different inputs of 14C from both above-ground and below-ground litter. The aim of the modelling was to test if the processes that constitute DyDOC can explain the available observations for C dynamics in the ORR. More specifically we used the model to investigate the origins of DOM, its dynamics within the soil profile, and how it contributes to the formation of stable carbon in the mineral soil. The model was first configured to account for water transport through the soil, then observed pools and fluxes of carbon and 14C data were used to fit the model parameters that describe the rates of the metabolic transformations. The soils were described by a thin O-horizon, a 15 cm thick A-horizon and a 45-cm thick B-horizon. Within the thin O-horizon, litter is either converted to CO2 or to a second organic matter pool, which is converted to CO2 at a different rate, both pools being able to produce DOM. The best model performance was obtained by assuming that adsorption of downwardly transported DOM in horizons A and B, followed by further conversion to stable forms, produces mineral-associated carbon pools, while root litter is the source of non-mineral associated carbon, with relatively short residence times. In the simulated steady-state, most carbon entering the O-horizon leaves quickly as CO2, but 17% (46 gC m-2 a-1) is lost as DOC in percolating water. The DOM comprises mainly hydrophobic material, 40% being derived from litter and 60% from older organic matter pools (residence time ~ 10 years). Most of the DOM is converted to CO2 in the mineral soil, over

  19. Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data

    NASA Astrophysics Data System (ADS)

    hatte, C.; Balesdent, J.; Guiot, J.

    2012-12-01

    Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).

  20. Tracing source, mixing and uptaking processes of carbon in an epikarst spring-pond system in southeastern Guizhou of China by carbon isotopes (13C-14C)

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Chen, B.; Liu, Z.; Li, H. C.; Yang, R.

    2015-12-01

    δ13C and Δ14C of dissolved inorganic carbon (DIC), particulate organic carbon (POC) and aquatic plants from a karst spring and two spring-fed ponds in Laqiao, Maolan County, Guizhou Province in January, July and October of 2013 were measured to understand the roles of aquatic photosynthesis through DIC uptake in karst surface waters. The mean Δ14C and δ13C values of DIC for the spring pool, midstream and downstream ponds are -60.6±26.3‰ and -13.53±1.97‰, -62.8±62.9‰ and -11.72±2.72‰, and -54.2±56.5‰ and -9.40±2.03‰, respectively. Both Δ14C and δ13C show seasonal variations, with lower Δ14C values but heavier δ13C values in dry season and vice versa in summer rainy season. This observation indicates that (1) the main carbon source of the spring DIC is from limestone bedrock dissolution and soil CO2 with higher contribution in summer due to higher productivity; and (2) 13C and 14C have different behaviors during DIC uptake by aquatic plants and during CO2 exchange between DIC and the atmospheric CO2. Biological uptake of CO2 will not affect the Δ14C of DIC, but lead to δ13CDIC enrichment. CO2 exchange between DIC and the atmospheric CO2 should elevate both the Δ14C and δ13C of DIC. In Laqiao spring-pond system, it seems that the effect of biological uptake on the Δ14C and δ13C of DIC is much stronger than that of CO2 exchange with the atmosphere. The mean Δ14C values of POC from the spring pool, midstream and downstream ponds are -308.1 ±64.3‰, -164.4±84.4‰ and -195.1±108.5‰, respectively, indicating mixture of aquatic algae and detrital particle (clay and dust). More aquatic algae were formed in the stream ponds especially in the summer. SEM results of the POC samples support this conclusion. Furthermore, the Δ14C values of the submerged aquatic plants range from -200.0‰ to -51.3 ‰ and were similar to those of the DIC, indicating that the aquatic plants used DIC for photosynthesis. The Δ14C value of an emergent plant

  1. Estimation of groundwater residence time using environmental radioisotopes (14C,T) in carbonate aquifers, southern Poland.

    PubMed

    Samborska, Katarzyna; Różkowski, Andrzej; Małoszewski, Piotr

    2013-01-01

    Triassic carbonate aquifers in the Upper Silesia region, affected by intense withdrawal, have been investigated by means of isotopic analyses of (14)C, δ(13)C, δ(2)H, δ(18)O and (3)H. The isotopic examinations were carried out in the 1970s and in the early 1980s, and it was the first application of tracers to estimate age and vulnerability for the contamination of groundwater in this region. Similar isotopic analyses were conducted in 2007 and 2008 with the same Triassic carbonate formation. The isotopic examinations were performed within the confined part of the carbonate formation, wherein aquifers are covered by semi-permeable deposits. The direct recharge of the aquifer occurs in the outcrop areas, but it mainly takes place due to percolation of the water through aquitards and erosional windows. The Triassic aquifer has been intensively drained by wells and by lead-zinc mines. Nowadays, the declining water demand and closure of some mines have induced a significant increase in the water table level. The detailed analysis of the results, including the radiocarbon age corrections and the comparison of radioisotope activities, has made it possible to estimate the range of residence time within the carbonate Triassic aquifer. This range from several tens to several tens of thousands indicates that the recharge of aquifers might have occurred between modern times and the Pleistocene. The apparent age of the water estimated on the basis of (14)C activity was corrected considering the carbon isotope exchange and the diffusion between mobile water in fractures and stagnant water in micropores. The obtained corrected period of recharge corresponds to the result of investigations of noble gases, which were carried out in the 1990s. In almost half of the cases, groundwater is a mixture of young and old water. The mixing processes occur mainly in areas of heavy exploitation of the aquifer. PMID:22607326

  2. Estimation of groundwater residence time using environmental radioisotopes (14C,T) in carbonate aquifers, southern Poland.

    PubMed

    Samborska, Katarzyna; Różkowski, Andrzej; Małoszewski, Piotr

    2013-01-01

    Triassic carbonate aquifers in the Upper Silesia region, affected by intense withdrawal, have been investigated by means of isotopic analyses of (14)C, δ(13)C, δ(2)H, δ(18)O and (3)H. The isotopic examinations were carried out in the 1970s and in the early 1980s, and it was the first application of tracers to estimate age and vulnerability for the contamination of groundwater in this region. Similar isotopic analyses were conducted in 2007 and 2008 with the same Triassic carbonate formation. The isotopic examinations were performed within the confined part of the carbonate formation, wherein aquifers are covered by semi-permeable deposits. The direct recharge of the aquifer occurs in the outcrop areas, but it mainly takes place due to percolation of the water through aquitards and erosional windows. The Triassic aquifer has been intensively drained by wells and by lead-zinc mines. Nowadays, the declining water demand and closure of some mines have induced a significant increase in the water table level. The detailed analysis of the results, including the radiocarbon age corrections and the comparison of radioisotope activities, has made it possible to estimate the range of residence time within the carbonate Triassic aquifer. This range from several tens to several tens of thousands indicates that the recharge of aquifers might have occurred between modern times and the Pleistocene. The apparent age of the water estimated on the basis of (14)C activity was corrected considering the carbon isotope exchange and the diffusion between mobile water in fractures and stagnant water in micropores. The obtained corrected period of recharge corresponds to the result of investigations of noble gases, which were carried out in the 1990s. In almost half of the cases, groundwater is a mixture of young and old water. The mixing processes occur mainly in areas of heavy exploitation of the aquifer.

  3. The next chapter of direct phytolith 14C dating: debunking the myth of occluded photosynthetic carbon exclusivity

    NASA Astrophysics Data System (ADS)

    Santos, G.; Harutyunyan, A.; Alexandre, A. E.; Reyerson, P. E.; Gallagher, K. L.; Isabelle, B. D.

    2014-12-01

    Radiocarbon dating of carbon (C) encapsulated in phytoliths (phytC) is currently used in many Earth Science disciplines for absolute chronologies and paleoclimatic reconstructions; however, the usefulness of phytC has been hampered by inadequate extraction methods[1] and uncertainties regarding its origin as purely photosynthetic [2,3,4]. An early investigation measuring isotopes from Gramineae spp. grown in free-air C enrichment experiments (FACE), showed that part of of its phytC is from a non-photosynthetic source, thus indicating a dual origin[5]. To demonstrate that non-photosynthetic sources within phytC could be from soil C stocks, we measured 14C-AMS phytC extracted from a set of Sorghum bicolor growing on known 14C and d13C bulk substrates and hydroponic solutions. The phytolith concentrates and a silica blank were extracted at UCI, CEREGE and Wisconsin using an improved protocol [1,2]. We also measured CO2 fluxes and isotopic signatures of microbial respiration, percentage of biomass and phytolith extracts produced, and isotopic signatures of the local air and bulk-plant during the growing season of 2012. This allowed comparison of the belowground substrate and nutrient C contributions to phytC 14C results. Meanwhile, NanoSIMS analyses of phytolith polished sections was used to locate phytC in the phytolith siliceous structure [6]. These results will be shown and discussed. [1] Corbineau et al. 2013 R. Paleobot. Palyn. 197: 179 [2] Santos et al. 2010 T. Radiocarbon 52:113 [3] Santos et al. 2012a Biogeosci. 9:1873 [4] Santos et al. 2012b Biogeosci. Discussion 9:C6114 [5] Reyerson et al. 2013 AGU Fall meeting 2013 (Abstract ID: 1803125). [6] Alexandre, et al., submitted.

  4. The release of 14C-depleted carbon from the deep ocean during the last deglaciation: Evidence from the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Bryan, Sean P.; Marchitto, Thomas M.; Lehman, Scott J.

    2010-09-01

    During the last deglaciation the concentration of CO 2 in the atmosphere increased and the radiocarbon activity (Δ 14C) of the atmosphere declined in two steps corresponding in timing to Heinrich Stadial 1 and the Younger Dryas. These changes have been attributed to the redistribution of 14C-depleted carbon from the deep ocean into the upper ocean and atmosphere. Recently, reconstructions of Δ 14C in intermediate waters of the eastern tropical Pacific have revealed pulses of very old water during the deglaciation, consistent with the release of 14C-depleted carbon from the deep ocean at this time. Here, we present reconstructions of intermediate water Δ 14C from the northern Arabian Sea near the coast of Oman. These reconstructions record significant aging of intermediate waters in the Arabian Sea during Heinrich Stadial 1 and, to a lesser extent, during the Younger Dryas. The timing and magnitude of 14C depletion in the Arabian Sea during Heinrich Stadial 1 is very similar to that previously observed in the eastern North Pacific near Baja California, indicating that similar mechanisms were involved in controlling Δ 14C at these two sites. The most parsimonious explanation of the Δ 14C records from the Arabian Sea and Baja California remains the release of 14C-depleted carbon from the deep ocean by renewal of upwelling and mixing in the Southern Ocean. These 14C-depleted waters would have been incorporated into thermocline and intermediate water masses formed in the Southern Ocean and spread northward into the Pacific, Indian and Atlantic Ocean basins.

  5. Ancient carbon from a melting glacier gives high 14C age in living pioneer invertebrates

    PubMed Central

    Hågvar, Sigmund; Ohlson, Mikael

    2013-01-01

    Glaciers are retreating and predatory invertebrates rapidly colonize deglaciated, barren ground. The paradox of establishing predators before plants and herbivores has been explained by wind-driven input of invertebrate prey. Here we present an alternative explanation and a novel glacier foreland food web by showing that pioneer predators eat locally produced midges containing 21,000 years old ancient carbon released by the melting glacier. Ancient carbon was assimilated by aquatic midge larvae, and terrestrial adults achieved a radiocarbon age of 1040 years. Terrestrial spiders, harvestmen and beetles feeding on adult midges had radiocarbon ages of 340–1100 years. Water beetles assumed to eat midge larvae reached radiocarbon ages of 1100–1200 years. Because both aquatic and terrestrial pioneer communities use ancient carbon, the term “primary succession” is questionable in glacier forelands. If our “old” invertebrates had been collected as subfossils and radiocarbon dated, their age would have been overestimated by up to 1100 years. PMID:24084623

  6. Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil

    NASA Astrophysics Data System (ADS)

    Shan, Jun; Ji, Rong; Yu, Yongjie; Xie, Zubin; Yan, Xiaoyuan

    2015-10-01

    This study investigated the effects of biochar, activated carbon (AC)-, and single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in various concentrations (0, 0.2, 20, and 2,000 mg/kg dry soil) on the fate of 14C-catechol and microbial community in soil. The results showed that biochar had no effect on the mineralization of 14C-catechol, whereas AC at all amendment rates and SWCNTs at 2,000 mg/kg significantly reduced mineralization. Particularly, MWCNTs at 0.2 mg/kg significantly stimulated mineralization compared with the control soil. The inhibitory effects of AC and SWCNTs on the mineralization were attributed to the inhibited soil microbial activities and the shifts in microbial communities, as suggested by the reduced microbial biomass C and the separated phylogenetic distance. In contrast, the stimulatory effects of MWCNTs on the mineralization were attributed to the selective stimulation of specific catechol-degraders by MWCNTs at 0.2 mg/kg. Only MWCNTs amendments and AC at 2,000 mg/kg significantly changed the distribution of 14C residues within the fractions of humic substances. Our findings suggest biochar, AC, SWCNTs and MWCNTs have different effects on the fate of 14C-catechol and microbial community in soil.

  7. Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil

    PubMed Central

    Shan, Jun; Ji, Rong; Yu, Yongjie; Xie, Zubin; Yan, Xiaoyuan

    2015-01-01

    This study investigated the effects of biochar, activated carbon (AC)-, and single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in various concentrations (0, 0.2, 20, and 2,000 mg/kg dry soil) on the fate of 14C-catechol and microbial community in soil. The results showed that biochar had no effect on the mineralization of 14C-catechol, whereas AC at all amendment rates and SWCNTs at 2,000 mg/kg significantly reduced mineralization. Particularly, MWCNTs at 0.2 mg/kg significantly stimulated mineralization compared with the control soil. The inhibitory effects of AC and SWCNTs on the mineralization were attributed to the inhibited soil microbial activities and the shifts in microbial communities, as suggested by the reduced microbial biomass C and the separated phylogenetic distance. In contrast, the stimulatory effects of MWCNTs on the mineralization were attributed to the selective stimulation of specific catechol-degraders by MWCNTs at 0.2 mg/kg. Only MWCNTs amendments and AC at 2,000 mg/kg significantly changed the distribution of 14C residues within the fractions of humic substances. Our findings suggest biochar, AC, SWCNTs and MWCNTs have different effects on the fate of 14C-catechol and microbial community in soil. PMID:26515132

  8. Biochar, activated carbon, and carbon nanotubes have different effects on fate of (14)C-catechol and microbial community in soil.

    PubMed

    Shan, Jun; Ji, Rong; Yu, Yongjie; Xie, Zubin; Yan, Xiaoyuan

    2015-10-30

    This study investigated the effects of biochar, activated carbon (AC)-, and single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in various concentrations (0, 0.2, 20, and 2,000 mg/kg dry soil) on the fate of (14)C-catechol and microbial community in soil. The results showed that biochar had no effect on the mineralization of (14)C-catechol, whereas AC at all amendment rates and SWCNTs at 2,000 mg/kg significantly reduced mineralization. Particularly, MWCNTs at 0.2 mg/kg significantly stimulated mineralization compared with the control soil. The inhibitory effects of AC and SWCNTs on the mineralization were attributed to the inhibited soil microbial activities and the shifts in microbial communities, as suggested by the reduced microbial biomass C and the separated phylogenetic distance. In contrast, the stimulatory effects of MWCNTs on the mineralization were attributed to the selective stimulation of specific catechol-degraders by MWCNTs at 0.2 mg/kg. Only MWCNTs amendments and AC at 2,000 mg/kg significantly changed the distribution of (14)C residues within the fractions of humic substances. Our findings suggest biochar, AC, SWCNTs and MWCNTs have different effects on the fate of (14)C-catechol and microbial community in soil.

  9. Soil Carbon Vulnerability in Arctic Coastal Tundra: Seasonal and Spatial Variations in 14C-CO2

    NASA Astrophysics Data System (ADS)

    Smith, L. J.; Torn, M. S.; Conrad, M. E.; Curtis, J. B.; Hahn, M. S.

    2013-12-01

    One reason permafrost soils contain large, old soil organic carbon stores is slow decomposition rates due to cold and waterlogged conditions. If climate change causes high latitude soils to warm and dry, carbon emissions from permafrost soils could be an important atmospheric greenhouse gas source. The vulnerability of global Arctic soil carbon stocks to increased decomposition due to thaw is hard to assess, due to environmental heterogeneity, complex controls on microbial processes, uncertain carbon stocks and flux rates, and poorly understood soil carbon stabilization mechanisms. To address these knowledge gaps, we are using radiocarbon measurements to estimate carbon turnover times in polygonal tundra in Barrow, Alaska. Specifically, we ask: (1) how do old versus recently fixed soil carbon pools contribute to total decomposition, (2) how does this vary seasonally, and (3) how does it vary across a permafrost degradation gradient? Old radiocarbon ages of soil organic matter in perennially frozen soils and deep portions of the seasonally thawed active layer reflect slow historic decomposition rates, and changes in the radiocarbon content of respired CO2 indicate relative mineralization rates of this old, stored carbon. At four time points from June-October 2013, we sample soil organic matter and respired CO2 from low-centered, transitional, and high-centered polygons characteristic of a permafrost degradation cycle. We measure the radiocarbon content of CO2 in surface fluxes and soil pore space from 3 depths in the soil profile, and concurrently incubate active layer soils to resolve the 14C-CO2 signatures of individual soil layers. Preliminary data from 2012 suggest that old soil carbon stores are vulnerable to decomposition. CO2 ages increase with depth in the profile from modern radiocarbon ages to as old as 3115 BP, and high incubation flux rates indicate availability to microbes. As part of the Next Generation Ecosystem Experiment (NGEE-Arctic), we now study

  10. Carbon transfer dynamics from bomb- 14C and δ 13C time series of a laminated stalagmite from SW France - modelling and comparison with other stalagmite records

    NASA Astrophysics Data System (ADS)

    Genty, Dominique; Massault, Marc

    1999-05-01

    Twenty-two AMS 14C measurements have been made on a modern stalagmite from SW France in order to reconstruct the 14C activity history of the calcite deposit. Annual growth laminae provides a chronology up to 1919 A.D. Results show that the stalagmite 14C activity time series is sensitive to modern atmosphere 14C activity changes such as those produced by the nuclear weapon tests. The comparison between the two 14C time series shows that the stalagmite time series is damped: its amplitude variation between pre-bomb and post-bomb values is 75% less and the time delay between the two time series peaks is 16 years ±3. A model is developed using atmosphere 14C and 13C data, fractionation processes and three soil organic matter components whose mean turnover rates are different. The linear correlation coefficient between modeled and measured activities is 0.99. These results, combined with two other stalagmite 14C time series already published and compared with local vegetation and climate, demonstrate that most of the carbon transfer dynamics are controlled in the soil by soil organic matter degradation rates. Where vegetation produces debris whose degradation is slow, the fraction of old carbon injected in the system increases, the observed 14C time series is much more damped and lag time longer than that observed under grassland sites. The same mixing model applied on the 13C shows a good agreement ( R2 = 0.78) between modeled and measured stalagmite δ 13C and demonstrates that the Suess Effect due to fossil fuel combustion in the atmosphere is recorded in the stalagmite but with a damped effect due to SOM degradation rate. The different sources of dead carbon in the seepage water are calculated and discussed.

  11. Year-round probing of soot carbon and secondary organic carbon contributions and sources to the South Asian Atmospheric Brown Cloud using radiocarbon (14C) measurements

    NASA Astrophysics Data System (ADS)

    Kirillova, Elena; Sheesley, Rebecca J.; Andersson, August; Krusâ, Martin; Safai, P. D.; Budhavant, Krishnakant; Rao, P. S. P.; Praveen, P. S.; Gustafsson, Örjan

    2010-05-01

    South Asia is one region of vital importance for assessing human impact on radiative forcing by atmospheric aerosols. Previous research in the region has indicated that black carbon is a significant component of the regional aerosol load. In contrast, there is more ambiguous information regarding the contribution of secondary organic aerosols (SOA) to the total carbonaceous (TC) aerosol composition. Here we primarily address the SOA component of the South Asian Atmospheric Brown Cloud (ABC) by a combination of measurements of SOA concentrations and the 14C signature of TC. Atmospheric particulate matter was collected during fourteen-month continuous sampling campaigns Jan 2008 - March 2009 at both the Maldives Climate Observatory at Hannimaadho (MCO-H) and at the Sinhagad hilltop sampling site of the Indian Institute of Tropical Meteorology (SIN) in central-western India. The radiocarbon method is an ideal approach to identify fossil sources (14C "dead") compared to biogenic and biomass combustion products (with a contemporary 14C signal). The radiocarbon source apportionment of TC revealed very similar contribution from biogenic/biomass combustion (60-70%) for Indian SIN site and the MCOH receptor regions for much of the year. However, during the summer monsoon season biomass contribution to TC at the Indian Ocean site increases to 70-80%, while it decreases to 40-50% at the Indian site. Source apportionment of a soot carbon (SC) isolate (CTO-375 method; a tracer of black carbon) shows a similar trend. According to preliminary data in summer biomass contribution is higher at the MCOH receptor site (70%) compared to the SIN background site (45%). These unique year-round 14C data will be interpreted in view of the SOA concentration and the varying origin of the air masses.

  12. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojuan; Gustafsson, Örjan; Holmes, R. Max; Vonk, Jorien E.; Dongen, Bart E.; Semiletov, Igor P.; Dudarev, Oleg V.; Yunker, Mark B.; Macdonald, Robie W.; Wacker, Lukas; Montluçon, Daniel B.; Eglinton, Timothy I.

    2015-11-01

    Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these "old" terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.

  13. Sources of Respired Carbon in a Northern Minnesota Ombrotrophic Spruce Bog: Preliminary 14C Results from the SPRUCE Site.

    NASA Astrophysics Data System (ADS)

    Guilderson, T. P.; McNicol, G.; Machin, A.; Hanson, P. J.; McFarlane, K. J.; Osuna, J. L.; Pett-Ridge, J.; Singleton, M. J.

    2014-12-01

    A significant uncertainty in future land-surface carbon budgets is the response of wetlands to climate change. A corollary and related question is the future net climate (radiative) forcing impact from wetlands. Active wetlands emit both CO2 and CH4 to the atmosphere. CH4 is, over a few decades, a much more potent greenhouse gas than CO2. CO2 has a longer atmospheric lifetime and a longer 'tail' to its radiative influence. Whether wetlands are a net source or sink of atmospheric carbon under future climate change will depend on ecosystem response to rising temperatures and elevated CO2. The largest uncertainty in future wetland C-budgets, and their climate forcing is the stability of the large below-ground carbon stocks, often in the form of peat, and the partitioning of CO2 and CH4 released via ecosystem respiration. In advance of a long-term experimental warming and elevated CO2 manipulation at the DOE Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) site in the Marcell Experimental Forest, we have characterized the source of respired carbon used for both the production of CO2 and CH4. Samples were collected in early June, late July, and will be collected in early September from three large (~1.1 m2, ~0.5m3) chambers from the control plot, and two of the experimental plots selected for heating (+9°C, +4.5°C). Early June fluxes from the three chambers were ~5500 mgC-m-2-d-1 and ~16 mgC-m-2-d-1 for CO2 and CH4 respectively. Radiocarbon analysis of CO2 and CH4 indicate that the source for the respired carbon is for the most part recent, with most 14C values between 30 and 40‰ - i.e., carbon that was photosynthetically fixed in the last few years. In concert with rising air and ground temperatures fluxes in late July increased to ~6500 mgC-m-2-d-1 and ~86 mgC-m-2-d-1. Although deep-heating was initiated in mid to late June we hypothesize that the July respiration signal is dominated by the regular seasonal cycle of natural warming

  14. Airborne intercomparisons of carbon monoxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Sachse, Glen W.; Hill, Gerald F.; Condon, Estelle P.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of carbon monoxide (CO) are discussed. The intercomparison was conducted as part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and included a laser differential absorption method and two grab sample/gas chromatograph methods. Measurements were obtained during approximately 90 flight hours, during which the CO mixing ratios ranged from about 60 to 140 ppbv. The level of agreement observed for the ensemble of measurements was well within the overall accuracy stated for each instrument. The correlation observed between the measurements from the respective pairs of instruments ranged from 0.85 to 0.98, with no evidence for the presence of either a constant or proportional bias between any of the instruments.

  15. Carbon cycling in primary production bottle incubations: inferences from grazing experiments and photosynthetic studies using 14C and 18O in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Laws, Edward A.; Landry, Michael R.; Barber, Richard T.; Campbell, Lisa; Dickson, Mary-Lynn; Marra, John

    Estimates of photosynthesis based on the incorporation of 14C-labeled inorganic carbon into particulate carbon were compared to estimates of gross photosynthesis based on net O 2 production and the production of 18O2 from H218O during the US Joint Global Ocean Flux Study (US JGOFS) Arabian Sea process cruises. For samples incubated below the surface and at optical depths<3, the 14C uptake : gross photosynthesis ratio averaged 0.45±0.1. This result is in accord with theoretical considerations of the combined effects of the Mehler reaction, photorespiration, dark respiration, excretion, and grazing effects on the two estimates of photosynthesis. The 14C uptake : gross photosynthesis ratio was distinctly higher (0.62) for samples incubated at the surface. This result is likely due to UV light effects, since the O 2 and 14C incubations were done in quartz and polysulfone bottles, respectively. The 14C uptake : gross photosynthesis ratio was lower (0.31) for bottles incubated at optical depths>3. This result probably reflects an increase in the ratio of dark respiration to net photosynthesis in the vicinity of the compensation light level.

  16. Concentration and 14C Content of Total Organic Carbon and Black Carbon in Small (<100 ug C) Samples from Low-Latitude Alpine Ice Cores

    NASA Astrophysics Data System (ADS)

    Kehrwald, N. M.; Czimczik, C. I.; Santos, G. M.; Thompson, L. G.; Ziolkowski, L.

    2008-12-01

    Many low latitude glaciers are receding with consequences for the regional energy budget and hydrology. Ice loss has been linked to climate change and the deposition of organic aerosols such as black carbon (BC) which is formed during incomplete combustion. Little is known about how the contents of BC and total organic carbon (TOC) in aerosols change over time and how anthropogenic activities (e.g. land-use change) impact this variability. Low-latitude ice cores are located closer to population centers than polar ice caps and can provide a regional synthesis of TOC and BC variability. Radiocarbon (14C) may be used to partition BC aerosols into fossil (>50 kyrs) and modern sources (e.g. fossil-fuels vs. wildfires). We quantified TOC, BC, and their 14C content in three low-latitude ice cores: Naimona'nyi (30°27'N, 81°91'E) and Dasuopu (28°23'N, 85°43'E), Tibet, and Quelccaya (13°56'S; 70°50'W), Peru. Aerosols (52-256 g ice on filters) were separated into TOC and BC using thermal oxidation (CTO- 375). 14C was measured by AMS. TOC contents were 0.11-0.87, 0.05-0.43, and 0.06-0.19 μg C (g ice) -1 for Naimona'nyi, Dasuopu, and Quelccaya, respectively. BC contents were 18±8, 27±4, and 29±12 %TOC. Procedural blanks were 0.8 ± 0.4 μg C (TOC) and 1.2 ± 0.6 μg C (BC). In ice cores well dated through annual layer counting and/or independent ages (e.g. volcanic horizons) such as Quelccaya, the ability to separate BC from TOC, as well as partition BC into fossil and modern contributions has potential for reconstructing pre- and post-industrial changes in aerosol composition and their impact on the energy budget.

  17. Carbon isotopic composition (δ(13)C and (14)C activity) of plant samples in the vicinity of the Slovene nuclear power plant.

    PubMed

    Sturm, Martina; Vreča, Polona; Krajcar Bronić, Ines

    2012-08-01

    δ(13)C values of various plants (apples, wheat, and maize) collected in the vicinity of the Krško Nuclear Power Plant (Slovenia) during 2008 and 2009 were determined. By measuring dried samples and their carbonized counterparts we showed that no significant isotopic fractionation occurs during the carbonization phase of the sample preparation process in the laboratory. The measured δ(13)C values of the plants were used for δ(13)C correction of their measured (14)C activities.

  18. Cycling of high-molecular-weight dissolved organic matter in the Middle Atlantic Bight as revealed by carbon isotopic ({sup 13}C and {sup 14}C) signatures

    SciTech Connect

    Guo, L.; Santschi, P.H.; Cifuentes, L.A.

    1996-09-01

    Carbon isotopes ({sup 13}C and {sup 14}C) and elemental composition (C and N) in two fractions of colloidal organic matter (COM) were measured to study the origin and cycling of dissolved organic matter (DOM) in the Middle Atlantic Bight (MAB). COM{sub 1} (1 kDa-0.2 {mu}m) was 59% of the bulk DOM in surface Chesapeake Bay waters and decreased to 30-35% in water of the MAB. COM{sub 10} (10 kDa-0.2 {mu}m), which was the high-molecular-weight (HMW) component of COM{sub 1}, comprised 3-12% of the bulk DOM, with highest concentrations in Chesapeake Bay waters and the lowest in deep waters in the MAB. {Delta}{sup 14}C values of COM{sub 1} decreased from nearshore (-21 to +12%) to offshore and from surface (-166 to -85{per_thousand}) to bottom waters (-400 to -304{per_thousand}). Although {Delta}{sup 14}C values of surface-water HMW COM{sub 10} were generally high (-2 to -7{per_thousand}), values for bottom-water COM{sub 10} were much lower (-129 to -709{per_thousand}). The high {Delta}{sup 14}C values in the surface water suggest a particulate origin of pelagic COM, consistent with the contemporary {Delta}{sup 14}C values of particulate organic matter (POM). The very low {Delta}{sup 14}C values of bottom-water COM{sub 10} imply that in addition to the pelagic origin, sedimentary organic C may serve as an important source for the benthic colloids in the bottom nepheloid layer. The general flow direction of organic carbon is from POM to HMW and to LMW DOM. Three colloidal end-members were identified in the MAB as well as in the Gulf of Mexico: estuarine colloids with high {Delta}{sup 14}C values, high C:N ratios, and lower {delta}{sup 13}C values; offshore surface water colloids with intermediate {Delta}{sup 14}C values, lower C:N ratios, and higher {delta}{sup 13}C values; and offshore deep-water colloids with low {Delta}{sup 14}C values, intermediate C:N ratios, and variable {delta}{sup 13}C values. 40 refs., 10 figs., 3 tabs.

  19. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  20. Translocation of Radioactive Carbon after the Application of 14C-Alanine and 14CO2 to Sunflower Leaves 1

    PubMed Central

    Chopowick, R. E.; Forward, D. F.

    1974-01-01

    14C-(UL)-l-Alanine was applied to the surface of mature leaves at the second node of sunflower (Helianthus annuus L. cv Commander) plants, under illumination. The alanine was absorbed during a 4-hour period, and some of it was metabolized by the absorbing tissue. After a lag period of about 15 minutes from first application, distribution of 14C through the plant proceeded in much the same pattern as when 14CO2 is assimilated by similar leaves. Most, if not all, of the 14C exported from the absorbing regions was in sucrose. Only minute amounts appeared in alanine or other amino acids in surrounding parts of the leaf blade or in the petiole, although these were strongly labeled in the tissue absorbing 14C-alanine. When 14CO2 was supplied for 15 minutes to leaves of different ages, amino acids were lightly labeled in the leaf blade. Mature green leaves exported only sucrose. Yellowing leaves on 60-day-old plants exported a variety of substances including amino acids. PMID:16658645

  1. Investigation of carbon distribution with {sup 14}C as tracer for carbon dioxide (CO{sub 2}) sequestration through NH{sub 4}HCO{sub 3} production

    SciTech Connect

    Zhongxian Cheng; Youhua Ma; Xin Li; Wei-Ping Pan

    2007-12-15

    This work studies carbon fate using the {sup 14}C tracer technique in ecosystems when synthesized fertilizer is applied. The concept of aqueous ammonia solution scrubbing CO{sub 2} from flue gas is used in the fertilizer synthesis. Products after the capture are ammonium bicarbonate (ABC, NH{sub 4}HCO{sub 3}) or long-term effect ammonium bicarbonate (LEABC, NH{sub 4}HCO{sub 3}), an economic source of nitrogen fertilizer. The ABC or LEABC is used as a 'carrier' to transport CO{sub 2} from the atmosphere to the crops and soil. An indoor greenhouse was built, and wheat was chosen as the plant to study in this ecosystem. The investigated ecosystem consists of plant (wheat), soils with three different pH values (alkaline, neutral, and acidic), and three types of underground water (different Ca{sup 2+} and Mg{sup 2+} concentrations). After biological assimilation and metabolism in wheat receiving ABC or LEABC, it was found that a considerable amount (up to 10%) of the carbon source was absorbed by the wheat with increased biomass production. The majority of the unused carbon source (up to 76%) percolated into the soil as carbonates, such as environmentally benign calcium carbonate (CaCO{sub 3}). Generally speaking, alkaline soil has a higher capability to capture and store carbon. For the same soil, there is no apparent difference in carbon capturing capability between ABC and LEABC. These findings answer the question of how carbon is distributed after synthesized ABC or LEABC is applied into the ecosystem. In addition, a separate postexperiment on carbon forms that existed in the soil was made. It was found that up to 88% of the trapped carbon existed in the form of insoluble salts (i.e., CaCO{sub 3}) in alkaline soils. This indicates that alkaline soil has a greater potential for storing carbon after the use of the synthesized ABC or LEABC from exhausted CO{sub 2}. 21 refs., 6 figs., 5 tabs.

  2. Revised 14C dating of ice wedge growth in interior Alaska (USA) to MIS 2 reveals cold paleoclimate and carbon recycling in ancient permafrost terrain

    NASA Astrophysics Data System (ADS)

    Lachniet, Matthew S.; Lawson, Daniel E.; Sloat, Alison R.

    2012-09-01

    Establishing firm radiocarbon chronologies for Quaternary permafrost sequences remains a challenge because of the persistence of old carbon in younger deposits. To investigate carbon dynamics and establish ice wedge formation ages in Interior Alaska, we dated a late Pleistocene ice wedge, formerly assigned to Marine Isotope Stage (MIS) 3, and host sediments near Fairbanks, Alaska, with 24 radiocarbon analyses on wood, particulate organic carbon (POC), air-bubble CO2, and dissolved organic carbon (DOC). Our new CO2 and DOC ages are up to 11,170 yr younger than ice wedge POC ages, indicating that POC is detrital in origin. We conclude an ice wedge formation age between 28 and 22 cal ka BP during cold stadial conditions of MIS 2 and solar insolation minimum, possibly associated with Heinrich event 2 or the last glacial maximum. A DOC age for an ice lens in a thaw unconformity above the ice wedge returned a maximum age of 21,470 ± 200 cal yr BP. Our variable 14C data indicate recycling of older carbon in ancient permafrost terrain, resulting in radiocarbon ages significantly older than the period of ice-wedge activity. Release of ancient carbon with climatic warming will therefore affect the global 14C budget.

  3. Determination of the carbon content of airborne fungal spores.

    PubMed

    Bauer, Heidi; Kasper-Giebl, Anne; Zibuschka, Franziska; Hitzenberger, Regina; Kraus, Gunther F; Puxbaum, Hans

    2002-01-01

    Airborne fungal spores contribute potentially to the organic carbon of the atmospheric aerosol, mainly in the "coarse aerosol" size range 2.5-10 microm aerodynamic equivalent diameter (aed). Here, we report about a procedure to determine the organic carbon content of fungal spores frequently observed in the atmosphere. Furthermore, we apply a new (carbon/individual) factor to quantify the amount of fungal-spores-derived organic carbon in aerosol collected at a mountain site in Austria. Spores of representatives of Cladosporium sp., Aspergillus sp., Penicillium sp., and Alternaria sp., the four predominant airborne genera, were analyzed for their carbon content using two different analytical procedures. The result was an average carbon content of 13 pg C/spore (RSD, 46%), or expressed as a carbon-per-volume ratio, 0.38 pg C/microm3 (RSD, 30%). These values are comparable to conversion factors for bacteria and some representatives of the zooplankton. Because biopolymers are suspected of interfering with elemental carbon determination by thermal methods, the amount of "fungal carbon" that might be erroneously mistaken for soot carbon was determined using the "two-step combustion" method of Cachier et al. and termed as "apparent elemental carbon" (AEC). This fraction amounted to up to 46% of the initial fungal carbon content. Although the aerosol samples were collected in March under wintry conditions, the organic carbon from fungal spores amounted to 2.9-5.4% of organic carbon in the "coarse mode" size fraction.

  4. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  5. Synthesizing the Use of Carbon Isotope (14C and 13C) Approaches to Understand Rates and Pathways for Permafrost C Mobilization and Mineralization

    NASA Astrophysics Data System (ADS)

    Estop-Aragones, C.; Olefeldt, D.; Schuur, E.

    2015-12-01

    To better understand the permafrost carbon (C) feedback it is important to synthesize our current knowledge, and knowledge gaps, of how permafrost thaw can cause in situ mineralization or downstream mobilization of aged soil organic carbon (SOC) and the rate of this release. This potential loss of old SOC may occur via gaseous flux of CO2 and CH4 exchanged between soil and the atmosphere and via waterborne flux as DOC, POC (and their subsequent decomposition and release to the atmosphere). Carbon isotope (14C and 13C) approaches have been used to estimate both rates and pathways for permafrost C mobilization and mineralization. Radiocarbon (14C) has been used to estimate the contribution of aged C to overall respiration or waterborne C export. We aim to contrast results from radiocarbon studies, in order to assess differences between ecosystems (contrasting wet and dry ecosystems), thaw histories (active layer deepening or thermokarst landforms), greenhouse gas considered (CO2 and CH4) and seasons. We propose to also contrast methodologies used for assessing the contribution of aged C to overall C balance, and include studies using 13C data. Biological fractionation of 13C during both uptake and decomposition has been taken advantage of both in order to aid the interpretation of 14C data and on its own to assess sources and mineralization pathways. For example, 13C data has been used to differentiate between CH4 production pathways, and the relative contribution of anaerobic CO2 production to overall respiration. Overall, carbon isotope research is proving highly valuable for our understanding of permafrost C dynamics following thaw, and there is a current need to synthesize the available literature.

  6. 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering.

    PubMed

    Petsch, S T; Eglington, T I; Edwards, K J

    2001-05-11

    Prokaryotes have been cultured from a modern weathering profile developed on a approximately 365-million-year-old black shale that use macromolecular shale organic matter as their sole organic carbon source. Using natural-abundance carbon-14 analysis of membrane lipids, we show that 74 to 94% of lipid carbon in these cultures derives from assimilation of carbon-14-free organic carbon from the shale. These results reveal that microorganisms enriched from shale weathering profiles are able to use a macromolecular and putatively refractory pool of ancient organic matter. This activity may facilitate the oxidation of sedimentary organic matter to inorganic carbon when sedimentary rocks are exposed by erosion. Thus, microorganisms may play a more active role in the geochemical carbon cycle than previously recognized, with profound implications for controls on the abundance of oxygen and carbon dioxide in Earth's atmosphere over geologic time.

  7. 14C in cropland soil of a long-term field trial - in-field variability and implications for estimating carbon turnover

    NASA Astrophysics Data System (ADS)

    Leifeld, J.; Mayer, J.

    2015-03-01

    Because of their controlled nature, the presence of independent replicates, and their known management history long-term field experiments are key to the understanding of factors controlling soil carbon. Together with isotope measurements, they provide profound insight into soil carbon dynamics. For soil radiocarbon, an important tracer for understanding these dynamics, in-field variability across replicates is usually not accounted for, hence, a relevant source of uncertainty for quantifying turnover rates is missing. Here, for the first time, radiocarbon measurements of independent field replicates, and for different layers, of soil from the 60 years old controlled field experiment ZOFE in Zurich, Switzerland, is used to address this issue. 14C variability was the same across three different treatments and for three different soil layers between surface and 90 cm depths. On average, in-field variability in 14C content was 12 times the analytical error but still, on a relative basis, smaller than that of in-field soil carbon concentration variability. Despite a relative homogeneous variability across the field and along the soil profile, the curved nature of the relationship between radiocarbon content and modelled carbon mean residence time suggests that the absolute error, without consideration of in-field variability, introduced to soil carbon turnover time calculations increases with soil depth. In our field experiment findings on topsoil carbon turnover variability would, if applied to subsoil, tend to underweight turnover variability even if in-field variability of the subsoil isotope concentration is not higher. Together, in-field variability in radiocarbon is an important component in an overall uncertainty assessment of soil carbon turnover.

  8. Organic Carbon Quality and Watershed Characteristics Separate the Contribution of Δ14C of DOC to Coastal Systems from the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Butman, D. E.; Raymond, P.; Aiken, G.; Butler, K.

    2011-12-01

    Dissolved organic carbon (DOC) in natural waters possesses chemical and molecular qualities that are indicative of organic matter sources and age. The apportionment of DOC by age into millennial and decadal processing pools is necessary to understand the temporal connection between terrestrial and aquatic ecosystems systems in the global carbon cycle. We show that the Δ14C of DOC varies across 15 large river basins in the conterminous United States from a low of -92.9% in the Colorado River to 73.4% in the Altamaha River for the year 2009. This variation correlates to indices of the aromaticity of the DOC measured by the specific UV absorbance at 254nm ((SUVA254; r2 = 0.6, p<0.001) as well as differences in annual river discharge. We then explain the variation in SUVA254 by differences in the watershed vegetation characteristics measured by the Enhance Vegetation Index derived from the NASA Moderate Resolution Imaging Spectrometer (MODIS). We suggest that basins with high discharge, high proportions of vegetation cover, and low population densities export organic material this is enriched in aromatic plant material that corresponds to recently fixed atmospheric CO2. We also show that the average Δ14C measured in DOC for these US rivers is at or below modern levels (-1.3 - 1.2%). However when we weight the isotopic composition of DOC by total discharge, the US exports modern carbon at between 34-46%, a signal dominated by the Mississippi River.

  9. Effect of endotoxin on plasma albumin and fibrinogen synthesis rates in rabbits as measured by the [14C]carbonate method

    PubMed Central

    Koj, A.; McFarlane, A. S.

    1968-01-01

    1. Rates of synthesis of plasma albumin and fibrinogen were measured by the [14C]carbonate method in normal rabbits and in animals that received a single intravenous injection of Shigella endotoxin 14–48hr. earlier. 2. The accuracy of the method was improved by introducing refinements into procedures for measuring 14C radioactivities associated with both urea and proteins that are lost from the plasma during the synthesis interval. 3. The synthesis interval (time between injecting carbonate and measuring specific radioactivities of protein guanidine carbon in plasma) can be shortened with advantage to 3–4hr. 4. Injection of endotoxin markedly decreased the fractional rate of loss in the first few hours of injected radioiodine-labelled fibrinogen and to a smaller extent of similarly labelled albumin from the plasma. The absolute rate of synthesis of fibrinogen was increased in endotoxin-treated rabbits by more than 400% compared with normal animals, and the rate of synthesis of albumin was increased by about 60%. PMID:4872487

  10. Airborne Measurement of Ecosystem Carbon Dynamics over Heterogeneous Landscapes

    NASA Astrophysics Data System (ADS)

    Wade, T. J.; Hill, T. C.; Clement, R.; Moncrieff, J.; Disney, M.; Nichol, C. J.; Williams, M. D.

    2009-12-01

    Terrestrial carbon sinks are currently believed to account for the removal and storage of approximately 25% of anthropogenic carbon emissions from the atmosphere. The processes involved are numerous and complex and many feedbacks are at play. The ability to study the dynamics of different ecosystems at scales meaningful to climatic forcing is essential for understanding the key processes involved and identifying crucial sensitivities and thresholds. Airborne platforms with the requisite instrumentation offer the opportunity to directly measure biological processes and atmospheric structures at scales that are not achievable by ground measurements alone. The current generation of small research aircraft such as the University of Edinburgh’s Diamond HK36TTC ECO Dimona present excellent platforms for measurement of both the atmosphere and terrestrial surface. In this study we present results from airborne CO2/H2O flux measuring campaigns in contrasting climatic systems to quantify spatial patterns in ecosystem photosynthesis. Several airborne campaigns were undertaken in Arctic Finland, as part of the Arctic Biosphere Atmosphere Coupling at Multiple Scales (ABACUS) project (2008), and mainland UK as part of the UK Population Biology Network (UKPopNet) 2009 project, to explore the variability in surface CO2 flux across spatial scales larger than captured using conventional ground based eddy covariance. We discuss the application of our aircraft platform as a tool to address the challenge of understanding carbon dynamics within landscapes of heterogeneous vegetation class, terrain and hydrology using complementary datasets acquired from airborne eddy covariance and remote sensing.

  11. Detecting Airborne Mercury by Use of Polymer/Carbon Films

    NASA Technical Reports Server (NTRS)

    Shevade, Abhijit; Ryan, Margaret; Homer, Margie; Kisor, Adam; Jewell, April; Yen, Shiao-Pin; Manatt, Kenneth; Blanco, Mario; Goddard, William

    2009-01-01

    Films made of certain polymer/carbon composites have been found to be potentially useful as sensing films for detecting airborne elemental mercury at concentrations on the order of tens of parts per billion or more. That is to say, when the polymer/carbon composite films are exposed to air containing mercury vapor, their electrical resistances decrease by measurable amounts. Because airborne mercury is a health hazard, it is desirable to detect it with great sensitivity, especially in enclosed environments in which there is a risk of a mercury leak from lamps or other equipment. The present effort to develop polymerbased mercury-vapor sensors complements the work reported in NASA Tech Briefs Detecting Airborne Mercury by Use of Palladium Chloride (NPO- 44955), Vol. 33, No. 7 (July 2009), page 48 and De tecting Airborne Mer cury by Use of Gold Nanowires (NPO-44787), Vol. 33, No. 7 (July 2009), page 49. Like those previously reported efforts, the present effort is motivated partly by a need to enable operation and/or regeneration of sensors under relatively mild conditions more specifically, at temperatures closer to room temperature than to the elevated temperatures (greater than 100 C ) needed for regeneration of sensors based on noble-metal films. The present polymer/carbon films are made from two polymers, denoted EYN1 and EYN2 (see Figure 1), both of which are derivatives of poly-4-vinyl pyridine with amine functional groups. Composites of these polymers with 10 to 15 weight percent of carbon were prepared and solution-deposited onto the JPL ElectronicNose sensor substrates for testing. Preliminary test results showed that the resulting sensor films gave measurable indications of airborne mercury at concentrations on the order of tens of parts per billion (ppb) or more. The operating temperature range for the sensing films was 28 to 40 C and that the sensor films regenerated spontaneously, without heating above operating temperature (see Figure 2).

  12. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.

    PubMed

    Valle, Russell P; Wu, Tony; Zuo, Yi Y

    2015-05-26

    Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air-water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handle NP-PS interactions in the liquid phase. This technical limitation, inherent in current in vitro methodologies, makes it impossible to simulate how airborne NP deposit at the PS film and interact with it. Existing in vitro NP-PS studies using liquid-suspended particles have been shown to artificially inflate the no-observed adverse effect level of NP exposure when compared to in vivo inhalation studies and international occupational exposure limits (OELs). Here, we developed an in vitro methodology called the constrained drop surfactometer (CDS) to quantitatively study PS inhibition by airborne CNM. We show that airborne multiwalled carbon nanotubes and graphene nanoplatelets induce a concentration-dependent PS inhibition under physiologically relevant conditions. The CNM aerosol concentrations controlled in the CDS are comparable to those defined in international OELs. Development of the CDS has the potential to advance our understanding of how submicron airborne nanomaterials affect the PS lining of the lung.

  13. Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired 14C analysis

    NASA Astrophysics Data System (ADS)

    Hall, S. J.; McNicol, G.; Natake, T.; Silver, W. L.

    2015-04-01

    It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised the large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (66 ± 2%) was rapid (11 to 26 years; mean and SE: 18 ± 3 years) in 25 of 30 soil samples across surface horizons (0-10 and 10-20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial-millennial turnover was typically much less abundant (34 ± 3%), even at 10-20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral-associated C over decadal scales. Steady-state inputs of mineral-associated C were statistically similar among the three topographic positions, and could represent 10-25% of annual litter production. Observed trends in mineral-associated Δ14C over time could not be fit using the single-pool model used in many other studies, which generated contradictory relationships between turnover and Δ14C as compared with a more realistic two-pool model. The large C fluxes in surface and near-surface soils documented here are supported by findings from paired 14C studies in other types of ecosystems, and suggest that most

  14. Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired 14C analysis

    NASA Astrophysics Data System (ADS)

    Hall, S. J.; McNicol, G.; Natake, T.; Silver, W. L.

    2015-01-01

    It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised the large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (74 ± 4%) was rapid (9 to 29 years, mean and SE 20 ± 2 years) in 25 of 30 soil samples across surface horizons (0-10 and 10-20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial - millennial turnover was much less abundant (26%), even at 10-20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral associated C over decadal scales. Steady-state inputs of mineral-associated C were similar among the three topographic positions, and could represent 10-30% of annual litterfall production (estimated by doubling aboveground litterfall). Observed trends in mineral-associated Δ14C over time could not be fit using the single pool model used in many other studies, which generated contradictory relationships between turnover and Δ14C as compared with a more realistic constrained two-pool model. The large C fluxes in surface and near-surface soils implied by our data suggest that other studies using single-pool Δ14C models of mineral

  15. Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired 14C analysis

    DOE PAGESBeta

    Hall, S. J.; McNicol, G.; Natake, T.; Silver, W. L.

    2015-01-16

    It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised themore » large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (74 ± 4%) was rapid (9 to 29 years, mean and SE 20 ± 2 years) in 25 of 30 soil samples across surface horizons (0–10 and 10–20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial – millennial turnover was much less abundant (26%), even at 10–20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral associated C over decadal scales. Steady-state inputs of mineral-associated C were similar among the three topographic positions, and could represent 10–30% of annual litterfall production (estimated by doubling aboveground litterfall). Observed trends in mineral-associated Δ14C over time could not be fit using the single pool model used in many other studies, which generated contradictory relationships between turnover and Δ14C as compared with a more realistic constrained two-pool model. The large C fluxes in surface and near-surface soils implied by our data suggest that other studies using single-pool Δ14C

  16. Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired 14C analysis

    DOE PAGESBeta

    Hall, S. J.; McNicol, G.; Natake, T.; Silver, W. L.

    2015-04-29

    It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised themore » large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (66 ± 2%) was rapid (11 to 26 years; mean and SE: 18 ± 3 years) in 25 of 30 soil samples across surface horizons (0–10 and 10–20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial–millennial turnover was typically much less abundant (34 ± 3%), even at 10–20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral-associated C over decadal scales. Steady-state inputs of mineral-associated C were statistically similar among the three topographic positions, and could represent 10–25% of annual litter production. Observed trends in mineral-associated Δ14C over time could not be fit using the single-pool model used in many other studies, which generated contradictory relationships between turnover and Δ14C as compared with a more realistic two-pool model. The large C fluxes in surface and near-surface soils documented here are supported by findings from paired 14C studies in other types of ecosystems, and

  17. ARM Airborne Continuous carbon dioxide measurements

    DOE Data Explorer

    Biraud, Sebastien

    2013-03-26

    The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

  18. Review and developments of dissemination models for airborne carbon fibers

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1980-01-01

    Dissemination prediction models were reviewed to determine their applicability to a risk assessment for airborne carbon fibers. The review showed that the Gaussian prediction models using partial reflection at the ground agreed very closely with a more elaborate diffusion analysis developed for the study. For distances beyond 10,000 m the Gaussian models predicted a slower fall-off in exposure levels than the diffusion models. This resulting level of conservatism was preferred for the carbon fiber risk assessment. The results also showed that the perfect vertical-mixing models developed herein agreed very closely with the diffusion analysis for all except the most stable atmospheric conditions.

  19. Carbon transitions from either Calvin cycle or transitory starch to heteroglycans as revealed by (14) C-labeling experiments using protoplasts from Arabidopsis.

    PubMed

    Malinova, Irina; Steup, Martin; Fettke, Joerg

    2013-09-01

    Plants metabolize transitory starch by precisely coordinated plastidial and cytosolic processes. The latter appear to include the action of water-soluble heteroglycans (SHGin ) whose monosaccharide pattern is similar to that of apoplastic glycans (SHGex ) but, unlike SHGex , SHGin strongly interacts with glucosyl transferases. In this study, we analyzed starch metabolism using mesophyll protoplasts from wild-type plants and two knock-out mutants [deficient in the cytosolic transglucosidase, disproportionating isoenzyme 2 (DPE2) or the plastidial phosphoglucomutase (PGM1)] from Arabidopsis thaliana. Protoplasts prelabeled by photosynthetic (14) CO2 fixation were transferred to an unlabeled medium and were darkened or illuminated. Carbon transitions from the Calvin cycle or from starch to both SHGin and SHGex were analyzed. In illuminated protoplasts, starch turn-over was undetectable but darkened protoplasts continuously degraded starch. During illumination, neither the total (14) C content nor the labeling patterns of the sugar residues of SHGin were significantly altered but both the total amount and the labeling of the constituents of SHGex increased with time. In darkened protoplasts, the (14) C-content of most of the sugar residues of SHGin transiently and strongly increased and then declined. This effect was not observed in any SHGex constituent. In darkened DPE2-deficient protoplasts, none of the SHGin constituents exhibited an essential transient increase in labeling. In contrast, some residues of SHGin from the PGM1 mutant exhibited a transient increase in label but this effect significantly differed from that of the wild type. Two conclusions are reached: first, SHGin and SHGex exert different metabolic functions and second, SHGin is directly involved in starch degradation.

  20. Carbon black vs. black carbon and other airborne materials containing elemental carbon: physical and chemical distinctions.

    PubMed

    Long, Christopher M; Nascarella, Marc A; Valberg, Peter A

    2013-10-01

    Airborne particles containing elemental carbon (EC) are currently at the forefront of scientific and regulatory scrutiny, including black carbon, carbon black, and engineered carbon-based nanomaterials, e.g., carbon nanotubes, fullerenes, and graphene. Scientists and regulators sometimes group these EC-containing particles together, for example, interchangeably using the terms carbon black and black carbon despite one being a manufactured product with well-controlled properties and the other being an undesired, incomplete-combustion byproduct with diverse properties. In this critical review, we synthesize information on the contrasting properties of EC-containing particles in order to highlight significant differences that can affect hazard potential. We demonstrate why carbon black should not be considered a model particle representative of either combustion soots or engineered carbon-based nanomaterials. Overall, scientific studies need to distinguish these highly different EC-containing particles with care and precision so as to forestall unwarranted extrapolation of properties, hazard potential, and study conclusions from one material to another.

  1. Distribution and biomarkers of carbon-14-labeled fullerene C60 ([(14) C(U)]C60 ) in female rats and mice for up to 30 days after intravenous exposure.

    PubMed

    Sumner, Susan C J; Snyder, Rodney W; Wingard, Christopher; Mortensen, Ninell P; Holland, Nathan A; Shannahan, Jonathan H; Dhungana, Suraj; Pathmasiri, Wimal; Han, Li; Lewin, Anita H; Fennell, Timothy R

    2015-12-01

    A comprehensive distribution study was conducted in female rats and mice exposed to a suspension of uniformly carbon-14-labeled C60 ([(14) C(U)]C60 ). Rodents were administered [(14) C(U)]C60 (~0.9 mg kg(-1) body weight) or 5% polyvinylpyrrolidone-saline vehicle alone via a single tail vein injection. Tissues were collected at 1 h and 1, 7, 14 and 30 days after administration. A separate group of rodents received five daily injections of suspensions of either [(14) C(U)]C60 or vehicle with tissue collection 14 days post exposure. Radioactivity was detected in over 20 tissues at all time points. The highest concentration of radioactivity in rodents at each time point was in liver, lungs and spleen. Elimination of [(14) C(U)]C60 was < 2% in urine and feces at any 24 h time points. [(14) C(U)]C60 and [(14) C(U)]C60 -retinol were detected in liver of rats and together accounted for ~99% and ~56% of the total recovered at 1 and 30 days postexposure, respectively. The blood radioactivity at 1 h after [(14) C(U)]C60 exposure was fourfold higher in rats than in mice; blood radioactivity was still in circulation at 30 days post [(14) C(U)]C60 exposure in both species (<1%). Levels of oxidative stress markers increased by 5 days after exposure and remained elevated, while levels of inflammation markers initially increased and then returned to control values. The level of cardiovascular marker von Willebrand factor, increased in rats, but remained at control levels in mice. This study demonstrates that [(14) C(U)]C60 is retained in female rodents with little elimination by 30 days after i.v. exposure, and leads to systemic oxidative stress.

  2. Loss of Hydrogen from Carbon 5 of d-Glucose during Conversion of d-[5-3H,6-14C]Glucose to l-Ascorbic Acid in Pelargonium crispum (L.) L'Hér 1

    PubMed Central

    Grün, Michael; Renstrøm, Britta; Loewus, Frank A.

    1982-01-01

    Conversion of d-[5-3H,6-14C]glucose to l-ascorbic acid in detached apices of Pelargonium crispum (L.) L'Hér cv Prince Rupert (lemon geranium) was accompanied by complete loss of tritium in the product. Chemical degradation of d-glucose which was recovered from the labeled apices yielded d-glyceric acid (corresponding to carbons 4, 5, and 6 of glucose) with a 3H:14C ratio of 4 to be compared with 9, the ratio in d-[5-3H,6-14C]glucose initially. Conversion of d-[6-3H,6-14C]glucose in the same tissue was accompanied by retention of tritium in l-ascorbic acid with a 3H:14C ratio comparable to that of compounds from the hexose pool. Results indicate that during l-ascorbic acid biosynthesis from glucose in Pelargonium crispum hydrogen at carbon 5 undergoes exchange with the medium, suggesting an epimerization at this carbon atom. PMID:16662659

  3. Organic Carbon Delivery to a High Arctic Watershed over the Late Holocene: Insights from Plant Biomarkers and Compound Specific δ13C and Δ14C Measurements

    NASA Astrophysics Data System (ADS)

    Schreiner, K. M.; Bianchi, T. S.; Eglinton, T. I.; Allison, M. A.

    2012-12-01

    The Colville River in Alaska is the largest river in North America which has a drainage basin that is exclusively underlain by permafrost, and as such provides a unique signal of historical changes in one of the world's most vulnerable areas to climate changes. Additionally, the Colville flows into Simpson's Lagoon, an area of the Alaskan Beaufort coast protected by a barrier island chain, lessening the impacts of Arctic storms and ice grounding on sediment mixing. Cores collected from the Colville river delta in August of 2010 were found to be composed of muddy, organic-rich, well-laminated sediments. The 2.5 to 3 meter length of each core spans about one to two thousand years of Holocene history, including the entire Anthropocene and much of the late Holocene. Two cores were sampled for this data set - one from close to the river mouth, and one from farther east in Simpson's Lagoon. Samples were taken every 2 cm for the entire length of both cores. In order to determine how the amount of terrestrial organic matter input changed over the Holocene, bulk analyses including percent organic carbon, percent nitrogen, and stable carbon isotopic analysis were performed, and biomarkers including lignin-phenols and fatty acids were measured. It was shown that lignin-phenol input is positively correlated with Alaskan North Slope temperature reconstructions. To determine whether the source of this increased terrestrial organic matter input was from fresh vegetation (for example, shrub encroachment onto tundra areas) or aged soil organic matter (potentially due to permafrost thawing and breakdown), selected samples were analyzed for compound-specific δ13C and Δ14C of fatty acids and lignin-phenols. These analyses show significant changes in carbon storage and in terrestrial carbon delivery to the Lagoon over time. These results represent the first fine-scale organic biomarker study in a high Arctic North American Lagoon, and have many implications for the future of carbon

  4. Quantification of airborne road-side pollution carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Baquero, T.; Shukrallah, S.; Karolia, R.; Osammor, O.; Inkson, B. J.

    2015-10-01

    Roadside diesel particulate matter (DPM) has been collected using a P-Trak particle counter with modified inlet filter. The P-Trak monitor assesses ultrafine particle number in real-time rather than accumulated PM mass over a period of time, which is important for DPM where the particles are often <100nm in size. Collected pollution particulate matter was analysed by SEM and TEM, quantifying particle size, morphology and size distribution. The primary carbon nanoparticles form complex fractal aggregates with open porous morphologies and evidence of secondary carbon deposition. For the chosen collection sites, occasional but significantly larger mineral and fibrous particles were identified. The assessment of airborne particles by mass collection (TEOM), particle-number (P-Trak) and TEM methods is discussed.

  5. Different organic carbon status in soil and its influence on the distribution of 14C-labelled xenobiotics in soil fractions

    NASA Astrophysics Data System (ADS)

    Schnitzler, Frauke; Séquaris, Jean-Marie; Berns, Anne E.; Burauel, Peter

    2010-05-01

    Aggregate size fractionation in combination with chemical extraction was used to assess pesticide interactions with soil organic matter under different soil management practices [1]. In this study, surface area measurements (BET-N2) were established as a method to calculate the distribution of organic carbon (OC) and xenobiotics in clay and combined silt+sand fractions. It was shown that concentrations of OC associated with clay can be determined from linear relationships between OC and mineral specific surface area [2]. Two sets of experiments were conducted with undisturbed soil columns under field-like conditions. In the first set, maize straw was incorporated into the topsoil and after three months incubation the 14C-labelled xenobiotics benazolin or benzo[a]pyrene were applied. The second set was treated equally, but without maize addition. The calculated distribution coefficients Kd indicated a stronger sorption of benzo[a]pyrene than benazolin derivates. Furthermore, the binding capacity for the xenobiotics was higher in the clay than in the silt+sand fraction due to the relative high specific surface area in the clay fraction. Incorporation of maize straw led to a significant retention and decrease of mobility of the acidic benazolin. The hydrophobic benzo[a]pyrene was less affected by the addition of organic amendment and remained in the topsoil. [1] Schnitzler, F., Lavorenti, A., Berns, A.E., Drewes, N., Vereecken, H., Burauel, P., 2007. The influence of maize residues on the mobility and binding of benazolin: Investigating physically extracted soil fractions. Environmental Pollution 147, 4-13. [2] Séquaris, J.-M., Guisado, M., Moreno, C., Burauel, P., Narres, H.-D., Vereecken, H., 2010. Organic carbon fractions in an agricultural topsoil assessed by the determination of the soil mineral surface area. Journal of Plant Nutrition and Soil Science, in press

  6. [Carbon sources metabolic characteristics of airborne microbial communities in constructed wetlands].

    PubMed

    Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan

    2015-02-01

    Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P < 0.01). In the same season, the degree of utilization of different types of carbon by airborne microbes was different. Summer had a significant difference from other seasons (P < 0.05). Dominant communities of airborne microbes in four seasons were carboxylic acids metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.

  7. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan

    SciTech Connect

    Biraud, S

    2015-12-01

    From October 1 through September 30, 2016, the Atmospheric Radiation Measurement (ARM) Aerial Facility will deploy the Cessna 206 aircraft over the Southern Great Plains (SGP) site, collecting observations of trace-gas mixing ratios over the ARM’s SGP facility. The aircraft payload includes two Atmospheric Observing Systems, Inc., analyzers for continuous measurements of CO2 and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, 14CO2, carbonyl sulfide, and trace hydrocarbon species, including ethane). The aircraft payload also includes instrumentation for solar/infrared radiation measurements. This research is supported by the U.S. Department of Energy’s ARM Climate Research Facility and Terrestrial Ecosystem Science Program and builds upon previous ARM Airborne Carbon Measurements (ARM-ACME) missions. The goal of these measurements is to improve understanding of 1) the carbon exchange at the SGP site, 2) how CO2 and associated water and energy fluxes influence radiative forcing, convective processes and CO2 concentrations over the SGP site, and 3) how greenhouse gases are transported on continental scales.

  8. Microbial carbon cycling in oligotrophic regional aquifers near the Tono Uranium Mine, Japan as inferred from δ 13C and Δ 14C values of in situ phospholipid fatty acids and carbon sources

    NASA Astrophysics Data System (ADS)

    Mills, Christopher T.; Amano, Yuki; Slater, Gregory F.; Dias, Robert F.; Iwatsuki, Teruki; Mandernack, Kevin W.

    2010-07-01

    Microorganisms are ubiquitous in deep subsurface environments, but their role in the global carbon cycle is not well-understood. The natural abundance δ 13C and Δ 14C values of microbial membrane phospholipid fatty acids (PLFAs) were measured and used to assess the carbon sources of bacteria in sedimentary and granitic groundwaters sampled from three boreholes in the vicinity of the Tono Uranium Mine, Gifu, Japan. Sample storage experiments were performed and drill waters analyzed to characterize potential sources of microbial contamination. The most abundant PLFA structures in all waters sampled were 16:0, 16:1ω7 c, cy17:0, and 18:1ω7 c. A PLFA biomarker for type II methanotrophs, 18:1ω8 c, comprised 3% and 18% of total PLFAs in anoxic sedimentary and granitic waters, respectively, sampled from the KNA-6 borehole. The presence of this biomarker was unexpected given that type II methanotrophs are considered obligate aerobes. However, a bacterium that grows aerobically with CH 4 as the sole energy source and which also produces 56% of its total PLFAs as 18:1ω8 c was isolated from both waters, providing additional evidence for the presence of type II methanotrophs. The Δ 14C values determined for type II methanotroph PLFAs in the sedimentary (-861‰) and granite (-867‰) waters were very similar to the Δ 14C values of dissolved inorganic carbon (DIC) in each water (˜-850‰). This suggests that type II methanotrophs ultimately derive all their carbon from inorganic sources, whether directly from DIC and/or from CH 4 produced by the reduction of DIC. In contrast, δ 13C values of type II PLFAs in the sedimentary (-93‰) and granite (-60‰) waters indicate that these organisms use different carbon assimilation schemes in each environment despite very similar δ13C values (˜-95‰) for each water. The δ 13C PLFA values (-28‰ to -45‰) of non-methanotrophic bacteria in the KNA-6 LTL water do not clearly distinguish between heterotrophic and autotrophic

  9. COCAP - A compact carbon dioxide analyser for airborne platforms

    NASA Astrophysics Data System (ADS)

    Kunz, Martin; Lavrič, Jošt V.; Jeschag, Wieland; Bryzgalov, Maksym; Hök, Bertil; Heimann, Martin

    2014-05-01

    Airborne platforms are a valuable tool for atmospheric trace gas measurements due to their capability of movement in three dimensions, covering spatial scales from metres to thousands of kilometres. Although crewed research aircraft are flexible in payload and range, their use is limited by high initial and operating costs. Small unmanned aerial vehicles (UAV) have the potential for substantial cost reduction, but require lightweight, miniaturized and energy-efficient scientific equipment. We are developing a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). It contains a non-dispersive infrared CO2sensor with a nominal full scale of 3000 μmol/mol. Sampled air is dried with magnesium perchlorate before it enters the sensor. This enables measurement of the dry air mole fraction of CO2, as recommended by the World Meteorological Organization. During post-processing, the CO2 measurement is corrected for temperature and pressure variations in the gas line. Allan variance analysis shows that we achieve a precision of better than 0.4 μmol/mol for 10 s averaging time. We plan to monitor the analyser's stability during flight by measuring reference air from a miniature gas tank in regular intervals. Besides CO2, COCAP measures relative humidity, temperature and pressure of ambient air. An on-board GPS receiver delivers accurate timestamps and allows georeferencing. Data is both stored on a microSD card and simultaneously transferred over a wireless serial interface to a ground station for real-time review. The target weight for COCAP is less than 1 kg. We deploy COCAP on a commercially available fixed-wing UAV (Bormatec Explorer) with a wingspan of 2.2 metres. The UAV has high payload capacity (2.5 kg) as well as sufficient space in the fuselage (80x80x600 mm3). It is built from a shock-resistant foam material, which allows quick repair of minor damages in the field. In case of severe damage spare parts are readily available. Calculations suggest that the

  10. Effects of airborne black carbon pollution on maize

    NASA Astrophysics Data System (ADS)

    Illes, Bernadett; Anda, Angela; Soos, Gabor

    2013-04-01

    The black carbon (BC) changes the radiation balance of the Earth and contributes to global warming. The airborne BC deposited on the surface of plant, changing the radiation balance, water balance and the total dry matter (TDM) content of plant. The objective of our study was to investigate the impact of soot originated from motor vehicle exhaust on maize. The field experiment was carried out in Keszthely Agrometeorological Research Station (Hungary) in three consecutive years (2010, 2011, 2012) of growing season. The test plant was the maize hybrid Sperlona (FAO 340) with short growing season. The BC was chemically "pure", which means that it is free any contaminants (e.g. heavy metals). The BC was coming from the Hankook Tyre Company (Dunaújváros, Hungary), where used that for improve the wear resistance of tires. We used a motorised sprayer of SP 415 type to spray the BC onto the leaf surface. The leaf area index (LAI) was measured each week on the same 12 sample maize in each treatment using an LI 3000A automatic planimeter (LI-COR, Lincoln, NE). Albedo was measured by pyranometers of the CMA-11 type (Kipp & Zonen, Vaisala), what we placed the middle of the plot of 0.3 ha. The effects of BC were studied under two different water supplies: evapotranspirometers of Thornthwaite type were used for "ad libitum" treatment and rainfed treatment in field plots. In 2010 and 2012, a big difference was not observed in the case of LAI in the effects of BC. However, in 2011 there was a significant difference. The LAI of the BC polluted maize was higher (10-15%, P<0.05), than the LAI of the control maize in the rainfed plot and in the ET chambers, respectively. The albedo of the BC contaminated maize decreased (15-30%, P<0.05) in all three years. We also detected that the green plant surface of maize increased on BC contaminated treatment. These results may suggest that the plant is able to absorb the additional carbon source through the leaves. The albedo decreased

  11. 14C tebuconazole degradation in Colombian soils.

    PubMed

    Mosquera, C S; Martínez, M J; Guerrero, J A

    2010-01-01

    Tebuconazole is a fungicide used on onion crops (Allium Fistulosum L) in Colombia. Persistence of pesticides in soils is characterized by the half-life (DT50), which is influenced by their chemical structure, the physical and chemical properties of the soil and the previous soil history. Based on its structural and chemical properties, tebuconazole should be expected to be relatively persistent in soils. Laboratory incubation studies were conducted to evaluate persistence and bond residues of 14C tebuconazole in three soils, two inceptisol (I) and one histosol (H). Textural classifications were: loam (101), loamy sand (102) and loam (H03), respectively. Data obtained followed a first-order degradation kinetics (R2 > or = 0.899) with DT50 values between 158 and 198 days. The production of 14CO2 from the 14C-ring-labelled test chemicals was very low and increased slightly during 63 days in all cases. The methanol extractable 14C-residues were higher than aqueous ones and both decreased over incubation time for the three soils. The formation of bound 14C-residues increased with time and final values were 11.3; 5.55 and 7.87% for 101, 102 and H03 respectively. Soil 101 showed the lowest mineralization rate and the highest bound residues formation, which might be explained by the clay fraction content. In contrast, an inverse behavior was found for soils 102 and H03, these results might be explained by the higher soil organic carbon content. PMID:21542480

  12. 14C tebuconazole degradation in Colombian soils.

    PubMed

    Mosquera, C S; Martínez, M J; Guerrero, J A

    2010-01-01

    Tebuconazole is a fungicide used on onion crops (Allium Fistulosum L) in Colombia. Persistence of pesticides in soils is characterized by the half-life (DT50), which is influenced by their chemical structure, the physical and chemical properties of the soil and the previous soil history. Based on its structural and chemical properties, tebuconazole should be expected to be relatively persistent in soils. Laboratory incubation studies were conducted to evaluate persistence and bond residues of 14C tebuconazole in three soils, two inceptisol (I) and one histosol (H). Textural classifications were: loam (101), loamy sand (102) and loam (H03), respectively. Data obtained followed a first-order degradation kinetics (R2 > or = 0.899) with DT50 values between 158 and 198 days. The production of 14CO2 from the 14C-ring-labelled test chemicals was very low and increased slightly during 63 days in all cases. The methanol extractable 14C-residues were higher than aqueous ones and both decreased over incubation time for the three soils. The formation of bound 14C-residues increased with time and final values were 11.3; 5.55 and 7.87% for 101, 102 and H03 respectively. Soil 101 showed the lowest mineralization rate and the highest bound residues formation, which might be explained by the clay fraction content. In contrast, an inverse behavior was found for soils 102 and H03, these results might be explained by the higher soil organic carbon content.

  13. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Astrophysics Data System (ADS)

    Meadows, B.; Davis, K.; Barrick, J. D. W.; Browell, E. V.; Chen, G.; Dobler, J. T.; Fried, A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Miles, N. L.; Nehrir, A. R.; Obland, M. D.; O'Dell, C.; Sweeney, C.; Yang, M. M.

    2015-12-01

    NASA announced the research opportunity Earth Venture Suborbital - 2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport - America (ACT - America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT - America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2 and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  14. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; Miles, Natasha; Nehrir, Amin; Obland, Michael; O'Dell, Chris; Sweeney, Colm; Yang, Melissa

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  15. 14C Analysis of protein extracts from Bacillus spores.

    PubMed

    Cappuccio, Jenny A; Falso, Miranda J Sarachine; Kashgarian, Michaele; Buchholz, Bruce A

    2014-07-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F(14)C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F(14)C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F(14)C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their (14)C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate (14)C bomb-pulse dating. Since media is contemporary, (14)C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media.

  16. Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus.

    PubMed

    Leake, J R; Donnelly, D P; Saunders, E M; Boddy, L; Read, D J

    2001-02-01

    We used a novel digital autoradiographic technique that enabled, for the first time, simultaneous visualization and quantification of spatial and temporal changes in carbon allocation patterns in ectomycorrhizal mycelia. Mycorrhizal plants of Pinus sylvestris L. were grown in microcosms containing non-sterile peat. The time course and spatial distribution of carbon allocation by P. sylvestris to mycelia of its mycorrhizal partners, Paxillus involutus (Batsch) Fr. and Suillus bovinus (L.): Kuntze, were quantified following 14C pulse labeling of the plants. Litter patches were used to investigate the effects of nutrient resource quality on carbon allocation. The wood-decomposer fungus Phanerochaete velutina (D.C.: Pers.) Parmasto was introduced to evaluate competitive and territorial interactions between its mycelial cords and the mycelial system of S. bovinus. Growth of ectomycorrhizal mycelium was stimulated in the litter patches. Nearly 60% of the C transferred from host plant to external mycorrhizal mycelium (> 2 mm from root surfaces) was allocated to mycelium in the patches, which comprised only 12% of the soil area available for mycelial colonization. Mycelia in the litter patch most recently colonized by mycorrhizal mycelium received the largest investment of carbon, amounting to 27 to 50% of the total 14C in external mycorrhizal mycelium. The amount of C transfer to external mycelium of S. bovinus following pulse labeling was reduced from a maximum of 167 nmol in systems with no saprotroph to a maximum of 61 nmol in systems interacting with P. velutina. The 14C content of S. bovinus mycelium reached a maximum 24-36 h after labeling in control microcosms, but allocation did not reach a peak until 56 h after labeling, when S. bovinus interacted with mycelium of P. velutina. The mycelium of S. bovinus contained 9% of the total 14C in the plants (including mycorrhizae) at the end of the experiment, but this was reduced to 4% in the presence of P. velutina. The

  17. Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus.

    PubMed

    Leake, J R; Donnelly, D P; Saunders, E M; Boddy, L; Read, D J

    2001-02-01

    We used a novel digital autoradiographic technique that enabled, for the first time, simultaneous visualization and quantification of spatial and temporal changes in carbon allocation patterns in ectomycorrhizal mycelia. Mycorrhizal plants of Pinus sylvestris L. were grown in microcosms containing non-sterile peat. The time course and spatial distribution of carbon allocation by P. sylvestris to mycelia of its mycorrhizal partners, Paxillus involutus (Batsch) Fr. and Suillus bovinus (L.): Kuntze, were quantified following 14C pulse labeling of the plants. Litter patches were used to investigate the effects of nutrient resource quality on carbon allocation. The wood-decomposer fungus Phanerochaete velutina (D.C.: Pers.) Parmasto was introduced to evaluate competitive and territorial interactions between its mycelial cords and the mycelial system of S. bovinus. Growth of ectomycorrhizal mycelium was stimulated in the litter patches. Nearly 60% of the C transferred from host plant to external mycorrhizal mycelium (> 2 mm from root surfaces) was allocated to mycelium in the patches, which comprised only 12% of the soil area available for mycelial colonization. Mycelia in the litter patch most recently colonized by mycorrhizal mycelium received the largest investment of carbon, amounting to 27 to 50% of the total 14C in external mycorrhizal mycelium. The amount of C transfer to external mycelium of S. bovinus following pulse labeling was reduced from a maximum of 167 nmol in systems with no saprotroph to a maximum of 61 nmol in systems interacting with P. velutina. The 14C content of S. bovinus mycelium reached a maximum 24-36 h after labeling in control microcosms, but allocation did not reach a peak until 56 h after labeling, when S. bovinus interacted with mycelium of P. velutina. The mycelium of S. bovinus contained 9% of the total 14C in the plants (including mycorrhizae) at the end of the experiment, but this was reduced to 4% in the presence of P. velutina. The

  18. sup 14 C fixation by leaves and leaf cell protoplasts of the submerged aquatic angiosperm Potamogeton lucens: Carbon dioxide or bicarbonate

    SciTech Connect

    Staal, M.; Elzenga, J.T.M.; Prins, H.B.A. )

    1989-07-01

    Protoplasts were isolated from leaves of the aquatic angiosperm Potamogeton lucens L. The leaves utilize bicarbonate as a carbon source for photosynthesis, and show polarity; that is acidification of the periplasmic space of the lower, and alkalinization of the space near the upper leaf side. At present there are two models under consideration for this photosynthetic bicarbonate utilization process: conversion of bicarbonate into free carbon dioxide as a result of acidification and, second, a bicarbonate-proton symport across the plasma membrane. Carbon fixation of protoplasts was studied at different pH values and compared with that in leaf strips. Using the isotopic disequilibrium technique, it was established that carbon dioxide and not bicarbonate was the form in which DIC actually crossed the plasma membrane. It is concluded that there is probably no true bicarbonate transport system at the plasma membrane of these cells and that bicarbonate utilization in this species apparently rests on the conversion of bicarbonate into carbon dioxide. Experiments with acetazolamide, an inhibitor of periplasmic carbonic anhydrase, and direct measurements of carbonic anhydrase activity in intact leaves indicate that in this species the role of this enzyme for periplasmic conversion of bicarbonate into carbon dioxide is insignificant.

  19. Effect of HF leaching on 14C dates of pottery

    NASA Astrophysics Data System (ADS)

    Goslar, Tomasz; Kozłowski, Janusz; Szmyt, Marzena; Czernik, Justyna

    2013-01-01

    This paper presents the experiments with 14C dating of two potsherds, which contained carbon dispersed rather homogeneously in their clay fabric. After AAA treatment, the potsherds still appeared to be contaminated with young carbon, presumably connected with humic acids. To make removal of humic acids more effective, we treated the sherds with HF acid of different concentration. The 14C results obtained demonstrate that HF treatment indeed helps to remove humic contaminants, but it also mobilizes carbon bound to raw clay, which may make 14C dates too old. We conclude therefore, that using a simple combination of HF and AAA treatment seems insufficient in reliable 14C dating of carbon homogeneously dispersed in the volume of potsherds.

  20. ENVIRONMENTAL BIODEGRADABILITY OF [14C] SINGLE-WALLED CARBON NANOTUBESBY TRAMETES VERSICOLOR AND NATURAL MICROBIAL CULTURES FOUND IN NEWBEDFORD HARBOR SEDIMENT AND AERATED WASTEWATER TREATMENT PLANT SLUDGE

    EPA Science Inventory

    Little is known about environmental biodegradability or biotransformations of single-walled carbon nanotubes (SWNT). Because of their strong association with aquatic organic matter, detailed knowledge of the ultimate fate and persistence of SWNT requires investigation of possible...

  1. Synthesis of [(14) C]omarigliptin.

    PubMed

    Ren, Sumei; Gauthier, Donald; Marques, Rosemary; Helmy, Roy; Hesk, David

    2016-08-01

    An efficient synthesis for [(14) C]Omarigliptin (MK-3102) is described. The initial synthesis of a key (14) C-pyrazole moiety did not work due to the lack of stability of (14) C-DMF-DMA reagent. Thus, a new radiolabeled synthon, (14) C-biphenylmethylformate, was synthesized from (14) C-sodium formate in one step in 92% yield and successfully used in construction of the key (14) C-pyrazole moiety. Regioselective N-sulfonation of the pyrazole moiety was achieved through a dehydration-sulfonation-isomerization sequence. [(14) C]MK 3102 was synthesized in five steps from (14) C-biphenylmethylformate with 25% overall yield. PMID:27334864

  2. Root-uptake of (14)C derived from acetic acid and (14)C transfer to rice edible parts.

    PubMed

    Ogiyama, Shinichi; Suzuki, Hiroyuki; Inubushi, Kazuyuki; Takeda, Hiroshi; Uchida, Shigeo

    2010-02-01

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of (14)C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The (14)C radioactivity in the plant, mediums, and atmospheric carbon dioxide ((14)CO(2)) in the chamber were determined, and the distribution of (14)C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had (14)C radioactivity, but the upper root which did not have contact with the solution had none. There were also (14)C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that (14)CO(2) gas was released from the culture solution in both types of cultures. Results indicated that the (14)C-acetic acid absorbed by rice plant through its root would be very small. Most of the (14)C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate (14)C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of (14)C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated (14)C through the plant roots not because of uptake of (14)C-acetic acid but because of uptake of (14)C in gaseous forms such as (14)CO(2). PMID:19962904

  3. Airborne radioactivity Survey of part of Saratoga NW quadrangle, Carbon County, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 133 square miles of Saratoga NW quadrangle, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater Counties by the U. S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission.

  4. Seasonal and snowmelt-driven changes in the water-extractable organic carbon dynamics in a cool-temperate Japanese forest soil, estimated using the bomb-(14)C tracer.

    PubMed

    Nakanishi, Takahiro; Atarashi-Andoh, Mariko; Koarashi, Jun; Saito-Kokubu, Yoko; Hirai, Keizo

    2014-02-01

    Water-extractable organic carbon (WEOC) in soil consists of a mobile and bioavailable portion of the dissolved organic carbon (DOC) pool. WEOC plays an important role in dynamics of soil organic carbon (SOC) and transport of radionuclides in forest soils. Although considerable research has been conducted on the importance of recent litter versus older soil organic matter as WEOC sources in forest soil, a more thorough evaluation of the temporal pattern of WEOC is necessary. We investigated the seasonal variation in WEOC in a Japanese cool-temperate beech forest soil by using the carbon isotopic composition ((14)C and (13)C) of WEOC as a tracer for the carbon sources. Our observations demonstrated that fresh leaf litter DOC significantly contributed to WEOC in May (35-52%) when the spring snowmelt occurred because of the high water flux and low temperature. In the rainy season, increases in the concentration of WEOC and the proportion of hydrophobic compounds were caused by high microbial activity under wetter conditions. From summer to autumn, the WEOC in the mineral soil horizons was also dominated by microbial release from SOC (>90%). These results indicate that the origin and dynamics of WEOC are strongly controlled by seasonal events such as the spring snowmelt and the rainy season's intense rainfall.

  5. (14)C, delta(13)C and total C content in soils around a Brazilian PWR nuclear power plant.

    PubMed

    Dias, Cíntia Melazo; Telles, Everaldo C; Santos, Roberto Ventura; Stenström, Kristina; Nícoli, Iêda Gomes; da Silveira Corrêa, Rosangela; Skog, Göran

    2009-04-01

    Nuclear power plants release (14)C during routine operation mainly as airborne gaseous effluents. Because of the long half-life (5730 years) and biological importance of this radionuclide (it is incorporated in plant tissue by photosynthesis), several countries have monitoring programs in order to quantify and control these emissions. This paper compares the activity of (14)C in soils taken within 1km from a Brazilian nuclear power plant with soils taken within a reference area located 50km away from the reactor site. Analyses of total carbon, delta(13)C and (137)Cs were also performed in order to understand the local soil dynamics. Except for one of the profiles, the isotopic composition of soil organic carbon reflected the actual forest vegetation present in both areas. The (137)Cs data show that the soils from the base of hills are probably allocthonous. The (14)C measurements showed that there is no accumulation due to the operation of the nuclear facility, although excess (14)C was found in the litter taken in the area close to power plant. This indicates that the anthropogenic signal observed in the litter fall has not been transferred yet to the soil. This study is part of an extensive research programme in which other samples including air, vegetation and gaseous effluents (taken in the vent stack of the Brazilian nuclear power reactors Angra I and II) were also analyzed. The present paper aimed to evaluate how (14)C emissions from the nuclear power plant are transferred and stored by soils present in the surroundings of the reactor site. This is the first study concerning anthropogenic (14)C in soils in Brazil.

  6. Near Surface Leakage Monitoring for the Verification and Accounting of Geologic Carbon Sequestration Using a Field Ready {sup 14}C Isotopic Analyzer

    SciTech Connect

    Marino, Bruno

    2014-04-14

    Results for the development of a field ready multi-isotopic analyzer for {sup 12}CO{sub 2}, {sup 13}CO{sub 2} and {sup 14}CO{sub 2} and applications for carbon capture and storage (CCS) containment performance are described. A design goal of the field platform was to provide isotopic data with a high data rate, a standardized reference baseline and acceptable precision (e.g., ~ ±50 per mil D{sup 14}CO{sub 2}) for detection and quantification of fossil-fuel CO{sub 2} CCS leakage scenarios. The instrument platform was not designed to replace high precision accelerator mass spectrometry. An additional goal was to combine project scale isotopic data and associated fluxes with unique financial instruments linking CCS containment performance to a publicly traded security providing project revenue to stakeholders. While the primary goals of the project were attained additional work is needed for the instrument platform and deployment within a full scale CCS site that was not available during the project timeframe.

  7. 14C Analysis of Protein Extracts from Bacillus Spores

    PubMed Central

    Cappucio, Jenny A.; Sarachine Falso, Miranda J.; Kashgarian, Michaele; Buchholz, Bruce A.

    2014-01-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F14C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F14C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F14C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F14C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their 14C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate 14C bomb-pulse dating. Since media is contemporary, 14C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. PMID:24814329

  8. The use of hair as an indicator of occupational 14C contamination.

    PubMed

    Stenström, Kristina; Unkel, Ingmar; Nilsson, Carl Magnus; Rääf, Christopher; Mattsson, Sören

    2010-03-01

    This paper presents a study in which the specific activity of (14)C in hair has been investigated as an easily determined bio-indicator of the integrated (14)C exposure (over several months). The study includes 28 Swedish workers handling (14)C-labelled compounds, or working in a (14)C-enriched environment. Hair samples from personnel at a Swedish nuclear power plant showed very low levels of (14)C contamination, if any. In contrast, personnel at the investigated research departments showed (14)C levels in hair of up to 60% above the natural specific activity of (14)C. Much higher levels, up to 80 times the natural specific activity of (14)C, were found in hair from individuals working at a pharmaceutical research laboratory. This contamination was, however, not solely an internal contamination. There were indications that most of the (14)C in the hair originated from airborne (14)C-compounds, which were adsorbed onto the hair. The difficulties in removing this external (14)C contamination prior to analysis are discussed, as are the possibilities of using accelerator mass spectrometry to analyse various types of samples for retrospective dose assessment.

  9. Airborne radioactivity surveys of parts of Savery SW and Savery SE quadrangles, Carbon County, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 222 square miles of Savery SW and Savery SE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater Counties by the U. S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission.

  10. Airborne radioactivity survey of parts of Savery NW and Savery NE quadrangles, Carbon County, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 266 square miles of Savery NW and Savery NE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater Counties by the U. S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission.

  11. Forensic applications of 14C at CIRCE

    NASA Astrophysics Data System (ADS)

    Marzaioli, F.; Fiumano, V.; Capano, M.; Passariello, I.; Cesare, N. De.; Terrasi, F.

    2011-12-01

    The decreasing trend of the radiocarbon pulse produced during the atmospheric tests of nuclear weapons (bomb-carbon) coupled with high sensitivity accelerator mass spectrometry (AMS) measurements, drastically increased the precision of radiocarbon age determinations since the second part of the sixties, allowing the application of radiocarbon AMS to a wide range of studies previously not directly involving conventional radiocarbon dating (i.e. food authenticity, forensic, biochemistry). In the framework of authenticity evaluation of artworks, high precision radiocarbon ( 14C) AMS measurements (Δ R/ R < 0.3%) reduce the conventional uncertainty of the dating to few decades, allowing precise age estimation of materials containing carbon (C). The Centre for Isotopic Research on Cultural and Environmental heritage (CIRCE) during its activity on AMS 14C dating achieved high precision measurements opening the opportunity to these kinds of applications. This paper presents the main results obtained from radiocarbon measurements on a set of bone samples analyzed for the determination of the post-mortem interval in the framework of an unsolved case investigated by the Rome prosecutor office. The chronological characterization of the wooden support of the "Acerenza portrait" is also presented with the aim to evaluate its age and to further investigate the possibility to attribute this artwork to Leonardo da Vinci. Bomb- 14C dating on the lipid and collagen fractions of bones allows the evaluation of the year of the death of the individuals by means of ad hoc calibration data sheet with the typical few years precision and difference between collagen apparent age and the year of death appeared in agreement with the age of one individual estimated by dating of tooth collagen. Conventional radiocarbon dating on both wood and wood extracted cellulose leads to an estimation of the portrait wood board age (2σ) of 1459-1524 AD (57% relative probability), 1571-1631 AD interval (42

  12. A Novel Airborne Carbon Isotope Analyzer for Methane and Carbon Dioxide Source Fingerprinting

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Huang, Y. W.; Owano, T. G.; Leifer, I.

    2014-12-01

    Recent field studies on major sources of the important greenhouse gas methane (CH4) indicate significant underestimation of methane release from fossil fuel industrial (FFI) and animal husbandry sources, among others. In addition, uncertainties still exist with respect to carbon dioxide (CO2) measurements, especially source fingerprinting. CO2 isotopic analysis provides a valuable in situ measurement approach to fingerprint CH4 and CO2as associated with combustion sources, leakage from geologic reservoirs, or biogenic sources. As a result, these measurements can characterize strong combustion source plumes, such as power plant emissions, and discriminate these emissions from other sources. As part of the COMEX (CO2 and MEthane eXperiment) campaign, a novel CO2 isotopic analyzer was installed and collected data aboard the CIRPAS Twin Otter aircraft. Developing methods to derive CH4 and CO2 budgets from remote sensing data is the goal of the summer 2014 COMEX campaign, which combines hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages the synergy between high spatial resolution HSI and moderate spatial resolution NIS. The carbon dioxide isotope analyzer developed by Los Gatos Research (LGR) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures CO2 concentration as well as δ13C, δ18O, and δ17O from CO2 at natural abundance (100-3000 ppm). The laboratory accuracy is ±1.2 ppm (1σ) in CO2 from 370-1000 ppm, with a long-term (1000 s) precision of ±0.012 ppm. The long-term precision for both δ13C and δ18O is 0.04 ‰, and for δ17O is 0.06 ‰. The analyzer was field-tested as part of the COWGAS campaign, a pre-cursor campaign to COMEX in March 2014, where it successfully discriminated plumes related to combustion processes associated with

  13. Double-Pulse Two-Micron IPDA Lidar Simulation for Airborne Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    An advanced double-pulsed 2-micron integrated path differential absorption lidar has been developed at NASA Langley Research Center for measuring atmospheric carbon dioxide. The instrument utilizes a state-of-the-art 2-micron laser transmitter with tunable on-line wavelength and advanced receiver. Instrument modeling and airborne simulations are presented in this paper. Focusing on random errors, results demonstrate instrument capabilities of performing precise carbon dioxide differential optical depth measurement with less than 3% random error for single-shot operation from up to 11 km altitude. This study is useful for defining CO2 measurement weighting, instrument setting, validation and sensitivity trade-offs.

  14. A universal airborne LiDAR approach for tropical forest carbon mapping.

    PubMed

    Asner, Gregory P; Mascaro, Joseph; Muller-Landau, Helene C; Vieilledent, Ghislain; Vaudry, Romuald; Rasamoelina, Maminiaina; Hall, Jefferson S; van Breugel, Michiel

    2012-04-01

    Airborne light detection and ranging (LiDAR) is fast turning the corner from demonstration technology to a key tool for assessing carbon stocks in tropical forests. With its ability to penetrate tropical forest canopies and detect three-dimensional forest structure, LiDAR may prove to be a major component of international strategies to measure and account for carbon emissions from and uptake by tropical forests. To date, however, basic ecological information such as height-diameter allometry and stand-level wood density have not been mechanistically incorporated into methods for mapping forest carbon at regional and global scales. A better incorporation of these structural patterns in forests may reduce the considerable time needed to calibrate airborne data with ground-based forest inventory plots, which presently necessitate exhaustive measurements of tree diameters and heights, as well as tree identifications for wood density estimation. Here, we develop a new approach that can facilitate rapid LiDAR calibration with minimal field data. Throughout four tropical regions (Panama, Peru, Madagascar, and Hawaii), we were able to predict aboveground carbon density estimated in field inventory plots using a single universal LiDAR model (r ( 2 ) = 0.80, RMSE = 27.6 Mg C ha(-1)). This model is comparable in predictive power to locally calibrated models, but relies on limited inputs of basal area and wood density information for a given region, rather than on traditional plot inventories. With this approach, we propose to radically decrease the time required to calibrate airborne LiDAR data and thus increase the output of high-resolution carbon maps, supporting tropical forest conservation and climate mitigation policy.

  15. Brown Carbon: Results From Ground and Airborne Studies

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Forrister, H.; Liu, J.; Nenes, A.

    2015-12-01

    Brown carbon (BrC) is directly measured with high sensitivity by isolating it from black carbon in aerosol extracts and using long path wave-guide spectrophotometry. Ambient measurements by this approach show that BrC is pervasive and can be found in almost all locations, ranging from urban environments to remote continental sites and upper reaches of the free troposphere. Biomass burning appears to be the major source in many urban and rural locations, but other sources of incomplete combustion, such as vehicle emissions in urban environments also play a role. Secondary aerosols not associated with combustion sources may also contribute, but are likely of lesser importance. Studies of ambient wildfire smoke plumes show that BrC levels decrease as it ages, with a half-life of approximately 10 hours. However, a small fraction of the emitted BrC is stable and may account for much of the BrC observed throughout the atmosphere due to widely dispersed and ubiquitous smoke. A radiative transfer model indicates that this background BrC reduced US continental TOA forcing by 20 percent. Human health studies point to similar chemical components linked to BrC (i.e., HULIS), of this same ubiquitous smoke, as a significant source of adverse cardiorespiratory effects. This talk will summarize findings on BrC sources, transformations and estimates of environmental effects based on bulk measurements.

  16. Metabolism of (2-14C)acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis

    SciTech Connect

    Schumann, W.C.; Magnusson, I.; Chandramouli, V.; Kumaran, K.; Wahren, J.; Landau, B.R. )

    1991-04-15

    To examine the fate of the carbons of acetate and to evaluate the usefulness of labeled acetate in assessing intrahepatic metabolic processes during gluconeogenesis, (2-14C)acetate, (2-14C)ethanol, and (1-14C)ethanol were infused into normal subjects fasted 60 h and given phenyl acetate. Distributions of 14C in the carbons of blood glucose and glutamate from urinary phenylacetylglutamine were determined. With (2-14C)acetate and (2-14C)ethanol, carbon 1 of glucose had about twice as much 14C as carbon 3. Carbon 2 of glutamate had about twice as much 14C as carbon 1 and one-half to one-third as much as carbon 4. There was only a small amount in carbon 5. These distributions are incompatible with the metabolism of (2-14C)acetate being primarily in liver. Therefore, (2-14C)acetate cannot be used to study Krebs cycle metabolism in liver and in relationship to gluconeogenesis, as has been done. The distributions can be explained by: (a) fixation of 14CO2 from (2-14C)acetate in the formation of the 14C-labeled glucose and glutamate in liver and (b) the formation of 14C-labeled glutamate in a second site, proposed to be muscle. (1,3-14C)Acetone formation from the (2-14C)acetate does not contribute to the distributions, as evidenced by the absence of 14C in carbons 2-4 of glutamate after (1-14C)ethanol administration.

  17. Taking Stock of Circumboreal Forest Carbon With Ground Measurements, Airborne and Spaceborne LiDAR

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S. R.; Nelson, Ross F.; Ranson, K. Jon; Margolis, Hank A.; Montesano, Paul M.; Sun, Guoqing; Kharuk, Viacheslav; Naesset, Erik; Wulder, Michael A.; Andersen, Hans-Erik

    2013-01-01

    The boreal forest accounts for one-third of global forests, but remains largely inaccessible to ground-based measurements and monitoring. It contains large quantities of carbon in its vegetation and soils, and research suggests that it will be subject to increasingly severe climate-driven disturbance. We employ a suite of ground-, airborne- and space-based measurement techniques to derive the first satellite LiDAR-based estimates of aboveground carbon for the entire circumboreal forest biome. Incorporating these inventory techniques with uncertainty analysis, we estimate total aboveground carbon of 38 +/- 3.1 Pg. This boreal forest carbon is mostly concentrated from 50 to 55degN in eastern Canada and from 55 to 60degN in eastern Eurasia. Both of these regions are expected to warm >3 C by 2100, and monitoring the effects of warming on these stocks is important to understanding its future carbon balance. Our maps establish a baseline for future quantification of circumboreal carbon and the described technique should provide a robust method for future monitoring of the spatial and temporal changes of the aboveground carbon content.

  18. Low-level 14C measurements and Accelerator Mass Spectrometry

    SciTech Connect

    Litherland, A.E.; Beukens, R.P.; Zhao, X.-L.; Kieser, W.E.; Gove, H.E.

    2005-09-08

    Accelerator Mass Spectrometry (AMS) and isotope enrichment were used in 1991 to estimate that the 14C content of methane in natural gas was {<=}1.6x10-18 of the total carbon. The low content of 14C in underground hydrocarbons was verified later in the remarkable results from the Borexino test scintillation counter for solar neutrino studies. Since then studies of the 14C background problem have demonstrated that much of the background originally observed in the AMS measurements can, in principle, be eliminated. However, many difficulties and other backgrounds are to be faced as the limit for AMS is pushed still further towards possibly a ratio of < 10-21. These will be discussed.

  19. Convenient preparative synthesis of ( sup 14 C)trehalose from ( sup 14 C)glucose by intact Escherichia coli cells

    SciTech Connect

    Brand, B.; Boos, W. )

    1989-09-01

    At high osmolarity, Escherichia coli synthesizes trehalose intracellularly, irrespective of the nature of the carbon source. Synthesis proceeds via the transfer of UDP-glucose to glucose 6-phosphate, yielding trehalose 6-phosphate, followed by its dephosphorylation to trehalose. This reaction was exploited to preparatively synthesize ({sup 14}C)trehalose from exogenous ({sup 14}C)glucose by using intact bacteria of a mutant (DF214) that could not metabolize glucose. The total yield of radiochemically pure trehalose from glucose was routinely more than 50%.

  20. Pyrolysis-combustion 14C dating of soil organic matter

    USGS Publications Warehouse

    Wang, Hongfang; Hackley, Keith C.; Panno, S.V.; Coleman, D.D.; Liu, J.C.-L.; Brown, J.

    2003-01-01

    Radiocarbon (14C) dating of total soil organic matter (SOM) often yields results inconsistent with the stratigraphic sequence. The onerous chemical extractions for SOM fractions do not always produce satisfactory 14C dates. In an effort to develop an alternative method, the pyrolysis-combustion technique was investigated to partition SOM into pyrolysis volatile (Py-V) and pyrolysis residue (Py-R) fractions. The Py-V fractions obtained from a thick glacigenic loess succession in Illinois yielded 14C dates much younger but more reasonable than the counterpart Py-R fractions for the soil residence time. Carbon isotopic composition (??13C) was heavier in the Py-V fractions, suggesting a greater abundance of carbohydrate- and protein-related constituents, and ??13C was lighter in the Py-R fractions, suggesting more lignin- and lipid-related constituents. The combination of 14C dates and ??13C values indicates that the Py-V fractions are less biodegradation resistant and the Py-R fractions are more biodegradation resistant. The pyrolysis-combustion method provides a less cumbersome approach for 14C dating of SOM fractions. With further study, this method may become a useful tool for analyzing unlithified terrestrial sediments when macrofossils are absent. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  1. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  2. Verification of engineering assumptions in modeling of airborne release of Carbon-14

    SciTech Connect

    Simonson, S.A.; Yim, Man-Sung

    1996-10-01

    The effects of atmospheric pressure variation on the flow velocity, water vapor transport, and oxygen depletion within a hypothetical low-level engineered waste facility were recently modeled with a set of engineering assumptions. The model that resulted from these activates is termed {open_quotes}GETAR{close_quote} for gas evolution, transport and reaction. Results of transport calculations show that the pumping effect of barometric pressure changes is the dominant mechanism for inducing the release of carbon-14 in a facility with a monitoring well. Coupled with this calculation, are recent results that indicate that a greater fraction of the carbon-14 within a hypothetical waste facility would be available for biodegradation and release via an airborne pathway rather than into groundwater.

  3. 14C-carbaryl residues in hazelnut.

    PubMed

    Yücel, Ulkü; Ilim, Murat; Aslan, Nazife

    2006-01-01

    A hazelnut ocak (shrub growing form) in the field in Black Sea region of Turkey was treated with commercial carbaryl insecticide spiked with 14C-carbaryl. Three months later, the harvested hazelnuts were separated into husk, shell, and kernel components, then homogenized and analyzed. The total and unextractable (bound) 14C-residues were determined by combustion and the extractable 14C-residues were obtained by extracting the samples with methanol. Concentrated extracts were first analyzed by thin layer chromatography (TLC). The extracts were also subjected to a series of liquid-liquid extraction procedures for clean-up and the final extracts were analyzed by high performance liquid chromatography (HPLC). Crude hazelnut oil was also extracted with hexane and analyzed for total 14C-residue. A total of 1.3% of applied radioactivity was recovered from the total nut harvested, with 0.04%, 0.06%, and 1.2% present in shell, kernel, and husk, respectively. The results show that the inedible husk and shell contained 95.7% 14C, whereas the edible kernel contained 4.3% of the total 14C recovered. The terminal 14C-residue in hazelnut kernel and oil did not contain carbaryl and/or its metabolite naphthol.

  4. Peat Depth Assessment Using Airborne Geophysical Data for Carbon Stock Modelling

    NASA Astrophysics Data System (ADS)

    Keaney, Antoinette; McKinley, Jennifer; Ruffell, Alastair; Robinson, Martin; Graham, Conor; Hodgson, Jim; Desissa, Mohammednur

    2013-04-01

    The Kyoto Agreement demands that all signatory countries have an inventory of their carbon stock, plus possible future changes to this store. This is particularly important for Ireland, where some 16% of the surface is covered by peat bog. Estimates of soil carbon stores are a key component of the required annual returns made by the Irish and UK governments to the Intergovernmental Panel on Climate Change. Saturated peat attenuates gamma-radiation from underlying rocks. This effect can be used to estimate the thickness of peat, within certain limits. This project examines this relationship between peat depth and gamma-radiation using airborne geophysical data generated by the Tellus Survey and newly acquired data collected as part of the EU-funded Tellus Border project, together encompassing Northern Ireland and the border area of the Republic of Ireland. Selected peat bog sites are used to ground truth and evaluate the use of airborne geophysical (radiometric and electromagnetic) data and validate modelled estimates of soil carbon, peat volume and depth to bedrock. Data from two test line sites are presented: one in Bundoran, County Donegal and a second line in Sliabh Beagh, County Monaghan. The plane flew over these areas at different times of the year and at a series of different elevations allowing the data to be assessed temporally with different soil/peat saturation levels. On the ground these flight test lines cover varying surface land use zones allowing future extrapolation of data from the sites. This research applies spatial statistical techniques, including uncertainty estimation in geostatistical prediction and simulation, to investigate and model the use of airborne geophysical data to examine the relationship between reduced radioactivity and peat depth. Ground truthing at test line locations and selected peat bog sites involves use of ground penetrating radar, terrestrial LiDAR, peat depth probing, magnetometry, resistivity, handheld gamma

  5. 14C content in aerosols in Mexico City

    NASA Astrophysics Data System (ADS)

    Gómez, V.; Solís, C.; Chávez, E.; Andrade, E.; Ortiz, M. E.; Huerta, A.; Aragón, J.; Rodríguez-Ceja, M.; Martínez, M. A.; Ortiz, E.

    2016-03-01

    14C-AMS of total carbon was determined in aerosols (PM10 fraction), collected in Mexico City during two weeks from 21 November to 3 December 2012. Other tracers such as total carbon (TC), organic carbon (OC), elemental carbon (EC) and trace element contents were also determined. F14C values varied from 0.39 to 0.48 with an average of 0.43. These values are slightly lower than those previously obtained for PM2.5 in 2003 and 2006 and reflect a high contribution of fossil CO2 to the carbonaceous matter in aerosols from Mexico City. In contrast, from 2006 to 2012 PM10 increased; EC, Ca, Ti and Fe concentrations remained constant, while OC, TC and K concentrations decreased. The use of potassium as an indicator of biomass burning showed that this source was negligible during this campaign. Combined analytical approaches allowed us to distinguish temporal variations of anthropogenic and natural inputs to the F14C.

  6. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar

    PubMed Central

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V.; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C. PMID:26426532

  7. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.

    PubMed

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.

  8. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.

    PubMed

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C. PMID:26426532

  9. Domestic airborne black carbon and exhaled nitric oxide in children in NYC.

    PubMed

    Cornell, Alexandra G; Chillrud, Steven N; Mellins, Robert B; Acosta, Luis M; Miller, Rachel L; Quinn, James W; Yan, Beizhan; Divjan, Adnan; Olmedo, Omar E; Lopez-Pintado, Sara; Kinney, Patrick L; Perera, Frederica P; Jacobson, Judith S; Goldstein, Inge F; Rundle, Andrew G; Perzanowski, Matthew S

    2012-01-01

    Differential exposure to combustion by-products and allergens may partially explain the marked disparity in asthma prevalence (3-18%) among New York City neighborhoods. Subclinical changes in airway inflammation can be measured by fractional exhaled nitric oxide (FeNO). FeNO could be used to test independent effects of these environmental exposures on airway inflammation. Seven- and eight-year-old children from neighborhoods with lower (range 3-9%, n=119) and higher (range 11-18%, n=121) asthma prevalence participated in an asthma case-control study. During home visits, FeNO was measured, and samples of bed dust (allergens) and air (black carbon; BC) were collected. Neighborhood built-environment characteristics were assessed for the 500 m surrounding participants' homes. Airborne BC concentrations in homes correlated with neighborhood asthma prevalence (P<0.001) and neighborhood densities of truck routes (P<0.001) and buildings burning residual oil (P<0.001). FeNO concentrations were higher among asthmatics with than in those without frequent wheeze (≥4 times/year) (P=0.002). FeNO concentrations correlated with domestic BC among children without seroatopy (P=0.012) and with dust mite allergen among children with seroatopy (P=0.020). The association between airborne BC in homes and both neighborhood asthma prevalence and FeNO suggest that further public health interventions on truck emissions standards and residual oil use are warranted. PMID:22377682

  10. Degradation of /sup 14/C-labeled lignins and /sup 14/C-labeled aromatic acids by fusarium solani

    SciTech Connect

    Norris, D.M.

    1980-08-01

    Abilities of isolate AF-W1 of Fusarium solani to degrade the side chain and the ring structure of synthetic dehydrogenative polymerizates, aromatic acids, or lignin in sound wood were investigated under several conditions of growth substrate or basal medium and pH. Significant transformations of lignins occurred in 50 days in both unextracted and extracted sound wood substrances with 3% malt as the growth substrate and the pH buffered initially at 4.0 with 2,2-dimethylsuccinate. Degradation of lignin in such woods also occurred under unbuffered pH conditions when a basal medium of either 3% malt or powdered cellulose in deionized water was present. Decomposition of the lignin in these woods did not occur in cultures where D-glucose was present as a growth substrate. F. solani significantly transformed, as measured as evolved /sup 14/CO/sub 2/, both synthetic side chain (beta, gamma)-/sup 14/C- and U-ring-/sup 14/C-labeled lignins in 30 days under liquid culture conditions of only distilled deionized water and no pH adjustment. Degradation of dehydrogenative polymerizates by F. solani was reduced drastically when D2 was the liquid medium. AF-W1 also cleaved the alpha-/sup 14/C from p- hydroxybenzoic acid and evolved /sup 14/CO/sub 2/ from the substrace, (3-/sup 14/C) cinnamic acid. Thus, the fungus cleaved side chain carbon from substrate that originally lacked hydroxyl substitution on the aromatic nucleus. Surprisingly, small amounts of /sup 14/C cleaved from aromatic acids by F. solani were incorporated into cell mass. Initial buffering of the culture medium to pH 4.0 or 5.0 with 0.1 M2,2-dimethylsuccinate significantly increased F. solani degradation of all lignins or aromatic acids. Results indicated that AF-W1 used lignin as a sole carbon source.

  11. Extraction of in situ cosmogenic 14C from olivine

    USGS Publications Warehouse

    Pigati, J.S.; Lifton, N.A.; Timothy, Jull A.J.; Quade, Jay

    2010-01-01

    Chemical pretreatment and extraction techniques have been developed previously to extract in situ cosmogenic radiocarbon (in situ 14C) from quartz and carbonate. These minerals can be found in most environments on Earth, but are usually absent from mafic terrains. To fill this gap, we conducted numerous experiments aimed at extracting in situ 14C from olivine ((Fe,Mg)2SiO4). We were able to extract a stable and reproducible in situ 14C component from olivine using stepped heating and a lithium metaborate (LiBO2) flux, following treatment with dilute HNO3 over a variety of experimental conditions. However, measured concentrations for samples from the Tabernacle Hill basalt flow (17.3 ?? 0.3 ka4) in central Utah and the McCarty's basalt flow (3.0 ?? 0.2 ka) in western New Mexico were significantly lower than expected based on exposure of olivine in our samples to cosmic rays at each site. The source of the discrepancy is not clear. We speculate that in situ 14C atoms may not have been released from Mg-rich crystal lattices (the olivine composition at both sites was ~Fo65Fa35). Alternatively, a portion of the 14C atoms released from the olivine grains may have become trapped in synthetic spinel-like minerals that were created in the olivine-flux mixture during the extraction process, or were simply retained in the mixture itself. Regardless, the magnitude of the discrepancy appears to be inversely proportional to the Fe/(Fe+Mg) ratio of the olivine separates. If we apply a simple correction factor based on the chemical composition of the separates, then corrected in situ 14C concentrations are similar to theoretical values at both sites. At this time, we do not know if this agreement is fortuitous or real. Future research should include measurement of in situ 14C concentrations in olivine from known-age basalt flows with different chemical compositions (i.e. more Fe-rich) to determine if this correction is robust for all olivine-bearing rocks. ?? 2010 by the Arizona

  12. Airborne radioactivity survey of the Miller Hill area, Carbon county, Wyoming

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey covering 65 square miles northwest of Miller Hill, Carbon county, Wyoming. The survey was made by the U.S. Geological Survey as part of a cooperative program with the U.S. Atomic Energy Commission. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity anomalies shown on the accompanying map cannot be interpreted in terms of either the radioactive content or the extent of the source materials. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to uranium, or to thorium, or to a combination of uranium and thorium. The radioactivity that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils of the surrounding area. Any particular anomaly

  13. Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites.

    PubMed

    Cena, Lorenzo G; Peters, Thomas M

    2011-02-01

    This work characterized airborne particles generated from the weighing of bulk, multiwall carbon nanotubes (CNTs) and the manual sanding of epoxy test samples reinforced with CNTs. It also evaluated the effectiveness of three local exhaust ventilation (LEV) conditions (no LEV, custom fume hood, and biosafety cabinet) for control of particles generated during sanding of CNT-epoxy nanocomposites. Particle number and respirable mass concentrations were measured using an optical particle counter (OPC) and a condensation particle counter (CPC), and particle morphology was assessed by transmission electron microscopy. The ratios of the geometric mean (GM) concentrations measured during the process to that measured in the background (P/B ratios) were used as indices of the impact of the process and the LEVs on observed concentrations. Processing CNT-epoxy nanocomposites materials released respirable size airborne particles (P/B ratio: weighing = 1.79; sanding = 5.90) but generally no nanoparticles (P/B ratio ∼1). The particles generated during sanding were predominantly micron sized with protruding CNTs and very different from bulk CNTs that tended to remain in large (>1 μm) tangled clusters. Respirable mass concentrations in the operator's breathing zone were lower when sanding was performed in the biological safety cabinet (GM = 0.20 μg/m(3) compared with those with no LEV (GM = 2.68 μg/m(3) or those when sanding was performed inside the fume hood (GM = 21.4 μg/m(3); p-value < 0.0001). The poor performance of the custom fume hood used in this study may have been exacerbated by its lack of a front sash and rear baffles and its low face velocity (0.39 m/sec). PMID:21253981

  14. Airborne sulfur trace species intercomparison campaign: Sulfur dioxide, dimethylsulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Hoell, James M., Jr.; Davis, Douglas D.

    1991-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of sulfur trace gases are presented. The intercomparison was part of the NASA Global Tropospheric Experiment (GTE) and was conducted during the summer of 1989. The intercomparisons were conducted on the Wallops Electra aircraft during flights from Wallops Island, Virginia, and Natal, Brazil. Sulfur measurements intercompared included sulfur dioxide (SO2), dimethylsulfide (DMS), hydrogen sulfide (H2S), carbon disulfide (CS2), and carbonyl sulfide (OCS). Measurement techniques ranged from filter collection systems with post-flight analyses to mass spectrometer and gas chromatograph systems employing various methods for measuring and identifying the sulfur gases during flight. Sampling schedules for the techniques ranged from integrated collections over periods as long as 50 minutes to one- to three-minute samples every ten or fifteen minutes. Several of the techniques provided measurements of more than one sulfur gas. Instruments employing different detection principles were involved in each of the sulfur intercomparisons. Also included in the intercomparison measurement scenario were a host of supporting measurements (i.e., ozone, nitrogen oxides, carbon monoxide, total sulfur, aerosols, etc.) for purposes of: (1) interpreting results (i.e., correlation of any noted instrument disagreement with the chemical composition of the measurement environment); and (2) providing supporting chemical data to meet CITE-3 science objectives of studying ozone/sulfur photochemistry, diurnal cycles, etc. The results of the intercomparison study are briefly discussed.

  15. Airborne Detection and Dynamic Modeling of Carbon Dioxide and Methane Plumes

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Mitchell, Taylor; Whyte, Seabrook

    2015-11-01

    To facilitate safe storage of greenhouse gases such as CO2 and CH4, airborne monitoring is investigated. Conventional soil gas monitoring has difficulty in distinguishing gas flux signals from leakage with those associated with meteorologically driven changes. A low-cost, lightweight sensor system has been developed and implemented onboard a small unmanned aircraft that measures gas concentration and is combined with other atmospheric diagnostics, including thermodynamic data and velocity from hot-wire and multi-hole probes. To characterize the system behavior and verify its effectiveness, field tests have been conducted over controlled rangeland burns and over simulated leaks. In the former case, since fire produces carbon dioxide over a large area, this was an opportunity to test in an environment that while only vaguely similar to a carbon sequestration leak source, also exhibits interesting plume behavior. In the simulated field tests, compressed gas tanks are used to mimic leaks and generate gaseous plumes. Since the sensor response time is a function of vehicle airspeed, dynamic calibration models are required to determine accurate location of gas concentration in (x , y , z , t) . Results are compared with simulations using combined flight and atmospheric dynamic models. Supported by Department of Energy Award DE-FE0012173.

  16. Making Carbon Emissions Remotely Sensible: Flux Observations of Carbon from an Airborne Laboratory (FOCAL), its Near-Surface Survey of Carbon Gases and Isotopologues on Alaska's North Slope

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E. J.; Sayres, D. S.; Healy, C. E.; Munster, J. B.; Baker, B.; Anderson, J. G.

    2014-12-01

    Detailed process-oriented study of the mechanisms of conversion in the Arctic of fossil carbon to atmospheric gas is progressing, but necessarily limited to a few point locations and requiring detailed subsurface measurements inaccessible to remote sensing. Airborne measurements of concentration, transport and flux of these carbon gases at sufficiently low altitude to reflect surface variations can tie such local measurements to remotely observable features of the landscape. Carbon dioxide and water vapor have been observable for over 20 years from low-altitude small aircraft in the Arctic and elsewhere. Methane has been more difficult, requiring large powerful aircraft or limited flask samples. Recent developments in spectroscopy, however, have reduced the power and weight required to measure methane at rates suitable for eddy-covariance flux estimates. The Flux Observations of Carbon from an Airborne Laboratory (FOCAL) takes advantage of Integrated Cavity-Output Spectroscopy (ICOS) to measure CH4, CO2, and water vapor in a new airborne system. The system, moreover, measures these gases' stable isotopologues every two seconds or faster helping to separate thermogenic from biogenic emissions. Paired with the Best Airborne Turbulence (BAT) probe developed for small aircraft by NOAA's Air Resources Laboratory and a light twin-engine aircraft adapted by Aurora Flight Sciences Inc., the FOCAL measures at 6 m spacing, covering 100 km in less than 30 minutes. It flies between 10 m and 50 m above ground interspersed with profiles to the top of the boundary layer and beyond. This presentation gives an overview of the magnitude and variation in fluxes and concentrations of CH4, CO2, and H2O with space, time, and time of day in a spatially extensive survey, more than 7500 km total in 15 flights over roughly a 100 km square during the month of August 2013. An extensive data set such as this at low altitude with high-rate sampling addresses features that repeat on 1 km scale

  17. No evidence for a deglacial intermediate water Δ 14C anomaly in the SW Atlantic

    NASA Astrophysics Data System (ADS)

    Sortor, Rachel N.; Lund, David C.

    2011-10-01

    The last deglaciation was characterized by an increase in atmospheric pCO 2 and decrease in atmospheric radiocarbon activity. One hypothesis is that these changes were due to out-gassing of 14C-depleted carbon from the abyssal ocean. Reconstructions of foraminiferal Δ 14C from the eastern tropical Pacific, Arabian Sea, and high latitude North Atlantic show that severe depletions in 14C occurred at intermediate water depths during the last deglaciation. It has been suggested that 14C-depleted water from the abyss upwelled in the Southern Ocean and was then carried by Antarctic Intermediate Water (AAIW) to these sites. However, locations in the South Pacific in the direct path of modern-day AAIW do not exhibit the Δ 14C excursion and therefore cast doubt upon the AAIW mechanism ( De Pol-Holz et al., 2010; Rose et al., 2010). Here we evaluate whether or not a deglacial 14C anomaly occurred at intermediate depths in the Southwest Atlantic. We find that the deglacial benthic Δ 14C trend at our site is similar to the atmospheric Δ 14C trend. Our results are also largely consistent with results from U/Th-dated corals at shallower water depths on the Brazil Margin (Mangini et al., 2010). We find no evidence in the southwestern Atlantic of a ~ 300‰ decrease in intermediate water Δ 14C from 18 to 14 kyr BP like that observed in the eastern tropical Pacific ( Marchitto et al., 2007). When our results are paired with those from the South Pacific, it appears AAIW did not carry a highly 14C-depleted signal during the deglaciation. Another source of carbon is apparently required to explain the intermediate-depth Δ 14C anomalies in the North Atlantic, Indian, and Pacific Oceans.

  18. Atmospheric 14C variations derived from tree rings during the early Younger Dryas

    NASA Astrophysics Data System (ADS)

    Hua, Quan; Barbetti, Mike; Fink, David; Kaiser, Klaus Felix; Friedrich, Michael; Kromer, Bernd; Levchenko, Vladimir A.; Zoppi, Ugo; Smith, Andrew M.; Bertuch, Fiona

    2009-12-01

    Atmospheric radiocarbon variations over the Younger Dryas interval, from ˜13,000 to 11,600 cal yr BP, are of immense scientific interest because they reveal crucial information about the linkages between climate, ocean circulation and the carbon cycle. However, no direct and reliable atmospheric 14C records based on tree rings for the entire Younger Dryas have been available. In this paper, we present (1) high-precision 14C measurements on the extension of absolute tree-ring chronology from 12,400 to 12,560 cal yr BP and (2) high-precision, high-resolution atmospheric 14C record derived from a 617-yr-long tree-ring chronology of Huon pine from Tasmania, Australia, spanning the early Younger Dryas. The new tree-ring 14C records bridge the current gap in European tree-ring radiocarbon chronologies during the early Younger Dryas, linking the floating Lateglacial Pine record to the absolute tree-ring timescale. A continuous and reliable atmospheric 14C record for the past 14,000 cal yr BP including the Younger Dryas is now available. The new records indicate that the abrupt rise in atmospheric Δ 14C associated with the Younger Dryas onset occurs at ˜12,760 cal yr BP, ˜240 yrs later than that recorded in Cariaco varves, with a smaller magnitude of ˜40‰ followed by several centennial Δ 14C variations of 20-25‰. Comparing the tree-ring Δ 14C to marine-derived Δ 14C and modelled Δ 14C based on ice-core 10Be fluxes, we conclude that changes in ocean circulation were mainly responsible for the Younger Dryas onset, while a combination of changes in ocean circulation and 14C production rate were responsible for atmospheric Δ 14C variations for the remainder of the Younger Dryas.

  19. Regional prediction of soil organic carbon content over croplands using airborne hyperspectral data

    NASA Astrophysics Data System (ADS)

    Vaudour, Emmanuelle; Gilliot, Jean-Marc; Bel, Liliane; Lefebvre, Josias; Chehdi, Kacem

    2015-04-01

    This study was carried out in the framework of the Prostock-Gessol3 and the BASC-SOCSENSIT projects, dedicated to the spatial monitoring of the effects of exogenous organic matter land application on soil organic carbon storage. It aims at identifying the potential of airborne hyperspectral AISA-Eagle data for predicting the topsoil organic carbon (SOC) content of bare cultivated soils over a large peri-urban area (221 km2) with both contrasted soils and SOC contents, located in the western region of Paris, France. Soils comprise hortic or glossic luvisols, calcaric, rendzic cambisols and colluvic cambisols. Airborne AISA-Eagle data (400-1000 nm, 126 bands) with 1 m-resolution were acquired on 17 April 2013 over 13 tracks which were georeferenced. Tracks were atmospherically corrected using a set of 22 synchronous field spectra of both bare soils, black and white targets and impervious surfaces. Atmospherically corrected track tiles were mosaicked at a 2 m-resolution resulting in a 66 Gb image. A SPOT4 satellite image was acquired the same day in the framework of the SPOT4-Take Five program of the French Space Agency (CNES) which provided it with atmospheric correction. The land use identification system layer (RPG) of 2012 was used to mask non-agricultural areas, then NDVI calculation and thresholding enabled to map agricultural fields with bare soil. All 18 sampled sites known to be bare at this very date were correctly included in this map. A total of 85 sites sampled in 2013 or in the 3 previous years were identified as bare by means of this map. Predictions were made from the mosaic spectra which were related to topsoil SOC contents by means of partial least squares regression (PLSR). Regression robustness was evaluated through a series of 1000 bootstrap data sets of calibration-validation samples. The use of the total sample including 27 sites under cloud shadows led to non-significant results. Considering 43 sites outside cloud shadows only, median

  20. Mapping Forest Carbon by Fusing Terrestrial and Airborne LiDAR Datasets

    NASA Astrophysics Data System (ADS)

    Stovall, A. E.

    2015-12-01

    The storage and flux of terrestrial carbon (C) is one of the largest and most uncertain components of the global C budget, the vast majority of which is held within the biomass of the world's forests. However, the spatial distribution and quantification of forest C remains difficult to measure on a large scale. Remote sensing of forests with airborne LiDAR has proven to be an extremely effective method of bridging the gap between data from plot-level forestry mensuration and landscape-scale C storage estimates, but the standard method of assessing forest C is typically based on national or regional-scale allometric equations that are often not representative on the local-scale. Improvement of these measurements is necessary in order for collaborative multi-national carbon monitoring programs such as REDD implemented by the UNFCCC to be successful in areas, such as tropical forests, with tree species that have insufficiently documented allometric relationships. The primary goal of this study is to set forth a pipeline for precise non-destructive monitoring of C storage by: 1) determining C storage on 15 1/10th ha plots in a 25.6 ha Virginia temperate forest using the recently updated national allometric equations from Chojnacky et. al 2014, 2) comparing these estimates to non-destructively determined individual tree biomass using several semi-automated approaches of three-dimensionally analyzing the point cloud from a high-precision Terrestrial Laser Scanner (TLS), and 3) creating a predictive model of forest C storage by fusing airborne LiDAR data to the plot-level TLS measurements. Our findings align with several other studies, indicating a strong relationship between allometrically-derived C estimates and TLS-derived C measurements (R2=0.93, n=30) using relatively few individuals, suggesting the potential application of these methods to species that are understudied or are without allometric relationships. Voxel based C storage was estimated on the plot level and

  1. Improving estimation of tree carbon stocks by harvesting aboveground woody biomass within airborne LiDAR flight areas

    NASA Astrophysics Data System (ADS)

    Colgan, M.; Asner, G. P.; Swemmer, A. M.

    2011-12-01

    The accurate estimation of carbon stored in a tree is essential to accounting for the carbon emissions due to deforestation and degradation. Airborne LiDAR (Light Detection and Ranging) has been successful in estimating aboveground carbon density (ACD) by correlating airborne metrics, such as canopy height, to field-estimated biomass. This latter step is reliant on field allometry which is applied to forest inventory quantities, such as stem diameter and height, to predict the biomass of a given tree stem. Constructing such allometry is expensive, time consuming, and requires destructive sampling. Consequently, the sample sizes used to construct such allometry are often small, and the largest tree sampled is often much smaller than the largest in the forest population. The uncertainty resulting from these sampling errors can lead to severe biases when the allometry is applied to stems larger than those harvested to construct the allometry, which is then subsequently propagated to airborne ACD estimates. The Kruger National Park (KNP) mission of maintaining biodiversity coincides with preserving ecosystem carbon stocks. However, one hurdle to accurately quantifying carbon density in savannas is that small stems are typically harvested to construct woody biomass allometry, yet they are not representative of Kruger's distribution of biomass. Consequently, these equations inadequately capture large tree variation in sapwood/hardwood composition, root/shoot/leaf allocation, branch fall, and stem rot. This study eliminates the "middleman" of field allometry by directly measuring, or harvesting, tree biomass within the extent of airborne LiDAR. This enables comparisons of field and airborne ACD estimates, and also enables creation of new airborne algorithms to estimate biomass at the scale of individual trees. A field campaign was conducted at Pompey Silica Mine 5km outside Kruger National Park, South Africa, in Mar-Aug 2010 to harvest and weigh tree mass. Since

  2. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Science and Implementation Plan

    SciTech Connect

    Biraud, S

    2015-05-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO₂ and/or CH₄) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols, and cloud properties at the North Slope of Alaska are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections.

  3. May 14C be used to date contemporary art?

    NASA Astrophysics Data System (ADS)

    Fedi, M. E.; Caforio, L.; Mandò, P. A.; Petrucci, F.; Taccetti, F.

    2013-01-01

    The use of radiocarbon in forensics is by now widespread, thanks to the so-called bomb peak, which makes it possible to perform high-precision dating. Since 1955, 14C concentration in the atmosphere had strongly increased due to nuclear explosions, reaching its maximum value in 1963-1965. After the Nuclear Test Ban Treaty, 14C started to decrease as a consequence of the exchanges between atmosphere and the other natural carbon reservoirs. Nowadays, it is still slightly above the pre-bomb value. The work presented in this paper is based on the idea of exploiting the bomb peak to “precisely” date works of contemporary art, with the aim at identifying possible fakes. We analysed two kinds of materials from the 20th century: newspapers and painting canvases. Newspaper samples were taken because they might in principle be considered to represent dated samples (considering the date on the issues). Our data (28 samples) show a trend similar to atmospheric data in the literature, although with some differences; the paper peak is flatter and shifted towards more recent years (about five years) with respect to the atmospheric data. This can be explained by taking paper manufacturing processes into account. As to the canvas samples, the measured 14C concentrations were generally reasonably consistent with the expected concentrations (based on the year on the paintings). However, this does not indicate that the interpretation of the results is simpler and more straightforward. Obviously, we only measure the 14C concentration of the fibre used for the canvas, which does not necessarily measure the date the painting was manufactured. In this paper, sample preparation and experimental results will be discussed, in order to show the potential as well as the limitations of radiocarbon to date contemporary art.

  4. Using 10Be records to identify possible 14C calibration uncertainties during the Holocene

    NASA Astrophysics Data System (ADS)

    Raimund, Muscheler

    2010-05-01

    The Intcal04 and Intcal09 radiocarbon calibration records are based on multiple tree-ring 14C data sets for Holocene period (Reimer et al. 2004, Reimer et al. 2009). While the dendrochronolgical dating of the trees is supposedly free of errors there are differences between various 14C data sets that underlie the 14C calibration curve. Due to lack of knowledge about the reasons for the differences the Intcal04/09 calibration curves provide a smoothed average of the underlying 14C records. Therefore, problems in one or several of the underlying 14C records would translate directly into errors in the 14C age calibration. Additional knowledge about expected variations in the 14C production rate could help to improve the calibration record since it would allow us to assess how well the different 14C records represent the atmospheric 14C concentration. I propose that 10Be records could be used as additional criteria to chose which of the published 14C records should be preferred (or given stronger weight) for the construction of the calibration curve. Alternatively, 10Be records could point to periods where 14C data should be re-measured in order to improve the calibration curve. I will show for some case studies that the 10Be records from the Greenland ice cores (Muscheler et al. 2004, Vonmoos et al. 2006) indeed provide useful information to scrutinise the Intcal04/09 calibration curve, which could help to improve the 14C calibration curve during the Holocene. Especially shorter-term changes are strongly dampened in the Intcal04/09 calibration record. However, 10Be and some 14C records do exhibit more variability as compared to the calibration record. Therefore, the combined 10Be/14C approach could add confidence that these should be reflected in the 14C calibration record. References: Muscheler, R., Beer, J. et al., 2004. Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth and Planetary Science Letters

  5. First Airborne Lidar Measurements of Methane and Carbon Dioxide Applying the MERLIN Demonstrator CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, Axel; Büdenbender, Christian; Ehret, Gerhard; Fix, Andreas; Gerbig, Christoph; Kiemle, Chritstoph; Quatrevalet, Mathieu; Wirth, Martin

    2016-04-01

    CHARM-F is the new airborne four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4. Due to its high technological conformity it is also a demonstrator for MERLIN, the French-German satellite mission providing a methane lidar. MERLIN's Preliminary Design Review was successfully passed recently. The launch is planned for 2020. First CHARM-F measurements were performed in Spring 2015 onboard the German research aircraft HALO. The aircraft's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, result in data similar to those obtained by a spaceborne system. The CHARM-F and MERLIN lidars are designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between the system and ground. The successfully completed CHARM-F flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. Furthermore, the dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on system design questions. These activities are supported by another instrument onboard the aircraft during the flight campaign: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the aircraft lidar. For the near future, detailed characterizations of CHARM-F are planned, further support of the MERLIN design, as well as the scientific aircraft campaign CoMet.

  6. 14C release from a Soviet-designed pressurized water reactor nuclear power plant.

    PubMed

    Uchrin, G; Csaba, E; Hertelendi, E; Ormai, P; Barnabas, I

    1992-12-01

    The Paks Nuclear Power Plant in Hungary runs with four pressurized water reactors, each of 440-MWe capacity. Sampling systems have been developed and used to determine the 14C of various chemical forms (14CO2, 14CO, 14CnHm) in the airborne releases. The average normalized yearly discharge rates for the time period 1988-1991 are equal to 0.77 TBq GWe-1 y-1 for hydrocarbons and 0.05 TBq GWe-1 y-1 for CO2. The contribution of 14CO was less than 0.5% of the total emission. The 14C discharge rate is estimated to be four times higher than the corresponding mean data of Western European pressurized water reactors. The calculated effective dose equivalent to individuals living in the vicinity of the power plant, due to 14C release, was 0.64 microSv in 1991 while the effective dose equivalent due to the natural 14C level was 15 microSv y-1. The long-term global impact of the 14C release in the operational period of the plant (1982-1991) was 1,270 man-Sv. The 14C excess in the environmental air has been measured since 1989 by taking biweekly samples at a distance of 1.7 km from the nuclear power plant. The long-term average of radiocarbon excess coming from the power plant was 2 mBq m-3. The local 14C deposition was followed by tree ring analysis, too. No 14C increase higher than the uncertainty of the measurement (four per thousand = 0.17 mBq m-3) was observed.

  7. Soil metabolism of [14C]methiozolin under aerobic and anaerobic flooded conditions.

    PubMed

    Hwang, Ki-Hwan; Lim, Jong-Soo; Kim, Sung-Hun; Chang, Hee-Ra; Kim, Kyun; Koo, Suk-Jin; Kim, Jeong-Han

    2013-07-17

    Methiozolin is a new turf herbicide controlling annual bluegrass in various cool- and warm-season turfgrasses. This study was conducted to investigate the fate of methiozolin in soil under aerobic and anaerobic flooded conditions using two radiolabeled tracers, [benzyl-(14)C]- and [isoxazole-(14)C]methiozolin. The mass balance of applied radioactivity ranged from 91.7 to 104.5% in both soil conditions. In the soil under the aerobic condition, [(14)C]methiozolin degraded with time to remain by 17.9 and 15.9% of the applied in soil at 120 days after treatment (DAT). [(14)C]Carbon dioxide and the nonextractable radioactivity increased as the soil aged to reach up to 41.5 and 35.7% for [benzyl-(14)C]methiozolin at 120 DAT, respectively, but 36.1 and 39.8% for [isoxazole-(14)C]methiozolin, respectively, during the same period. The nonextractable residue was associated more with humin and fulvic acid fractions under the aerobic condition. No significant volatile products or metabolites were detected during this study. The half-life of [(14)C]methiozolin was approximately 49 days in the soil under the aerobic condition; however, it could not be estimated in the soil under the anaerobic flooded condition because [(14)C]methiozolin degradation was limited. On the basis of these results, methiozolin is considered to undergo fast degradation by aerobic microbes, but not by anaerobic microbes in soil. PMID:23772889

  8. Soil metabolism of [14C]methiozolin under aerobic and anaerobic flooded conditions.

    PubMed

    Hwang, Ki-Hwan; Lim, Jong-Soo; Kim, Sung-Hun; Chang, Hee-Ra; Kim, Kyun; Koo, Suk-Jin; Kim, Jeong-Han

    2013-07-17

    Methiozolin is a new turf herbicide controlling annual bluegrass in various cool- and warm-season turfgrasses. This study was conducted to investigate the fate of methiozolin in soil under aerobic and anaerobic flooded conditions using two radiolabeled tracers, [benzyl-(14)C]- and [isoxazole-(14)C]methiozolin. The mass balance of applied radioactivity ranged from 91.7 to 104.5% in both soil conditions. In the soil under the aerobic condition, [(14)C]methiozolin degraded with time to remain by 17.9 and 15.9% of the applied in soil at 120 days after treatment (DAT). [(14)C]Carbon dioxide and the nonextractable radioactivity increased as the soil aged to reach up to 41.5 and 35.7% for [benzyl-(14)C]methiozolin at 120 DAT, respectively, but 36.1 and 39.8% for [isoxazole-(14)C]methiozolin, respectively, during the same period. The nonextractable residue was associated more with humin and fulvic acid fractions under the aerobic condition. No significant volatile products or metabolites were detected during this study. The half-life of [(14)C]methiozolin was approximately 49 days in the soil under the aerobic condition; however, it could not be estimated in the soil under the anaerobic flooded condition because [(14)C]methiozolin degradation was limited. On the basis of these results, methiozolin is considered to undergo fast degradation by aerobic microbes, but not by anaerobic microbes in soil.

  9. Analyzing carbon dioxide and methane emissions in California using airborne measurements and model simulations

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Yates, E. L.; Iraci, L. T.; Jeong, S.; Fischer, M. L.

    2013-12-01

    Greenhouse gas (GHG) concentrations have increased over the past decades and are linked to global temperature increases and climate change. These changes in climate have been suggested to have varying effects, and uncertain consequences, on agriculture, water supply, weather, sea-level rise, the economy, and energy. To counteract the trend of increasing atmospheric concentrations of GHGs, the state of California has passed the California Global Warming Act of 2006 (AB-32). This requires that by the year 2020, GHG (e.g., carbon dioxide (CO2) and methane (CH4)) emissions will be reduced to 1990 levels. To quantify GHG fluxes, emission inventories are routinely compiled for the State of California (e.g., CH4 emissions from the California Greenhouse Gas Emissions Measurement (CALGEM) Project). The major sources of CO2 and CH4 in the state of California are: transportation, electricity production, oil and gas extraction, cement plants, agriculture, landfills/waste, livestock, and wetlands. However, uncertainties remain in these emission inventories because many factors contributing to these processes are poorly quantified. To alleviate these uncertainties, a synergistic approach of applying air-borne measurements and chemical transport modeling (CTM) efforts to provide a method of quantifying local and regional GHG emissions will be performed during this study. Additionally, in order to further understand the temporal and spatial distributions of GHG fluxes in California and the impact these species have on regional climate, CTM simulations of daily variations and seasonality of total column CO2 and CH4 will be analyzed. To assess the magnitude and spatial variation of GHG emissions and to identify local 'hot spots', airborne measurements of CH4 and CO2 were made by the Alpha Jet Atmospheric eXperiment (AJAX) over the San Francisco Bay Area (SFBA) and San Joaquin Valley (SJV) in January and February 2013 during the Discover-AQ-CA study. High mixing ratios of GHGs were

  10. A simple method to determine mineralization of (14) C-labeled compounds in soil.

    PubMed

    Myung, Kyung; Madary, Michael W; Satchivi, Norbert M

    2014-06-01

    Degradation of organic compounds in soil is often determined by measuring the decrease of the parent compound and analyzing the occurrence of its metabolites. However, determining carbon species as end products of parent compound dissipation requires using labeled materials that allow more accurate determination of the environmental fate of the compound of interest. The current conventional closed system widely used to monitor degradation of (14) C-labeled compounds in soil is complex and expensive and requires a specialized apparatus and facility. In the present study, the authors describe a simple system that facilitates measurement of mineralization of (14) C-labeled compounds applied to soil samples. In the system, soda lime pellets to trap mineralized (14) C-carbon species, including carbon dioxide, were placed in a cup, which was then inserted above the treated soil sample in a tube. Mineralization of [(14) C]2,4-D applied to soil samples in the simple system was compared with that in the conventional system. The simple system provided an equivalent detection of (14) C-carbon species mineralized from the parent compound. The results demonstrate that this cost- and space-effective simple system is suitable for examining degradation and mineralization of (14) C-labeled compounds in soil and could potentially be used to investigate their mineralization in other biological matrices.

  11. Testing of a Two-Micron Double-Pulse IPDA Lidar Instrument for Airborne Atmospheric Carbon Dioxide Measurement

    NASA Astrophysics Data System (ADS)

    Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Singh, U. N.

    2015-12-01

    Utilizing a tunable two-micron double-pulse laser transmitter, an airborne IPDA lidar system has been developed at NASA Langley Research Center for atmospheric carbon dioxide column measurements. The instrument comprises a receiver with 0.4 m telescope and InGaAs pin detectors coupled to 12-bit, 200 MS/s waveform digitizers. For on-site ground testing, the 2-μm CO2 IPDA lidar was installed inside a trailer located where meteorological data and CO2 mixing ratio profiles were obtained from CAPABLE and LiCoR in-suite sampling, respectively. IPDA horizontal ground testing with 860 m target distance indicated CO2 sensitivity of 2.24 ppm with -0.43 ppm offset, while operating at 3 GHz on-line position from the R30 line center. Then, the IPDA lidar was integrated inside the NASA B-200 aircraft, with supporting instrumentation, for airborne testing and validation. Supporting instruments included in-situ LiCoR sensor, GPS and video recorder for target identification. Besides, aircraft built-in sensors provided altitude, pressure, temperature and relative humidity sampling during flights. The 2-mm CO2 IPDA lidar airborne testing was conducted through ten daytime flights (27 hours flight time). Airborne testing included different operating and environmental conditions for flight altitude up to 7 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Some flights targeted power plant incinerators for investigating IPDA sensitivity to CO2 plums. Relying on independent CO2 in-situ sampling, conducted through NOAA, airborne IPDA CO2 sensitivity of 4.15 ppm with 1.14 ppm offset were observed at 6 km altitude and 4 GHz on-line offset frequency. This validates the 2-μm double-pulse IPDA lidar for atmospheric CO2 measurement.

  12. ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports

    SciTech Connect

    Biraud, S. C.; Tom, M. S.; Sweeney, C.

    2016-01-01

    We report on a 5-year multi-institution and multi-agency airborne study of atmospheric composition and carbon cycling at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, with scientific objectives that are central to the carbon-cycle and radiative-forcing goals of the U.S. Global Change Research Program and the North American Carbon Program (NACP). The goal of these measurements is to improve understanding of 1) the carbon exchange of the Atmospheric Radiation Measurement (ARM) SGP region; 2) how CO2 and associated water and energy fluxes influence radiative-forcing, convective processes, and CO2 concentrations over the ARM SGP region, and 3) how greenhouse gases are transported on continental scales.

  13. Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity.

    PubMed

    Murnick, Daniel E; Dogru, Ozgur; Ilkmen, Erhan

    2008-07-01

    We show a new ultrasensitive laser-based analytical technique, intracavity optogalvanic spectroscopy, allowing extremely high sensitivity for detection of (14)C-labeled carbon dioxide. Capable of replacing large accelerator mass spectrometers, the technique quantifies attomoles of (14)C in submicrogram samples. Based on the specificity of narrow laser resonances coupled with the sensitivity provided by standing waves in an optical cavity and detection via impedance variations, limits of detection near 10(-15) (14)C/(12)C ratios are obtained. Using a 15-W (14)CO2 laser, a linear calibration with samples from 10(-15) to >1.5 x 10(-12) in (14)C/(12)C ratios, as determined by accelerator mass spectrometry, is demonstrated. Possible applications include microdosing studies in drug development, individualized subtherapeutic tests of drug metabolism, carbon dating and real time monitoring of atmospheric radiocarbon. The method can also be applied to detection of other trace entities.

  14. Bioconversion of. cap alpha. -(/sup 14/C)Zearalenol and. beta. -(/sup 14/C)Zearalenol into (/sup 14/C)Zearalenone by Fusarium roseum Gibbosum

    SciTech Connect

    Richardson, K.E.; Hagler, W.M. Jr.; Hamilton, P.B.

    1984-06-01

    Cultures of Fusarium roseum Gibbosum on rice were treated with (/sup 14/C)zearalenone, ..cap alpha..-(/sup 14/C)zearalenol, or ..beta..-(/sup 14/C)zearalenol to determine whether a precursor-product relationship exists among these closely related fungal metabolites. Culture extracts were purified by silica gel column chromatography and fractionated by high-pressure liquid chromatography, and the level of radioactivity was determined. Within 7 days, the ..beta..-(/sup 14/C)zearalenol was converted to zearalenone, and no residual ..beta..-(/sup 14/C)zearalenol was detectable. Most of the ..cap alpha..-(/sup 14/C)zearalenol added was also converted into zearalenone within 14 days. In cultures treated with (/sup 14/C)zearalenone, no radioactivity was noted in any other components.

  15. Human folate metabolism using 14C-accelerator mass spectrometry

    SciTech Connect

    Clifford, A. J.; Arjomand, A.; Duecker, S. R.; Johnson, H.; Schneider, P. D.; Zulim, R. A.; Bucholz, B. A.; Vogel, J. S.

    1999-03-25

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkin's disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer.

  16. An analytical method for 14C in environmental water based on a wet-oxidation process.

    PubMed

    Huang, Yan-Jun; Guo, Gui-Yin; Wu, Lian-Sheng; Zhang, Bing; Chen, Chao-Feng; Zhang, Hai-Ying; Qin, Hong-Juan; Shang-Guan, Zhi-Hong

    2015-04-01

    An analytical method for (14)C in environmental water based on a wet-oxidation process was developed. The method can be used to determine the activity concentrations of organic and inorganic (14)C in environmental water, or total (14)C, including in drinking water, surface water, rainwater and seawater. The wet-oxidation of the organic component allows the conversion of organic carbon to an inorganic form, and the extraction of the inorganic (14)C can be achieved by acidification and nitrogen purging. Environmental water with a volume of 20 L can be used for the wet-oxidation and extraction, and a detection limit of about 0.02 Bq/g(C) can be achieved for water with carbon content above 15 mg(C)/L, obviously lower than the natural level of (14)C in the environment. The collected carbon is sufficient for measurement with a low level liquid scintillation counter (LSC) for typical samples. Extraction or recovery experiments for inorganic carbon and organic carbon from typical materials, including analytical reagents of organic benzoquinone, sucrose, glutamic acid, nicotinic acid, humic acid, ethane diol, et cetera., were conducted with excellent results based on measurement on a total organic carbon analyzer and LSC. The recovery rate for inorganic carbon ranged tween 98.7%-99.0% with a mean of 98.9(± 0.1)%, for organic carbon recovery ranged between 93.8% and 100.0% with a mean of 97.1(± 2.6)%. Verification and an uncertainty budget of the method are also presented for a representative environmental water. The method is appropriate for (14)C analysis in environmental water, and can be applied also to the analysis of liquid effluent from nuclear facilities. PMID:25590997

  17. An analytical method for 14C in environmental water based on a wet-oxidation process.

    PubMed

    Huang, Yan-Jun; Guo, Gui-Yin; Wu, Lian-Sheng; Zhang, Bing; Chen, Chao-Feng; Zhang, Hai-Ying; Qin, Hong-Juan; Shang-Guan, Zhi-Hong

    2015-04-01

    An analytical method for (14)C in environmental water based on a wet-oxidation process was developed. The method can be used to determine the activity concentrations of organic and inorganic (14)C in environmental water, or total (14)C, including in drinking water, surface water, rainwater and seawater. The wet-oxidation of the organic component allows the conversion of organic carbon to an inorganic form, and the extraction of the inorganic (14)C can be achieved by acidification and nitrogen purging. Environmental water with a volume of 20 L can be used for the wet-oxidation and extraction, and a detection limit of about 0.02 Bq/g(C) can be achieved for water with carbon content above 15 mg(C)/L, obviously lower than the natural level of (14)C in the environment. The collected carbon is sufficient for measurement with a low level liquid scintillation counter (LSC) for typical samples. Extraction or recovery experiments for inorganic carbon and organic carbon from typical materials, including analytical reagents of organic benzoquinone, sucrose, glutamic acid, nicotinic acid, humic acid, ethane diol, et cetera., were conducted with excellent results based on measurement on a total organic carbon analyzer and LSC. The recovery rate for inorganic carbon ranged tween 98.7%-99.0% with a mean of 98.9(± 0.1)%, for organic carbon recovery ranged between 93.8% and 100.0% with a mean of 97.1(± 2.6)%. Verification and an uncertainty budget of the method are also presented for a representative environmental water. The method is appropriate for (14)C analysis in environmental water, and can be applied also to the analysis of liquid effluent from nuclear facilities.

  18. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.

    2016-02-01

    Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (5-year interval) airborne lidar data set for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved and/or coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change was estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 yr-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a tree-ring based analysis (1.19 and 1.13 Mg ha-1 yr-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 yr-1. This rate reduces by almost a third when fire probability is increased to 0.01 (fire return rate of 100 years), as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon

  19. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.

    2015-09-01

    Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (five year interval) airborne lidar dataset for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved/coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change were estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 year-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a~tree-ring based analysis (1.19 and 1.13 Mg ha-1 year-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire occurrence) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 year-1. This rate reduces by almost a third when fire probability is increased to 0.01, as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon dynamics models. Space

  20. Identifying a Sea Breeze Circulation Pattern Over the Los Angeles Basin Using Airborne In Situ Carbon Dioxide Measurements

    NASA Astrophysics Data System (ADS)

    Brannan, A. L.; Schill, S.; Trousdell, J.; Heath, N.; Lefer, B. L.; Yang, M. M.; Bertram, T. H.

    2014-12-01

    The Los Angeles Basin in Southern California is an optimal location for a circulation study, due to its location between the Pacific Ocean to the west and the Santa Monica and San Gabriel mountain ranges to the east, as well as its booming metropolitan population. Sea breeze circulation carries air at low altitudes from coastal to inland regions, where the air rises and expands before returning back towards the coast at higher altitudes. As a result, relatively clean air is expected at low altitudes over coastal regions, but following the path of sea breeze circulation should increase the amount of anthropogenic influence. During the 2014 NASA Student Airborne Research Program, a highly modified DC-8 aircraft completed flights from June 23 to 25 in and around the LA Basin, including missed approaches at four local airports—Los Alamitos and Long Beach (coastal), Ontario and Riverside (inland). Because carbon dioxide (CO2) is chemically inert and well-suited as a conserved atmospheric tracer, the NASA Langley Atmospheric Vertical Observations of CO2 in the Earth's Troposphere (AVOCET) instrument was used to make airborne in situ carbon dioxide measurements. Combining measured wind speed and direction data from the aircraft with CO2 data shows that carbon dioxide can be used to trace the sea breeze circulation pattern of the Los Angeles basin.

  1. Liquid scintillation counting of /sup 14/C for differentiation of synthetic ethanol from ethanol of fermentation

    SciTech Connect

    Martin, G.E.; Noakes, J.E.; Alfonso, F.C.; Figert, D.M.

    1981-09-01

    Samples containing ethanol are fractionated on a column so that the resultant ethanol content is > 93%. Determination of /sup 14/C by liquid scintillation counting on the ethanol fraction differentiates ethanol produced by fermentation from synthetic ethanol produced from fossil fuel sources. Twenty-seven samples were fractionated and analyzed for the /sup 14/C isotope. Six samples were synthetic ethanol derived from ethylene gas (direct and indirect process), and yielded a mean value for /sup 14/C isotope of 0.167 dpm/g carbon with a standard deviation (SD) of 0.066 dpm/g carbon (disintegrations per minute per gram of carbon). The remaining samples were ethanol derived from the fermentation of natural materials, such as corn, pear, sugar cane, grape, cherry, and blackberry, and yielded a mean value for /sup 14/C isotope of 16.11 dpm/g carbon with an SD of 1.27. The /sup 14/C values for specific mixtures of a synthetic and a natural ethanol compare favorably with the analytical values obtained by this procedure.

  2. A radiochemical assay for argininosuccinate synthetase with [U-14C]aspartate.

    PubMed

    Ratner, S

    1983-12-01

    A simple and sensitive radiochemical procedure to assay argininosuccinate synthetase activity in crude tissue homogenates and lysates of cultured cells is described. The new method depends on the location of 14C, uniformly, in the four carbons of aspartate. On incubation in the presence of excess of L-[U-14C]aspartate, L-citrulline, ATP, and an ATP-generating system, argininosuccinase and arginase, the [14C]fumarate formed is measured as the sum of malate and fumarate. After acidification the latter two acids are separated from [14C]aspartate on a small Dowex-50 column by elution with a few milliliters of water; the unutilized amino acid substrates remain on the column. With a specific radioactivity of 9 X 10(4) cpm, 1 to 2 nmol of product can be accurately measured under kinetically optimum conditions. PMID:6660522

  3. Enhancement of radioactivity of /sup 14/C-/sup 12/C mixtures via partial reduction

    SciTech Connect

    Stevenson, G.R.; Lauricella, T.L.

    1986-08-20

    The solution electron affinities of perdeuterated polyaromatics are less than those of the protiated materials. This observation prompted the investigation of the possibility of increasing the radioactivity of benzophenone-carbonyl-/sup 14/C (BZO-14C)-cold benzophenone (BZO-12C) mixtures via the partial reduction of these mixtures to the ketyls. The /sup 14/C-depleted benzophenones left in the reaction vessel in the form of Na/sup +/(NH/sub 3/)BZO/sup -/ can be recovered by simply adding a solution of I/sub 2/ in tetrahydrofuran to the solid salt. Further, there is no theoretical limit as to how much the radioactivity of the sample can be enhanced by passing /sup 14/C-enhanced material through this process consecutively, up to the point where the pure carbon-14 compound is obtained.

  4. Proton production cross sections of {sup 14}C from silicon and oxygen: Implications for cosmic-ray studies

    SciTech Connect

    Sisterson, J.M.; Jull, A.J.T.; Beverding, A.

    1993-12-31

    The production rates of {sup 14}C from proton spallation of silicon, and oxygen have been measured over a wide range of energies from 31 to 450 MeV. {sup 14}C was measured by accelerator mass spectrometry (AMS) after extraction of carbon from the samples by melting in a flow of oxygen.

  5. Assessing open-system behavior of 14C in terrestrial gastropod shells

    USGS Publications Warehouse

    Rech, J.A.; Pigati, J.S.; Lehmann, S.B.; McGimpsey, C.N.; Grimley, D.A.; Nekola, J.C.

    2011-01-01

    In order to assess open-system behavior of radiocarbon in fossil gastropod shells, we measured the 14C activity on 10 aliquots of shell material recovered from Illinoian (~190-130 ka) and pre-Illinoian (~800 ka) loess and lacustrine deposits in the Midwestern USA. Eight of the 10 aliquots yielded measurable 14C activities that ranged from 0.25 to 0.53 percent modern carbon (pMC), corresponding to apparent 14C ages between 48.2 and 42.1 ka. This small level of open-system behavior is common in many materials that are used for 14C dating (e.g. charcoal), and typically sets the upper practical limit of the technique. Two aliquots of gastropod shells from the Illinoian-aged Petersburg Silt (Petersburg Section) in central Illinois, USA, however, yielded elevated 14C activities of 1.26 and 1.71 pMC, which correspond to apparent 14C ages of 35.1 and 32.7 ka. Together, these results suggest that while many fossil gastropods shells may not suffer from major (>1%) open-system problems, this is not always the case. We then examined the mineralogy, trace element chemistry, and physical characteristics of a suite of fossil and modern gastropod shells to identify the source of contamination in the Petersburg shells and assess the effectiveness of these screening techniques at identifying samples suitable for 14C dating. Mineralogical (XRD) and trace element analyses were inconclusive, which suggests that these techniques are not suitable for assessing open-system behavior in terrestrial gastropod shells. Analysis with scanning electron microscopy (SEM), however, identified secondary mineralization (calcium carbonate) primarily within the inner whorls of the Petersburg shells. This indicates that SEM examination, or possibly standard microscope examination, of the interior of gastropod shells should be used when selecting fossil gastropod shells for 14C dating. ?? 2011 by the Arizona Board of Regents on behalf of the University of Arizona.

  6. Assessing open-system behavior of 14C in terrestrial gastropod shells

    USGS Publications Warehouse

    Rech, Jason A.; Pigati, Jeffrey S.; Lehmann, Sophie B.; McGimpsey, Chelsea N.; Grimley, David A.; Nekola, Jeffrey C.

    2011-01-01

    In order to assess open-system behavior of radiocarbon in fossil gastropod shells, we measured the 14C activity on 10 aliquots of shell material recovered from Illinoian (~190-130 ka) and pre-Illinoian (~800 ka) loess and lacustrine deposits in the Midwestern USA. Eight of the 10 aliquots yielded measurable 14C activities that ranged from 0.25 to 0.53 percent modern carbon (pMC), corresponding to apparent 14C ages between 48.2 and 42.1 ka. This small level of open-system behavior is common in many materials that are used for 14C dating (e.g. charcoal), and typically sets the upper practical limit of the technique. Two aliquots of gastropod shells from the Illinoian-aged Petersburg Silt (Petersburg Section) in central Illinois, USA, however, yielded elevated 14C activities of 1.26 and 1.71 pMC, which correspond to apparent 14C ages of 35.1 and 32.7 ka. Together, these results suggest that while many fossil gastropods shells may not suffer from major (>1%) open-system problems, this is not always the case. We then examined the mineralogy, trace element chemistry, and physical characteristics of a suite of fossil and modern gastropod shells to identify the source of contamination in the Petersburg shells and assess the effectiveness of these screening techniques at identifying samples suitable for 14C dating. Mineralogical (XRD) and trace element analyses were inconclusive, which suggests that these techniques are not suitable for assessing open-system behavior in terrestrial gastropod shells. Analysis with scanning electron microscopy (SEM), however, identified secondary mineralization (calcium carbonate) primarily within the inner whorls of the Petersburg shells. This indicates that SEM examination, or possibly standard microscope examination, of the interior of gastropod shells should be used when selecting fossil gastropod shells for 14C dating.

  7. A Model-based Interpretation of Low-frequency Changes in the Carbon Cycle during the Last 120,000 years and its Implications for the Reconstruction of Atmospheric (delta) 14-C

    NASA Technical Reports Server (NTRS)

    Koehler, Peter; Muscheler, Raimund; Fischer, Hubertus

    2006-01-01

    A main caveat in the interpretation of observed changes in atmospheric (Delta)C-l4 during the last 50,000 years is the unknown variability of the carbon cycle, which together with changes in the C-14 production rates determines the C-14 dynamics. A plausible scenario explaining glacial/interglacial dynamics seen in atmospheric CO2 and (delta)C-13 was proposed recently (Kohler et al., 2005a). A similar approach that expands its interpretation to the C-14 cycle is an important step toward a deeper understanding of (Delta)C-14 variability. This approach is based on an ocean/atmosphere/biosphere box model of the global carbon cycle (BICYCLE) to reproduce low-frequency changes in atmospheric CO2 as seen in Antarctic ice cores. The model is forced forward in time by various paleoclimatic records derived from ice and sediment cores. The simulation results of our proposed scenario match a compiled CO2 record from various ice cores during the last 120,000 years with high accuracy (r(sup 2) = 0.89). We analyze scenarios with different C-14 production rates, which are either constant or based on Be-10 measured in Greenland ice cores or the recent high-resolution geomagnetic field reconstruction GLOPIS-75 and compare them with the available (Delta)C-14 data covering the last 50,000 years. Our results suggest that during the last glacial cycle in general less than 110%0o f the increased atmospheric (Delta)C-14 is based on variations in the carbon cycle, while the largest part (5/6) of the variations has to be explained by other factors. Glacial atmospheric (Delta)C-14 larger than 700% cannot not be explained within our framework, neither through carbon cycle-based changes nor through variable C-14 production. Superimposed on these general trends might lie positive anomalies in atmospheric (Delta)C-14 of approx. 50% caused by millennial-scale variability of the northern deep water production during Heinrich events and Dansgaard/Oeschger climate fluctuations. According to our

  8. Evaluation of Airborne Particle Emissions from Commercial Products Containing Carbon Nanotubes

    PubMed Central

    Huang, Guannan; Park, Jae Hong; Cena, Lorenzo G.; Shelton, Betsy L.; Peters, Thomas M.

    2012-01-01

    The emission of the airborne particles from epoxy resin test sticks with different CNT loadings and two commercial products were characterized while sanding with three grit sizes and three disc sander speeds. The total number concentrations, respirable mass concentrations, and particle size number/mass distributions of the emitted particles were measured using a condensation particle counter, an optical particle counter, and a scanning mobility particle sizer. The emitted particles were sampled on a polycarbonate filter and analyzed using electron microscopy. The highest number concentrations (arithmetic mean = 4670 particles/cm3) were produced with coarse sandpaper, 2% (by weight) CNT test sticks and medium disc sander speed, whereas the lowest number concentrations (arithmetic mean = 92 particles/cm3) were produced with medium sandpaper, 2% CNT test sticks and slow disc sander speed. Respirable mass concentrations were highest (arithmetic mean = 1.01 mg/m3) for fine sandpaper, 2% CNT test sticks and medium disc sander speed and lowest (arithmetic mean = 0.20 mg/m3) for medium sandpaper, 0% CNT test sticks and medium disc sander speed. For CNT-epoxy samples, airborne particles were primarily micrometer-sized epoxy cores with CNT protrusions. No free CNTs were observed in airborne samples, except for tests conducted with 4% CNT epoxy. The number concentration, mass concentration, and size distribution of airborne particles generated when products containing CNTs are sanded depends on the conditions of sanding and the characteristics of the material being sanded. PMID:23204914

  9. No evidence for a deglacial intermediate water Δ14C anomaly in the SW Atlantic

    NASA Astrophysics Data System (ADS)

    Sortor, R. N.; Lund, D. C.

    2011-12-01

    The last deglaciation was characterized by an increase in atmospheric pCO2 and decrease in atmospheric radiocarbon activity. One hypothesis is that these changes were due to out-gassing of 14C-depleted carbon from the abyssal ocean (Broecker and Barker, 2007). Reconstructions of foraminiferal Δ14C from the eastern tropical Pacific (Marchitto et al., 2007; Stott et al. 2009), Arabian Sea (Bryan et al., 2010), and high latitude North Atlantic (Thornalley et al., 2011) show that severe depletions in 14C occurred at intermediate water depths during the last deglaciation. It has been suggested that 14C-depleted water from the abyss upwelled in the Southern Ocean and was then carried by Antarctic Intermediate Water (AAIW) to these sites (Marchitto et al., 2007). On the South Icelandic Rise, Thornalley et al. (2011) find deglacial Δ14C values up to 600% lower than the atmosphere. Since North Atlantic deep waters are not believed to be old enough to cause such an anomaly (Robinson et al. 2005), one possible source is AAIW (Thornalley et al., 2011). Here we evaluate whether or not a large deglacial 14C anomaly occurred at intermediate depths in the Southwest Atlantic. We find that the deglacial Δ14C trend at our site is similar to the atmospheric Δ14C trend. Our results are also largely consistent with data from U/Th-dated corals at shallower water depths on the Brazil Margin (Mangini et al., 2010). We find no evidence in the southwestern Atlantic of large deglacial Δ14C anomalies like those observed in the high latitude North Atlantic (Thornalley et al., 2011). When our results are paired with those from the South Pacific (De Pol-Holz et al., 2010; Rose et al., 2010), it appears AAIW did not carry a highly 14C- depleted signal during the deglaciation. Another source of carbon is apparently required to explain the intermediate-depth Δ14C anomalies in the North Atlantic, Indian, and Pacific Oceans.

  10. Structure of ^27Na Using the ^14C(^14C,p) Reaction

    NASA Astrophysics Data System (ADS)

    Cooper, M. W.; Campbell, D. B.; Chandler, C.; Kemper, K. W.; Pipidis, A.; Riley, M. A.; Wiedeking, M.; Tabor, S. L.; Ragnarsson, I.

    2000-10-01

    Several new transitions in ^27Na were found using the ^14C(^14C,p) reaction at 22 MeV. The ^14C target was 0.28 mg/cm^2 thick and the beam was stopped in a 33.8 mg/cm^2 Au foil. γ-γ, particle-γ, and particle-γ-γ coincidences were measured using 2 four-crystal Eurogam type ``clover'' detectors, 7 Compton suppressed HPGe detectors, and a particle E-ΔE telescope at 0^circ.The 67, 1660, 1752, 1820, and 2222 keV transitions, which are in coincidence with the high energy protons, have been identified as transitions in ^27Na. Some of the resulting levels correspond to particle groups seen in an earlier ^26Mg(^18O, ^17F) reaction (L.K. Fifield et al.), Nucl. Phys. A437, 141 (1985).. The results will be discussed in terms of both the shell model and the cranked Nilsson-Strutinsky rotational model.

  11. Influence of increasing combustion temperature on the AMS 14C dating of modern crop phytoliths

    PubMed Central

    Yin, Jinhui; Yang, Xue; Zheng, Yonggang

    2014-01-01

    Several attempts have been made to directly date phytoliths, but most 14C results are not consistent with other independent chronologies. Due to the limited dataset, there is not a clear explanation for these discrepancies. Herein, we report the 14C ages of phytolith-occluded carbon (PhytOC) from contemporary rice and millet crops that were combusted at different temperatures to investigate the relationship between the combustion temperature and resulting 14C age. Our results show that the 14C age of PhytOC increases directly with combustion temperature (up to 1100°C) and results in age overestimations of hundreds of years. Considerably older ages are observed at higher temperatures, suggesting that it may be possible to distinguish between two fractions of organic carbon in phytoliths: labile and recalcitrant carbon. These findings challenge the assumption that PhytOC is homogeneous, an assumption made by those who have previously attempted to directly date phytoliths using 14C. PMID:25288281

  12. 14C AMS dating Yongcheon cave

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Choe, K.; Kim, J. C.; Choi, S. H.; Kang, J.; Song, S.; Song, Y. M.; Jang, J. G.

    2013-01-01

    The biggest island in South Korea is Jeju Island, which lies 80 km south of the mainland and has one shield volcano, Mt. Halla. The volcanic island and its lava tubes were added to the world heritage list by UNESCO in 2007. Among the many lava tubes on the island, a unique cave had been accidentally found in 2005 while some workers were replacing a telephone pole. Until the discovery, it had been completely isolated from the outside by naturally-built sand blocks. Yongcheon cave is a lime-decorated lava tube showing both the properties of a volcanic lava tube and a limestone cave. This cave, about 3 km in length, is acknowledged to be the best of this type in the world and includes a large clean-water lake, lava falls, and richly developed speleothems inside it. Even though there is archaeological evidence from well preserved pottery that ancient people entered this place, the preservation of artifacts was ensured by a geological change that made later entrance difficult. We have collected charcoal samples scattered around the cave and dated them using AMS. Ages were in the range of ca. 1570-1260 BP (A.D. 340-880) and this corresponds to the Ancient Three Kingdoms and the Unified Silla era in Korean history. The 14C AMS measurement results presented in this paper on wood charcoal provide precise dates which will be very useful not only to clarify the nature of human activities in this cave but also to provide reference dates when comparing other dating methods.

  13. Investigation of {sup 14}C release in an engineered low-level waste disposal facility

    SciTech Connect

    Yim, M.S.; Simonson, S.A.; Sullivan, T.M.

    1996-05-01

    Atmospheric releases of {sup 14}C from a generic engineered low-level waste (LLW) disposal facility and its radiological impacts are investigated. A computer model that describes microbial gas generation and the transport has been developed and used to analyze the generation of {sup 14}C contaminated gases and subsequent migration in a facility. Models are based on a chemical kinetic description of aerobic and anaerobic decomposition of organic materials coupled with attending models of oxygen transport and consumption within waste containers in a facility. Effects of radiolysis on gas generation are addressed based on the estimated dose rate for class B and C wastes. Estimates predict that annual atmospheric release of {sup 14}C due to atmospheric pressure variations could range between {approximately}2.6 {times} 10{sup 8} and 5.5 {times} 10{sup 11} Bq as a result of microbial gas generation based on a volume of 48 000 m{sup 3} LLW disposed in a facility. The associated dose to a maximally exposed individual is estimated to be dominated by ingestion pathway and strongly depends on the fraction of the food imported from an uncontaminated outside area. Dose rates are expected to be <0.04 mSv/yr, considering a reasonable distance between the facility and the exposed population. The depletion through airborne releases of {sup 14}C inventory that is available for transport through other pathways is not expected to be a significant issue.

  14. Atmospheric 14 C CO 2 variations in Japan during 1982--1999 based on 14 C measurements of rice grains.

    PubMed

    Shibata, Setsuko; Kawano, Eiko; Nakabayashi, Takeshige

    2005-08-01

    (14)C in rice grains is a useful tracer of atmospheric (14)C(CO(2)). (14)C measurement in rice grains for 17 years during 1982--1999 reveals the following. There is negative correlation between Delta(14)C and the population densities of localities in Japan. Under-populated areas in the northern area of Japan and Okinawa remained clean in the 1990s. The (14)C(CO(2)) decline rates at those areas are near to that of Shauinsland. A latitudinal effect due to Chinese nuclear tests is observed in 1982. Small Seuss effects is observed at the middle latitudes in East Asia after 1995.

  15. Uptake and distribution of /sup 14/C during and following exposure to (/sup 14/C)methyl isocyanate

    SciTech Connect

    Ferguson, J.S.; Kennedy, A.L.; Stock, M.F.; Brown, W.E.; Alarie, Y.

    1988-06-15

    Guinea pigs were exposed to (/sup 14/C)methyl isocyanate (/sup 14/CH/sub 3/-NCO, /sup 14/C MIC) for periods of 1 to 6 hr at concentrations of 0.5 to 15 ppm. Arterial blood samples taken during exposure revealed immediate and rapid uptake of /sup 14/C. Clearance of /sup 14/C was then gradual over a period of 3 days. Similarly /sup 14/C was present in urine and bile immediately following exposure, and clearance paralleled that observed in blood. Guinea pigs fitted with a tracheal cannula and exposed while under anesthesia showed a reduced /sup 14/C uptake in blood indicating that most of the /sup 14/C MIC uptake in normal guinea pigs occurred from retention of this agent in the upper respiratory tract passages. In exposed guinea pigs /sup 14/C was distributed to all examined tissues. In pregnant female mice similarly exposed to /sup 14/C MIC, /sup 14/C was observed in all tissues examined following exposure including the uterus, placenta, and fetus. While the form of /sup 14/C distributed in blood and tissues has not yet been identified, these findings may help to explain the toxicity of MIC or MIC reaction products on organs other than the respiratory tract, as noted by several investigators.

  16. The metabolism of [14C]nicotine in the cat

    PubMed Central

    Turner, D. M.

    1969-01-01

    The metabolism of [2′-14C]nicotine given as an intravenous injection in small doses to anaesthetized and unanaesthetized cats has been studied. A method is described for the quantitative determination of [14C]nicotine and [14C]cotinine in tissues and body fluids. Nanogram amounts of these compounds have been detected. After a single dose of 40μg. of [14C]nicotine/kg., 55% of the injected radioactivity was excreted in the urine within 24hr., but only 1% of this radioactivity was unchanged nicotine. [14C]Nicotine is metabolized extremely rapidly, [14C]cotinine appearing in the blood within 2·5min. of intravenous injection. [14C]Nicotine accumulates rapidly in the brain and 15min. after injection 90% of the radioactivity still represents [14C]nicotine. Metabolites of [14C]nicotine have been identified in liver and urine extracts. [14C]Nicotine-1′-oxide has been detected in both liver and urine. PMID:5360723

  17. Airborne detection of diffuse carbon dioxide emissions at Mammoth Mountain, California

    USGS Publications Warehouse

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    1999-01-01

    We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at ~2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at ~3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels ~1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of ~250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at approximately 2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at approximately 3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels approximately 1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of approximately 250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.

  18. The use of airborne laser scanning to develop a pixel-based stratification for a verified carbon offset project

    PubMed Central

    2011-01-01

    Background The voluntary carbon market is a new and growing market that is increasingly important to consider in managing forestland. Monitoring, reporting, and verifying carbon stocks and fluxes at a project level is the single largest direct cost of a forest carbon offset project. There are now many methods for estimating forest stocks with high accuracy that use both Airborne Laser Scanning (ALS) and high-resolution optical remote sensing data. However, many of these methods are not appropriate for use under existing carbon offset standards and most have not been field tested. Results This paper presents a pixel-based forest stratification method that uses both ALS and optical remote sensing data to optimally partition the variability across an ~10,000 ha forest ownership in Mendocino County, CA, USA. This new stratification approach improved the accuracy of the forest inventory, reduced the cost of field-based inventory, and provides a powerful tool for future management planning. This approach also details a method of determining the optimum pixel size to best partition a forest. Conclusions The use of ALS and optical remote sensing data can help reduce the cost of field inventory and can help to locate areas that need the most intensive inventory effort. This pixel-based stratification method may provide a cost-effective approach to reducing inventory costs over larger areas when the remote sensing data acquisition costs can be kept low on a per acre basis. PMID:22004847

  19. Reconstructing the Vertical 14C Gradient of the Baja Margin during the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Lindsay, C. M.; Lehman, S. J.; Marchitto, T. M.; Ortiz, J. D.; van Geen, A.

    2011-12-01

    The radiocarbon activity (Δ14C) of the atmosphere decreased in two steps during the last deglaciation, coinciding with the well-known Heinrich 1 (H1) and Younger Dryas (YD) stadials. A leading explanation for these periods of decline involves the release of 14C-depleted carbon from a deep, isolated ocean reservoir- a mechanism that may also help to explain the deglacial rise in atmospheric CO2. Reconstructions of intermediate water Δ14C near Baja California, Mexico (Marchitto et al., 2007 Science) and in the Arabian Sea (Bryan et al., 2010 Earth Planet. Sci. Lett.) document two intervals of extreme depletion relative to the coeval atmosphere during H1 and the YD that are interpreted as evidence of the return of this aged carbon from the deep reservoir to the upper ocean and atmosphere. Here we report on 14C measurements in additional cores from the Baja margin that expand the depth range of our observations and enable reconstruction of the vertical Δ14C gradient. Calendar ages were determined by (1) correlation of diffuse spectral reflectance (DSR, a proxy related to local productivity) with the layer-counted age model in the GISP2 ice core and (2) correlation of raw planktic G. ruber 14C ages to new measurements in core PC08 previously studied by Marchitto et al. (2007). Together these provide a common and consistent calendar age model for margin core PCO8 (depth 705 m), core PC13 from Soledad Basin (sill depth 290 m) and margin core GC38 (depth 1270 m). In preliminary results, G. ruber Δ14C data from PC08 exhibit a record of deglacial depletion events that is consistent with partial upward mixing of the intermediate-depth signal to the surface. Δ14C at 1270 meters showed relatively little change during H1 and YD, indicating that anomalously depleted water did not penetrate to this depth. The vertical gradient collapsed to within observational uncertainties at the start of the Bølling-Allerød/Antarctic Climate Reversal. Taken together the results support

  20. The Fate of Inhaled 14C-labelled PCB11 and its Metabolites In Vivo1

    PubMed Central

    Hu, Xin; Adamcakova-Dodd, Andrea; Thorne, Peter S.

    2014-01-01

    Background The production ban of polychlorinated biphenyl (PCB) technical mixtures has left the erroneous impression that PCBs exist only as legacy pollutants. Some lower-chlorinated PCBs are still being produced and contaminate both indoor and ambient air. Objectives To inform PCB risk assessment, we characterized lung uptake, distribution, metabolism and excretion of PCB11 as a signature compound for these airborne non-legacy PCBs. Methods After delivering [14C]PCB11 to the lungs of male rats, radioactivity in 34 major tissues and 5 digestive matter compartments was measured at 12, 25, 50, 100, 200 and 720 min postexposure, during which time the excreta and exhaled air were also collected. [14C]PCB11 and metabolites in liver, blood, digestive matter, urine and adipose tissues were extracted separately to establish the metabolic profile of the disposition. Results [14C]PCB11 was distributed rapidly to all tissues after 99.8% pulmonary uptake and quickly underwent extensive metabolism. The major tissue deposition of [14C]PCB11 and metabolites translocated from liver, blood and muscle to skin and adipose tissue 200 min postexposure, while over 50% of administered dose was discharged via urine and feces within 12 h. Elimination of the [14C]PCB11 and metabolites consisted of an initial fast phase (t½ = 9-33 min) and a slower clearance phase to low concentrations. Phase II metabolites dominated in liver, blood and excreta after 25 min postexposure. Conclusions This study shows that PCB11 is completely absorbed after inhalation exposure and is rapidly eliminated from most tissues. Phase II metabolites dominated with a slower elimination rate than the PCB11 or phase I metabolites and thus can best serve as urine biomarkers of exposure. PMID:24275706

  1. Airborne Observations of the Spatial and Temporal Variability of Tropospheric Carbon Dioxide during the INTEX-B Campaign

    NASA Technical Reports Server (NTRS)

    Vay, Stephanie A.; Choi, Younghoon; Woo, Jung-Hun; Barrick, John D.; Sachse, Glen W.; Blake, Donald; Avery, Melody A.; Fuelberg, Henry; Nolf, Scott

    2006-01-01

    The Intercontinental Chemical Transport Experiment-North America (INTEX-NA) is an international field campaign envisioned to investigate the transport and transformation of gases and aerosols on transcontinental/intercontinental scales and assess their impact on air quality and climate. Phase B (INTEX-B) of the mission was conducted during a 10- week period from March 1 to May 15, 2006 and focused initially on pollution outflow from the Mexico City Metropolitan Area, later addressing the transport of pollution from Asia to North America during springtime meteorological conditions. During the deployment, fast-response (1-s resolution) CO2 measurements were recorded aboard the NASA DC-8 providing valuable regional-scale information on carbon sources and sinks over sparsely sampled areas of North America and adjacent ocean basins. When coupled with the enormously sophisticated chemistry payload on the DC-8, these measurements collectively afford extremely powerful multi-tracer constraints for carbon source/sink attribution. Preliminary examination of the two data sets from the INTEX-B campaign, acquired one month apart, reveals not only the influence of the CO2 seasonal cycle, but also the preponderance of human population and industrial activity in the northern hemisphere. In this presentation, a synergy of the ensemble of airborne and surface observations, bottomup emission inventories, as well as transport history are invoked in a GIS framework to elucidate the source/sink processes reflected in the observations. The airborne CO2 data, along with simultaneous surface measurements (e.g. NOAA ESRL), are examined to establish the vertical distribution and variability of CO2 as a function of location. The role of localized sources, long-range transport, the biosphere, stratospheric exchange, and dynamical processes on the CO2 spatial variability observed throughout the tropospheric column will be discussed.

  2. Low-level 14C methane oxidation rate measurements modified for remote field settings

    NASA Astrophysics Data System (ADS)

    Pack, M. A.; Pohlman, J.; Ruppel, C. D.; Xu, X.

    2012-12-01

    Aerobic methane oxidation limits atmospheric methane emissions from degraded subsea permafrost and dissociated methane hydrates in high latitude oceans. Methane oxidation rate measurements are a crucial tool for investigating the efficacy of this process, but are logistically challenging when working on small research vessels in remote settings. We modified a low-level 14C-CH4 oxidation rate measurement for use in the Beaufort Sea above hydrate bearing sediments during August 2012. Application of the more common 3H-CH4 rate measurement that uses 106 times more radioactivity was not practical because the R/V Ukpik cannot accommodate a radiation van. The low-level 14C measurement does not require a radiation van, but careful isolation of the 14C-label is essential to avoid contaminating natural abundance 14C measurements. We used 14C-CH4 with a total activity of 1.1 μCi, which is far below the 100 μCi permitting level. In addition, we modified field procedures to simplify and shorten sample processing. The original low-level 14C-CH4 method requires 6 steps in the field: (1) collect water samples in glass serum bottles, (2) inject 14C-CH4 into bottles, (3) incubate for 24 hours, (4) filter to separate the methanotrophic bacterial cells from the aqueous sample, (5) kill the filtrate with sodium hydroxide (NaOH), and (6) purge with nitrogen to remove unused 14C-CH4. Onshore, the 14C-CH4 respired to carbon dioxide or incorporated into cell material by methanotrophic bacteria during incubation is quantified by accelerator mass spectrometry (AMS). We conducted an experiment to test the possibility of storing samples for purging and filtering back onshore (steps 4 and 6). We subjected a series of water samples to steps 1-3 & 5, and preserved with mercuric chloride (HgCl2) instead of NaOH because HgCl2 is less likely to break down cell material during storage. The 14C-content of the carbon dioxide in samples preserved with HgCl2 and stored for up to 2 weeks was stable

  3. 17 CFR 240.14c-1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to indicate a relationship with any person, means: (1) Any corporation or organization (other than..., addresses and securities positions of beneficial owners has been given pursuant to § 240.14c-7(b)(3... purposes of § 240.14c-7, the term “record holder” means any broker, dealer, voting trustee,...

  4. Percutaneous absorption of [14C]DDT and [14C]benzo[a]pyrene from soil.

    PubMed

    Wester, R C; Maibach, H I; Bucks, D A; Sedik, L; Melendres, J; Liao, C; DiZio, S

    1990-10-01

    The objective was to determine percutaneous absorption of DDT and benzo[a]pyrene in vitro and in vivo from soil into and through skin. Soil (Yolo County 65-California-57-8; 26% sand, 26% clay, 48% silt) was passed through 10-, 20-, and 48-mesh sieves. Soil then retained by 80-mesh was mixed with [14C]-labeled chemical at 10 ppm. Acetone solutions at 10 ppm were prepared for comparative analysis. Human cadaver skin was dermatomed to 500 microns and used in glass diffusion cells with human plasma as the receptor fluid (3 ml/hr flow rate) for a 24-hr skin application time. With acetone vehicle, DDT (18.1 +/- 13.4%) readily penetrated into human skin. Significantly less DDT (1.0 +/- 0.7%) penetrated into human skin from soil. DDT would not partition from human skin into human plasma in the receptor phase (less than 0.1%). With acetone vehicle, benzo[a]pyrene (23.7 +/- 9.7%) readily penetrated into human skin. Significantly less benzo[a]pyrene (1.4 +/- 0.9%) penetrated into human skin from soil. Benzo[a]pyrene would not partition from human skin into human plasma in the receptor phase (less than 0.1%). Substantivity (skin retention) was investigated by applying 14C-labeled chemical to human skin in vitro for only 25 min. After soap and water wash, 16.7 +/- 13.2% of DDT applied in acetone remained absorbed to skin. With soil only 0.25 +/- 0.11% of DDT remained absorbed to skin. After soap and water wash 5.1 +/- 2.1% of benzo[a]pyrene applied in acetone remained absorbed to skin. With soil only 0.14 +/- 0.13% of benzo[a]pyrene remained absorbed to skin.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Comparison of Varve and 14C Chronologies from Steel Lake, Minnesota, USA

    SciTech Connect

    Tian, J; Brown, T A; Hu, F S

    2004-12-29

    Annually laminated sediments (varves) offer an effective means of acquiring high-quality paleoenvironmental records. However, the strength of a varve chronology can be compromised by a number of factors, such as missing varves, ambiguous laminations, and human counting error. We assess the quality of a varve chronology for the last three millennia from Steel Lake, Minnesota, through comparisons with nine AMS {sup 14}C dates on terrestrial plant macrofossils from the same core. These comparisons revealed an overall 8.4% discrepancy, primarily because of missing/uncountable varves within two stratigraphic intervals characterized by low carbonate concentrations and obscure laminations. Application of appropriate correction factors to these two intervals results in excellent agreement between the varve and {sup 14}C chronologies. These results, together with other varve studies, demonstrate that an independent age-determination method, such as {sup 14}C dating, is usually necessary to verify, and potentially correct, varve chronologies.

  6. Decay of sup 226 Ra by sup 14 C emission

    SciTech Connect

    Weselka, D.; Hille, P.; Chalupka, A. )

    1990-02-01

    Previous observation of heavy-ion emission from {sup 226}Ra has been confirmed. Charge and energy of the emitted fragment were measured using thin {sup 226}Ra sources and polycarbonate track-recording films. Decay by {sup 14}C emission could be identified unambiguously. The track-detector was calibrated with tandem-accelerated {sup 14}C and {sup 16}O ions and tested by observing the {sup 14}C emission from {sup 223}Ra yielding a branching ratio of (5.0{plus minus}1.0){times}10{sup {minus}10}. In the case of {sup 226}Ra our result for the {sup 14}C/{alpha} ratio is (2.3{plus minus}0.8){times}10{sup {minus}11}. Estimates of partial half-lives of Ra isotopes for {sup 14}C emission are discussed.

  7. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  8. Abundance of (14)C in biomass fractions of wastes and solid recovered fuels.

    PubMed

    Fellner, Johann; Rechberger, Helmut

    2009-05-01

    In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO(2) emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes (14)C and (12)C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in (14)C and reflect the (14)CO(2) abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying (14)C content of biogenic matter, depending on the period of growth. In the present paper (14)C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated (14)C content of the materials investigated ranges between 98 and 135pMC.

  9. Abundance of (14)C in biomass fractions of wastes and solid recovered fuels.

    PubMed

    Fellner, Johann; Rechberger, Helmut

    2009-05-01

    In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO(2) emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes (14)C and (12)C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in (14)C and reflect the (14)CO(2) abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying (14)C content of biogenic matter, depending on the period of growth. In the present paper (14)C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated (14)C content of the materials investigated ranges between 98 and 135pMC. PMID:19157836

  10. Abundance of {sup 14}C in biomass fractions of wastes and solid recovered fuels

    SciTech Connect

    Fellner, Johann Rechberger, Helmut

    2009-05-15

    In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO{sub 2} emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes {sup 14}C and {sup 12}C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in {sup 14}C and reflect the {sup 14}CO{sub 2} abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying {sup 14}C content of biogenic matter, depending on the period of growth. In the present paper {sup 14}C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated {sup 14}C content of the materials investigated ranges between 98 and 135 pMC.

  11. Progress report on a novel in situ14C extraction scheme at the University of Cologne

    NASA Astrophysics Data System (ADS)

    Fülöp, R.-H.; Wacker, L.; Dunai, T. J.

    2015-10-01

    We present initial results of in situ14C system blank and calibration sample measurements obtained using the in situ14C extraction scheme developed at the University of Cologne. The 14C extraction scheme specifically exploits the phase transformation of quartz to cristobalite in order to quantitatively extract the carbon as CO2 and follows a scheme that is different to that of existing extraction systems. Features are offline furnace extraction, single pass catalytic oxidation using mixed copper (I,II) oxide as catalyst, the use of UHV-compatible components and of vacuum annealed copper tubing. The design allows a relatively rapid sample throughput - two samples per day as opposed to the current 2 days per sample that can be done on other lines - and can accommodate samples ranging between 0.5 and 4 g of clean quartz. Following extraction and cleaning, the CO2 gas is measured using the gas ion source of the MICADAS AMS facility at ETH Zurich. The extraction system yields low systems blanks (10 +16/-10 × 103 atoms 14C, ±1 σ) and the initial results indicate that further improvements are achievable. Measurements of the CRONUS-A standard sample show a good reproducibility and results are consistent with published values. We also present the first in situ14C results for the CRONUS-R standard material.

  12. Substrate metabolism in isolated rat jejunal epithelium. Analysis using /sup 14/C-radioisotopes

    SciTech Connect

    Mallet, R.T.

    1986-01-01

    The jejunal epithelium absorbs nutrients from the intestinal lumen and is therefore the initial site for metabolism of these compounds. The purpose of this investigation is to analyze substrate metabolism in a preparation of jejunal epithelium relatively free of other tissues. Novel radioisotopic labelling techniques allow quantitation of substrate metabolism in the TCA cycle, Embden-Meyerhof (glycolytic) pathway, and hexose monophosphate shunt. For example, ratios of /sup 14/CO/sub 2/ production from pairs of /sup 14/C-pyruvate, and /sup 14/C-succinate radioisotopes (CO/sub 2/ ratios) indicate the probability of TCA cycle intermediate efflux to generate compounds other than CO/sub 2/. With (2,3-/sup 14/C)succinate as tracer, the ratio of /sup 14/C in carbon 4 + 5 versus carbon 2 + 3 of citrate, the citrate labelling ratio, equals the probability of TCA intermediate flux to the acetyl CoA-derived portion of citrate versus flux to the oxaloacetate-derived portion. The principal metabolic substrates for the jejunal epithelium are glucose and glutamine. CO/sub 2/ ratios indicate that glutamine uptake and metabolism is partially Na/sup +/-independent, and is saturable, with a half-maximal rate at physiological plasma glutamine concentrations. Glucose metabolism in the jejunal epithelium proceeds almost entirely via the Embden-Meyerhof pathway. Conversion of substrates to multi-carbon products in this tissue allows partial conservation of reduced carbon for further utilization in other tissues. In summary, metabolic modeling based on /sup 14/C labelling ratios is a potentially valuable technique for analysis of metabolic flux patterns in cell preparations.

  13. Comparison of 14C ages of hydrothermal petroleums

    USGS Publications Warehouse

    Simoneit, B.R.T.; Kvenvolden, K.A.

    1994-01-01

    In order to set limits on the time frame of formation of hydrothermal petroleum, we have obtained 14C ages on samples from three diverse regions; Gulf of California (Guaymas Basin), Northeast Pacific Ocean (Escanaba Trough and Middle Valley), and the East African Rift (Tanganyika Trough). The results date the source of carbon and therefore provide maximum ages for the formation and emplacement of the hydrothermal petroleums. The youngest petroleum occurs iin the Souther Trough of Guaymas Basin (3200-6600 yr, mean 4692 yr); in the Northern Trough the petroleum is slightly older (7400 yr). Significantly older hydrothermal petroleum occurs in Escanaba Trough (17,000 yr) and Middle Valley (29,000 yr). A continental example from the East African Rift has an age of 25,000 yr, comparable to the ages observed in the oceanic samples from the Northeast Pacific Ocean. These ages affirm that hydrothermal petroleum formation is a very rapid process and took place some time between the latest Pleistocene and the present in these active hydrothermal systems. ?? 1994.

  14. The in-vitro metabolism of [14C]pentobarbitone and [14C]phenobarbitone by hamster liver microsomes.

    PubMed

    Seago, A; Gorrod, J W

    1987-02-01

    The metabolism of [14C]pentobarbitone and [14C]phenobarbitone has been reinvestigated using an in-vitro hepatic microsomal system (Syrian hamsters, Aroclor 1254 induction). The incubation system was routinely supplemented with EDTA (1 mM) and a substrate concentration study revealed the metabolism of [14C]pentobarbitone to be concentration-dependent, with the greatest overall metabolism (greater than 50%) occurring at 0.054 mumol per 3.5 mL. With [14C]phenobarbitone as substrate, overall metabolism was extremely low (3%) and independent of substrate concentration. Addition of further cofactors to the incubation mixture at 20 min intervals over an extended period resulted in almost complete metabolism of [14C]pentobarbitone (100 min), 3'-hydroxypentobarbitone and 3'-oxopentobarbitone being identified as metabolites together with many minor, unidentified products. With [14C]phenobarbitone as the substrate, cofactor addition up to 120 min resulted in 8% overall metabolism; p-hydroxyphenobarbitone was identified as a product of metabolism; other minor products were unidentified. The metabolism studies failed to produce a metabolite having the properties of the N-hydroxylated product of either [14C]pentobarbitone or [14C]phenobarbitone within the detection limits available (0.02% of 0.5 mumol per incubate).

  15. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2015-07-01

    The natural abundance of 14C in total CO2 dissolved in seawater (DIC) is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, which is the time elapsed since a body of water has been in contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with ageing, i.e. the time component of circulation, and one associated with a "preformed 14C-age". The latter quantity exists because of the slow and incomplete atmosphere-ocean equilibration of 14C particularly in high latitudes where many water masses form. In the ocean's interior, preformed 14C-age behaves like a passive tracer. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. Here, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age. Between models, the variability of preformed 14C-age can also be considerable (factor of 2), related to the combination of physical model parameters, which influence circulation dynamics or gas exchange. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation, the choice of the gas-exchange constant from within the currently accepted range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age, it could easily impair the evaluation and tuning of a model's circulation on global and regional

  16. First Airborne IPDA Lidar Measurements of Methane and Carbon Dioxide Applying the DLR Greenhouse Gas Sounder CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Quatrevalet, M.; Büdenbender, C.; Kiemle, C.; Loehring, J.; Gerbig, C.

    2015-12-01

    First airborne measurement using CHARM-F, the four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4, were performed in Spring 2015 onboard the German research aircraft HALO. The lidar is designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between aircraft and ground. HALO's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, enable the CHARM-F system to be an airborne demonstrator for future spaceborne greenhouse gas lidars. Due to a high technological conformity this applies in particular to the French-German satellite mission MERLIN, the spaceborne methane IPDA lidar. The successfully completed flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. The flights covered different ground cover types, different orography types as well as the sea. Additionally, we captured different cloud conditions, at which the broken cloud case is a matter of particular interest. This dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on technical details of the system. These activities are supported by another instrument onboard: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the lidar. Additionally the onboard instrumentation of HALO gives information about pressure and temperature for cross-checking the ECMWF data, which are intended to be used for calculating the weighting function, the key quantity for the retrieval of gas column mixing ratios from the measured gas optical depths. In combination with dedicated descents into the boundary layer and subsequent ascents, a self-contained dataset for characterizations of CHARM-F is available.

  17. Domestic airborne black carbon levels and 8-isoprostane in exhaled breath condensate among children in New York City☆

    PubMed Central

    Rosa, Maria Jose; Yan, Beizhan; Chillrud, Steven N.; Acosta, Luis M.; Divjan, Adnan; Jacobson, Judith S.; Miller, Rachel L.; Goldstein, Inge F.; Perzanowski, Matthew S.

    2015-01-01

    Background Exposure to airborne black carbon (BC) has been associated with asthma development, respiratory symptoms and decrements in lung function. However, the mechanism through which BC may lead to respiratory symptoms has not been completely elucidated. Oxidative stress has been suggested as a potential mechanism through which BC might lead to adverse health outcomes. Exhaled breath condensate (EBC) allows for the non-invasive collection of airway lining fluid containing biomarkers of oxidative stress like 8-isoprostane, a stable by-product of lipid peroxidation. Therefore, we sought to characterize the association between domestic airborne BC concentrations and 8-isoprostane in EBC. Materials and methods Seven- and eight-year-old children participated in an asthma case–control study in New York City. During home visits, air samples and EBC were collected. Seven day averages of domestic levels of particulate matter <2.5 µm (PM2.5), BC and environmental tobacco smoke (ETS) were measured. Urea and 8-isoprostane were measured by liquid chromatography tandem mass spectrometry (LC/MS/MS) in EBC. Results In univariate models, PM2.5 and BC, but not ETS, were significantly associated with increases in 8-isoprostane in the EBC (β = 0.006 and β = 0.106 respectively, p < 0.05 for both). These associations remained statistically significant for both PM2.5 and BC after adjustment for covariates. In a co-pollutant model including PM2.5, BC and ETS, only BC remained a statistically significant predictor of 8-isoprostane (p < 0.05). Conclusions Our findings suggest the BC fraction of PM might contain exposure relevant to increased oxidative stress in the airways. PMID:25262082

  18. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Diskin, G. S.; DiGangi, J. P.; Yang, M. M.; Rana, M.; Slate, T. A.

    2015-12-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight intercomparison data have been obtained and will be discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  19. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Diskin, Glenn S.; DiGangi, Joshua P.; Yang, Melissa; Slate, Thomas A.; Rana, Mario

    2015-01-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight data have been obtained and are discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  20. TMEM14C is required for erythroid mitochondrial heme metabolism.

    PubMed

    Yien, Yvette Y; Robledo, Raymond F; Schultz, Iman J; Takahashi-Makise, Naoko; Gwynn, Babette; Bauer, Daniel E; Dass, Abhishek; Yi, Gloria; Li, Liangtao; Hildick-Smith, Gordon J; Cooney, Jeffrey D; Pierce, Eric L; Mohler, Kyla; Dailey, Tamara A; Miyata, Non; Kingsley, Paul D; Garone, Caterina; Hattangadi, Shilpa M; Huang, Hui; Chen, Wen; Keenan, Ellen M; Shah, Dhvanit I; Schlaeger, Thorsten M; DiMauro, Salvatore; Orkin, Stuart H; Cantor, Alan B; Palis, James; Koehler, Carla M; Lodish, Harvey F; Kaplan, Jerry; Ward, Diane M; Dailey, Harry A; Phillips, John D; Peters, Luanne L; Paw, Barry H

    2014-10-01

    The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias.

  1. TMEM14C is required for erythroid mitochondrial heme metabolism

    PubMed Central

    Yien, Yvette Y.; Robledo, Raymond F.; Schultz, Iman J.; Takahashi-Makise, Naoko; Gwynn, Babette; Bauer, Daniel E.; Dass, Abhishek; Yi, Gloria; Li, Liangtao; Hildick-Smith, Gordon J.; Cooney, Jeffrey D.; Pierce, Eric L.; Mohler, Kyla; Dailey, Tamara A.; Miyata, Non; Kingsley, Paul D.; Garone, Caterina; Hattangadi, Shilpa M.; Huang, Hui; Chen, Wen; Keenan, Ellen M.; Shah, Dhvanit I.; Schlaeger, Thorsten M.; DiMauro, Salvatore; Orkin, Stuart H.; Cantor, Alan B.; Palis, James; Koehler, Carla M.; Lodish, Harvey F.; Kaplan, Jerry; Ward, Diane M.; Dailey, Harry A.; Phillips, John D.; Peters, Luanne L.; Paw, Barry H.

    2014-01-01

    The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias. PMID:25157825

  2. Estimating Carbon STOCK Changes of Mangrove Forests Using Satellite Imagery and Airborne LiDAR Data in the South Sumatra State, Indonesia

    NASA Astrophysics Data System (ADS)

    Maeda, Y.; Fukushima, A.; Imai, Y.; Tanahashi, Y.; Nakama, E.; Ohta, S.; Kawazoe, K.; Akune, N.

    2016-06-01

    The purposes of this study were 1) to estimate the biomass in the mangrove forests using satellite imagery and airborne LiDAR data, and 2) to estimate the amount of carbon stock changes using biomass estimated. The study area is located in the coastal area of the South Sumatra state, Indonesia. This area is approximately 66,500 ha with mostly flat land features. In this study, the following procedures were carried out: (1) Classification of types of tree species using Satellite imagery in the study area, (2) Development of correlation equations between spatial volume based on LiDAR data and biomass stock based on field survey for each types of tree species, and estimation of total biomass stock and carbon stock using the equation, and (3) Estimation of carbon stock change using Chronological Satellite Imageries. The result showed the biomass and the amount of carbon stock changes can be estimated with high accuracy, by combining the spatial volume based on airborne LiDAR data with the tree species classification based on satellite imagery. Quantitative biomass monitoring is in demand for projects related to REDD+ in developing countries, and this study showed that combining airborne LiDAR data with satellite imagery is one of the effective methods of monitoring for REDD+ projects.

  3. Determination of 14C residue in eggs of laying hens administered orally with [14C] sulfaquinoxaline.

    PubMed

    Shaikh, B; Rummel, N; Smith, D

    2004-06-01

    Ten layer hens were dosed for 5 consecutive days with 6.2 mg kg(-1) [14C] sulfaquinoxaline (SQX). Eggs were collected from the hens during the 5-day dosing period and during a 10-day post-dose withdrawal period. Egg yolk and albumen were separated and assayed for total radioactive residues (TRR) using a combustion oxidizer and liquid scintillation counting techniques. Significant amounts of radioactivity were detected on the second day of dosing (greater than 24h after the initial dose) in both egg yolk and albumen. First eggs were collected about 8 h after dosing; the second-day eggs were collected during 8-h period after the second dose. Radioactive residues reached a maximum on the fifth day of dosing in albumen, whereas on the second day of withdrawal in egg yolk, the peak TRR levels in albumen were about threefold higher than in yolk. Thereafter, the TRR levels declined rapidly in albumen and were detectable up to withdrawal day 6, whereas the TRR levels in egg yolk declined more slowly and were detectable up to withdrawal day 10. High-performance liquid chromatography analysis indicated that the parent drug sulfaquinoxaline was the major component in both the egg albumen and yolk. Additionally, this work suggests that egg yolk is the appropriate matrix for monitoring SQX residues PMID:15204532

  4. Cross-checking groundwater age by 4He and 14C dating in a granite, Tono area, central Japan

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takuma; Nakata, Kotaro; Tomioka, Yuichi; Goto, Kazuyuki; Kashiwaya, Koki; Hama, Katsuhiro; Iwatsuki, Teruki; Kunimaru, Takanori; Takeda, Masaki

    2016-11-01

    Groundwater dating was performed simultaneously by the 4He and 14C methods in granite of the Tono area in central Japan. Groundwater was sampled at 30 packed-off sections of six 1000-m boreholes. 4He concentrations increased and 14C concentrations decreased along a groundwater flow path on a topographic gradient. 4He ages were calculated by using the in situ 4He production rate derived from the porosity, density, and U and Th content of the rock, neglecting external flux. 14C ages were calculated with a noncorrected model in which the initial 14C content was 100 percent of the modern radiocarbon level (Co = 100 pmC), a statistical model using the average 14C content of tritium-bearing samples (Co = 46.4 pmC), and a δ13C model based on the isotopic mass balance. Although the absolute 14C ages calculated by the models were different, the relative 14C ages were almost identical. The relative 14C ages were considered reliable because dissolved inorganic carbon has no significant geochemical reactions in granite. The relation between the 4He ages and the noncorrected 14C ages was [4He age] = 1.15 [14C age] + 7200 (R2 = 0.81), except in the discharge area. The slope of this relation was equivalent to unity, which indicates that the 4He accumulation rate is confirmed by the relative 14C ages. Moreover, the accumulated 3He/4He ratio was equivalent to that derived from the 6Li(α,n)3H reaction in granite. These results show that the accumulated He is of crustal origin, produced in situ without external flux, except in the discharge area. The intercept value of 7200 a implies that the 14C concentrations were diluted due to geochemical reactions. Tritium-bearing samples supported this result. Simultaneous measurements make it feasible to estimate the accumulation rate of 4He and initial dilution of 14C, which cannot be done with a single method. Cross-checking groundwater dating has the potential to provide more reliable groundwater ages. The circulation time of the

  5. Airborne measurements of Black Carbon using miniature high-performance Aethalometers during global circumnavigation campaign GLWF 2012

    NASA Astrophysics Data System (ADS)

    Močnik, Griša; Drinovec, Luka; Vidmar, Primož; Lenarčič, Matevž

    2013-04-01

    While ground-level measurements of atmospheric aerosols are routinely performed around the world, there exists very little data on their vertical and geographical distribution in the global atmosphere. This data is a crucial requirement for our understanding of the dispersion of pollutant species of anthropogenic origin, and their possible effects on radiative forcing, cloud condensation, and other phenomena which can contribute to adverse outcomes. Black Carbon (BC) is a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. It has no non-combustion sources and is not transformed by atmospheric processes. Its presence at altitude is unequivocal. Recent technical advances have led to the development of miniaturized instruments which can be operated on ultra-light aircraft, balloons or UAV's. From January to April 2012, a 'Pipistrel Virus' single-seat ultra-light aircraft flew around the world on a photographic and environmental-awareness mission. The flight track covered all seven continents; crossed all major oceans; and operated at altitudes around 3000 m ASL and up to 8900 m ASL. The aircraft carried a specially-developed high-sensitivity miniaturized dual-wavelength Aethalometer, which recorded BC concentrations with very high temporal resolution and sensitivity (see Reference below). We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas. Back-trajectories are used to show transport of polluted air masses. Measuring the dependence of the aerosol absorption on the wavelength, we show that aerosols produced during biomass combustion can be transported to high altitude in high concentrations. 1. __, Carbon Sampling Takes Flight, Science 2012, 335, 1286. 2. G. Močnik, L. Drinovec, M. Lenarčič, Airborne measurements of Black Carbon during the GLW Flight using miniature high-performance Aethalometers, accessed 8 January 2013

  6. Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries.

    PubMed

    Moroni, Beatrice; Viti, Cecilia; Cappelletti, David

    2014-01-01

    Aerosol dust samples and quartz raw materials from different working stations in foundry plants were characterized in order to assess the health risk in this working environment. Samples were analysed by scanning and transmission electron microscopy coupled with image analysis and microanalysis, and by cathodoluminescence spectroscopy. In addition, the concentration and the solubility degree of Fe and other metals of potential health effect (Mn, Zn and Pb) in the bulk samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Overall, the results indicate substantial changes in quartz crystal structure and texture when passing from the raw material to the airborne dust, which include lattice defects, non-bridging oxygen hole centres and contamination of quartz grains by metal and/or graphite particles. All these aspects point towards the relevance of surface properties on reactivity. Exposure doses have been estimated based on surface area, and compared with threshold levels resulting from toxicology. The possible synergistic effects of concomitant exposure to inhalable magnetite, quartz and/or graphite particles in the same working environment have been properly remarked. PMID:23385294

  7. Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries.

    PubMed

    Moroni, Beatrice; Viti, Cecilia; Cappelletti, David

    2014-01-01

    Aerosol dust samples and quartz raw materials from different working stations in foundry plants were characterized in order to assess the health risk in this working environment. Samples were analysed by scanning and transmission electron microscopy coupled with image analysis and microanalysis, and by cathodoluminescence spectroscopy. In addition, the concentration and the solubility degree of Fe and other metals of potential health effect (Mn, Zn and Pb) in the bulk samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Overall, the results indicate substantial changes in quartz crystal structure and texture when passing from the raw material to the airborne dust, which include lattice defects, non-bridging oxygen hole centres and contamination of quartz grains by metal and/or graphite particles. All these aspects point towards the relevance of surface properties on reactivity. Exposure doses have been estimated based on surface area, and compared with threshold levels resulting from toxicology. The possible synergistic effects of concomitant exposure to inhalable magnetite, quartz and/or graphite particles in the same working environment have been properly remarked.

  8. {sup 14}C depth profiles in Apollo 15 and 17 cores and lunar rock 68815

    SciTech Connect

    Jull, A.J.T.; Cloudt, S.; Donahue, D.J.; Sisterson, J.M.; Reedy, R.C.; Masarik, J.

    1998-09-01

    Accelerator mass spectrometry (AMS) was used to measure the activity vs. depth profiles of {sup 14}C produced by both solar cosmic rays (SCR) and galactic cosmic rays (GCR) in Apollo 15 lunar cores 15001-6 and 15008, Apollo 17 core 76001, and lunar rock 68815. Calculated GCR production rates are in good agreement with {sup 14}C measurements at depths below {approximately}10 cm. Carbon-14 produced by solar protons was observed in the top few cm of the Apollo 15 cores and lunar rock 68815, with near-surface values as high as 66 dpm/kg in 68815. Only low levels of SCR-produced {sup 14}C were observed in the Apollo 17 core 76001. New cross sections for production of {sup 14}C by proton spallation on O, Si, Al, Mg, Fe, and Ni were measured using AMS. These cross sections are essential for the analysis of the measured {sup 14}C depth profiles. The best fit to the activity-depth profiles for solar-proton-produced {sup 14}C measured in the tops of both the Apollo 15 cores and 68815 was obtained for an exponential rigidity spectral shape R{sub 0} of 110--115 MV and a 4 {pi} flux (J{sub 10}, Ep > 10 MeV) of 103--108 protons/cm{sup 2}/s. These values of R{sub 0} are higher, indicating a harder rigidity, and the solar-proton fluxes are higher than those determined from {sup 10}Be, {sup 26}Al, and {sup 53}Mn measurements.

  9. Forensic applications of 14C bomb-pulse dating

    NASA Astrophysics Data System (ADS)

    Zoppi, U.; Skopec, Z.; Skopec, J.; Jones, G.; Fink, D.; Hua, Q.; Jacobsen, G.; Tuniz, C.; Williams, A.

    2004-08-01

    After a brief review of the basics of 14C bomb-pulse dating, this paper presents two unique forensic applications. Particular attention is dedicated to the use of the 14C bomb-pulse to establish the time of harvest of illicit drugs such as heroin and opium. Preliminary measurements of 14C concentrations in milligram samples taken from seized drugs are presented. 14C bomb-pulse dating can determine whether drug distribution originates from stockpiles or recent manufacture, and support the action of law enforcement authorities against criminal organisations involved in drug trafficking. In addition, we describe the dating of wine vintages for a number of authenticated single label vintage red wines from the Barossa Valley - South Australia. Our results show that radiocarbon dating can be used to accurately determine wine vintages and therefore reveal the addition of unrelated materials of natural and synthetic origin.

  10. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2014-10-01

    The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2), related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose that considering

  11. Long-term Airborne Black Carbon Measurements on a Lufthansa Passenger Aircraft

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Su, H.; Ditas, J.; Scharffe, D.; Wang, S.; Zhang, Y.; McMeeking, G. R.; Brenninkmeijer, C. A. M.; Poeschl, U.

    2015-12-01

    Aerosol particles containing black carbon are the most absorbing component of incoming solar radiation and exert a significant positive radiative forcing thus forming next to CO2 the strongest component of current global warming. Nevertheless, the role of black carbon particles and especially their complex interaction with clouds needs further research which is hampered by the limited experimental data, especially observations in the free troposphere, and in the UTLS (upper troposphere and lower stratosphere). In August 2014, a single particle soot photometer (SP2) was included in the extensive scientific payload of the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) project. CARIBIC is in operation since 1997 and carries out systematic observations of trace gas and aerosol sampling and on-line analyses, as well as DOAS remote sensing system at 10-12 km altitude. For this a special air freight container combining different instruments is transported on a monthly basis using a Lufthansa Airbus A340-600 passenger aircraft with destinations from 120°W to 120°E and 10°N to 75°N. The integration of a SP2 offers the possibility for the first long-term measurement of global distribution of black carbon. Up to date the SP2 measurements have been analyzed for 392 flights hours over four continents (Fig. 1). The first measurements show promising results of black carbon including periods when background concentrations in the UTLS were encountered. Beside a general distribution of number and mass of black carbon particles, peak events were detected with up to 20 times higher concentrations compared to the background. Moreover, high concentration plumes have been observed continuously over a range of 10,000 km. Interestingly, our results show also a generally lower amount of black carbon mass in the tropics compared to the mid latitude northern hemisphere.

  12. Long-term airborne black carbon measurements on a Lufthansa passenger aircraft

    NASA Astrophysics Data System (ADS)

    Ditas, Jeannine; Su, Hang; Scharffe, Dieter; Wang, Siwen; Zhang, Yuxuan; Brenninkmeijer, Carl; Pöschl, Ulrich; Cheng, Yafang

    2016-04-01

    Aerosol particles containing black carbon are the most absorbing component of incoming solar radiation and exert a significant positive radiative forcing thus forming next to CO² the strongest component of current global warming (Bond, 2013). Nevertheless, the role of black carbon particles and especially their complex interaction with clouds needs further research which is hampered by the limited experimental data, especially observations in the free and upper troposphere, and in the UTLS (upper troposphere and lower stratosphere). Many models underestimate the global atmospheric absorption attributable to black carbon by a factor of almost 3 (Bond, 2013). In August 2014, a single particle soot photometer was included in the extensive scientific payload of the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) project. CARIBIC is in operation since 1997 (with an interruption for 2002-2005) and carries out systematic observations at 10-12 km altitude. For this a special air freight container combining different instruments is transported on a monthly basis using a Lufthansa Airbus A340-600 passenger aircraft with destinations from 120°W to 120°E and 10°N to 75°N. The container has equipment for trace gas analyses and sampling and aerosol analyses and sampling and is connected to an inlet system that is part of the aircraft which contains a camera and DOAS remote sensing system. The integration of a single particle soot photometer (SP2) offers the possibility for the first long-term measurement of global distribution of black carbon and so far flights up to November 2015 have been conducted with more than 400 flight hours. So far the SP2 measurements have been analysed for flights over four continents from Munich to San Francisco, Sao Paulo, Tokyo, Beijing, Cape Town, Los Angeles and Hong Kong). The first measurements show promising results of black carbon measurements. Background concentrations in the UTLS

  13. Using airborne HIAPER Pole-to-Pole Observations (HIPPO) to evaluate model and remote sensing estimates of atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Frankenberg, Christian; Kulawik, Susan S.; Wofsy, Steven C.; Chevallier, Frédéric; Daube, Bruce; Kort, Eric A.; O'Dell, Christopher; Olsen, Edward T.; Osterman, Gregory

    2016-06-01

    In recent years, space-borne observations of atmospheric carbon dioxide (CO2) have been increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column-averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network (TCCON). Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) flights from 01/2009 through 09/2011 to validate CO2 measurements from satellites (Greenhouse Gases Observing Satellite - GOSAT, Thermal Emission Sounder - TES, Atmospheric Infrared Sounder - AIRS) and atmospheric inversion models (CarbonTracker CT2013B, Monitoring Atmospheric Composition and Climate (MACC) v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, in particular at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of -0.06 ppm, and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm, and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm, and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20, and 50 atmospheric soundings have been averaged for GOSAT, TES, and AIRS

  14. Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ren, Jiawen; Licht, Stuart

    2016-06-01

    Primary evidence of the direct uptake of atmospheric CO2 and direct transformation into carbon nanotubes, CNTs, is demonstrated through isotopic labeling, and provides a new high yield route to mitigate this greenhouse gas. CO2 is converted directly to CNTs and does not require pre-concentration of the airbone CO2. This C2CNT (CO2 to carbon nanotube) synthesis transforms CO2-gas dissolved in a 750 °C molten Li2CO3, by electrolysis, into O2-gas at a nickel electrode, and at a steel cathode into CNTs or carbon or nanofibers, CNFs. CNTs are synthesized at a 100-fold price reduction compared to conventional chemical vapour deposition, CVD, synthesis. The low cost conversion to a stable, value-added commodity incentivizes CO2 removal to mitigate climate change. The synthesis allows morphology control at the liquid/solid interface that is not available through conventional CVD synthesis at the gas/solid interface. Natural abundance 12CO2 forms hollow CNTs, while equivalent synthetic conditions with heavier 13CO2 favours closed core CNFs, as characterized by Raman, SEM and TEM. Production ease is demonstrated by the first synthesis of a pure 13C multiwalled carbon nanofiber.

  15. Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes.

    PubMed

    Ren, Jiawen; Licht, Stuart

    2016-06-09

    Primary evidence of the direct uptake of atmospheric CO2 and direct transformation into carbon nanotubes, CNTs, is demonstrated through isotopic labeling, and provides a new high yield route to mitigate this greenhouse gas. CO2 is converted directly to CNTs and does not require pre-concentration of the airbone CO2. This C2CNT (CO2 to carbon nanotube) synthesis transforms CO2-gas dissolved in a 750 °C molten Li2CO3, by electrolysis, into O2-gas at a nickel electrode, and at a steel cathode into CNTs or carbon or nanofibers, CNFs. CNTs are synthesized at a 100-fold price reduction compared to conventional chemical vapour deposition, CVD, synthesis. The low cost conversion to a stable, value-added commodity incentivizes CO2 removal to mitigate climate change. The synthesis allows morphology control at the liquid/solid interface that is not available through conventional CVD synthesis at the gas/solid interface. Natural abundance (12)CO2 forms hollow CNTs, while equivalent synthetic conditions with heavier (13)CO2 favours closed core CNFs, as characterized by Raman, SEM and TEM. Production ease is demonstrated by the first synthesis of a pure (13)C multiwalled carbon nanofiber.

  16. Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes.

    PubMed

    Ren, Jiawen; Licht, Stuart

    2016-01-01

    Primary evidence of the direct uptake of atmospheric CO2 and direct transformation into carbon nanotubes, CNTs, is demonstrated through isotopic labeling, and provides a new high yield route to mitigate this greenhouse gas. CO2 is converted directly to CNTs and does not require pre-concentration of the airbone CO2. This C2CNT (CO2 to carbon nanotube) synthesis transforms CO2-gas dissolved in a 750 °C molten Li2CO3, by electrolysis, into O2-gas at a nickel electrode, and at a steel cathode into CNTs or carbon or nanofibers, CNFs. CNTs are synthesized at a 100-fold price reduction compared to conventional chemical vapour deposition, CVD, synthesis. The low cost conversion to a stable, value-added commodity incentivizes CO2 removal to mitigate climate change. The synthesis allows morphology control at the liquid/solid interface that is not available through conventional CVD synthesis at the gas/solid interface. Natural abundance (12)CO2 forms hollow CNTs, while equivalent synthetic conditions with heavier (13)CO2 favours closed core CNFs, as characterized by Raman, SEM and TEM. Production ease is demonstrated by the first synthesis of a pure (13)C multiwalled carbon nanofiber. PMID:27279594

  17. Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes

    PubMed Central

    Licht, Stuart

    2016-01-01

    Primary evidence of the direct uptake of atmospheric CO2 and direct transformation into carbon nanotubes, CNTs, is demonstrated through isotopic labeling, and provides a new high yield route to mitigate this greenhouse gas. CO2 is converted directly to CNTs and does not require pre-concentration of the airbone CO2. This C2CNT (CO2 to carbon nanotube) synthesis transforms CO2-gas dissolved in a 750 °C molten Li2CO3, by electrolysis, into O2-gas at a nickel electrode, and at a steel cathode into CNTs or carbon or nanofibers, CNFs. CNTs are synthesized at a 100-fold price reduction compared to conventional chemical vapour deposition, CVD, synthesis. The low cost conversion to a stable, value-added commodity incentivizes CO2 removal to mitigate climate change. The synthesis allows morphology control at the liquid/solid interface that is not available through conventional CVD synthesis at the gas/solid interface. Natural abundance 12CO2 forms hollow CNTs, while equivalent synthetic conditions with heavier 13CO2 favours closed core CNFs, as characterized by Raman, SEM and TEM. Production ease is demonstrated by the first synthesis of a pure 13C multiwalled carbon nanofiber. PMID:27279594

  18. The LLNL Accelerator Mass Spectrometry System for Biochemical 14C-Measurements

    SciTech Connect

    Ognibene, T J; Bench, G; Brown, T A; Vogel, J S

    2002-10-31

    We report on recent improvements made to our 1 MV accelerator mass spectrometry system that is dedicated to {sup 14}C quantification of biochemical samples. Increased vacuum pumping capacity near the high voltage terminal has resulted in a 2-fold reduction of system backgrounds to 0.04 amol {sup 14}C/mg carbon. Carbon ion transmission through the accelerator has also improved a few percent. We have also developed tritium measurement capability on this spectrometer. The {sup 3}H/{sup 1}H isotopic ratio of a milligram-sized processed tap water sample has been measured at 4 {+-} 1 x 10{sup -16} (430 {+-} 110 {micro}Bq/mg H). Measurement throughput for a typical biochemical {sup 3}H sample is estimated to be {approx}10 minutes/sample.

  19. Local variations in 14C - How is bomb-pulse dating of human tissues and cells affected?

    NASA Astrophysics Data System (ADS)

    Stenström, Kristina; Skog, Göran; Nilsson, Carl Magnus; Hellborg, Ragnar; Svegborn, Sigrid Leide; Georgiadou, Elisavet; Mattsson, Sören

    2010-04-01

    Atmospheric nuclear weapons testing in the late 1950s and early 1960s almost doubled the amount of 14C in the atmosphere. The resulting 14C "bomb-pulse" has been shown to provide useful age information in e.g. forensic and environmental sciences, biology and the geosciences. The technique is also currently being used for retrospective cell dating in man, in order to provide insight into the rate of formation of new cells in the human body. Bomb-pulse dating relies on precise measurements of the declining 14C concentration in atmospheric CO 2 collected at clean-air sites. However, it is not always recognized that the calculations can be complicated in some cases by significant local variations in the specific activity of 14C in carbon in the air and foodstuff. This paper presents investigations of local 14C variations in the vicinities of nuclear installations and laboratories using 14C. Levels of 14C in workers using this radioisotope are also discussed.

  20. Formation of Bound Residues during Microbial Degradation of [14C]Anthracene in Soil

    PubMed Central

    Kästner, M.; Streibich, S.; Beyrer, M.; Richnow, H. H.; Fritsche, W.

    1999-01-01

    Carbon partitioning and residue formation during microbial degradation of polycyclic aromatic hydrocarbons (PAH) in soil and soil-compost mixtures were examined by using [14C]anthracenes labeled at different positions. In native soil 43.8% of [9-14C]anthracene was mineralized by the autochthonous microflora and 45.4% was transformed into bound residues within 176 days. Addition of compost increased the metabolism (67.2% of the anthracene was mineralized) and decreased the residue formation (20.7% of the anthracene was transformed). Thus, the higher organic carbon content after compost was added did not increase the level of residue formation. [14C]anthracene labeled at position 1,2,3,4,4a,5a was metabolized more rapidly and resulted in formation of higher levels of residues (28.5%) by the soil-compost mixture than [14C]anthracene radiolabeled at position C-9 (20.7%). Two phases of residue formation were observed in the experiments. In the first phase the original compound was sequestered in the soil, as indicated by its limited extractability. In the second phase metabolites were incorporated into humic substances after microbial degradation of the PAH (biogenic residue formation). PAH metabolites undergo oxidative coupling to phenolic compounds to form nonhydrolyzable humic substance-like macromolecules. We found indications that monomeric educts are coupled by C-C- or either bonds. Hydrolyzable ester bonds or sorption of the parent compounds plays a minor role in residue formation. Moreover, experiments performed with 14CO2 revealed that residues may arise from CO2 in the soil in amounts typical for anthracene biodegradation. The extent of residue formation depends on the metabolic capacity of the soil microflora and the characteristics of the soil. The position of the 14C label is another important factor which controls mineralization and residue formation from metabolized compounds. PMID:10223966

  1. Formation of bound residues during microbial degradation of [{sup 14}C]anthracene in soil

    SciTech Connect

    Kaestner, M.; Streibich, S.; Beyrer, M.; Fritsche, W.; Richnow, H.H.

    1999-05-01

    Carbon partitioning and residue formation during microbial degradation of polycyclic aromatic hydrocarbons (PAH) in soil and soil-compost mixtures were examined by using [{sup 14}C]anthracenes labeled at different positions. In native soil 43.8% of [9-{sup 14}C]anthracene was mineralized by the autochthonous microflora and 45.4% was transformed into bound residues within 176 days. Addition of compost increased the metabolism and decreased the residue formation (20.7% of the anthracene was transformed). Thus, the higher organic carbon content after compost was added did not increase the level of residue formation. [{sup 14}C]anthracene labeled at position 1,2,3,4,4a,5a was metabolized more rapidly and resulted in formation of higher levels of residues (28.5%) by the soil-compost mixture than [{sup 14}C]anthracene radiolabeled at position C-9 (20.7%). Two phases of residue formation were observed in the experiments. In the first phase the original compound was sequestered in the soil, as indicated by its limited extractability. In the second phase metabolites were incorporated into humic substances after microbial degradation of the PAH (biogenic residue formation). PAH metabolites undergo oxidative coupling to phenolic compounds to form nonhydrolyzable humic substance-like macromolecules. The authors found indications that monomeric educts are coupled by C-C- or either bonds. Hydrolyzable ester bonds or sorption of the parent compounds plays a minor role in residue formation. Moreover, experiments performed with {sup 14}CO{sub 2} revealed that residues may arise from CO{sub 2} in the soil in amounts typical for anthracene biodegradation. The extent of residue formation depends on the metabolic capacity of the soil microflora and the characteristics of the soil. The position of the {sup 14}C label is another important factor which controls mineralization and residue formation from metabolized compounds.

  2. No evidence for a deglacial intermediate water Δ14C anomaly in the SW Atlantic

    NASA Astrophysics Data System (ADS)

    Sortor, R. N.; Lund, D. C.

    2010-12-01

    paired with those from the South Pacific, it appears AAIW was not the vehicle that carried the 14C anomaly to lower latitudes, and therefore other hypotheses to explain the eastern tropical Pacific data are required. References Marchitto, T., Lehman, S., Ortiz, J., Fluckiger, J. & van Geen, A. Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise. Science 316, 1456-1459 (2007). Stott, L., Southon, J., Timmermann, A. & Koutavas, A. Radiocarbon age anomaly at intermediate depth in the Pacific Ocean during the last deglaciation. Paleoceanography 24, PA2223 (2009). Pol-Holz, R.D., Keigwin, L., Southon, J., Hebbeln, D. & Mohtadi, M. No signature of abyssal carbon in intermediate waters off Chile during deglaciation. Nature Geosci. 3, 192-195 (2010). Oppo, D.W. & Horowitz, M. Glacial deep water geometry: South Atlantic benthic foraminiferal Cd/Ca and delta C-13 evidence. Paleoceanography 15, 147-160 (2000). Mangini, A., Godoy, J.M., Godoy, M.L., Kowsmann, R., Santos, G.M., Ruckelshausen, M., Schroeder-Ritzrau, A. & Wacker, L. Deep Sea corals off Brazil verify a poorly ventilated Southern Pacific Ocean during H2, H1 and the Younger Dryas. Earth Planet. Sci. Lett. 293, 269-276 (2010).

  3. Airborne remote sensing of photosynthetic light use efficiency and carbon uptake along an Arctic transect in Finland

    NASA Astrophysics Data System (ADS)

    Atherton, J.; Hill, T. C.; Prieto-Blanco, A.; Wade, T.; Clement, R.; Moncrieff, J.; Williams, M. D.; Disney, M.; Nichol, C. J.

    2009-12-01

    It is critical to understand the dynamics of ecosystem carbon uptake through seasonal changes and in response to environmental drivers. In this study we utilised aircraft based remote sensing and CO2/H2O flux monitoring systems to quantify changes in photosynthesis along an Arctic transect. The University of Edinburgh's (UK) research aircraft (a Diamond HK 36 TTC-ECO Dimona) was deployed in the Arctic during summer 2008 to carry out a series of transect-flights over a birch-mire mosaic site near Kevo, Finland as part of the Arctic Biosphere Atmosphere Coupling at Multiple Scales (ABACUS) project. The aircraft is equipped with automated dual field-of-view (hyperspectral) radiometers and CO2/H2O flux and meteorological instrumentation. Vegetation indices known to be related to photosynthetic light use efficiency (LUE), including the well established Photochemical Reflectance Index (PRI) and Solar-induced Fluorescence (SiF) as well as the Normalized Difference Vegetation Index (NDVI) were calculated from the spectral data and matched in space to the CO2 flux measurements. We explored spatial relationships between NDVI and CO2 flux, LUE (CO2 flux / Absorbed Photosynthetically Active Radiation) and PRI and finally SiF (calculated using the Fraunhofer infilling method) and relevant environmental drivers. Our results highlight the unique ability of an airborne platform to quantify ecosystem physiology across a landscape and demonstrate how such measurements can bridge the spatial gap between ground and satellite-based observations.

  4. Biosynthesis of riboflavin. Enzymatic formation of the xylene moiety from [14C]ribulose 5-phosphate.

    PubMed

    Nielsen, P; Neuberger, G; Floss, H G; Bacher, A

    1984-02-14

    We have studied the enzymatic formation of the xylene ring of riboflavin using cell extracts from the flavinogenic yeast Candida guilliermondii. 5-Amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione or its 5'-phosphate could serve as substrates. In addition, a pentose phosphate or pentulose phosphate was required. Experiments with [14C]ribulose 5-phosphate gave evidence for the incorporation of the ribulose carbon atoms except C-4 into the xylene ring of the vitamin. PMID:6546684

  5. Using 14C to investigate Methane Production and DOC Reactivity in Northern Peatlands

    NASA Astrophysics Data System (ADS)

    Corbett, J.; Chanton, J.; Glaser, P.; Burdige, D.; Siegel, D.; Cooper, W.

    2008-12-01

    We found a consistent distribution pattern for radiocarbon in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and methane replicated across spatial and temporal scales in northern peatlands from Minnesota to Alaska. The 14C content of DOC is relatively modern throughout the peat column, to depths of 3 meters. In sedge-dominated peatlands, the 14C content of the products of respiration, CH4 and DIC are essentially the same, and are similar to that of DOC. In Sphagnum-woody plant dominated peatlands with few sedges, however, the respiration products are similar but intermediate between the 14C content of the solid-phase peat and the DOC. Preliminary data indicates qualitative differences in the pore-water DOC depending on the extent of sedge cover, consistent with the hypothesis that the DOC in sedge-dominated peatlands is more reactive than DOC in peatlands where Sphagnum or other vascular plants dominate. These data are supported by molecular-level analysis of DOC by ultrahigh resolution mass spectrometry which suggests dramatic changes with depth in the composition of DOC in the sedge-dominated peatland porewaters but not in porewaters where Sphagnum dominates. The higher reactivity of DOC from sedge- dominated peatlands may be a function of either different source materials or environmental factors that are related to the abundance of sedges in peatlands. To further investigate the reactivity of peat DOC in anaerobic methane producing environments, we are conducting size fractionation experiments for both the bog and fen samples. We will analyze resulting size fractions of DOC for radiocarbon. Previous research has shown that microorganisms tend to prefer HMW DOC to LMW DOC. Due to this, we believe that LMW DOC from both the bogs and the fens will result in radiocarbon values that are more depleted in 14C relative to HMW DOC. We hypothesize that the HMW DOC from the bogs will show depletion in 14C relative to HMW DOC in the fens. We further

  6. Characterization of 14C in Swedish light water reactors.

    PubMed

    Magnusson, Asa; Aronsson, Per-Olof; Lundgren, Klas; Stenström, Kristina

    2008-08-01

    This paper presents the results of a 4-y investigation of 14C in different waste streams of both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Due to the potential impact of 14C on human health, minimizing waste and releases from the nuclear power industry is of considerable interest. The experimental data and conclusions may be implemented to select appropriate waste management strategies and practices at reactor units and disposal facilities. Organic and inorganic 14C in spent ion exchange resins, process water systems, ejector off-gas and replaced steam generator tubes were analyzed using a recently developed extraction method. Separate analysis of the chemical species is of importance in order to model and predict the fate of 14C within process systems as well as in dose calculations for disposal facilities. By combining the results of this investigation with newly calculated production rates, mass balance assessments were made of the 14C originating from production in the coolant. Of the 14C formed in the coolant of BWRs, 0.6-0.8% was found to be accumulated in the ion exchange resins (core-specific production rate in the coolant of a 2,500 MWth BWR calculated to be 580 GBq GW(e)(-1) y(-1)). The corresponding value for PWRs was 6-10% (production rate in a 2,775 MWth PWR calculated to be 350 GBq GW(e)(-1) y(-1)). The 14C released with liquid discharges was found to be insignificant, constituting less than 0.5% of the production in the coolant. The stack releases, routinely measured at the power plants, were found to correspond to 60-155% of the calculated coolant production, with large variations between the BWR units.

  7. Characterization of 14C in Swedish light water reactors.

    PubMed

    Magnusson, Asa; Aronsson, Per-Olof; Lundgren, Klas; Stenström, Kristina

    2008-08-01

    This paper presents the results of a 4-y investigation of 14C in different waste streams of both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Due to the potential impact of 14C on human health, minimizing waste and releases from the nuclear power industry is of considerable interest. The experimental data and conclusions may be implemented to select appropriate waste management strategies and practices at reactor units and disposal facilities. Organic and inorganic 14C in spent ion exchange resins, process water systems, ejector off-gas and replaced steam generator tubes were analyzed using a recently developed extraction method. Separate analysis of the chemical species is of importance in order to model and predict the fate of 14C within process systems as well as in dose calculations for disposal facilities. By combining the results of this investigation with newly calculated production rates, mass balance assessments were made of the 14C originating from production in the coolant. Of the 14C formed in the coolant of BWRs, 0.6-0.8% was found to be accumulated in the ion exchange resins (core-specific production rate in the coolant of a 2,500 MWth BWR calculated to be 580 GBq GW(e)(-1) y(-1)). The corresponding value for PWRs was 6-10% (production rate in a 2,775 MWth PWR calculated to be 350 GBq GW(e)(-1) y(-1)). The 14C released with liquid discharges was found to be insignificant, constituting less than 0.5% of the production in the coolant. The stack releases, routinely measured at the power plants, were found to correspond to 60-155% of the calculated coolant production, with large variations between the BWR units. PMID:18617793

  8. Test of AMS 14C dating of pollen concentrates using tephrochronology

    NASA Astrophysics Data System (ADS)

    Newnham, Rewi M.; Vandergoes, Marcus J.; Garnett, Mark H.; Lowe, David J.; Prior, Christine; Almond, Peter C.

    2007-01-01

    Previous attempts to radiocarbon date sediments >10 kyr from the high rainfall region of Westland, New Zealand, a critical location for investigation of interhemispheric patterns of climate change, have been problematic. This study, building on recent work by Vandergoes and Prior ([2003]), shows that AMS 14C dating of pollen concentrates has potential to provide more reliable ages than other sediment constituents, including plant macrofossils. The method was applied to sediments from three sites containing the 22.6k 14C yr Kawakawa Tephra, which provided an independent test of the 14C ages. Although some minor laboratory contamination was detected in tests on background standards, the modelled relationship between sample mass and measured 14C content permitted an appropriate correction to be determined. Improved pollen concentrations derived by density separation between 1.4 and 1.2 specific gravity and sieving in the range 10-50 m provided either older ages than other fractions of the same sample or, where in situ contamination was not evident, equivalent ages. Differences in degree of in situ contamination between depositional environments indicated that, in Westland, lake sites may be less susceptible to contamination by younger carbon than peat sites, where this process may be facilitated by root penetration into underlying sediments. Copyright

  9. Enzymatic aryl-O-methyl-/sup 14/C labeling of model lignin monomers

    SciTech Connect

    Frazer, A.C.; Bossert, I.; Young, L.Y.

    1986-01-01

    Aryl-O-methyl ethers are abundant in aerobic and anaerobic environments. In particular, lignin is composed of units of this type. Lignin monomers specifically radiolabeled in methoxy, side chain, and ring carbons have been synthesized by chemical procedures and are important in studies of lignin synthesis and degradation, humus formation, and microbial O-demethylation. In this paper attention is drawn to an enzymatic procedure for preparing O-methyl-/sup 14/C-labeled aromatic lignin monomers which has not previously been exploited in microbial ecology and physiology studies and which has several advantages compared with chemical synthesis procedures. O-(methyl-/sup 14/C)vanillic and O-(methyl-/sup 14/C)ferulic acids were prepared with S-(methyl-/sup 14/C)adenosyl-L-methionine as the methyl donor, using commercially obtained porcine liver catechol-O-methyltransferase (EC 2.1.1.6). The specific activity of the methylated products was the same as that of the methyl donor, a maximum of about 58 ..mu..Ci/..mu..mol, and the yields were 42% (vanillate) and 35% (ferulate). Thus lignin monomers are readily prepared as O-methylated products of the catechol-O-methyltransferase reaction and, with this enzyme method of preparation, would be more widely available than labeled compounds which require chemical synthesis.

  10. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and

  11. Investigating Seasonal Emissions of Carbon Dioxide and Methane in Northern California Using Airborne Measurements and Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Xi, X.; Yates, E. L.; Iraci, L. T.; Potter, C. S.; Tanaka, T.; Tadic, J.; Loewenstein, M.; Jeong, S.; Fischer, M. L.; Gurney, K. R.

    2014-12-01

    Greenhouse gas (GHG) concentrations have increased over the past decades and are linked to increasing global surface temperatures and climate change. To counteract the trend of increasing atmospheric concentrations of GHGs, the state of California has passed the California Global Warming Solutions Act of 2006 (AB-32). This requires that by 2020, GHG (e.g., carbon dioxide (CO2) and methane (CH4)) emissions will be reduced to 1990 levels. Currently, California emits ~500 Tg yr-1 of CO2eq GHGs, with CO2 and CH4 contributing ~90% of the total. To quantify the success of AB-32, GHG emission rates must be more thoroughly quantified in California. Presently, uncertainties remain in the existing "bottom-up" emission inventories in California due to many contributing factors not being fully understood. To help alleviate these uncertainties, we have analyzed airborne GHG measurements and applied inverse modeling techniques to quantify GHG spatiotemporal concentration patterns and "top-down" emission rates. To assess the magnitude/spatial variation of GHGs, and to identify local emission "hot spots", airborne measurements of CO2 and CH4 were made by the Alpha Jet Atmospheric eXperiment (AJAX) in the boundary layer of the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV) in Jan.-Feb. 2013 and July-Aug. 2014. To quantify/constrain GHG emissions we applied the WRF-STILT model and inverse modeling techniques, in conjunction with AJAX data, to estimate "top-down" SFBA/SJV GHG emission rates. Model simulations utilized source apportioned a priori CO2 and CH4 emission inventories from the Vulcan Project (including NASA Carnegie Ames Stanford Approach (NASA-CASA) model CO2 biosphere fluxes) and the California Greenhouse Gas Emissions Measurement (CALGEM) Project, respectively. Results from the evaluation of a priori and posterior GHG concentrations/emissions in northern California using AJAX data, along with the analysis of CO2 and CH4 concentration spatiotemporal

  12. Airborne radioactivity survey of parts of Baggs SW and Baggs SE quadrangles, Carbon and Sweetwater counties, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 151 square miles of Baggs SW and Baggs SE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater counties by the U.S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a C-47 aircraft and consisted of parallel east-west flight lines spaced at quarter mile intervals, flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyrostabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. The width of the zone on the ground form which the anomalous radiation is measured at the nominal 500 foot flight altitude varied with the areal extent and the intensity of radioactivity of the source. For strong sources of radioactivity the width of the zone may be as much as 1,400 feet. Thus, quarter mile spacing of the flight lines would be adequate to detect anomalies from strong sources of radioactivity; however, small areas of considerable radioactivity midway between flight lines may not be noted. The approximate locations of twelve radioactivity anomalies are shown on the accompanying map. The plotted position of the anomalies may be in error by as much as a quarter mile owing to the errors in available base maps or to the existence of areas on the base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. The radioactivity

  13. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and

  14. Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients

    NASA Astrophysics Data System (ADS)

    van der Voort, Tessa Sophia; Hagedorn, Frank; McIntyre, Cameron; Zell, Claudia; Walthert, Lorenz; Schleppi, Patrick; Feng, Xiaojuan; Eglinton, Timothy Ian

    2016-06-01

    Soil organic matter (SOM) forms the largest terrestrial pool of carbon outside of sedimentary rocks. Radiocarbon is a powerful tool for assessing soil organic matter dynamics. However, due to the nature of the measurement, extensive 14C studies of soil systems remain relatively rare. In particular, information on the extent of spatial and temporal variability in 14C contents of soils is limited, yet this information is crucial for establishing the range of baseline properties and for detecting potential modifications to the SOM pool. This study describes a comprehensive approach to explore heterogeneity in bulk SOM 14C in Swiss forest soils that encompass diverse landscapes and climates. We examine spatial variability in soil organic carbon (SOC) 14C, SOC content and C : N ratios over both regional climatic and geologic gradients, on the watershed- and plot-scale and within soil profiles. Results reveal (1) a relatively uniform radiocarbon signal across climatic and geologic gradients in Swiss forest topsoils (0-5 cm, Δ14C = 130 ± 28.6, n = 12 sites), (2) similar radiocarbon trends with soil depth despite dissimilar environmental conditions, and (3) micro-topography dependent, plot-scale variability that is similar in magnitude to regional-scale variability (e.g., Gleysol, 0-5 cm, Δ14C 126 ± 35.2, n = 8 adjacent plots of 10 × 10 m). Statistical analyses have additionally shown that Δ14C signature in the topsoil is not significantly correlated to climatic parameters (precipitation, elevation, primary production) except mean annual temperature at 0-5 cm. These observations have important consequences for SOM carbon stability modelling assumptions, as well as for the understanding of controls on past and current soil carbon dynamics.

  15. Measuring the 14C content in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Enqvist, T.; Barabanov, I. R.; Bezrukov, L. B.; Gangapshev, A. M.; Gavrilyuk, Y. M.; Grishina, V. Yu; Gurentsov, V. I.; Hissa, J.; Joutsenvaara, J.; Kazalov, V. V.; Krokhaleva, S.; Kutuniva, J.; Kuusiniemi, P.; Kuzminov, V. V.; Kurlovich, A. S.; Loo, K.; Lubsandorzhiev, B. K.; Lubsandorzhiev, S.; Morgalyuk, V. P.; Novikova, G. Y.; Pshukov, A. M.; Sinev, V. V.; Słupecki, M.; Trzaska, W. H.; Umerov, Sh I.; Veresnikova, A. V.; Virkajärvi, A.; Yanovich, Y. A.; Zavarzina, V. P.

    2016-05-01

    We are going to perform a series of measurements where the 14C/12 C ratio will be measured from several liquid scintillator samples with a dedicated setup. The setup is designed with the aim of measuring ratios smaller than 10-18. Measurements take place in two underground laboratories: in the Baksan Neutrino Observatory, Russia and in the Pyhäsalmi mine, Finland. In Baksan the measurements started in 2015 and in Pyhäsalmi they start in the beginning of 2015. In order to fully understand the operation of the setup and its background contributions a development of simulation packages has also been started. Low-energy neutrino detection with a liquid scintillator requires that the intrinsic 14C content in the liquid is extremely low. In the Borexino CTF detector at Gran Sasso, Italy the 14C/12C ratio of 2 × 10-18 has been achieved being the lowest 14C concentration ever measured. In principle, the older the oil or gas source that the liquid scintillator is derived of and the deeper it situates, the smaller the 14C/12C ratio is supposed to be. This, however, is not generally the case, and the ratio is probably determined by the U and Th content of the local environment.

  16. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    PubMed

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS.

  17. Rapid, high-resolution 14C chronology of ooids

    NASA Astrophysics Data System (ADS)

    Beaupré, Steven R.; Roberts, Mark L.; Burton, Joshua R.; Summons, Roger E.

    2015-06-01

    Ooids are small, spherical to ellipsoidal grains composed of concentric layers of CaCO3 that could potentially serve as biogeochemical records of the environments in which they grew. Such records, however, must be placed in the proper temporal context. Therefore, we developed a novel acidification system and employed an accelerator mass spectrometer (AMS) with a gas accepting ion source to obtain radiocarbon (14C) chronologies extending radially through ooids within one 8-h workday. The method was applied to ooids from Highborne Cay, Bahamas and Shark Bay, Australia, yielding reproducible 14C chronologies, as well as constraints on the rates and durations of ooid growth and independent estimates of local 14C reservoir ages.

  18. Does the 14C method estimate net photosynthesis? II. Implications from cyclostat studies of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Pei, Shaofeng; Laws, Edward A.

    2014-09-01

    Two species of marine phytoplankton, Isochrysis galbana and Chlorella kessleri, were grown in a continuous culture system on a 12-h:12-h light:dark cycle of illumination under nitrate-limited growth conditions. At growth rates of ~1 d-1, production rates estimated from 14C uptake were not significantly different from production rates estimated from changes in particulate organic carbon (POC) and total organic carbon (TOC). At growth rates of ~0.35 d-1, however, production rates based on uptake of 14C significantly (p<0.05) overestimated production rates based on changes in POC and TOC in all cases for C. kessleri and after 24 h for I. galbana. The ratio of production based on 14C uptake to production based on changes in POC and TOC concentrations was in all cases higher after 24 h than after 12 h. The extent of overestimation after a 24-h incubation at ~0.35 d-1 was about 23 and 40% in the cases of I. galbana and C. kessleri, respectively. Dark respiration rates estimated from changes in 14C activity during the dark period were lower than the rates estimated from changes of POC and TOC concentrations during the 12 h of darkness because only about 73% of the carbon respired during the dark period had been fixed during the previous 12-h photoperiod. The fact that the 14C method tends to overestimate net carbon assimilation by a greater percentage at low growth rates than at high growth rates probably reflects the greater efficiency of intracellular recycling of respired CO2 at high growth rates. The fact that the extent of overestimation is greater when cells are grown on a light:dark cycle probably reflects the fact that not all carbon respired in the dark was fixed during the previous photoperiod and that intracellular recycling of respired CO2 during the photoperiod is inefficient during some phases of the synchronized growth that tends to be entrained by light:dark cycles.

  19. Reconciling Change in Oi-Horizon 14C With Mass Loss for an Oak Forest

    SciTech Connect

    Hanson, P J; Swanston, C W; Garten, Jr., C T; Todd, D E; Trumbore, S E

    2005-06-27

    First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the {sup 14}C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the {sup 14}C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies ({approx}35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the {sup 14}C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the {sup 14}C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures are subject to C immobilization and recycling in the microbial pool, and do not necessarily reflect results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent {sup 14}C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.

  20. Characterization of 14C in Neutron-Irradiated Graphite

    NASA Astrophysics Data System (ADS)

    LaBrier, Daniel Patrick

    A long-term radiological concern regarding irradiated graphite waste is the presence of the radionuclide 14C. Recent studies suggest that a significant portion of 14C contamination present in reactor-irradiated graphite is concentrated on the surface and within near-surface layers. Methods for treating irradiated graphite waste (e.g. pyrolysis, oxidation) in order to remove 14C-bearing species from the bulk graphite are being investigated to lend guidance in optimizing long-term disposal strategies. Characterization studies were performed in order to determine the chemical nature of 14C on irradiated graphite surfaces. Samples of the nuclear-grade graphite NBG-25 were irradiated in a neutron flux of 10 14 n/cm2-s for 360 days at the Advanced Test Reactor (at the Idaho National Laboratory). Surface-sensitive analysis techniques (XPS, ToF-SIMS, SEM/EDS and Raman) were employed to determine the type, location and quantity of specific chemical species and bonds that were present on the surfaces of irradiated graphite samples. Several 14C precursor species were identified on the surfaces of irradiated NBG-25; the quantities of these species decrease at sub-surface depths, which, is consistent with the observation of high concentrations of 14C on the surfaces of graphite reactor components. The elevated presence of surface oxide complexes on irradiated NBG-25 surfaces was attributed directly to neutron irradiation. Pathways for the release of 14C were identified for irradiated NBG-25: carboxyls and lactones (14CO 2), and carbonyls, ethers and quinones (14CO). Increased amounts of C-O and C=O bonding were observed on irradiated NBG-25 surfaces (when compared to unirradiated samples) in the form of interlattice (e.g. ether) and dangling (e.g. carboxyl or quinone) bonds; the quantities of these bond types also decrease at sub-surface depths. The results of this study are consistent with thermal treatment studies that indicate that the primary candidates for the release of

  1. A simplified In Situ cosmogenic 14C extraction system

    USGS Publications Warehouse

    Pigati, J.S.; Lifton, N.A.; Timothy, Jull A.J.; Quade, Jay

    2010-01-01

    We describe the design, construction, and testing of a new, simplified in situ radiocarbon extraction system at the University of Arizona. Blank levels for the new system are low ((234 ?? 11) ?? 103 atoms (1 ??; n = 7)) and stable. The precision of a given measurement depends on the concentration of 14C, but is typically <5% for concentrations of 100 ?? 103 atoms g-1 or more. The new system is relatively small and easy to construct, costs significantly less than the original in situ 14C extraction system at Arizona, and lends itself to future automation. ?? 2010 by the Arizona Board of Regents on behalf of the University of Arizona.

  2. Search for exotic cluster configurations in 14C nucleus

    NASA Astrophysics Data System (ADS)

    Korotkova, L. Yu; Chernyshev, B. A.; Gurov, Yu B.; Karpuhin, V. S.; Lapushkin, S. V.; Pritula, R. V.; Schurenkova, T. D.

    2016-02-01

    The analysis of 2-dimentional Dalitz’ diagram, measured in 14C(π-, pd)X reaction, allowed to distinguish the pion absorption by p intranuclear cluster and to obtain an indication on the existence of 3p + 11Li configuration in 14C nucleus. Highly excited states of 12,13Be isotopes were found with the energy of Ex ≈ 30 MeV for the first time. It was shown that these states decay as follows 12Be*→p + 11Li and 13Be*→d + 11Li.

  3. Accumulation of Sellafield-derived radiocarbon ((14)C) in Irish Sea and West of Scotland intertidal shells and sediments.

    PubMed

    Tierney, Kieran M; Muir, Graham K P; Cook, Gordon T; MacKinnon, Gillian; Howe, John A; Heymans, Johanna J; Xu, Sheng

    2016-01-01

    The nuclear energy industry produces radioactive waste at various stages of the fuel cycle. In the United Kingdom, spent fuel is reprocessed at the Sellafield facility in Cumbria on the North West coast of England. Waste generated at the site comprises a wide range of radionuclides including radiocarbon ((14)C) which is disposed of in various forms including highly soluble inorganic carbon within the low level liquid radioactive effluent, via pipelines into the Irish Sea. This (14)C is rapidly incorporated into the dissolved inorganic carbon (DIC) reservoir and marine calcifying organisms, e.g. molluscs, readily utilise DIC for shell formation. This study investigated a number of sites located in Irish Sea and West of Scotland intertidal zones. Results indicate (14)C enrichment above ambient background levels in shell material at least as far as Port Appin, 265 km north of Sellafield. Of the commonly found species (blue mussel (Mytilus edulis), common cockle (Cerastoderma edule) and common periwinkle (Littorina littorea)), mussels were found to be the most highly enriched in (14)C due to the surface environment they inhabit and their feeding behaviour. Whole mussel shell activities appear to have been decreasing in response to reduced discharge activities since the early 2000s but in contrast, there is evidence of continuing enrichment of the carbonate sediment component due to in-situ shell erosion, as well as indications of particle transport of fine (14)C-enriched material close to Sellafield.

  4. Accumulation of Sellafield-derived radiocarbon ((14)C) in Irish Sea and West of Scotland intertidal shells and sediments.

    PubMed

    Tierney, Kieran M; Muir, Graham K P; Cook, Gordon T; MacKinnon, Gillian; Howe, John A; Heymans, Johanna J; Xu, Sheng

    2016-01-01

    The nuclear energy industry produces radioactive waste at various stages of the fuel cycle. In the United Kingdom, spent fuel is reprocessed at the Sellafield facility in Cumbria on the North West coast of England. Waste generated at the site comprises a wide range of radionuclides including radiocarbon ((14)C) which is disposed of in various forms including highly soluble inorganic carbon within the low level liquid radioactive effluent, via pipelines into the Irish Sea. This (14)C is rapidly incorporated into the dissolved inorganic carbon (DIC) reservoir and marine calcifying organisms, e.g. molluscs, readily utilise DIC for shell formation. This study investigated a number of sites located in Irish Sea and West of Scotland intertidal zones. Results indicate (14)C enrichment above ambient background levels in shell material at least as far as Port Appin, 265 km north of Sellafield. Of the commonly found species (blue mussel (Mytilus edulis), common cockle (Cerastoderma edule) and common periwinkle (Littorina littorea)), mussels were found to be the most highly enriched in (14)C due to the surface environment they inhabit and their feeding behaviour. Whole mussel shell activities appear to have been decreasing in response to reduced discharge activities since the early 2000s but in contrast, there is evidence of continuing enrichment of the carbonate sediment component due to in-situ shell erosion, as well as indications of particle transport of fine (14)C-enriched material close to Sellafield. PMID:26555367

  5. An approach toward automatic graphitization of CO2 samples for AMS 14C measurements

    NASA Astrophysics Data System (ADS)

    Nagasawa, Shigenobu; Kitagawa, Hiroyuki; Nakanishi, Toshimichi; Tanabe, Susumu; Hong, Wan

    2013-01-01

    To improve the throughput of sample preparation for AMS 14C measurements, we made improvements to a manually operated system for CO2 reduction at the Graduate School of Environmental Studies, Nagoya University. Most of the processes of the CO2 reduction procedure were automated, and a CO2 sample containing 0.3-1 mg carbon was credibly reduced to graphite within a few hours by hydrogen gas with catalytic iron powder in a 7.4 ml reactor consisting of a quartz reduction tube, a pressure transducer gauge and a cold finger trap equipped with a temperature-controllable trap device for trapping CO2 and H2O. The improved system has the potential to easily carry out graphitization of more than 100 CO2 samples per week. The 14C values of graphite produced from 14C-free CO2 (>0.3 mg C) were 0.0028 ± 0.0010 fraction modern carbon (FMC) on average (n = 8, 1std), which are almost the same as the black level of 1-MV HVEE Tandetron installed at the Korea Institute of Geoscience and Mineral Resources (KIGAM).

  6. Role of biotransformation, sorption and mineralization of (14)C-labelled sulfamethoxazole under different redox conditions.

    PubMed

    Alvarino, T; Nastold, P; Suarez, S; Omil, F; Corvini, P F X; Bouju, H

    2016-01-15

    (14)C-sulfamethoxazole biotransformation, sorption and mineralization was studied with heterotrophic and autotrophic biomass under aerobic and anoxic conditions, as well as with anaerobic biomass. The (14)C-radiolabelled residues distribution in the solid, liquid and gas phases was closely monitored along a total incubation time of 190 h. Biotransformation was the main removal mechanism, mineralization and sorption remaining below 5% in all the cases, although the presence of a carbon source exerted a positive effect on the mineralization rate by the aerobic heterotrophic bacteria. In fact, an influence of the type of primary substrate and the redox potential was observed in all cases on the biotransformation and mineralization rates, since an enhancement of the removal rate was observed when an external carbon source was used as a primary substrate under aerobic conditions, while a negligible effect was observed under nitrifying conditions. In the liquid phases collected from all assays, up to three additional peaks corresponding to (14)C-radiolabelled residues were detected. The highest concentration was observed under anaerobic conditions, where two radioactive metabolites were detected representing each around 15% of the total applied radioactivity after 180 h incubation. One of the metabolites detected under anoxic and anaerobic conditions, is probably resulting from ring cleavage of the isoxazole ring. PMID:26546766

  7. Airborne black carbon concentrations over an urban region in western India-temporal variability, effects of meteorology, and source regions.

    PubMed

    Bapna, Mukund; Sunder Raman, Ramya; Ramachandran, S; Rajesh, T A

    2013-03-01

    This study characterizes over 5 years of high time resolution (5 min), airborne black carbon (BC) concentrations (July 2003 to December 2008) measured over Ahmedabad, an urban region in western India. The data were used to obtain different time averages of BC concentrations, and these averages were then used to assess the diurnal, seasonal, and annual variability of BC over the study region. Assessment of diurnal variations revealed a strong association between BC concentrations and vehicular traffic. Peaks in BC concentration were co-incident with the morning (0730 to 0830, LST) and late evening (1930 to 2030, LST) rush hour traffic. Additionally, diurnal variability in BC concentrations during major festivals (Diwali and Dushera during the months of October/November) revealed an increase in BC concentrations due to fireworks displays. Maximum half hourly BC concentrations during the festival days were as high as 79.8 μg m(-3). However, the high concentrations rapidly decayed suggesting that local meteorology during the festive season was favorable for aerosol dispersion. A multiple linear regression (MLR) model with BC as the dependent variable and meteorological parameters as independent variables was fitted. The variability in temperature, humidity, wind speed, and wind direction accounted for about 49% of the variability in measured BC concentrations. Conditional probability function (CPF) analysis was used to identify the geographical location of local source regions contributing to the effective BC measured (at 880 nm) at the receptor site. The east north-east (ENE) direction to the receptor was identified as a major source region. National highway (NH8) and two coal-fired thermal power stations (at Gandhinagar and Sabarmati) were located in the identified direction, suggesting that local traffic and power plant emissions were likely contributors to the measured BC.

  8. ( sup 14 C)-Sucrose uptake by guard cell protoplasts of pisum sativum, argenteum mutant

    SciTech Connect

    Rohrig, K.; Raschke, K. )

    1991-05-01

    Guard cells rely on import for their supply with reduced carbon. The authors tested by silicone oil centrifugation the ability of guard cell protoplasts to accumulated ({sup 14}C)-sucrose. Uptake rates were corrected after measurement of {sup 14}C-sorbitol and {sup 3}H{sub 2}O spaces. Sucrose uptake followed biphasic kinetics, with a high-affinity component below 1 mM external sucrose (apparent K{sub m} 0.8 mM at 25C) and a low-affinity nonsaturable component above. Uptake depended on pH (optimum at pH 5.0). Variations in the concentrations of external KCl, CCCP, and valinomycin indicated that about one-half of the sucrose uptake rate could be related to an electrochemical gradient across the plasmalemma. Total uptake rates measured at 5 mM external sucrose seem to be sufficient to replenish emptied plastids with starch within a few hours.

  9. Reassessment of sup 14 CO sub 2 compartmentation and of ( sup 14 C)formate oxidation in rat liver

    SciTech Connect

    Marsolais, C.; Lafreniere, F.; David, F.; Dodgson, S.J.; Brunengraber, H. )

    1989-11-25

    Our previous report had concluded that a fraction of ({sup 14}C)formate oxidation in liver occurs in the mitochondrion. This conclusion was based on the labeling patterns of urea and acetoacetate labeled via {sup 14}CO{sub 2} generated from ({sup 14}C)formate and other ({sup 14}C)substrates. We reassessed our interpretation in experiments conducted in (i) perifused mitochondria and (ii) isolated livers perfused with buffer containing ({sup 14}C)formate, ({sup 14}C)gluconolactone, {sup 14}CO{sub 2}, or NaH{sup 13}CO{sub 3}, in the absence and presence of acetazolamide, an inhibitor of carbonic anhydrase. Our data show that the cytosolic pools of bicarbonate and CO{sub 2} are not in isotopic equilibrium when {sup 14}CO{sub 2} is generated in the cytosol or is supplied as NaH{sup 14}CO3. We retract our earlier suggestion of a mitochondrial site of ({sup 14}C)formate oxidation.

  10. Tritium and 14C background levels in pristine aquatic systems and their potential sources of variability.

    PubMed

    Eyrolle-Boyer, Frédérique; Claval, David; Cossonnet, Catherine; Zebracki, Mathilde; Gairoard, Stéphanie; Radakovitch, Olivier; Calmon, Philippe; Leclerc, Elisabeth

    2015-01-01

    Tritium and (14)C are currently the two main radionuclides discharged by nuclear industry. Tritium integrates into and closely follows the water cycle and, as shown recently the carbon cycle, as does (14)C (Eyrolle-Boyer et al., 2014a, b). As a result, these two elements persist in both terrestrial and aquatic environments according to the recycling rates of organic matter. Although on average the organically bound tritium (OBT) activity of sediments in pristine rivers does not significantly differ today (2007-2012) from the mean tritiated water (HTO) content on record for rainwater (2.4 ± 0.6 Bq/L and 1.6 ± 0.4 Bq/L, respectively), regional differences are expected depending on the biomass inventories affected by atmospheric global fallout from nuclear testing and the recycling rate of organic matter within watersheds. The results obtained between 2007 and 2012 for (14)C show that the levels varied between 94.5 ± 1.5 and 234 ± 2.7 Bq/kg of C for the sediments in French rivers and across a slightly higher range of 199 ± 1.3 to 238 ± 3.1 Bq/kg of C for fish. This variation is most probably due to preferential uptake of some organic carbon compounds by fish restraining (14)C dilution with refractory organic carbon and/or with old carbonates both depleted in (14)C. Overall, most of these ranges of values are below the mean baseline value for the terrestrial environment (232.0 ± 1.8 Bq/kg of C in 2012, Roussel-Debet, 2014a) in relation to dilution by the carbonates and/or fossil organic carbon present in aquatic systems. This emphasises yet again the value of establishing regional baseline value ranges for these two radionuclides in order to account for palaeoclimatic and lithological variations. Besides, our results obtained from sedimentary archive investigation have confirmed the delayed contamination of aquatic sediments by tritium from the past nuclear tests atmospheric fallout, as recently demonstrated from data chronicles (Eyrolle

  11. Applications of AMS {sup 14}C on Climate and Archaeology

    SciTech Connect

    Gomes, P. R. S.

    2007-10-26

    We describe the Accelerator Mass Spectrometry (AMS) technique and two distinct applications of its use with {sup 14}C to study environmental problems in Brazil, such as forest fires and climate changes in the Amazon region and archaeological studies on the early settlements in the Southeast Brazilian coast.

  12. Excretion of radioactivity following the intraperitoneal administration of /sup 14/C-DDT, /sup 14/C-DDD, /sup 14/C-DDE and /sup 14/C-DDMU to the rat and Japanese Quail

    SciTech Connect

    Fawcett, S.C.; Bunyan, P.J.; Huson, L.W.; King, L.J.; Stanley, P.I.

    1981-09-01

    A study in progress to examine the metabolic fate of DDT in birds and mammals is discussed. The first phase of the study, which is reported in this article, has been to establish the rate of excretion of ratioactivity following the intraperitoneal administrations of /sup 14/C-DDT, /sup 14/C-DDE, /sup 14/C-DDD, and /sup 14/C-DDMU to male rats and male Japanese quail. The mean values from the three animals in each experimental group for the amount of radioactivity excreted daily are given, and it was found that the rats excreted the radioactivity administered as DDT, DDD, and DDE substantially faster than did the quail. DDMU was excreted relatively rapidly and at similar rates. This finding suggests that apparent differences in the rates of excretion of DDT by birds and mammals probably arise from differences in the conversion of DDT to DDD or DDE or in the degradation of these metabolites to DDMU. The Japanese quail differ from the rats in excreting substantial amounts of unchanged DDT, DDE, and DDD, which probably reflects the inability of the Japanese quail to readily metabolise these compounds.

  13. Extracting in situ cosmogenic 14C from olivine: significance for the CRONUS-Earth project

    NASA Astrophysics Data System (ADS)

    Pigati, J. S.; Lifton, N. A.; Quade, J.; Jull, A. T.

    2005-12-01

    One of the main goals of the Cosmic-Ray-prOduced NUclide Systematics on Earth (CRONUS-Earth) project is to compare production rates of in situ cosmogenic nuclides (CNs) at several well-dated locations in various rock types. Quartz is the most commonly used target mineral for several CNs (e.g., 10Be, 26Al, 21Ne, 14C), but is generally absent in mafic volcanic terrains, where flows of different ages can constrain temporal variations in CN production at a given location. Because of its short half-life (5.73 ka), in situ cosmogenic 14C (in situ 14C) can be particularly useful for elucidating temporal variations in CN production over much shorter time scales than other CNs. While CNs such as 36Cl and 21Ne can be measured in both mafic and felsic rocks, clearly it would be advantageous to measure in situ 14C in mafic rocks as well. As such, we have worked to develop reliable protocols to extract in situ 14C from olivine. We conducted numerous stepped combustion experiments testing the efficacy of various chemical pretreatments. We were able to extract a stable and reproducible in situ 14C component from olivine using a LiBO2 flux, following pretreatment with dilute HNO3. However, measured concentrations in olivine (normalized to SiO2 composition) from two known-age basalt flows, the Tabernacle Hill flow (17.3+/-0.4 ka in age) in central Utah and the McCarty's flow (3.0+/-0.2 ka in age) in western New Mexico, were 3 to 5 times lower than predicted in situ 14C concentrations based on measurements in quartz. This discrepancy appears to arise from (1) a synthetic spinel-like mineral formed during our extraction process by the chemical interaction of the Al2O3 sample boat and olivine dissolved within the LiBO2 flux, and (2) undissolved pyroxene phenocrysts (difficult to separate in quantity from olivines). Although we do not fully understand how the formation of the synthetic mineral may affect carbon atoms liberated from olivine, the concentration of in situ 14C atoms that

  14. Reconstructing Ocean Circulation using Coral (triangle)14C Time Series

    SciTech Connect

    Kashgarian, M; Guilderson, T P

    2001-02-23

    We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents (e.g. satellites and moored arrays) has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as ours, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment one time oceanographic surveys. {Delta}{sup 14}C timeseries such as these, not only provide fundamental information about the shallow circulation of the Pacific, but can also be directly used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate. The measurement of {Delta}{sup 14}C in biological archives such as tree rings and coral growth bands is a direct record of

  15. Comparison of five soil organic matter decomposition models using data from a 14C and 15N labeling field experiment

    NASA Astrophysics Data System (ADS)

    Pansu, Marc; Bottner, Pierre; Sarmiento, Lina; Metselaar, Klaas

    2004-12-01

    Five alternatives of the previously published MOMOS model (MOMOS-2 to -6) are tested to predict the dynamics of carbon (C) and nitrogen (N) in soil during the decomposition of plant necromass. 14C and 15N labeled wheat straw was incubated over 2 years in fallow soils of the high Andean Paramo of Venezuela. The following data were collected: soil moisture, total 14C and 15N and microbial biomass (MB)-14C and -15N, daily rainfall, air temperature and total radiation. Daily soil moisture was predicted using the SAHEL model. MOMOS-2 to -4 (type 1 models) use kinetic constants and flow partitioning parameters. MOMOS-2 can be simplified to MOMOS-3 and further to MOMOS-4, with no significant changes in the prediction accuracy and robustness for total-14C and -15N as well as for MB-14C and -15N. MOMOS-5 (type 2 models) uses only kinetic constants: three MB-inputs (from labile and stable plant material and from humified compounds) and two MB-outputs (mortality and respiration constants). MOMOS-5 did not significantly change the total-14C and -15N predictions but markedly improved the predictive quality and robustness of MB-14C and -15N predictions (with a dynamic different from the predictions by other models). Thus MOMOS-5 is proposed as an accurate and ecologically consistent description of decomposition processes. MOMOS-6 extends MOMOS-5 by including a stable humus compartment for long-term simulations of soil native C and N. The improvement of the predictions is not significant for this 2-year experiment, but MOMOS-6 enables prediction of a sequestration in the stable humus compartment of 2% of the initially added 14C and 5.4% of the added 15N.

  16. Atmospheric profiles of Black Carbon at remote locations using light-weight airborne Aethalometers

    NASA Astrophysics Data System (ADS)

    Hansen, A. D.; Močnik, G.; Drinovec, L.; Lenarcic, M.

    2012-12-01

    While measurements of atmospheric aerosols are routinely performed at ground-level around the world, there is far less knowledge of their concentrations at altitude: yet this data is a crucial requirement for our understanding of the dispersion of pollutants of anthropogenic origin, with their associated effects on radiative forcing, cloud condensation, and other adverse phenomena. Black Carbon (BC) is a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. It has no non-combustion sources and is not transformed by atmospheric processes. Recent technical advances have developed light-weight miniaturized instruments which can be operated on light aircraft or carried aboard commercial passenger flights. From January to April 2012, a single-seat ultra-light aircraft flew around the world on a scientific, photographic and environmental-awareness mission. The flight track crossed all seven continents and all major oceans, with altitudes up to 8.9 km ASL. The aircraft carried a custom-developed high-sensitivity dual-wavelength light-weight Aethalometer, operating at 370 and 880 nm with special provision to compensate for the effects of changing pressure, temperature and humidity. The instrument recorded BC concentrations with high temporal resolution and sensitivity better than 5 ng/m3. We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas, analyzing the spectral dependence of absorption to infer the contributions to BC from fossil fuel vs. biomass combustion, and aggregating the data into vertical profiles. The regional and long range transport of BC may be investigated using back-trajectories. We have also operated miniature instruments in the passenger cabins of long-distance commercial aircraft. Since there are no combustion sources within the cabin, any BC in the ventilation air must necessarily have originated from the outside

  17. Does the 14C method estimate net photosynthesis? Implications from batch and continuous culture studies of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Pei, Shaofeng; Laws, Edward A.

    2013-12-01

    We carried out batch culture studies with seven species of marine phytoplankton and chemostat studies with two of the seven species to determine whether and to what extent 14C uptake approximated net photosynthesis. In two of seven cases, Isochrysis galbana and Dunaliella tertiolecta, cells uniformly labeled with 14C lost no activity when they were transferred to a 14C-free medium and allowed to grow in the light. In similar experiments with four other species, uniformly labeled cells lost activity when incubated in the light, but the loss rates were only a few percent per day. Thus these six species appear to respire primarily recently fixed carbon. In the case of the remaining species, Chlorella kessleri, loss rates of 14C in the light from uniformly labeled cells were about 29% per day, the apparent ratio of respiration to net photosynthesis being 0.4. Follow-up chemostat studies with I. galbana and C. kessleri grown under both light- and nitrate-limited conditions produced results consistent with the implications of the batch culture work: uptake of 14C by I. galbana after incubations of 24 h yielded estimates of photosynthetic carbon fixation equal to the product of the chemostat dilution rate and the concentration of organic carbon in the growth chamber. Similar experiments with C. kessleri produced 14C-based estimates of photosynthetic carbon fixation that exceeded the net rates of organic carbon production in the growth chamber by roughly 55%. Time-course studies with both species indicated that at high growth rates recently fixed carbon began to enter the respiratory substrate pool after a time lag of several hours, a result consistent with previous work with D. tertiolecta. The lag time appeared to be much shorter at low growth rates. The results with C. kessleri are similar to results previously reported for Chlorella pyrenoidosa and Amphidium carteri. Collectively these results suggest that 14C uptake by species with relatively high ratios of

  18. Movement and Metabolism of Kinetin-14C and of Adenine-14C in Coleus Petiole Segments of Increasing Age 1

    PubMed Central

    Veen, Henk; Jacobs, William P.

    1969-01-01

    To see if polar movement was typical of growth-regulators other than auxins, the movement of adenine-8-14C and of kinetin-8-14C was studied in segments cut from petioles of increasing age. No polarity was found. In time-course experiments lasting 24 hr, kinetin showed a progressive increase of radioactivity in receiver blocks, while adenine showed a maximum at 8 hr with a decline thereafter. More kinetin moved through older segments than through younger ones. There was no difference in net loss as far as the position of the donor block is concerned. However, the loss of radioactivity from adenine donor blocks was much higher than the loss of radioactivity from kinetin donor blocks. The radioactivity in receiver blocks after 24 hr treatment with kinetin-14C was still with kinetin, judging by location on chromatograms. By the same criterion, adenine and a smaller amount of some other compound were in receiver blocks after a 6 hr transport with adenine-14C in the donors. By contrast, more zones of radioactivity were extracted from petiole segments to which kinetin or adenine had been added. For both purine derivatives the original compound represented no more than 20% of the total radioactivity extracted from the tissue after a transport period of 24 hr. PMID:16657203

  19. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Ismail, Syed; Kavaya, Michael J; Davis, Kenneth J

    2015-02-20

    Water vapor and carbon dioxide are the most dominant greenhouse gases directly contributing to the Earth's radiation budget and global warming. A performance evaluation of an airborne triple-pulsed integrated path differential absorption (IPDA) lidar system for simultaneous and independent monitoring of atmospheric water vapor and carbon dioxide column amounts is presented. This system leverages a state-of-the-art Ho:Tm:YLF triple-pulse laser transmitter operating at 2.05 μm wavelength. The transmitter provides wavelength tuning and locking capabilities for each pulse. The IPDA lidar system leverages a low risk and technologically mature receiver system based on InGaAs pin detectors. Measurement methodology and wavelength setting are discussed. The IPDA lidar return signals and error budget are analyzed for airborne operation on-board the NASA B-200. Results indicate that the IPDA lidar system is capable of measuring water vapor and carbon dioxide differential optical depth with 0.5% and 0.2% accuracy, respectively, from an altitude of 8 km to the surface and with 10 s averaging. Provided availability of meteorological data, in terms of temperature, pressure, and relative humidity vertical profiles, the differential optical depth conversion into weighted-average column dry-air volume-mixing ratio is also presented. PMID:25968204

  20. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Ismail, Syed; Kavaya, Michael J; Davis, Kenneth J

    2015-02-20

    Water vapor and carbon dioxide are the most dominant greenhouse gases directly contributing to the Earth's radiation budget and global warming. A performance evaluation of an airborne triple-pulsed integrated path differential absorption (IPDA) lidar system for simultaneous and independent monitoring of atmospheric water vapor and carbon dioxide column amounts is presented. This system leverages a state-of-the-art Ho:Tm:YLF triple-pulse laser transmitter operating at 2.05 μm wavelength. The transmitter provides wavelength tuning and locking capabilities for each pulse. The IPDA lidar system leverages a low risk and technologically mature receiver system based on InGaAs pin detectors. Measurement methodology and wavelength setting are discussed. The IPDA lidar return signals and error budget are analyzed for airborne operation on-board the NASA B-200. Results indicate that the IPDA lidar system is capable of measuring water vapor and carbon dioxide differential optical depth with 0.5% and 0.2% accuracy, respectively, from an altitude of 8 km to the surface and with 10 s averaging. Provided availability of meteorological data, in terms of temperature, pressure, and relative humidity vertical profiles, the differential optical depth conversion into weighted-average column dry-air volume-mixing ratio is also presented.

  1. Migration of (14)C in the paddy soil-to-rice plant system after (14)C-acetic acid breakdown by microorganisms below the plow layer.

    PubMed

    Ogiyama, Shinichi; Takeda, Hiroshi; Ishii, Nobuyoshi; Uchida, Shigeo

    2010-02-01

    Migration of (14)C derived from (14)C-acetic acid was examined by using soils sampled from paddies in four administrative areas in Japan (Aomori, Yamanashi, Ehime and Okinawa) and rice plant in a tracer experiment to understand the fate of (14)C in the paddy soil-to-rice plant system. The loss of (14)C radioactivity levels derived from (14)C-acetic acid was caused by soil microorganism breakdown. A part of the (14)C fixation to soil was caused by microbial assimilation into the fatty acid fraction. (14)C moved upward via two different types of (14)C dynamics in soil: quick movement upward; and constant but slow movement upward. (14)C was highly assimilated into the plant panicle and that was caused by the root-uptake and the transfer of (14)C. Migration of (14)C derived from (14)C-acetic acid relied heavily upon changes of chemical forms and characteristics of (14)C-compound as caused by microorganisms in soil.

  2. The impact of biochar on the bioaccessibility of (14)C-phenanthrene in aged soil.

    PubMed

    Ogbonnaya, O U; Adebisi, O O; Semple, K T

    2014-11-01

    Biochar is a carbon rich product from the incomplete combustion of biomass and it has been shown to reduce bioavailability of organic contaminants through adsorption. This study investigated the influence of 0%, 1%, 5% and 10% of two different particle sized wood biochars (≤2 mm and 3-7 mm) on the bioaccessibility of (14)C-phenanthrene (10 mg kg(-1)) in aged soil. The extent of (14)C-phenanthrene mineralisation by phenanthrene-degrading Pseudomonas sp. inoculum was monitored over a 14 day period in respirometric assays and compared to hydroxypropyl-β-cyclodextrin (HPCD) aqueous extraction. Notably, biochar amendments showed significant reduction in extents of mineralisation and HPCD extraction. Linear correlations between HPCD extractability and the total amount mineralised revealed good correlations, with 2 mm biochar showing a best fit (r(2) = 0.97, slope = 1.11, intercept = 1.72). Biochar reduced HPCD extractability and bioaccessibility of (14)C-phenanthrene to microorganisms in a similar manner. Biochar can aid risk reduction to phenanthrene exposure to biota in soil and HPCD can serve as a useful tool to assess the extent of exposure in biochar-amended soils.

  3. Soil metabolism of a new herbicide, [14C]Pyribenzoxim, under flooded conditions.

    PubMed

    Chang, Hee-Ra; Koo, Suk-Jin; Kim, Kyun; Ro, Hee-Myong; Moon, Joon-Kwan; Kim, Yong-Hwa; Kim, Jeong-Han

    2007-07-25

    To elucidate the fate of a new pyrimidinyloxybenzoic herbicide, pyribenzoxim, a soil metabolism study was carried out with [14C]pyribenzoxim applied to a sandy loam soil under flooded conditions. The material balance of applied radioactivity ranged from 96.4 to 104.4% and from 96.1 to 101.9% for nonsterile and sterile soils, respectively. The half-life of [14C]pyribenzoxim was calculated to be approximately 1.3 and 9.4 days for nonsterile and sterile soils, respectively. The metabolites identified during the study were 2,6-bis(4,6-dimethoxypyrimidin-2-yloxy)benzoic acid (M1) and 2-hydroxy-6-(4,6-dimethoxypyrimidin-2-yloxy)benzoic acid (M2), resulting from the cleavage of the ester bond and subsequent hydrolysis. The nonextractable radioactivity levels increased to 37.8% for nonsterile conditions at 50 days after treatment and to 38.2% for sterile conditions at 60 days after treatment. Fractionation of the nonextractable soil residues indicated that bound radioactivity was associated mainly with humin fraction. No significant volatile products or [14C]carbon dioxide was observed during the study. On the basis of these results, pyribenzoxim is considered to undergo rapid degradation in soil by microbial and chemical reactions, mainly hydrolysis, which limits its transfer to and accumulation in lower soil layers and groundwater. Therefore, the possibility of environmental contamination from the use of pyribenzoxim is expected to be very low.

  4. Methods for high precision 14C AMS measurement of atmospheric CO2 at LLNL

    SciTech Connect

    Graven, H D; Guilderson, T P; Keeling, R F

    2006-10-18

    Development of {sup 14}C analysis with precision better than 2{per_thousand} has the potential to expand the utility of {sup 14}CO{sub 2} measurements for carbon cycle investigations as atmospheric gradients currently approach traditional measurement precision of 2-5{per_thousand}. The AMS facility at the Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, produces high and stable beam currents that enable efficient acquisition times for large numbers of {sup 14}C counts. One million {sup 14}C atoms can be detected in approximately 25 minutes, suggesting that near 1{per_thousand} counting precision is economically feasible at LLNL. The overall uncertainty in measured values is ultimately determined by the variation between measured ratios in several sputtering periods of the same sample and by the reproducibility of replicate samples. Experiments on the collection of one million counts on replicate samples of CO{sub 2} extracted from a whole air cylinder show a standard deviation of 1.7{per_thousand} in 36 samples measured over several wheels. This precision may be limited by the reproducibility of Oxalic Acid I standard samples, which is considerably poorer. We outline the procedures for high-precision sample handling and analysis that have enabled reproducibility in the cylinder extraction samples at the <2{per_thousand} level and describe future directions to continue increasing measurement precision at LLNL.

  5. The metabolism of [14C]-debrisoquine in man.

    PubMed Central

    Idle, J R; Mahgoub, A; Angelo, M M; Dring, L G; Lancaster, R; Smith, R L

    1979-01-01

    1 The synthesis of [14C]-debrisoquine hydrochloride and 4-hydroxy-debrisoquine sulphate is described. 2 The metabolic fate and excretion profile in both urine and faeces of 14C-labelled debrisoquine was studied in five healthy human subjects. 3 Investigations showed that the drug is well-absorbed after a single oral dose of 32 mg and quantitatively eliminated from the body within three days. 4 4-Hydroxy-debrisoquine is the major metabolite of debrisoquine, although significant amounts of 5-,6-, 7- and 8-hydroxy-debrisoquine are also formed. 5 Electron-capture gas chromatography is a useful method for measuring debrisoquine and its five hydroxylated metabolites in urine at the pg level. PMID:371651

  6. Pediatric microdose and microtracer studies using 14C in Europe.

    PubMed

    Turner, M A; Mooij, M G; Vaes, W H J; Windhorst, A D; Hendrikse, N H; Knibbe, C A J; Kõrgvee, L T; Maruszak, W; Grynkiewicz, G; Garner, R C; Tibboel, D; Park, B K; de Wildt, S N

    2015-09-01

    Important information gaps remain on the efficacy and safety of drugs in children. Pediatric drug development encounters several ethical, practical, and scientific challenges. One barrier to the evaluation of medicines for children is a lack of innovative methodologies that have been adapted to the needs of children. This article presents our successful experience of pediatric microdose and microtracer studies using (14) C-labeled probes in Europe to illustrate the strengths and limitations of these approaches.

  7. Airy structure in 16O+14C nuclear rainbow scattering

    NASA Astrophysics Data System (ADS)

    Ohkubo, S.; Hirabayashi, Y.

    2015-08-01

    The Airy structure in 16 O +14 C rainbow scattering is studied with an extended double-folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic realistic wave functions for 16 O by using a density-dependent nucleon-nucleon force. The experimental angular distributions at EL=132 , 281, and 382.2 MeV are well reproduced by the calculations. By studying the energy evolution of the Airy structure, the Airy minimum around θ =76∘ in the angular distribution at EL=132 MeV is assigned as the second-order Airy minimum A 2 in contrast to the recent literature which assigns it as the third order A 3 . The Airy minima in the 90∘ excitation function is investigated in comparison with well-known 16 O +16 O and 12 C +12 C systems. Evolution of the Airy structure into the molecular resonances with the 16 O +14 C cluster structure in the low-energy region around Ec .m .=30 MeV is discussed. It is predicted theoretically for the first time for a non-4 N 16O +14 C system that Airy elephants in the 90∘ excitation function are present.

  8. Temporal variation in the interhemispheric 14C offset

    NASA Astrophysics Data System (ADS)

    McCormac, F. G.; Hogg, A. G.; Higham, T. F. G.; Lynch-Stieglitz, J.; Broecker, W. S.; Baillie, M. G. L.; Palmer, J.; Xiong, L.; Pilcher, J. R.; Brown, D.; Hoper, S. T.

    Contemporaneous tree-ring dated wood, from trees in the northern and southern hemispheres, gives different 14C dates. Previous studies [Vogel et al., 1986; 1993] using wood from South Africa and The Netherlands have shown depletion's of -4.56 ± 0.85‰ and -5.12±0.62‰ respectively. This translates to age differences of 36±7 and 41±5 years (yrs) with the southern hemisphere giving the older dates. More recently, Stuiver and Braziunas [1998] have shown that an offset of 23±4 yrs exists between combined 19th century wood measurements from Tasmania and Chile in the southern hemisphere and the west coast of the U.S. (Washington) in the northern hemisphere. In this study measurements on contemporaneous decadal samples of oak from the British Isles and cedar from New Zealand over the period 1725 to 1885 AD show a depletion of -3.4±0.58‰ (27.2±4.7 yrs). However, data after 1895 AD has a mean offset of 0.66±1.06‰ (-5.3±8.5 yrs) with increased variance compared to 19th century data. This, we believe, is attributable to anthropogenic fossil fuel, which, due to its long residence time in the earth, has long since lost any 14C component and when burned preferentially depletes the northern hemisphere atmosphere of 14C.

  9. Disposition of (/sup 14/C)dimercaptosuccinic acid in mice

    SciTech Connect

    Liang, Y.Y.; Marlowe, C.; Waddell, W.J.

    1986-04-01

    Dimercaptosuccinic acid labeled with /sup 14/C ((/sup 14/C)DMSA) was administered to mice iv; the mice were frozen by immersion in dry ice/hexane at 6 and 20 min and 1, 3, 9, and 24 hr after injection. The frozen mice were sectioned and processed for whole-body autoradiography for soluble substances. The radioactivity was highly localized in extracellular fluids such as the subcutaneous, intrapleural, intraperitoneal, and periosteal spaces. There was a pronounced accumulation in the periosteal fluid above that in other fluids during the first hour after injection. Most of the radioactivity was eliminated by the kidney and liver. Pretreatment of a mouse with HgCl/sub 2/ subcutaneously 1 hr before (/sup 14/C)DMSA produced an increase in radioactivity in the liver and a decrease in the lungs. A high concentration of radioactivity was seen at the subcutaneous site of injection of the HgCl/sub 2/. The results are interpreted to indicate that most of the DMSA is in the extracellular space but that it can cross cellular membranes to some extent. The pronounced accumulation in periosteal fluid may be an interaction of DMSA with Ca2+ in this space. No tissue had a pronounced retention of the compound, but the lungs retained more than most other tissues.

  10. Metabolism of U/sup 14/C palmitic and 1-/sup 14/C caproic acids by lettuce seeds during early germination

    SciTech Connect

    Salon, C.; Raymond, P.; Pradet, A.

    1986-04-01

    Germinating lettuce embryos (before radicule emergence) were fed with either U/sup 14/C palmitic acid or 1/sup 14/C caproic acid until a metabolic steady state was reached. The bulk of labelled caproate was evolved as respiratory CO/sub 2/ (52%) and incorporated into organic and amino acids (38%) and only a small part incorporated into lipids whereas most of labelled palmitic acid was found into lipids (92%) and only 8% evolved as CO/sub 2/ and incorporated into organic and amino acids. The label distribution at steady state in intermediates linked to the T.C.A. cycle was interpreted using a metabolic model. They found that the two fatty acids were degraded by ..beta..-oxidation and incorporated into the T.C.A. cycle as acetylCoA suggesting that ..beta..-oxidation is located in the mitochondria. The results also indicate that lipids contribute for at least 90% to the carbon supply to respiration.

  11. Goldenrod ball gall effects on Solidago altissima: /sup 14/C translocation and growth. [Eurosta solidaginis

    SciTech Connect

    McCrea, K.D.; Abrahamson, W.G.; Weis, A.E.

    1985-12-01

    Individual leaves of S. altissima were labeled with carbon-14 introduced as CO/sub 2/. The /sup 14/C was introduced into ramets that had ball galls caused by the fly Eurosta solidaginis and into ungalled control ramets; gall size (large vs. small) and point of introduction of the label (above vs. below the gall) were experimental factors. After 5 d the ramets were harvested and their component organs were assayed for /sup 14/C using liquid scintillation. In addition, a field cohort of 359 galled and ungalled ramets was followed during the period of gall growth to determine the effect of the gall on stem height growth. Gall size and labeling position had no effect on the percent of /sup 14/C translocated out of the labeled leaf but did affect the distribution of translocated /sup 14/C. Translocation to underground organs was reduced when the label was introduced above the gall, the reduction being related to gall size. Large galls reduced translocation to the apical bud when the label was introduced below the gall, but small galls did not. Translocation to underground organs was not affected by the gall when the label was introduced below the gall and translocation to the apical bud was not affected by the gall when the label was introduced above the gall; these results indicate that the goldenrod ball gall is a nonmobilizing gall. The presence of a gall did not significantly affect final stem height but did slow the growth of ramets during the period of most rapid gall growth.

  12. Retrieval of Vegetation Structure and Carbon Balance Parameters Using Ground-Based Lidar and Scaling to Airborne and Spaceborne Lidar Sensors

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Ni-Meister, W.; Woodcock, C. E.; Li, X.; Jupp, D. L.; Culvenor, D.

    2006-12-01

    This research uses a ground-based, upward hemispherical scanning lidar to retrieve forest canopy structural information, including tree height, mean tree diameter, basal area, stem count density, crown diameter, woody biomass, and green biomass. These parameters are then linked to airborne and spaceborne lidars to provide large-area mapping of structural and biomass parameters. The terrestrial lidar instrument, Echidna(TM), developed by CSIRO Australia, allows rapid acquisition of vegetation structure data that can be readily integrated with downward-looking airborne lidar, such as LVIS (Laser Vegetation Imaging Sensor), and spaceborne lidar, such as GLAS (Geoscience Laser Altimeter System) on ICESat. Lidar waveforms and vegetation structure are linked for these three sensors through the hybrid geometric-optical radiative-transfer (GORT) model, which uses basic vegetation structure parameters and principles of geometric optics, coupled with radiative transfer theory, to model scattering and absorption of light by collections of individual plant crowns. Use of a common model for lidar waveforms at ground, airborne, and spaceborne levels facilitates integration and scaling of the data to provide large-area maps and inventories of vegetation structure and carbon stocks. Our research plan includes acquisition of Echidna(TM) under-canopy hemispherical lidar scans at North American test sites where LVIS and GLAS data have been or are being acquired; analysis and modeling of spatially coincident lidar waveforms acquired by the three sensor systems; linking of the three data sources using the GORT model; and mapping of vegetation structure and carbon-balance parameters at LVIS and GLAS resolutions based on Echidna(TM) measurements.

  13. Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates

    NASA Astrophysics Data System (ADS)

    Petrenko, Vasilii V.; Severinghaus, Jeffrey P.; Schaefer, Hinrich; Smith, Andrew M.; Kuhl, Tanner; Baggenstos, Daniel; Hua, Quan; Brook, Edward J.; Rose, Paul; Kulin, Robb; Bauska, Thomas; Harth, Christina; Buizert, Christo; Orsi, Anais; Emanuele, Guy; Lee, James E.; Brailsford, Gordon; Keeling, Ralph; Weiss, Ray F.

    2016-03-01

    Carbon-14 (14C) is incorporated into glacial ice by trapping of atmospheric gases as well as direct near-surface in situ cosmogenic production. 14C of trapped methane (14CH4) is a powerful tracer for past CH4 emissions from "old" carbon sources such as permafrost and marine CH4 clathrates. 14C in trapped carbon dioxide (14CO2) can be used for absolute dating of ice cores. In situ produced cosmogenic 14C in carbon monoxide (14CO) can potentially be used to reconstruct the past cosmic ray flux and past solar activity. Unfortunately, the trapped atmospheric and in situ cosmogenic components of 14C in glacial ice are difficult to disentangle and a thorough understanding of the in situ cosmogenic component is needed in order to extract useful information from ice core 14C. We analyzed very large (≈1000 kg) ice samples in the 2.26-19.53 m depth range from the ablation zone of Taylor Glacier, Antarctica, to study in situ cosmogenic production of 14CH4 and 14CO. All sampled ice is >50 ka in age, allowing for the assumption that most of the measured 14C originates from recent in situ cosmogenic production as ancient ice is brought to the surface via ablation. Our results place the first constraints on cosmogenic 14CH4 production rates and improve on prior estimates of 14CO production rates in ice. We find a constant 14CH4/14CO production ratio (0.0076 ± 0.0003) for samples deeper than 3 m, which allows the use of 14CO for correcting the 14CH4 signals for the in situ cosmogenic component. Our results also provide the first unambiguous confirmation of 14C production by fast muons in a natural setting (ice or rock) and suggest that the 14C production rates in ice commonly used in the literature may be too high.

  14. The fate of {sup 14}C-pyrene and {sup 14}C-chrysene in soils amended with a PAH mixture

    SciTech Connect

    Guthrie, E.; Thompkins, J.; Pfaender, F.

    1995-12-31

    Polycyclic Aromatic Hydrocarbons (PAH) are ubiquitous environmental contaminants at many hazardous waste sites. Microbial processes are known to influence the fate of PAH in soils and can effect PAH structure, toxicity, bioavailability, and association with soil organic matter (SOM). Experiments were conducted to determine the extent of {sup 14}C-pyrene or {sup 14}C-chrysene associations with soil organic matter (SOM) in soils amended with a PAH mixture and either a [4,5,9,10-{sup 14}C]pyrene or [5,6,11,12-{sup 14}C] chrysene tracer. Changes in microbial respiration ({sup 14}CO{sub 2} efflux), {sup 14}C-volatile organics, {sup 14}C-water soluble metabolites, and {sup 14}C-SOM were measured over time in continuously, aerated microcosms. The bioavailability of {sup 14}C-products in SOM fractions was determined using a mineralization endpoint assay. Extracts of {sup 14}C products in SOM fractions were tested for acute and chronic toxicity using Microtox{trademark}. The {sup 14}C-products associated with residual soil fractions were further extracted with HF/HCI and methylene chloride and then analyzed with LC-MS. The presence of a PAH mixture enhanced {sup 14}C-pyrene mineralization in non-adapted, pristine soils to a greater extent than {sup 14}C-pyrene mineralization observed in pristine soils amended with a known PAH-mineralizing, microbial community. Mineralization of {sup 14}C-chrysene in non-adapted, pristine soils was greater than NaN{sup 3} abiotic, control soils, but significantly less than {sup 14}C-chrysene mineralization in pristine soils amended with a known PAH-mineralizing, microbial community. The major fate of {sup 14}C-pyrene, {sup 14}C-chrysene, and PAH mixtures is association with SOM.

  15. Searching For A Suitable Gas Ion Source For 14C Accelerator Mass Spectrometry

    SciTech Connect

    Reden, Karl von; Roberts, Mark; Han, Baoxi; Schneider, Robert; Wills, John

    2007-08-10

    This paper describes the challenges facing 14C Accelerator Mass Spectrometry (AMS) in the effort to directly analyze the combusted effluent of a chromatograph (or any other continuous source of sample material). An efficient, low-memory negative gas ion source would greatly simplify the task to make this a reality. We discuss our tests of a microwave ion source charge exchange canal combination, present an improved design, and hope to generate more interest in the negative ion source community to develop a direct-extraction negative carbon gas ion source for AMS.

  16. A batch preparation method for graphite targets with low background for AMS [sup 14]C measurements

    SciTech Connect

    Kitagawa, Hiroyuki International Research Center for Japanese Studies, Nishikyp-ku, Kyoto ); Masuzawa, Toshiyuki; Matsumoto, Eiji ); Makamura, Toshio )

    1993-01-01

    The authors have developed a method of graphitization from CO[sub 2] samples for accurate [sup 14]C measurements by accelerator mass spectrometry. Their batch method, using a sealed Vycor tube, reduces the risk of contamination during graphitization and makes it possible to prepare many samples in a short time (typically 20 samples per day). They also describe details of the target-preparation method involving carbon isotopic fractionation during graphitization, yield of graphite from CO[sub 2], ion-beam intensity of the target, and background (or blank) level estimated using bituminous coal.

  17. Source apportionment of carbonaceous aerosol in Sao Paulo using 13C and 14C measurements

    NASA Astrophysics Data System (ADS)

    Oyama, Beatriz; Andrade, Maria de Fatima; Holzinger, Rupert; Röckmann, Thomas; Meijer, Harro A. J.; Dusek, Ulrike

    2016-04-01

    The Metropolitan Area of Sao Paulo is affected by high aerosol concentrations, which contain a large fraction of organic material. Up to date, not much is known about the composition and origin of the organic aerosol in this city. We present the first source apportionment of the carbonaceous aerosol fraction in Sao Paulo, using stable (13C) and radioactive carbon isotopes (14C). 14C provides a clear-cut distinction between fossil sources, which contain no 14C, and contemporary sources such as biofuels, biomass burning, or biogenic sources, which contain a typical contemporary 14C/12C ratio. 13C can be used to distinguish C3 plants, such as maize and sugarcane, from C4 plants. This can help to identify a possible impact of sugarcane field burning in the rural areas of Sao Paulo State on the aerosol carbon in the city. In the first part of the study, we compare two tunnel studies: Tunnel 1 is frequented only by light duty vehicles, which run mainly on mixtures of gasoline with ethanol (gasohol, 25% ethanol and 85% gasoline) or hydrated ethanol (5% water and 95% ethanol). Tunnel 2 contains a significant fraction of heavy-duty diesel vehicles, and therefore the fraction of biofuels in the average fleet is lower. Comparison of 14C in organic and elemental carbon (OC and EC) shows that in both tunnels there is no significant contribution of biofuels to EC. Combusting ethanol-gasoline fuels in a vehicle engine does apparently not result in significant EC formation from ethanol. Biofuels contribute around 45% to OC in Tunnel 1 an only 20% in Tunnel 2, reflecting a strong impact of diesel vehicles in Tunnel 2. In the second part of the study we conduct a source apportionment of ambient aerosol carbon collected in a field study during winter (July-August) 2012. Ambient EC has two main sources, vehicular emissions and biomass burning. We estimate a contribution of vehicular sources to EC of roughly 90% during weekdays and 80% during weekends, using the 14C values measured in

  18. Estimating Aboveground Forest Carbon Stock of Major Tropical Forest Land Uses Using Airborne Lidar and Field Measurement Data in Central Sumatra

    NASA Astrophysics Data System (ADS)

    Thapa, R. B.; Watanabe, M.; Motohka, T.; Shiraishi, T.; shimada, M.

    2013-12-01

    Tropical forests are providing environmental goods and services including carbon sequestration, energy regulation, water fluxes, wildlife habitats, fuel, and building materials. Despite the policy attention, the tropical forest reserve in Southeast Asian region is releasing vast amount of carbon to the atmosphere due to deforestation. Establishing quality forest statistics and documenting aboveground forest carbon stocks (AFCS) are emerging in the region. Airborne and satellite based large area monitoring methods are developed to compliment conventional plot based field measurement methods as they are costly, time consuming, and difficult to implement for large regions. But these methods still require adequate ground measurements for calibrating accurate AFCS model. Furthermore, tropical region comprised of varieties of natural and plantation forests capping higher variability of forest structures and biomass volumes. To address this issue and the needs for ground data, we propose the systematic collection of ground data integrated with airborne light detection and ranging (LiDAR) data. Airborne LiDAR enables accurate measures of vertical forest structure, including canopy height and volume demanding less ground measurement plots. Using an appropriate forest type based LiDAR sampling framework, structural properties of forest can be quantified and treated similar to ground measurement plots, producing locally relevant information to use independently with satellite data sources including synthetic aperture radar (SAR). In this study, we examined LiDAR derived forest parameters with field measured data and developed general and specific AFCS models for tropical forests in central Sumatra. The general model is fitted for all types of natural and plantation forests while the specific model is fitted to the specific forest type. The study region consists of natural forests including peat swamp and dry moist forests, regrowth, and mangrove and plantation forests

  19. In vitro O 2 fluxes compared with 14C production and other rate terms during the JGOFS Equatorial Pacific experiment

    NASA Astrophysics Data System (ADS)

    Bender, Michael; Orchardo, Joe; Dickson, Mary-Lynn; Barber, Richard; Lindley, Steven

    1999-04-01

    We report rates of gross and net O 2 production measured in vitro during JGOFS cruises in the equatorial Pacific in spring and fall, 1992. We scale O 2 productivities to net and gross C production. We then compare the calculated rates with 14C production and with new/export production measured by various techniques. 14C productivities in samples incubated for 24 h are about 45% of gross carbon production rates calculated from gross O 2 production. The difference is compatible with expected rates of the Mehler reaction, photorespiration, excretion, and community mitochondrial respiration. 14C production rates are similar to net carbon production rates in the upper half of the euphotic zone. At lower irradiances, where net C production can be zero or less, 14C productivities lie between net community production and gross primary production. Net carbon production rates in vitro are a factor of =4-20 times greater than estimates from drifting sediment trap and tracer transport studies. This difference probably reflects anomalous accumulation of POC in bottles because of the exclusion of grazers.

  20. Insights from 14C into C loss pathways in degraded peatlands

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Evans, Chris; Allott, Tim; Stimson, Andrew; Goulsbra, Claire

    2016-04-01

    Peatlands are important global stores of terrestrial carbon. Lowered water tables due to changing climate and direct or indirect human intervention produce a deeper aerobic zone and have the potential to enhance loss of stored carbon from the peat profile. The quasi continuous accumulation of organic matter in active peatlands means that the age of fluvial dissolved organic carbon exported from peatland systems is related to the source depth in the peat profile. Consequently 14C analysis of DOC in waters draining peatlands has the potential not only to tell us about the source of fluvial carbon and the stability of the peatland but also about the dominant hydrological pathways in the peatland system. This paper will present new radiocarbon determinations from peatland streams draining the heavily eroded peatlands of the southern Pennine uplands in the UK. These blanket peatland systems are highly degraded, with extensive bare peat and gully erosion resulting from air pollution during the industrial revolution, overgrazing, wildfire and climatic changes. Deep and extensive gullying has significantly modified the hydrology of these systems leading to local and more widespread drawdown of water table. 14C data from DOC in drainage waters are presented from two catchments; one with extensive gully erosion and the other with a combination of gully erosion and sheet erosion of the peat. At the gully eroded site DOC in drainage waters is as old as 160 BP but at the site with extensive sheet erosion dates of up to 1069 BP are amongst the oldest recorded from blanket peatland globally These data indicate significant degradation of stored carbon from the eroding peatlands. Initial comparisons of the 14C data with modelled water table for the catchments and depth-age curves for catchment peats suggests that erosion of the peat surface, allowing decomposition of exposed older organic material is a potential mechanism producing aged carbon from the eroded catchment. This

  1. Autoradiographic disposition of (1-methyl-/sup 14/C)- and (2-/sup 14/C)caffeine in mice

    SciTech Connect

    Lachance, M.P.; Marlowe, C.; Waddell, W.J.

    1983-11-01

    Male, C57B1/6J mice received either (1-methyl-14C)caffeine or (2-14C)caffeine via the tail vein at a dose of 0.7 or 11 mg/kg, respectively. At 0.1, 0.33, 1, 3, 9, and 24 hr after treatment, the mice were anesthetized with ether and frozen by immersion in dry ice/hexane. The mice were processed for whole-body autoradiography by the Ullberg technique; this procedure does not allow thawing or contact with solvents. All autoradiographs revealed some retention of radioactivity at early time intervals in the lacrimal glands, seminal vesicle fluid, nasal and olfactory epithelium, and retinal melanocytes. The remaining portion of the animal was densitometrically uniform except for the lower levels noted in the CNS and adipose tissues. Excretion of radioactivity by the liver and kidneys seems to be the major routes of elimination. Localization in the liver at late time intervals was confined principally to the centrilobular region. Late sites of retention, observed only after (1-methyl-14C)caffeine administration, included the pancreas, minor and major salivary glands, splenic red pulp, thymal cortex, bone marrow, and gastrointestinal epithelium. Sites of localization present in both studies included the olfactory epithelium, lacrimal glands, hair follicles, and retinal melanocytes. Further studies are needed to determine whether the localization at these various sites is due to metabolic degradation, active transport, or possibly a specific receptor interaction.

  2. 17 CFR 240.14c-3 - Annual report to be furnished security holders.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... security holders. 240.14c-3 Section 240.14c-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Section 14(c) § 240.14c-3 Annual report to be furnished security holders. (a) If the information statement... such meeting, of security holders at which directors of the registrant, other than an...

  3. 17 CFR 240.14c-3 - Annual report to be furnished security holders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... security holders. 240.14c-3 Section 240.14c-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Section 14(c) § 240.14c-3 Annual report to be furnished security holders. (a) If the information statement... such meeting, of security holders at which directors of the registrant, other than an...

  4. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  5. Chlorophyll a-specific Δ14C, δ13C and δ15N values in stream periphyton: implications for aquatic food web studies

    NASA Astrophysics Data System (ADS)

    Ishikawa, N. F.; Yamane, M.; Suga, H.; Ogawa, N. O.; Yokoyama, Y.; Ohkouchi, N.

    2015-11-01

    Periphytic algae attached to a streambed substrate (periphyton) are an important primary producer in stream ecosystems. We determined the isotopic composition of chlorophyll a in periphyton collected from a stream flowing on limestone bedrock in the Seri River, central Japan. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and natural radiocarbon abundances (Δ14C) were measured in chlorophyll a (δ13Cchl, δ15Nchl and Δ14Cchl) and bulk (δ13Cbulk, δ15Nbulk and Δ14Cbulk) for periphyton, a pure aquatic primary producer (Cladophora sp.) and a terrestrial primary producer (Quercus glauca). Periphyton δ13Cbulk and δ13Cchl values did not necessarily correspond to δ13Cbulk for an algal-grazing specialist (Epeorus latifolium). Periphyton Δ14Cchl values (-258 ‰ in April and -190 ‰ in October) were slightly lower than Δ14Cbulk values (-228 ‰ in April and -179 ‰ in October) but were close to the Δ14C value for dissolved inorganic carbon (DIC; -217 ± 31 ‰), which is a mixture of weathered carbonates14C = -1000 ‰), CO2 derived from aquatic and terrestrial organic matters (variable Δ14C) and dissolved atmospheric CO2 (Δ14C approximately +30 ‰ in 2013). Δ14Cchl values were also close to Δ14Cbulk for E. latifolium (-215 ‰ in April and -199 ‰ in October) and Cladophora sp. (-210 ‰), whereas the Δ14Cbulk value for Q. glauca (+27 ‰) was closer to Δ14C for atmospheric CO2. Although the bulk isotopic composition of periphyton is recognised as a surrogate for the photosynthetic algal community, natural periphyton is a mixture of aquatic and terrestrial organic materials. Our results indicate that the bulk periphyton matrix at the study site consists of 89 to 95 % algal carbon (derived from 14C-depleted DIC) and 5 to 11 % terrestrial organic carbon (derived from 14C-enriched atmospheric CO2).

  6. Assessment of the 14C-Glycocholic Acid Breath Test

    PubMed Central

    James, O. F. W.; Agnew, J. E.; Bouchier, I. A. D.

    1973-01-01

    The 1-(14C)-glycine-glycocholic-acid breath test has been performed on 104 subjects and a normal range established. Abnormal results due to bacterial deconjugation of bile salts were found not only in patients with the “contaminated bowel” syndrome and in those with ileal resection but also in a third group, patients with cholangitis. Abnormal results were also found in patients with gastrocolic fistula and staphylococcal enterocolitis, while mildly abnormal results were also found in some patients with liver disease. PMID:4718834

  7. A high resolution method for 14C analysis of a coral from South China Sea: Implication for "AD 775" 14C event

    NASA Astrophysics Data System (ADS)

    Ding, Ping; Shen, Chengde; Yi, Weixi; Wang, Ning; Ding, Xingfang; Liu, Kexin; Fu, Dongpo; Liu, Weiguo; Liu, Yi

    2015-10-01

    A pre-heating method that improves the background and precision of 14C dating significantly was applied for fossil coral dating with high resolution in our lab in Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIGCAS). The reaction tube is heated under 300 °C in a vacuum line before it is used for graphitization. The method can reduce the contamination absorbed in TiH2, Zn and Fe power placed in the graphitization tube. With the pre-heating and average drilling method, bi-weekly resolution 14C dating in a fossil coral is carried out to investigate the "AD 775 14C spike event". Different from the tree ring 14C archives with the 14C spike of ∼15‰ (Δ14C), the 14C spike in the coral shows an abrupt peak of 45‰ and two smaller spikes of Δ14C > 20‰ in half a year in AD 776. And then, the 14C content in coral decreases gradually in AD 777. The peak time of the 14C spike event likely occurs in the summer of AD 776 according to the δ18O variation in coral. High-resolution dating of 14C in coral provides not only a more detail process of the event than that from tree rings, but also the first report of the event from sea ecosystem. Both of them suggest an extraterrestrial origin of the event cause.

  8. CHARM-F: An airborne integral path differential absorption lidar for simultaneous measurements of carbon dioxide and methane columns

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Büdenbender, H.-C.; Ehret, G.; Fix, A.; Kiemle, C.; Quatrevalet, M.; Wirth, M.; Hoffmann, D.; Löhring, J.; Klein, V.

    2012-04-01

    CHARM-F (CO2 and CH4 Atmospheric Remote Monitoring - Flugzeug) is DLR's airborne Integral Path Differential Absorption (IPDA) lidar for simultaneous measurements of the column-weighted average dry-air mixing ratios of atmospheric carbon dioxide and methane, designed to be flown on DLR's new High-Altitude, LOng-range research aircraft, HALO. It is meant to serve as a demonstrator of the use of spaceborne active optical instruments in inferring atmospheric CO2 and CH4 surface fluxes from total column measurements by inverse modeling. As it will be shown, this is enabled by HALO's high flight altitude and its range of 8000 km, which will make it possible to produce real-world data at truly regional scales with a viewing geometry and vertical weighting function similar to those enabled by a space platform. In addition, CHARM-F has the potential to be used as a validation tool not only for active but also passive spaceborne instruments utilizing scattered solar radiation for remote sensing of greenhouse gases. Building on the expertise from CHARM, a helicopter-borne methane IPDA lidar for pipeline monitoring developed in collaboration with E.ON, and WALES, DLR's water vapour differential absorption lidar, CHARM-F relies on a double-pulse transmitter architecture producing nanosecond pulses which allows for a precise ranging and a clean separation of atmospheric influences from the ground returns leading to an unambiguously defined column. One pulse is tuned to an absorption line of the trace gas under consideration, the other to a nearby wavelength with much less absorption. The close temporal separation of 250 μs within each pulse pair ensures that nearly the same spot on ground is illuminated. The ratio of both return signals is then a direct function of the column-weighted average dry-air mixing ratio. The two laser systems, one for each trace gas, use highly efficient and robust Nd:YAG lasers to pump an optical parametric oscillator (OPO) level which converts the

  9. Pre to Post-Bomb Seawater 14C History in the Gulf of Alaska Inferred From a Deep Sea Coral: Isididae sp.

    NASA Astrophysics Data System (ADS)

    Roark, B.; Guilderson, T. P.; Fallon, S.; Dunbar, R. B.; McCulloch, M.

    2006-12-01

    Deep-sea corals are an important archive of intermediate and deep-water variability, and provide the means to explore decadal to century-scale ocean dynamics in regions and time periods heretofore unexplored. We present a reconstruction of pre to post-bomb surface and interior water Δ14C based on analysis of deep-sea Isididae (bamboo) corals collected live at ~700 meters in June 2002 at Warwick Seamount, Gulf of Alaska. Concurrent isotope analyses of polyp/tissue and outermost portion of the hard horny proteinaceous gorgonin nodes compared with in situ dissolved inorganic carbon indicates that the gorgonin portion is derived exclusively from recently fixed/exported particulate organic carbon and thus a record of the surface water 14C/12C history. This is in contrast to the carbonate internode portion which is primarily derived from in situ dissolved inorganic carbon, and thus a record of the in situ 14C/12C. Radiocarbon analysis of gorgonin nodal sections captures the surface water D14C evolution. Pre-bomb values are -105‰ reaching a maximum of 100‰ before decreasing to collection values of 20‰. We anticipate that the post-bomb maximum will be in the early 1970s consistent with other mid to high latitude records and that the pre/post bomb transition initiates near 1956. If we utilize the gorgonin pre/post bomb transition as a tie-point and assume a linear growth rate the Isididae used in this study are 75- 125 years old. Carbonate Δ14C shows a 25‰ increase from -215 to -190‰ reflecting the penetration of bomb-14C in the sub-polar North Pacific. To place the carbonate time-series on a fixed timescale we determined the minor element chemistry and tested the inter-species reproducibility. The distribution of Sr is quite homogenous whereas Mg is not with higher Mg concentrations associated with centers of calcification. Age estimates using what appear to be annual Sr/Ca cycles, which we hypothesize are related to biomineralization cycles associated with a

  10. 14C-[lignin]-lignocellulose biodegradation by bacteria isolated from polluted soil.

    PubMed

    Kumar, L; Rathore, V; Srivastava, H

    2001-06-01

    Four bacterial species [Branhamella catarrhalis (gram -ve), Brochothrix species (gram -ve), Micrococcus luteus (gram +ve) and Bacillus firmus (gram +ve)], isolated from the soil polluted with cane sugar factory effluents, were found capable of growing on solid media supplemented with indulin AT (a polymeric industrial lignin) as sole C source. All the four species could metabolize cinnamic acid (a non-hydroxylated phenylpropanoid) as sole carbon source with significant suppression on addition of readily metabolizable carbon source (glucose). However, Br. catarrhalis and Brochothrix sp. were capable of metabolizing ferulic acid, but could not do so on addition of glucose. Of the four species, Br. catarrhalis could evolve significant amount of 14CO2 from U-14C (lignin)-lignocellulose prepared from rice stalks (ca. 10% of the added radioactivity in 3 weeks), in addition to solubilization of another 11.7% radioactivity in culture filtrate. The other three species could not significantly evolve 14CO2, though a significant fraction of added 14C-lignin (6.1 to 11.2%) could be solubilized into culture filtrate, suggesting lack of ring-cleavage or other CO2 evolving mechanisms in these species.

  11. 14C-labeled propionate metabolism in vivo and estimates of hepatic gluconeogenesis relative to Krebs cycle flux.

    PubMed

    Landau, B R; Schumann, W C; Chandramouli, V; Magnusson, I; Kumaran, K; Wahren, J

    1993-10-01

    Purposes of this study were 1) to estimate in humans, using 14C-labeled propionate, the rate of hepatic gluconeogenesis relative to the rate of Krebs cycle flux; 2) to compare those rates with estimates previously made using [3-14C]lactate and [2-14C]acetate; 3) to determine if the amount of ATP required for that rate of gluconeogenesis could be generated in liver, calculated from that rate of Krebs cycle flux and splanchnic balance measurements, previously made, and 4) to test whether hepatic succinyl-CoA is channeled during its metabolism through the Krebs cycle. [2-14C]propionate, [3-14C]-propionate, and [2,3-14C]succinate were given along with phenyl acetate to normal subjects, fasted 60 h. Distributions of 14C were determined in the carbons of blood glucose and of glutamate from excreted phenylacetylglutamine. Corrections to the distributions for 14CO2 fixation were made from the specific activities of urinary urea and the specific activities in glucose, glutamate, and urea previously found on administering [14C]-bicarbonate. Uncertainties in the corrections and in the contributions of pyruvate and Cori cyclings limit the quantitations. The rate of gluconeogenesis appears to be two or more times the rate of Krebs cycle flux and pyruvate's decarboxylation to acetyl-CoA, metabolized in the cycle, less than one-twenty-fifth the rate of its decarboxylation. Such estimates were previously made using [3-14C]lactate. The findings support the use of phenyl acetate to sample hepatic alpha-ketoglutarate. Ratios of specific activities of glucose to glutamate and glucose to urinary urea and expired CO2 indicate succinate's extensive metabolism when presented in trace amounts to liver. Utilizations of the labeled compounds by liver relative to other tissues were in the order succinate = lactate > propionate > acetate. ATP required for gluconeogenesis and urea formation was approximately 40% of the amount of ATP generated in liver. There was no channeling of succinyl-CoA in

  12. Analysis of 14C and 13C in teeth provides precise birth dating and clues to geographical origin

    PubMed Central

    K, Alkass; BA, Buchholz; H, Druid; KL, Spalding

    2011-01-01

    The identification of human bodies in situations when there are no clues as to the person’s identity from circumstantial data, poses a difficult problem to investigators. The determination of age and sex of the body can be crucial in order to limit the search to individuals that are a possible match. We analyzed the proportion of bomb pulse derived carbon-14 (14C) incorporated in the enamel of teeth from individuals from different geographical locations. The ‘bomb pulse’ refers to a significant increase in 14C levels in the atmosphere caused by above ground test detonations of nuclear weapons during the cold war (1955-1963). By comparing 14C levels in enamel with 14C atmospheric levels systematically recorded over time, high precision birth dating of modern biological material is possible. Above ground nuclear bomb testing was largely restricted to a couple of locations in the northern hemisphere, producing differences in atmospheric 14C levels at various geographical regions, particularly in the early phase. Therefore, we examined the precision of 14C birth dating of enamel as a function of time of formation and geographical location. We also investigated the use of the stable isotope 13C as an indicator of geographical origin of an individual. Dental enamel was isolated from 95 teeth extracted from 84 individuals to study the precision of the 14C method along the bomb spike. For teeth formed before 1955 (N = 17), all but one tooth showed negative Δ14C values. Analysis of enamel from teeth formed during the rising part of the bomb-spike (1955-1963, N = 12) and after the peak (>1963, N = 66) resulted in an average absolute date of birth estimation error of 1.9 ±1.4 and 1.3 ± 1.0 years, respectively. Geographical location of an individual had no adverse effect on the precision of year of birth estimation using radiocarbon dating. In 46 teeth, measurement of 13C was also performed. Scandinavian teeth showed a substantially greater depression in average δ13C

  13. Analysis of 14C and 13C in teeth provides precise birth dating and clues to geographical origin.

    PubMed

    Alkass, K; Buchholz, B A; Druid, H; Spalding, K L

    2011-06-15

    The identification of human bodies in situations when there are no clues as to the person's identity from circumstantial data, poses a difficult problem to the investigators. The determination of age and sex of the body can be crucial in order to limit the search to individuals that are a possible match. We analyzed the proportion of bomb pulse derived carbon-14 ((14)C) incorporated in the enamel of teeth from individuals from different geographical locations. The 'bomb pulse' refers to a significant increase in (14)C levels in the atmosphere caused by above ground test detonations of nuclear weapons during the cold war (1955-1963). By comparing (14)C levels in enamel with (14)C atmospheric levels systematically recorded over time, high precision birth dating of modern biological material is possible. Above ground nuclear bomb testing was largely restricted to a couple of locations in the northern hemisphere, producing differences in atmospheric (14)C levels at various geographical regions, particularly in the early phase. Therefore, we examined the precision of (14)C birth dating of enamel as a function of time of formation and geographical location. We also investigated the use of the stable isotope (13)C as an indicator of geographical origin of an individual. Dental enamel was isolated from 95 teeth extracted from 84 individuals to study the precision of the (14)C method along the bomb spike. For teeth formed before 1955 (N=17), all but one tooth showed negative Δ(14)C values. Analysis of enamel from teeth formed during the rising part of the bomb-spike (1955-1963, N=12) and after the peak (>1963, N=66) resulted in an average absolute date of birth estimation error of 1.9±1.4 and 1.3±1.0 years, respectively. Geographical location of an individual had no adverse effect on the precision of year of birth estimation using radiocarbon dating. In 46 teeth, measurement of (13)C was also performed. Scandinavian teeth showed a substantially greater depression in

  14. Analysis of 14C and 13C in teeth provides precise birth dating and clues to geographical origin.

    PubMed

    Alkass, K; Buchholz, B A; Druid, H; Spalding, K L

    2011-06-15

    The identification of human bodies in situations when there are no clues as to the person's identity from circumstantial data, poses a difficult problem to the investigators. The determination of age and sex of the body can be crucial in order to limit the search to individuals that are a possible match. We analyzed the proportion of bomb pulse derived carbon-14 ((14)C) incorporated in the enamel of teeth from individuals from different geographical locations. The 'bomb pulse' refers to a significant increase in (14)C levels in the atmosphere caused by above ground test detonations of nuclear weapons during the cold war (1955-1963). By comparing (14)C levels in enamel with (14)C atmospheric levels systematically recorded over time, high precision birth dating of modern biological material is possible. Above ground nuclear bomb testing was largely restricted to a couple of locations in the northern hemisphere, producing differences in atmospheric (14)C levels at various geographical regions, particularly in the early phase. Therefore, we examined the precision of (14)C birth dating of enamel as a function of time of formation and geographical location. We also investigated the use of the stable isotope (13)C as an indicator of geographical origin of an individual. Dental enamel was isolated from 95 teeth extracted from 84 individuals to study the precision of the (14)C method along the bomb spike. For teeth formed before 1955 (N=17), all but one tooth showed negative Δ(14)C values. Analysis of enamel from teeth formed during the rising part of the bomb-spike (1955-1963, N=12) and after the peak (>1963, N=66) resulted in an average absolute date of birth estimation error of 1.9±1.4 and 1.3±1.0 years, respectively. Geographical location of an individual had no adverse effect on the precision of year of birth estimation using radiocarbon dating. In 46 teeth, measurement of (13)C was also performed. Scandinavian teeth showed a substantially greater depression in

  15. A First Look at Airborne Imaging Spectrometer (AIS) Data in an Area of Altered Volcanic Rocks and Carbonate Formations, Hot Creek Range, South Central Nevada

    NASA Technical Reports Server (NTRS)

    Feldman, S. C.; Taranik, J. V.; Mouat, D. A.

    1985-01-01

    Three flight lines of Airborne Imaging Spectrometer (AIS) data were collected in 128 bands between 1.2 and 2.4 microns in the Hot Creek Range, Nevada on July 25, 1984. The flight lines are underlain by hydrothermally altered and unaltered Paleozoic carbonates and Tertiary rhyolitic to latitic volcanics in the Tybo mining district. The original project objectives were to discriminate carbonate rocks from other rock types, to distinguish limestone from dolomite, and to discriminate carbonate units from each other using AIS imagery. Because of high cloud cover over the prime carbonate flight line and because of the acquisition of another flight line in altered and unaltered volcanics, the study has been extended to the discrimination of alteration products. In an area of altered and unaltered rhyolites and latites in Red Rock Canyon, altered and unaltered rock could be discriminated from each other using spectral features in the 1.16 to 2.34 micron range. The altered spectral signatures resembled montmorillonite and kaolinite. Field samples were gathered and the presence of montmorillonite was confirmed by X-ray analysis.

  16. Metal impurities provide useful tracers for identifying exposures to airborne single-wall carbon nanotubes released from work-related processes

    NASA Astrophysics Data System (ADS)

    Rasmussen, Pat E.; Jayawardene, Innocent; Gardner, H. David; Chénier, Marc; Levesque, Christine; Niu, Jianjun

    2013-04-01

    This study investigated the use of metal impurities in single-wall carbon nanotubes (SWCNT) as potential tracers to distinguish engineered nanomaterials from background aerosols. TEM and SEM were used to characterize parent material and aerosolized agglomerates collected on PTFE filters using a cascade impactor. SEM image analysis indicated that the SWCNT agglomerates contained about 45% amorphous carbon and backscatter electron analysis indicated that metal impurities were concentrated within the amorphous carbon component. Two elements present as impurities (Y and Ni) were selected as appropriate tracers in this case as their concentrations were found to be highly elevated in the SWCNT parent material (% range) compared to ambient air particles (μg/g range), and background air concentrations were below detection limits for both elements. Bioaccessibility was also determined using physiologically-based extractions at pH conditions relevant to both ingestion and inhalation pathways. A portable wet electrostatic precipitation system effectively captured airborne Y and Ni released during sieving processes, in proportions similar to the bulk sample. These observations support the potential for catalysts and other metal impurities in carbon nanotubes to serve as tracers that uniquely identify emissions at source, after an initial analysis to select appropriate tracers.

  17. Chlorophyll a specific Δ14C, δ13C and δ15N values in stream periphyton: implications for aquatic food web studies

    NASA Astrophysics Data System (ADS)

    Ishikawa, N. F.; Yamane, M.; Suga, H.; Ogawa, N. O.; Yokoyama, Y.; Ohkouchi, N.

    2015-07-01

    We determined the isotopic composition of chlorophyll a in periphytic algae attached to a streambed substrate (periphyton). The samples were collected from a stream flowing on limestone bedrock in the Seri River, central Japan. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and natural radiocarbon abundances (Δ14C) were measured in chlorophyll a (δ13Cchl, δ15Nchl and Δ14Cchl) and bulk (δ13Cbulk, δ15Nbulk and Δ14Cbulk) for periphyton, pure aquatic primary producer (Cladophora sp.) and terrestrial primary producer (Quercus glauca). Periphyton δ13Cbulk and δ13Cchl values did not necessarily correspond to δ13Cbulk for an algal-grazing specialist (Mayfly larva, Epeorus latifolium), suggesting that periphyton δ13C values do not faithfully trace carbon transfer between primary producers and primary consumers. Periphyton Δ14Cchl values (-258 ‰ in April and -190 ‰ in October) were slightly lower than Δ14Cbulk values (-228 ‰ in April and -179 ‰ in October), but were close to the Δ14C value for dissolved inorganic carbon (DIC) (-217 ± 31 ‰), which is a mixture of weathered carbonates14C = -1000 ‰) and dissolved atmospheric CO2 (Δ14C approximately +30 ‰ in 2013). Δ14Cchl values were also close to Δ14Cbulk for E. latifolium (-215 ‰ in April and -199 ‰ in October) and Cladophora sp. (-210 ‰), whereas the Δ14Cbulk value for Q. glauca (+27 ‰) was closer to Δ14C for atmospheric CO2. Although the bulk isotopic composition of periphyton is recognised as a surrogate for the photosynthetic algal community, natural periphyton is a mixture of aquatic and terrestrial organic materials. Our results indicate that the bulk periphyton matrix at the study site consists of 89 to 95 % algal carbon (derived from 14C-depleted DIC) and 5 to 11 % terrestrial organic carbon (derived from 14C-enriched atmospheric CO2).

  18. Accelerator mass spectrometry analysis of 14C-oxaliplatin concentrations in biological samples and 14C contents in biological samples and antineoplastic agents

    NASA Astrophysics Data System (ADS)

    Toyoguchi, Teiko; Kobayashi, Takeshi; Konno, Noboru; Shiraishi, Tadashi; Kato, Kazuhiro; Tokanai, Fuyuki

    2015-10-01

    Accelerator mass spectrometry (AMS) is expected to play an important role in microdose trials. In this study, we measured the 14C concentration in 14C-oxaliplatin-spiked serum, urine and supernatant of fecal homogenate samples in our Yamagata University (YU) - AMS system. The calibration curves of 14C concentration in serum, urine and supernatant of fecal homogenate were linear (the correlation coefficients were ⩾0.9893), and the precision and accuracy was within the acceptance criteria. To examine a 14C content of water in three vacuum blood collection tubes and a syringe were measured. 14C was not detected from water in these devices. The mean 14C content in urine samples of 6 healthy Japanese volunteers was 0.144 dpm/mL, and the intra-day fluctuation of 14C content in urine from a volunteer was little. The antineoplastic agents are administered to the patients in combination. Then, 14C contents of the antineoplastic agents were quantitated. 14C contents were different among 10 antineoplastic agents; 14C contents of paclitaxel injection and docetaxel hydrate injection were higher than those of the other injections. These results indicate that our quantitation method using YU-AMS system is suited for microdosing studies and that measurement of baseline and co-administered drugs might be necessary for the studies in low concentrations.

  19. Surrogate gas prediction model as a proxy for Δ14C-based measurements of fossil fuel CO2

    NASA Astrophysics Data System (ADS)

    Coakley, Kevin J.; Miller, John B.; Montzka, Stephen A.; Sweeney, Colm; Miller, Ben R.

    2016-06-01

    The measured 14C:12C isotopic ratio of atmospheric CO2 (and its associated derived Δ14C value) is an ideal tracer for determination of the fossil fuel derived CO2 enhancement contributing to any atmospheric CO2 measurement (Cff). Given enough such measurements, independent top-down estimation of U.S. fossil fuel CO2 emissions should be possible. However, the number of Δ14C measurements is presently constrained by cost, available sample volume, and availability of mass spectrometer measurement facilities. Δ14C is therefore measured in just a small fraction of samples obtained by flask air sampling networks around the world. Here we develop a projection pursuit regression (PPR) model to predict Cff as a function of multiple surrogate gases acquired within the NOAA/Earth System Research Laboratory (ESRL) Global Greenhouse Gas Reference Network (GGGRN). The surrogates consist of measured enhancements of various anthropogenic trace gases, including CO, SF6, and halocarbon and hydrocarbon acquired in vertical airborne sampling profiles near Cape May, NJ and Portsmouth, NH from 2005 to 2010. Model performance for these sites is quantified based on predicted values corresponding to test data excluded from the model building process. Chi-square hypothesis test analysis indicates that these predictions and corresponding observations are consistent given our uncertainty budget which accounts for random effects and one particular systematic effect. However, quantification of the combined uncertainty of the prediction due to all relevant systematic effects is difficult because of the limited range of the observations and their relatively high fractional uncertainties at the sampling sites considered here. To account for the possibility of additional systematic effects, we incorporate another component of uncertainty into our budget. Expanding the number of Δ14C measurements in the NOAA GGGRN and building new PPR models at additional sites would improve our understanding of

  20. Human Vitamin B12 Absorption and Metabolism are Measured by Accelerator Mass Spectrometry Using Specifically Labeled 14C-Cobalamin

    SciTech Connect

    Carkeet, C; Dueker, S R; Lango, J; Buchholz, B A; Miller, J W; Green, R; Hammock, B D; Roth, J R; Anderson, P J

    2006-01-26

    There is need for an improved test of human ability to assimilate dietary vitamin B{sub 12}. Assaying and understanding absorption and uptake of B{sub 12} is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry (AMS) is uniquely suited for assessing absorption and kinetics of {sup 14}C-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of carbon-14 ({sup 14}C) in microliter volumes of biological samples, with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B{sub 12} in the range of normal dietary intake. The B{sub 12} used was quantitatively labeled with {sup 14}C at one particular atom of the DMB moiety by exploiting idiosyncrasies of Salmonellametabolism. In order to grow aerobically on ethanolamine, S. entericamust be provided with either pre-formed B{sub 12} or two of its precursors: cobinamide and dimethylbenzimidazole (DMB). When provided with {sup 14}C-DMB specifically labeled in the C2 position, cells produced {sup 14}C-B{sub 12} of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 mg, 2.2 KBq/59 nCi) of purified {sup 14}C-B{sub 12} was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B{sub 12} assimilation.

  1. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  2. Process-oriented dose assessment model for 14C due to releases during normal operation of a nuclear power plant.

    PubMed

    Aquilonius, Karin; Hallberg, Bengt

    2005-01-01

    Swedish nuclear utility companies are required to assess doses due to releases of radionuclides during normal operation. In 2001, calculation methods used earlier were updated due to new authority regulations. The isotope (14)C is of special interest in dose assessments due to the role of carbon in the metabolism of all life forms. Earlier, factors expressing the ratio between concentration of (14)C in air and in various plants were used. In order to extend the possibility to take local conditions into account, a process-oriented assessment model for uptake of carbon and doses from releases of (14)C to air was developed (POM(14)C). The model uses part of DAISY which has been developed to model the turnover of carbon in crops. [Hansen, S., Jensen, H.E., Nielsen, N.E., Svendsen, H., 1993. Description of the Soil Plant System Model DAISY, Basic Principles and Modelling Approach. Simulation Model for Transformation and Transport of Energy and Matter in the Soil Plant Atmosphere System. Jordbruksförlaget, The Royal Veterinary and Agricultural University, Copenhagen, Denmark]. The main objectives were to test model performance of the former method, and to investigate if taking site specific parameters into account to a greater degree would lead to major differences in the results. Several exposure pathways were considered: direct consumption of locally grown cereals, vegetables, and root vegetables, as well as consumption of milk and meat from cows having eaten fodder cereals and green fodder from the area around the nuclear plant. The total dose of the earlier model was compared with that of POM(14)C. The result of the former was shown to be slightly higher than the latter, but POM(14)C confirmed that the earlier results were of a reasonable magnitude. When full account of local conditions was taken, e.g. as regards solar radiation, temperature, and concentration of (14)C in air at various places in the surroundings of each nuclear plant, a difference in dose between

  3. Process-oriented dose assessment model for 14C due to releases during normal operation of a nuclear power plant.

    PubMed

    Aquilonius, Karin; Hallberg, Bengt

    2005-01-01

    Swedish nuclear utility companies are required to assess doses due to releases of radionuclides during normal operation. In 2001, calculation methods used earlier were updated due to new authority regulations. The isotope (14)C is of special interest in dose assessments due to the role of carbon in the metabolism of all life forms. Earlier, factors expressing the ratio between concentration of (14)C in air and in various plants were used. In order to extend the possibility to take local conditions into account, a process-oriented assessment model for uptake of carbon and doses from releases of (14)C to air was developed (POM(14)C). The model uses part of DAISY which has been developed to model the turnover of carbon in crops. [Hansen, S., Jensen, H.E., Nielsen, N.E., Svendsen, H., 1993. Description of the Soil Plant System Model DAISY, Basic Principles and Modelling Approach. Simulation Model for Transformation and Transport of Energy and Matter in the Soil Plant Atmosphere System. Jordbruksförlaget, The Royal Veterinary and Agricultural University, Copenhagen, Denmark]. The main objectives were to test model performance of the former method, and to investigate if taking site specific parameters into account to a greater degree would lead to major differences in the results. Several exposure pathways were considered: direct consumption of locally grown cereals, vegetables, and root vegetables, as well as consumption of milk and meat from cows having eaten fodder cereals and green fodder from the area around the nuclear plant. The total dose of the earlier model was compared with that of POM(14)C. The result of the former was shown to be slightly higher than the latter, but POM(14)C confirmed that the earlier results were of a reasonable magnitude. When full account of local conditions was taken, e.g. as regards solar radiation, temperature, and concentration of (14)C in air at various places in the surroundings of each nuclear plant, a difference in dose between

  4. AixMICADAS, the accelerator mass spectrometer dedicated to 14C recently installed in Aix-en-Provence, France

    NASA Astrophysics Data System (ADS)

    Bard, Edouard; Tuna, Thibaut; Fagault, Yoann; Bonvalot, Lise; Wacker, Lukas; Fahrni, Simon; Synal, Hans-Arno

    2015-10-01

    A compact AMS system dedicated to measuring 14C in ultra-small samples was installed at the CEREGE in Aix-en-Provence at the end of March 2014, together with an automated graphitization system. AixMICADAS operates at around 200 kV with carbon ion stripping in helium leading to a transmission of about 47%. The hybrid ion source works with graphite targets and CO2 gas. It is coupled to a versatile gas interface system that ensures stable gas measurements from different sources: a cracker for CO2 in glass ampoules, an elemental analyzer for combusting organic matter and an automated system to handle carbonate by wet chemistry. The analyses performed during the first half-year of operation show that a precision of about 2‰ is reached on modern samples of about 1 mg of carbon. Measurements of IAEA reference materials of various 14C ages show a good agreement with consensus values. Direct measurements of geological graphites indicate a machine background equivalent to an age of 68,000 years BP. AixMICADAS is thus limited solely by the 14C contamination of samples in the field and in the laboratory. The performances of the gas ion source and its gas interface system were tested with two CO2 production units: the elemental analyzer and the automated carbonate hydrolysis unit. These tests show that samples ranging between 10 and 100 μg C can produce a 12C- ion beam of the order of 10-15 μA during time spans ranging from 3 to 30 min depending on the sample mass. Coupling the automated hydrolysis system to the gas ion source of AixMICADAS, enables us to develop a method involving sequential leaching of carbonate samples with direct 14C measurements of the leached fractions and the residual sample. The main advantage is that all of steps leaching and hydrolysis are performed in the same vial for a particular sample. A sequential leaching was applied to a young carbonate sample (ca. 6600 years BP) whose 14C age agrees with previous determination and which shows no sign of

  5. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  6. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  7. Metabolism and excretion of [14C] verruculogen in a sheep.

    PubMed

    Perera, K P; Mantle, P G; Penny, R H

    1982-05-01

    [14C] Verruculogen (75 micrograms/kg) was given intravenously to a sheep under barbiturate anaesthesia to prevent the severe tremor and convulsions which would otherwise have occurred. Two hours later 28 per cent of the tremorgenic mycotoxin was detected in the liver, bile and small intestine. Approximately 0.5 per cent was excreted in the urine. Trace amounts of radiolabel were detected in the cortex and corpus striatum of the brain. Verruculogen was metabolised by the liver and converted completely to four more polar products, including two isomeric forms of desoxy-verruculogen and the weakly tremorgenic mycotoxin TR-2. The principal and most polar metabolite excreted is probably an isomer of TR-2. PMID:7100651

  8. Radiocarbon (14C) diurnal variations in fine particles at sites downwind from Tokyo, Japan in summer.

    PubMed

    Fushimi, Akihiro; Wagai, Rota; Uchida, Masao; Hasegawa, Shuichi; Takahashi, Katsuyuki; Kondo, Miyuki; Hirabayashi, Motohiro; Morino, Yu; Shibata, Yasuyuki; Ohara, Toshimasa; Kobayashi, Shinji; Tanabe, Kiyoshi

    2011-08-15

    The radiocarbon ((14)C) of total carbon (TC) in atmospheric fine particles was measured at 6 h or 12 h intervals at two sites, 50 and 100 km downwind from Tokyo, Japan (Kisai and Maebashi) in summer 2007. The percent modern carbon (pMC) showed clear diurnal variations with minimums in the daytime. The mean pMC values at Maebashi were 28 ± 7 in the daytime and 45 ± 16 at night (37 ± 15 for the overall period). Those at Kisai were 26 ± 9 in the daytime and 44 ± 8 at night (37 ± 12 for the overall period). This data indicates that fossil sources were major contributors to the daytime TC, while fossil and modern sources had comparable contributions to nighttime TC in the suburban areas. At both sites, the concentration of fossil carbon as well as O(3) and the estimated secondary organic carbon increased in the daytime. These results suggest that fossil sources around Tokyo contributed significantly to the high daytime concentration of secondary organic aerosols (SOA) at the two suburban sites. A comparison of pMC and the ratio of elemental carbon/TC from our particulate samples with those from three end-member sources corroborates the dominant role of fossil SOA in the daytime.

  9. Effect of endomycorrhizae on the bioavailability of bound sup 14 C residues to onion plants from an organic soil treated with ( sup 14 C)fonofos

    SciTech Connect

    Nelson, S.D.; Khan, S.U. )

    1990-03-01

    Uptake of bound {sup 14}C residues from an organic soil treated with radiolabeled fonofos (O-ethyl S-phenyl ethylphosphonodithioate) by selected Glomus endomycorrhiza and onion roots was studied. The hyphae of endomycorrhizal associations were capable of removing {sup 14}C residues from the soil and transporting them to onion plants. Bioavailability of soil-bound {sup 14}C residues, as measured by {sup 14}C residue content in onion, was increased 32 and 40% over that of nonmycorrhizal plants by hyphae of Glomus intraradices and Glomus vesiculiferium, respectively. The data suggest that under field conditions endomycorrhizal infection may greatly increase the bioavailability of soil-bound pesticide residues to plants.

  10. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  11. Development of a nanofiltration method for bone collagen 14C AMS dating

    NASA Astrophysics Data System (ADS)

    Boudin, Mathieu; Boeckx, Pascal; Buekenhoudt, Anita; Vandenabeele, Peter; Van Strydonck, Mark

    2013-01-01

    Radiocarbon dating of bones is usually performed on the collagen fraction. However, this collagen can contain exogenous molecules, including humic substances (HSs) and/or other soil components that may have a different age than the bone. Incomplete removal can result in biased 14C dates. Ultrafiltration of collagen, dissolved as gelatin (molecular weight (MW) ∼100,000 Dalton), has received considerable attention to obtain more reliable dates. Ultrafiltration is an effective method of removal of low-molecular weight contaminants from bone collagen but it does not remove high-molecular weight contaminants, such as cross-linked humic collagen complexes. However, comparative dating studies have raised the question whether this cleaning step itself may introduce contamination with carbon from the filters used. In this study, a nanofiltration method was developed using a ceramic filter to avoid a possible extraneous carbon contamination introduced by the filter. This method should be applicable to various protein materials e.g. collagen, silk, wool, leather and should be able to remove low-molecular and high molecular weight HSs. In this study bone collagen was hot acid hydrolyzed to amino acids and nanofiltrated. A filter with a molecular weight cutoff (MWCO) of 450 Dalton was chosen in order to collect the amino acids in the permeate and the HSs in the retentate. Two pilot studies were set up. Two nanofiltration types were tested in pilot study 1: dead end and cross flow filtration. Humic substance (HS)-solutions with fossil carbon and modern hydrolyzed collagen contaminated with HSs were filtrated and analyzed with spectrofluorescence to determine the HS removal. Cross flow nanofiltration showed the most efficient HS removal. A second pilot study based upon these results was set up wherein only cross flow filtration was performed. 14C measurements of the permeates of hydrolyzed modern collagen contaminated with fossil HSs demonstrate a significant but incomplete

  12. Accelerator mass spectrometry 14C determination in CO2 produced from laser decomposition of aragonite.

    PubMed

    Rosenheim, Brad E; Thorrold, Simon R; Roberts, Mark L

    2008-11-01

    The determination of (14)C in aragonite (CaCO(3)) decomposed thermally to CO(2) using an yttrium-aluminum-garnet doped neodymium laser is reported. Laser decomposition accelerator mass spectrometry (LD-AMS) measurements reproduce AMS determinations of (14)C from the conventional reaction of aragonite with concentrated phosphoric acid. The lack of significant differences between these sets of measurements indicates that LD-AMS radiocarbon dating can overcome the significant fractionation that has been observed during stable isotope (C and O) laser decomposition analysis of different carbonate minerals. The laser regularly converted nearly 30% of material removed into CO(2) despite it being optimized for ablation, where laser energy breaks material apart rather than chemically altering it. These results illustrate promise for using laser decomposition on the front-end of AMS systems that directly measure CO(2) gas. The feasibility of such measurements depends on (1) the improvement of material removal and/or CO(2) generation efficiency of the laser decomposition system and (2) the ionization efficiency of AMS systems measuring continuously flowing CO(2).

  13. The direct absorption method of 14C assay—historical perspective and future potential

    NASA Astrophysics Data System (ADS)

    Vita-Finzi, Claudio; Leaney, Fred

    2006-05-01

    Radiocarbon dating by liquid scintillation counting of 14CO 2 absorbed into an alkaline liquid was first developed for groundwater research. In the 1980s it was applied to molluscs, barnacles, corals and other carbonates, and yielded dependable results within a few hours, with standard errors of ˜10% for ages <14 000 yr, at about 1/200 the price of commercial 14C dates. Although its cost has risen fivefold, the first-order approach remains useful in coastal neotectonics, where numerous low-precision determinations are often more useful than a few high-precision dates. Direct absorption (DA) 14C dating has now been improved and extended to include wood and charcoal samples, and provides ages in a variety of environments with standard errors similar to those reported by conventional radiometric laboratories and for ages spanning the last 30 000 years. The unit cost for a 'state of the art' DA determination is close to 50% of that by benzene synthesis, but the method is favoured in many hydrological and archaeological applications because it is robust and rapid.

  14. Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil

    SciTech Connect

    Topp, E.; Scheunert, I.; Attar, A.; Korte, F.

    1986-04-01

    The uptake of /sup 14/C from various /sup 14/C-labeled organic chemicals from different chemical classes by barley and cress seedlings from soil was studied for 7 days in a closed aerated laboratory apparatus. Uptake by roots and by leaves via the air was determined separately. Although comparative long-term outdoor studies showed that an equilibrium is not reached within a short time period, plant concentration factors after 7 days could be correlated to some physicochemical and structural substance properties. Barley root concentration factors due to root uptake, expressed as concentration in roots divided by concentration in soil, gave a fairly good negative correlation to adsorption coefficients based on soil organic carbon. Barley root concentration factors, expressed as concentration in roots divided by concentration in soil liquid, gave a positive correlation to the n-octanol/water partition coefficients. Uptake of chemicals by barley leaves via air was strongly positively correlated to volatilization of chemicals from soil. Both root and foliar uptake by barley could be correlated well to the molecular weight of 14 chemicals. Uptake of chemicals by cress differed from that by barley, and correlations to physicochemical substance properties mostly were poor.

  15. Defective (U-14 C) palmitic acid oxidation in Duchenne muscular dystrophy

    SciTech Connect

    Carroll, J.E.; Norris, B.J.; Brooke, M.H.

    1985-01-01

    Compared with normal skeletal muscle, muscle from patients with Duchenne dystrophy had decreased (U-14 C) palmitic acid oxidation. (1-14 C) palmitic acid oxidation was normal. These results may indicate a defect in intramitochondrial fatty acid oxidation.

  16. Large spatial variations in coastal 14C reservoir age - a case study from the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Lougheed, B. C.; Filipsson, H. L.; Snowball, I.

    2013-02-01

    Coastal locations are highly influenced by input from freshwater river runoff, including sources of terrestrial carbon, which can be expected to modify the 14C reservoir age, or R(t), associated with marine water. In this Baltic Sea case study, pre-bomb museum collection mollusc shells of known calendar age, from 30 locations across a strategic salinity transect of the Baltic Sea, were analysed for 14C, δ13C and δ18O. R(t) was calculated for all 30 locations. Seven locations, of which six are within close proximity of the coast, were found to have relatively higher R(t) values, indicative of hard-water effects. δ13Caragonite values were found to be indicative of hard-water influence only for certain locations, suggesting the possibility of different sources of old carbon in different locations. Whenever possible, the Macoma genus of mollusc was selected from the museum collections, in order to exclude species specific reservoir age effects as much as possible. When the Macoma samples are exclusively considered, and samples from hard-water locations excluded, a statistically significant correlation between Macoma R(t) and average salinity is found, indicating a two end-member linear mixing model between 14Cmarine and 14Crunoff. A map of Baltic Sea Macoma aragonite R(t) for the late 19th and early 20th centuries is produced. Such a map can provide an estimate for contemporary Baltic Sea Macoma R(t), although one must exercise caution when applying such estimates back in time or to 14C dates obtained from different sample material. A statistically significant correlation is also found between δ18Oaragonite and Macoma R(t), suggesting that δ18Oaragonite can be used to estimate Macoma palaeo-R(t). The results of this Baltic Sea case study, which show that R(t) is affected by hydrographic conditions and local carbon inputs, have important consequences for other coastal and estuarine locations, where R(t) is also likely to significantly vary on spatial and temporal

  17. Percutaneous absorption of ( sup 14 C)DDT and ( sup 14 C)benzo(a)pyrene from soil

    SciTech Connect

    Wester, R.C.; Maibach, H.I.; Bucks, D.A.; Sedik, L.; Melendres, J.; Liao, C.; DiZio, S. )

    1990-10-01

    The objective was to determine percutaneous absorption of DDT and benzo(a)pyrene in vitro and in vivo from soil into and through skin. Soil (Yolo County 65-California-57-8; 26% sand, 26% clay, 48% silt) was passed through 10-, 20-, and 48-mesh sieves. Soil then retained by 80-mesh was mixed with (14C)-labeled chemical at 10 ppm. Acetone solutions at 10 ppm were prepared for comparative analysis. Human cadaver skin was dermatomed to 500 microns and used in glass diffusion cells with human plasma as the receptor fluid (3 ml/hr flow rate) for a 24-hr skin application time. With acetone vehicle, DDT (18.1 +/- 13.4%) readily penetrated into human skin. Significantly less DDT (1.0 +/- 0.7%) penetrated into human skin from soil. DDT would not partition from human skin into human plasma in the receptor phase (less than 0.1%). With acetone vehicle, benzo(a)pyrene (23.7 +/- 9.7%) readily penetrated into human skin. Significantly less benzo(a)pyrene (1.4 +/- 0.9%) penetrated into human skin from soil. Benzo(a)pyrene would not partition from human skin into human plasma in the receptor phase (less than 0.1%). Substantivity (skin retention) was investigated by applying 14C-labeled chemical to human skin in vitro for only 25 min. After soap and water wash, 16.7 +/- 13.2% of DDT applied in acetone remained absorbed to skin. With soil only 0.25 +/- 0.11% of DDT remained absorbed to skin. After soap and water wash 5.1 +/- 2.1% of benzo(a)pyrene applied in acetone remained absorbed to skin. With soil only 0.14 +/- 0.13% of benzo(a)pyrene remained absorbed to skin.

  18. /sup 14/C distribution in roots following photosynthesis of the label in perennial plants in the northern Mojave Desert

    SciTech Connect

    Wallace, A.; Mueller, R.T.; Cha, J.W.; Romney, E.M.

    1980-01-01

    In April and May of 1973, 24 individual plants were exposed to /sup 14/CO/sub 2/ with techniques used in our other studies in the field. Seven to 8 months later, part of the plants were excavated and counted by plant part for /sup 14/C. The remainder of the plants were excavated at 13 months. The results indicated that from 3 to 20 percent of the carbon for leaves in the next year came from stems and roots of Grayia spinosa (Hook) Moq., Ceratoides lanata (Pursh) J. T. Howell, Atriplex confertifolia (Torr. and Frem.) S. Wats., Lycium pallidum Miers, Ambrosia dumosa (A. Gray) Payne, and Acamptopappus shockleyi A Gray. Nearly all of the root segments were labeled at sampling time; however, some of the roots were labeled at higher amounts than others. Some roots had very little /sup 14/C, and these are assumed to be very new roots rather than dead roots because of their small size. The roots with high levels of /sup 14/C are assumed to be formed near the time of labeling, and those with low levels to be formed after the time of labeling. From 17 to 65 percent of the /sup 14/C fixed was recovered after 7 to 13 months.

  19. MEASUREMENTS OF PAST 14C LEVELS AND 13C/12C RATIOS IN THE SURFACE WATERS OF THE WORLD'S SUBPOLAR OCEANS.

    SciTech Connect

    Brown, T A

    2010-04-22

    Under this project we have developed methods that allow the reconstruction of past {sup 14}C levels of the surface waters of the subpolar North Pacific Ocean by measuring the {sup 14}C contents of archived salmon scales. The overall goal of this research was to reduce of the uncertainty in the uptake of fossil CO{sub 2} by the oceans and thereby improve the quantification of the global carbon cycle and to elucidate the fate of anthropogenic CO{sub 2}. Ocean General Circulation Models (OGCMs), with their three dimensional global spatial coverage and temporal modeling capabilities, provide the best route to accurately calculating the total uptake of CO{sub 2} by the oceans and, hence, to achieving the desired reduction in uncertainty. {sup 14}C has played, and continues to play, a central role in the validation of the OGCMs calculations, particularly with respect to those model components which govern the uptake of CO{sub 2} from the atmosphere and the transport of this carbon within the oceans. Under this project, we have developed time-series records of the {sup 14}C levels of the surface waters of three areas of the subpolar North Pacific Ocean. As the previously available data on the time-history of oceanic surface water {sup 14}C levels are very limited, these time-series records provide significant new {sup 14}C data to constrain and validate the OGCMs.

  20. DISTRIBUTION OF 14C-ATRAZINE FOLLOWING AN ACUTE LACTATIONAL EXPOSURE IN THE WISTAR RAT.

    EPA Science Inventory

    The purpose of the present study was to examine the distribution of atrazine in the lactating dam and suckling neonate following an acute exposure to either 2 or 4 mg/kg 14C-atrazine (14C-ATR) by gavage. 14C-ATR was administered to the nursing dam on postnatal day 3 by oral gavag...

  1. 14C determination in different bio-based products

    NASA Astrophysics Data System (ADS)

    Santos Arévalo, Francisco-Javier; Gómez Martínez, Isabel; Agulló García, Lidia; Reina Maldonado, María-Teresa; García León, Manuel

    2015-10-01

    Radiocarbon determination can be used as a tool to investigate the presence of biological elements in different bio-based products, such as biodiesel blends. These products may also be produced from fossil materials obtaining the same final molecules, so that composition is chemically indistinguishable. The amount of radiocarbon in these products can reveal how much of these biological elements have been used, usually mixed with petrol derived components, free of 14C. Some of these products are liquid and thus the handling at the laboratory is not as straightforward as with solid samples. At Centro Nacional de Aceleradores (CNA) we have tested the viability of these samples using a graphitization system coupled to an elemental analyzer used for combustion of the samples, thus avoiding any vacuum process. Samples do not follow any chemical pre-treatment procedure and are directly graphitized. Specific equipment for liquid samples related to the elemental analyzer was tested. Measurement of samples was performed by low-energy AMS at the 1 MV HVEE facility at CNA, paying special attention to background limits and reproducibility during sample preparation.

  2. Effects of Pseudomonas species on the release of bound sup 14 C residues from soil treated with ( sup 14 C)atrazine

    SciTech Connect

    Khan, S.U.; Behki, R.M. )

    1990-11-01

    The release of bound (nonextractable) {sup 14}C residues from soil previously treated with ({sup 14}C)atrazine was investigated by incubation of the solvent-extracted soil with two species of Pseudomonas capable of metabolizing atrazine. The two species, 192 and 194, released bound {sup 14}C residues from the soil. Addition of glucose, known to increase microbiological activities, to the incubated soil appeared to enhance the release of soil-bound {sup 14}C residues, in particular in the presence of Pseudomonas species 192. The {sup 14}C bound residues in soil, mainly present as the parent compound and its hydroxy and monodealkylated analogues, were released into the incubation mixture and were subsequently metabolized by the two species involving dechlorination and dealkylation.

  3. Large spatial variations in coastal 14C reservoir age - a case study from the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Lougheed, B. C.; Filipsson, H. L.; Snowball, I.

    2013-05-01

    Coastal locations are highly influenced by input from freshwater river runoff, including sources of terrestrial carbon, which can be expected to modify the 14C reservoir age, or R (t), associated with marine water. In this Baltic Sea case study, pre-bomb museum collection mollusc shells of known calendar age, from 30 locations across a strategic salinity transect of the Baltic Sea, were analysed for 14C, δ13C and δ18O. R (t) was calculated for all 30 locations. Seven locations, of which six are within close proximity of the coast, were found to have relatively higher R (t) values, indicative of hard-water effects. Whenever possible, the Macoma genus of mollusc was selected from the museum collections, in order to exclude species specific reservoir age effects as much as possible. When the Macoma samples are exclusively considered, and samples from hard-water locations excluded, a statistically significant correlation between Macoma R (t) and average salinity is found, indicating a two end-member linear mixing model between 14Cmarine and 14Crunoff. A map of Baltic Sea Macoma aragonite R (t) for the late 19th and early 20th centuries is produced. Such a map can provide an estimate for contemporary Baltic Sea Macoma R (t), although one must exercise caution when applying such estimates back in time or to 14C dates obtained from different sample material. A statistically significant correlation is found between δ18Oaragonite and Macoma R (t), suggesting that δ18Oaragonite can be used to estimate Macoma palaeo-R (t), due to the δ18Oaragonite signal being dominated by the salinity gradient of the Baltic Sea. A slightly increased correlation can be expected when δ18Oaragonite is corrected for temperature fractionation effects. The results of this Baltic Sea case study, which show that R (t) is affected by hydrographic conditions and local carbon inputs, have important consequences for other coastal and estuarine locations, where R (t) is also likely to significantly

  4. Simultaneous and Independent Measurement of Atmospheric Water Vapor and Carbon Dioxide using a Triple-Pulsed, 2-micron Airborne IPDA Lidar - A Feasibility Study

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Refaat, T. F.; Yu, J.; Petros, M.

    2013-12-01

    Water vapor (H2O) and carbon dioxide (CO2) are dominant greenhouse gases that are critical for Earth's radiation budget and global warming through the eco-system and the carbon cycle. NASA Langley Research Center (LaRC) has a strong heritage in atmospheric remote sensing of both gases using several instruments adopting various DIAL techniques. This communication presents a feasibility study for measuring both H2O and CO2 simultaneously and independently using a single instrument. This instrument utilizes the Integrated Path Differential Absorption (IPDA) lidar technique to measure the weighted-average column dry-air mixing ratios of CO2 (XCO2) and H2O (XH2O) independently and simultaneously from an airborne platform. The key component of this instrument is a tunable triple-pulse 2-micron laser. The three laser pulses are transmitted sequentially within a short time interval of 200 microsec. The wavelength of each of the laser pulses can be tuned separately. The IPDA receiver design is based on low-risk, commercially available components, including 300-micron diameter InGaAs 2-micron pin detector, a low-noise, high speed trans-impedance amplifier (TIA) and 12-bit 400 MHz digitizer.

  5. Imprint of CO2 emission in atmosphere and biosphere on the basis of 14C and 13C measurements

    NASA Astrophysics Data System (ADS)

    Pazdur, Anna; Gabryś, Alicja; Kuc, Tadeusz; Pawełczyk, Sławomira; Piotrowska, Natalia; Rakowski, Andrzej; Różański, Kazimierz; Sensuła, Barbara

    2015-04-01

    As is shown in the IPCC (Intergovernmental Panel on Climate Change) report, the observed climate changes are caused, among others, by human activity. Mainly emission of CO2 to the atmosphere coming from the burning of fossil fuels, can have dire consequences for life on Earth and development of humankind. The report uses, among others, data obtained from isotopic measurements in the biosphere. Measurements of 14C and 13C concentration in modern atmospheric carbon dioxide and biosphere allow the determination of the decrease of the concentration of this isotope. Furthermore, the magnitude of emission to the atmosphere of carbon dioxide not containing the isotope 14C can be estimated on this basis. Such emission stems from fossil fuel combustion - petroleum, natural gas and black coal. A sensitive bioindicator of the emission are annual tree rings. The measurements of 14C concentration in tree ring material using AMS allow to see its seasonal changes. Trees, treated as an archive of changes in conjunction with information about the isotopic composition of carbon can be used for monitoring of environment as sensitive bioindicators on local, as well as on the global scale. Regular investigations of isotopic composition of carbon in trees have been carried out in the GADAM Centre for the urban areas of both Poland and worldwide. This method can be applied in the study of the emission of CO2 to the atmosphere and its spatial and temporal distribution connected with the production of energy by power plants based on fossil fuel combustion for the area of southern Poland. Modelling of CO2 emission using both 14C and 13C carbon isotopes measured in pine tree rings on the background of climatic changes will be presented. The national ecological policy in the era of global warming requires the manufacturers of energy to get involved in the development of methods suitable for monitoring the state of the environment. Hence, the interest in the area of monitoring the fossil fuel

  6. Percutaneous absorption of [14C]chlordane from soil.

    PubMed

    Wester, R C; Maibach, H I; Sedik, L; Melendres, J; Liao, C L; DiZio, S

    1992-04-01

    The objective was to determine percutaneous absorption of chlordane in vitro and in vivo from soil into and through skin. The data are needed to calculate the absorbed dose of chlordane from soil, which is then used to assess the toxicity risk. Chlordane, an insecticide for which residues exist in soil, is restricted currently to use for termite control. Chlordane is highly lipophilic with little or no movement out of soil. Soil (Yolo County 65-California-57-8; 26% sand, 26% clay, 48% silt, 0.9% organic) was passed through 10-, 20-, and 48-mesh sieves. Soil then retained by 80-mesh was mixed with 14C-labeled chemical at 67 ppm. Acetone solutions were prepared for comparative analysis. Human cadaver skin was dermatomed to 500 microns and used in glass diffusion cells with human plasma as the receptor fluid (3 ml/h flow rate) for a 24-h skin application time. Chlordane concentration within skin from in vitro studies was 0.34 +/- 0.31% from soil and 10.8 +/- 8.2% from acetone vehicle (p less than .01). Individual variation from human skin sources was evident (p less than .008). Chlordane accumulation in human plasma receptor fluid was the same for soil (0.04 +/- 0.05%) and acetone (0.07% +/- 0.06%) formulations. Most of the remaining chlordane was recovered in the soap and water skin surface wash. In contrast, in vivo percutaneous absorption of chlordane in the rhesus monkey was the same for soil (4.2 +/- 1.8%) and acetone (6.0 +/- 2.8%) formulations (p = .29, nonsignificant). Multiple soap and water washings were necessary to remove chlordane from skin, suggesting that a single wash may not adequately remove all the chlordane. PMID:1578510

  7. Percutaneous absorption of [14C]chlordane from soil.

    PubMed

    Wester, R C; Maibach, H I; Sedik, L; Melendres, J; Liao, C L; DiZio, S

    1992-04-01

    The objective was to determine percutaneous absorption of chlordane in vitro and in vivo from soil into and through skin. The data are needed to calculate the absorbed dose of chlordane from soil, which is then used to assess the toxicity risk. Chlordane, an insecticide for which residues exist in soil, is restricted currently to use for termite control. Chlordane is highly lipophilic with little or no movement out of soil. Soil (Yolo County 65-California-57-8; 26% sand, 26% clay, 48% silt, 0.9% organic) was passed through 10-, 20-, and 48-mesh sieves. Soil then retained by 80-mesh was mixed with 14C-labeled chemical at 67 ppm. Acetone solutions were prepared for comparative analysis. Human cadaver skin was dermatomed to 500 microns and used in glass diffusion cells with human plasma as the receptor fluid (3 ml/h flow rate) for a 24-h skin application time. Chlordane concentration within skin from in vitro studies was 0.34 +/- 0.31% from soil and 10.8 +/- 8.2% from acetone vehicle (p less than .01). Individual variation from human skin sources was evident (p less than .008). Chlordane accumulation in human plasma receptor fluid was the same for soil (0.04 +/- 0.05%) and acetone (0.07% +/- 0.06%) formulations. Most of the remaining chlordane was recovered in the soap and water skin surface wash. In contrast, in vivo percutaneous absorption of chlordane in the rhesus monkey was the same for soil (4.2 +/- 1.8%) and acetone (6.0 +/- 2.8%) formulations (p = .29, nonsignificant). Multiple soap and water washings were necessary to remove chlordane from skin, suggesting that a single wash may not adequately remove all the chlordane.

  8. In vivo distribution of organophosphate antidotes: autoradiography of (/sup 14/C)HI-6 in the rat

    SciTech Connect

    Ligtenstein, D.A.; Moes, G.W.; Kossen, S.P.

    1988-02-01

    In order to visualize the distribution of HI-6 in the rat after iv administration, autoradiographic experiments were carried out with (/sup 14/C)HI-6, labeled at the carbon of the carboxamide moiety. Autoradiography clearly confirms penetration of HI-6 into the central nervous system. Considerable radioactivity was found in the cerebrum, the cerebellum, and the choroid plexus. No significant activity was detected in the pontomedullary region or the spinal cord. Peripherally, (/sup 14/C)HI-6 is observed in large amounts in kidneys, heart, liver, nose, bladder, testes, and marrow-containing bone. The gastrointestinal tract was largely devoid of any radioactivity. The relative absence of HI-6 in the pontomedullary region renders centrally mediated influences of HI-6 on hemodynamic and respiratory parameters less likely.

  9. Establishing chronologies for loess records within 40 ka by AMS 14C-dating of small mollusc shells

    NASA Astrophysics Data System (ADS)

    Ujvari, Gabor; Molnar, Mihaly; Novothny, Agnes; Kovacs, Janos

    2014-05-01

    The key objective of the INTIMATE project is to determine whether abrupt climatic changes during the period of 60 to 8 ka, as reflected in a range of proxy records, were regionally synchronous or whether there were significant 'leads' and 'lags' between the atmospheric, marine, terrestrial and cryospheric realms. Such goals require precisely dated records of paleoenvironmental change for this period. Although wind-blown loess deposits are regarded as key terrestrial archives of millennial or even centennial scale environmental changes, these records are mostly poorly dated and/or their age-depth models have uncertainties of millennial magnitude. This prevents us from addressing issues like synchroneity of abrupt climatic/environmental events on millennial time scales. Two different means of dating are commonly applied for loess sequences: luminescence and radiocarbon dating. Major problems are low precision of luminescence ages and the general lack of organic macrofossils (e.g. charcoal) in loess that can reliably be dated using 14C. Other datable phases in loess are mollusc shells, rhizoliths and organic matter. While organic matter 14C ages are often seriously compromised by rejuvenation in loess sequences, rhizolites consistently yield very young ages as first demonstrated in German loess profiles. Indeed, hypocatings (rhizolites) gave Holocene ages from three different depths (4.00 m: 9744-10156 2σ age range in cal yr BP, 5.00 m: 8013-8167 cal yr BP and 6.00 m: 9534-9686 cal yr BP) in the Dunaszekcső loess record we investigated. Mollusc shells are the only remaining phases for dating, but these are usually regarded as unreliable material for 14C-dating, as they may incorporate 14C-deficient (or dead) carbon from the local carbonate-rich substrate during shell formation, thereby producing anomalously old ages by up to 3000 years. Recent studies, however, indicated that reliable ages can be obtained by radiocarbon dating of molluscs having comparatively small (

  10. Metabolism of ( sup 14 C)cholesterol to C-20 isomeric ( sup 14 C)pregn-5-ene-3,20-diols in the tobacco hornworm, Manduca sexta

    SciTech Connect

    Lozano, R.; Thompson, M.J.; Svoboda, J.A.; Lusby, W.R.; Wilzer, K.R. Jr. )

    1989-03-01

    After injection into male and female fifth-instar larvae of Manduca sexta, ({sup 14}C)cholesterol was converted to C21 steroids, ({sup 14}C)pregn-5-ene-3 beta,20-diols. These metabolites were isolated from 8-day-old pupae and were identified by TLC, HPLC, and GC-MS as the C-20 isomers of pregnene-3 beta,20-diol. They also were isolated from male and female meconium fluid (of 16-day-old pupae) following injection of ({sup 14}C)cholesterol into 14-day-old pupae.

  11. A new 14C calibration data set for the last deglaciation based on marine varves

    SciTech Connect

    Hughen, K A; Kashgarian, M; Lehman, S J; Overpeck, J T; Peterson, L C; Southon, J R

    1999-02-22

    Varved sediments of the tropical Cariaco basin provide a new {sup 14}C calibration data set for the period of deglaciation (10,000 to 14,500 years before present: 10-14.5 cal ka BP). Independent evaluations of the Cariasco Basin calendar and {sup 14}C chronologies were based on the agreement of varve ages with the GISP2 ice core layer chronology for similar high-resolution paleoclimate records, in addition to {sup 14}C age agreement with terrestrial {sup 14}C dates, even during large climatic changes. These assessments indicate that the Cariaco Basin {sup 14}C reservoir age remained stable throughout the Younger Dryas and late Alleroed climatic events and that the varve and {sup 14}C chronologies provide an accurate alternative to existing calibrations based on coral U/Th dates. The Cariaco Basin calibration generally agrees with coral-derived calibrations but is more continuous and resolves century-scale details of {sup 14}C change not seen in the coral records. {sup 14}C plateaus can be identified at 9.6, 11.4, and 11.7 {sup 14}C ka BP, in addition to a large, sloping plateau during the Younger Dryas ({approximately}10 to 11 {sup 14}C ka BP). Accounting for features such as these is crucial to determining the relative timing and rates of change during abrupt global climate changes of the last deglaciation.

  12. Free flow electrophoresis separation and AMS quantitation of 14C-naphthalene-protein adducts

    PubMed Central

    Buchholz, Bruce A.; Haack, Kurt W.; Sporty, Jennifer L.; Buckpitt, Alan R.; Morin, Dexter

    2009-01-01

    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose- (concentration) dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 μCi) of 14C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2 D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 hr post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5–11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with 14C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts. PMID:20454606

  13. 14C autoradiography with an energy-sensitive silicon pixel detector.

    PubMed

    Esposito, M; Mettivier, G; Russo, P

    2011-04-01

    The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.

  14. Free flow electrophoresis separation and AMS quantitation of 14C-naphthalene-protein adducts

    NASA Astrophysics Data System (ADS)

    Buchholz, Bruce A.; Haack, Kurt W.; Sporty, Jennifer L.; Buckpitt, Alan R.; Morin, Dexter

    2010-04-01

    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose-(concentration)dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 μCi) of 14C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 h post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with 14C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

  15. 14C as a tool for evaluating riverine POC sources and erosion of the Zhujiang (Pearl River) drainage basin, South China

    NASA Astrophysics Data System (ADS)

    Wei, Xiuguo; Yi, Weixi; Shen, Chengde; Yechieli, Yoseph; Li, Ningli; Ding, Ping; Wang, Ning; Liu, Kexin

    2010-04-01

    Radiocarbon can serve as a powerful tool for identifying sources of organic carbon and evaluating the erosion intensity in river drainage basins. In this paper we present 14C-AMS measurements of particulate organic carbon (POC) collected from the three major tributaries of the Zhujiang (Pearl River) system: the Xijiang (Western River), Beijiang (Northern River) and Dongjiang (Eastern River) rivers. Furthermore, we discuss the distribution of POC 14C apparent ages and the related watersheds erosion of these rivers. Results yield Δ 14C values of -425‰ to -65‰ which indicate that the 14C apparent ages of suspended POC in the entire area are in the range of 540-4445 years. The POC apparent ages from Xijiang are mostly between 2000 and 4000 years, while in Dongjiang they mostly range from 540 to 1010 years. These 14C apparent ages indicate that the watershed erosion of the Xijiang is more severe than that of the Dongjiang. This is in agreement with other data showing deeper erosion in Xijiang due to human activities.

  16. 87Sr/86Sr as a quantitative geochemical proxy for 14C reservoir age in dynamic, brackish waters: Assessing applicability and quantifying uncertainties

    NASA Astrophysics Data System (ADS)

    Lougheed, Bryan C.; Lubbe, H. J. L.; Davies, Gareth R.

    2016-01-01

    Accurate geochronologies are crucial for reconstructing the sensitivity of brackish and estuarine environments to dynamic external impacts of the past. Radiocarbon (14C) dating is commonly used for palaeoclimate studies, but its application in brackish environments is severely limited by an inability to quantify spatiotemporal variations in 14C reservoir age, or R(t), due to dynamic interplay between river runoff and marine water. Additionally, old carbon effects and species-specific behavioral processes also influence 14C ages. Using the world's largest brackish water body (the estuarine Baltic Sea) as a test bed, combined with a comprehensive approach that objectively excludes both old carbon (using GIS) and species-specific 14C effects, we demonstrate the use of 87Sr/86Sr ratios for quantifying R(t) in ubiquitous mollusc shell material, leading to almost an order of magnitude increase in Baltic Sea 14C geochronological precision over the current state of the art. We propose that similar proxy methods can be developed for other brackish water bodies worldwide.

  17. Online coupling of pure O2 thermo-optical methods - 14C AMS for source apportionment of carbonaceous aerosols

    NASA Astrophysics Data System (ADS)

    Agrios, Konstantinos; Salazar, Gary; Zhang, Yan-Lin; Uglietti, Chiara; Battaglia, Michael; Luginbühl, Marc; Ciobanu, Viorela Gabriela; Vonwiller, Matthias; Szidat, Sönke

    2015-10-01

    This paper reports on novel separation methods developed for the direct determination of 14C in organic carbon (OC) and elemental carbon (EC), two sub-fractions of total carbon (TC) of atmospheric air particulate matter. Until recently, separation of OC and EC has been performed off-line by manual and time-consuming techniques that relied on the collection of massive CO2 fractions. We present here two on-line hyphenated techniques between a Sunset OC/EC analyzer and a MICADAS (MIni radioCArbon DAting System) accelerator mass spectrometer (AMS) equipped with a gas ion source. The first implementation facilitates the direct measurement in the low sample size range (<10 μg C) with high throughput on a routine basis, while the second explores the potential for a continuous-flow real-time CO2 gas feed into the ion source. The performance achieved with reference materials and real atmospheric samples will be discussed to draw conclusions on the improvement offered in the field of 14C aerosol source apportionment.

  18. Airborne Fiber Size Characterization in Exposure Estimation: Evaluation of a Modified Transmission Electron Microcopy Protocol for Asbestos and Potential Use for Carbon Nanotubes and Nanofibers

    PubMed Central

    Dement, John M.; Kuempel, Eileen D.; Zumwalde, Ralph D.; Ristich, Anna M.; Fernback, Joseph E.; Smith, Randall J.

    2015-01-01

    Background Airborne fiber size has been shown to be an important factor relative to adverse lung effects of asbestos and suggested in animal studies of carbon nanotubes and nanofibers (CNT/CNF). Materials and Methods The International Standards Organization (ISO) transmission electron microscopy (TEM) method for asbestos was modified to increase the statistical precision of fiber size determinations, improve efficiency, and reduce analysis costs. Comparisons of the fiber size distributions and exposure indices by laboratory and counting method were performed. Results No significant differences in size distributions by the ISO and modified ISO methods were observed. Small but statistically-significant inter-lab differences in the proportion of fibers in some size bins were found, but these differences had little impact on the summary exposure indices. The modified ISO method produced slightly more precise estimates of the long fiber fraction (>15 μm). Conclusions The modified ISO method may be useful for estimating size-specific structure exposures, including CNT/CNF, for risk assessment research. PMID:25675894

  19. Impact of air-borne or canopy-derived dissolved organic carbon (DOC) on forest soil solution DOC in Flanders, Belgium

    NASA Astrophysics Data System (ADS)

    Verstraeten, Arne; De Vos, Bruno; Neirynck, Johan; Roskams, Peter; Hens, Maarten

    2014-02-01

    Dissolved organic carbon (DOC) in the soil solution of forests originates from a number of biologically and/or biochemically mediated processes, including litter decomposition and leaching, soil organic matter mineralization, root exudation, mucilage and microbial activity. A variable amount of DOC reaches the forest floor through deposition, but limited information is available about its impact on soil solution DOC. In this study, trends and patterns of soil solution DOC were evaluated in relation to deposition of DOC over an 11-year period (2002-2012) at five ICP Forests intensive monitoring plots in Flanders, northern Belgium. Trend analysis over this period showed an increase of soil solution DOC concentrations for all observed depth intervals. Fluxes of DOC increased in the organic layer, but were nearly stable in the mineral soil. Annual leaching losses of DOC were higher in coniferous (55-61 kg C ha-1) compared to deciduous plots (19-30 kg C ha-1) but embody less than 0.05% of total 1-m soil organic C stocks. Temporal deposition patterns could not explain the increasing trends of soil solution DOC concentrations. Deposition fluxes of DOC were strongly correlated with soil solution fluxes of DOC, but their seasonal peaks were not simultaneous, which confirmed that air-borne or canopy-derived DOC has a limited impact on soil solution DOC.

  20. 14C content in vegetation in the vicinities of Brazilian nuclear power reactors.

    PubMed

    Dias, Cíntia Melazo; Santos, Roberto Ventura; Stenström, Kristina; Nícoli, Iêda Gomes; Skog, Göran; da Silveira Corrêa, Rosangela

    2008-07-01

    (14)C specific activities were measured in grass samples collected around Brazilian nuclear power reactors. The specific activity values varied between 227 and 299 Bq/kg C. Except for two samples which showed (14)C specific activities 22% above background values, half of the samples showed background specific activities, and the other half had a (14)C excess of 1-18%. The highest specific activities were found close to the nuclear power plants and along the main wind directions (NE and NNE). The activity values were found to decrease with increasing distance from the reactors. The unexpectedly high (14)C excess values found in two samples were related to the local topography, which favors (14)C accumulation and limits the dispersion of the plume. The results indicate a clear (14)C anthropogenic signal within 5 km around the nuclear power plants which is most prominent along northeastwards, the prevailing wind direction.

  1. Natural Abundance 14C Content of Dibutyl Phthalate (DBP) from Three Marine Algae

    PubMed Central

    Namikoshi, Michio; Fujiwara, Takeshi; Nishikawa, Teruaki; Ukai, Kazuyo

    2006-01-01

    Analysis of the natural abundance 14C content of dibutyl phthalate (DBP) from two edible brown algae, Undaria pinnatifida and Laminaria japonica, and a green alga, Ulva sp., revealed that the DBP was naturally produced. The natural abundance 14C content of di-(2-ethylhexyl) phthalate (DEHP) obtained from the same algae was about 50–80% of the standard sample and the 14C content of the petrochemical (industrial) products of DBP and DEHP were below the detection limit.

  2. Distribution of 14C-atrazine following an acute lactational exposure in the Wistar rat.

    PubMed

    Stoker, Tammy E; Cooper, Ralph L

    2007-06-01

    The purpose of the present study was to examine the distribution of atrazine in the lactating dam and suckling neonate following an acute exposure to either 2 or 4mg/kg 14C-atrazine (14C-ATR) by gavage. 14C-ATR was administered to the nursing dam on postnatal day 3 by oral gavage. Two and a half hours after exposure of the mother to 14C-ATR, the pups were allowed to nurse for 30min. At the end of the nursing period, radiolabelled residues of 14C-ATR [or 14C-chlorotriazines (14C-ClTRI)] were measured in the organs and tissues of the perfused dam and in the stomachs and brains of the rat pups. Both the 2 and the 4mg atrazine treatments resulted in a transfer of approximately 0.007% of 14C-ClTRI to the stomach (indicator of milk content) and 0.0002% to the brains of the offspring following the 30-min nursing period. Three hours following the dose of 14C-ATR, there was a distribution of 14C-ClTRI to the organs of the dam, with the highest amounts in the liver and kidney (1.1 and 0.3% of the administered dose, respectively). Approximately 0.003% of the administered dose was present in three different brain sections of the dam following both doses of 14C-ATR. The results of this study demonstrate that 14C-ClTRI are present in small concentrations in the brain and tissues of the dam (adult female) and provide evidence that atrazine or the metabolites can have direct effects on neuroendrocrine function. The results also provide information for postnatal distribution into the suckling neonate during early lactation.

  3. Allocation of 14C assimilated in late spring to tissue and biochemical stem components of cork oak (Quercus suber L.) over the seasons.

    PubMed

    Aguado, Pedro L; Curt, M Dolores; Pereira, Helena; Fernández, Jesús

    2012-03-01

    Carbon distribution in the stem of 2-year-old cork oak plants was studied by (14)CO(2) pulse labeling in late spring in order to trace the allocation of photoassimilates to tissue and biochemical stem components of cork oak. The fate of (14)C photoassimilated carbon was followed during two periods: the first 72 h (short-term study) and the first 52 weeks (long-term study) after the (14)CO(2) photosynthetic assimilation. The results showed that (14)C allocation to stem tissues was dependent on the time passed since photoassimilation and on the season of the year. In the first 3 h all (14)C was found in the polar extractives. After 3 h, it started to be allocated to other stem fractions. In 1 day, (14)C was allocated mostly to vascular cambium and, to a lesser extent, to primary phloem; no presence of (14)C was recorded for the periderm. However, translocation of (14)C to phellem was observed from 1 week after (14)CO(2) pulse labeling. The phellogen was not completely active in its entire circumference at labeling, unlike the vascular cambium; this was the tissue that accumulated most photoassimilated (14)C at the earliest sampling. The fraction of leaf-assimilated (14)C that was used by the stem peaked at 57% 1 week after (14)CO(2) plant exposure. The time lag between C photoassimilation and suberin accumulation was ∼8 h, but the most active period for suberin accumulation was between 3 and 7 days. Suberin, which represented only 1.77% of the stem weight, acted as a highly effective sink for the carbon photoassimilated in late spring since suberin specific radioactivity was much higher than for any other stem component as early as only 1 week after (14)C plant labeling. This trend was maintained throughout the whole experiment. The examination of microautoradiographs taken over 1 year provided a new method for quantifying xylem growth. Using this approach it was found that there was more secondary xylem growth in late spring than in other times of the year

  4. Allocation of 14C assimilated in late spring to tissue and biochemical stem components of cork oak (Quercus suber L.) over the seasons.

    PubMed

    Aguado, Pedro L; Curt, M Dolores; Pereira, Helena; Fernández, Jesús

    2012-03-01

    Carbon distribution in the stem of 2-year-old cork oak plants was studied by (14)CO(2) pulse labeling in late spring in order to trace the allocation of photoassimilates to tissue and biochemical stem components of cork oak. The fate of (14)C photoassimilated carbon was followed during two periods: the first 72 h (short-term study) and the first 52 weeks (long-term study) after the (14)CO(2) photosynthetic assimilation. The results showed that (14)C allocation to stem tissues was dependent on the time passed since photoassimilation and on the season of the year. In the first 3 h all (14)C was found in the polar extractives. After 3 h, it started to be allocated to other stem fractions. In 1 day, (14)C was allocated mostly to vascular cambium and, to a lesser extent, to primary phloem; no presence of (14)C was recorded for the periderm. However, translocation of (14)C to phellem was observed from 1 week after (14)CO(2) pulse labeling. The phellogen was not completely active in its entire circumference at labeling, unlike the vascular cambium; this was the tissue that accumulated most photoassimilated (14)C at the earliest sampling. The fraction of leaf-assimilated (14)C that was used by the stem peaked at 57% 1 week after (14)CO(2) plant exposure. The time lag between C photoassimilation and suberin accumulation was ∼8 h, but the most active period for suberin accumulation was between 3 and 7 days. Suberin, which represented only 1.77% of the stem weight, acted as a highly effective sink for the carbon photoassimilated in late spring since suberin specific radioactivity was much higher than for any other stem component as early as only 1 week after (14)C plant labeling. This trend was maintained throughout the whole experiment. The examination of microautoradiographs taken over 1 year provided a new method for quantifying xylem growth. Using this approach it was found that there was more secondary xylem growth in late spring than in other times of the year

  5. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Bandy, Alan R.; Thornton, Donald C.; Driedger, Arthur R., III

    1993-01-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  6. Transient response of the CO2 airborne fraction to fluctuations in emissions: the role of climate-carbon feedbacks versus emissions growth rate

    NASA Astrophysics Data System (ADS)

    Landers, J. P.; Terenzi, F.; Khatiwala, S.

    2010-12-01

    The airborne fraction (AF), the proportion of anthropogenic CO2 emissions remaining in the atmosphere, has stayed remarkably constant over the past several decades. Studies have speculated that this historical constancy may be an inherent characteristic of the carbon cycle, leading to recent reports of an apparent increase in AF over the past few decades being interpreted in terms of a decrease in the efficiency of the ocean and land sinks. If this decrease is a response to hypothesized climate-carbon cycle feedbacks--for example changes in ocean circulation in the Southern Ocean due to global warming-induced increase in Westerlies--then it suggests an earlier than anticipated shift in the uptake capacity of the principal sinks that play a key role in mitigating the impact of human CO2 emissions on the climate system. Before invoking such mechanisms, however, it is important to distinguish variability due to feedbacks from that due to the intrinsic behavior of the system. Specifically, we believe that the large increase in emissions growth rate between the 1990s and the present decade -- from ~1% per year to over 3% per year -- may also serve as a viable explanation for decadal variability in the AF. Here, we use an ocean carbon cycle model driven by a state-of-the-art circulation state estimate coupled with an atmosphere and land biosphere, to explore and quantify the response of the AF to different idealized emission histories. The model closely reproduces the observed atmospheric and oceanic inventory of CO2 when forced with historical emissions. We find that the AF displays a complex transient behavior, taking on the O(100 y) to ``spin up'' to equilibrium. Moreover, its final steady state value depends sensitively on the shape of the emission history and, in particular, the rate-of-increase of the emissions. These results, which are qualitatively consistent with recent studies based on conceptual models (Gloor et al, 2010; Terenzi, PhD. Thesis, 2009), suggest

  7. (/sup 14/C)chloroacetylcholine as an advantageous affinity label of the acetylcholine receptor

    SciTech Connect

    Bodmer, D.M.; Sin-Ren, A.C.; Waser, P.G.

    1987-01-01

    The alkylating agent (/sup 14/C)chloroacetylcholine perchlorate ((/sup 14/C) ClACh) was synthesized and used for affinity labelling of the nicotinic acetylcholine receptor from Torpedo marmorata. Solubilized and affinity-purified receptor proteins were reduced and alkylated according to the bromoacetylcholine-method. Covalent binding of (/sup 14/C) ClACh to the cholinergic receptor proved to be specific and saturable, and occurred exclusively to the alpha-subunit. Halogen substitution of acetylcholine by chlorine and insertion of a /sup 14/C-isotope instead of the widely used /sup 3/H resulted in favorable properties of the affinity label.

  8. Metabolism of small multiple doses of (14C) nicotine in the cat

    PubMed Central

    Turner, D. M.

    1971-01-01

    1. The distribution and metabolism of (2′-14C) nicotine given as a series of small intravenous injections (4 μg/kg every 60 s for 20 min) have been studied in the cat. 2. Blood concentrations of (14C) nicotine reached a maximum of 100 ng/ml at 20 min whereas blood concentrations of cotinine were maximal shortly afterwards. 3. The maximum concentration of nicotine in the blood was greater than that obtained by giving the same total dose as a continuous infusion ((4 μg/kg)/min for 20 min). 4. Urinary excretion accounted for 90% of the total multiple dose in 72 hours. After 24 h, however, only 2·5% of the radioactivity as (14C) nicotine and 0·05% as (14C) cotinine was excreted. 5. Gastric juice after 2 h contained significant amounts of activity which was almost entirely composed of (14C) nicotine and (14C) cotinine. 6. There were significant regional differences in the concentration of (14C) nicotine in the brain; amounts were greatest in cerebral hemispheres and smallest in the spinal cord. The hypothalamus and thalamus contained significantly higher concentrations of (14C) nicotine than the whole mid brain. (14C) Cotinine concentrations were highest in the cerebellum. PMID:5576257

  9. Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra

    NASA Astrophysics Data System (ADS)

    Vaudour, E.; Gilliot, J. M.; Bel, L.; Lefevre, J.; Chehdi, K.

    2016-07-01

    This study aimed at identifying the potential of Vis-NIR airborne hyperspectral AISA-Eagle data for predicting the topsoil organic carbon (SOC) content of bare cultivated soils over a large peri-urban area (221 km2) with both contrasted soils and SOC contents, located in the western region of Paris, France. Soil types comprised haplic luvisols, calcaric cambisols and colluvic cambisols. Airborne AISA-Eagle data (400-1000 nm, 126 bands) with 1 m-resolution were acquired on 17 April 2013 over 13 tracks. Tracks were atmospherically corrected then mosaicked at a 2 m-resolution using a set of 24 synchronous field spectra of bare soils, black and white targets and impervious surfaces. The land use identification system layer (RPG) of 2012 was used to mask non-agricultural areas, then calculation and thresholding of NDVI from an atmospherically corrected SPOT image acquired the same day enabled to map agricultural fields with bare soil. A total of 101 sites sampled either in 2013 or in the 3 previous years and in 2015 were identified as bare by means of this map. Predictions were made from the mosaic AISA spectra which were related to topsoil SOC contents by means of partial least squares regression (PLSR). Regression robustness was evaluated through a series of 1000 bootstrap data sets of calibration-validation samples, considering 74 sites outside cloud shadows only, and different sampling strategies for selecting calibration samples. Validation root-mean-square errors (RMSE) were comprised between 3.73 and 4.49 g Kg-1 and were ∼4 g Kg-1 in median. The most performing models in terms of coefficient of determination (R2) and Residual Prediction Deviation (RPD) values were the calibration models derived either from Kennard-Stone or conditioned Latin Hypercube sampling on smoothed spectra. The most generalizable model leading to lowest RMSE value of 3.73 g Kg-1 at the regional scale and 1.44 g Kg-1 at the within-field scale and low bias was the cross-validated leave

  10. The remarkable metrological history of 14C dating: From ancient Egyptian artifacts to particles of soot and grains of pollen

    NASA Astrophysics Data System (ADS)

    Currie, L. A.

    2003-01-01

    Radiocarbon dating would not have been possible if 14C had not had the “wrong” half-life—a fact that delayed its discovery [1]. Following the discovery of this 5730 year radionuclide in laboratory experiments by Ruben and Kamen, it became clear to W. F. Libby that 14C should exist in nature, and that it could serve as a quantitative means for dating artifacts and events marking the history of civilization. The search for natural radiocarbon was a metrological challenge; the level in the living biosphere [ca. 230 Bq/kg] lay far beyond the then current state of the measurement art. This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought 14C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for “molecular dating” at the 10 μg to 100 μg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the “bomb effect,” that spawned new multidisciplinary areas of application, ranging from cosmic ray physics to oceanography to the reconstruction of environmental history.

  11. Mannosyltransferase activity in calf pancreas microsomes. Formation of 14C-labeled lipid-linked oligosaccharides from GDP-D-[14C]mannose and pancreatic dolichyl beta-D-[14C]mannopyranosyl phosphate.

    PubMed

    Herscovics, A; Golovtchenko, A M; Warren, C D; Bugge, B; Jeanloz, R W

    1977-01-10

    Calf pancreas microsomes incorporated radioactive D-mannose from GDP-D-[14C]mannose into lipid-bound oligosaccharides extracted with chloroform/methanol/water (10/10/2.5, v/v). Several products, which probably differed in the size of the oligosaccharide moiety, were labeled. These could be partially resolved by thin layer chromatography and DEAE-cellulose chromatography. The labeled lipid-bound oligosaccharides were retained on DEAE-cellulose more strongly than synthetic dolichyl alpha-D-[14C]mannopyranosyl phosphate. They were stable to mild alkali, but labile to acid and hot alkali. Acid treatment yielded a neutral 14C-labeled oligosaccharide fraction which was estimated by gel filtration to have a minimum of 8 monosaccharide residues. Hot alkali treatment yielded a mixture of neutral and acidic 14C-labeled oligosaccharides which could be transformed into neutral products by alkaline phosphatase. The D-[14C]mannose residues were alpha-linked at the nonreducing terminus of the oligosaccharides since they could be removed completely with alpha-mannosidase. Most of the D-[14C]mannose-labeled oligosaccharides were retained on concanavalin A Sepharose and eluted with methyl alpha-D-mannopyranoside. Pancreatic dolichyl beta-D-[14C]mannopyranosyl phosphate incubated with calf pancreas microsomes in the presence of sodium taurocholate was efficiently utilized as donor of alpha-D-mannosyl residues in lipid-bound oligosaccharides. The products formed from dolichyl beta-D-[14C]mannopyranosyl phosphate were identical with those formed from GDP-D-[14C]mannose, and evidence was obtained to show that the dolichyl beta-D-[14C]mannopyranosyl phosphate was serving as donor without prior conversion to GDP-D-[14C]mannose. Transfer of mannose from dolichyl beta-D-[14C]mannopyranosyl phosphate to lipid-bound oligosaccharides took place at a pH optimum of 7.3, whereas transfer to the precipitate containing glycoproteins was greatest at pH 6.0 in Tris/maleate buffer. The addition of

  12. Refined modeling and 14C plateau tuning reveal consistent patterns of glacial and deglacial 14C reservoir ages of surface waters in low-latitude Atlantic

    NASA Astrophysics Data System (ADS)

    Balmer, Sven; Sarnthein, Michael; Mudelsee, Manfred; Grootes, Pieter M.

    2016-08-01

    Modeling studies predict that changes in radiocarbon (14C) reservoir ages of surface waters during the last deglacial episode will reflect changes in both atmospheric 14C concentration and ocean circulation including the Atlantic Meridional Overturning Circulation. Tests of these models require the availability of accurate 14C reservoir ages in well-dated late Quaternary time series. We here test two models using plateau-tuned 14C time series in multiple well-placed sediment core age-depth sequences throughout the lower latitudes of the Atlantic Ocean. 14C age plateau tuning in glacial and deglacial sequences provides accurate calendar year ages that differ by as much as 500-2500 years from those based on assumed global reservoir ages around 400 years. This study demonstrates increases in local Atlantic surface reservoir ages of up to 1000 years during the Last Glacial Maximum, ages that reflect stronger trades off Benguela and summer winds off southern Brazil. By contrast, surface water reservoir ages remained close to zero in the Cariaco Basin in the southern Caribbean due to lagoon-style isolation and persistently strong atmospheric CO2 exchange. Later, during the early deglacial (16 ka) reservoir ages decreased to a minimum of 170-420 14C years throughout the South Atlantic, likely in response to the rapid rise in atmospheric pCO2 and Antarctic temperatures occurring then. Changes in magnitude and geographic distribution of 14C reservoir ages of peak glacial and deglacial surface waters deviate from the results of Franke et al. (2008) but are generally consistent with those of the more advanced ocean circulation model of Butzin et al. (2012).

  13. A sedimentologic and 14C dating study of five eastern Australian upper continental slope submarine landslides

    NASA Astrophysics Data System (ADS)

    Clarke, S. L.; Hubble, T.; Webster, J.; Airey, D.; De Carli, E.; Ferraz, C.; Reimer, P. J.; Boyd, R.; Keene, J.

    2013-12-01

    Sedimentologic and AMS 14C age data are reported for calcareous hemipelagic mud samples taken from gravity cores collected at sites within, or adjacent to five submarine landslides identified with multibeam bathymetry data on the Nerrang Plateau segment and surrounding canyons of eastern Australia's continental slope (Bribie Bowl, Coolangatta-2, Coolangatta-1, Cudgen and Byron). Sediments are comprised of mixtures of calcareous and terrigenous clay (10-20%), silt (50-65%) and sand (15-40%) and are generally uniform in appearance. Their carbonate contents vary between and 17% and 22% by weight while organic carbon contents are less than 10% by weight. Dating of conformably deposited material identified in ten of the twelve cores indicates a range of sediment accumulation rates between 0.017mka-1 and 0.2 mka-1 which are consistent with previous estimates reported for this area. One slide-adjacent core, and four within-landslide cores present depositional hiatus surfaces located at depths of 0.8 to 2.2 meters below the present-day seafloor and identified by a sharp, colour-change boundary; discernable but small increases in sediment stiffness; and a slight increase in sediment bulk density of 0.1 gcm-3. Distinct gaps in AMS 14C age of at least 20ka are recorded across these boundary surfaces. Examination of sub-bottom profiler records of transects through three of the within-slide core-sites and their nearby landslide scarps available for the Coolangatta-1 and Cudgen slides indicate that: 1) the youngest identifiable sediment layer reflectors upslope of these slides, terminate on and are truncated by slide rupture surfaces; and 2) there is no obvious evidence in the sub-bottom profiles for a post-slide sediment layer draped over or otherwise burying slide ruptures or exposed slide detachment surfaces. This suggests that both these submarine landslides are geologically recent and suggests that the hiatus surfaces identified in Coolangatta-1's and Cudgen's within

  14. 14C age of the "Museum Breccia" (Campi Flegrei) and its relevance for the origin of the Campanian Ignimbrite

    USGS Publications Warehouse

    Lirer, L.; Rolandi, G.; Rubin, M.

    1991-01-01

    Field stratigraphic investigations and AMS 14C dating of carbon particles in paleosols has resulted in a framework of the sequence and age of the pyroclastic products in the Campi Flegrei area of Southern Italy. The Museum Breccia cannot be the early phase of the Campanian Ignimbrite, as was previously believed, but is from a smaller and later eruption with an age of approximately 17,900 y B.P. This date also precludes its correlation with the Neapolitan Yellow Tuff (12,000 y B.P.). ?? 1991.

  15. A Comparison of Rapid-Screen 14C Dates and U/Th Dates from Fossil Corals: Implications for Paleoclimate Reconstruction

    NASA Astrophysics Data System (ADS)

    Grothe, P. R.; Cobb, K. M.; Bush, S.; Cheng, H.; Santos, G.; Southon, J. R.; Edwards, R. L.

    2014-12-01

    Paleoclimate records from fossil corals provide valuable benchmarks for climate model simulations of tropical climate variability. Unfortunately, the number of such reconstructions is limited by the rarity of the relatively large fossil coral heads that are targeted for paleoclimate studies. Abundant, albeit shorter (5-10yrs-long) fossil coral sequences could be used to generate a more robust, quasi-continuous reconstruction of tropical climate with built-in uncertainty estimates, but the large number of radiometric dates required is costly. A new rapid-screen 14C dating method, with a nominal precision of ±1.8% (1σ) for young carbonates (Bush et al., 2013), is roughly 10 times faster than high-precision U/Th dating, making it well-suited to screening a large number of corals. In this study, we compare rapid-screen 14C dates to both high-precision 14C dates and U/Th dates from well-characterized mid- to late-Holocene fossil corals collected from Christmas and Fanning Islands (2-4°N, 157-160°W) (Cobb et al., 2013). Our results show that most rapid-screen 14C dates agree with high-precision 14C dates (N=3) and U/Th dates (N=42), within combined uncertainties. However, two samples that contain 15 and 23% calcite (as determined by XRD) are associated with large discrepancies in calibrated 14C vs published U/Th ages (5065-5579 yBP (2σ) versus 6350 ±13 yBP (2σ) and 4868-5424 yBP (2σ) vs 6598 ±13 yBP (2σ)), respectively (Cobb et al., 2013). The 14C-U/Th mismatches, as well as poor reproducibility of replicate U/Th dates from these samples, are consistent with diagenetic alteration indicated by the presence of calcite. Mass balance calculations indicate that the dating discrepancies can be explained by a combination of 14C addition and U removal, both of which can occur through calcite recrystallization during freshwater diagenesis. Results illustrate that the rapid-screen 14C dating method is well-suited to surveying a large number (~100's) of fossil coral

  16. Measurement of biocarbon in flue gases using 14C

    SciTech Connect

    Haemaelaeinen, K.M.; Jungner, H.; Antson, O.; Rasanen, J.; Tormonen, K.; Roine, J.

    2007-07-01

    A preliminary investigation of the biocarbon fraction in carbon dioxide emissions of power plants using both fossil- and biobased fuels is presented. Calculation of the biocarbon fraction is based on radiocarbon content measured in power plant flue gases. Samples were collected directly from the chimneys into plastic sampling bags. The C-14 content in CO{sub 2} was measured by accelerator mass spectrometry (AMS). Flue gases from power plants that use natural gas, coal, wood chips, bark, plywood residue, sludge from the pulp factory, peat, and recovered fuel were measured. Among the selected plants, there was one that used only fossil fuel and one that used only biofuel; the other investigated plants burned mixtures of fuels. The results show that C-14 measurement provides the possibility to determine the ratio of bio and fossil fuel burned in power plants.

  17. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  18. A model for the formation of airborne particulate matter based on the gas-phase adsorption on amorphous carbon blacks.

    PubMed Central

    Risby, T H; Sehnert, S S

    1988-01-01

    This paper reports the physicochemical properties that describe the adsorption of a series of solutes onto the surfaces of amorphous carbon blacks. Adsorption was studied at concentrations that correspond to low surface coverages and in the presence of volatile solvent diluents. The adsorbates and adsorbents were selected for their relevance as models for environmental agent-particle complexes originating from incomplete combustion. The data clearly show that the major factors that determine the strength of adsorption are the surface properties of the adsorbent and the intermolecular forces between the surface and the adsorbing molecule. The heat of adsorption data have been used to predict the lifetime of the absorbate-adsorbent complexes. PMID:3383817

  19. Dilute Nuclear States: {sup 12}C, {sup 10}Be and {sup 14}C

    SciTech Connect

    Freer, M.

    2008-11-11

    The experimental evidence for dilute {alpha}-particle states in {sup 12}C, {sup 10}Be and {sup 14}C is discussed. The question of the location of the 2{sup +} excitation of the 7.65 MeV {sup 12}C state remains unresolved, as does the existence of possible analogue states in {sup 14}C.

  20. Disposition of /sup 14/C tolrestat in laboratory animals and man

    SciTech Connect

    Ferdinandi, E.S.; Hicks, D.R.; Cayen, M.N.

    1986-03-01

    The disposition of the aldose reductase inhibitor tolrestat (T) was determined in the mouse, rat, dog, assemensis monkey, and man. Serum T and radioactivity ratios, and % of dose excreted after p.o. administration of /sup 14/C-T at a dose of 10 mk/kg (100 mg to man), are presented. Except for the rat and monkey, 55 to 95% of the urinary /sup 14/C was due to T and oxo-tolrestat (oxo-T, N-((5-(trifluoromethyl)-6-methoxy-1-napthalenyl)oxo-methyl)-N-methylglycine). Oxo-T is formed, in part, non-enzymatically from T; a potential intermediate in this transformation was detected in all the urine samples. In man and monkey, about 15% and 68%, respectively, of the urinary /sup 14/C was due to T-glucuronide. In rat urine, >90% of the /sup 14/C was due to polar metabolites; in bile, about 66% of the /sup 14/C was due to T. The composition of the serum /sup 14/C in the mouse and rat was determined. In conclusion, /sup 14/C-T was rapidly and well absorbed by all species. Except for the rat and dog, urine was the main excretion route for /sup 14/C. Urine/sup 14/ comprised mainly T, t-glucuronide of oxo-T in all the species except the rat.

  1. Production of [14C]fumonisin B1 by Fusarium moniliforme MRC 826 in corn cultures.

    PubMed Central

    Alberts, J F; Gelderblom, W C; Vleggaar, R; Marasas, W F; Rheeder, J P

    1993-01-01

    Kinetics of growth and fumonisin production by Fusarium moniliforme MRC 826 in corn "patty" cultures were investigated, and a technique was developed for the production of [14C]fumonisin B1 ([14C]FB1) by using L-[methyl-14C]methionine as the precursor. A significant (P < 0.01) correlation exists between fungal growth and FB1 (r = 0.89) and FB2 (r = 0.87) production in corn patties, beginning after 2 days and reaching the stationary phase after 14 days of incubation. [14C]FB1 was produced by adding L-[methyl-14C]methionine daily to cultures during the logarithmic phase of production. Incorporation of the isotope occurred at C-21 and C-22 of the fumonism molecule and was enhanced in the presence of unlabeled L-methionine. Although the concentration of exogenous unlabeled methionine is critical for incorporation of the 14C label, optimum incorporation was achieved by adding 50 mg of unlabeled L-methionine and 200 mu Ci of L-[methyl-14C]methionine to a corn patty (30 g) over a period of 9 days, yielding [14C]FB1 with a specific activity of 36 mu Ci/mmol. PMID:8368853

  2. Airborne measurements of black carbon aerosol over the Southeastern U.S. during the Southeast Atmosphere Study (SAS) experiment

    NASA Astrophysics Data System (ADS)

    Markovic, M. Z.; Perring, A. E.; Schwarz, J. P.; Fahey, D. W.; Gao, R.; Watts, L.; Holloway, J.; Graus, M.; Warneke, C.; De Gouw, J. A.; Veres, P. R.; Roberts, J. M.; Middlebrook, A. M.; Welti, A.; Liao, J.

    2013-12-01

    The Southeast Atmosphere Study (SAS) field campaign was a large-scale, collaborative project, which took place in the Southeastern U.S. in June and July of 2013. The goal of the campaign was to investigate the impacts of biogenic and anthropogenic gases and aerosols on the formation of haze and anomalous climate cooling in the region. During SAS, a NOAA Single Particle Soot Photometer (SP2) instrument was utilized onboard NOAA WP-3D research aircraft for measurements of black carbon (BC) aerosol mass and microphysical properties. BC aerosol is emitted into the atmosphere from biomass burning (BB) and incomplete combustion of fossil and biofuel. Hence, BC sources are strongly linked to anthropogenic activity. BC aerosol is currently the second largest anthropogenic climate forcing agent after CO2(g), and its climate impacts, which depend on vertical burden and internal mixing, are not fully understood. In the Southeast, BC aerosol is expected to provide surface area for the condensation of semi-volatile products of VOC oxidation and subsequent formation of secondary organic aerosol (SOA). Hence, BC is expected to impact the haze formation and regional climate. In this work we present an overview of BC measurements during Southeast Nexus (SENEX) study, the NOAA contribution to SAS. Geographical variations in mass mixing ratios, mass size distributions, and mixing state of BC over the Southeast U.S. are discussed. Relationships of BC with carbon monoxide (CO), acetonitrile (ACN) and other trace gases are used to investigate the impacts of urban, BB, natural gas development, and power plant emissions on the distribution and properties of BC aerosol in the region. Among studied urban centers, St. Louis and Atlanta were determined to be the largest source regions of BC. A clear weekend effect in BC mass mixing ratios and microphysical properties was observed in the metropolitan Atlanta region. Compared to BB and urban centers, power plants and natural gas developments

  3. Bacterial uptake of 14C-chlorhexidine diacetate and 14C-benzyl alcohol and the influence of phenoxyethanol and azolectin: studies with gram-negative bacteria.

    PubMed

    Fitzgerald, K A; Davies, A; Russell, A D

    1992-01-01

    The uptake of 14C-chlorhexidine (14C-CHA) by Pseudomonas aeruginosa and smooth, rough and deep rough strains of Escherichia coli was very rapid with maximum uptake occurring within 20 s. Despite the rapid binding, the lethal action of CHA, although concentration-dependent, is comparatively slow and occurs in minutes rather than seconds. This indicates that the initial rapid binding is followed by a second slower action, responsible for the lethal effects of CHA. The lethal action could be accelerated, particularly at modest concentrations of CHA, by the simultaneous presence of phenoxyethanol (POE) or benzyl alcohol (BZA), although the magnitude of the effect was small. Both alcohols had little effect on the binding of 14C-CHA, which does not explain the enhanced bactericidal action of CHA. Uptake of 14C-benzyl alcohol (14C-BZA) by the same strains showed very different patterns with slower and time-related binding. CHA had a marked effect on BZA absorption but no direct link was established between binding patterns and cell death. The CHA neutraliser, azolectin, removed bound CHA (in the presence or absence of POE) very efficiently even at contact times of only 20 s.

  4. Continuous lake-sediment records of glaciation in the Sierra Nevada between 52,600 and 12,500 14C yr B.P.

    USGS Publications Warehouse

    Benson, L.V.; May, Howard M.; Antweiler, R.C.; Brinton, T.I.; Kashgarian, Michaele; Smoot, J.P.; Lund, S.P.

    1998-01-01

    The chemistry of the carbonate-free clay-size fraction of Owens Lake sediments supports the use of total organic carbon and magnetic susceptibility as indicators of stadial-interstadial oscillations. Owens Lake records of total organic carbon, magnetic susceptibility, and chemical composition of the carbonate-free, clay-size fraction indicate that Tioga glaciation began ~24,500 and ended by ~13,600 14C yr B.P. Many of the components of glacial rock flour (e.g., TiO2, MnO, BaO) found in Owens Lake sediments achieved maximum values during the Tioga glaciation when valley glaciers reached their greatest extent. Total organic carbon and SiO2 (amorphous) concentrations reached minimum values during Tioga glaciation, resulting from decreases in productivity that accompanied the introduction of rock flour into the surface waters of Owens Lake. At least 20 stadial-interstadial oscillations occurred in the Sierra Nevada between 52,600 and 14,000 14C yr B.P. Total organic carbon data from a Pyramid Lake sediment core also indicate oscillations in glacier activity between >39,500 and ~13,600 14C yr B.P. Alpine glacier oscillations occurred on a frequency of ???1900 yr in both basins, suggesting that millennial-scale oscillations occurred in California and Nevada during most of the past 52,600 yr.

  5. Will there be a 14C minimum in the tropical Pacific in the 1990s

    SciTech Connect

    Toggweiler, J.R. )

    1990-01-09

    14C distributions measured during GEOSECS showed large minima in bomb 14C levels in the tropical belts of the major ocean basins. Broecker et al. (1978, JGR, 83) attributed the minima to upwelling of deep water which was free of bomb 14C. Wyrtki (1981, JPO, 11) countered that heat budgets constrain the water upwelling the the equator to be from the upper themocline. Druffel (1987, JMR, 45) built a model of the Pacific upwelling system incorporating Wyrtki's description of the upwelling system. Druffel showed that the GEOSECS 14C minimum could be reproduced with upwelled upper thermocline water because bomb 14C levels were still relatively low in the tropical thermocline at the time of GEOSECS. Druffel went on to predict that mid latitude and tropical surface 14C levels would approach a common value before the 1990s and upper thermocline water masses acquired more bomb 14C and atmospheric 14C levels declined. By studying pre-bomb coral 14C records and a model simulation in Toggweiler et al. (1989, JGR, 94), I have found confirmation that some older and colder water upwells in the tropical Pacific. Upper thermocline (22-24C) water has about the same pre-bomb 14C content as pre-bomb surface waters and cannot generate a low 14C singal prior to the bomb test. The appearance of the oldest upwelled water in the coral data is correlated in time with the cold phase of the ENSO cycle. Most of the low 14C water moves southward into the South Pacific. I will argue that intensified upwelling during the cold phase of ENSO pulls up 12-14C water from the lower layers of the Equatorial Undercurrent. Upwelling from this layer may represent an important closure mechanism for mode waters formed in the subantarctic. A source of older water makes it certain that the tropical 14C minimum will persist through the 1990s and the remainder of the post-bomb era.

  6. Disposition and metabolism of 2,3-[14C]dichloropropene in rats after inhalation.

    PubMed

    Bond, J A; Medinsky, M A; Dutcher, J S; Henderson, R F; Cheng, Y S; Mewhinney, J A; Birnbaum, L S

    1985-03-30

    2,3-Dichloropropene (2,3-DCP) is a constituent of some commercially available preplant soil fumigants for the control of plant parasitic nematodes. Human exposure potential exists during manufacture of the chemicals or during bulk handling activities. The purpose of this investigation was to determine the disposition and metabolism of 2,3-[14C]DCP in rats after inhalation. Male Fischer-344 rats were exposed nose-only to a vapor concentration of 250 nmol 2,3-[14C]DCP/liter air (7.5 ppm; 25 degrees C, 620 Torr) for 6 hr. Blood samples were taken during exposure, and urine, feces, expired air, and tissues were collected for up to 65 hr after exposure. Urinary excretion was the major route of elimination of 14C (55% of estimated absorbed 2,3-DCP). Half-time for elimination of 14C in urine was 9.8 +/- 0.05 hr (means +/- SE). Half-time for elimination of 14C feces (17% of absorbed 2,3-DCP) was 12.9 +/- 0.14 hr (means +/- SE). Approximately 1 and 3% of the estimated absorbed 2,3-[14C]DCP were exhaled as either 2,3-[14C]DCP or 14CO2, respectively. Concentrations of 14C in blood increased during 240 min of exposure, after which no further increases in blood concentration of 14C were seen. 14C was widely distributed in tissues analyzed after a 6-hr exposure of rats to 2,3-[14C]DCP. Urinary bladder (150 nmol/g), nasal turbinates (125 nmol/g), kidneys (84 nmol/g), small intestine (61 nmol/g), and liver (35 nmol/g) were tissues with the highest concentrations of 14C immediately after exposure. Over 90% of the 14C in tissues analyzed was 2,3-DCP metabolites. Half-times for elimination of 14C from tissues examined ranged from 3 to 11 hr. The data from this study indicate that after inhalation 2,3-DCP is metabolized in tissues and readily excreted.

  7. Root and foliar uptake, translocation, and distribution of [14C] fluoranthene in pea plants (Pisum sativum).

    PubMed

    Zezulka, Stěpán; Klemš, Marek; Kummerová, Marie

    2014-10-01

    Uptake of (14)C-labeled fluoranthene ([(14)C]FLT) via both roots and leaves of Pisum sativum seedlings and distribution of [(14) C] in plants by both acropetal and basipetal transport was evaluated. The highest [(14)C] level was found in the root base (≈270 × 10(4) dpm/g dry wt) and the lowest level in the stem apex (<2 × 10(4) dpm/g dry wt) after just 2 h of root exposure. For foliar uptake, the highest level of [(14)C] was found in the stem and root apex (both ≈2 × 10(4) dpm/g dry wt) (except for treated leaves), while the lowest level was found in the root base (<0.6 × 10(4) dpm/g dry wt).

  8. A large drop in atmospheric [sup 14]C/[sup 12]C and reduced melting in the younger dryas, documented with [sup 230]Th ages of corals

    SciTech Connect

    Edwards, R.L.; Beck, J.W. ); Burr, G.S.; Donahue, D.J. ); Chappell, J.M.A. ); Bloom, A.L. ); Druffel, E.R.M. ); Taylor, F.W. )

    1993-05-14

    Paired carbon-14 ([sup 14]C) and thorium-230 ([sup 230]Th) ages were determined on fossil corals from the Huon Peninsula, Papua New Guinea. The ages were used to calibrate part of the [sup 14]C time scale and to estimate rates of sea-level rise during the last deglaciation. An abrupt offset between the [sup 14]C and [sup 230]Th ages suggests that the atmospheric [sup 14]C/[sup 12]C ratio dropped by 15 percent during the latter part of and after the Younger Dryas (YD). This prominent drop coincides with greatly reduced rates of sea-level rise. Reduction of melting because of cooler conditions during the YD may have caused an increase in the rate of ocean ventilation, which caused the atmospheric [sup 14]C/[sup 12]C ratio to fall. The record of sea-level rise also shows that globally averaged rates of melting were relatively high at the beginning of the YD. Thus, these measurements satisfy one of the conditions required by the hypothesis that the diversion of meltwater from the Mississippi to the St. Lawrence River triggered the YD event. 41 refs., 5 figs., 1 tab.

  9. Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14C-labeled hardwood forest

    SciTech Connect

    Joslin, Jr., John D; Gaudinski, Julia B.; Torn, Margaret S.; Riley, W. J.; Hanson, Paul J

    2006-01-01

    Characterization of turnover times of fine roots is essential to understanding patterns of carbon allocation in plants and describing forest C cycling. We used the rate of decline in the ratio of 14C to 12C in a mature hardwood forest, enriched by an inadvertent 14C pulse, to investigate fine-root turnover and its relationship with fine-root diameter and soil depth. Biomass and ?14C values were determined for fine roots collected during three consecutive winters from four sites, by depth, diameter size classes (<0.5 or 0.5-2 mm), and live-or-dead status. Live-root pools retained significant 14C enrichment over 3 yr, demonstrating a mean turnover time on the order of years. However, elevated ?14C values in dead-root pools within 18 months of the pulse indicated an additional component of live roots with short turnover times (months). Our results challenge assumptions of a single live fine-root pool with a unimodal and normal age distribution. Live fine roots <0.5 mm and those near the surface, especially those in the O horizon, had more rapid turnover than 0.5-2 mm roots and deeper roots, respectively.

  10. Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14C-labeled hardwood forest.

    PubMed

    Joslin, J D; Gaudinski, J B; Torn, M S; Riley, W J; Hanson, P J

    2006-01-01

    Characterization of turnover times of fine roots is essential to understanding patterns of carbon allocation in plants and describing forest C cycling. We used the rate of decline in the ratio of 14C to 12C in a mature hardwood forest, enriched by an inadvertent 14C pulse, to investigate fine-root turnover and its relationship with fine-root diameter and soil depth. Biomass and Delta14C values were determined for fine roots collected during three consecutive winters from four sites, by depth, diameter size classes (< 0.5 or 0.5-2 mm), and live-or-dead status. Live-root pools retained significant 14C enrichment over 3 yr, demonstrating a mean turnover time on the order of years. However, elevated Delta14C values in dead-root pools within 18 months of the pulse indicated an additional component of live roots with short turnover times (months). Our results challenge assumptions of a single live fine-root pool with a unimodal and normal age distribution. Live fine roots < 0.5 mm and those near the surface, especially those in the O horizon, had more rapid turnover than 0.5-2 mm roots and deeper roots, respectively. PMID:17083682

  11. Investigations of (Delta)14C, (delta)13C, and (delta)15N in vertebrae of white shark (Carcharodon carcharias) from the eastern North Pacific Ocean

    SciTech Connect

    Kerr, L A; Andrews, A H; Cailliet, G M; Brown, T A; Coale, K H

    2006-06-08

    The white shark (Carcharodon carcharias) has a complex life history that is characterized by large scale movements and a highly variable diet. Estimates of age and growth for the white shark from the eastern North Pacific Ocean indicate they have a slow growth rate and a relatively high longevity. Age, growth, and longevity estimates useful for stock assessment and fishery models, however, require some form of validation. By counting vertebral growth band pairs, ages can be estimated, but because not all sharks deposit annual growth bands and many are not easily discernable, it is necessary to validate growth band periodicity with an independent method. Radiocarbon ({sup 14}C) age validation uses the discrete {sup 14}C signal produced from thermonuclear testing in the 1950s and 1960s that is retained in skeletal structures as a time-specific marker. Growth band pairs in vertebrae, estimated as annual and spanning the 1930s to 1990s, were analyzed for {Delta}{sup 14}C and stable carbon and nitrogen isotopes ({delta}{sup 13}C and {delta}{sup 15}N). The aim of this study was to evaluate the utility of {sup 14}C age validation for a wide-ranging species with a complex life history and to use stable isotope measurements in vertebrae as a means of resolving complexity introduced into the {sup 14}C chronology by ontogenetic shifts in diet and habitat. Stable isotopes provided useful trophic position information; however, validation of age estimates was confounded by what may have been some combination of the dietary source of carbon to the vertebrae, large-scale movement patterns, and steep {sup 14}C gradients with depth in the eastern North Pacific Ocean.

  12. Distribution of photosynthetically fixed /sup 14/C in perennial plant species of the northern Mojave Desert

    SciTech Connect

    Wallace, A.; Cha, J.W.; Romney, E.M.

    1980-01-01

    The distribution of photosynthate among plant parts subsequent to its production is needed to fully understand behavior of vegetation in any ecosystem. The present study, undertaken primarily to obtain information on transport of assimilates into roots of desert vegetation, was conducted in the northern Mojave Desert, where the mean annual rainfall is about 10 cm. Shoots of Ambrosia dumosa (A. Gray) Payne plants were exposed to /sup 14/CO/sub 2/ in 1971, and the distribution of /sup 14/C in roots, stems, and leaves was subsequently measured at 1 week, 2 months, and 5 months. Only about 12 percent of the /sup 14/C photosynthate was stored in the root. Much of that stored in stems was available for new leaf growth. Photosynthate was labeled with /sup 14/C for 24 plants representing eight species in 1972. Results showed that after 127 days the mean percentage of /sup 14/C in roots as compared with the estimate of that originally fixed was 11.8; the percentage in stems was 43.8. To check the validity of the /sup 14/C data, root growth of eight perennial desert plants grown in the glasshouse was followed as plants increased in size. The mean percent of the whole plant that was root for eight species was 17.7 percent. The mean proportion of the increase in plant weights that went below ground for the eight species was 19.5 percent. This value is higher than the fraction of /sup 14/C found below ground, and therefore the /sup 14/C technique underestimates the movement of C to roots. Results of an experiment designed to test the value of the /sup 14/C-pulse technique for determining current root growth for some perennial species from the desert indicated that the transition part of roots where root growth continued after exposure to /sup 14/C was highly labeled. Old growth contained less /sup 14/C than new growth.

  13. Disposition of 14C-β-carotene following delivery with autologous triacylglyceride-rich lipoproteins

    NASA Astrophysics Data System (ADS)

    Dueker, Stephen R.; Vuong, Le Thuy; Faulkner, Brian; Buchholz, Bruce A.; Vogel, John S.

    2007-06-01

    Following ingestion, a fraction of β-carotene is cleaved into vitamin A in the intestine, while another is absorbed intact and distributed among tissues and organs. The extent to which this absorbed β-carotene serves as a source of vitamin A is unknown in vivo. In the present study we use the attomole sensitivity of accelerator mass spectrometry (AMS) for 14C to quantify the disposition of 14C-β-carotene (930 ng; 60.4 nCi of activity) after intravenous injection with an autologous triacylglyceride-rich lipoprotein fraction in a single volunteer. Total 14C was quantified in serial plasma samples and also in triglyceride-rich, and low density lipoprotein, subfractions. The appearance of 14C-retinol, the circulating form of vitamin A in plasma, was determined by chromatographic separation of plasma retinol extracts prior to AMS analysis. The data showed that 14C concentrations rapidly decayed within the triglyceride-rich lipoprotein fractions after injection, whereas low density lipoprotein 14C began a significant rise in 14C 5 h post dose. Plasma 14C-retinol also appeared at 5 h post dose and its concentrations were maintained above baseline for >88 days. Based upon comparisons of 14C-retinol concentrations following an earlier study with orally dosed 14C-β-carotene, a molar vitamin A value of the absorbed β-carotene of 0.19 was derived, meaning that 1 mole of absorbed β-carotene provides 0.19 moles of vitamin A. This is the first study to show that infused β-carotene contributes to the vitamin A economy in humans in vivo.

  14. Utilization of orally administered D-[14C]mannitol via fermentation by intestinal microbes in rats.

    PubMed

    Hongo, Ryoko; Nakamura, Sadako; Oku, Tsuneyuki

    2010-01-01

    To investigate the available energy of orally administered [(14)C]mannitol via intestinal microbes, [(14)C]mannitol (222 kBq, 105 mg) or [(14)C]glucose (222 kBq, 105 mg) was administered to conventional rats and antibiotics-treated rats whose intestinal microbes were depleted by drinking water containing antibiotics, respectively. The exhausted CO(2), feces and urine were then separately collected at 2, 4, 6, 8, 10, 12 and 24 h after administration of the test solution. In the conventional rats, 45% of administered radioactivity was recovered as (14)CO(2) in the administration of [(14)C]mannitol, while 57% of administered radioactivity was recovered as (14)CO(2) following the administration of [(14)C]glucose for 24 h. The time sequence for the (14)CO(2) excretion from [(14)C]mannitol was delayed as compared to [(14)C]glucose by about 4-6 h (p<0.05). However, when [(14)C]mannitol was orally administered to antibiotics-treated rats, only 3% of administered radioactivity was excreted as (14)CO(2) for 24 h. The total radioactivity of the gastrointestinal contents and feces for 24 h after administration was over 70%, much higher than those of the conventional rats (p<0.05). When a half dose (222 kBq, 52.5 mg) of [(14)C]mannitol was administered to conventional rats, the recovery as (14)CO(2) for 24 h (%) was significantly higher than that of a regular dose of [(14)C]mannitol (105 mg). When cold mannitol (105 mg) was orally administered to the antibiotics-treated rats, about 9% of intact mannitol was excreted in feces within 48 h after administration. However, no intact mannitol was detected in the conventional rats. These results demonstrate that more than 95% of mannitol administered orally is utilized via fermentation by intestinal microbes.

  15. Revisiting a universal airborne light detection and ranging approach for tropical forest carbon mapping: scaling-up from tree to stand to landscape.

    PubMed

    Vincent, Grégoire; Sabatier, Daniel; Rutishauser, Ervan

    2014-06-01

    Airborne laser scanning provides continuous coverage mapping of forest canopy height and thereby is a powerful tool to scale-up above-ground biomass (AGB) estimates from stand to landscape. A critical first step is the selection of the plot variables which can be related to light detection and ranging (LiDAR) statistics. A universal approach was previously proposed which combines local and regional estimates of basal area (BA) and wood density with LiDAR-derived canopy height to map carbon at a regional scale (Asner et al. in Oecologia 168:1147-1160, 2012). Here we explore the contribution of stem diameter distribution, specific wood density and height-diameter (H-D) allometry to forest stand AGB and propose an alternative model. By applying the new model to a large tropical forest data set we show that an appropriate choice of input variables is essential to minimize prediction error of stand AGB which will propagate at larger scale. Stem number (N) and average stem cross-sectional area should be used instead of BA when scaling from tree to plot. Stand quadratic mean diameter above the census threshold diameter size should be preferred over stand mean diameter as it reduces the prediction error of stand AGB by a factor of ten. Wood density should be weighted by stem volume per species instead of BA. LiDAR-derived statistics should prove useful for estimating local H-D allometries as well as mapping N and the mean quadratic diameter above 10 cm at the landscape level. Prior stratification into forest types is likely to improve both estimation procedures significantly and is considered the foremost current challenge. PMID:24615493

  16. Appearance of circulating and tissue /sup 14/C-lipids after oral /sup 14/C-tripalmitate administration in the late pregnant rat

    SciTech Connect

    Argiles, J.; Herrera, E.

    1989-02-01

    Studies were performed to determine whether and/or how dietary lipids participate in maternal hypertriglyceridemia during late gestation in the rat. After oral administration of glycerol-tri(1-14C)-palmitate, total radioactivity in plasma increased more rapidly in 20-day pregnant rats than in either 19-day pregnant rats or virgin controls. At the peak of plasma radioactivity, four hours after the tracer was administered, most of the plasma label corresponded to 14C-lipids in triglyceride-rich lipoproteins (d less than 1.006), and when expressed per micromol of triglyceride, values were higher in pregnant than in virgin rats. The difference was less after 24 hours, although at this time the level of 14C-lipids in d less than 1.006 lipoproteins was still higher in 20-day pregnant rats than in virgins. Tissue 14C-lipids, as expressed per gram of fresh weight, were similar in pregnant and virgin rats, but the values in mammary glands were much higher in the former group. Estimated recovery of administered radioactivity four hours after tracer in total white adipose tissue, mammary glands, and plasma lipids was higher in pregnant than in virgin rats. No difference was found between 20-day pregnant and virgin rats either in the label retained in the gastrointestinal tract or in that exhaled as 14C-CO2 during the first four hours following oral administration of 14C-tripalmitate. These findings plus the known maternal hyperphagia, indicate that in the rat at late pregnancy triglyceride intestinal absorption is unchanged or even enhanced and that dietary lipids actively contribute to both maternal hypertriglyceridemia and lipid uptake by the mammary gland.

  17. A new procedure for extraction of collagen from modern and archaeological bones for 14C dating.

    PubMed

    Maspero, F; Sala, S; Fedi, M E; Martini, M; Papagni, A

    2011-10-01

    Bones are potentially the best age indicators in a stratigraphic study, because they are closely related to the layer in which they are found. Collagen is the most suitable fraction and is the material normally used in radiocarbon dating. Bone contaminants can strongly alter the carbon isotopic fraction values of the samples, so chemical pretreatment for (14)C dating by accelerator mass spectrometry (AMS) is essential. The most widespread method for collagen extraction is based on the Longin procedure, which consists in HCl demineralization to dissolve the inorganic phase of the samples, followed by dissolution of collagen in a weak acid solution. In this work the possible side effects of this procedure on a modern bone are presented; the extracted collagen was analyzed by ATR-IR spectroscopy. An alternative procedure, based on use of HF instead of HCl, to minimize unwanted degradation of the organic fraction, is also given. A study by ATR-IR spectroscopic analysis of collagen collected after different demineralization times and with different acid volumes, and a study of an archaeological sample, are also presented.

  18. 14C-Based source assessment of soot aerosols in Stockholm and the Swedish EMEP-Aspvreten regional background site

    NASA Astrophysics Data System (ADS)

    Andersson, August; Sheesley, Rebecca J.; Kruså, Martin; Johansson, Christer; Gustafsson, Örjan

    2011-01-01

    Combustion-derived soot or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In order to propose effective mitigation strategies for BC emissions it is of importance to investigate geographical distributions and seasonal variations of BC emission sources. Here, a radiocarbon methodology is used to distinguish between fossil fuel and biomass burning sources of soot carbon (SC). SC is isolated for subsequent off-line 14C quantification with the chemothermal oxidation method at 375 °C (CTO-375 method), which reflects a recalcitrant portion of the BC continuum known to minimize inadvertent inclusion of any non-pyrogenic organic matter. Monitored wind directions largely excluded impact from the Stockholm metropolitan region at the EMEP-Aspvreten rural station 70 km to the south-west. Nevertheless, the Stockholm city and the rural stations yielded similar relative source contributions with fraction biomass ( fbiomass) for fall and winter periods in the range of one-third to half. Large temporal variations in 14C-based source apportionment was noted for both the 6 week fall and the 4 month winter observations. The fbiomass appeared to be related to the SC concentration suggesting that periods of elevated BC levels may be caused by increased wood fuel combustion. These results for the largest metropolitan area in Scandinavia combine with other recent 14C-based studies of combustion-derived aerosol fractions to suggest that biofuel combustion is contributing a large portion of the BC load to the northern European atmosphere.

  19. The effect of 6-aminonicotinamide on the levels of brain amino acids and glucose, and their labeling with 14C after injection of (U-14C) glucose

    SciTech Connect

    Gaitonde, M.K.; Lewis, L.P.; Evans, G.; Clapp, A.

    1981-10-01

    The brains of rats paralysed at 4 hr after the administration of 6-aminonicotinamide were found to contain decreased levels of glutamate and gamma-aminobutyrate. The glucose content of the brain of the treated rats was several fold higher than in controls. The incorporation of 14C into brain amino acids at 30 min after the injection of (U-14C)glucose was decreased by 16%: this was attributed to mainly decreased labeling of glutamate and associated amino acids. The results are discussed in the light of previous findings that the administration of 6-aminonicotinamide resulted in the blockade of the direct oxidation of glucose by the pentose phosphate pathway.

  20. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C

    PubMed Central

    Heinemeier, Katja Maria; Schjerling, Peter; Heinemeier, Jan; Magnusson, Stig Peter; Kjaer, Michael

    2013-01-01

    Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the 14C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of 14C, produced by nuclear bomb tests in 1955–1963, which is reflected in all living organisms. Levels of 14C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945–1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of 14C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of 14C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, 14C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue.—Heinemeier, K. M., Schjerling, P., Heinemeier, J., Magnusson, S. P., Kjaer, M. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C. PMID:23401563

  1. The distribution of Δ14C in Korea from 2010 to 2013

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Hong, W.; Xu, X.; Park, G.; Sung, K. S.; Sung, Kilho; Lee, Jong-geol; Nakanishi, T.; Park, Hyo-Seok

    2015-10-01

    Δ14C values of leaves of a deciduous tree record to those of atmospheric CO2 within error and were used to map out Δ14C distribution in Korea. We collected ginkgo (Ginkgo biloba Linnaeus, a deciduous tree) leaf samples in mid-June to early July from 2009 to 2013 in Korea to obtain the regional distribution of Δ14C. Commonly CO2 emitted from fossil fuel consumption dilutes atmospheric 14C, while operations and accidents at nuclear power plants can increase it. The distribution maps of Δ14C from 2010 to 2013 in Korea shows that Δ14C values in the northwestern and southeastern parts of Korea are lower than those of the other parts of Korea, which is consistent with the population and industry patterns. Decrease rates of annually averaged Δ14C values in Korea over the study period are larger than those of Pt. Barrow, Alaska, USA (71.3°N, 156.5°W), so the difference between them and those of Pt. Barrow, Alaska, USA became larger annually. This may be due to the increase in fossil fuel consumption in Korea and China. The decrease rate between 2010 and 2011 was smaller than in other years. This could be the effect of the Fukushima power plant accident which occurred in March 11, 2011, but further study is needed to clarify it.

  2. Discussion: Reporting and calibration of post-bomb 14C data

    SciTech Connect

    Reimer, P J; Brown, T A; Reimer, R W

    2004-10-11

    The definitive paper by Stuiver and Polach (1977) established the conventions for reporting of {sup 14}C data for chronological and geophysical studies based on the radioactive decay of {sup 14}C in the sample since the year of sample death or formation. Several ways of reporting {sup 14}C activity levels relative to a standard were also established, but no specific instructions were given for reporting nuclear weapons testing (post-bomb) {sup 14}C levels in samples. Because the use of post-bomb {sup 14}C is becoming more prevalent in forensics, biology, and geosciences, a convention needs to be adopted. We advocate the use of fraction modern with a new symbol F{sup 14}C to prevent confusion with the previously used Fm, which may or may not have been fractionation corrected. We also discuss the calibration of post-bomb {sup 14}C samples and the available datasets and compilations, but do not give a recommendation for a particular dataset.

  3. Secretin enhances (/sup 14/C)erythritol clearance in unanesthetized dogs

    SciTech Connect

    Lewis, M.H.; Baker, A.L.; Dhorajiwala, J.; Moossa, A.R.

    1982-01-01

    To determine the effect of secretin infusion on clearance of inert markers into bile, unanesthetized dogs fitted with Thomas cannulas received continuous infusions of (/sup 14/C)erythritol and (/sup 3/H)inulin throughout study. Taurocholic acid administered sequentially at 9.0, 20.0, and 40.0 mumol/min enhanced (/sup 14/C)erythritol clearance, and GIH secretin (3 units/min) administered along with TCA (40.0 mumol/min) increased (/sup 14/C)erythritol clearance from 4.9 +/- 1.2 ml/10 min to 6.8 +/- 1.3 ml/10 min (P less than 0.001), but simultaneously measured (/sup 3/H)inulin clearance was unaltered. Secretin alone also increased (/sup 14/C)erythritol clearance but did not alter (/sup 3/H)inulin clearance. The increase in (/sup 14/C)erythritol clearance per unit increase in bile flow was less during secretin infusion than TCA. Thus, secretin increases (/sup 14/C)erythritol transport through restricted channels, probably distal to the canaliculi. (/sup 14/C)Erythritol may not be an accurate marker for canalicular bile flow in dogs during secretin infusion.

  4. The biological fate of sup 14 C-dimercaptosuccinic acid in monkeys and rabbits

    SciTech Connect

    Tillotson, J.A.; Boswell, G.; Kincannon, L.; Speckman, C.L.

    1989-09-01

    The biological fate of {sup 14}C-labeled dimercaptosuccinic acid (DMSA) in monkeys and rabbits was determined by measuring the {sup 14}C activity in their urine, feces, and expired air ({sup 14}CO{sub 2}). Monkeys absorbed less than 20% DMSA from three oral dose levels (0.082, 0.16, and 0.5 mmol/kg) of {sup 14}C-DMSA, and the rabbits absorbed 32% DMSA or less from an oral dose of {sup 14}C-DMSA (0.5 mmol/kg). Although the bioavailability of DMSA was limited in either species, DMSA was detected in the blood of both species within minutes after oral dosing. In either species, most of the radiolabel from the absorbed {sup 14}C-DMSA was detected in the urine within 12 hours. We also developed a sensitive assay for directly measuring levels of DMSA (as free thiols) in blood. Intact DMSA was not detected in the blood of the monkeys or the rabbits more than 200 minutes after oral or intravenous dosing at 0.5 mmol DMSA/kg body weight. However, {sup 14}C activity in blood and urine of the monkeys was measurable 72 hours after this dose. Differences between measured {sup 14}C concentrations and intact DMSA concentrations in the blood suggest the presence of DMSA metabolites that have longer half-lives than DMSA. Consequently, until the biological activities of these compounds are identified, the pharmacokinetic analysis of DMSA may be incomplete.

  5. Biokinetic and dosimetric investigations of 14C-labeled substances in man using AMS

    NASA Astrophysics Data System (ADS)

    Mattsson, Sören; Gunnarsson, Mikael; Svegborn, Sigrid Leide; Nosslin, Bertil; Nilsson, Lars-Erik; Thorsson, Ola; Valind, Sven; Åberg, Magnus; Östberg, Henrik; Hellborg, Ragnar; Stenström, Kristina; Erlandsson, Bengt; Faarinen, Mikko; Kiisk, Madis; Magnusson, Carl-Erik; Persson, Per; Skog, Göran

    2001-07-01

    Up to now, radiation dose estimates from radiopharmaceuticals, labeled with pure β-emitting radionuclides, e.g., 14C or 3H have been very uncertain. Using accelerator mass spectrometry (AMS) we have derived new and improved data for 14C-triolein and 14C-urea and are currently running a program related to the biokinetics and dosimetry of 14C-glycocholic acid and 14C-xylose. The results of our investigations have made it possible to widen the indications for the clinical use of the 14C-urea test for Helicobacter pylori infection in children. The use of ultra-low activities, which is possible with AMS (down to 1/1000 of that used for liquid scintillation counting), has opened the possibility for metabolic investigations on children as well as on other sensitive patient groups like new-borns, and pregnant or breast-feeding women. Using the full potential of AMS, new 14C-labeled drugs could be tested on humans at a much earlier stage than today, avoiding uncertain extrapolations from animal models.

  6. Post-bomb coral Δ14C record from Iki Island, Japan: possible evidence of oceanographic conditions on the northern East China Sea shelf

    NASA Astrophysics Data System (ADS)

    Mitsuguchi, Takehiro; Hirota, Masashi; Paleo Labo AMS Dating Group; Yamazaki, Atsuko; Watanabe, Tsuyoshi; Yamano, Hiroya

    2016-07-01

    In this study, a sea-surface water Δ14C record of AD 1966-2000 (i.e., after the atmospheric nuclear-bomb testing period of the mid-1950s to early 1960s) was reconstructed from a coral sample collected from Iki Island, western Japan. The island is located in the Tsushima Strait where the Tsushima Current flows from the East China Sea (ECS) continental shelf into the Sea of Japan, indicating a strong influence of the ECS shelf water on the island. It is widely accepted that the Tsushima Current originates in the area between the ECS shelf break and the Nansei Islands further offshore as a branch of the Kuroshio Current, although another possible origin is the Taiwan-Tsushima Current System. The Δ14C record from Iki Island shows the following evidence of a response to the atmospheric nuclear testing: (1) an increase from ~55‰ in 1966 to ~133‰ in 1970, (2) a plateau ranging between ~123 and ~142‰ during the 1970s to the late 1980s, and (3) a gradual decrease from ~115‰ in 1990 to ~83‰ in 2000. Comparison of this record with coral Δ14C records from the Nansei Islands (Okinawa Island, Ishigaki Island and Kikai Island), located ~160-280 km off the ECS shelf break and little influenced by the shelf water, suggests that the surface-water Δ14C around Iki Island was ~30-45‰ lower than that of the Nansei Islands from the mid-1960s to late 1970s, and that the Δ14C difference between Iki Island and the Nansei Islands decreased from the end of the 1970s to ~0-15‰ in the mid-1980s to 2000. The lower Δ14C around Iki Island can be explained as follows: (1) in contrast to the Nansei Islands area, the ECS shelf area is a vertically mixed, highly concentrated carbon reservoir significantly connected to subsurface and deeper waters outside the shelf area, strongly suggesting that the surface-water Δ14C of the shelf area (perhaps excepting very shallow innermost shelf areas) was significantly less sensitive to the atmospheric nuclear-bomb 14C spike than that of the

  7. Post-bomb coral Δ14C record from Iki Island, Japan: possible evidence of oceanographic conditions on the northern East China Sea shelf

    NASA Astrophysics Data System (ADS)

    Mitsuguchi, Takehiro; Hirota, Masashi; Group, Paleo Labo AMS Dating; Yamazaki, Atsuko; Watanabe, Tsuyoshi; Yamano, Hiroya

    2016-10-01

    In this study, a sea-surface water Δ14C record of AD 1966-2000 (i.e., after the atmospheric nuclear-bomb testing period of the mid-1950s to early 1960s) was reconstructed from a coral sample collected from Iki Island, western Japan. The island is located in the Tsushima Strait where the Tsushima Current flows from the East China Sea (ECS) continental shelf into the Sea of Japan, indicating a strong influence of the ECS shelf water on the island. It is widely accepted that the Tsushima Current originates in the area between the ECS shelf break and the Nansei Islands further offshore as a branch of the Kuroshio Current, although another possible origin is the Taiwan-Tsushima Current System. The Δ14C record from Iki Island shows the following evidence of a response to the atmospheric nuclear testing: (1) an increase from ~55‰ in 1966 to ~133‰ in 1970, (2) a plateau ranging between ~123 and ~142‰ during the 1970s to the late 1980s, and (3) a gradual decrease from ~115‰ in 1990 to ~83‰ in 2000. Comparison of this record with coral Δ14C records from the Nansei Islands (Okinawa Island, Ishigaki Island and Kikai Island), located ~160-280 km off the ECS shelf break and little influenced by the shelf water, suggests that the surface-water Δ14C around Iki Island was ~30-45‰ lower than that of the Nansei Islands from the mid-1960s to late 1970s, and that the Δ14C difference between Iki Island and the Nansei Islands decreased from the end of the 1970s to ~0-15‰ in the mid-1980s to 2000. The lower Δ14C around Iki Island can be explained as follows: (1) in contrast to the Nansei Islands area, the ECS shelf area is a vertically mixed, highly concentrated carbon reservoir significantly connected to subsurface and deeper waters outside the shelf area, strongly suggesting that the surface-water Δ14C of the shelf area (perhaps excepting very shallow innermost shelf areas) was significantly less sensitive to the atmospheric nuclear-bomb 14C spike than that of the

  8. 14C2H4: Its Incorporation and Metabolism by Pea Seedlings under Aseptic Conditions 1

    PubMed Central

    Beyer, Elmo M.

    1975-01-01

    The effects of various treatments on the recently reported system in pea (Pisum sativum cv. Alaska), which results in (a) the incorporation of 14C2H4 into the tissue and (b) the conversion of 14C2H4 to 14CO2, was investigated using 2-day-old etiolated seedlings which exhibit a maximum response. Heat treatment (80 C, 1 min) completely inhibited both a and b, whereas homogenization completely inhibited b but only partially inhibited a. Detaching the cotyledons from the root-shoot axis immediately before exposing the detached cotyledons together with the root-shoot axis to 14C2H4 markedly reduced both a and b. Increasing the 14C2H4 concentration from 0.14 to over 100 μl/l progressively increased the rate of a and b with tissue incorporation being greater than 14C2H4 to 14CO2 conversion only below 0.3 μl/l 14C2H4. Reduction of the O2 concentration reduced both a and b, with over 99% inhibition occurring under anaerobic conditions. The addition of CO2 (5%) severely inhibited 14C2H4 to 14CO2 conversion without significantly affecting tissue incorporation. Exposure of etiolated seedlings to fluorescent light during 14C2H4 treatment was without effect. Similarly, indoleacetic acid, gibberellic acid, benzyladenine, abscisic acid, and dibutyryl cyclic adenosine monophosphate had no significant effect on either a or b. The possibilities that the incorporation of 14C2H4 into pea tissues and its conversion to 14CO2 is linked to ethylene action, or that it represents a means of reducing the endogenous ethylene level, are discussed. Several problems encountered with the use of polyethylene vials, rubber serum stoppers, Clorox, and microbial contamination are also described. Images PMID:16659286

  9. Possible cluster preformation in the sup 14 C decay of sup 223 Ra

    SciTech Connect

    Hussonnois, M.; Le Du, J.F.; Brillard, L.; Ardisson, G. )

    1990-08-01

    A recent experiment on the {sup 14}C fine structure has shown that the branching ratio to {sup 209}Pb ground state is quite different from the one predicted by the various models of cluster emission. Assuming that the {sup 14}C is preformed in the {sup 223}Ra nucleus, we have calculated the hindrance factor {ital F}{sup 14}C of the three {sup 14}C branches to {sup 209}Pb states with a barrier penetrability approximated by a square-well Coulomb potential. The {ital F}{sup 14}C=3.9 and 4.6 values found for the {sup 14}C transitions to the two excited states at 779 keV ({ital I}{sup {pi}}=11/2{sup +}) and 1423 keV ({ital I}{sup {pi}}=15/2{sup {minus}}), respectively, reveal that the cluster formation amplitudes in both transitions are close to those of the {sup 222}Ra and {sup 224}Ra {sup 14}C decays. Such values could be the result of {vert bar}{ital nlj}{r angle} shell-model components common to both the wave functions of the octupole deformed {sup 223}Ra nucleus and of the two first excited states of {sup 209}Pb spherical nucleus. The high hindrance factor {ital F}{sup 14}C=583 of the {sup 14}C branch to the {sup 209}Pb ground state ({ital I}{sup {pi}}=9/2{sup +}) could reveal the absence of {vert bar}1{ital g}{sub 9/2}{r angle} shell-model component in the {sup 223}Ra wave function.

  10. 87Sr/86Sr as a quantitative geochemical proxy for 14C reservoir age in dynamic, brackish waters: assessing applicability and quantifying uncertainties.

    NASA Astrophysics Data System (ADS)

    Lougheed, Bryan; van der Lubbe, Jeroen; Davies, Gareth

    2016-04-01

    Accurate geochronologies are crucial for reconstructing the sensitivity of brackish and estuarine environments to rapidly changing past external impacts. A common geochronological method used for such studies is radiocarbon (14C) dating, but its application in brackish environments is severely limited by an inability to quantify spatiotemporal variations in 14C reservoir age, or R(t), due to dynamic interplay between river runoff and marine water. Additionally, old carbon effects and species-specific behavioural processes also influence 14C ages. Using the world's largest brackish water body (the estuarine Baltic Sea) as a test-bed, combined with a comprehensive approach that objectively excludes both old carbon and species-specific effects, we demonstrate that it is possible to use 87Sr/86Sr ratios to quantify R(t) in ubiquitous mollusc shell material, leading to almost one order of magnitude increase in Baltic Sea 14C geochronological precision over the current state-of-the-art. We propose that this novel proxy method can be developed for other brackish water bodies worldwide, thereby improving geochronological control in these climate sensitive, near-coastal environments.

  11. Timing is Everything:The Boon and Bane of 14C Geochronology

    SciTech Connect

    Guilderson, T; Guilderson, T; Reimer, P J; Brown, T

    2004-10-29

    There are underappreciated limitations of the conversion of {sup 14}C-ages to the fixed, calendrical time-scale that bear directly upon our understanding of the dynamic climate system, or the relationship between the collapse of one civilization and it's neighbor's. In this paper we present a quantitative assessment of the limits of {sup 14}C-geochronology and calibration onto the absolute calendrical time-scale over the Holocene. We take into account not only the inherent limitations of the {sup 14}C-calendar calibration curve, but also analytical uncertainties.

  12. Synthesis, storage, and stability of (4-/sup 14/C)oxaloacetic acid

    SciTech Connect

    Hatch, M.D.; Heldt, H.W.

    1985-03-01

    A simple procedure for preparing (4-/sup 14/C)oxaloacetic acid based on the reaction between (/sup 14/C)HCO-3 and phosphoenolpyruvate catalyzed by phosphoenolpyruvate carboxylase is described. A simple method for preparing highly purified phosphoenolpyruvate carboxylase from maize leaves is described and the degradation of oxaloacetate under conditions of varying pH and divalent metal ion concentration is reported. (4-/sup 14/C)Oxaloacetic acid is stable for several months in 0.1 M HCl solution at -80 degrees C.

  13. Systemic distribution of sup 14 C-labeled formaldehyde applied in the root canal following pulpectomy

    SciTech Connect

    Hata, G.I.; Nishikawa, I.; Kawazoe, S.; Toda, T.

    1989-11-01

    The systemic distribution of {sup 14}C-labeled formaldehyde which had been placed in the root canals of the canines of cats following pulpectomies was studied using liquid scintillation counting and whole-body autoradiographic technique. Radioactive {sup 14}C which had been placed in the canals was found in the plasma 30 min after the root canal procedure. The recovery of systemic {sup 14}C radioactivity increased with time. In addition, it seemed that approximately 3% of the dose placed in the teeth was excreted in the urine within 36 h. Whole-body autoradiograms indicated extensive concentration of {sup 14}C radioactivity in tissues other than those analyzed with the liquid scintillation technique.

  14. Exotic nuclear decay of /sup 223/Ra by emission of /sup 14/C nuclei

    SciTech Connect

    Gales, S.; Hourani, E.; Hussonnois, M.; Schapira, J.P.; Stab, L.; Vergnes, M.

    1984-08-20

    The exotic nuclear decay of /sup 223/Ra by emission of /sup 14/C nuclei has been investigated by use of an intense radioactive /sup 227/Ac source and a magnetic spectrometer with a large solid angle. After a run of 5 d, a group of eleven events was observed at the expected location of /sup 14/C in a ..delta..E-E telescope calibrated with a /sup 14/C beam. A branching ratio of (5.5 +- 2.0) x 10/sup -10/ was measured for the emission of /sup 14/C nuclei relative to ..cap alpha.. particles from /sup 223/Ra in agreement with the previously reported ratio of (8.5 +- 2.5) x 10/sup -10/. .AE

  15. Interpretation of the fine structure in the sup 14 C radioactive decay of sup 223 Ra

    SciTech Connect

    Sheline, R.K. ); Ragnarsson, I. )

    1991-03-01

    The experimental hindrance factors determined from the fine structure in the {sup 14}C decay of {sup 223}Ra are strikingly similar to the hindrance factors observed in the alpha decay of odd-{ital A} reflection-asymmetric deformed nuclei in spite of the deformed to spherical shape which occurs in the {sup 14}C decay. Calculations of the overlap between the reflection-asymmetric ground state of {sup 223}Ra and the spherical shell-model orbitals of {sup 209}Pb involved in the {sup 14}C decay are consistent with the experimental hindrance factors from the {sup 14}C fine structure except that the {ital j}{sub 15/2} orbital is more strongly populated experimentally than the calculations suggest.

  16. Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Kang, Shichang; Shen, Chengde; Cong, Zhiyuan; Liu, Kexin; Wang, Wei; Liu, Lichao

    2010-06-01

    A total of 30 samples of total suspended particles were collected at an urban site in Lhasa, Tibet from August 2006 to July 2007 for investigating carbonaceous aerosol features. The fractions of contemporary carbon ( fc) in total carbon (TC) of ambient aerosols are presented using radiocarbon ( 14C) measurements. The value of fc represents the biogenic contribution to TC, as the biosphere releases organic compounds with the present 14C/ 12C level ( fc = 1), whereas 14C has become extinct in anthropogenic emissions of fossil carbon ( fc = 0). The fc values in Lhasa ranging from 0.357 to 0.702, are higher than Beijing and Tokyo, but clearly lower than the rural region of Launceston, which indicates a major biogenic influence in Lhasa. Seasonal variations of fc values corresponded well with variations of pollutants concentrations (e.g. NO 2). Higher fc values appeared in winter indicating carbonaceous aerosol is more dominated by wood burning and incineration of agricultural wastes within this season. The lower fc values in summer and autumn may be caused by increased diesel and petroleum emissions related to tourism in Lhasa. δ13C values ranged from - 26.40‰ to - 25.10‰, with relative higher values in spring and summer, reflecting the increment of fossil carbon emissions.

  17. Fate of (14)C-organic pollutant residues in composted sludge after application to soil.

    PubMed

    Haudin, Claire-Sophie; Zhang, Yuhai; Dumény, Valérie; Lashermes, Gwenaëlle; Bergheaud, Valérie; Barriuso, Enrique; Houot, Sabine

    2013-08-01

    Organic micropollutants may be present in biosolids, leading to soil contamination when they are recycled in agriculture. A sludge spiked with (14)C-labelled glyphosate (GLY), sodium linear dodecylbenzene sulphonate (LAS), fluoranthene (FLT) or 4-n-nonylphenol (NP) was composted with green waste and the fate of the (14)C-micropollutant residues remaining after composting was assessed after the compost application to the soil. (14)C-residues were mineralised in the soil and represented after 140d 20-32% of the initial activity for LAS, 16-25% for GLY, 6-9% for FLT and 4-7% for NP. The (14)C-residues at the end of composting that could not be extracted with methanol or ammonia were minimally remobilised or even increased for FLT. After 140d, non-extractable residues represented 38-52% of all of the (14)C-residues remaining in the soil for FLT, 50-67% for GLY, 91-92% for NP and 94-97% for LAS and in most cases, less than 1% of the (14)C-residues were water soluble, suggesting a low direct availability for leaching and microbial or plant assimilation. FLT was identified as the main compound among the methanol-extractable (14)C-residues that may be potentially available. The fate of the (14)C-organic pollutant residues in composts after application to soil could be assessed through a sequential chemical extraction scheme and depended on the chemical nature of the pollutant.

  18. Seasonally Resolved Surface Water (delta)14C Variability in the Lombok Strait: A Coralline Perspective

    SciTech Connect

    Guilderson, T P; Fallon, S J; Moore, M D; Schrag, D P; Charles, C D

    2008-04-23

    We have explored surface water mixing in the Lombok Strait through a {approx}bimonthly resolved surface water {Delta}{sup 14}C time-series reconstructed from a coral in the Lombok Strait that spans 1937 through 1990. The prebomb surface water {Delta}{sup 14}C average is -60.5{per_thousand} and individual samples range from -72{per_thousand} to 134{per_thousand}. The annual average post-bomb maximum occurs in 1973 and is 122{per_thousand}. The timing of the post-bomb maximum is consistent with a primary subtropical source for the surface waters in the Indonesian Seas. During the post-bomb period the coral records regular seasonal cycles of 5-20{per_thousand}. Seasonal high {Delta}{sup 14}C occur during March-May (warm, low salinity), and low {Delta}{sup 14}C occur in September (cool, higher salinity). The {Delta}{sup 14}C seasonality is coherent and in phase with the seasonal {Delta}{sup 14}C cycle observed in Makassar Strait. We estimate the influence of high {Delta}{sup 14}C Makassar Strait (North Pacific) water flowing through the Lombok Strait using a two endmember mixing model and the seasonal extremes observed at the two sites. The percentage of Makassar Strait water varies between 16 and 70%, and between 1955 and 1990 it averages 40%. During La Nina events there is a higher percentage of Makassar Strait (high {Delta}{sup 14}C) water in the Lombok Strait.

  19. Fate of (14)C-organic pollutant residues in composted sludge after application to soil.

    PubMed

    Haudin, Claire-Sophie; Zhang, Yuhai; Dumény, Valérie; Lashermes, Gwenaëlle; Bergheaud, Valérie; Barriuso, Enrique; Houot, Sabine

    2013-08-01

    Organic micropollutants may be present in biosolids, leading to soil contamination when they are recycled in agriculture. A sludge spiked with (14)C-labelled glyphosate (GLY), sodium linear dodecylbenzene sulphonate (LAS), fluoranthene (FLT) or 4-n-nonylphenol (NP) was composted with green waste and the fate of the (14)C-micropollutant residues remaining after composting was assessed after the compost application to the soil. (14)C-residues were mineralised in the soil and represented after 140d 20-32% of the initial activity for LAS, 16-25% for GLY, 6-9% for FLT and 4-7% for NP. The (14)C-residues at the end of composting that could not be extracted with methanol or ammonia were minimally remobilised or even increased for FLT. After 140d, non-extractable residues represented 38-52% of all of the (14)C-residues remaining in the soil for FLT, 50-67% for GLY, 91-92% for NP and 94-97% for LAS and in most cases, less than 1% of the (14)C-residues were water soluble, suggesting a low direct availability for leaching and microbial or plant assimilation. FLT was identified as the main compound among the methanol-extractable (14)C-residues that may be potentially available. The fate of the (14)C-organic pollutant residues in composts after application to soil could be assessed through a sequential chemical extraction scheme and depended on the chemical nature of the pollutant. PMID:23545187

  20. Extraction of /sup 14/C-labeled photosynthate from aquatic plants with dimethyl sulfoxide (DMSO)

    SciTech Connect

    Filbin, G.J.; Hough, R.A.

    1984-03-01

    DMSO was tested as a solvent to extract /sup 14/C-labeled photosynthate from three species of aquatic plants in photosynthesis measurements and compared with the dry oxidation method for plant radioassay. Extraction efficiency was in the range of 96-99% of fixed /sup 14/C, and precision was comparable to, or better than, that obtained with dry oxidation. The method is simple and inexpensive, and for fresh tissue the same sample extracts can be used for chlorophyll analyses.

  1. Disposition of [14C]methyl bromide in Fischer-344 rats after oral or intraperitoneal administration.

    PubMed

    Medinsky, M A; Bond, J A; Dutcher, J S; Birnbaum, L S

    1984-09-14

    Methyl bromide is used as a disinfectant to fumigate soil. The intent of our study was to determine the disposition of methyl bromide following a single acute administration. Male Fischer-344 rats were given 250 mumol of [14C] methyl bromide/kg body wt by either oral or i.p. administration. Urine, feces and expired air were collected and at the end of 72 h the rats were sacrificed and tissues analyzed to determine 14C excretion and tissue distribution. After i.p. administration of methyl bromide, the dominant route of excretion was exhalation of 14CO2, with 46% of the dose exhaled as 14CO2. In contrast, urinary excretion of 14C was the major route of elimination (43% of the dose) when methyl bromide was given orally. Very little of the 14C appeared in the feces (less than 3% of the dose) regardless of route of administration. In rats with bile duct cannulations, 46% of an oral dose appeared in the bile over a 24-h period. Collection of bile significantly decreased the exhalation of 14CO2 and 14C excreted in urine compared to controls. At 72 h after oral or i.p. administration, 14-17% of the 14C remained in the rats, with liver and kidney being the major organs of retention. Results indicate that route of administration can affect the pathways for excretion. In addition, excretion of 14C in bile, coupled with the low levels of radioactivity found in the feces, indicates that reabsorption of biliary metabolites from the gut plays a significant role in the disposition of [14C] methyl bromide.

  2. ( sup 14 C)urea breath test for diagnosis of Helicobacter pylori

    SciTech Connect

    Ormand, J.E.; Talley, N.J.; Carpenter, H.A.; Shorter, R.G.; Conley, C.R.; Wilson, W.R.; DiMagno, E.P.; Zinsmeister, A.R.; Phillips, S.F. )

    1990-07-01

    H. pylori is a potent urease producer, a characteristic that has been exploited in the development of the (14C)- and (13C)urea breath tests. The prevalence of H. pylori infection also is known to increase with advancing age; however, the individual patient's age has not routinely been considered when interpreting urea breath test results. The aim of this study was to validate a short, age-adjusted (14C)urea breath test for use in diagnosing H. pylori infections. Forty-one subjects (28 volunteers, 13 patients) underwent esophagogastroduodenoscopy with biopsies. Subjects were defined as being H. pylori-positive if histology or culture was positive. In addition, all subjects completed a 120-min (14C)urea breath test. A logistic regression analysis adjusting for age was used to estimate the probability of H. pylori positivity as a function of the 14C values generated. Sixteen subjects were H. pylori-positive, and 25 were H. pylori-negative. The 14C values generated between 15 and 80 min were found to be equally predictive in identifying H. pylori-positive subjects. Advancing age was associated with a higher probability of H. pylori-positivity. By taking advantage of the statistical probabilities, older patients could be accurately diagnosed with H. pylori at lower 14C values. We found that (14C)urea breath test to be both a sensitive and specific test that can be abbreviated to a 30-min examination (total test time). Moreover, our mathematical model indicates that a patient's age should be considered in order to optimize interpretation of the (14C)urea breath test, although further observations are needed to confirm this model.

  3. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray.

    PubMed

    Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-07-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test

  4. Performance of a Scanning Mobility Particle Sizer in Measuring Diverse Types of Airborne Nanoparticles: Multi-Walled Carbon Nanotubes, Welding Fumes, and Titanium Dioxide Spray

    PubMed Central

    Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-01-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the “gold standard” for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing “monodisperse” aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in

  5. Wine ethanol 14C as a tracer for fossil fuel CO2 emissions in Europe: Measurements and model comparison

    NASA Astrophysics Data System (ADS)

    Palstra, Sanne W. L.; Karstens, Ute; Streurman, Harm-Jan; Meijer, Harro A. J.

    2008-11-01

    14C (radiocarbon) in atmospheric CO2 is the most direct tracer for the presence of fossil-fuel-derived CO2 (CO2-ff). We demonstrate the 14C measurement of wine ethanol as a way to determine the relative regional atmospheric CO2-ff concentration compared to a background site ("regional CO2-ff excess") for specific harvest years. The carbon in wine ethanol is directly back traceable to the atmospheric CO2 that the plants assimilate. An important advantage of using wine is that the atmosphere can be monitored annually back in time. We have analyzed a total of 165 wines, mainly from harvest years 1990-1993 and 2003-2004, among which is a semicontinuous series (1973-2004) of wines from one vineyard in southwest Germany. The results show clear spatial and temporal variations in the regional CO2-ff excess values. We have compared our measured regional CO2-ff excess values of 2003 and 2004 with those simulated by the REgional MOdel (REMO). The model results show a bias of almost +3 parts per million (ppm) CO2-ff compared with those of the observations. The modeled differences between 2003 and 2004, however, which can be used as a measure for the variability in atmospheric mixing and transport processes, show good agreement with those of the observations all over Europe. Correcting for interannual variations using modeled data produces a regional CO2-ff excess signal that is potentially useful for the verification of trends in regional fossil fuel consumption. In this fashion, analyzing 14C from wine ethanol offers the possibility to observe fossil fuel emissions back in time on many places in Europe and elsewhere.

  6. AMS studies of the long-term turnover of 14C-labelled fat in man

    NASA Astrophysics Data System (ADS)

    Gunnarsson, M.; Mattsson, S.; Stenström, K.; Leide-Svegborn, S.; Erlandsson, B.; Faarinen, M.; Hellborg, R.; Kiisk, M.; Nilsson, L.-E.; Nosslin, B.; Persson, P.; Skog, G.; Åberg, M.

    2000-10-01

    To estimate the biokinetics of 14C-labelled fatty acids and the associated radiation absorbed dose to man, long-term retention of 14C from oral intake of glycerol tri[1- 14C]oleate (triolein) has been studied using accelerator mass spectrometry (AMS). As a complement to earlier reported data for three individuals, we present here results for one person from measurements up to 4.6 yr after administration, now also including 14C-levels in fat, muscle and bone. In this subject, a total of 44% of the administered activity was recovered in the exhaled air. Fasting increased the exhalation of 14C. The "excess" 14CO2 due to fasting had a half-life of about 400 d. AMS measurements on fat, muscle and bone biopsies taken from the same subject 4.5 yr after ingestion indicated that a small fraction of the administered activity was still present in fat. Also, bone tissue had a higher 14C specific activity than the current environmental level. No significantly increased level was found in the muscle sample.

  7. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C.

    PubMed

    Heinemeier, Katja Maria; Schjerling, Peter; Heinemeier, Jan; Magnusson, Stig Peter; Kjaer, Michael

    2013-05-01

    Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the (14)C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of (14)C, produced by nuclear bomb tests in 1955-1963, which is reflected in all living organisms. Levels of (14)C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945-1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of (14)C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of (14)C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, (14)C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue.

  8. Direct dating of archaeological pottery by compound-specific 14C analysis of preserved lipids.

    PubMed

    Stott, Andrew W; Berstan, Robert; Evershed, Richard P; Bronk-Ramsey, Christopher; Hedges, Robert E M; Humm, Martin J

    2003-10-01

    A methodology is described demonstrating the utility of the compound-specific 14C technique as a direct means of dating archaeological pottery. The method uses automated preparative capillary gas chromatography employing wide-bore capillary columns to isolate individual compounds from lipid extracts of archaeological potsherds in high purity (>95%) and amounts (>200 microg) sufficient for radiocarbon dating using accelerator mass spectrometry (AMS). A protocol was developed and tested on n-alkanes and n-carboxylic acids possessing a broad range of 14C ages. Analytical blanks and controls allowed background 14C measurements to be assessed and potential sources of errors to be detected, i.e., contamination with modern or dead 14C, isotopic fraction effects, etc. A "Russian doll" method was developed to transfer isolated target compounds onto tin powder/capsules prior to combustion and AMS analyses. The major advantage of the compound-specific technique is that 14C dates obtained for individual compounds can be directly linked to the commodities processed in the vessels during their use, e.g., animal fats. The compound-specific 14C dating protocol was validated on a suite of ancient pottery whose predicted ages spanned a 5000-year date range. Initial results indicate that meaningful correlations can be obtained between the predicted date of pottery and that of the preserved lipids. These findings constitute an important step forward to the direct dating of archaeological pottery.

  9. Fate of 14C-ethyl prothiofos insecticide in canola seeds and oils.

    PubMed

    Abdel-Gawad, Hassan; Hegazi, Bahira

    2010-02-01

    Canola plants were treated with (14)C- prohiofos under conditions simulating local agricultural practices. (14)C-residues in seeds were determined at different time intervals. At harvest time about 32 % of (14)C-activity was associated with oil. The methanol soluble (14)C-residues accounted for 12 % of the total seed residues after further seeds extraction, while the cake contained about 49 % of the total residues. About 69 % of the (14)C-activity in the crude oil could be eliminated by simulated commercial processes locally used for oil refining. Chromatographic analysis of crude and refined oil revealed the presence of the parent compound together with three metabolites which were identified as prothiofos oxon, O-ethyl phosphorothioate and O-ethyl S-propyl phosphorothioate, besides one unknown compound. While methanol extract revealed the presence of despropylthio prothiofos and O-ethyl phosphoric acid as free metabolites acid hydrolysis of the conjugated metabolites in the methanol extract yielded 2, 4-dichlorophenole which was detected by color. When rats were fed the extracted cake for 72 hours, the bound residues were found to be bioavailable. The main excretion route was via the expired air (42 %), while the (14)C-residues excreted in urine and feces were 30 % and 11 %, respectively. The radioactivity detected among various organs accounted to 7.5 %.Chromatographic analysis of urine indicated the presence of prothiofos oxon, O-ethyl phosphoric acid and 2, 4-dichlorophenole as main degradation products of prothiofos in free and conjugated form.

  10. Measuring chlorophyll. cap alpha. and /sup 14/C-labeled photosynthate in aquatic angiosperms by the use of a tissue solubilizer. [/sup 14/C-labelled photosynthate

    SciTech Connect

    Beer, S.; Stewart, A.J.; Wetzel, R.G.

    1982-01-01

    A compound that quantitatively correlated with chlorophyll ..cap alpha.. could be measured fluorometrically in the extracts of leaves of three aquatic angiosperms (Myriophyllum heterophyllum Michx., Potamogeton crispus L., Elodea canadensis Michx.) treated with the tissue solubilizer BTS-450. Fluorescent characteristics of the solubilized plant tissues were stable for several weeks in the dark at temperatures up to 60/sup 0/C but rapidly degraded in sunlight or when acidified. /sup 14/C-Labeled photosynthate, which had been fixed by leaf discs during 1- to 10-hour exposure to H/sup 14/CO/sub 3/, was also readily extracted by the tissue solubilizer. Solubilizer extraction can, therefore, be used to determine both chlorophyll ..cap alpha.. content and /sup 14/C incorporation rates in the same leaf sample. The method is practical, because no grinding is required, the fluorescent characteristics of the extracts are stable, and analyses can be performed with very little plant material (about 3 milligrams).

  11. Persistence of the herbicides (/sup 14/C)chlorsulfuron and (/sup 14/C)metsulfuron methyl in prairie soils under laboratory conditions

    SciTech Connect

    Smith, A.E.

    1986-11-01

    Metsulfuron methyl, whose structure is closely related to that of chlorsulfuron, is currently being evaluated on the Canadian prairies as a postemergence treatment for the control of broadleaf weeds in cereal crops, in non-crop land and for brush control. Although applied postemergence, some of the herbicide will come into contact with the soil making it necessary to determine the fate of metsulfuron methyl in the soil. These studies were undertaken to investigate the rate of breakdown and the fate of (/sup 14/C)metsulfuron methyl in three soils under laboratory conditions where no leaching could occur. The rate of breakdown of (/sup 14/C)chlorsulfuron was also investigated in one of the soils.

  12. Isotopic analyses (/sup 18/O, /sup 13/C, /sup 14/C) of two meromictic lakes in the Canadian Arctic Archipelago

    SciTech Connect

    Page, P.; Ouellet, M.; Hillaire-Marcel, C.; Dickman, M.

    1984-05-01

    Meromictic Lakes Garrow and Sophia in the Canadian Arctic Archipelago were sampled to establish the origin and age of their water by isotopic studies. /sup 18/O values reflect the permanent stratification of the water in both lakes. The mixolimnia contain waters with an isotopic signal between -13.16 and -21.98%, coherent with the values for precipitation in these high latitudes. In the chemoclines, the delta/sup 18/O values increase to -10% concomitantly with a rise in chloride content to 42 g.liter/sup -1/. In the monimolimnia, hypersaline waters (up to 2.5 times the salinity of seawater) show negative delta/sup 18/O values (ca. -.08%). These waters result from brine production during permafrost growth in the watershed, according to a Rayleigh process. /sup 14/C dating of total inorganic carbon in the Lake Garrow monimolimnion gave an age of 2580 +/- 260 years BP. In Lake Sophia, the deep waters exhibit recent /sup 14/C activity that suggests recent infiltration of seawater into the lake basin.

  13. Estimate of recharge of a rising water table in semiarid Niger from 3H and 14C modeling.

    PubMed

    Favreau, Guillaume; Leduc, Christian; Marlin, Christelle; Dray, Martial; Taupin, Jean-Denis; Massault, Marc; Le, GalLaSalleCorinne; Babic, Milanka

    2002-01-01

    A hydrodynamic survey carried out in semiarid southwest Niger revealed an increase in the unconfined ground water reserves of approximately 10% over the last 50 years due to the clearing of native vegetation. Isotopic samplings (3H, 18O, 2H for water and 14C, 13C for the dissolved inorganic carbon) were performed on about 3500 km2 of this silty aquifer to characterize recharge. Stable isotope analyses confirmed the indirect recharge process that had already been shown by hydrodynamic surveys and suggested the tracers are exclusively of atmospheric origin. An analytical model that takes into account the long-term rise in the water table was used to interpret 3H and 14C contents in ground water. The natural, preclearing median annual renewal rate (i.e., recharge as a fraction of the saturated aquifer volume) lies between 0.04% and 0.06%. For representative characteristics of the aquifer (30 m of saturated thickness, porosity between 10% and 25%), this implies a recharge of between 1 and 5 mm/year, which is much lower than the estimates of 20 to 50 mm/year for recent years, obtained using hydrological and hydrodynamic methods and the same aquifer parameters. Our study, therefore, reveals that land clearing in semiarid Niger increased ground water recharge by about one order of magnitude.

  14. The effects of the oral administration of fish oil concentrate on the release and the metabolism of (/sup 14/C)arachidonic acid and (/sup 14/C)eicosapentaenoic acid by human platelets

    SciTech Connect

    Hirai, A.; Terano, T.; Hamazaki, T.; Sajiki, J.; Kondo, S.; Ozawa, A.; Fujita, T.; Miyamoto, T.; Tamura, Y.; Kumagai, A.

    1982-11-01

    It has been suggested by several investigators that eicosapentaenoic acid (C20:5 omega 3, EPA) might have anti-thrombotic effects. In this experiment, the effect of the oral administration of EPA rich fish oil concentrate on platelet aggregation and the release and the metabolism of (/sup 1 -14/C)arachidonic acid and ((U)-/sup 14/C)eicosapentaenoic acid by human platelets was studied. Eight healthy male subjects ingested 18 capsules of fish oil concentrate (EPA 1.4 g) per day for 4 weeks. Plasma and platelet concentrations of EPA markedly increased, while those of arachidonic acid (C20:4 omega 6, AA) and docosahexaenoic acid (C22:6 omega 3, DHA) did not change. Platelet aggregation induced by collagen and ADP was reduced. Collagen induced (/sup 14/C)thromboxane B2 (TXB2) formation from (/sup 14/C)AA prelabeled platelets decreased. There was no detectable formation of (/sup 14/C)TXB3 from (/sup 14/C)EPA prelabeled platelets, and the conversion of exogenous (/sup 14/C)EPA to (/sup 14/C)TXB3 was lower than that of (/sup 14/C)AA to (/sup 14/C)TXB2. The release of (/sup 14/C)AA from (/sup 14/C)AA prelabeled platelets by collagen was significantly decreased. These observations raise the possibility that the release of arachidonic acid from platelet lipids might be affected by the alteration of EPA content in platelets.

  15. Accelerator mass spectrometry measurements of the 13C (n ,γ )14C and 14N(n ,p )14C cross sections

    NASA Astrophysics Data System (ADS)

    Wallner, A.; Bichler, M.; Buczak, K.; Dillmann, I.; Käppeler, F.; Karakas, A.; Lederer, C.; Lugaro, M.; Mair, K.; Mengoni, A.; Schätzel, G.; Steier, P.; Trautvetter, H. P.

    2016-04-01

    The technique of accelerator mass spectrometry (AMS), offering a complementary tool for sensitive studies of key reactions in nuclear astrophysics, was applied for measurements of the 13C (n ,γ )14C and the 14N(n ,p )14C cross sections, which act as a neutron poison in s -process nucleosynthesis. Solid samples were irradiated at Karlsruhe Institute of Technology with neutrons closely resembling a Maxwell-Boltzmann distribution for k T =25 keV, and also at higher energies between En=123 and 182 keV. After neutron irradiation the produced amount of 14C in the samples was measured by AMS at the Vienna Environmental Research Accelerator (VERA) facility. For both reactions the present results provide important improvements compared to previous experimental data, which were strongly discordant in the astrophysically relevant energy range and missing for the comparably strong resonances above 100 keV. For 13C (n ,γ ) we find a four times smaller cross section around k T =25 keV than a previous measurement. For 14N(n ,p ), the present data suggest two times lower cross sections between 100 and 200 keV than had been obtained in previous experiments and data evaluations. The effect of the new stellar cross sections on the s process in low-mass asymptotic giant branch stars was studied for stellar models of 2 M⊙ initial mass, and solar and 1 /10th solar metallicity.

  16. Changes in the 14C-Labeled Cell Wall Components with Chase Time after Incorporation of UDP[14C]Glucose by Intact Cotton Fibers 1

    PubMed Central

    Dugger, W. M.; Palmer, Raymond L.

    1988-01-01

    Intact, in vitro-grown cotton fibers will incorporate [14C]glucose from externally supplied UDP[14C]glucose into a variety of cell wall components including cellulose; this labeled fraction will continue to increase up to 4 hours chase time. In the fraction soluble in hot water there was no significant change in total label; however, the largest fraction after the 30 minute pulse with UDP[14C]glucose was chloroform-methanol soluble (70%) and showed a significant decrease with chase. The lipids that make up about 85% of this fraction were identified by TLC as steryl glucosides, acylated steryl glucosides, and glucosyl-phosphoryl-polyprenol. Following the pulse, the loss of label from acylated steryl glucosides and glucosylphophoryl-polyprenol was almost complete within 2 hours of chase; steryl glucosides made up about 85% of the fraction at that chase time. The total loss in the lipid fraction (about 100 picomoles per milligram dry weight of fiber) with chase times of 4 hours approximates the total gain in the total glucans. PMID:16666066

  17. Effect of cytochalasin B on 3-O-[(14)C]-methyl-D-glucose or D-[U-(14)C]glucose handling by BRIN-BD11 cells.

    PubMed

    Cetik, Sibel; Rzajeva, Aigun; Malaisse, Willy J; Sener, Abdullah

    2014-07-01

    The present study aimed to investigate the effects of cytochalasin B (20 μM) on the uptake of 3-O-[(14)C]-methyl-D-glucose or D-[U-(14)C]glucose (8.3 mM each) by BRIN-BD11 cells. Taking into account the distribution space of tritiated water ((3)HOH), which was unexpectedly increased shortly after exposure of the cells to cytochalasin B and then progressively returned to its control values, and that of L-[1-(14)C]glucose, used as an extracellular marker, it was demonstrated that cytochalasin B caused a modest, but significant inhibition of the uptake of D-glucose and its non-metabolized analog by the BRIN-BD11 cells. These findings resemble those observed in acinar or ductal cells of the rat submaxillary gland and displayed a relative magnitude comparable to that found for the inhibition of D-glucose metabolism by cytochalasin B in purified pancreatic islet B cells. These findings reinforce the view that the primary site of action of cytochalasin B is located at the level of the plasma membrane.

  18. Possible influence of climate factors on the reconstruction of the cosmogenic isotope 14C production rate in the earth's atmosphere and solar activity in past epochs

    NASA Astrophysics Data System (ADS)

    Kuleshova, A. I.; Dergachev, V. A.; Kudryavtsev, I. V.; Nagovitsyn, Yu. A.; Ogurtsov, M. G.

    2015-12-01

    The paper considers the probable influence of variations of the global temperature and carbon dioxide concentration in the Earth's atmosphere on the results of reconstruction of the production rate of the cosmogenic isotope 14C in the terrestrial atmosphere for the period from the early 15th to the mid 19th century. This time interval covers the Spörer, Maunder, and Dalton minima of solar activity, as well as the Little Ice Age. It was shown that the climate changes that occurred during the Little Ice Age should be taken into account. In the Maunder and Spörer minima of solar activity, the 14C generation rate may be comparable to the values for the Dalton minimum, while exclusion of the climate effect yields extremely large values of the 14C production rate for these grand minima. In the solar activity reconstruction for past epochs, this circumstance should be taken into consideration via measurements of the 14C concentration on a long time scale.

  19. Altered condensed-phase electron affinities of carbonyl-/sup 13/C-, /sup 14/C, and -/sup 17/O- substituted ketones

    SciTech Connect

    Lauricella, T.L.; Pescatore, J.A. Jr.; Reiter, R.C.; Stevenson, R.D.; Stevenson, G.R.

    1988-06-16

    Electron spin resonance experiments have shown that the solution affinities of both benzoquinone (BQ) and benzophenone (BZO) in liquid ammonia are diminished when a /sup 13/C replaces the /sup 12/C in the carbonyl position. For the reaction *R + R/sup .-/ reversible *R/sup .-/ + R, where *R represents the /sup 13/C-substituted material (either BZO-13C or BQ-13C), the equilibrium constants (K/sub eq/) are 0.80 and 0.50 at -75/sup 0/ C for the BQ and BZO systems, respectively. The reduction of radioactive samples of benzophenone (mixtures of BZO and BZO-14C, /sup 14/C substitution at the carbonyl carbon) with deficient amounts of sodium metal in liquid ammonia followed by removal of the ammonia leaves a solid mixture of benzophenone and benzophenone ketyl. Sublimation of the neutral benzophenone from the anion radical salt produces benzophenone that is enhanced in radioactivity relative to the starting BZO/BZO-14C mixture. This enhancement in radioactivity is consistent with the equilibrium constant again being less than unity when *R represents the /sup 14/C-substituted benzophenone. In contrast to these results, substitution of the oxygen atom with /sup 17/O results in an increase in the relative solution electron affinity. This is explained in terms of the increase in bonding involving the oxygen upon reduction, due to ion association.

  20. Solar modulation of cosmic ray intensity and solar flare events inferred from (14)C contents in dated tree rings

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Chen, T. M.; Yun, S. X.; Dai, K. M.

    1985-01-01

    The delta 14C values in 42 rings of a white spruce grown in Mackenzie Delta was measured as a continuing effort of tracing the history of solar modulation of cosmic ray intensity. The delta 14C values in six rings were measured, in search of a 14C increase due to two large solar flares that occurred in 1942. The results are presented.

  1. Intestinal absorption and tissue distribution of ( sup 14 C)pyrroloquinoline quinone in mice

    SciTech Connect

    Smidt, C.R.; Unkefer, C.J.; Houck, D.R.; Rucker, R.B. )

    1991-05-01

    Pyrroloquinoline quinone (PQQ) functions as a cofactor for prokaryotic oxidoreductases, such as methanol dehydrogenase and membrane-bound glucose dehydrogenase. In animals fed chemically defined diets, PQQ improves reproductive outcome and neonatal growth. Consequently, the present study was undertaken to determine the extent to which PQQ is absorbed by the intestine, its tissue distribution, and route of excretion. About 28 micrograms of PQQ (0.42 microCi/mumol), labeled with {sup 14}C derived from L-tyrosine, was administered orally to Swiss-Webster mice (18-20 g) to estimate absorption. PQQ was readily absorbed (62%, range 19-89%) in the lower intestine, and was excreted by the kidneys (81% of the absorbed dose) within 24 hr. The only tissues that retained significant amounts of ({sup 14}C)PQQ at 24 hr were skin and kidney. For kidney, it was assumed that retention of ({sup 14}C)PQQ represented primarily PQQ destined for excretion. For skin, the concentration of ({sup 14}C)PQQ increased from 0.3% of the absorbed dose at 6 hr to 1.3% at 24 hr. Furthermore, most of the ({sup 14}C)PQQ in blood (greater than 95%) was associated with the blood cell fraction, rather than plasma.

  2. In vitro synthesis and purification of UDP-( sup 14 C) galacturonate

    SciTech Connect

    Mitcham, E.J. ); Gross, K.C. ); Wasserman, B.P. )

    1989-04-01

    Pectins comprise a major component of the cell wall and much research has focused on degradation of pectins during ripening and senescence. However, little research has been conducted on pectin synthesis, partly due to a lack of commercial availability of UDP-({sup 14}C)galacturonic acid for use as a substrate in assaying galacturonan synthase. We report on the modification and integration of several procedures to synthesize UDP-({sup 14}C) galacturonic acid from commercially available UDP-({sup 14}C)glucuronic acid. A microsomal pellet containing UDP-D-glucuronate-4-epimerase was extracted from 5-day-old mung bean hypocotyls (Phaseolus aureus) and radish roots (Raphanus sativus L.) by ultracentrifugation at 30,000 rpm for 50 min. The UDP-({sup 14}C)galacturonic acid produced was separated from remaining UDP-({sup 14}C)glucuronic acid and other products by electrophoresis in pyridine:acetate:H{sub 2}O on silica gel. Spots were detected by autoradiography, eluted with 80% ethanol, and purified using anion exchange chromatography.

  3. Bioavailability of the Nano-Unit 14C-Agrochemicals Under Various Water Potential.

    PubMed

    Jung, S C; Kim, H G; Kuk, Y I; Ahn, H G; Senseman, S A; Lee, D J

    2015-08-01

    The study was conducted to investigate the effects of water potential on bioavailability of the nano-unit 14C-cafenstrole, 14C-pretilachlor, 14C-benfuresate, 14C-simetryn and 14C-oxyfluorfen applied with or without dimepiperate or daimuron under various water potential conditions. The highest bioavailable concentration in soil solution (BCSS) was found at 60% soil moisture, while the lowest occurred at 50% soil moisture for soil-applied alone or in combination. All water potential conditions differed significantly from each other with variations in total bioavailable amount in soil solution (TBSS) when either dimepiperate or daimuron were added to the soil, and changes were directly proportional to variations in water potential. Across all treatments, TBSS at 80% soil moisture was three to four times greater than that at 50% soil moisture when applied alone or in combination with dimepiperate or daimuron. Cafenstrole and simetryn had distribution coefficient (Kd) values <64 ml g-1 and a TBSS ranging from 10 to 44 ng g-1 soil, regardless of water potential conditions applied alone or in combination. Pretilachlor and benfuresate had Kd values <15 ml g-1 and a TBSS range of 38 to 255 ng g-1 soil when applied with or without dimepiperate or daimuron.

  4. Fine structure in sup 14 C emission from sup 223 Ra and sup 224 Ra

    SciTech Connect

    Hourani, E.; Rosier, L.; Berrier-Ronsin, G.; Elayi, A.; Mueller, A.C.; Rappenecker, G.; Rotbard, G.; Renou, G.; Liebe, A.; Stab, L. ); Ravn, H.L. )

    1991-10-01

    The measurement of the energy spectrum of {sup 14}C nuclei emitted in the spontaneous radioactivity of {sup 223}Ra and {sup 224}Ra has been carried out, using thin and intense sources (480 MBq for {sup 223}Ra and 3550 MBq for {sup 224}Ra). The sources were obtained by implanting mass-separated beams into Al and vitreous C catchers. The measurement was performed with a superconducting solenoidal spectrometer. Our discovery, previously reported, of fine structure in the energy spectrum of {sup 14}C emission from {sup 223}Ra, which is analogous to the one known for {alpha} emission, is confirmed. Only 13% of the branching ratio in {sup 14}C decay leads to the ground state of the residual nucleus, while 81% to the first excited state. For {sup 14}C emission from {sup 224}Ra, a lower limit of 2 for the hindrance factor has been measured for the transition to the first excited state in the residual nucleus. Also, a precise identification in {ital Z} with an {ital E}{times}{Delta}{ital E} telescope has been performed for the radiation from the {sup 223}Ra source. Our measurements of fine structure in {sup 14}C emissions open this field to nuclear structure studies.

  5. Modulation of (14) C-labeled glucose metabolism by zinc during aluminium induced neurodegeneration.

    PubMed

    Singla, Neha; Dhawan, D K

    2015-09-01

    Aluminium (Al) is one of the most prominent metals in the environment and is responsible for causing several neurological disorders, including Alzheimer's disease. On the other hand, zinc (Zn) is an essential micronutrient that is involved in regulating brain development and function. The present study investigates the protective potential of Zn in the uptake of (14) C-labeled amino acids and glucose and their turnover in rat brain slices during Al intoxication. Male Sprague Dawley rats (140-160 g) were divided into four different groups: normal control, Al treated (100 mg/kg body weight/day via oral gavage), Zn treated (227 mg/liter in drinking water), and Al + Zn treated. Radiorespirometric assay revealed an increase in glucose turnover after Al exposure that was attenuated after Zn treatment. Furthermore, the uptake of (14) C-labeled glucose was increased after Al treatment but was appreciably decreased upon Zn supplementation. In addition, the uptakes of (14) C-lysine, (14) C-leucine, and (14) C-aspartic acid were also found to be elevated following Al exposure but were decreased after Zn treatment. Al treatment also caused alterations in the neurohistoarchitecture of the brain, which were improved after Zn coadministration. Therefore, the present study suggests that Zn provides protection against Al-induced neurotoxicity by regulating glucose and amino acid uptake in rats, indicating that Zn could be a potential candidate for the treatment of various neurodegenerative disorders.

  6. An Inverse Method to Infer the Global Ocean Paleoventilation from the Atmospheric 14C Record

    NASA Astrophysics Data System (ADS)

    Marchal, O.; Hughen, K. A.; Muscheler, R.

    2001-12-01

    We present an inverse method to infer a record of global ocean ventilation (GOV) from records of atmospheric 14C activity (Δ 14C) and production. The method is based on the assimilation of activity and production data in a box model of the 14C cycle in the ocean-atmosphere-land biosphere system using the variational (adjoint) technique. It includes three components: (1) the model code that yields the value of the cost function (a measure of the misfit between observed and modelled Δ 14C); (2) the adjoint code that yields the partial derivatives of the cost function with respect to the parameters describing the temporal evolution of the GOV; and (3) an optimization procedure that yields the parameter values minimizing the cost function. Lagrange multipliers are introduced to simplify the calculation of the partial derivatives of the cost function and to construct the adjoint code directly from the model code. First we describe the method, outlining the formal similarities with the calculus of variation in analytical mechanics. Second we verify the method through the capability to recover a variety of GOV evolutions from the assimilation of artificial data ("twin experiments"). Third we apply the method to the Younger Dryas, using recent high-resolution records of Δ 14C from the Cariaco basin and of 10Be flux from Greenland ice cores. Our results give new insight into the role of the deep ocean circulation during this dramatic and rapid climate change in the circum North Atlantic area.

  7. Release of aged 14C-atrazine residues from soil facilitated by dry-wet cycles

    NASA Astrophysics Data System (ADS)

    Jablonowski, N. D.; Yu, K.; Koeppchen, S.; Burauel, P.

    2012-04-01

    Intermittent dry-wet cycles may have an important effect on soil structure and aged pesticide residues release (1). A laboratory study was conducted to assess the maximum potential of water extractable aged atrazine residues influenced by soil drying and wetting. The used soil was obtained from an outdoor lysimeter (gleyic cambisol; Corg: 1.45%), containing environmentally aged (22 years) 14C-atrazine residues. For the experiment, soil from 0-10 cm depth was used since most residual 14C activity was previously found in this layer (2,3). Triplicate soil samples with a residual water content of approx. 8% were either dried (45° C) prior water addition or directly mixed with distilled water (soil+water: 1+2, w:w). The samples were shaken (150 rmp, 60 min, at 21° C), centrifuged (approx. 2000 g), and the supernatants were filtered. Water-extracted residual 14C activity was detected via liquid scintillation counter. The total water-extracted 14C activity (the amount of residual 14C activity in a sample equals 100%) was significantly higher (p

  8. Cutaneous uptake of 14C-HD vapor by the hairless guinea pig.

    PubMed

    Logan, T P; Millard, C B; Shutz, M; Schulz, S M; Lee, R B; Bongiovanni, R

    1999-05-01

    The hairless guinea pig (HGP) is used by our laboratory to model the human cutaneous response to sulfur mustard (HD), bis(2-chloroethylsulfide), exposure. We determined the HD content in the skin of HGP after a 7-min exposure to vapors saturated with a mixture of HD and 14C-HD. Concentration/time (CT) values in the range of 2 micrograms/cm2/min were determined by counting skin 14C disintegrations per min (dpm) in animals euthanized immediately after exposure. These values are similar to human penetration rates obtained by other investigators. A rate curve monitoring the reduction in skin 14C dpm was developed for animals euthanized between 0 and 24 hr post- exposure. This curve showed the greatest change after 1 hr. The epidermal (62%) to dermal (38%) ratio of 14C at 24 hr was measured for two animals. We saw no site preference for HD penetration among the 8 sites used. The 14C content of template adhesive tape was determined to follow HD distribution. These results contribute to a better understanding of the cutaneous response to HD in the HGP model.

  9. Uptake and metabolism of (14C)-aspartate by developing kernels of maize (Zea mays L. )

    SciTech Connect

    Muhitch, M.J. )

    1990-05-01

    Pulse-chase experiments were performed to determine the metabolic fate of (14C)-aspartate in the pedicel region and subsequent uptake into the endosperm. Kernels were removed from the cob, leaving the pedicel attached but removing glumes, palea, and lemma. The basal tips were incubated in (14C)-aspartate for 0.5 h, followed by a 2 h chase period with unlabeled aspartate. In contrast to a previous study in which 70% of the 14C from aspartate was recovered in the organic acid fraction (Lyznik, et al., Phytochemistry 24: 425, 1985), only 20 to 25% of the radioactivity found in the 2 h chase period. While a small amount of the 14C transiently appeared in alanine at the beginning of the chase period, the most heavily labeled non-fed amino acid was glutamine, which accounted for 21% of the radioactivity within the pedicel amino acid fraction by 0.5 h into the chase period. There was no evidence for asparagine synthesis within the pedicel region of the kernel. 14C recovered from the endosperm in the form of amino acids were aspartate (60%), glutamine (20%), glutamate (15%), and alanine (5%). These results suggest that some of the maternally supplied amino acids undergo metabolic conversion to other amino acids before being taken up by the endosperm.

  10. Decomposition of 14C containing organic molecules released from radioactive waste by gamma-radiolysis under repository conditions

    NASA Astrophysics Data System (ADS)

    Kani, Yuko; Noshita, Kenji; Kawasaki, Toru; Nasu, Yuji; Nishimura, Tsutomu; Sakuragi, Tomofumi; Asano, Hidekazu

    2008-04-01

    Decomposition of 14C containing organic molecules into an inorganic compound has been investigated by γ-ray irradiation experiments under simulated repository conditions for radioactive waste. Lower molecular weight organic acids, alcohols, and aldehydes leached from metallic waste are reacted with OH radicals to give carbonic acid. A decomposition efficiency that expresses consumption of OH radicals by decomposition reaction of organic molecules is proposed. Decomposition efficiency increases with increasing concentration of organic molecules (1×10 -6-1×10 -3 mol dm -3) and is not dependent on dose rate (10-1000 Gy h -1). Observed dependence indicates that decomposition efficiency is determined by reaction probability of OH radicals with organic molecules.

  11. Discovery of radioactive decay of /sup 222/Ra and /sup 224/Ra by /sup 14/C emission

    SciTech Connect

    Price, P.B.; Stevenson, J.D.; Barwick, S.W.; Ravn, H.L.

    1985-01-28

    Using the ISOLDE on-line isotope separator at CERN to produce sources of /sup 221/Fr, /sup 221/Ra, /sup 222/Ra, /sup 223/Ra, and /sup 224/Ra, and using polycarbonate track-recording films sensitive to energetic carbon nuclei but not to alpha particles, we have discovered two new cases of the rare /sup 14/C decay mode: in /sup 222/Ra and /sup 224/Ra. Our results for branching ratios, B, relative to alpha decay are for /sup 221/Fr and /sup 221/Ra, B<4.4 x 10/sup -12/; for /sup 222/Ra, B = (3.7 +- 0.6) x 10/sup -10/; for /sup 223/Ra, B = (6.1 +- 1.0) x 10/sup -10/; for /sup 224/Ra, B = (4.3 +- 1.2) x 10/sup -11/. .AE

  12. Uptake and transfer of14C-simetryne through the laboratory freshwater food chain

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Lay, J. P.; Zhang, Yongyuan

    1989-03-01

    This paper deals with the bioconcentration of14C-simetryne from water by aquatic test organisms: green algae— Monoraphidium minutum, rotifers— Brachionus rubens, daphnids— Daphnia magna, and fish— Brachydanio rerio. The chemical was bioconcentrated rapidly in all test species during the first 48 hours of experiment. The BCF values (bioconcentration factor) from all uptake studies show that simetryne has higher accumulation in algae than in rotifers, daphnids and zebra fish. The logarithm of the n-octanol/water partition coefficient of simetryne measured as 2.06±0.05 was correlated with the BCFs in the organisms as based on the lipid contents. 14C-simetryne uptake via the food-chain amounted to only 22% to 42% of the bioconcentration from water. Clearance of14C-derived residues from fish was rapid with a half-life of 2.1 days.

  13. Mobility Studies of (14)C-Chlorpyrifos in Malaysian Oil Palm Soils.

    PubMed

    Halimah, Muhamad; Ismail, B Sahid;