Sample records for airborne chrysotile concentrations

  1. A study of airborne chrysotile concentrations associated with handling, unpacking, and repacking boxes of automobile clutch discs.

    PubMed

    Jiang, George C T; Madl, Amy K; Ingmundson, Kelsey J; Murbach, Dana M; Fehling, Kurt A; Paustenbach, Dennis J; Finley, Brent L

    2008-06-01

    Although automotive friction products (brakes and manual clutches) historically contained chrysotile asbestos, industrial hygiene surveys and epidemiologic studies of auto mechanics have consistently shown that these workers are not at an increased risk of developing asbestos-related diseases. Airborne asbestos levels during brake repair and brake parts handling have been well-characterized, but the potential exposure to airborne asbestos fibers during the handling of clutch parts has not been examined. In this study, breathing zone samples on the lapel of a volunteer worker (n=100) and area samples at bystander (n=50), remote area (n=25), and ambient (n=9) locations collected during the stacking, unpacking, and repacking of boxes of asbestos-containing clutches, and the subsequent cleanup and clothes handling, were analyzed by phase contrast microscopy (PCM) and transmission electron microscopy (TEM). In addition, fiber morphology and size distribution was evaluated using X-ray diffraction, polarized light microscopy, and ISO analytical methods. It was observed that the (1) airborne asbestos concentrations increased with the number of boxes unpacked and repacked, (2) repetitive stacking of unopened boxes of clutches resulted in higher asbestos concentrations than unpacking and repacking the boxes of clutches, (3) cleanup and clothes handling tasks yielded very low asbestos concentrations. Fiber size and morphology analyses showed that amphibole fibers were not detected in the clutches and that the vast majority (>95%) of the airborne chrysotile fibers were less than 20 microm in length. Applying the ratio of asbestos fibers:total fibers (including non-asbestos) as determined by TEM to the PCM results, it was found that 30-min average airborne chrysotile concentrations (PCM adjusted) were 0.026+/-0.004 f/cc or 0.100+/-0.017 f/cc for a worker unpacking and repacking 1 or 2 boxes of clutches, respectively. The 30-min PCM adjusted average airborne asbestos

  2. Airborne asbestos take-home exposures during handling of chrysotile-contaminated clothing following simulated full shift workplace exposures.

    PubMed

    Sahmel, Jennifer; Barlow, Christy A; Gaffney, Shannon; Avens, Heather J; Madl, Amy K; Henshaw, John; Unice, Ken; Galbraith, David; DeRose, Gretchen; Lee, Richard J; Van Orden, Drew; Sanchez, Matthew; Zock, Matthew; Paustenbach, Dennis J

    2016-01-01

    The potential for para-occupational, domestic, or take-home exposures from asbestos-contaminated work clothing has been acknowledged for decades, but historically has not been quantitatively well characterized. A simulation study was performed to measure airborne chrysotile concentrations associated with laundering of contaminated clothing worn during a full shift work day. Work clothing fitted onto mannequins was exposed for 6.5 h to an airborne concentration of 11.4 f/cc (PCME) of chrysotile asbestos, and was subsequently handled and shaken. Mean 5-min and 15-min concentrations during active clothes handling and shake-out were 3.2 f/cc and 2.9 f/cc, respectively (PCME). Mean airborne PCME concentrations decreased by 55% 15 min after clothes handling ceased, and by 85% after 30 min. PCM concentrations during clothes handling were 11-47% greater than PCME concentrations. Consistent with previously published data, daily mean 8-h TWA airborne concentrations for clothes-handling activity were approximately 1.0% of workplace concentrations. Similarly, weekly 40-h TWAs for clothes handling were approximately 0.20% of workplace concentrations. Estimated take-home cumulative exposure estimates for weekly clothes handling over 25-year working durations were below 1 f/cc-year for handling work clothes contaminated in an occupational environment with full shift airborne chrysotile concentrations of up to 9 f/cc (8-h TWA).

  3. Evaluation of take-home exposure and risk associated with the handling of clothing contaminated with chrysotile asbestos.

    PubMed

    Sahmel, J; Barlow, C A; Simmons, B; Gaffney, S H; Avens, H J; Madl, A K; Henshaw, J; Lee, R J; Van Orden, D; Sanchez, M; Zock, M; Paustenbach, D J

    2014-08-01

    The potential for para-occupational (or take-home) exposures from contaminated clothing has been recognized for the past 60 years. To better characterize the take-home asbestos exposure pathway, a study was performed to measure the relationship between airborne chrysotile concentrations in the workplace, the contamination of work clothing, and take-home exposures and risks. The study included air sampling during two activities: (1) contamination of work clothing by airborne chrysotile (i.e., loading the clothing), and (2) handling and shaking out of the clothes. The clothes were contaminated at three different target airborne chrysotile concentrations (0-0.1 fibers per cubic centimeter [f/cc], 1-2 f/cc, and 2-4 f/cc; two events each for 31-43 minutes; six events total). Arithmetic mean concentrations for the three target loading levels were 0.01 f/cc, 1.65 f/cc, and 2.84 f/cc (National Institute of Occupational Health and Safety [NIOSH] 7402). Following the loading events, six matched 30-minute clothes-handling and shake-out events were conducted, each including 15 minutes of active handling (15-minute means; 0.014-0.097 f/cc) and 15 additional minutes of no handling (30-minute means; 0.006-0.063 f/cc). Percentages of personal clothes-handling TWAs relative to clothes-loading TWAs were calculated for event pairs to characterize exposure potential during daily versus weekly clothes-handling activity. Airborne concentrations for the clothes handler were 0.2-1.4% (eight-hour TWA or daily ratio) and 0.03-0.27% (40-hour TWA or weekly ratio) of loading TWAs. Cumulative chrysotile doses for clothes handling at airborne concentrations tested were estimated to be consistent with lifetime cumulative chrysotile doses associated with ambient air exposure (range for take-home or ambient doses: 0.00044-0.105 f/cc year). © 2014 Society for Risk Analysis.

  4. Clearance of chrysotile asbestos from human lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churg, A.; DePaoli, L.

    1988-01-01

    In contrast to amphibole asbestos, chrysotile asbestos fails to accumulate in human lungs. The reason for this phenomenon is not known. To examine this problem, we extracted chrysotile and tremolite fibers from the lungs of 11 chrysotile miners and millers whose last exposure was within 2 years of death and 12 chrysotile miners and millers whose last exposure was greater than 12 years (7 with last exposure 12-15 years and 5 with last exposure 22-25 years) before death. Fibers were extracted by bleach digestion, and concentrations, compositions, and sizes were determined by analytical electron microscopy. Native UICC Canadian chrysotile wasmore » used as a composition standard. Compared to the standard, there was minor loss of magnesium at 2 years and additional very slight loss after 12 years. The ratio of chrysotile to tremolite concentration did not change with time. There was also no evidence of increasing fiber length with time from last exposure. These data indicate that accumulation of amphibole compared to chrysotile in human lungs does not reflect either long-term dissolution of chrysotile or long-term preferential clearance of chrysotile compared to amphibole. Contrary to results of animal studies, fiber length in humans does not increase with time since last exposure. These findings imply that the failure of chrysotile to accumulate in human lungs reflects events that occur early after exposure rather than long-term clearance mechanisms.« less

  5. Measured removal rates of chrysotile asbestos fibers from air and comparison with theoretical estimates based on gravitational settling and dilution ventilation.

    PubMed

    Sahmel, J; Avens, H J; Scott, P K; Unice, K; Burns, A; Barlow, C A; Madl, A K; Henshaw, J; Paustenbach, D J

    2015-01-01

    Industrial hygiene assessments often focus on activity-based airborne asbestos concentration measurements, but few empirical data exist regarding the fiber removal rate from air after activities cease. Grade 7T chrysotile indoor fiber settling (FS) rates were characterized using air sampling (NIOSH Method 7402). Six replicate events were conducted in a 58 m(3) study chamber (ventilation 3.5 ACH), in which chrysotile-contaminated work clothing was manipulated for 15 min followed by 30 min of no activity. The fiber concentration decay constant and removal rate were characterized using an exponential decay model based on the measurements. Breathing zone airborne chrysotile concentrations decreased by 86% within 15-30 min after fiber disturbance, compared to concentrations during active disturbance (p < 0.05). Estimated mean time required for 99% of the phase contrast microscopy-equivalent (PCME) fibers to be removed from air was approximately 30 min (95% CI: 22-57 min). The observed effective FS velocity was 0.0034 m/s. This settling velocity was between 4.5-fold and 180-fold faster than predicted by two different particulate gravitational settling models. Additionally, PCME concentrations decreased approximately 2.5-fold faster than predicted due to air exchange alone (32 versus 79 min to 99% decrease in concentration). Other measurement studies have reported similar airborne fiber removal rates, supporting the finding that factors other than gravitational settling and dilution ventilation contribute measurably to PCM fiber removal from air (e.g. impaction, agglomeration). Overall, the scientific weight of evidence indicates that the time necessary for removal of 99% of fibers greater than 5 μm in length (with aspect ratios greater than 3:1) is approximately 20-80 min.

  6. Fiber size and number in workers exposed to processed chrysotile asbestos, chrysotile miners, and the general population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churg, A.; Wiggs, B.

    1986-01-01

    We analyzed chrysotile and chrysotile-associated amphibole (largely tremolite) asbestos fibers in 21 workers exposed to various types of processed (milled) chrysotile ore, 20 long-term chrysotile miners, and 20 members of the general population (controls). Significantly greater amounts of both chrysotile and tremolite were found in processed-ore workers and miners than in controls. On average, the mean fiber lengths and aspect ratios for the mining and processed-ore-exposed workers were similar and were significantly greater than the values seen in the controls; within the processed-ore group, there was a marked variation in these parameters, and some workers appeared to be exposed tomore » fairly long, thin fibers. It was found empirically that the fiber size data, and to a lesser extent the concentration data, could be used to classify workers accurately into those with processed-ore exposure and controls. We conclude that fiber sizes in the lungs of processed-ore-exposed workers are similar to those of chrysotile miners and are considerably longer than those found in the general population; some processed-ore workers have longer fibers which might be responsible for higher disease incidences in certain working groups; tremolite accompanies chrysotile in a variable proportion of workers exposed to processed chrysotile products and might be important in the genesis of mesothelioma in such workers; and mineralogic analysis will usually detect exposure even when chrysotile has largely disappeared from lung tissue.« less

  7. Retrospective view of airborne dust levels in workplace of a chrysotile mine in Ural, Russia.

    PubMed

    Kashansky, S V; Domnin, S G; Kochelayev, V A; Monakhov, D D; Kogan, F M

    2001-04-01

    The Bazhenovskoye chrysotile asbestos deposit has been exploited for 115 years. All the technological operations in the quarry are accompanied by the formation of high-dispersion asbestos-containing aerosols. The dust concentrations at the miner's working places for the last 30 years (1970-2000) were at or below the Russian MACs(m.s.) level (4.0 mg/m3). The seasonal precipitation amount in the deposit area causes a rise in dust content in certain periods. The maximum density of asbestos respirable fibres exceeded 2.7 f/cm3. All the identified fibres belonged to chrysotile asbestos, and no amphibole asbestos, such as tremolite asbestos, has been identified. An excessive dust level remains, despite the dust content level decrease, at the work sites of oversized lump drillers and unloaders, and oncopathology heightened risk remains in these occupational groups, as a result.

  8. Comparison of direct and indirect methods of measuring airborne chrysotile fibre concentration.

    PubMed

    Eypert-Blaison, Celine; Veissiere, Sylvie; Rastoix, Olivier; Kauffer, Edmond

    2010-01-01

    Transmission electron microscopy observations most frequently form a basis for estimating asbestos fibre concentration in the environment and in buildings with asbestos-containing materials. Sampled fibres can be transferred to microscope grids by applying either a direct [ISO (1995) Draft International ISO/DIS 10312. Ambient air. Determination of asbestos fibres. Direct transfer transmission electron microscopy procedure. Geneva, Switzerland: International Standardization Organization] or an indirect [AFNOR (1996) Détermination de la concentration en fibres d'amiante par microscopie électronique à transmission-Méthode indirecte. Cedex, France: AFNOR, p. 42; ISO (1997) Draft International ISO/DIS 13794. Ambient air. Determination of asbestos fibres. Indirect-transfer transmission electron microscopy procedure. Geneva, Switzerland: International Standardization Organization] method. In the latter case, ISO Standard 13794 recommends filtering calcination residues either on a polycarbonate (PC) filter (PC indirect method) or on a cellulose ester (CE) membrane (CE indirect method). The PC indirect method requires that fibres deposited on a PC filter be covered by a carbon layer, whereas in the CE indirect method, the CE membrane has to be directly processed using a method described in ISO Standard 10312. The purpose of this study was to compare results obtained using, on the one hand, direct preparation methods and, on the other hand, PC indirect or CE indirect methods, for counting asbestos fibres deposited on filters as a result of liquid filtration or air sampling. In direct method-based preparation, we observed that an etching time of 6-14 min does not affect the measured densities, except for fibres <1 microm deposited by liquid filtration. Moreover, in all cases, the direct method gives higher densities than the PC indirect method because of possible fibre disappearance when using the carbon evaporator implemented in the PC indirect method. The CE membrane

  9. Evaluation of exposure to the airborne asbestos in an asbestos cement sheet manufacturing industry in Iran.

    PubMed

    Panahi, Davood; Kakooei, Hossein; Marioryad, Hossein; Mehrdad, Ramin; Golhosseini, Mohammad

    2011-07-01

    Iran imports nearly 55,000 tons of Chrysotile asbestos per year and asbestos cement (AC) plants contribute nearly 94% of the total national usage. In the present study, airborne asbestos concentrations during AC sheet manufacturing were measured. The fiber type and its chemical composition were also evaluated by scanning electron microscopy (SEM), with energy-dispersive X-ray analysis. Airborne total fiber concentrations of 45 personal samples were analyzed by phase contrast microscopy. The results have highlighted that 15.5% of samples exceed the threshold limit value (TLV) established the American Conference of Governmental Industrial Hygienists, which is 0.1 fiber per milliliter (f/ml). Personal monitoring of asbestos fiber levels indicated a ranged from 0.02 ± 0.01 to 0.16 ± 0.03 f/ml. The geometrical mean was 0.05 ± 1.36 f/ml, which is considerably lower than the TLV. SEM data demonstrate that the fibrous particles consisted, approximately, of Chrysotile (55.89%) and amphiboles (44.11%). We conclude that the industrial consumption of imported Chrysotile asbestos is responsible for the high airborne amphibole asbestos levels in the AC sheet industry. More research is needed to improve characterization of occupational exposures by fiber size and concentration in a variety of industries.

  10. Follow up study of workers manufacturing chrysotile asbestos cement products.

    PubMed Central

    Gardner, M J; Winter, P D; Pannett, B; Powell, C A

    1986-01-01

    A cohort study has been carried out of 2167 subjects employed between 1941 and 1983 at an asbestos cement factory in England. The production process incorporated the use of chrysotile asbestos fibre only, except for a small amount of amosite during four months in 1976. Measured airborne fibre concentrations available since 1970 from personal samplers showed mean levels below 1 fibre/ml, although higher levels had probably occurred previously in certain areas of the factory. No excess of lung cancer was observed in the mortality follow up by comparison with either national or local death rates, and analyses of subgroups of the workforce by job, exposure level, duration of employment, duration since entry, or calendar years of employment gave no real suggestion of an asbestos related excess for this cause of death. There was one death from pleural mesothelioma and one with asbestosis mentioned as an associated cause on the death certificate, but neither is thought to be linked to asbestos exposure at this factory. Other suggested asbestos related cancers, such as laryngeal and gastrointestinal, did not show raised risks. Although the durations of exposure were short in this study, the findings are consistent with two other studies of workers exposed to low concentrations of chrysotile fibre in the manufacture of asbestos cement products which reported no excess mortality. PMID:3024695

  11. Desquamative interstitial pneumonia associated with chrysotile asbestos fibres.

    PubMed Central

    Freed, J A; Miller, A; Gordon, R E; Fischbein, A; Kleinerman, J; Langer, A M

    1991-01-01

    The drywall construction trade has in the past been associated with exposure to airborne asbestos fibres. This paper reports a drywall construction worker with 32 years of dust exposure who developed dyspnoea and diminished diffusing capacity, and showed diffuse irregular opacities on chest radiography. He did not respond to treatment with corticosteroids. Open lung biopsy examination showed desquamative interstitial pneumonia. Only a single ferruginous body was seen on frozen section, but tissue examination by electron microscopy showed an extraordinary pulmonary burden of mineral dust with especially high concentrations of chrysotile asbestos fibres. This report emphasises the need to consider asbestos fibre as an agent in the aetiology of desquamative interstitial pneumonia. The coexistent slight interstitial fibrosis present in this case is also considered to have resulted from exposure to mineral dust, particularly ultramicroscopic asbestos fibres. Images PMID:1645584

  12. Role of associated mineral fibres in chrysotile asbestos health effects: the case of balangeroite.

    PubMed

    Turci, Francesco; Tomatis, Maura; Compagnoni, Roberto; Fubini, Bice

    2009-07-01

    To evaluate the biodurability of balangeroite, present as contaminant of chrysotile asbestos in the Balangero mine, in order to have indication whether it might have been a confounding factor in the association of the mesothelioma cases reported among mine workers and employees. The modifications taking place following incubation of the fibres in simulated phagolysosomal fluids have been measured on balangeroite, on one pure chrysotile sample (Val Malenco), on one chrysotile from Balangero with some associated balangeroite, and on two tremolite samples. The incubation modifies both chrysotile and balangeroite with substantial release in the medium of the metal ions which occupy the octahedral site in the mineral structure of the fibre while tremolite is virtually unaffected. Considering the profound differences between the structure of balangeroite and amphiboles, previous results and observations on the poor ecopersistence of balangeroite, and the present data, we conclude that balangeroite traces may contribute to the overall toxicity of the airborne fibres in Balangero, but may not be compared to tremolite nor considered the sole responsible for the excess of mesothelioma found in Balangero.

  13. Chrysotile in water

    PubMed Central

    Speil, Sidney

    1974-01-01

    The problems of quantitating chrysotile in water by fiber count techniques are reviewed briefly and the use of mass quantitation is suggested as a preferable measure. Chrysotile fiber has been found in almost every sample of natural water examined, but generally transmission electron miscroscopy (TEM) is required because of the small diameters involved. The extreme extrapolation required in mathematically converting a few fibers or fiber fragments under the TEM to the fiber content of a liquid sample casts considerable doubt on the validity of numbers used to compare chrysotile contents of different liquids. PMID:4470930

  14. Chrysotile, tremolite, and malignant mesothelioma in man

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churg, A.

    1988-03-01

    The question of whether chrysotile asbestos ever causes mesothelioma in man has become a major public and occupational health issue. Review of the literature suggests that only 53 acceptable cases of chrysotile-induced mesothelioma have ever been reported; of these, 41 cases have occurred in individuals exposed to chrysotile mine dust, all of it naturally contaminated with tremolite. Ten cases have occurred in secondary industry workers, but here the suspicion of amosite or crocidolite contamination is high. Analysis of lung asbestos content indicates that induction of mesothelioma by chrysotile requires, on average, as great a lung fiber burden as induction ofmore » asbestosis by chrysotile, whereas amphibole (amosite or crocidolite)-induced mesotheliomas appear at a several hundred-fold smaller lung burden. Tremolite alone has definitely produced mesothelioma in man, particularly when exposure has been to long, high aspect ratio, fibers. Analysis of tremolite:chrysotile fiber ratios in human lung suggests that some, but not all tremolite is removed in milling chrysotile ores. The low incidence of mesothelioma in secondary chrysotile users may reflect the small amount of tremolite left in the product. These observations indicate that although chrysotile asbestos can produce mesothelioma in man, the total number of such cases is small and the required doses extremely large. The data are consistent with the idea that mesotheliomas seen in chrysotile miners and some secondary industry workers are produced by the tremolite contained in the chrysotile ore, but that the short length and low aspect ratio of the tremolite make its carcinogenicity quite low. However, these data are very indirect, and a role for the chrysotile fiber itself is still possible.41 references.« less

  15. Simulation tests to assess occupational exposure to airborne asbestos from artificially weathered asphalt-based roofing products.

    PubMed

    Sheehan, Patrick; Mowat, Fionna; Weidling, Ryan; Floyd, Mark

    2010-11-01

    Historically, asbestos-containing roof cements and coatings were widely used for patching and repairing leaks. Although fiber releases from these materials when newly applied have been studied, there are virtually no useful data on airborne asbestos fiber concentrations associated with the repair or removal of weathered roof coatings and cements, as most studies involve complete tear-out of old roofs, rather than only limited removal of the roof coating or cement during a repair job. This study was undertaken to estimate potential chrysotile asbestos fiber exposures specific to these types of roofing products following artificially enhanced weathering. Roof panels coated with plastic roof cement and fibered roof coating were subjected to intense solar radiation and daily simulated precipitation events for 1 year and then scraped to remove the weathered materials to assess chrysotile fiber release and potential worker exposures. Analysis of measured fiber concentrations for hand scraping of the weathered products showed 8-h time-weighted average concentrations that were well below the current Occupational Safety and Health Administration permissible exposure limit for asbestos. There was, however, visibly more dust and a few more fibers collected during the hand scraping of weathered products compared to the cured products previously tested. There was a notable difference between fibers released from weathered and cured roofing products. In weathered samples, a large fraction of chrysotile fibers contained low concentrations of or essentially no magnesium and did not meet the spectral, mineralogical, or morphological definitions of chrysotile asbestos. The extent of magnesium leaching from chrysotile fibers is of interest because several researchers have reported that magnesium-depleted chrysotile fibers are less toxic and produce fewer mesothelial tumors in animal studies than normal chrysotile fibers.

  16. Biodurability of chrysotile and tremolite asbestos

    NASA Astrophysics Data System (ADS)

    Oze, C.; Solt, K.

    2008-12-01

    Chrysotile and tremolite asbestos represent two mineralogical categories of regulated asbestos commonly evaluated in epidemiological, toxicological, and pathological studies. Lung and digestive fluids are undersaturated with respect to chrysotile and tremolite asbestos (i.e. dissolution is thermodynamically favorable), where the dissolution kinetics control the durability of these minerals in respiratory and gastric systems. Here we examined the biodurability of chrysotile and tremolite asbestos in simulated body fluids (SBFs) as a function of mineral surface area over time. Batch experiments in simulated gastric fluid (SGF; HCl and NaCl solution at pH 1.2) and simulated lung fluid (SLF; a modified Gamble's solution at pH 7.4) were performed at 37°C over 720 hours. The rate-limiting step of Si release for both minerals was used to determine and compare dissolution rates. Chrysotile and tremolite asbestos are less biodurable in SGF compared to SLF. Based on equal suspension densities (surface area per volume of solution, m2 L- 1), chrysotile undergoes dissolution approximately 44 times faster than tremolite asbestos in SGF; however, amphibole asbestos dissolves approximately 6 times faster than chrysotile in SLF. Provided identical fiber dimensions, fiber dissolution models demonstrate that chrysotile is more biodurable in SLF and less biodurable in SGF compared to tremolite asbestos. Overall, the methodology employed here provides an alternative means to evaluate asbestos material fiber lifetimes based on mineral surface considerations.

  17. Mineralogic correlates of fibrosis in chrysotile miners and millers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churg, A.; Wright, J.L.; DePaoli, L.

    1989-04-01

    To determine which mineral parameters relate to the degree of interstitial fibrosis (asbestosis) in the lungs of chrysotile miners and millers, we graded fibrosis histologically and correlated fibrosis grades with fiber concentration and mean size, surface area, and mass, and with total sample fiber length, surface area, and mass in 21 cases. A positive correlation of fibrosis grade with tremolite concentration and a lesser correlation with chrysotile concentration was found for whole lungs, specific sites within lungs, and, for tremolite, single microscopic fields. No correlations were found for measures of chrysotile fiber size, surface area, or mass, but tremolite meanmore » fiber length, aspect ratio, and surface area were, surprisingly, negatively correlated with fibrosis grade. Measures based on total rather than on mean case or site parameters failed to show correlations with fibrosis. We conclude that: (1) degree of pulmonary fibrosis reflects fiber concentration at both a bulk and a microscopic level; (2) mean fiber length and parameters related to mean fiber length also correlate with fibrosis grade, but, contrary to predictions from animal studies, this correlation is negative, suggesting that short fibers may be more important in the genesis of pulmonary fibrosis than is commonly believed; (3) there is no evidence that parameters such as total fiber length, surface area, or mass provide predictors of degree of fibrosis.« less

  18. Health risk of chrysotile revisited

    PubMed Central

    Dunnigan, Jacques; Hesterberg, Thomas; Brown, Robert; Velasco, Juan Antonio Legaspi; Barrera, Raúl; Hoskins, John; Gibbs, Allen

    2013-01-01

    This review provides a basis for substantiating both kinetically and pathologically the differences between chrysotile and amphibole asbestos. Chrysotile, which is rapidly attacked by the acid environment of the macrophage, falls apart in the lung into short fibers and particles, while the amphibole asbestos persist creating a response to the fibrous structure of this mineral. Inhalation toxicity studies of chrysotile at non-lung overload conditions demonstrate that the long (>20 µm) fibers are rapidly cleared from the lung, are not translocated to the pleural cavity and do not initiate fibrogenic response. In contrast, long amphibole asbestos fibers persist, are quickly (within 7 d) translocated to the pleural cavity and result in interstitial fibrosis and pleural inflammation. Quantitative reviews of epidemiological studies of mineral fibers have determined the potency of chrysotile and amphibole asbestos for causing lung cancer and mesothelioma in relation to fiber type and have also differentiated between these two minerals. These studies have been reviewed in light of the frequent use of amphibole asbestos. As with other respirable particulates, there is evidence that heavy and prolonged exposure to chrysotile can produce lung cancer. The importance of the present and other similar reviews is that the studies they report show that low exposures to chrysotile do not present a detectable risk to health. Since total dose over time decides the likelihood of disease occurrence and progression, they also suggest that the risk of an adverse outcome may be low with even high exposures experienced over a short duration. PMID:23346982

  19. Chrysotile: its occurrence and properties as variables controlling biological effects.

    PubMed

    Langer, A M; Nolan, R P

    1994-08-01

    Chrysotile formation arises through serpentinization of ultramafics and silicified dolomitic limestones. Rock types tend to control the trace metal content and both the nature and amounts of admixed minerals in the ore, such as fibrous brucite (nemalite) and tremolite. Some associated minerals and trace metals are thought to play a role in biological potential. Tremolite, one of the important associated minerals, may occur with different morphological forms, called habits. These habits range from asbestiform (tremolite asbestos) to common blocky or non-fibrous form (tremolite cleavage fragments). The latter is most common in nature. Tremolite in chrysotile ore varies in habit and concentration, both factors determining the degree of risk following inhalation. Tremolite fibre is thought to be important in relation to the occurrence of mesothelioma. Chrysotile fibrils may vary in diameter. Dust clouds generated following manipulation vary in fibre number and surface area. Chrysotile fibres exhibit a range of physical characteristics. The fibre may be non-flexible ('stiff') and low in tensile strength ('brittle'), and may lack an ability to curl. This fibre, referred to as 'harsh', sheds water more quickly than its curly, flexible 'soft' variety. The behaviour of the harsh fibres is more amphibole-like and their splintery nature suggests an enhanced inhalation potential. Slip fibre ore from Canada tends to contain more fibrous brucite (nemalite) than cross-fibre ore in the same mine. Industrial manipulation, which includes chemical treatment, heating and milling, may impart new surface properties to chrysotile dusts. Biological potential may be enhanced (opening of fibre bundles) or reduced (disruption of surface bonds and lessened ability to interact with organic moieties). Leaching of magnesium from chrysotile occurs at a pH less than about 10. Chrysotile has been demonstrated to lose magnesium in vivo and undergo clearance from the lung. The biological potential of

  20. Chrysotile asbestos quantification in serpentinite quarries: a case study in Valmalenco, central Alps, northern Italy

    NASA Astrophysics Data System (ADS)

    Cavallo, Alessandro

    2013-04-01

    Outcrops of serpentinites are usually strongly fractured and cataclastic, and the rock can only be used as ballast. However, in rare cases, like in Valmalenco (Central Alps, Northern Italy), fractures are regular and well spaced, and the rock mass has good geotechnical quality, ideal conditions for the extraction of dimension stone blocks. The Valmalenco Serpentinite is marketed worldwide as dimension and decorative stone, with remarkable mechanical properties and pleasing colours and textures. However, the same area was once subject to chrysotile asbestos mining, in the form of discrete veins along the main discontinuities of the rock mass. For this reason, airborne asbestos contamination can occur during the extraction and processing cycle of the rocks, therefore it is essential to locate and quantify asbestos in the rock mass, to reduce as much as possible the exposure risk. The first step was a detailed geostructural survey of each quarry, in order to characterize the main discontinuities (orientation, spacing, linear persistence, opening, filling), with special attention to the identification of fibrous minerals. The surveys was followed by extensive sampling of massive rocks, mineralized veins and fillings of fractures, and the cutting sludge derived from diamond wire cutting. Preliminary qualitative XRPD was performed on all samples, while quantitative analysis was carried out on the most representative samples of the main rock mass discontinuities. On the other hand, XRPD is not effective in the identification of asbestos percentages of less than 2% by weight, and the accurate distinction among the various serpentine polymorphs (antigorite, lizardite, chrysotile) is very difficult (if not impossible) when they are simultaneously present, due to their very similar basic structure and the strong structural disorder. The same samples were then analyzed by SEM-EDS (fiber counting after filtration on a polycarbonate filter), for a better distinction between

  1. Acid leaching of natural chrysotile asbestos to mesoporous silica fibers

    NASA Astrophysics Data System (ADS)

    Maletaškić, Jelena; Stanković, Nadežda; Daneu, Nina; Babić, Biljana; Stoiljković, Milovan; Yoshida, Katsumi; Matović, Branko

    2018-04-01

    Nanofibrous silica with a high surface area was produced from chrysotile by the acid-leaching method. Natural mineral chrysotile asbestos from Stragari, Korlace in Serbia was used as the starting material. The fibers were modified by chemical treatment with 1 M HCl and the mineral dissolution was monitored by transmission electron microscopy, X-ray powder diffraction, inductively coupled plasma spectrometry and low-temperature nitrogen adsorption techniques to highlight the effects of the leaching process. The results showed that the applied concentration of acid solution and processing time of 4 h were sufficient to effectively remove the magnesium hydroxide layer and transform the crystal structure of the hazardous starting chrysotile to porous SiO2 nanofibers. With prolonged acid leaching, the specific surface area, S BET, calculated by BET equation, was increased from 147 up to 435 m2 g- 1, with micropores representing a significant part of the specific surface.

  2. Re-Creation of Historical Chrysotile-Containing Joint Compounds

    PubMed Central

    Brorby, G. P.; Sheehan, P. J.; Berman, D. W.; Greene, J. F.; Holm, S. E.

    2008-01-01

    Chrysotile-containing joint compound was commonly used in construction of residential and commercial buildings through the mid 1970s; however, these products have not been manufactured in the United States for more than 30 years. Little is known about actual human exposures to chrysotile fibers that may have resulted from use of chrysotile-containing joint compounds, because few exposure and no health-effects studies have been conducted specifically with these products. Because limited amounts of historical joint compounds are available (and the stability or representativeness of aged products is suspect), it is currently impossible to conduct meaningful studies to better understand the nature and magnitude of potential exposures to chrysotile that may have been associated with historical use of these products. Therefore, to support specific exposure and toxicology research activities, two types of chrysotile-containing joint compounds were produced according to original formulations from the late 1960s. To the extent possible, ingredients were the same as those used originally, with many obtained from the original suppliers. The chrysotile used historically in these products was primarily Grade 7RF9 from the Philip Carey mine. Because this mine is closed, a suitable alternate was identified by comparing the sizes and mineral composition of asbestos structures in a sample of what has been represented to be historical joint compound (all of which were chrysotile) to those in samples of three currently commercially available Grade 7 chrysotile products. The re-created materials generally conformed to original product specifications (e.g. viscosity, workability, crack resistance), indicating that these materials are sufficiently representative of the original products to support research activities. PMID:18788019

  3. Airborne asbestos exposures associated with work on asbestos fire sleeve materials.

    PubMed

    Blake, Charles L; Harbison, Stephen C; Johnson, Giffe T; Harbison, Raymond D

    2011-11-01

    Asbestos-containing fire sleeves have been used as a fire protection measure for aircraft fluid hoses. This investigation was conducted to determine the level of airborne asbestos fiber exposure experienced by mechanics who work with fire sleeve protected hoses. Duplicate testing was performed inside a small, enclosed workroom during the fabrication of hose assemblies. Personal air samples taken during this work showed detectable, but low airborne asbestos fiber exposures. Analysis of personal samples (n=9) using phrase contract microscopy (PCM) indicated task duration airborne fiber concentrations ranging from 0.017 to 0.063 fibers per milliliter (f/ml) for sampling durations of 167-198 min, and 0.022-0.14 f/ml for 30 min samples. Airborne chrysotile fibers were detected for four of these nine personal samples, and the resulting asbestos adjusted airborne fiber concentrations ranged from 0.014 to 0.025 f/ml. These results indicate that work with asbestos fire sleeve and fire sleeve protected hose assemblies, does not produce regulatory noncompliant levels of asbestos exposure for persons who handle, cut and fit these asbestos-containing materials. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Mesothelioma in the Quebec chrysotile mining region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Case, B.W.; Armstrong, B.; McDonald, J.C.

    Previous studies of incidence of mesothelioma and lung tissue burden in workers and nonworkers in the Quebec chrysotile mining region showed that mesothelioma incidence is very slightly increased in the mining area, and that tremolite, or even commercial amphiboles, are responsible (and chrysotile is not). Recently, one of us (BC) noted an increase in the numbers of cases of mesothelioma coming to autopsy in the mining region. There were 19 cases, all confirmed histologically, since 1982, vs. 6 that we know of in the previous 10 y. Eighteen were occupationally exposed; one was the wife of chrysotile miner/miller. We examinedmore » lung tissue from 9 cases matched to controls of the same sex and age, dying in the same years in the same hospitals, without evidence of malignant disease. We found an excess in cases of typical asbestos bodies; tremolite fibers; and total amphiboles. In univariate linear relative risk analysis, both longer (>8 {mu}m) and shorter fibers are significant. Multivariate analysis indicates that while adjustment of chrysotile lung content for tremolite content eliminates any statistical effect of chrysotile, the reverse comparison retains significance.« less

  5. Asbestos bodies and the diagnosis of asbestosis in chrysotile workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, J.; Churg, A.

    1986-01-01

    It has been suggested that because chrysotile asbestos forms asbestos bodies poorly, use of the traditional histologic requirements (diffuse interstitial fibrosis plus asbestos bodies) for the diagnosis of asbestosis, may lead to an underdiagnosis of this condition in workers exposed only to chrysotile. Lungs from 25 chrysotile miners with diffuse interstitial fibrosis were examined. Asbestos bodies were found easily in histologic section using hematoxylin and eosin stains in all cases. Mineralogic analysis of four cases showed that 46 of 72 (64%) bodies isolated and examined contained chrysotile cores, and 21 of 72 (29%) bodies contained cores of the amphiboles tremolitemore » and actinolite. By contrast, tremolite and actinolite constituted the majority of uncoated fibers in these cases. The mean length for bodies formed on chrysotile was 35 ..mu..m, and for bodies formed on tremolite or actinolite, 36 ..mu..m. The authors conclude that (1) the usual histologic criteria for the diagnosis of asbestos are applicable to chrysotile-exposed workers; (2) in workers with occupational chrysotile exposure, bodies form readily on this mineral; and (3) asbestos bodies in these lungs reflect the presence of long asbestos fibers.« less

  6. Predictors of Airborne Endotoxin Concentrations in Inner City Homes

    PubMed Central

    Mazique, D; Diette, GB; Breysse, PN; Matsui, EC; McCormack, MC; Curtin-Brosnan, J; Williams, D; Peng, RD; Hansel, NN

    2011-01-01

    Few studies have assessed in-home factors which contribute to airborne endotoxin concentrations. In 85 inner-city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36–42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  7. Potential artifacts associated with historical preparation of joint compound samples and reported airborne asbestos concentrations.

    PubMed

    Brorby, G P; Sheehan, P J; Berman, D W; Bogen, K T; Holm, S E

    2011-05-01

    Airborne samples collected in the 1970s for drywall workers using asbestos-containing joint compounds were likely prepared and analyzed according to National Institute of Occupational Safety and Health Method P&CAM 239, the historical precursor to current Method 7400. Experimentation with a re-created, chrysotile-containing, carbonate-based joint compound suggested that analysis following sample preparation by the historical vs. current method produces different fiber counts, likely because of an interaction between the different clearing and mounting chemicals used and the carbonate-based joint compound matrix. Differences were also observed during analysis using Method 7402, depending on whether acetic acid/dimethylformamide or acetone was used during preparation to collapse the filter. Specifically, air samples of sanded chrysotile-containing joint compound prepared by the historical method yielded fiber counts significantly greater (average of 1.7-fold, 95% confidence interval: 1.5- to 2.0-fold) than those obtained by the current method. In addition, air samples prepared by Method 7402 using acetic acid/dimethylformamide yielded fiber counts that were greater (2.8-fold, 95% confidence interval: 2.5- to 3.2-fold) than those prepared by this method using acetone. These results indicated (1) there is an interaction between Method P&CAM 239 preparation chemicals and the carbonate-based joint compound matrix that reveals fibers that were previously bound in the matrix, and (2) the same appeared to be true for Method 7402 preparation chemicals acetic acid/dimethylformamide. This difference in fiber counts is the opposite of what has been reported historically for samples of relatively pure chrysotile dusts prepared using the same chemicals. This preparation artifact should be considered when interpreting historical air samples for drywall workers prepared by Method P&CAM 239. Copyright © 2011 JOEH, LLC

  8. Comparative hazards of chrysotile asbestos and its substitutes: A European perspective.

    PubMed Central

    Harrison, P T; Levy, L S; Patrick, G; Pigott, G H; Smith, L L

    1999-01-01

    Although the use of amphibole asbestos (crocidolite and amosite) has been banned in most European countries because of its known effects on the lung and pleura, chrysotile asbestos remains in use in a number of widely used products, notably asbestos cement and friction linings in vehicle brakes and clutches. A ban on chrysotile throughout the European Union for these remaining applications is currently under consideration, but this requires confidence in the safety of substitute materials. The main substitutes for the residual uses of chrysotile are p-aramid, polyvinyl alcohol (PVA), and cellulose fibers, and it is these materials that are evaluated here. Because it critically affects both exposure concentrations and deposition in the lung, diameter is a key determinant of the intrinsic hazard of a fiber; the propensity of a material to release fibers into the air is also important. It is generally accepted that to be pathogenic to the lung or pleura, fibers must be long, thin, and durable; fiber chemistry may also be significant. These basic principles are used in a pragmatic way to form a judgement on the relative safety of the substitute materials, taking into account what is known about their hazardous properties and also the potential for uncontrolled exposures during a lifetime of use (including disposal). We conclude that chrysotile asbestos is intrinsically more hazardous than p-aramid, PVA, or cellulose fibers and that its continued use in asbestos-cement products and friction materials is not justifiable in the face of available technically adequate substitutes. Images Figure 1 PMID:10417355

  9. Comparative Risks of Cancer from Drywall Finishing Based on Stochastic Modeling of Cumulative Exposures to Respirable Dusts and Chrysotile Asbestos Fibers.

    PubMed

    Boelter, Fred W; Xia, Yulin; Dell, Linda

    2015-05-01

    Sanding joint compounds is a dusty activity and exposures are not well characterized. Until the mid 1970s, asbestos-containing joint compounds were used by some people such that sanding could emit dust and asbestos fibers. We estimated the distribution of 8-h TWA concentrations and cumulative exposures to respirable dusts and chrysotile asbestos fibers for four worker groups: (1) drywall specialists, (2) generalists, (3) tradespersons who are bystanders to drywall finishing, and (4) do-it-yourselfers (DIYers). Data collected through a survey of experienced contractors, direct field observations, and literature were used to develop prototypical exposure scenarios for each worker group. To these exposure scenarios, we applied a previously developed semi-empirical mathematical model that predicts area as well as personal breathing zone respirable dust concentrations. An empirical factor was used to estimate chrysotile fiber concentrations from respirable dust concentrations. On a task basis, we found mean 8-h TWA concentrations of respirable dust and chrysotile fibers are numerically highest for specialists, followed by generalists, DIYers, and bystander tradespersons; these concentrations are estimated to be in excess of the respective current but not historical Threshold Limit Values. Due to differences in frequency of activities, annual cumulative exposures are highest for specialists, followed by generalists, bystander tradespersons, and DIYers. Cumulative exposure estimates for chrysotile fibers from drywall finishing are expected to result in few, if any, mesothelioma or excess lung cancer deaths according to recently published risk assessments. Given the dustiness of drywall finishing, we recommend diligence in the use of readily available source controls. © 2014 Society for Risk Analysis.

  10. A Biopersistence Study following Exposure to Chrysotile Asbestos Alone or in Combination with Fine Particles

    PubMed Central

    Bernstein, D. M.; Donaldson, K.; Decker, U.; Gaering, S.; Kunzendorf, P.; Chevalier, J.; Holm, S. E.

    2008-01-01

    In designing a study to evaluate the inhalation biopersistence of a chrysotile asbestos that was used as a component of a joint-compound, a feasibility study was initiated to evaluate the short-term biopersistence of the chrysotile alone and of the chrysotile in combination witht the sanded reformulated joint-compound. Two groups of Wistar rats were exposed to either 7RF3 chrysotile (Group 2) or to 7RF3 chrysotile combined with aerosolized sanded joint-compound (Group 3). In addition, a control group was exposed to flltered-air. The chrysotile used in the Ready Mix joint compound is rapidly removed from the lung. The chrysotile alone exposure group had a clearance half-time of fibers L > 20 μm of 2.2 days; in the chrysotile plus sanded exposure group the clearance half-time of fibers L > 20 μm was 2.8 days. However, across all size ranges there was approximately an order of magnitude decrease in the mean number of fibers remaining in the lungs of Group 3 as compared to Group 2 despite similiar aerosol exposures. Histopathological examination showed that the chrysotile exposed lungs had the same appearance as the flltered-air controls. This study uniquely illustrates that additional concurrent exposure to an aerosol of the sanded joint-compound, with large numbers of fine-particles depositing in the lungs, accelerates the recruitment of macrophages, resulting in a tenfold decrease in the number of fibers remaining in the lung. The increased number of macrophages in the chrysotile/sanded joint exposure group was confirmed histologically, with this being the only exposure-related histological finding reported. PMID:18788018

  11. Mismatch in aeroallergens and airborne grass pollen concentrations

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Hernández-Ceballos, M. A.; Galán, C.

    2016-11-01

    An accurate estimation of the allergen concentration in the atmosphere is essential for allergy sufferers. The major cause of pollinosis all over Europe is due to grass pollen and Phl p 5 has the highest rates of sensitization (>50%) in patients with grass pollen-induced allergy. However, recent research has shown that airborne pollen does not always offer a clear indicator of exposure to aeroallergens. This study aims to evaluate relations between airborne grass pollen and Phl p 5 concentrations in Córdoba (southern Spain) and to study how meteorological parameters influence these atmospheric records. Monitoring was carried out from 2012 to 2014. Hirst-type volumetric spore trap was used for pollen collection, following the protocol recommended by the Spanish Aerobiology Network (REA). Aeroallergen sampling was performed using a low-volume cyclone sampler, and allergenic particles were quantified by ELISA assay. Besides, the influence of main meteorological factors on local airborne pollen and allergen concentrations was surveyed. A significant correlation was observed between grass pollen and Phl p 5 allergen concentrations during the pollen season, but with some sporadic discrepancy episodes. The cumulative annual Pollen Index also varied considerably. A significant correlation has been obtained between airborne pollen and minimum temperature, relative humidity and precipitation, during the three studied years. However, there is no clear relationship between allergens and weather variables. Our findings suggest that the correlation between grass pollen and aeroallergen Phl p 5 concentrations varies from year-to-year probably related to a complex interplay of meteorological variables.

  12. Strength of chrysotile-serpentinite gouge under hydrothermal conditions: Can it explain a weak San Andreas fault?

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, D.A.; Summers, R.; Shengli, M.; Byerlee, J.D.

    1996-01-01

    Chrysotile-bearing serpentinite is a constituent of the San Andreas fault zone in central and northern California. At room temperature, chrysotile gouge has a very low coefficient of friction (?? ??? 0.2), raising the possibility that under hydrothermal conditions ?? might be reduced sufficiently (to ???0.1) to explain the apparent weakness of the fault. To test this hypothesis, we measured the frictional strength of a pure chrysotile gouge at temperatures to 290??C and axial-shortening velocities as low as 0.001 ??m/s. As temperature increases to ???100??C, the strength of the chrysotile gouge decreases slightly at low velocities, but at temperatures ???200??C, it is substantially stronger and essentially independent of velocity at the lowest velocities tested. We estimate that pure chrysotile gouge at hydrostatic fluid pressure and appropriate temperatures would have shear strength averaged over a depth of 14 km of 50 MPa. Thus, on the sole basis of its strength, chrysotile cannot be the cause of a weak San Andreas fault. However, chrysotile may also contribute to low fault strength by forming mineral seals that promote the development of high fluid pressures.

  13. Chemical agents for conversion of chrysotile asbestos into non-hazardous materials

    DOEpatents

    Sugama, Toshifumi; Petrakis, Leon

    1998-06-09

    A composition and methods for converting a chrysotile asbestos-containing material to a non-regulated environmentally benign solid which comprises a fluoro acid decomposing agent capable of dissociating the chrysotile asbestos to non-regulated components, wherein non-regulated components are non-reactive with the environment, and a binding agent which binds the non-regulated components to form an environmentally benign solid.

  14. Occupational exposure to chrysotile asbestos and cancer risk: a review of the amphibole hypothesis.

    PubMed Central

    Stayner, L T; Dankovic, D A; Lemen, R A

    1996-01-01

    OBJECTIVES. This article examines the credibility and policy implications of the "amphibole hypothesis," which postulates that (1) the mesotheliomas observed among workers exposed to chrysotile asbestos may be explained by confounding exposures to amphiboles, and (2) chrysotile may have lower carcinogenic potency than amphiboles. METHODS. A critical review was conducted of the lung burden, epidemiologic, toxicologic, and mechanistic studies that provide the basis for the amphibole hypothesis. RESULTS. Mechanistic and lung burden studies do not provide convincing evidence for the amphibole hypothesis. Toxicologic and epidemiologic studies provide strong evidence that chrysotile is associated with an increased risk of lung cancer and mesothelioma. Chrysotile may be less potent than some amphiboles for inducing mesotheliomas, but there is little evidence to indicate lower lung cancer risk. CONCLUSIONS. Given the evidence of a significant lung cancer risk, the lack of conclusive evidence for the amphibole hypothesis, and the fact that workers are generally exposed to a mixture of fibers, we conclude that it is prudent to treat chrysotile with virtually the same level of concern as the amphibole forms of asbestos. PMID:8633733

  15. Chemical agents for conversion of chrysotile asbestos into non-hazardous materials

    DOEpatents

    Sugama, Toshifumi; Petrakis, L.

    1998-06-09

    A composition and methods are disclosed for converting a chrysotile asbestos-containing material to a non-regulated environmentally benign solid which comprises a fluoro acid decomposing agent capable of dissociating the chrysotile asbestos to non-regulated components, wherein non-regulated components are non-reactive with the environment, and a binding agent which binds the non-regulated components to form an environmentally benign solid. 2 figs.

  16. A biomimetic approach to the chemical inactivation of chrysotile fibres by lichen metabolites.

    PubMed

    Turci, Francesco; Favero-Longo, Sergio E; Tomatis, Maura; Martra, Gianmario; Castelli, Daniele; Piervittori, Rosanna; Fubini, Bice

    2007-01-01

    Some lichens were recently reported to modify the surface state of asbestos. Here we report some new insight on the physico-chemical modifications induced by natural chelators (lichen metabolites) on two asbestos samples collected in two different locations. A biomimetic approach was followed by reproducing in the laboratory the weathering effect of lichen metabolites. Norstictic, pulvinic and oxalic acid (0.005, 0.5 and 50 mM) were put in contact with chrysotile fibres, either in pure form (A) or intergrown with balangeroite, an iron-rich asbestiform phase (B). Mg and Si removal, measured by inductively coupled plasma atomic emission spectrometry (ICP-AES) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), reveals an incongruent dissolution for pure chrysotile (A), with Mg removal always exceeding that of Si, while chrysotile-balangeroite (B) follows a congruent dissolution pattern in all cases except in the presence of 50 mM oxalic acid. A much larger removal of Mg than Si in the solutions of 0.5 and 50 mM oxalic acid with chrysotile (A) suggests a structural collapse, which in the case of chrysotile-balangeroite (B) only occurs with 50 mM oxalic acid; in these cases both samples are converted into amorphous silica (as detected by X-ray diffraction (XRD)). Subsequent to incubation, some new phases (Fe(2)O(3), CaMg(CO(3))(2), Ca(C(2)O(4)) x H(2)O and Mg(C(2)O(4))2 x H(2)O), similar to those observed in the field, were detected by XRD and micro-Raman spectroscopy. The leaching effect of lichen metabolites also modifies the Fenton activity, a process widely correlated with asbestos pathogenicity: pure chrysotile (A) activity is reduced by 50 mM oxalic acid, while all lichen metabolites reduce the activity of chrysotile-balangeroite (B). The selective removal of poorly coordinated, highly reactive iron ions, evidenced by NO adsorption, accounts for the loss in Fenton activity. Such fibres were chemically close to the ones observed in the

  17. Misleading "New Insights into the Chrysotile Debate".

    PubMed

    Woitowitz, H-J; Baur, X

    2018-05-18

    Although there is no dispute among independent scientists about the carcinogenic and fibrogenic effects of chrysotile, the asbestos industry has been continuously and successfully acting to cast doubts on its harm. Another approach including asbestos insurance entities is to refuse compensation by raising the bar and fight criminal prosecution for asbestos-related diseases by the help of paid scientists. A recent publication on asbestos fibre burden in human lungs fits well in this context. The claim that chrysotile fibres are biopersistent in human lung is not based on the data provided by these authors, and, additionally, exhibits serious inconsistencies and obvious mismeasurements and significant methodological problems. The conclusion of the authors that fibre analysis of workers' lungs "is of high significance for differential diagnosis, risk assessment and occupational compensation" is unfounded and reprehensible. Also the available literature, the statements of the WHO, IARC, other decisive independent international organizations, and all our experience provide abundant evidence to the contrary. Note, the method is generally restricted to research only and is not recognized for diagnostic purpose and compensation in any other country. In conclusion, fibre counting in lung tissues should not be used to estimate former exposure to chrysotile comprising c. 94 % of applied asbestos in Germany. The authors claim that the analyses can improve the compensation rates in Germany. However, the opposite has been the case; it significantly worsens the non-justified denial of well-substantiated compensation claims. © Georg Thieme Verlag KG Stuttgart · New York.

  18. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    PubMed

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  19. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  20. The concentration of no toxicologic concern (CoNTC) and airborne mycotoxins.

    PubMed

    Hardin, Bryan D; Robbins, Coreen A; Fallah, Payam; Kelman, Bruce J

    2009-01-01

    The threshold of toxicologic concern (TTC) concept was developed as a method to identify a chemical intake level that is predicted to be without adverse human health effects assuming daily intake over the course of a 70-yr life span. The TTC values are based on known structure-activity relationships and do not require chemical-specific toxicity data. This allows safety assessment (or prioritization for testing) of chemicals with known molecular structure but little or no toxicity data. Recently, the TTC concept was extended to inhaled substances by converting a TTC expressed in micrograms per person per day to an airborne concentration (ng/m(3)), making allowance for intake by routes in addition to inhalation and implicitly assuming 100% bioavailability of inhaled toxicants. The resulting concentration of no toxicologic concern (CoNTC), 30 ng/m(3), represents a generic airborne concentration that is expected to pose no hazard to humans exposed continuously throughout a 70-yr lifetime. Published data on the levels of mycotoxins in agricultural dusts or in fungal spores, along with measured levels of airborne mycotoxins, spores, or dust in various environments, were used to identify conditions under which mycotoxin exposures might reach the CoNTC. Data demonstrate that airborne concentrations of dusts and mold spores sometimes encountered in agricultural environments have the potential to produce mycotoxin concentrations greater than the CoNTC. On the other hand, these data suggest that common exposures to mycotoxins from airborne molds in daily life, including in the built indoor environment, are below the concentration of no toxicologic concern.

  1. Fixation of CO 2 by chrysotile in low-pressure dry and moist carbonation: Ex-situ and in-situ characterizations

    NASA Astrophysics Data System (ADS)

    Larachi, Faïçal; Daldoul, Insaf; Beaudoin, Georges

    2010-06-01

    A detailed study of low-pressure gas-solid carbonation of chrysotile in dry and humid environments has been carried out. The evolving structure of chrysotile and its reactivity as a function of temperature (300-1200 °C), humidity (0-10 mol %) and CO 2 partial pressure (20-67 mol %), thermal preconditioning, and alkali metal doping (Li, Na, K, Cs) have been monitored through in-situ X-ray photoelectron spectroscopy, isothermal thermogravimetry/mass spectrometry, ex-situ X-ray powder diffraction, and water and nitrogen adsorption/desorption. Based on chrysotile crystalline structure and its nanofibrilar orderliness, a multistep carbonation mechanism was elaborated to explain the role of water during chrysotile partial amorphisation, formation of periclase, brucite, and hydromagnesite crystalline phases, and surface passivation thereof, during humid carbonation. The weak carbonation reactivity was rationalized in terms of incongruent CO 2 van der Waals molecular diameters with the octahedral-tetrahedral lattice constants of chrysotile. This lack of reactivity appeared to be relatively indifferent to the facilitated water crisscrossing during chrysotile core dehydroxylation/pseudo-amorphisation and surface hydroxylation induced product stabilization during humid carbonation. Thermodynamic stability domains of the species observed at low pressure have been thoroughly discussed on the basis of X-ray powder diffraction patterns and X-ray photoelectron spectroscopy evidence. The highest carbon dioxide uptake occurred at 375 °C in moist atmospheres. On the basis of chrysotile fresh N 2 BET area, nearly 15 atoms out of 100 of the surface chrysotile brucitic Mg moiety have been carbonated at this temperature which was tantamount to the carbonation of about 2.5 at. % of the total brucitic Mg moiety in chrysotile. The carbonation of brucite (Mg(OH) 2) impurities coexisting in chrysotile was minor and estimated to contribute by less than 17.6 at. % of the total converted

  2. Solubility of chrysotile asbestos and basalt fibers in relation to their fibrogenic and carcinogenic action.

    PubMed

    Kogan, F M; Nikitina, O V

    1994-10-01

    Fiber length and persistence are thought to be determinants for the development of toxic, fibrogenic, and carcinogenic effects of fibrous dusts. When the solubilities of chrysotile asbestos (CA) and basalt fibers (BF) were compared by measuring the loss of silica and magnesium in Leineweber's solution, CA was shown to be the more soluble. In a 6-month inhalation experiment, chrysotile at a mean concentration of 25 mg/m3 had a higher clearance rate than other comparable dusts. In acute toxicity studies, chrysotile and basalt fibers were administered intraperitoneally. At a dose of 1.7 g/kg body weight of CA, one third of the animals died. A dose of 2.7 g/kg body weight killed all the animals. With BF, even at a dose of 10 g/kg body weight all the animals survived. When the two fibers were administered over a 6-month period, either intratracheally or by inhalation, fibrotic lesions were more common in the group that received CA. Intraperitoneal administration of CA led to three times as many deaths from peritoneal mesothelioma as administration of BF. It appears, therefore, that in spite of its higher solubility and lower persistence, CA was the more toxic, fibrogenic and carcinogenic fiber, which gives rise to the hypothesis that the surface chemistry of the fibers is the determinant for biological activity.

  3. Solubility of chrysotile asbestos and basalt fibers in relation to their fibrogenic and carcinogenic action.

    PubMed Central

    Kogan, F M; Nikitina, O V

    1994-01-01

    Fiber length and persistence are thought to be determinants for the development of toxic, fibrogenic, and carcinogenic effects of fibrous dusts. When the solubilities of chrysotile asbestos (CA) and basalt fibers (BF) were compared by measuring the loss of silica and magnesium in Leineweber's solution, CA was shown to be the more soluble. In a 6-month inhalation experiment, chrysotile at a mean concentration of 25 mg/m3 had a higher clearance rate than other comparable dusts. In acute toxicity studies, chrysotile and basalt fibers were administered intraperitoneally. At a dose of 1.7 g/kg body weight of CA, one third of the animals died. A dose of 2.7 g/kg body weight killed all the animals. With BF, even at a dose of 10 g/kg body weight all the animals survived. When the two fibers were administered over a 6-month period, either intratracheally or by inhalation, fibrotic lesions were more common in the group that received CA. Intraperitoneal administration of CA led to three times as many deaths from peritoneal mesothelioma as administration of BF. It appears, therefore, that in spite of its higher solubility and lower persistence, CA was the more toxic, fibrogenic and carcinogenic fiber, which gives rise to the hypothesis that the surface chemistry of the fibers is the determinant for biological activity. PMID:7882932

  4. Absolute tracer dye concentration using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    The use of simultaneous airborne-laser-induced dye fluorescence and water Raman backscatter to measure the absolute concentration of an ocean-dispersed tracer dye is discussed. Theoretical considerations of the calculation of dye concentration by the numerical comparison of airborne laser-induced fluorescence spectra with laboratory spectra for known dye concentrations using the 3400/cm OH-stretch water Raman scatter as a calibration signal are presented which show that minimum errors are obtained and no data concerning water mass transmission properties are required when the laser wavelength is chosen to yield a Raman signal near the dye emission band. Results of field experiments conducted with an airborne conical scan lidar over a site in New York Bight into which rhodamine dye had been injected in a study of oil spill dispersion are then indicated which resulted in a contour map of dye concentrations, with a minimum detectable dye concentration of approximately 2 ppb by weight.

  5. Ambrosia airborne pollen concentration modelling and evaluation over Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Viovy, Nicolas; Khvorostyanov, Dmitry; Colette, Augustin

    2014-05-01

    Native from North America, Ambrosia artemisiifolia L. (Common Ragweed) is an invasive annual weed introduced in Europe in the mid-nineteenth century. It has a very high spreading potential throughout Europe and releases very allergenic pollen leading to health problems for sensitive persons. Because of its health effects, it is necessary to develop modelling tools to be able to forecast ambrosia air pollen concentration and to inform allergy populations of allergenic threshold exceedance. This study is realised within the framework of the ATOPICA project (https://www.atopica.eu/) which is designed to provide first steps in tools and estimations of the fate of allergies in Europe due to changes in climate, land use and air quality. To calculate and predict airborne concentrations of ambrosia pollen, a chain of models has been built. Models have been developed or adapted for simulating the phenology (PMP phonological modelling platform), inter-annual production (ORCHIDEE vegetation model), release and airborne processes (CHIMERE chemical transport model) of ragweed pollen. Airborne pollens follow processes similar to air quality pollutants in CHIMERE with some adaptations. The detailed methodology, formulations and input data will be presented. A set of simulations has been performed to simulate airborne concentrations of pollens over long time periods on a large European domain. Hindcast simulations (2000 - 2012) driven by ERA-Interim re-analyses are designed to best simulate past periods airborne pollens. The modelled pollen concentrations are calibrated with observations and validated against additional observations. Then, 20-year long historical simulations (1986 - 2005) are carried out using calibrated ambrosia density distribution and climate model-driven weather in order to serve as a control simulation for future scenarios. By comparison with multi-annual observed daily pollen counts we have shown that the model captures well the gross features of the pollen

  6. Environmental pleural plaques in residents of a Quebec chrysotile mining town

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churg, A.; DePaoli, L.

    1988-07-01

    We report four cases of pleural plaques found at autopsy in individuals who resided in or near the chrysotile mining town of Thetford Mines, Quebec, and who had never been employed in the chrysotile mining and milling industry. Three of these patients were farmers, and one was a road construction worker. Lung asbestos content of these cases was compared with that of a group of nine persons living in the same vicinity who did not have pleural plaques. The plaque group was found to have an equal chrysotile content but about a fourfold elevation in median tremolite content, a statisticallymore » significant increase. Fiber sizes were the same in both groups. Also, one plaque case had an elevated level of relatively long titanium oxide fibers. These observations suggest that environmental pleural plaques in this region of Quebec are probably caused by exposure to tremolite derived from local soil and rock and that other types of mineral fibers such as titanium oxide may occasionally also be the cause of such lesions.« less

  7. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy.

    PubMed

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management.

  8. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy

    PubMed Central

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management. PMID:26953691

  9. Measurements of airborne methylene diphenyl diisocyanate (MDI) concentration in the U.S. workplace.

    PubMed

    Booth, Karroll; Cummings, Barbara; Karoly, William J; Mullins, Sharon; Robert, William P; Spence, Mark; Lichtenberg, Fran W; Banta, J

    2009-04-01

    This article summarizes a large body of industry air sampling data (8134 samples) in which airborne MDI concentrations were measured in a wide variety of manufacturing processes that use either polymeric MDI (PMDI) or monomeric (pure) MDI. Data were collected during the period 1984 through 1999. A total of 606 surveys were conducted for 251 companies at 317 facilities. The database includes 3583 personal (breathing zone) samples and 4551 area samples. Data demonstrate that workplace airborne MDI concentrations are extremely low in a majority of the manufacturing operations. Most (74.6%) of the airborne MDI concentrations measured in the personal samples were nondetectable, i.e., below the limits of quantification (LOQs). A variety of validated industrial hygiene sampling/analytical methods were used for data collection; most are modifications of OSHA Method 47. The LOQs for these methods ranged from 0.1-0.5 microg/sample. The very low vapor pressures of both monomeric MDI and PMDI largely explain the low airborne concentrations found in most operations. However, processes or applications in which the chemical is sprayed or heated may result in higher airborne concentrations and higher exposure potentials if appropriate control measures are not implemented. Data presented in this article will be a useful reference for employers in helping them to manage their health and safety program as it relates to respiratory protection during MDI/PMDI applications.

  10. Asbestos-containing materials and airborne asbestos levels in industrial buildings in Korea.

    PubMed

    Choi, Sangjun; Suk, Mee-Hee; Paik, Nam Won

    2010-03-01

    Recently in Korea, the treatment of asbestos-containing materials (ACM) in building has emerged as one of the most important environmental health issues. This study was conducted to identify the distribution and characteristics of ACM and airborne asbestos concentrations in industrial buildings in Korea. A total of 1285 presumed asbestos-containing material (PACM) samples were collected from 80 workplaces across the nation, and 40% of the PACMs contained more than 1% of asbestos. Overall, 94% of the surveyed workplaces contained ACM. The distribution of ACM did not show a significant difference by region, employment size, or industry. The total ACM area in the buildings surveyed was 436,710 m2. Ceiling tile ACM accounted for 61% (267,093 m2) of the total ACM area, followed by roof ACM (32%), surfacing ACM (6.1%), and thermal system insulation (TSI). In terms of asbestos type, 98% of total ACM was chrysotile, while crocidolite was not detected. A comparison of building material types showed that the material with the highest priority for regular management is ceiling tile, followed by roof, TSI, and surfacing material. The average airborne concentration of asbestos sampled without disturbing in-place ACM was 0.0028 fibers/cc by PCM, with all measurements below the standard of recommendation for indoor air quality in Korea (0.01 fibers/cc).

  11. A study of personal and area airborne asbestos concentrations during asbestos abatement: a statistical evaluation of fibre concentration data.

    PubMed

    Lange, J H; Lange, P R; Reinhard, T K; Thomulka, K W

    1996-08-01

    Data were collected and analysed on airborne concentrations of asbestos generated by abatement of different asbestos-containing materials using various removal practices. Airborne concentrations of asbestos are dramatically variable among the types of asbestos-containing material being abated. Abatement practices evaluated in this study were removal of boiler/pipe insulation in a crawl space, ceiling tile, transite, floor tile/mastic with traditional methods, and mastic removal with a high-efficiency particulate air filter blast track (shot-blast) machine. In general, abatement of boiler and pipe insulation produces the highest airborne fibre levels, while abatement of floor tile and mastic was observed to be the lowest. A comparison of matched personal and area samples was not significantly different, and exhibited a good correlation using regression analysis. After adjusting data for outliers, personal sample fibre concentrations were greater than area sample fibre concentrations. Statistical analysis and sample distribution of airborne asbestos concentrations appear to be best represented in a logarithmic form. Area sample fibre concentrations were shown in this study to have a larger variability than personal measurements. Evaluation of outliers in fibre concentration data and the ability of these values to skew sample populations is presented. The use of personal and area samples in determining exposure, selecting personal protective equipment and its historical relevance as related to future abatement projects is discussed.

  12. Airborne endotoxin concentrations at a large open-lot dairy in southern idaho.

    PubMed

    Dungan, Robert S; Leytem, April B

    2009-01-01

    Endotoxins are derived from gram-negative bacteria and are a potential respiratory health risk for animals and humans. To determine the potential for endotoxin transport from a large open-lot dairy, total airborne endotoxin concentrations were determined at an upwind location (background) and five downwind locations on three separate days. The downwind locations were situated at of the edge of the lot, 200 and 1390 m downwind from the lot, and downwind from a manure composting area and wastewater holding pond. When the wind was predominantly from the west, the average endotoxin concentration at the upwind location was 24 endotoxin units (EU) m(-3), whereas at the edge of the lot on the downwind side it was 259 EU m(-3). At 200 and 1390 m downwind from the edge of the lot, the average endotoxin concentrations were 168 and 49 EU m(-3), respectively. Average airborne endotoxin concentrations downwind from the composting site (36 EU m(-3)) and wastewater holding pond (89 EU m(-3)) and 1390 m from the edge of the lot were not significantly different from the upwind location. There were no significant correlations between ambient weather data collected and endotoxin concentrations over the experimental period. The downwind data show that the airborne endotoxin concentrations decreased exponentially with distance from the lot edge. Decreasing an individual's proximity to the dairy should lower their risk of airborne endotoxin exposure and associated health effects.

  13. Exposure-specific lung cancer risks in Chinese chrysotile textile workers and mining workers.

    PubMed

    Wang, Xiaorong; Lin, Sihao; Yano, Eiji; Yu, Ignatius T S; Courtice, Midori; Lan, Yajia; Christiani, David C

    2014-08-01

    Whether there is a difference in the exposure-response slope for lung cancer between mining workers and textile workers exposed to chrysotile has not been well documented. This study was carried out to evaluate exposure-specific lung cancer risks in Chinese chrysotile textile workers and mining workers. A chrysotile mining worker cohort and a chrysotile textile worker cohort were observed concurrently for 26 years. Information on workers' vital status, occupational history and smoking habits were collected, and causes and dates of deaths were verified from death registries. Individual cumulative fiber exposures were estimated based on periodic dust/fiber measurements from different workshops, job title and duration, and categorized into four levels (Q1-Q4). Standardized mortality ratios (SMRs) for lung cancer were calculated and stratified by industry and job title with reference of the national rates. Cox proportional hazard models were fit to estimate the exposure-specific lung cancer risks upon adjustment for age and smoking, in which an external control cohort consisting of industrial workers without asbestos exposure was used as reference group for both textile and mining workers. SMRs were almost consistent with exposure levels in terms of job titles and workshops. A clear exposure-response relationship between lung cancer mortality and exposure levels was observed in both cohorts. At low exposure levels (Q1 and Q2), textile workers displayed higher death risks of lung cancer than mining workers. However, similarly considerably high risks were observed at higher exposure levels, with hazard ratios of over 8 and 11 at Q3 and Q4, respectively, for both textile and mining workers, after both age and smoking were adjusted. The chrysotile textile workers appeared to have a higher risk of lung cancer than the mining workers at a relatively low exposure level, but no difference was observed at a high exposure level, where both cohorts displayed a considerably high

  14. An Australian study to evaluate worker exposure to chrysotile in the automotive service industry.

    PubMed

    Yeung, P; Patience, K; Apthorpe, L; Willcocks, D

    1999-07-01

    A study was conducted in Sydney, Australia, in 1996 to investigate the current exposure levels, control technologies, and work practices in five service garages (four car and one bus), three brake bonding workshops, and one gasket processing workshop. This study formed part of the assessment of chrysotile as a priority existing chemical under the Australian National Industrial Chemicals Notification and Assessment Scheme. A total of 68 (11 personal and 57 area) air samples were collected, in accordance with the Australian standard membrane filter method. Fiber concentrations were determined by the traditional phase contrast microscopy (PCM) method and 16 selected samples were analyzed by the more powerful transmission electron microscopy (TEM). Chrysotile exposure of car mechanics measured by PCM was typically below the reportable detection limit of 0.05 f/mL, irrespective of whether disc brake, drum brake, or clutch was being serviced. These low levels can be attributed to the wet cleaning or aerosol spray methods used in recent years to replace the traditional compressed air jet cleaning. In the three brake shoe relining workshops, task-specific exposure reached up to 0.16 f/mL in the processes of cutting and radius grinding. TEM results were generally higher, due to its higher resolution power. The median diameter on samples taken from the service garages (passenger cars), as determined by TEM, was 0.5-1.0 micron; and was between 0.2-0.5 micron for the brake bonding and gasket processing workshops, while that for the bus service depot was 0.1-0.2 micron. Most of the respirable fibers (84%, mainly forsterite) from the bus service depot were below 0.2 micron in diameter which is the resolution limit of PCM. In the brake bonding and gasket cutting workshops, 34 percent and 44 percent of the chrysotile fibers were below 0.2 micron in diameter.

  15. Environmental assessment of three egg production systems - Part III: Airborne bacteria concentrations and emissions.

    PubMed

    Zhao, Y; Zhao, D; Ma, H; Liu, K; Atilgan, A; Xin, H

    2016-07-01

    Airborne microorganism level is an important indoor air quality indicator, yet it has not been well documented for laying-hen houses in the United States. As a part of the Coalition for Sustainable Egg Supply (CSES) environmental monitoring project, this study comparatively monitored the concentrations and emissions of airborne total and Gram-negative (Gram(-)) bacteria in three types of commercial laying-hen houses, i.e., conventional cage (CC), aviary (AV), and enriched colony (EC) houses, over a period of eight months covering the mid and late stages of the flock cycle. It also delineated the relationship between airborne total bacteria and particulate matter smaller than 10 μm in aerodynamic diameter (PM10). The results showed airborne total bacteria concentrations (log CFU/m(3)) of 4.7 ± 0.3 in CC, 6.0 ± 0.8 in AV, and 4.8 ± 0.3 in EC, all being higher than the level recommended for human environment (3.0 log CFU/m(3)). The much higher concentrations in AV arose from the presence of floor litter and hen activities on it, as evidenced by the higher concentrations in the afternoon (with litter access) than in the morning (without litter access). The overall means and standard deviation of airborne total bacteria emission rates, in log CFU/[h-hen] (or log CFU/[h-AU], AU = animal unit or 500 kg live weight) were 4.8 ± 0.4 (or 7.3 ± 0.4) for CC, 6.1 ± 0.7 (or 8.6 ± 0.7) for AV, and 4.8 ± 0.5 (or 7.3 ± 0.5) for EC. Both concentration and emission rate of airborne total bacteria were positively related to PM10 Gram(-) bacteria were present at low concentrations in all houses; and only 2 samples (6%) in CC, 7 (22%) samples in AV, and 2 (6%) samples in EC out of 32 air samples collected in each house were found positive with Gram(-) bacteria. The concentration of airborne Gram(-) bacteria was estimated to be <2% of the total bacteria. Total bacteria counts in manure on belt (in all houses) and floor litter (only in AV) were similar; however, the manure had

  16. Ambient airborne solids concentrations including volcanic ash at Hanford, Washington sampling sites subsequent to the Mount St. Helens eruption

    NASA Technical Reports Server (NTRS)

    Sehmel, G. A.

    1982-01-01

    Airborne solids concentrations were measured on a near daily basis at two Hanford, Washington sites after the eruption of Mount St. Helens on May 18, 1980. These sites are about 211 km east of Mount St. Helens. Collected airborne solids included resuspended volcanic ash plus normal ambient solids. Average airborne solids concentrations were greater at the Hanford meteorological station sampling site which is 24 km northwest of the Horn Rapids dam sampling site. These increased concentrations reflect the sampling site proximity to greater ash fallout depths. Both sites are in low ash fallout areas although the Hanford meteorological station site is closer to the greater ash fallout areas. Airborne solids concentrations were decreased by rain, but airborne solids concentrations rapidly increased as surfaces dried. Airborne concentrations tended to become nearly the same at both sampling sites only for July 12 and 13.

  17. Surface and Airborne Arsenic Concentrations in a Recreational Site near Las Vegas, Nevada, USA

    PubMed Central

    Goossens, Dirk

    2015-01-01

    Elevated concentrations of arsenic, up to 7058 μg g-1 in topsoil and bedrock, and more than 0.03 μg m-3 in air on a 2-week basis, were measured in the Nellis Dunes Recreation Area (NDRA), a very popular off-road area near Las Vegas, Nevada, USA. The elevated arsenic concentrations in the topsoil and bedrock are correlated to outcrops of yellow sandstone belonging to the Muddy Creek Formation (≈ 10 to 4 Ma) and to faults crossing the area. Mineralized fluids moved to the surface through the faults and deposited the arsenic. A technique was developed to calculate airborne arsenic concentrations from the arsenic content in the topsoil. The technique was tested by comparing calculated with measured concentrations at 34 locations in the NDRA, for 3 periods of 2 weeks each. We then applied it to calculate airborne arsenic concentrations for more than 500 locations all over the NDRA. The highest airborne arsenic concentrations occur over sand dunes and other zones with a surficial layer of aeolian sand. Ironically these areas show the lowest levels of arsenic in the topsoil. However, they are highly susceptible to wind erosion and emit very large amounts of sand and dust during episodes of strong winds, thereby also emitting much arsenic. Elsewhere in the NDRA, in areas not or only very slightly affected by wind erosion, airborne arsenic levels equal the background level for airborne arsenic in the USA, approximately 0.0004 μg m-3. The results of this study are important because the NDRA is visited by more than 300,000 people annually. PMID:25897667

  18. Airborne plutonium-239 and americium-241 concentrations measured from the 125-meter Hanford Meteorological Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehmel, G.A.

    1978-01-01

    Airborne plutonium-239 and americium-241 concentrations and fluxes were measured at six heights from 1.9 to 122 m on the Hanford meteorological tower. The data show that plutonium-239 was transported on nonrespirable and small particles at all heights. Airborne americium-241 concentrations on small particles were maximum at the 91 m height.

  19. Evaluation of the deposition, translocation and pathological response of brake dust with and without added chrysotile in comparison to crocidolite asbestos following short-term inhalation: Interim results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, David M., E-mail: davidb@itox.ch; Rogers, Rick, E-mail: rarogers5@yahoo.com; Sepulveda, Rosalina

    Chrysotile has been frequently used in the past in manufacturing brakes and continues to be used in brakes in many countries. This study was designed to provide an understanding of the biokinetics and potential toxicology following inhalation of brake dust following short term exposure in rats. The deposition, translocation and pathological response of brake dust derived from brake pads manufactured with chrysotile were evaluated in comparison to the amphibole, crocidolite asbestos. Rats were exposed by inhalation 6 h/day for 5 days to either brake dust obtained by sanding of brake-drums manufactured with chrysotile, a mixture of chrysotile and the brakemore » dust or crocidolite asbestos. No significant pathological response was observed at any time point in either the brake dust or chrysotile/brake dust exposure groups. The long chrysotile fibers (> 20 μm) cleared quickly with T{sub 1/2} estimated as 30 and 33 days, respectively in the brake dust and the chrysotile/brake dust exposure groups. In contrast, the long crocidolite fibers had a T{sub 1/2} > 1000 days and initiated a rapid inflammatory response in the lung following exposure resulting in a 5-fold increase in fibrotic response within 91 days. These results provide support that brake dust derived from chrysotile containing brake drums would not initiate a pathological response in the lung following short term inhalation. - Highlights: • We evaluated brake dust w/wo added chrysotile in comparison to crocidolite asbestos. • Persistence, translocation, pathological response in the lung and pleural cavity. • Chrysotile cleared rapidly from the lung while the crocidolite asbestos persisted. • No significant pathology observed at any time point in the brake-dust groups. • Crocidolite produced pathological response - Wagner 4 interstitial fibrosis by 32d.« less

  20. [The airborne 1,3-butadiene concentrations in rubber and plastic processing plants].

    PubMed

    Yoshida, Toshiaki; Tainaka, Hidetsugu; Matsunaga, Ichiro; Goto, Sumio

    2002-03-01

    Environment pollution by 1,3-butadiene had considerably increased in Japan. The main cause of the pollution is the automotive exhaust gas, and leaks from factories, smoking, and burning of rubber and plastic products are considered to be minor sources. The object of this study was to determine the contamination levels of airborne 1,3-butadiene in factories processing rubber and plastics containing 1,3-butadiene. The concentrations of airborne 1,3-butadiene were measured in 21 plants (10 rubber processing plants and 11 plastics processing plants) in Osaka. 1,3-Butadiene in air was collected for 10 minutes with a charcoal tube and a portable small pump adjusted to a 250 ml/min flow rate. In each plant, indoor air samples at five points and an outdoor air sample at one point outside the plant were collected. The samples were subjected to gas chromatography/mass spectrometry after thermal desorption from the charcoal. The concentrations of airborne 1,3-butadiene in the rubber processing plants and the plastics processing plants were 0.14-2.20 micrograms/m3 (geometric mean: 0.48 microgram/m3) and 0.23-4.51 micrograms/m3 (geometric mean: 0.80 microgram/m3), respectively. In all plants examined, indoor 1,3-butadiene concentrations were higher than the outdoor concentrations around the plants. Therefore, 1,3-butadiene was considered to arise from the processing of rubber or plastics, but the indoor 1,3-butadiene concentrations were much lower than the PEL-TWA (1 ppm = 2.21 mg/m3) of OSHA and the TLV-TWA (2 ppm) of ACGIH. The concentrations in the plants with closed room conditions without ventilation were higher than the concentrations in the other plants. It was suggested that ventilation affected the 1,3-butadiene concentration in the plants.

  1. Airborne concentrations of benzene due to diesel locomotive exhaust in a roundhouse.

    PubMed

    Madl, Amy K; Paustenbach, Dennis J

    2002-12-13

    Concentrations of airborne benzene due to diesel exhaust from a locomotive were measured during a worst-case exposure scenario in a roundhouse. To understand the upper bound human health risk due to benzene, an electromotive diesel and a General Electric four-cycle turbo locomotive were allowed to run for four 30-min intervals during an 8-h workshift in a roundhouse. Full-shift and 1-h airborne concentrations of benzene were measured in the breathing zone of surrogate locomotive repairmen over the 8-h workshift on 2 consecutive days. In addition, carbon monoxide was measured continuously; elemental carbon (surrogate for diesel exhaust) was sampled with full-shift area samples; and nitrogen dioxide/nitric oxide was sampled using full-shift and 15-min (nitrogen dioxide only) area samples. Peak concentrations of carbon monoxide ranged from 22.5 to 93 ppm. The average concentration of elemental carbon for each day of the roundhouse study was 0.0543 and 0.0552 microg/m(3 )for an 8-h workshift. These were considered "worst-case" conditions since the work environment was intolerably irritating to the eyes, nose, and throat. Short-term nitrogen dioxide concentrations ranged from 0.81 to 2.63 ppm during the diesel emission events with the doors closed. One-hour airborne benzene concentrations ranged from 0.001 to 0.015 ppm with 45% of the measurements below the detection limit of 0.002-0.004 ppm. Results indicated that the 8-h time-weighted average for benzene in the roundhouse was approximately 100-fold less than the current threshold limit value (TLV) of 0.5 ppm. These data are consistent with other studies, which have indicated that benzene concentrations due to diesel emissions, even in a confined environment, are quite low.

  2. Assessment of airborne asbestos exposure during the servicing and handling of automobile asbestos-containing gaskets.

    PubMed

    Blake, Charles L; Dotson, G Scott; Harbison, Raymond D

    2006-07-01

    Five test sessions were conducted to assess asbestos exposure during the removal or installation of asbestos-containing gaskets on vehicles. All testing took place within an operative automotive repair facility involving passenger cars and a pickup truck ranging in vintage from late 1960s through 1970s. A professional mechanic performed all shop work including engine disassembly and reassembly, gasket manipulation and parts cleaning. Bulk sample analysis of removed gaskets through polarized light microscopy (PLM) revealed asbestos fiber concentrations ranging between 0 and 75%. Personal and area air samples were collected and analyzed using National Institute of Occupational Safety Health (NIOSH) methods 7400 [phase contrast microscopy (PCM)] and 7402 [transmission electron microscopy (TEM)]. Among all air samples collected, approximately 21% (n = 11) contained chrysotile fibers. The mean PCM and phase contrast microscopy equivalent (PCME) 8-h time weighted average (TWA) concentrations for these samples were 0.0031 fibers/cubic centimeters (f/cc) and 0.0017 f/cc, respectively. Based on these findings, automobile mechanics who worked with asbestos-containing gaskets may have been exposed to concentrations of airborne asbestos concentrations approximately 100 times lower than the current Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) of 0.1 f/cc.

  3. Comparison of effects on macrophage cultures of glass fibre, glass powder, and chrysotile asbestos

    PubMed Central

    Beck, E. G.; Holt, P. F.; Manojlović, N.

    1972-01-01

    Beck, E. G., Holt, P. F., and Manojlović, N. (1972).Brit. J. industr. Med.,29, 280-286. Comparison of effects on macrophage cultures of glass fibre, glass powder, and chrysotile asbestos. The effects on macrophage cultures of glass fibre, glass powder, and chrysotile asbestos are compared. Glass fibre behaves like chrysotile in producing an increase in cell membrane permeability in cultured macrophages. This is demonstrable by the increase in lactic dehydrogenase activity in the supernatant fluid. The metabolism, measured by lactate production, is not reduced as it is when quartz is phagocytosed. Glass powder behaves like the inert dust corundum, producing little change in the number of cells stained by erythrosin B and a small increase in lactate dehydrogenase activity, both being in the range of the control. There is an increase in lactate production as a result of higher metabolism due to phagocytosis. Dusts may produce two basic effects, namely a toxic effect and change in cell membrane permeability. A non-specific effect on the cell membrane due to the slow and sometimes incomplete process of ingestion of long fibres is probably a function of the morphology, particularly the length of the fibres. A primary specific effect induced by some dusts immediately follows contact with the cell membrane. Images PMID:4339803

  4. Validation of LIRIC aerosol concentration retrievals using airborne measurements during a biomass burning episode over Athens

    NASA Astrophysics Data System (ADS)

    Kokkalis, Panagiotis; Amiridis, Vassilis; Allan, James D.; Papayannis, Alexandros; Solomos, Stavros; Binietoglou, Ioannis; Bougiatioti, Aikaterini; Tsekeri, Alexandra; Nenes, Athanasios; Rosenberg, Philip D.; Marenco, Franco; Marinou, Eleni; Vasilescu, Jeni; Nicolae, Doina; Coe, Hugh; Bacak, Asan; Chaikovsky, Anatoli

    2017-01-01

    In this paper we validate the Lidar-Radiometer Inversion Code (LIRIC) retrievals of the aerosol concentration in the fine mode, using the airborne aerosol chemical composition dataset obtained over the Greater Athens Area (GAA) in Greece, during the ACEMED campaign. The study focuses on the 2nd of September 2011, when a long-range transported smoke layer was observed in the free troposphere over Greece, in the height range from 2 to 3 km. CIMEL sun-photometric measurements revealed high AOD ( 0.4 at 532 nm) and Ångström exponent values ( 1.7 at 440/870 nm), in agreement with coincident ground-based lidar observations. Airborne chemical composition measurements performed over the GAA, revealed increased CO volume concentration ( 110 ppbv), with 57% sulphate dominance in the PM1 fraction. For this case, we compare LIRIC retrievals of the aerosol concentration in the fine mode with the airborne Aerosol Mass Spectrometer (AMS) and Passive Cavity Aerosol Spectrometer Probe (PCASP) measurements. Our analysis shows that the remote sensing retrievals are in a good agreement with the measured airborne in-situ data from 2 to 4 km. The discrepancies observed between LIRIC and airborne measurements at the lower troposphere (below 2 km), could be explained by the spatial and temporal variability of the aerosol load within the area where the airborne data were averaged along with the different time windows of the retrievals.

  5. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

    PubMed Central

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J.; Banfield, Jillian F.; Nazaroff, William W.

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses’ station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3–1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3–10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37–81%. Near-room indoor emissions and outdoor sources contributed 18–59% and 1–5%, respectively. Airborne particle levels in the size range 1–10 μm showed strong dependence on human activities, indicating the importance of indoor

  6. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit.

    PubMed

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J; Banfield, Jillian F; Nazaroff, William W

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses' station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3-1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3-10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37-81%. Near-room indoor emissions and outdoor sources contributed 18-59% and 1-5%, respectively. Airborne particle levels in the size range 1-10 μm showed strong dependence on human activities, indicating the importance of indoor

  7. Assessment of asbestos body formation by high resolution FEG-SEM after exposure of Sprague-Dawley rats to chrysotile, crocidolite, or erionite.

    PubMed

    Gandolfi, Nicola Bursi; Gualtieri, Alessandro F; Pollastri, Simone; Tibaldi, Eva; Belpoggi, Fiorella

    2016-04-05

    This work presents a comparative FEG-SEM study of the morphological and chemical characteristics of both asbestos bodies and fibres found in the tissues of Sprague-Dawley rats subjected to intraperitoneal or intrapleural injection of UICC chrysotile, UICC crocidolite and erionite from Jersey, Nevada (USA), with monitoring up to 3 years after exposure. Due to unequal dosing based on number of fibres per mass for chrysotile with respect to crocidolite and erionite, excessive fibre burden and fibre aggregation during injection that especially for chrysotile would likely not represent what humans would be exposed to, caution must be taken in extrapolating our results based on instillation in experimental animals to human inhalation. Notwithstanding, the results of this study may help to better understand the mechanism of formation of asbestos bodies. For chrysotile and crocidolite, asbestos bodies are systematically formed on long asbestos fibres. The number of coated fibres is only 3.3% in chrysotile inoculated tissues. In UICC crocidolite, Mg, Si, and Fe are associated with the fibres whereas Fe, P and Ca are associated with the coating. Even for crocidolite, most of the observed fibres are uncoated as coated fibres are about 5.7%. Asbestos bodies do not form on erionite fibres. The crystal habit, crystallinity and chemistry of all fibre species do not change with contact time, with the exception of chrysotile which shows signs of leaching of Mg. A model for the formation of asbestos bodies from mineral fibres is postulated. Because the three fibre species show limited signs of dissolution in the tissue, they cannot act as source of elements (primarily Fe, P and Ca) promoting nucleation and growth of asbestos bodies. Hence, the limited number of coated fibres should be due to the lack of nutrients or organic nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Concentration and trend of 9,10-phenanthrenequinone in airborne particulates collected in Nagasaki city, Japan.

    PubMed

    Kishikawa, Naoya; Nakao, Maiko; Ohba, Yoshihito; Nakashima, Kenichiro; Kuroda, Naotaka

    2006-07-01

    9,10-Phenanthrenequinone (PQ), one of the components of atmospheric pollutants, has potent harmful effects on human health. PQ in airborne particulates collected in Nagasaki city was determined by HPLC with fluorescence derivatization. PQ extracted from airborne particulates using methanol was derivatized with benzaldehyde in the presence of ammonium acetate to give a fluorescent compound. The average concentration (mean+/-SD, n=52) of PQ found in airborne particulates collected from July 1997 to June 1998 was 0.287+/-0.128 ng m-3. Concentrations of PQ in winter were higher than those in summer. In a weekly variation study, PQ concentrations were higher during weekdays and lower at weekend. The levels of PQ were obviously correlated with those of phenanthrene (PH) that is considered as a parent compound of PQ. This observation suggested that PQ was emitted into the atmosphere from the same source as PH, or PQ was converted from PH in the atmosphere.

  9. Spatial variability in airborne pollen concentrations.

    PubMed

    Raynor, G S; Ogden, E C; Hayes, J V

    1975-03-01

    Tests were conducted to determine the relationship between airborne pollen concentrations and distance. Simultaneous samples were taken in 171 tests with sets of eight rotoslide samplers spaced from one to 486 M. apart in straight lines. Use of all possible pairs gave 28 separation distances. Tests were conducted over a 2-year period in urban and rural locations distant from major pollen sources during both tree and ragweed pollen seasons. Samples were taken at a height of 1.5 M. during 5-to 20-minute periods. Tests were grouped by pollen type, location, year, and direction of the wind relative to the line. Data were analyzed to evaluate variability without regard to sampler spacing and variability as a function of separation distance. The mean, standard deviation, coefficient of variation, ratio of maximum to the mean, and ratio of minimum to the mean were calculated for each test, each group of tests, and all cases. The average coefficient of variation is 0.21, the maximum over the mean, 1.39 and the minimum over the mean, 0.69. No relationship was found with experimental conditions. Samples taken at the minimum separation distance had a mean difference of 18 per cent. Differences between pairs of samples increased with distance in 10 of 13 groups. These results suggest that airborne pollens are not always well mixed in the lower atmosphere and that a sample becomes less representative with increasing distance from the sampling location.

  10. Concentration of airborne Staphylococcus aureus (MRSA and MSSA), total bacteria, and endotoxins in pig farms.

    PubMed

    Masclaux, Frederic G; Sakwinska, Olga; Charrière, Nicole; Semaani, Eulalia; Oppliger, Anne

    2013-06-01

    Pigs are very often colonized by Staphylococcus aureus and transmission of such pig-associated S. aureus to humans can cause serious medical, hygiene, and economic problems. The transmission route of zoonotic pathogens colonizing farm animals to humans is not well established and bioaerosols could play an important role. The aim of this study was to assess the potential occupational risk of working with S. aureus-colonized pigs in Switzerland. We estimated the airborne contamination by S. aureus in 37 pig farms (20 nursery and 17 fattening units; 25 in summer, 12 in winter). Quantification of total airborne bacterial DNA, airborne Staphylococcus sp. DNA, fungi, and airborne endotoxins was also performed. In this experiment, the presence of cultivable airborne methicillin-resistant S. aureus (MRSA) CC398 in a pig farm in Switzerland was reported for the first time. Airborne methicillin-sensitive S. aureus (MSSA) was found in ~30% of farms. The average airborne concentration of DNA copy number of total bacteria and Staphylococcus sp. measured by quantitative polymerase chain reaction was very high, respectively reaching values of 75 (± 28) × 10(7) and 35 (± 9.8) × 10(5) copy numbers m(-3) in summer and 96 (± 19) × 10(8) and 40 (± 12) × 10(6) copy numbers m(-3) in winter. Total mean airborne concentrations of endotoxins (1298 units of endotoxin m(-3)) and fungi (5707 colony-forming units m(-3)) exceeded the Swiss recommended values and were higher in winter than in summer. In conclusion, Swiss pig farmers will have to tackle a new emerging occupational risk, which could also have a strong impact on public health. The need to inform pig farmers about biological occupational risks is therefore crucial.

  11. The effects of temperature and pressure on airborne exposure concentrations when performing compliance evaluations using ACGIH TLVs and OSHA PELs.

    PubMed

    Stephenson, D J; Lillquist, D R

    2001-04-01

    Occupational hygienists perform air sampling to characterize airborne contaminant emissions, assess occupational exposures, and establish allowable workplace airborne exposure concentrations. To perform these air sampling applications, occupational hygienists often compare an airborne exposure concentration to a corresponding American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) or an Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL). To perform such comparisons, one must understand the physiological assumptions used to establish these occupational exposure limits, the relationship between a workplace airborne exposure concentration and its associated TLV or PEL, and the effect of temperature and pressure on the performance of an accurate compliance evaluation. This article illustrates the correct procedure for performing compliance evaluations using airborne exposure concentrations expressed in both parts per million and milligrams per cubic meter. In so doing, a brief discussion is given on the physiological assumptions used to establish TLVs and PELs. It is further shown how an accurate compliance evaluation is fundamentally based on comparison of a measured work site exposure dose (derived from the sampling site exposure concentration estimate) to an estimated acceptable exposure dose (derived from the occupational exposure limit concentration). In addition, this article correctly illustrates the effect that atmospheric temperature and pressure have on airborne exposure concentrations and the eventual performance of a compliance evaluation. This article also reveals that under fairly moderate conditions of temperature and pressure, 30 degrees C and 670 torr, a misunderstanding of how varying atmospheric conditions affect concentration values can lead to a 15 percent error in assessing compliance.

  12. Release of Airborne Polychlorinated Biphenyls from New Bedford Harbor Results in Elevated Concentrations in the Surrounding Air.

    PubMed

    Martinez, Andres; Hadnott, Bailey N; Awad, Andrew M; Herkert, Nicholas J; Tomsho, Kathryn; Basra, Komal; Scammell, Madeleine K; Heiger-Bernays, Wendy; Hornbuckle, Keri C

    2017-04-11

    Qualitatively and quantitatively, we have demonstrated that airborne polychlorinated biphenyl (PCB) concentrations in the air surrounding New Bedford Harbor (NBH) are caused by its water PCB emissions. We measured airborne PCBs at 18 homes and businesses near NBH in 2015, with values ranging from 0.4 to 38 ng m -3 , with a very strong Aroclor 1242/1016 signal that is most pronounced closest to the harbor and reproducible over three sampling rounds. Using U.S. Environmental Protection Agency (U.S. EPA) water PCB data from 2015 and local meteorology, we predicted gas-phase fluxes of PCBs from 160 to 1200 μg m -2 day -1 . Fluxes were used as emissions for AERMOD, a widely applied U.S. EPA atmospheric dispersion model, to predict airborne PCB concentrations. The AERMOD predictions were within a factor of 2 of the field measurements. PCB emission from NBH (110 kg year -1 , average 2015) is the largest reported source of airborne PCBs from natural waters in North America, and the source of high ambient air PCB concentrations in locations close to NBH. It is likely that NBH has been an important source of airborne PCBs since it was contaminated with Aroclors more than 60 years ago.

  13. AIRBORNE ASBESTOS CONCENTRATIONS DURING BUFFING, BURNISHING, AND STRIPPING OF RESILIENT FLOOR TILE

    EPA Science Inventory

    The study was conducted to evaluate airborne asbestos concentrations during low-speed spray-buffing, ultra high-speed burnishing, and wet-stripping of asbestos-containing resilient floor tile under pre-existing and prepared levels of floor care maintenance. Low-speed spray-buffin...

  14. [Correlation between the visiting rate of patients with allergic rhinitis and airborne pollen concentrations in Beijing in recent 3 years].

    PubMed

    Hu, W N; Zhu, L; Xie, L F; Zhang, F Z; Bai, M Y; Wang, N; Sun, Z W

    2017-01-07

    Objective: To evaluate the daily airborne pollen concentrations and visiting rate of patients with allergic rhinitis (AR) and their correlation during 2012-2014 in Beijing. Methods: Daily airborne pollen concentrations (55 998 numbers in total and 549 numbers in average) and its constitution from April to September each year (2012 to 2014) were compared. The number of patients with AR (44 203 in total) who visited the outpatient department of Otorhinolaryngology Head and Neck Surgery, Peking University Third Hospital between January 2012 and December 2014 was analyzed by month. Using SPSS 22.0 software, Kruskal - Wallis test was done for the comparison of visiting rate of patients with AR and airborne pollen concentrations. Correlation analysis between them was made as well. Results: χ(2) value of airborne pollen concentrations between different months in 2012 to 2014 was 110.7, 108.4 and 121.4, respectively; all P <0.01. The airborne pollen concentrations had two peaks per year, respectively: April to May, August to September. χ(2) value of visiting rate of patients with AR between different months in 2012 to 2014 was 175.0, 185.1 and 134.5, respectively; all P <0.01. Visiting rate of patients with AR showed two scattering peaks each year, respectively: April to May, August to September. The highest pollen concentration of spring (April to May) was in early and middle April. Tree pollen was the major portion in spring, which were poplar pollen, pine tree pollen, ash tree pollen, cypress tree pollen and birch trees pollen. The highest pollen concentration of autumn (August to September) was in late August and early September. Weed pollen was the major portion in summer and autumn, which were artemisia pollen, chenopodiaceae pollen and humulus japonicas pollen. The visiting rate of patients with AR showed significant correlation with airborne pollen concentrations ( r value was 0.537, 0.484 and 0.566, respectively; all P <0.01). Conclusion: The visiting rate of

  15. Airborne asbestos fibres monitoring in tunnel excavation.

    PubMed

    Gaggero, Laura; Sanguineti, Elisa; Yus González, Adrián; Militello, Gaia Maria; Scuderi, Alberto; Parisi, Giovanni

    2017-07-01

    Tunnelling across ophiolitic formation with Naturally Occurring Asbestos (NOA) can release fibres into the environment, exposing workers, and the population, if fibres spread outside the tunnel, leading to increased risk of developing asbestos-related disease. Therefore, a careful plan of environmental monitoring is carried out during Terzo Valico tunnel excavation. In the present study, data of 1571 samples of airborne dust, collected between 2014 and 2016 inside the tunnels, and analyzed by SEM-EDS for quantification of workers exposure, are discussed. In particular, the engineering and monitoring management of 100 m tunnelling excavation across a serpentinite lens (Cravasco adit), intercalated within calcschists, is reported. At this chrysotile occurrence, 84% of 128 analyzed samples (from the zone closer to the front rock) were above 2 ff/l. However, thanks to safety measures implemented and tunnel compartmentation in zones, the asbestos fibre concentration did not exceed the Italian standard of occupational exposure (100 ff/l) and 100% of samples collected in the outdoor square were below 1 ff/l. During excavation under normal working conditions, asbestos concentrations were below 2 ff/l in 97.4% of the 668 analyzed samples. Our results showed that air monitoring can objectively confirm the presence of asbestos minerals at a rock front in relative short time and provide information about the nature of the lithology at the front. The present dataset, the engineering measures described and the operative conclusions are liable to support the improvement of legislation on workers exposure to asbestos referred to the tunnelling sector, lacking at present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of micro-scale wind on the measurement of airborne pollen concentrations using volumetric methods on a building rooftop

    NASA Astrophysics Data System (ADS)

    Miki, Kenji; Kawashima, Shigeto; Fujita, Toshio; Nakamura, Kimihito; Clot, Bernard

    2017-06-01

    Evaluating airborne pollen concentrations is important for the understanding of the spatiotemporal dispersion of pollen grains. Using two identical pollen monitors in parallel, we performed two experiments in order to study the influences of a) the physical characteristics (orientation) of the air inlet and b) the presence of obstacles in proximity to the monitors on airborne pollen concentration data. The first experiment consisted of an evaluation of airborne pollen concentrations using two different types of orifices; 1) a vertically oriented inlet and 2) a wind vane intake, both attached to the same type of automatic pollen sampler. The second experiment investigated the relationship between vertical wind speed and horizontal wind direction around an obstacle with the goal of studying the impact of micro-scale wind on pollen sampling efficiency. The results of the two experiments suggest that the wind path near an obstacle might be redirected in a vertical direction before or after the wind flows over the obstacle, which causes measurement errors of airborne pollen concentrations that are proportional to the vertical wind speed, especially when a vertically oriented inlet is used.

  17. Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning.

    PubMed

    Liu, Zhijian; Li, Hao; Cao, Guoqing

    2017-07-30

    Indoor airborne culturable bacteria are sometimes harmful to human health. Therefore, a quick estimation of their concentration is particularly necessary. However, measuring the indoor microorganism concentration (e.g., bacteria) usually requires a large amount of time, economic cost, and manpower. In this paper, we aim to provide a quick solution: using knowledge-based machine learning to provide quick estimation of the concentration of indoor airborne culturable bacteria only with the inputs of several measurable indoor environmental indicators, including: indoor particulate matter (PM 2.5 and PM 10 ), temperature, relative humidity, and CO₂ concentration. Our results show that a general regression neural network (GRNN) model can sufficiently provide a quick and decent estimation based on the model training and testing using an experimental database with 249 data groups.

  18. Use Of Superacids To Digest Chrysotile And Amosite Asbestos In Simple Mixtures Or Matrices Found In Building Materials Compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, Toshifumi; Petrakis, Leon; Webster, Ronald P.

    A composition for converting asbestos-containing material to environmentally benign components is provided. The composition comprises a flouro acid decomposing agent which can be applied to either amosite-containing thermal insulation or chrysotile-containing fire-proof material or to any asbestos-containing material which includes of chrysotile and amosite asbestos. The fluoro acid decomposing agent includes FP(O)(OH).sub.2, hexafluorophosphoric acid, a mixture of hydrofluoric and phosphoric acid and a mixture of hexafluorophosphoric acid and phosphoric acid. A method for converting asbestos-containing material to environmentally benign components is also provided

  19. Seasonality in airborne bacterial, fungal, and (1→3)-β-D-glucan concentrations in two indoor laboratory animal rooms.

    PubMed

    Hwang, Sungho; Ko, Yeji; Park, Donguk; Yoon, Chungsik

    2018-01-01

    The purpose of this study was to assess the temporal changes in the concentrations of bioaerosols in a laboratory mouse room (LMR) and laboratory rabbit room (LRR), and to determine environmental factors associated with the culturable bacteria, fungi and (1→3)-β-D-glucan concentrations. The concentrations of culturable airborne bacteria, fungi and (1→3)-β-D-glucan in the LMR and LRR were sampled once a month from March 2011 to February 2012. A single-stage viable cascade impactor was used to sample bacteria and fungi, while a two-stage cyclone bioaerosol sampler was used to collect airborne (1→3)-β-D-glucan. The culturable bacterial concentrations in the LMR showed a gradual increase during the summer. The culturable fungal concentrations showed similar seasonal patterns of change in the LMR and LRR with a noticeable increase during the summer. The (1→3)-β-D-glucan concentrations were highest during the warmer spring and summer months. Relative humidity (RH) was the environmental factor most associated with the concentrations of culturable bacteria and fungi. The overall airborne microbe concentrations were significantly higher in the LRR than in the LMR. Airborne microbe concentrations in the LMR and LRR varied greatly depending on season, and these changes were affected by environmental factors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Airborne metal concentrations in shipyard environment.

    PubMed

    Alebić-Juretić, A; Matković, N

    2000-06-01

    Protection against corrosion in the shipyard is a source of airborne particles. From October 1996 to September 1997 samples of suspended particles (1 site) and dustfall (6 sites) were collected in the vicinity of a repairs shipyard situated in the martinsćica Cove, east of the city of Rijeka, Croatia. Collected samples were analysed for lead, cadmium, iron, copper, and zinc content. Though annual mean concentrations of suspended particles, lead, and cadmium kept below the guideline values, the metal contents were generally higher than values measured in the city centre. The correlation between the quantity of abrasives used at the shipyard and monthly mean concentrations of all parameters except cadmium suggests that the shipyard was the main source of those pollutants. The annual mean, as well as maximum monthly amount of dustfall at the site next to the shipyard zone exceeded the national limit values, indicating considerable pollution of this area with coarse particles. The annual mean quantity of lead in dustfall exceeded the guideline values at the same site. The content of metals occasionally observed in dustfall at particular sites surrounding the shipyard depended on the location of corrosion protection activities and meterological conditions within the Martinsćica Cove.

  1. Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning

    PubMed Central

    Liu, Zhijian; Li, Hao; Cao, Guoqing

    2017-01-01

    Indoor airborne culturable bacteria are sometimes harmful to human health. Therefore, a quick estimation of their concentration is particularly necessary. However, measuring the indoor microorganism concentration (e.g., bacteria) usually requires a large amount of time, economic cost, and manpower. In this paper, we aim to provide a quick solution: using knowledge-based machine learning to provide quick estimation of the concentration of indoor airborne culturable bacteria only with the inputs of several measurable indoor environmental indicators, including: indoor particulate matter (PM2.5 and PM10), temperature, relative humidity, and CO2 concentration. Our results show that a general regression neural network (GRNN) model can sufficiently provide a quick and decent estimation based on the model training and testing using an experimental database with 249 data groups. PMID:28758941

  2. Evaluation of the fate and pathological response in the lung and pleura of brake dust alone and in combination with added chrysotile compared to crocidolite asbestos following short-term inhalation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, D.M., E-mail: davidb@itox.ch; Rogers, R.A., E-mail: rarogers5@yahoo.com; Sepulveda, R.

    This study was designed to provide an understanding of the biokinetics and potential toxicology in the lung and pleura following inhalation of brake dust following short term exposure in rats. The deposition, translocation and pathological response of brake-dust derived from brake pads manufactured with chrysotile were evaluated in comparison to the amphibole, crocidolite asbestos. Rats were exposed by inhalation 6 h/day for 5 days to either brake-dust obtained by sanding of brake-drums manufactured with chrysotile, a mixture of chrysotile and the brake-dust or crocidolite asbestos. The chrysotile fibers were relatively biosoluble whereas the crocidolite asbestos fibers persisted through the life-timemore » of the animal. This was reflected in the lung and the pleura where no significant pathological response was observed at any time point in the brake dust or chrysotile/brake dust exposure groups through 365 days post exposure. In contrast, crocidolite asbestos produced a rapid inflammatory response in the lung parenchyma and the pleura, inducing a significant increase in fibrotic response in both of these compartments. Crocidolite fibers were observed embedded in the diaphragm with activated mesothelial cells immediately after cessation of exposure. While no chrysotile fibers were found in the mediastinal lymph nodes, crocidolite fibers of up to 35 μm were observed. These results provide support that brake-dust derived from chrysotile containing brake drums would not initiate a pathological response in the lung or the pleural cavity following short term inhalation. - Highlights: • Evaluated brake dust w/wo added chrysotile in comparison to crocidolite asbestos. • Persistence, translocation, pathological response in the lung and pleural cavity. • Chrysotile cleared rapidly from the lung while the crocidolite asbestos persisted. • No significant pathology in lung or pleural cavity observed at any time point in the brake-dust groups. • Crocidolite

  3. Use of super acids to digest chrysotile and amosite asbestos in simple mixtures or matrices found in building materials compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Petrakis, L.; Webster, R.P.

    A composition for converting asbestos-containing material to environmentally benign components is provided. The composition comprises a fluoro acid decomposing agent which can be applied to either amosite-containing thermal insulation or chrysotile-containing fire-proof material or to any asbestos-containing material which includes of chrysotile and amosite asbestos. The fluoro acid decomposing agent includes FP{sub 0}(OH){sub 2}, hexafluorophosphoric acid, a mixture of hydrofluoric and phosphoric acid and a mixture of hexafluorophosphoric acid and phosphoric acid. A method for converting asbestos-containing material to environmentally benign components is also provided.

  4. Correlation between structural change and electrical transport properties of Fe-doped chrysotile nanotubes under high pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Junkai; Yang, Lili; Wu, Xiaoxin; Wei, Maobin; Liu, Yanqing; Gao, Chunxiao; Yang, Jinghai; Ma, Yanzhang

    2018-04-01

    Fe3+ doped chrysotile nanotubes (NTs) have been synthesized under controlled hydrothermal conditions, and have been characteristic of layered-walls and room-temperature ferromagnetism. High-pressure in situ impedance spectra and synchrotron XRD measurements are performed on Fe-doped chrysotile NTs to reveal the electrical transport and structural properties under compression. Sample resistance (R sum) was found to increase with the pressure elevation, accompanying the step decrease in the grain boundary relaxation frequency (f gb), which reflects the bandgap broadening and dipoles polarization weakening due to the application of pressure. Furthermore, it is found that both R sum and f gb change their pressure dependences at ~5.0 GPa, which is attributed to the nonlinear compressibility of c-axis and even the underlying lattice distortion of monoclinic structure obtained in the XRD observations.

  5. Sensitivity of airborne fluorosensor measurements to linear vertical gradients in chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Punjabi, A. R.; Poole, L. R.

    1984-01-01

    A semianalytic Monte Carlo radiative transfer simulation model for airborne laser fluorosensors has been extended to investigate the effects of inhomogeneities in the vertical distribution of phytoplankton concentrations in clear seawater. Simulation results for linearly varying step concentrations of chlorophyll are presented. The results indicate that statistically significant differences can be seen under certain conditions in the water Raman-normalized fluorescence signals between nonhomogeneous and homogeneous cases. A statistical test has been used to establish ranges of surface concentrations and/or verticl gradients in which calibration by surface samples would by inappropriate, and the results are discussed.

  6. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  7. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  8. Airborne concentrations of benzene associated with the historical use of some formulations of liquid wrench.

    PubMed

    Williams, Pamela R D; Knutsen, Jeffrey S; Atkinson, Chris; Madl, Amy K; Paustenbach, Dennis J

    2007-08-01

    The current study characterizes potential inhalation exposures to benzene associated with the historical use of some formulations of Liquid Wrench under specific test conditions. This product is a multiuse penetrant and lubricant commonly used in a variety of consumer and industrial settings. The study entailed the remanufacturing of several product formulations to have similar physical and chemical properties to most nonaerosol Liquid Wrench formulations between 1960 and 1978. The airborne concentrations of benzene and other constituents during the simulated application of these products were measured under a range of conditions. Nearly 200 breathing zone and area bystander air samples were collected during 11 different product use scenarios. Depending on the tests performed, average airborne concentrations of benzene ranged from approximately 0.2-9.9 mg/m(3) (0.08-3.8 ppm) for the 15-min personal samples; 0.1-8 mg/m(3) (0.04-3 ppm) for the 1-hr personal samples; and 0.1-5.1 mg/m(3) (0.04-2 ppm) for the 1-hr area samples. The 1-hr personal samples encompassed two 15-min product applications and two 15-min periods of standing within 5 to 10 feet of the work area. The measured airborne concentrations of benzene varied significantly based on the benzene content of the formulation tested (1%, 3%, 14%, or 30% v/v benzene) and the indoor air exchange rate but did not vary much with the base formulation of the product or the two quantities of Liquid Wrench used. The airborne concentrations of five other volatile chemicals (ethylbenzene, toluene, total xylenes, cyclohexane, and hexane) were also measured, and the results were consistent with the volatility and concentrations of these chemicals in the product tested. A linear regression analysis of air concentration compared with the chemical mole fraction in the solution and air exchange rate provided a relatively good fit to the data. The results of this study should be useful for evaluating potential inhalation

  9. Exploring the potential relationship between indoor air quality and the concentration of airborne culturable fungi: a combined experimental and neural network modeling study.

    PubMed

    Liu, Zhijian; Cheng, Kewei; Li, Hao; Cao, Guoqing; Wu, Di; Shi, Yunjie

    2018-02-01

    Indoor airborne culturable fungi exposure has been closely linked to occupants' health. However, conventional measurement of indoor airborne fungal concentration is complicated and usually requires around one week for fungi incubation in laboratory. To provide an ultra-fast solution, here, for the first time, a knowledge-based machine learning model is developed with the inputs of indoor air quality data for estimating the concentration of indoor airborne culturable fungi. To construct a database for statistical analysis and model training, 249 data groups of air quality indicators (concentration of indoor airborne culturable fungi, indoor/outdoor PM 2.5 and PM 10 concentrations, indoor temperature, indoor relative humidity, and indoor CO 2 concentration) were measured from 85 residential buildings of Baoding (China) during the period of 2016.11.15-2017.03.15. Our results show that artificial neural network (ANN) with one hidden layer has good prediction performances, compared to a support vector machine (SVM). With the tolerance of ± 30%, the prediction accuracy of the ANN model with ten hidden nodes can at highest reach 83.33% in the testing set. Most importantly, we here provide a quick method for estimating the concentration of indoor airborne fungi that can be applied to real-time evaluation.

  10. Airborne protein concentration: a key metric for type 1 allergy risk assessment-in home measurement challenges and considerations.

    PubMed

    Tulum, Liz; Deag, Zoë; Brown, Matthew; Furniss, Annette; Meech, Lynn; Lalljie, Anja; Cochrane, Stella

    2018-01-01

    Exposure to airborne proteins can be associated with the development of immediate, IgE-mediated respiratory allergies, with genetic, epigenetic and environmental factors also playing a role in determining the likelihood that sensitisation will be induced. The main objective of this study was to determine whether airborne concentrations of selected common aeroallergens could be quantified in the air of homes using easily deployable, commercially available equipment and analytical methods, at low levels relevant to risk assessment of the potential to develop respiratory allergies. Additionally, air and dust sampling were compared and the influence of factors such as different filter types on allergen quantification explored. Low volume air sampling pumps and DUSTREAM ® dust samplers were used to sample 20 homes and allergen levels were quantified using a MARIA ® immunoassay. It proved possible to detect a range of common aeroallergens in the home with sufficient sensitivity to quantify airborne concentrations in ranges relevant to risk assessment (Limits of Detection of 0.005-0.03 ng/m 3 ). The methodology discriminates between homes related to pet ownership and there were clear advantages to sampling air over dust which are described in this paper. Furthermore, in an adsorption-extraction study, PTFE (polytetrafluoroethylene) filters gave higher and more consistent recovery values than glass fibre (grade A) filters for the range of aeroallergens studied. Very low airborne concentrations of allergenic proteins in home settings can be successfully quantified using commercially available pumps and immunoassays. Considering the greater relevance of air sampling to human exposure of the respiratory tract and its other advantages, wider use of standardised, sensitive techniques to measure low airborne protein concentrations and how they influence development of allergic sensitisation and symptoms could accelerate our understanding of human dose-response relationships

  11. Concentrations of airborne endotoxin and microorganisms at a 10,000 cow open-freestall dairy

    USDA-ARS?s Scientific Manuscript database

    Confined animal production systems produce elevated bioaerosol concentrations, which are a potential respiratory health risk to individuals on site and downwind. In this study, airborne endotoxin and microorganisms were collected during the spring, summer, and fall at a large open-freestall dairy i...

  12. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014.

    PubMed

    Plaza, M P; Alcázar, P; Galán, C

    2016-12-01

    Olea europaea L. pollen is the second-largest cause of pollinosis in the southern Iberian Peninsula. Airborne-pollen monitoring networks provide essential data on pollen dynamics over a given study area. Recent research, however, has shown that airborne pollen levels alone do not always provide a clear indicator of actual exposure to aeroallergens. This study sought to evaluate correlations between airborne concentrations of olive pollen and Ole e 1 allergen levels in Córdoba (southern Spain), in order to determine whether atmospheric pollen concentrations alone are sufficient to chart changes in hay fever symptoms. The influence of major weather-related variables on local airborne pollen and allergen levels was also examined. Monitoring was carried out from 2012 to 2014. Pollen sampling was performed using a Hirst-type sampler, following the protocol recommended by the Spanish Aerobiology Network. A multi-vial cyclone sampler was used to collect aeroallergens, and allergenic particles were quantified by ELISA assay. Significant positive correlations were found between daily airborne allergen levels and atmospheric pollen concentrations, although there were occasions when allergen was detected before and after the pollen season and in the absence of airborne pollen. The correlation between the two was irregular, and pollen potency displayed year-on-year variations and did not necessarily match pollen-season-intensity.

  13. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Galán, C.

    2016-12-01

    Olea europaea L. pollen is the second-largest cause of pollinosis in the southern Iberian Peninsula. Airborne-pollen monitoring networks provide essential data on pollen dynamics over a given study area. Recent research, however, has shown that airborne pollen levels alone do not always provide a clear indicator of actual exposure to aeroallergens. This study sought to evaluate correlations between airborne concentrations of olive pollen and Ole e 1 allergen levels in Córdoba (southern Spain), in order to determine whether atmospheric pollen concentrations alone are sufficient to chart changes in hay fever symptoms. The influence of major weather-related variables on local airborne pollen and allergen levels was also examined. Monitoring was carried out from 2012 to 2014. Pollen sampling was performed using a Hirst-type sampler, following the protocol recommended by the Spanish Aerobiology Network. A multi-vial cyclone sampler was used to collect aeroallergens, and allergenic particles were quantified by ELISA assay. Significant positive correlations were found between daily airborne allergen levels and atmospheric pollen concentrations, although there were occasions when allergen was detected before and after the pollen season and in the absence of airborne pollen. The correlation between the two was irregular, and pollen potency displayed year-on-year variations and did not necessarily match pollen-season-intensity.

  14. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    NASA Astrophysics Data System (ADS)

    Bau, Sébastien; Witschger, Olivier; Gensdarmes, François; Thomas, Dominique

    2009-05-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP [1]. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak™ 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  15. [Comparative carcinogenic properties of basalt fiber and chrysotile-asbestos].

    PubMed

    Nikitina, O V; Kogan, F M; Vanchugova, N N; Frash, V N

    1989-01-01

    In order to eliminate asbestos adverse effect on workers' health it was necessary to use mineral rayon, primarily basalt fibre, instead of asbestos. During a chronic experiment on animals the oncogenicity of 2 kinds of basalt fibre was studied compared to chrysotile asbestos. The dust dose of 25 mg was twice administered by intraperitonial route. All types of dust induced the onset of intraperitonial mesotheliomas but neoplasm rates were significantly lower in the groups exposed to basalt fibre. There was no credible data on the differences between the groups exposed to various types of basalt fibre. Since the latter produced some oncogenic effect, it was necessary to develop a complex of antidust measures, fully corresponding to the measures adopted for carcinogenic dusts.

  16. Mortality from cancer and other causes among Italian chrysotile asbestos miners.

    PubMed

    Pira, Enrico; Romano, Canzio; Donato, Francesca; Pelucchi, Claudio; Vecchia, Carlo La; Boffetta, Paolo

    2017-08-01

    To investigate the long-term mortality of a cohort of Italian asbestos miners. The cohort included 1056 men employed in a chrysotile mine between 1930 and 1990, who were followed up during 1946-2014, for a total of 37 471 person-years of observation. Expected deaths and SMRs were computed using national and local (after 1980, when available) reference. A total of 294 (27.8%) subjects were alive and at the end of follow-up, 722 (68.4%) were dead and 40 (3.8%) were lost to follow-up. The SMR for overall mortality was 1.35 (95%CI 1.25 to 1.45). The SMR for pleural cancer, based on seven observed deaths, was 5.54 (95% CI 2.22 to 11.4) and related to time since first exposure, but not to duration of employment, cumulative exposure or time since last exposure. The SMR for lung cancer was 1.16 (95% CI 0.87 to 1.52; 53 observed deaths), with no excess among workers with cumulative exposure below 100 fibre/mL-years (SMR 0.82; 95% CI 0.44 to 1.40). The update of the follow-up of this cohort confirmed an increased mortality from pleural cancer mortality in miners exposed to chrysotile and a lack of significant increase in lung cancer mortality. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Atmospheric CO2 Concentration Measurements with Clouds from an Airborne Lidar

    NASA Astrophysics Data System (ADS)

    Mao, J.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Numata, K.; Chen, J. R.; Sun, X.; DiGangi, J. P.; Choi, Y.

    2017-12-01

    Globally distributed atmospheric CO2 concentration measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space are limited to cloud-free scenes. NASA Goddard is developing a pulsed, integrated-path differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations, XCO2, from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate XCO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. We demonstrate this measurement capability using airborne lidar measurements from summer 2017 ASCENDS airborne science campaign in Alaska. We show retrievals of XCO2 to ground and to a variety of cloud tops. We will also demonstrate how the partial column XCO2 to cloud tops and cloud slicing approach help resolving vertical and horizontal gradient of CO2 in cloudy conditions. The XCO2 retrievals from the lidar are validated against in situ measurements and compared to the Goddard Parameterized Chemistry Transport Model (PCTM) simulations. Adding this measurement capability to the future lidar mission for XCO2 will provide full global and seasonal data coverage and some information about vertical structure of CO2. This unique facility is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation.

  18. New insights into the toxicity of mineral fibres: A combined in situ synchrotron μ-XRD and HR-TEM study of chrysotile, crocidolite, and erionite fibres found in the tissues of Sprague-Dawley rats.

    PubMed

    Gualtieri, Alessandro F; Bursi Gandolfi, Nicola; Pollastri, Simone; Burghammer, Manfred; Tibaldi, Eva; Belpoggi, Fiorella; Pollok, Kilian; Langenhorst, Falko; Vigliaturo, Ruggero; Dražić, Goran

    2017-05-15

    Along the line of the recent research topic aimed at understanding the in vivo activity of mineral fibres and their mechanisms of toxicity, this work describes the morpho-chemical characteristics of the mineral fibres found in the tissues of Sprague-Dawley rats subjected to intraperitoneal/intrapleural injection of UICC chrysotile, UICC crocidolite and erionite-Na from Nevada (USA). The fibres are studied with in situ synchrotron powder diffraction and high resolution transmission electron microscopy to improve our understanding of the mechanisms of toxicity of these mineral fibres. In contact with the tissues of the rats, chrysotile fibres are prone to dissolve, with leaching of Mg and production of a silica rich relict. On the other hand, crocidolite and erionite-Na fibres are stable even for very long contact times within the tissues of the rats, showing just a thin dissolution amorphous halo. These findings support the model of a lower biopersistence of chrysotile with respect to crocidolite and erionite-Na but the formation of a silica-rich fibrous residue after the pseudo-amorphization of chrysotile may justify a higher cytotoxic potential and intense inflammatory activity of chrysotile in the short term in contact with the lung tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Analysis and modeling of airborne BTEX concentrations from the Deepwater Horizon oil spill.

    PubMed

    Avens, Heather J; Unice, Ken M; Sahmel, Jennifer; Gross, Sherilyn A; Keenan, James J; Paustenbach, Dennis J

    2011-09-01

    Concerns have been raised about whether the Deepwater Horizon oil spill cleanup workers experienced adverse health effects from exposure to airborne benzene, toluene, ethylbenzene, and xylene (BTEX) which volatilized from surfaced oil. Thus, we analyzed the nearly 20 000 BTEX measurements of breathing zone air samples of offshore cleanup workers taken during the six months following the incident (made publicly available by British Petroleum). The measurements indicate that 99% of the measurements taken prior to capping the well were 32-, 510-, 360-, and 77-fold lower than the U.S. Occupational Safety and Health Administration's Permissible Exposure Limits (PELs) for BTEX, respectively. BTEX measurements did not decrease appreciably during the three months after the well was capped. Moreover, the magnitudes of these data were similar to measurements from ships not involved in oil slick remediation, suggesting that the BTEX measurements were primarily due to engine exhaust rather than the oil slick. To supplement the data analysis, two modeling approaches were employed to estimate airborne BTEX concentrations under a variety of conditions (e.g., oil slick thickness, wind velocity). The modeling results corroborated that BTEX concentrations from the oil were well below PELs and that the oil was not the primary contributor to the measured BTEX.

  20. Spacecraft Maximum Allowable Concentrations for Airborne Contaminants

    NASA Technical Reports Server (NTRS)

    James, John T.

    2008-01-01

    The enclosed table lists official spacecraft maximum allowable concentrations (SMACs), which are guideline values set by the NASA/JSC Toxicology Group in cooperation with the National Research Council Committee on Toxicology (NRCCOT). These values should not be used for situations other than human space flight without careful consideration of the criteria used to set each value. The SMACs take into account a number of unique factors such as the effect of space-flight stress on human physiology, the uniform good health of the astronauts, and the absence of pregnant or very young individuals. Documentation of the values is given in a 5 volume series of books entitled "Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants" published by the National Academy Press, Washington, D.C. These books can be viewed electronically at http://books.nap.edu/openbook.php?record_id=9786&page=3. Short-term (1 and 24 hour) SMACs are set to manage accidental releases aboard a spacecraft and permit risk of minor, reversible effects such as mild mucosal irritation. In contrast, the long-term SMACs are set to fully protect healthy crewmembers from adverse effects resulting from continuous exposure to specific air pollutants for up to 1000 days. Crewmembers with allergies or unusual sensitivity to trace pollutants may not be afforded complete protection, even when long-term SMACs are not exceeded. Crewmember exposures involve a mixture of contaminants, each at a specific concentration (C(sub n)). These contaminants could interact to elicit symptoms of toxicity even though individual contaminants do not exceed their respective SMACs. The air quality is considered acceptable when the toxicity index (T(sub grp)) for each toxicological group of compounds is less than 1, where T(sub grp), is calculated as follows: T(sub grp) = C(sub 1)/SMAC(sub 1) + C(sub 2/SMAC(sub 2) + ...+C(sub n)/SMAC(sub n).

  1. A method to quantify infectious airborne pathogens at concentrations below the threshold of quantification by culture

    PubMed Central

    Cutler, Timothy D.; Wang, Chong; Hoff, Steven J.; Zimmerman, Jeffrey J.

    2013-01-01

    In aerobiology, dose-response studies are used to estimate the risk of infection to a susceptible host presented by exposure to a specific dose of an airborne pathogen. In the research setting, host- and pathogen-specific factors that affect the dose-response continuum can be accounted for by experimental design, but the requirement to precisely determine the dose of infectious pathogen to which the host was exposed is often challenging. By definition, quantification of viable airborne pathogens is based on the culture of micro-organisms, but some airborne pathogens are transmissible at concentrations below the threshold of quantification by culture. In this paper we present an approach to the calculation of exposure dose at microbiologically unquantifiable levels using an application of the “continuous-stirred tank reactor (CSTR) model” and the validation of this approach using rhodamine B dye as a surrogate for aerosolized microbial pathogens in a dynamic aerosol toroid (DAT). PMID:24082399

  2. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    PubMed

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from <0.001 to 2.9mg/m(3), and, in all but one case, resulted in concentrations below the current U.S. Occupational Safety and Health Administration's Permissible Exposure Limits and the American Conference of Governmental Industrial Hygienists' Threshold Limit Values. The arithmetic mean total dust concentration resulting from long-term personal samples was 0.31mg/m(3). The data presented here are the most complete set of its kind in the open literature, and are useful for understanding the potential exposures during solid catalyst handling activities at this petroleum refinery and perhaps other modern refineries during the timeframe examined. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Distribution analysis of airborne nicotine concentrations in hospitality facilities.

    PubMed

    Schorp, Matthias K; Leyden, Donald E

    2002-02-01

    A number of publications report statistical summaries for environmental tobacco smoke (ETS) concentrations. Despite compelling evidence for the data not being normally distributed, these publications typically report the arithmetic mean and standard deviation of the data, thereby losing important information related to the distribution of values contained in the original data. We were interested in the frequency distributions of reported nicotine concentrations in hospitality environments and subjected available data to distribution analyses. The distribution of experimental indoor airborne nicotine concentration data taken from hospitality facilities worldwide was fit to lognormal, Weibull, exponential, Pearson (Type V), logistic, and loglogistic distribution models. Comparison of goodness of fit (GOF) parameters and indications from the literature verified the selection of a lognormal distribution as the overall best model. When individual data were not reported in the literature, statistical summaries of results were used to model sets of lognormally distributed data that are intended to mimic the original data distribution. Grouping the data into various categories led to 31 frequency distributions that were further interpreted. The median values in nonsmoking environments are about half of the median values in smoking sections. When different continents are compared, Asian, European, and North American median values in restaurants are about a factor of three below levels encountered in other hospitality facilities. On a comparison of nicotine concentrations in North American smoking sections and nonsmoking sections, median values are about one-third of the European levels. The results obtained may be used to address issues related to exposure to ETS in the hospitality sector.

  4. Airborne Mold and Endotoxin Concentrations in New Orleans, Louisiana, after Flooding, October through November 2005

    PubMed Central

    Solomon, Gina M.; Hjelmroos-Koski, Mervi; Rotkin-Ellman, Miriam; Hammond, S. Katharine

    2006-01-01

    Background The hurricanes and flooding in New Orleans, Louisiana, in October and November 2005 resulted in damp conditions favorable to the dispersion of bioaerosols such as mold spores and endotoxin. Objective Our objective in this study was to assess potential human exposure to bioaerosols in New Orleans after the flooding of the city. Methods A team of investigators performed continuous airborne sampling for mold spores and endotoxin outdoors in flooded and nonflooded areas, and inside homes that had undergone various levels of remediation, for periods of 5–24 hr during the 2 months after the flooding. Results The estimated 24-hr mold concentrations ranged from 21,000 to 102,000 spores/m3 in outdoor air and from 11,000 to 645,000 spores/m3 in indoor air. The mean outdoor spore concentration in flooded areas was roughly double the concentration in nonflooded areas (66,167 vs. 33,179 spores/m3; p < 0.05). The highest concentrations were inside homes. The most common mold species were from the genera of Cladosporium and Aspergillus/Penicillium; Stachybotrys was detected in some indoor samples. The airborne endotoxin concentrations ranged from 0.6 to 8.3 EU (endo-toxin units)/m3 but did not vary with flooded status or between indoor and outdoor environments. Conclusions The high concentration of mold measured indoors and outdoors in the New Orleans area is likely to be a significant respiratory hazard that should be monitored over time. Workers and returning residents should use appropriate personal protective equipment and exposure mitigation techniques to prevent respiratory morbidity and long-term health effects. PMID:16966092

  5. Optical properties of cyanine dyes in nanotubes of chrysotile asbestos

    NASA Astrophysics Data System (ADS)

    Starovoytov, Anton A.; Vartanyan, Tigran A.; Belotitskii, Vladimir I.; Kumzerov, Yuri A.; Sysoeva, Anna A.

    2017-08-01

    Optical properties of cyanine dye molecules incorporated in nanotubes of natural chrysotile asbestos are studied. The absorption and fluorescence spectra of dye in asbestos have the similar shapes as in the ethanol solution, apart from small blue shift of the maxima. The Stokes shift in asbestos is smaller than in the ethanol solution. The fluorescence decay times of the dyes in asbestos nanotubes are found to be larger than that in the case of thin films of the same dyes formed on the transparent dielectric supports. This observation is rationalized in terms of the stereoisomerization hindrance in the excited electronic state of dye molecules. At the same time linear dichroism and fluorescence anisotropy observed in the experiment indicate that the embedded dye molecules are well-isolated monomer oriented predominantly along asbestos nanotubes.

  6. Airborne nanoparticle concentrations in the manufacturing of polytetrafluoroethylene (PTFE) apparel.

    PubMed

    Vosburgh, Donna J H; Boysen, Dane A; Oleson, Jacob J; Peters, Thomas M

    2011-03-01

    One form of waterproof, breathable apparel is manufactured from polytetrafluoroethylene (PTFE) membrane laminated fabric using a specific process to seal seams that have been sewn with traditional techniques. The sealing process involves applying waterproof tape to the seam by feeding the seam through two rollers while applying hot air (600 °C). This study addressed the potential for exposure to particulate matter from this sealing process by characterizing airborne particles in a facility that produces more than 1000 lightweight PTFE rain jackets per day. Aerosol concentrations throughout the facility were mapped, breathing zone concentrations were measured, and hoods used to ventilate the seam sealing operation were evaluated. The geometric mean (GM) particle number concentrations were substantially greater in the sewing and sealing areas (67,000 and 188,000 particles cm⁻³)) compared with that measured in the office area (12,100 particles cm⁻³). Respirable mass concentrations were negligible throughout the facility (GM = 0.002 mg m⁻³) in the sewing and sealing areas). The particles exiting the final discharge of the facility's ventilation system were dominated by nanoparticles (number median diameter = 25 nm; geometric standard deviation of 1.39). The breathing zone particle number concentrations of the workers who sealed the sewn seams were highly variable and significantly greater when sealing seams than when conducting other tasks (p < 0.0001). The sealing workers' breathing zone concentrations ranged from 147,000 particles cm⁻³ to 798,000 particles cm⁻³, and their seam responsibility significantly influenced their breathing zone concentrations (p = 0.03). The finding that particle number concentrations were approximately equal outside the hood and inside the local exhaust duct indicated poor effectiveness of the canopy hoods used to ventilate sealing operations.

  7. Airborne Nanoparticle Concentrations in the Manufacturing of Polytetrafluoroethylene (PTFE) Apparel

    PubMed Central

    Vosburgh, Donna J.H.; Boysen, Dane A.; Oleson, Jacob J.; Peters, Thomas M.

    2016-01-01

    One form of waterproof, breathable apparel is manufactured from polytetrafluoroethylene (PTFE) membrane laminated fabric, using a specific process to seal seams that have been sewn with traditional techniques. The sealing process involves applying waterproof tape to the seam by feeding the seam through two rollers while applying hot air (600°C). This study addressed the potential for exposure to particulate matter from this sealing process, by characterizing airborne particles in a facility that produces over 1,000 lightweight PTFE rain jackets per day. Aerosol concentrations throughout the facility were mapped, breathing zone concentrations were measured, and hoods used to ventilate the seam sealing operation were evaluated. The geometric mean (GM) particle number concentrations were substantially greater in the sewing and sealing areas (67,000 and 188,000 particles cm−3) compared to that measured in the office area (12,100 particles cm−3). Respirable mass concentrations were negligible throughout the facility (GM=0.002 mg m−3 in the sewing and sealing areas). The particles exiting the final discharge of the facility's ventilation system were dominated by nanoparticles (number median diameter = 25 nm; geometric standard deviation of 1.39). The breathing zone particle number concentrations of the workers who sealed the sewn seams were highly variable and significantly greater when sealing seams than when conducting other tasks (p<0.0001). The sealing workers’ breathing zone concentrations ranged from 147,000 particles cm−3 to 798,000 particles cm−3, and their seam responsibility significantly influenced their breathing zone concentrations (p=0.03). The finding that particle number concentrations were approximately equal outside the hood and inside the local exhaust duct indicated poor effectiveness of the canopy hoods used to ventilate sealing operations. PMID:21347955

  8. Effects of ceiling-mounted HEPA-UV air filters on airborne bacteria concentrations in an indoor therapy pool building.

    PubMed

    Kujundzic, Elmira; Zander, David A; Hernandez, Mark; Angenent, Largus T; Henderson, David E; Miller, Shelly L

    2005-02-01

    The purpose of this study was to assess the effectiveness of a new generation of high-volume, ceiling-mounted high-efficiency particulate air (HEPA)-ultraviolet (UV) air filters (HUVAFs) for their ability to remove or inactivate bacterial aerosol. In an environmentally controlled full-scale laboratory chamber (87 m3), and an indoor therapy pool building, the mitigation ability of air filters was assessed by comparing concentrations of total bacteria, culturable bacteria, and airborne endotoxin with and without the air filters operating under otherwise similar conditions. Controlled chamber tests with pure cultures of aerosolized Mycobacterium parafortuitum cells showed that the HUVAF unit tested provided an equivalent air-exchange rate of 11 hr(-1). Using this equivalent air-exchange rate as a design basis, three HUVAFs were installed in an indoor therapy pool building for bioaerosol mitigation, and their effectiveness was studied over a 2-year period. The HUVAFs reduced concentrations of culturable bacteria by 69 and 80% during monitoring periods executed in respective years. The HUVAFs reduced concentrations of total bacteria by 12 and 76% during the same monitoring period, respectively. Airborne endotoxin concentrations were not affected by the HUVAF operation.

  9. An update of cancer mortality among chrysotile asbestos miners in Balangero, northern Italy.

    PubMed Central

    Piolatto, G; Negri, E; La Vecchia, C; Pira, E; Decarli, A; Peto, J

    1990-01-01

    The mortality experience of a cohort of chrysotile miners employed since 1946 in Balangero, northern Italy was updated to the end of 1987 giving a total of 427 deaths out of 27,010 man-years at risk. A substantial excess mortality for all causes (standardised mortality ratio (SMR) = 149) was found, mainly because of high rates for some alcohol related deaths (hepatic cirrhosis, accidents). For mortality from cancer, however, the number of observed deaths (82) was close to that expected (76.2). The SMR was raised for oral cancer (SMR 231 based on six deaths), cancer of the larynx (SMR 267 based on eight deaths), and pleura (SMR 667 based on two deaths), although the excess only reached statistical significance for cancer of the larynx. Rates were not increased for lung, stomach, or any other type of cancer. No consistent association was seen with duration or cumulative dust exposure (fibre-years) for oral cancer, but the greatest risks for laryngeal and pleural cancer were in the highest category of duration and degree of exposure to fibres. Although part of the excess mortality from laryngeal cancer is probably attributable to high alcohol consumption in this group of workers, the data suggest that exposure to chrysotile asbestos (or to the fibre balangeroite that accounts for 0.2-0.5% of total mass in the mine) is associated with some, however moderate, excess risk of laryngeal cancer and pleural mesothelioma. The absence of excess mortality from lung cancer in this cohort is difficult to interpret. Images PMID:2176805

  10. An update of cancer mortality among chrysotile asbestos miners in Balangero, northern Italy.

    PubMed

    Piolatto, G; Negri, E; La Vecchia, C; Pira, E; Decarli, A; Peto, J

    1990-12-01

    The mortality experience of a cohort of chrysotile miners employed since 1946 in Balangero, northern Italy was updated to the end of 1987 giving a total of 427 deaths out of 27,010 man-years at risk. A substantial excess mortality for all causes (standardised mortality ratio (SMR) = 149) was found, mainly because of high rates for some alcohol related deaths (hepatic cirrhosis, accidents). For mortality from cancer, however, the number of observed deaths (82) was close to that expected (76.2). The SMR was raised for oral cancer (SMR 231 based on six deaths), cancer of the larynx (SMR 267 based on eight deaths), and pleura (SMR 667 based on two deaths), although the excess only reached statistical significance for cancer of the larynx. Rates were not increased for lung, stomach, or any other type of cancer. No consistent association was seen with duration or cumulative dust exposure (fibre-years) for oral cancer, but the greatest risks for laryngeal and pleural cancer were in the highest category of duration and degree of exposure to fibres. Although part of the excess mortality from laryngeal cancer is probably attributable to high alcohol consumption in this group of workers, the data suggest that exposure to chrysotile asbestos (or to the fibre balangeroite that accounts for 0.2-0.5% of total mass in the mine) is associated with some, however moderate, excess risk of laryngeal cancer and pleural mesothelioma. The absence of excess mortality from lung cancer in this cohort is difficult to interpret.

  11. Chrysotile asbestos exposure associated with removal of automobile exhaust systems (ca. 1945-1975) by mechanics: results of a simulation study.

    PubMed

    Paustenbach, Dennis J; Madl, Amy K; Donovan, Ellen; Clark, Katherine; Fehling, Kurt; Lee, Terry C

    2006-03-01

    For decades, asbestos-containing gaskets were used in virtually every system that involved the transport of fluids or gases. Prior to the mid-1970s, some automobile exhaust systems contained asbestos gaskets either at flanges along the exhaust pipes or at the exhaust manifolds of the engine. A limited number of automobile mufflers were lined with asbestos paper. This paper describes a simulation study that characterized personal and bystander exposures to asbestos during the removal of automobile exhaust systems (ca. 1945-1975) containing asbestos gaskets. A total of 16 pre-1974 vehicles with old or original exhaust systems were studied. Of the 16 vehicles, 12 contained asbestos gaskets in the exhaust system and two vehicles had asbestos lining inside the muffler. A total of 82 samples (23 personal, 38 bystander, and 21 indoor background) were analyzed by Phase Contrast Microscopy (PCM) and 88 samples (25 personal, 41 bystander, and 22 indoor background) by Transmission Electron Microscopy (TEM). Only seven of 25 worker samples analyzed by TEM detected asbestos fibers and 18 were below the analytical sensitivity limit (mean 0.013 f/cc, range 0.001-0.074 f/cc). Applying the ratio of asbestos fibers:total fibers (including non-asbestos) as determined by TEM to the PCM results showed an average (1 h) adjusted PCM worker exposure of 0.018 f/cc (0.002-0.04 f/cc). The average (1 h) adjusted PCM airborne concentration for bystanders was 0.008 f/cc (range 0.0008-0.015 f/cc). Assuming a mechanic can replace four automobile single exhaust systems in 1 workday, the estimated 8-h time-weighted average (TWA) for a mechanic performing this work was 0.01 f/cc. Under a scenario where a mechanic might repeatedly conduct exhaust work, these results suggest that exposures to asbestos from work with automobile exhaust systems during the 1950s through the 1970s containing asbestos gaskets were substantially below 0.1 f/cc, the current PEL for chrysotile asbestos, and quite often were

  12. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  13. Association Between Weather Variables, Airborne Inoculum Concentration, and Raspberry Fruit Rot Caused by Botrytis cinerea.

    PubMed

    Carisse, Odile; McNealis, Vanessa; Kriss, Alissa

    2018-01-01

    Botrytis fruit rot (BFR), one of the most important diseases of raspberry (Rubus spp.), is controlled primarily with fungicides. Despite the use of fungicides, crop losses due to BFR are high in most years. The aim of this study was to investigate the association between airborne inoculum, weather variables, and BFR in order to improve the management of the disease as well as harvest and storage decisions. Crop losses, measured as the percentage of diseased berries during the harvest period, were monitored in unsprayed field plots at four sites in three successive years, together with meteorological data and the number of conidia in the air. Based on windowpane analysis, there was no evidence of correlation between crop losses and temperature, vapor pressure deficit, wind, solar radiation, or probability of infection. There were significant correlations between crop losses and airborne inoculum and between crop losses and humidity-related variables, and the best window length was identified as 7 days. Using 7-day average airborne inoculum concentration combined with 7-day average relative humidity for periods ending 6 to 8 days before bloom, it was possible to accurately predict crop losses (R 2 of 0.86 to 0.89). These models could be used to assist with managing BFR, timing harvests, and optimizing storage duration in raspberry crops.

  14. EVALUATION OF THREE CLEANING METHODS FOR REMOVING ASBESTOS FROM CARPET. DETERMINATION OF AIRBORNE ASBESTOS CONCENTRATIONS ASSOCIATED WITH EACH METHOD

    EPA Science Inventory

    This study was conducted to compare the effectiveness of three cleaning methods to remove asbestos from contaminated carpet and to determine the airborne asbestos concentrations associated with the use of each method. The carpet on which the methods were tested was naturally cont...

  15. Asbestos exposure during quarrying and processing of serpentinites: a case study in Valmalenco, Central Alps, Northern Italy

    NASA Astrophysics Data System (ADS)

    Cavallo, A.; Rimoldi, B.

    2012-04-01

    serpentine minerals due to the close resemblance of their basic structures. For this reason, the massive samples were studied by combined use of optical microscopy, SEM-EDS, X-ray powder diffraction and FT-IR. Geological and geostructural mapping of the chrysotile veins was also performed by the University, in order to characterize and quantify the "asbestos content" in each quarry. The analyses performed on massive samples showed that chrysotile asbestos is concentrated only along fissures and veins, and is not "dispersed" in the rock. Airborne personal and environmental samples (performed both in quarries and laboratories), were analyzed by means of phase-contrast microscopy (PCM) and SEM-EDS. The exposure values were extremely variable, and mostly below the permissible exposure level. The airborne samples revealed some critical details: the extreme fineness of chrysotile fibers (not detectable by PCM), the presence of chrysotile "aggregates", the difficulty to distinguish between chrysotile and splintery antigorite fragments (produced by mechanical fragmentation during quarrying and processing). Prevention actions were planned on the basis of the analytical results, and are still in progress: preliminary geological surveys (in order to avoid mineralized fissures), drilling technologies, dust suction and water abatement were tested in the field, procedural and organizational solutions are implemented both in the quarries and in the processing sites. Employers and workers are trained appropriately according to the law. A specific method for monitoring NOA exposure in these workplaces will be soon released.

  16. Concentrations and identification of culturable airborne fungi in underground stations of the Seoul metro.

    PubMed

    Hwang, Sung Ho; Jang, Soojin; Park, Wha Me; Park, Jae Bum

    2016-10-01

    The purpose of this study was to measure the culturable airborne fungi (CAF) concentrations in the underground subway stations of Seoul, Korea at two time points. This study measured the CAF concentrations in enclosed environments at 16 underground stations of the Seoul Metro in 2006 and 2013 and investigated the effects of various environmental factors, including the presence of platform screen doors, temperature, relative humidity, and number of passengers. CAF concentrations at the stations in 2006 were significantly higher than that at the same stations in 2013 (p < 0.001). Furthermore, there was a significant correlation between CAF concentration and relative humidity (r = 0.311, p < 0.05). Geotrichum and Penicillium were the predominant genera. The CAF concentrations in stations with an operating supply air were significantly higher than that in stations with no supply air (p < 0.001). Therefore, it is recommended that special attention be given to stations with clean supplied air to improve the indoor air quality of these subway stations.

  17. [Development of a microenvironment test chamber for airborne microbe research].

    PubMed

    Zhan, Ningbo; Chen, Feng; Du, Yaohua; Cheng, Zhi; Li, Chenyu; Wu, Jinlong; Wu, Taihu

    2017-10-01

    One of the most important environmental cleanliness indicators is airborne microbe. However, the particularity of clean operating environment and controlled experimental environment often leads to the limitation of the airborne microbe research. This paper designed and implemented a microenvironment test chamber for airborne microbe research in normal test conditions. Numerical simulation by Fluent showed that airborne microbes were evenly dispersed in the upper part of test chamber, and had a bottom-up concentration growth distribution. According to the simulation results, the verification experiment was carried out by selecting 5 sampling points in different space positions in the test chamber. Experimental results showed that average particle concentrations of all sampling points reached 10 7 counts/m 3 after 5 minutes' distributing of Staphylococcus aureus , and all sampling points showed the accordant mapping of concentration distribution. The concentration of airborne microbe in the upper chamber was slightly higher than that in the middle chamber, and that was also slightly higher than that in the bottom chamber. It is consistent with the results of numerical simulation, and it proves that the system can be well used for airborne microbe research.

  18. Sensor-triggered sampling to determine instantaneous airborne vapor exposure concentrations.

    PubMed

    Smith, Philip A; Simmons, Michael K; Toone, Phillip

    2018-06-01

    It is difficult to measure transient airborne exposure peaks by means of integrated sampling for organic chemical vapors, even with very short-duration sampling. Selection of an appropriate time to measure an exposure peak through integrated sampling is problematic, and short-duration time-weighted average (TWA) values obtained with integrated sampling are not likely to accurately determine actual peak concentrations attained when concentrations fluctuate rapidly. Laboratory analysis for integrated exposure samples is preferred from a certainty standpoint over results derived in the field from a sensor, as a sensor user typically must overcome specificity issues and a number of potential interfering factors to obtain similarly reliable data. However, sensors are currently needed to measure intra-exposure period concentration variations (i.e., exposure peaks). In this article, the digitized signal from a photoionization detector (PID) sensor triggered collection of whole-air samples when toluene or trichloroethylene vapors attained pre-determined levels in a laboratory atmosphere generation system. Analysis by gas chromatography-mass spectrometry of whole-air samples (with both 37 and 80% relative humidity) collected using the triggering mechanism with rapidly increasing vapor concentrations showed good agreement with the triggering set point values. Whole-air samples (80% relative humidity) in canisters demonstrated acceptable 17-day storage recoveries, and acceptable precision and bias were obtained. The ability to determine exceedance of a ceiling or peak exposure standard by laboratory analysis of an instantaneously collected sample, and to simultaneously provide a calibration point to verify the correct operation of a sensor was demonstrated. This latter detail may increase the confidence in reliability of sensor data obtained across an entire exposure period.

  19. Characteristics of lead isotope ratios and elemental concentrations in PM 10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Tan, Mingguang; Shibata, Yasuyuki; Tanaka, Atsushi; Li, Yan; Zhang, Guilin; Zhang, Yuanmao; Shan, Zuci

    The stable lead (Pb) isotope ratios and the concentrations of 23 elements, including heavy metals and toxic elements, were measured in the PM 10 airborne particle samples collected at seven monitoring sites in Shanghai, China, to evaluate the current elemental compositions and local airborne Pb isotope ratio characteristics. Some source-related samples, such as cement, coal and oil combustion dust, metallurgic dust, vehicle exhaust particles derived from leaded gasoline and unleaded gasoline, and polluted soils were analyzed for their Pb content and isotope ratio and compared to those observed in PM 10 samples. Airborne Pb concentration ranged from 167 to 854 ng/m 3 in the seven monitored sites with an average of 515 ng/m 3 in Shanghai, indicating that a high concentration of Pb remains in the air after the phasing out of leaded gasoline. Lead isotopic compositions in airborne particles ( 207Pb/ 206Pb, 0.8608±0.0018; 208Pb/ 206Pb, 2.105±0.005) are clearly distinct from the vehicle exhaust particles ( 207Pb/ 206Pb, 0.8854±0.0075; 208Pb/ 206Pb, 2.145±0.006), suggesting that the automotive lead is not currently the major component of Pb in the air. By using a binary mixing equation, a source apportionment based on 207Pb/ 206Pb ratios, indicates that the contribution from automotive emission to the airborne Pb is around 20%. The Pb isotope ratios obtained in the source-related samples confirmed that the major emission sources are metallurgic dust, coal combustion, and cement.

  20. Airborne concentrations of volatile organic compounds in neonatal incubators.

    PubMed

    Prazad, P; Cortes, D R; Puppala, B L; Donovan, R; Kumar, S; Gulati, A

    2008-08-01

    To identify and quantify airborne volatile organic compounds (VOCs) inside neonatal incubators during various modes of operation within the neonatal intensive care unit (NICU) environment. Air samples were taken from 10 unoccupied incubators in four operational settings along with ambient air samples using air sampling canisters. The samples were analyzed following EPA TO-15 using a Tekmar AutoCan interfaced to Agilent 6890 Gas Chromatograph with a 5973 Mass Spectrometer calibrated for 60 EPA TO-15 method target compounds. Non-target compounds were tentatively identified using mass spectral interpretation and with a mass spectral library created by National Institute for Standards and Technology. Two non-target compounds, 2-heptanone and n-butyl acetate, were found at elevated concentrations inside the incubators compared with ambient room air samples. Increase in temperature and addition of humidity produced further increased concentrations of these compounds. Their identities were verified by mass spectra and relative retention times using authentic standards. They were quantified using vinyl acetate and 2-hexanone as surrogate standards. The emission pattern of these two compounds and background measurements indicate that they originate inside the incubator. There is evidence that exposure to some VOCs may adversely impact the fetal and developing infants' health. Currently, as there is no definitive information available on the effects of acute or chronic low-level exposure to these compounds in neonates, future studies evaluating the health effects of neonatal exposure to these VOCs are needed.

  1. Airborne measurement of submicron aerosol number concentration and CCN activity in and around the Korean Peninsula and their comparison to ground measurement in Seoul

    NASA Astrophysics Data System (ADS)

    Park, M.; Kim, N.; Yum, S. S.

    2016-12-01

    Aerosols exert impact not only on human health and visibility but also on climate change directly by scattering or absorbing solar radiation and indirectly by acting as cloud condensation nuclei (CCN) and thus altering cloud radiative and microphysical properties. Aerosol indirect effects on climate has been known to have large uncertainty because of insufficient measurement data on aerosol and CCN activity distribution. Submicron aerosol number concentration (NCN, TSI CPC) and CCN number concentration (NCCN, DMT CCNC) were measured on board the NASA DC-8 research aircraft and at a ground site at Olympic Park in Seoul from May 2nd to June 10th, 2016. CCNC on the airborne platform was operated with the fixed internal supersaturation of 0.6% and CCNC at the ground site was operated with the five different supersaturations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%). The NASA DC-8 conducted 20 research flights (about 150 hours) in and around the Korean Peninsula and the ground measurement at Olympic Park was continuously made during the measurement period. Both airborne and ground measurements showed spatially and temporally varied aerosol number concentration and CCN activity. Aerosol number concentration in the boundary layer measured on airborne platform was highly affected by pollution sources on the ground. The average diurnal distribution of ground aerosol number concentration showed distinct peaks are located at about 0800, 1500, and 2000. The middle peak indicates that new particle formation events frequently occurred during the measurement period. CCN activation ratio at 0.6% supersaturation (NCCN/NCN) of the airborne measurement ranged from 0.1 to 0.9, indicating that aerosol properties in and around the Korean Peninsula varied so much (e. g. size, hygroscopicity). Comprehensive analysis results will be shown at the conference.

  2. Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentration: comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor

    Treesearch

    Marie-Louise Smith; Mary E. Martin; Lucie Plourde; Scott V. Ollinger

    2003-01-01

    Field studies among diverse biomes demonstrate that mass-based nitrogen concentration at leaf and canopy scales is strongly related to carbon uptake and cycling. Combined field and airborne imaging spectrometry studies demonstrate the capacity for accurate empirical estimation of forest canopy N concentration and other biochemical constituents at scales from forest...

  3. Exposure to Sumas Mountain chrysotile induces similar gene expression changes as Libby Amphibole but has greater effect on long-term pathology and lung function

    EPA Science Inventory

    This study was designed to provide understanding of the toxicity of naturally occurring asbestos (NOA) including Libby amphibole (LA), Sumas Mountain chrysotile (SM), El Dorado Hills tremolite (ED) and Ontario ferroactinolite cleavage fragments (ON). Rat-respirable fractions (aer...

  4. Multi-parameter observation of environmental asbestos pollution at the Institut de Physique du Globe de Paris (Jussieu Campus, France).

    PubMed

    Besson, P; Lalanne, F X; Wang, Y; Guyot, F

    1999-11-01

    An original multi-parameter system has been used to study the nature of dust in the ambient air, particularly the total fibers and asbestos fibers, in eight areas of the Institut de Physique de Globe de Paris (France). These analyses provide a detailed case study of environmental pollution by asbestos fibers at low levels. The levels of total fibers with a length greater than 3 microns, measured with a real time fiber analyser monitor (FAM), give a baseline of 2.5 fibers per l., throughout the duration of sampling. The same levels, calculated during periods of effective presence of staff, are smaller than 10 fb per l. During these periods, the instantaneous value can show high peaks, reaching a maximum of 60 fb per l., but more often of about 5 to 10 fb per l. A direct cause and effect relationship exists between fiber concentrations and the presence of people, and indirectly with the variation of the other environmental parameters (temperature, humidity, air velocity). The baseline concentration of asbestos fibers, determined by analytical transmission electron microscopy (ATEM), is about 10(-1) fb per l., with a mean value during the presence of people always less than 1.5 fb per l. The low levels of asbestos fibers do not allow us to establish a precise correlation between the concentration of total fibers and the asbestos concentration, but a rough estimate suggests that asbestos could represent 10-20% of the airborne fibers monitored with the FAM. The statistical study of fiber sizes shows that 70 and 55% of analyzed chrysotile and amosite fibers respectively are smaller than 5 microns. These numbers are 40 and 35% for fibers smaller than 3 microns, which are undetected by the FAM. Amosite, which characterizes most of the asbestos-containing materials (ACM) in the analyzed areas, is detected in the ambient air in quantities ten times less important than chrysotile. The low asbestos levels and the difference between the nature of building asbestos and airborne

  5. Human Occupancy as a Source of Indoor Airborne Bacteria

    PubMed Central

    Hospodsky, Denina; Qian, Jing; Nazaroff, William W.; Yamamoto, Naomichi; Bibby, Kyle; Rismani-Yazdi, Hamid; Peccia, Jordan

    2012-01-01

    Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study presents evidence for elevated concentrations of indoor airborne bacteria due to human occupancy, and investigates the sources of these bacteria. Samples were collected in a university classroom while occupied and when vacant. The total particle mass concentration, bacterial genome concentration, and bacterial phylogenetic populations were characterized in indoor, outdoor, and ventilation duct supply air, as well as in the dust of ventilation system filters and in floor dust. Occupancy increased the total aerosol mass and bacterial genome concentration in indoor air PM10 and PM2.5 size fractions, with an increase of nearly two orders of magnitude in airborne bacterial genome concentration in PM10. On a per mass basis, floor dust was enriched in bacterial genomes compared to airborne particles. Quantitative comparisons between bacterial populations in indoor air and potential sources suggest that resuspended floor dust is an important contributor to bacterial aerosol populations during occupancy. Experiments that controlled for resuspension from the floor implies that direct human shedding may also significantly impact the concentration of indoor airborne particles. The high content of bacteria specific to the skin, nostrils, and hair of humans found in indoor air and in floor dust indicates that floors are an important reservoir of human-associated bacteria, and that the direct particle shedding of desquamated skin cells and their subsequent resuspension strongly influenced the airborne bacteria population structure in this human-occupied environment. Inhalation exposure to microbes shed by other current or previous human occupants may occur in communal indoor environments. PMID:22529946

  6. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmd, Hossein; Hatamzadeh, Maryam; Hassanzadeh, Akbar

    2015-01-01

    The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. The average level of bacteria ranged from 75-1194 CFU/m (3) . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.

  7. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants. Volume 2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is aware of the potential toxicological hazards to humans that might be associated with prolonged spacecraft missions. Despite major engineering advances in controlling the atmosphere within spacecraft, some contamination of the air appears inevitable. NASA has measured numerous airborne contaminants during space missions. As the missions increase in duration and complexity, ensuring the health and well-being of astronauts traveling and working in this unique environment becomes increasingly difficult. As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMACs) for contaminants, and to review SMACs for various space-craft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee On Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMACs for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMACs for approximately 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the SMAC reports for 12 chemical contaminants that have been reviewed for

  8. Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,

    Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocitymore » of (9200 {+-} 600) m/s.« less

  9. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior.

    PubMed

    Patton, Allison P; Calderon, Leonardo; Xiong, Youyou; Wang, Zuocheng; Senick, Jennifer; Sorensen Allacci, MaryAnn; Plotnik, Deborah; Wener, Richard; Andrews, Clinton J; Krogmann, Uta; Mainelis, Gediminas

    2016-01-20

    There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m³) than in Building L (37 µg/m³); I/O was higher in Building E (1.3-2.0) than in Building L (0.5-0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents' exposure to PM in residential green buildings.

  10. Temporal variability of the bioaerosol background at a subway station: concentration level, size distribution, and diversity of airborne bacteria.

    PubMed

    Dybwad, Marius; Skogan, Gunnar; Blatny, Janet Martha

    2014-01-01

    Naturally occurring bioaerosol environments may present a challenge to biological detection-identification-monitoring (BIODIM) systems aiming at rapid and reliable warning of bioterrorism incidents. One way to improve the operational performance of BIODIM systems is to increase our understanding of relevant bioaerosol backgrounds. Subway stations are enclosed public environments which may be regarded as potential bioterrorism targets. This study provides novel information concerning the temporal variability of the concentration level, size distribution, and diversity of airborne bacteria in a Norwegian subway station. Three different air samplers were used during a 72-h sampling campaign in February 2011. The results suggested that the airborne bacterial environment was stable between days and seasons, while the intraday variability was found to be substantial, although often following a consistent diurnal pattern. The bacterial levels ranged from not detected to 10(3) CFU m(-3) and generally showed increased levels during the daytime compared to the nighttime levels, as well as during rush hours compared to non-rush hours. The airborne bacterial levels showed rapid temporal variation (up to 270-fold) on some occasions, both consistent and inconsistent with the diurnal profile. Airborne bacterium-containing particles were distributed between different sizes for particles of >1.1 μm, although ∼50% were between 1.1 and 3.3 μm. Anthropogenic activities (mainly passengers) were demonstrated as major sources of airborne bacteria and predominantly contributed 1.1- to 3.3-μm bacterium-containing particles. Our findings contribute to the development of realistic testing and evaluation schemes for BIODIM equipment by providing information that may be used to simulate operational bioaerosol backgrounds during controlled aerosol chamber-based challenge tests with biological threat agents.

  11. Temporal Variability of the Bioaerosol Background at a Subway Station: Concentration Level, Size Distribution, and Diversity of Airborne Bacteria

    PubMed Central

    Dybwad, Marius; Skogan, Gunnar

    2014-01-01

    Naturally occurring bioaerosol environments may present a challenge to biological detection-identification-monitoring (BIODIM) systems aiming at rapid and reliable warning of bioterrorism incidents. One way to improve the operational performance of BIODIM systems is to increase our understanding of relevant bioaerosol backgrounds. Subway stations are enclosed public environments which may be regarded as potential bioterrorism targets. This study provides novel information concerning the temporal variability of the concentration level, size distribution, and diversity of airborne bacteria in a Norwegian subway station. Three different air samplers were used during a 72-h sampling campaign in February 2011. The results suggested that the airborne bacterial environment was stable between days and seasons, while the intraday variability was found to be substantial, although often following a consistent diurnal pattern. The bacterial levels ranged from not detected to 103 CFU m−3 and generally showed increased levels during the daytime compared to the nighttime levels, as well as during rush hours compared to non-rush hours. The airborne bacterial levels showed rapid temporal variation (up to 270-fold) on some occasions, both consistent and inconsistent with the diurnal profile. Airborne bacterium-containing particles were distributed between different sizes for particles of >1.1 μm, although ∼50% were between 1.1 and 3.3 μm. Anthropogenic activities (mainly passengers) were demonstrated as major sources of airborne bacteria and predominantly contributed 1.1- to 3.3-μm bacterium-containing particles. Our findings contribute to the development of realistic testing and evaluation schemes for BIODIM equipment by providing information that may be used to simulate operational bioaerosol backgrounds during controlled aerosol chamber-based challenge tests with biological threat agents. PMID:24162566

  12. 41 CFR 50-204.22 - Exposure to airborne radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Exposure to airborne... FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.22 Exposure to airborne radioactive material. (a) No..., within a restricted area, to be exposed to airborne radioactive material in an average concentration in...

  13. Mineralogic parameters related to amosite asbestos-induced fibrosis in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churg, A.; Wright, J.; Wiggs, B.

    1990-12-01

    We have previously shown that in the lungs of a group of chrysotile miners and millers, grade of interstitial fibrosis (asbestosis) is directly proportional to tremolite fiber or chrysotile fiber concentration but is inversely proportional to mean fiber length and length-related parameters. To compare the effects of the commercial amphibole asbestos amosite on parenchymal fibrosis, we histologically graded fibrosis in four different sites in the lungs of 20 shipyard and insulation workers with heavy amosite exposure and measured by analytic electron microscopy fiber concentration and size in corresponding portions of lung tissue. Fibrosis grade was found to be strongly positivelymore » correlated with amosite concentration and negatively correlated with mean fiber size parameters, including fiber length, width, surface area, and mass. A comparison of our present results with our data on the chrysotile miners and millers showed that the regression lines of fibrosis grade versus concentration for amosite, chrysotile, and tremolite were statistically different. These findings indicate that amosite concentration, like chrysotile and tremolite concentration, is closely and directly related to fibrosis at the local lung level. Furthermore, these observations again raise the possibility that short fibers may be more important than is commonly believed in the genesis of fibrosis in man. Last, the concentration comparison data indicate that, fiber for fiber, amosite is more fibrogenic than is chrysotile or tremolite, and indirectly suggest that tremolite is more fibrogenic than is chrysotile.« less

  14. Space-and-time current spectroscopy of nanostructured selenium in the chrysotile asbestos matrix

    NASA Astrophysics Data System (ADS)

    Bryushinin, M. A.; Kulikov, V. V.; Kumzerov, Yu. A.; Mokrushina, E. V.; Petrov, A. A.; Sokolov, I. A.

    2014-08-01

    The non-steady-state photoelectromotive force effect was experimentally studied in a semiconductor nanowire array, i.e., in a composite representing selenium in a chrysotile asbestos matrix. The sample was exposed to an oscillating interference pattern, and the material response was measured as an alternating electric current. The experiments were performed for two geometries in which the excited photocurrent was parallel or perpendicular to nanowires. The dependences of the signal amplitude on the phase modulation frequency, spatial frequency, light polarization, and temperature were obtained. The photoelectric parameters of the material were determined for the light wavelength λ = 633 nm. The effect was theoretically analyzed for the semiconductor model with shallow traps, which allowed the explanation of the observed increase in the signal amplitude in the presence of additional phase modulation.

  15. New detoxification processes for asbestos fibers in the environment.

    PubMed

    Turci, Francesco; Colonna, Massimiliano; Tomatis, Maura; Mantegna, Stefano; Cravotto, Giancarlo; Fubini, Bice

    2010-01-01

    Airborne asbestos fibers are associated with many serious detrimental effects on human health, while the hazard posed by waterborne fibers remains an object of debate. In adopting a precautionary principle, asbestos content in water needs to be kept as low as possible and polluting waters with asbestos should be avoided. Turci et al. (2008) recently reported a method for the decontamination of asbestos-polluted waters or landfill leachates from chrysotile that combines power ultrasound (US) with oxalic acid (Ox), an acidic chelating molecule. In the previous study, the occurrence of antigorite, a polymorph of serpentine, the mineral group encompassing chrysotile asbestos, acted as a confounding factor for complete removal of chrysotile from water. The effects of US + Ox on pure chrysotile asbestos from Val Malenco, Italian Central Alps, were examined in this investigation. In the absence of mineral contaminants, a more rapid removal of pure chrysotile from water was undertaken with respect to the previous specimen. After only 12 h of combined US + Ox acid treatment, imaging (SEM) of mineral debris indicated complete loss of fibrous habit. In addition, crystallography and vibrational features of chrysotile were not detectable (x-ray powder diffraction [XRPD] and micro-Raman spectroscopy) and elemental analysis showed a low Mg/Si ratio, i.e., the loss of the brucitic layer in chrysotile (x-ray fluorescence, XRF). Some nanometric rod-shaped debris, observed in the previous study and tentatively recognized as serpentine antigorite, was now found to be made of amorphous silica, which is relatively safe and noncarcinogenic to humans, providing further assurance regarding the safety of treated product. Thus, data indicated the proposed method was effective in detoxifying waterborne chrysotile asbestos fibers.

  16. Buffing, burnishing, and stripping of vinyl asbestos floor tile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollett, B.A.; Edwards, A.; Clark, P.J.

    Studies were conducted to evaluate airborne asbestos concentrations during the three principal types of preventative maintenance (low-speed spray-buffing, ultra high-speed burnishing, and wet-stripping) used on asbestos-containing floor tiles. These were done under pre-existing and prepared levels of floor care maintenance. Airborne asbestos concentrations were measured before and during each floor care procedure to determine the magnitude of the increase in airborne asbestos levels during each procedure. Airborne total fiber concentrations were also measured for comparison with the Occupational Safety and Health Administration`s (OSHA) Permissible Exposure Limit (PEL) of 0.1 f/cm{sup 3}. Low-speed spray-buffing and wet-stripping were evaluated on pre-existing floormore » conditions and three levels of prepared floor care conditions (poor, medium, and good). Ultra high-speed burnishing and wet-stripping were evaluated on two levels of prepared floor care conditions (poor and good). Floor care conditions were defined in consultation with the Chemical Specialty Manufacturers Association and other representatives of floor-care chemical manufacturers. Controlled studies were conducted in an unoccupied building at the decommissioned Chanute Air Force Base in Rantoul, Illinois, with the cooperation of the U.S. Air Force. The building offered approximately 8600 ft{sup 2} of open floor space tiled with 9-inch by 9-inch resilient floor tile containing approximately 5% chrysotile asbestos.« less

  17. An investigation of airborne allergenic pollen at different heights.

    PubMed

    Xiao, Xiaojun; Fu, Aixiang; Xie, Xiongjie; Kang, Minxiong; Hu, Dongsheng; Yang, Pingchang; Liu, Zhigang

    2013-01-01

    Airborne pollen is an important source of allergens in a number of allergic diseases. Data on the concentrations of pollen at different heights in the air are scarce. The aim of the present study was to investigate different types and numbers of airborne pollen and their seasonal variation at different heights in the urban area of Shenzhen (China) and their associations with meteorological factors. The concentration of airborne pollen at different heights was monitored with Burkard traps from July 1, 2006, to June 30, 2007, in Shenzhen; the results were analyzed with SAS 9.13 software. In total, 1,095 films (at 3 heights, 365 films at each height) were exposed throughout the year, and 48 families and 85 genera of pollen taxa were identified. The total pollen count was 55,830 grains (25,204 grains at 1.5 m; 16,218 grains at 35 m, and 14,408 grains at 70 m); pollen grains were present in the atmosphere throughout the year, with two peaks of airborne pollen: one peak in February to April and the other in September to November. On the basis of our local investigations, the pollen concentrations and the pollen types in the air decrease gradually with increasing height. The distribution and concentrations of airborne pollen at different heights in the atmosphere were influenced by composite factors such as the season and meteorological factors. Copyright © 2012 S. Karger AG, Basel.

  18. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior

    PubMed Central

    Patton, Allison P.; Calderon, Leonardo; Xiong, Youyou; Wang, Zuocheng; Senick, Jennifer; Sorensen Allacci, MaryAnn; Plotnik, Deborah; Wener, Richard; Andrews, Clinton J.; Krogmann, Uta; Mainelis, Gediminas

    2016-01-01

    There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m3) than in Building L (37 µg/m3); I/O was higher in Building E (1.3–2.0) than in Building L (0.5–0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents’ exposure to PM in residential green buildings. PMID:26805862

  19. Exposures to asbestos arising from bandsawing gasket material.

    PubMed

    Fowler, D P

    2000-05-01

    A simulation of bandsawing sheet asbestos gasket material was performed as part of a retrospective exposure evaluation undertaken to assist in determining causation of a case of mesothelioma. The work was performed by bandsawing a chrysotile asbestos (80%)/neoprene gasket sheet with a conventional 16-inch woodworking bandsaw inside a chamber. Measurements of airborne asbestos were made using conventional area and personal sampling methods, with analysis of collected samples by transmission electron microscopy (TEM) and phase contrast microscopy (PCM). These were supplemented by qualitative scanning electron microscopy (SEM) examinations of some of the airborne particles collected on the filters. In contrast with findings from studies examining manual handling (installation and removal) of gaskets, airborne asbestos concentrations from this operation were found to be well above current Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) (eight-hour time-weighted average [TWA]) and excursion limit (30-minute) standards. Although some "encapsulation" effect of the neoprene matrix was seen on the particles in the airborne dust, unencapsulated individual fiber bundles were also seen. Suggestions for the implications of the work are given. In summary, the airborne asbestos concentrations arising from this work were quite high, and point to the need for careful observation of common sense precautions when manipulation of asbestos-containing materials (even those believed to have limited emissions potential) may involved machining operations.

  20. [Airborne fungal community composition in indoor environments in Beijing].

    PubMed

    Fang, Zhi-guo; Ouyang, Zhi-yun; Liu, Peng; Sun, Li; Wang, Xiao-yong

    2013-05-01

    Indoor environmental quality has significant effects on human health. It is reported that adults in China spent about 80%-90% of their time in indoor environments, and a number of physically handicapped people such as the elderly and infants stayed in the room even up to 95% of their total time. Moreover, air conditioner in indoor environments becomes more and more important in modern life, and a closed circulatory system can be formed among human body, room and air conditioner in indoor environments with an air conditioner, which can make the microbes such as bacteria, viruses and mold indoors propagate rapidly or abundantly. Therefore, studies on the microbial pollution in the air at places such as mall, classroom, office, and family home have been the research hotspots recently. In the present study, the community composition and concentration variation pattern of airborne fungi were investigated from Nov 2009 to Oct 2010 in 31 family homes with children in Beijing. Results showed that 24 generas of airborne fungi in family homes were identified from 225 isolates. The most common fungi were Penicillium, Cladosporium, Aspergillus, Alternaria and Phoma. The frequency of Penicillium, Cladosporium, Aspergillus, Alternaria and Monilia was much higher than those of other fungal genera in family home, and the frequency of Penicillium was more than 90%. As for the concentration percentage, airborne fungi with most high concentrations were Penicillium, Cladosporium, Aspergillus, No-sporing, and Alternaria, and totally accounted for more than 65.0%. Penicillium contributed to 32.2% of the total airborne fungi in family homes. In the 31 family homes selected, the fungal concentration in the air ranged from 62-3 498 CFU x m(-3), and the mean concentration was 837 CFU x m(-3). Seasonal variation pattern of total fungi, and Cladosporium, Aspergillus, Alternaria concentration was consistent, and the highest fungal concentration was observed in summer, followed by spring and

  1. Airborne fibre and asbestos concentrations in system built schools

    NASA Astrophysics Data System (ADS)

    Burdett, Garry; Cottrell, Steve; Taylor, Catherine

    2009-02-01

    This paper summarises the airborne fibre concentration data measured in system built schools that contained asbestos insulation board (AIB) enclosed in the support columns by a protective steel casing. The particular focus of this work was the CLASP (Consortium of Local Authorities Special Programme) system buildings. A variety of air monitoring tests were carried out to assess the potential for fibres to be released into the classroom. A peak release testing protocol was adopted that involved static sampling, while simulating direct impact disturbances to selected columns. This was carried out before remediation, after sealing gaps and holes in and around the casing visible in the room (i.e. below ceiling level) and additionally round the tops of the columns, which extended into the suspended ceiling void. Simulated and actual measurements of worker exposures were also undertaken, while sealing columns, carrying out cleaning and maintenance work in the ceiling voids. Routine analysis of these air samples was carried out by phase contrast microscopy (PCM) with a limited amount of analytical transmission electron microscopy (TEM) analysis to confirm whether the fibres visible by PCM were asbestos or non-asbestos. The PCM fibre concentrations data from the peak release tests showed that while direct releases of fibres to the room air can occur from gaps and holes in and around the column casings, sealing is an effective way of minimising releases to below the limit of quantification (0.01 f/ml) of the PCM method for some 95% of the tests carried out. Sealing with silicone filler and taping any gaps and seams visible on the column casing in the room, also gave concentrations below the limit of quantification (LOQ) of the PCM method for 95% of the tests carried out. The data available did not show any significant difference between the PCM fibre concentrations in the room air for columns that had or had not been sealed in the ceiling void, as well as in the room

  2. [Frequencies of airborne moulds in Zagreb].

    PubMed

    Segvić, Maja; Pepeljnjak, Stjepan

    2004-06-01

    Airborne fungi are sometimes associated with several respiratory diseases and allergies. This paper describes a study of qualitative and quantitative variations in the occurrence of airborne moulds in Zagreb area on three locations: centre of the city (C), Pharmaceutical Botanical Garden "Fran Kusan" (BG) and the mountain Medvednica (M) during autumn, winter, spring and summer 2002-03. Lower concentrations of airborne moulds were found in all three locations in autumn (up to 76.88 CFU/m3) and winter (31.46 CFU/m3), with significantly higher levels in C and BG than in M (P<0.001). In spring and summer, these concentrations were much higher in all sampling sites and were significantly higher in C (160.00 CFU/m3) and BG (134.00 CFU/m3) in spring than in M (90.07 CFU/m3) (P<0.001). In summer, significantly higher concentration was found in C (237.5 CFU/m3) than in BG (186.50 CFU/m3) (P<0.01), while concentrations in C and M (216.70 CFU/m3) were similar. Airspora belonging to 29 fungal genera were identified, and allergologicaly significant moulds, Cladosporium (up to 79.5%) and Alternaria (up to 59.4%) dominated in all sampling sites. Penicillium, Fusarium and Aspergillus were also constant fungal entities (43.0-70.5%), but in much lower concentrations than Cladosporium and Alternaria. Airsporas of Cladosporium and Alternaria were more frequent in spring and summer in all locations, with significantly higher concentrations in C and BG (P<0.05). The risk from allergies increases with higher airspora concentrations in spring and summer due to an increase in Cladosporium and Alternaria.

  3. Diffusion of benzene confined in the oriented nanochannels of chrysotile asbestos fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, E.; Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115; Kumzerov, Yu.A.

    We used quasielastic neutron scattering to study the dynamics of benzene that completely fills the nanochannels of chrysotile asbestos fibers with a characteristic diameter of about 5 nm. The macroscopical alignment of the nanochannels in fibers provided an interesting opportunity to study anisotropy of the dynamics of confined benzene by means of collecting the data with the scattering vector either parallel or perpendicular to the fibers axes. The translational diffusive motion of benzene molecules was found to be isotropic. While bulk benzene freezes at 278.5 K, we observed the translational dynamics of the supercooled confined benzene on the time scalemore » of hundreds of picoseconds even below 200 K, until at about 160 K its dynamics becomes too slow for the {mu}eV resolution of the neutron backscattering spectrometer. The residence time between jumps for the benzene molecules measured in the temperature range of 260 K to 320 K demonstrated low activation energy of 2.8 kJ/mol.« less

  4. Airborne endotoxin concentrations in indoor and outdoor particulate matter and their predictors in an urban city.

    PubMed

    Yoda, Y; Tamura, K; Shima, M

    2017-09-01

    Endotoxins are an important biological component of particulate matter and have been associated with adverse effects on human health. There have been some recent studies on airborne endotoxin concentrations. We collected fine (PM 2.5 ) and coarse (PM 10-2.5 ) particulate matter twice on weekdays and weekends each for 48 hour, inside and outside 55 homes in an urban city in Japan. Endotoxin concentrations in both fractions were measured using the kinetic Limulus Amebocyte Lysate assay. The relationships between endotoxin concentrations and household characteristics were evaluated for each fraction. Both indoor and outdoor endotoxin concentrations were higher in PM 2.5 than in PM 10-2.5 . In both PM 2.5 and PM 10-2.5 , indoor endotoxin concentrations were higher than outdoor concentrations, and the indoor endotoxin concentrations significantly correlated with outdoor concentrations in each fraction (R 2 =0.458 and 0.198, respectively). Indoor endotoxin concentrations in PM 2.5 were significantly higher in homes with tatami or carpet flooring and in homes with pets, and lower in homes that used air purifiers. Indoor endotoxin concentrations in PM 10-2.5 were significantly higher in homes with two or more children and homes with tatami or carpet flooring. These results showed that the indoor endotoxin concentrations were associated with the household characteristics in addition to outdoor endotoxin concentrations. © 2017 The Authors. Indoor Air Published by John Wiley & Sons Ltd.

  5. Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments

    NASA Astrophysics Data System (ADS)

    Weschler, Charles J.; Salthammer, Tunga; Fromme, Hermann

    A critical evaluation of human exposure to phthalate esters in indoor environments requires the determination of their distribution among the gas phase, airborne particles and settled dust. If sorption from the gas phase is the dominant mechanism whereby a given phthalate is associated with both airborne particles and settled dust, there should be a predictable relationship between its particle and dust concentrations. The present paper tests this for six phthalate esters (DMP, DEP, DnBP, DiBP, BBzP and DEHP) that have been measured in both the air and the settled dust of 30 Berlin apartments. The particle concentration, CParticle, of a given phthalate was calculated from its total airborne concentration and the concentration of airborne particles (PM 4). This required knowledge of the particle-gas partition coefficient, Kp, which was estimated from either the saturation vapor pressure ( ps) or the octanol/air partition coefficient ( KOA). For each phthalate in each apartment, the ratio of its particle concentration to its dust concentration ( CParticle/ CDust) was calculated. The median values of this ratio were within an order of magnitude of one another for five of the phthalate esters despite the fact that their vapor pressures span four orders of magnitude. This indicates that measurements of phthalate ester concentrations in settled dust can provide an estimate of their concentration in airborne particles. When the latter information is coupled with measurements of airborne particle concentrations, the gas-phase concentrations of phthalates can also be estimated and, subsequently, the contribution of each of these compartments to indoor phthalate exposures.

  6. Airborne endotoxin in fine particulate matter in Beijing

    NASA Astrophysics Data System (ADS)

    Guan, Tianjia; Yao, Maosheng; Wang, Junxia; Fang, Yanhua; Hu, Songhe; Wang, Yan; Dutta, Anindita; Yang, Junnan; Wu, Yusheng; Hu, Min; Zhu, Tong

    2014-11-01

    Endotoxin is an important biological component of particulate matter (PM) which, upon inhalation, can induce adverse health effects, and also possibly complicate the diseases in combination with other pollutants. From 1 March 2012 to 27 February 2013 we collected air samples using quartz filters daily for the quantification of airborne endotoxin and also fine PM (PM2.5) in Beijing, China. The geometric means for endotoxin concentration and the fraction of endotoxin in PM were 0.65 EU/m3 (range: 0.10-75.02) and 10.25 EU/mg PM2.5 (range: 0.38-1627.29), respectively. The endotoxin concentrations were shown to vary greatly with seasons, typically with high values in the spring and winter seasons. Temperature and relative humidity, as well as concentrations of sulfur dioxide and nitrogen oxides were found to be significantly correlated with airborne endotoxin concentrations (p < 0.05). Additionally, positive correlations were also detected between endotoxin concentrations and natural sources of Na+, K+, Mg2+, and F-, while negative correlations were observed between endotoxin concentrations and anthropogenic sources of P, Co, Zn, As, and Tl. Oxidative potential analysis revealed that endotoxin concentrations were positively correlated with reactive oxygen species (ROS), but not dithiothreitol (DTT) of PM. This study provided the first continuous time series of airborne endotoxin concentrations in Beijing, and identifies its potential associations with atmospheric factors. The information developed here can assist in the assessment of health effects of air pollution in Beijing.

  7. Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends

    NASA Astrophysics Data System (ADS)

    Morawska, L.; Jayaratne, E. R.; Mengersen, K.; Jamriska, M.; Thomas, S.

    Airborne particle number concentrations and size distributions as well as CO and NO x concentrations monitored at a site within the central business district of Brisbane, Australia were correlated with the traffic flow rate on a nearby freeway with the aim of investigating differences between weekday and weekend pollutant characteristics. Observations over a 5-year monitoring period showed that the mean number particle concentration on weekdays was (8.8±0.1)×10 3 cm -3 and on weekends (5.9±0.2)×10 3 cm -3—a difference of 47%. The corresponding mean particle number median diameters during weekdays and weekends were 44.2±0.3 and 50.2±0.2 nm, respectively. The differences in mean particle number concentration and size between weekdays and weekends were found to be statistically significant at confidence levels of over 99%. During a 1-year period of observation, the mean traffic flow rate on the freeway was 14.2×10 4 and 9.6×10 4 vehicles per weekday and weekend day, respectively—a difference of 48%. The mean diurnal variations of the particle number and the gaseous concentrations closely followed the traffic flow rate on both weekdays and weekends (correlation coefficient of 0.86 for particles). The overall conclusion, as to the effect of traffic on concentration levels of pollutant concentration in the vicinity of a major road (about 100 m) carrying traffic of the order of 10 5 vehicles per day, is that about a 50% increase in traffic flow rate results in similar increases of CO and NO x concentrations and a higher increase of about 70% in particle number concentration.

  8. Effectiveness of serum megakaryocyte potentiating factor in evaluating the effects of chrysotile and its heated products on respiratory organs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takata, Ayako; Yamauchi, Hiroshi, E-mail: hyama@kitasato-u.ac.jp; Toya, Tadao

    Chrysotile (CH), the most common form of asbestos, is rendered less toxic by heating it at 1000 {sup o}C and converting it to forsterite (FO-1000). However, further safety tests are needed to evaluate human health risk of these materials. It has been reported that serum concentrations of megakaryocyte potentiating factor N-ERC/mesothelin become elevated in patients with mesotheliomas caused by asbestos exposure. In this study, a single 2 mg dose of CH or FO-1000 was intratracheally administered to rats. Within 180 days after the administrations, serum N-ERC/mesothelin concentrations, levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in lung tissues and pathological changes in respiratory organsmore » were determined. In the CH group, a significant increase in serum N-ERC/mesothelin concentrations was observed immediately after intratracheal administration, and the elevation lasted for 30 days. In lung tissues, positive staining for 8-OHdG in bronchioles, alveolar epithelium, inflammatory cells, and granulomas was evidence of a marked DNA oxidative damage. Furthermore, measurements of 8-OHdG in lung tissues based on the HPLC-ECD method suggested that serum N-ERC/mesothelin concentrations tended to increase when there are significant DNA damages in lung tissues. In contrast, in the FO-1000 group, a marked rise in serum N-ERC/mesothelin concentrations occurred only in the early phase (1-7 days) after intratracheal administration. Similarly, FO-1000 induced elevation of 8-OHdG in lung tissues was transient and modest compared with those of the CH-treated animals. In both the CH and FO-1000 groups, we observed significant correlations between serum N-ERC/mesothelin concentrations and lung 8-OHdG concentrations (r = 0.559, p = 0.001 for the CH group; r = 0.516, p = 0.01 for the FO-1000 group). In summary, we demonstrated the possibility of using serum N-ERC/mesothelin concentrations as a useful biomarker for early phase exposure to either CH or FO-1000.« less

  9. Assessment of Determinants of Emission Potentially Affecting the Concentration of Airborne Nano-Objects and Their Agglomerates and Aggregates.

    PubMed

    Bekker, Cindy; Fransman, Wouter; Boessen, Ruud; Oerlemans, Arné; Ottenbros, Ilse B; Vermeulen, Roel

    2017-01-01

    Nano-specific inhalation exposure models could potentially be effective tools to assess and control worker exposure to nano-objects, and their aggregates and agglomerates (NOAA). However, due to the lack of reliable and consistent collected NOAA exposure data, the scientific basis for validation of the existing NOAA exposure models is missing or limited. The main objective of this study was to gain more insight into the effect of various determinants underlying the potential on the concentration of airborne NOAA close to the source with the purpose of providing a scientific basis for existing and future exposure inhalation models. Four experimental studies were conducted to investigate the effect of 11 determinants of emission on the concentration airborne NOAA close to the source during dumping of ~100% nanopowders. Determinants under study were: nanomaterial, particle size, dump mass, height, rate, ventilation rate, mixing speed, containment, particle surface coating, moisture content of the powder, and receiving surface. The experiments were conducted in an experimental room (19.5 m3) with well-controlled environmental and ventilation conditions. Particle number concentration and size distribution were measured using real-time measurement devices. Dumping of nanopowders resulted in a higher number concentration and larger particles than dumping their reference microsized powder (P < 0.05). Statistically significant more and larger particles were also found during dumping of SiO2 nanopowder compared to TiO2/Al2O3 nanopowders. Particle surface coating did not affect the number concentration but on average larger particles were found during dumping of coated nanopowders. An increase of the powder's moisture content resulted in less and smaller particles in the air. Furthermore, the results indicate that particle number concentration increases with increasing dump height, rate, and mass and decreases when ventilation is turned on. These results give an indication of

  10. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Methods of sampling airborne fungi in working environments of waste treatment facilities.

    PubMed

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2016-01-01

    The objective of the present study was to evaluate and compare the efficiency of a filter based sampling method and a high volume sampling method for sampling airborne culturable fungi present in waste sorting facilities. Membrane filters method was compared with surface air system method. The selected sampling methods were modified and tested in 2 plastic waste sorting facilities. The total number of colony-forming units (CFU)/m3 of airborne fungi was dependent on the type of sampling device, on the time of sampling, which was carried out every hour from the beginning of the work shift, and on the type of cultivation medium (p < 0.001). Detected concentrations of airborne fungi ranged 2×102-1.7×106 CFU/m3 when using the membrane filters (MF) method, and 3×102-6.4×104 CFU/m3 when using the surface air system (SAS) method. Both methods showed comparable sensitivity to the fluctuations of the concentrations of airborne fungi during the work shifts. The SAS method is adequate for a fast indicative determination of concentration of airborne fungi. The MF method is suitable for thorough assessment of working environment contamination by airborne fungi. Therefore we recommend the MF method for the implementation of a uniform standard methodology of airborne fungi sampling in working environments of waste treatment facilities. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. Characteristics of airborne bacteria in Mumbai urban environment.

    PubMed

    Gangamma, S

    2014-08-01

    Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Airborne asbestos exposures associated with gasket and packing replacement: a simulation study and meta-analysis.

    PubMed

    Madl, Amy K; Hollins, Dana M; Devlin, Kathryn D; Donovan, Ellen P; Dopart, Pamela J; Scott, Paul K; Perez, Angela L

    2014-08-01

    Exposures to airborne asbestos during the removal and installation of internal gaskets and packing associated with a valve overhaul were characterized and compared to published data according to different variables (e.g., product, equipment, task, tool, setting, duration). Personal breathing zone and area samples were collected during twelve events simulating gasket and packing replacement, clean-up and clothing handling. These samples were analyzed using PCM and TEM methods and PCM-equivalent (PCME) airborne asbestos concentrations were calculated. A meta-analysis was performed to compare these data with airborne asbestos concentrations measured in other studies involving gaskets and packing. Short-term mechanic and assistant airborne asbestos concentrations during valve work averaged 0.013f/cc and 0.008f/cc (PCME), respectively. Area samples averaged 0.008f/cc, 0.005f/cc, and 0.003f/cc (PCME) for center, bystander, and remote background, respectively. Assuming a tradesman conservatively performs 1-3 gasket and/or packing replacements daily, an average 8-h TWA was estimated to be 0.002-0.010f/cc (PCME). Combining these results in a meta-analysis of the published exposure data showed that the majority of airborne asbestos exposures during work with gaskets and packing fall within a consistent and low range. Significant differences in airborne concentrations were observed between power versus manual tools and removal versus installation tasks. Airborne asbestos concentrations resulting from gasket and packing work during a valve overhaul are consistent with historical exposure data on replacement of asbestos-containing gasket and packing materials involving multiple variables and, in nearly all plausible scenarios, result in average airborne asbestos concentrations below contemporaneous occupational exposure limits for asbestos. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Quantification of the pathological response and fate in the lung and pleura of chrysotile in combination with fine particles compared to amosite-asbestos following short-term inhalation exposure

    PubMed Central

    Bernstein, DM; Rogers, RA; Sepulveda, R; Donaldson, K; Schuler, D; Gaering, S; Kunzendorf, P; Chevalier, J; Holm, SE

    2011-01-01

    The marked difference in biopersistence and pathological response between chrysotile and amphibole asbestos has been well documented. This study is unique in that it has examined a commercial chrysotile product that was used as a joint compound. The pathological response was quantified in the lung and translocation of fibers to and pathological response in the pleural cavity determined. This paper presents the final results from the study. Rats were exposed by inhalation 6 h/day for 5 days to a well-defined fiber aerosol. Subgroups were examined through 1 year. The translocation to and pathological response in the pleura was examined by scanning electron microscopy and confocal microscopy (CM) using noninvasive methods.The number and size of fibers was quantified using transmission electron microscopy and CM. This is the first study to use such techniques to characterize fiber translocation to and the response of the pleural cavity. Amosite fibers were found to remain partly or fully imbedded in the interstitial space through 1 year and quickly produced granulomas (0 days) and interstitial fibrosis (28 days). Amosite fibers were observed penetrating the visceral pleural wall and were found on the parietal pleural within 7 days postexposure with a concomitant inflammatory response seen by 14 days. Pleural fibrin deposition, fibrosis, and adhesions were observed, similar to that reported in humans in response to amphibole asbestos. No cellular or inflammatory response was observed in the lung or the pleural cavity in response to the chrysotile and sanded particles (CSP) exposure. These results provide confirmation of the important differences between CSP and amphibole asbestos. PMID:21639706

  15. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    NASA Astrophysics Data System (ADS)

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-11-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.

  16. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    PubMed Central

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-01-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration. PMID:26522006

  17. Assessing airborne aflatoxin B1 during on-farm grain handling activities.

    PubMed

    Selim, M I; Juchems, A M; Popendorf, W

    1998-04-01

    The presence of aflatoxin in corn and corn dust during relatively normal years and the increased risk of Aspergillus flavus infestation during drought conditions suggest that airborne agricultural exposures should be of considerable concern. Liquid extraction, thin layer chromatography, and high pressure liquid chromatography were used for the analysis of aflatoxin B1 in grain dust and bulk corn samples. A total of 24 samples of airborne dust were collected from 8 farms during harvest, 22 samples from 9 farms during animal feeding, and 14 sets of Andersen samples from 11 farms during bin cleaning. A total of 14 samples of settled dust and 18 samples of bulk corn were also collected and analyzed. The airborne concentration of aflatoxin B1 found in dust collected during harvest and grain unloading ranged from 0.04 to 92 ng/m3. Higher levels of aflatoxin B1 were found in the airborne dust samples collected from enclosed animal feeding buildings (5-421 ng/m3) and during bin cleaning (124-4849 ng/m3). Aflatoxin B1 up to 5100 ng/g were detected in settled dust collected from an enclosed animal feeding building; however, no apparent correlation was found between the airborne concentration of aflatoxin B1 and its concentration in settled dust or bulk corn. The data demonstrate that farmers and farm workers may be exposed to potentially hazardous concentrations of aflatoxin B1, particularly during bin cleaning and animal feeding in enclosed buildings.

  18. Airborne asbestos in public buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesson, J.; Hatfield, J.; Schultz, B.

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest.more » However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.« less

  19. Assessment of chlorophyll-a concentration in the Gulf of Riga using hyperspectral airborne and simulated Sentinel-3 OLCI data

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Brauns, Agris; Filipovs, Jevgenijs; Taskovs, Juris; Fedorovicha, Dagnija; Paavel, Birgot; Ligi, Martin; Kutser, Tiit

    2016-08-01

    Remote sensing has proved to be an accurate and reliable tool in clear water environments like oceans or the Mediterranean Sea. However, the current algorithms and methods usually fail on optically complex waters like coastal and inland waters. The whole Baltic Sea can be considered as optically complex coastal waters. Remote assessment of water quality parameters (eg., chlorophyll-a concentration) is of interest for monitoring of marine environment, but hasn't been used as a routine approach in Latvia. In this study, two simultaneous hyperspectral airborne data and in situ measurement campaigns were performed in the Gulf of Riga near the River Daugava mouth in summer 2015 to simulate Sentinel-3 data and test existing algorithms for retrieval of Level 2 Water products. Comparison of historical data showed poor overall correlation between in situ measurements and MERIS chlorophyll-a data products. Better correlation between spectral chl-a data products and in situ water sampling measurements was achieved during simultaneous airborne and field campaign resulting in R2 up to 0.94 for field spectral data, R2 of 0.78 for airborne data. Test of all two band ratio combinations showed that R2 could be improved from 0.63 to 0.94 for hyperspectral airborne data choosing 712 and 728 nm bands instead of 709 and 666 nm, and R2 could be improved from 0.61 to 0.83 for simulated Sentinel-3 OLCI data choosing Oa10 and Oa8 bands instead of Oa11 and Oa8. Repeated campaigns are planned during spring and summer blooms 2016 in the Gulf of Riga to get larger data set for validation and evaluate repeatability. The main challenges remain to acquire as good data as possible within rapidly changing environment and often cloudy weather conditions.

  20. Distribution and identification of airborne fungi in railway stations in Tokyo, Japan.

    PubMed

    Kawasaki, Tamami; Kyotani, Takashi; Ushiogi, Tomoyoshi; Izumi, Yasuhiko; Lee, Hunjun; Hayakawa, Toshio

    2010-01-01

    The current study was performed to (1) understand the distribution of airborne fungi culturable on dichloran-glycerol agar (DG18) media over a one-year monitoring period, (2) identify the types of airborne fungi collected, and (3) compare and contrast under- and above-ground spaces, in two railway stations in Tokyo, Japan. Measurements of airborne fungi were taken at stations A and B located in Tokyo. Station A had under- and above-ground concourses and platforms whereas station B had spaces only above-ground. Airborne fungi at each measurement position were collected with an air sampler on DG18 media. After cultivation of the sample plates, the number of fungi colonies was counted on each agar plate. In station A, the underground platform was characterized as (1) having the highest humidity and (2) a high concentration of airborne fungi, with (3) a high proportion of non-sporulating fungi (NSF) and Aspergillus versicolor. There was a strong positive correlation between the concentrations of airborne particles and fungi in station A. Common aspects of the two stations were (1) that fungi were mostly detected in autumn, and (2) there was no correlation between the humidity and concentration of fungi throughout the year. The results of this study indicate that the distribution and composition of fungi differ depending on the structure of the station.

  1. Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops With a Pulsed Multi-Wavelength Airborne Lidar

    NASA Technical Reports Server (NTRS)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael R.; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; hide

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was approx. 5% for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 micro-s wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90% of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  2. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    NASA Astrophysics Data System (ADS)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; Chen, Jeff; Choi, Yonghoon; Yang, Mei Ying Melissa

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ˜ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  3. Characterization of airborne bacteria at an underground subway station.

    PubMed

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per; Blatny, Janet Martha

    2012-03-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers.

  4. Characterization of Airborne Bacteria at an Underground Subway Station

    PubMed Central

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per

    2012-01-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization–time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  5. Airborne pollen trends in the Iberian Peninsula.

    PubMed

    Galán, C; Alcázar, P; Oteros, J; García-Mozo, H; Aira, M J; Belmonte, J; Diaz de la Guardia, C; Fernández-González, D; Gutierrez-Bustillo, M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, J; Ruiz-Valenzuela, L; Tormo, R; Trigo, M M; Domínguez-Vilches, E

    2016-04-15

    Airborne pollen monitoring is an effective tool for studying the reproductive phenology of anemophilous plants, an important bioindicator of plant behavior. Recent decades have revealed a trend towards rising airborne pollen concentrations in Europe, attributing these trends to an increase in anthropogenic CO2 emissions and temperature. However, the lack of water availability in southern Europe may prompt a trend towards lower flowering intensity, especially in herbaceous plants. Here we show variations in flowering intensity by analyzing the Annual Pollen Index (API) of 12 anemophilous taxa across 12 locations in the Iberian Peninsula, over the last two decades, and detecting the influence of the North Atlantic Oscillation (NAO). Results revealed differences in the distribution and flowering intensity of anemophilous species. A negative correlation was observed between airborne pollen concentrations and winter averages of the NAO index. This study confirms that changes in rainfall in the Mediterranean region, attributed to climate change, have an important impact on the phenology of plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Airborne Particulate Matter Induces Nonallergic Eosinophilic Sinonasal Inflammation in Mice.

    PubMed

    Ramanathan, Murugappan; London, Nyall R; Tharakan, Anuj; Surya, Nitya; Sussan, Thomas E; Rao, Xiaoquan; Lin, Sandra Y; Toskala, Elina; Rajagopalan, Sanjay; Biswal, Shyam

    2017-07-01

    Exposure to airborne particulate matter (PM) has been linked to aggravation of respiratory symptoms, increased risk of cardiovascular disease, and all-cause mortality. Although the health effects of PM on the lower pulmonary airway have been extensively studied, little is known regarding the impact of chronic PM exposure on the upper sinonasal airway. We sought to test the impact of chronic airborne PM exposure on the upper respiratory system in vivo. Mice were subjected, by inhalation, to concentrated fine (2.5 μm) PM 6 h/d, 5 d/wk, for 16 weeks. Mean airborne fine PM concentration was 60.92 μm/m 3 , a concentration of fine PM lower than that reported in some major global cities. Mice were then killed and analyzed for evidence of inflammation and barrier breakdown compared with control mice. Evidence of the destructive effects of chronic airborne PM on sinonasal health in vivo, including proinflammatory cytokine release, and macrophage and neutrophil inflammatory cell accumulation was observed. A significant increase in epithelial barrier dysfunction was observed, as assessed by serum albumin accumulation in nasal airway lavage fluid, as well as decreased expression of adhesion molecules, including claudin-1 and epithelial cadherin. A significant increase in eosinophilic inflammation, including increased IL-13, eotaxin-1, and eosinophil accumulation, was also observed. Collectively, although largely observational, these studies demonstrate the destructive effects of chronic airborne PM exposure on the sinonasal airway barrier disruption and nonallergic eosinophilic inflammation in mice.

  7. Apparatus and methods for monitoring the concentrations of hazardous airborne substances, especially lead

    DOEpatents

    Zaromb, Solomon

    2004-07-13

    Air is sampled at a rate in excess of 100 L/min, preferably at 200-300 L/min, so as to collect therefrom a substantial fraction, i.e., at least 20%, preferably 60-100%, of airborne particulates. A substance of interest (analyte), such as lead, is rapidly solubilized from the the collected particulates into a sample of liquid extractant, and the concentration of the analyte in the extractant sample is determined. The high-rate air sampling and particulate collection may be effected with a high-throughput filter cartridge or with a recently developed portable high-throughput liquid-absorption air sampler. Rapid solubilization of lead is achieved by a liquid extractant comprising 0.1-1 M of acetic acid or acetate, preferably at a pH of 5 or less and preferably with inclusion of 1-10% of hydrogen peroxide. Rapid determination of the lead content in the liquid extractant may be effected with a colorimetric or an electroanalytical analyzer.

  8. Meteorological effects on variation of airborne algae in Mexico

    NASA Astrophysics Data System (ADS)

    Rosas, Irma; Roy-Ocotla, Guadalupe; Mosiño, Pedro

    1989-09-01

    Sixteen species of algae were collected from 73.8 m3 of air. Eleven were obtained in Minatitlán and eleven in México City. The data show that similar diversity occurred between the two localities, in spite of the difference in altitude. This suggests that cosmopolitan airborne microorganisms might have been released from different sources. Three major algal divisions (Chlorophyta, Cyanophyta and Chrysophyta) formed the airborne algal group. Also, a large concentration of 2220 algae m-3 was found near sea-level, while lower amounts were recorded at the high altitude of México City. The genera Scenedesmus, Chlorella and Chlorococcum dominated. Striking relationships were noted between the concentration of airborne green and blue-green algae, and meteorological conditions such as rain, vapour pressure, temperature and winds for different altitudes. In Minatitlán a linear relationship was established between concentration of algae and both vapour pressure (mbar) and temperature (° C), while in México City the wind (m s-1) was associated with variations in the algal count.

  9. Airborne polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs), and dechlorane plus (DP) in concentrated vehicle parking areas.

    PubMed

    Li, Huiru; Liu, Hehuan; Mo, Ligui; Sheng, Guoying; Fu, Jiamo; Peng, Ping'an

    2016-06-01

    This study investigated polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs), and dechlorane plus (DP) in air around three concentrated vehicle parking areas (underground, indoor, and outdoor) in a metropolitan of South China. The parking areas showed higher concentrations of PBDEs, PBDD/Fs, and DP than their adjacent urban area or distinct congener/isomer profiles, which indicate their local emission sources. The highest PBDE and DP concentrations were found in the outdoor parking lot, which might be related to the heating effect of direct sunlight exposure. Multi-linear regression analysis results suggest that deca-BDEs without noticeable transformation contributed most to airborne PBDEs in all studied areas, followed by penta-BDEs. The statistically lower anti-DP fractions in the urban area than that of commercial product signified its degradation/transformation during transportation. Neither PBDEs nor vehicle exhaust contributed much to airborne PBDD/Fs in the parking areas. There were 68.1-100 % of PBDEs, PBDD/Fs, and DP associated with particles. Logarithms of gas-particle distribution coefficients (K ps) of PBDEs were significantly linear-correlated with those of their sub-cooled vapor pressures (p Ls) and octanol-air partition coefficients (K OAs) in all studied areas. The daily inhalation doses of PBDEs, DP, and PBDD/Fs were individually estimated as 89.7-10,741, 2.05-39.4, and 0.12-4.17 pg kg(-1) day(-1) for employees in the parking areas via Monte Carlo simulation.

  10. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review.

    PubMed

    Fujiyoshi, So; Tanaka, Daisuke; Maruyama, Fumito

    2017-01-01

    Human health is influenced by various factors including microorganisms present in built environments where people spend most of their lives (approximately 90%). It is therefore necessary to monitor and control indoor airborne microbes for occupational safety and public health. Most studies concerning airborne microorganisms have focused on fungi, with scant data available concerning bacteria. The present review considers papers published from 2010 to 2017 approximately and factors affecting properties of indoor airborne bacteria (communities and concentration) with respect to temporal perspective and to multiscale interaction viewpoint. From a temporal perspective, bacterial concentrations in built environments change depending on numbers of human occupancy, while properties of bacterial communities tend to remain stable. Similarly, the bacteria found in social and community spaces such as offices, classrooms and hospitals are mainly associated with human occupancy. Other major sources of indoor airborne bacteria are (i) outdoor environments, and (ii) the building materials themselves. Indoor bacterial communities and concentrations are varied with varying interferences by outdoor environment. Airborne bacteria from the outdoor environment enter an indoor space through open doors and windows, while indoor bacteria are simultaneously released to the outer environment. Outdoor bacterial communities and their concentrations are also affected by geographical factors such as types of land use and their spatial distribution. The bacteria found in built environments therefore originate from any of the natural and man-made surroundings around humans. Therefore, to better understand the factors influencing bacterial concentrations and communities in built environments, we should study all the environments that humans contact as a single ecosystem. In this review, we propose the establishment of a standard procedure for assessing properties of indoor airborne bacteria using

  11. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review

    PubMed Central

    Fujiyoshi, So; Tanaka, Daisuke; Maruyama, Fumito

    2017-01-01

    Human health is influenced by various factors including microorganisms present in built environments where people spend most of their lives (approximately 90%). It is therefore necessary to monitor and control indoor airborne microbes for occupational safety and public health. Most studies concerning airborne microorganisms have focused on fungi, with scant data available concerning bacteria. The present review considers papers published from 2010 to 2017 approximately and factors affecting properties of indoor airborne bacteria (communities and concentration) with respect to temporal perspective and to multiscale interaction viewpoint. From a temporal perspective, bacterial concentrations in built environments change depending on numbers of human occupancy, while properties of bacterial communities tend to remain stable. Similarly, the bacteria found in social and community spaces such as offices, classrooms and hospitals are mainly associated with human occupancy. Other major sources of indoor airborne bacteria are (i) outdoor environments, and (ii) the building materials themselves. Indoor bacterial communities and concentrations are varied with varying interferences by outdoor environment. Airborne bacteria from the outdoor environment enter an indoor space through open doors and windows, while indoor bacteria are simultaneously released to the outer environment. Outdoor bacterial communities and their concentrations are also affected by geographical factors such as types of land use and their spatial distribution. The bacteria found in built environments therefore originate from any of the natural and man-made surroundings around humans. Therefore, to better understand the factors influencing bacterial concentrations and communities in built environments, we should study all the environments that humans contact as a single ecosystem. In this review, we propose the establishment of a standard procedure for assessing properties of indoor airborne bacteria using

  12. Detecting Airborne Mercury by Use of Palladium Chloride

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Jewell, April; Manatt, Kenneth; Torres, Julia; Soler, Jessica; Taylor, Charles

    2009-01-01

    Palladium chloride films have been found to be useful as alternatives to the gold films heretofore used to detect airborne elemental mercury at concentrations of the order of parts per billion (ppb). Somewhat more specifically, when suitably prepared palladium chloride films are exposed to parts-per-billion or larger concentrations of airborne mercury, their electrical resistances change by amounts large enough to be easily measurable. Because airborne mercury adversely affects health, it is desirable to be able to detect it with high sensitivity, especially in enclosed environments in which there is a risk of leakage of mercury from lamps or other equipment. The detection of mercury by use of gold films involves the formation of gold/mercury amalgam. Gold films offer adequate sensitivity for detection of airborne mercury and could easily be integrated into an electronic-nose system designed to operate in the temperature range of 23 to 28 C. Unfortunately, in order to regenerate a gold-film mercury sensor, one must heat it to a temperature of 200 C for several minutes in clean flowing air. In preparation for an experiment to demonstrate the present sensor concept, palladium chloride was deposited from an aqueous solution onto sets of gold electrodes and sintered in air to form a film. Then while using the gold electrodes to measure the electrical resistance of the films, the films were exposed, at a temperature of 25 C, to humidified air containing mercury at various concentrations from 0 to 35 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury in room-temperature air at concentrations of at least 2.5 ppb and can readily be regenerated at temperatures <40 C.

  13. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  14. Atmospheric carbon mineralization in an industrial-scale chrysotile mining waste pile.

    PubMed

    Nowamooz, Ali; Dupuis, J Christian; Beaudoin, Georges; Molson, John; Lemieux, Jean-Michel; Horswill, Micha; Fortier, Richard; Larachi, Faïçal; Maldague, Xavier; Constantin, Marc; Duchesne, Josee; Therrien, René

    2018-06-12

    Magnesium rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an important challenge to its widespread implementation. Through a year-long monitoring experiment performed at a 110Mt chrysotile waste pile, we have documented the existence of two distinct thermo-hydro-chemical regimes that control the ingress of CO2 and the subsequent mineral carbonation of the waste. The experimental results are supported by coupled free-air/porous media numerical flow and transport model that provides insights into optimization strategies to increase the efficiency of mineral sequestration at an industrial-scale. Although functioning passively under less than optimal conditions compared to lab-scale experiments, the 110Mt Thetford Mines pile is nevertheless estimated to be sequestering up to 100 tonnes of CO2 per year, with a potential total carbon capture capacity under optimal conditions of 3 Mt. Yearly, over 100 Mt of ultramafic mine waste suitable for mineral carbonation are generated by the global mining industry. Our results show that this waste material could become a safe and permanent carbon sink for diffuse sources of CO2.

  15. [Distribution of airborne fungi, particulate matter and carbon dioxide in Seoul metropolitan subway stations].

    PubMed

    Kim, Ki Youn; Park, Jae Beom; Kim, Chi Nyon; Lee, Kyung Jong

    2006-07-01

    The aims of this study were to examine the level of airborne fungi and environmental factors in Seoul metropolitan subway stations and to provide fundamental data to protect the health of subway workers and passengers. The field survey was performed from November in 2004 to February in 2005. A total 22 subway stations located at Seoul subway lines 1-4 were randomly selected. The measurement points were subway workers' activity areas (station office, bedroom, ticket office and driver's seat) and the passengers' activity areas (station precincts, inside train and platform). Air sampling for collecting airborne fungi was carried out using a one-stage cascade impactor. The PM and CO2 were measured using an electronic direct recorder and detecting tube, respectively. In the activity areas of the subway workers and passengers, the mean concentrations of airborne fungi were relatively higher in the workers' bedroom and station precinct whereas the concentration of particulate matter, PM10 and PM2.5, were relatively higher in the platform, inside the train and driver's seat than in the other activity areas. There was no significant difference in the concentration of airborne fungi between the underground and ground activity areas of the subway. The mean PM10 and PM2.5 concentration in the platform located at underground was significantly higher than that of the ground (p<0.05). The levels of airborne fungi in the Seoul subway line 1-4 were not serious enough to cause respiratory disease in subway workers and passengers. This indicates that there is little correlation between airborne fungi and particulate matter.

  16. Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses.

    PubMed

    Alonso, Carmen; Raynor, Peter C; Davies, Peter R; Torremorell, Montserrat

    2015-01-01

    When pathogens become airborne, they travel associated with particles of different size and composition. Particle size determines the distance across which pathogens can be transported, as well as the site of deposition and the survivability of the pathogen. Despite the importance of this information, the size distribution of particles bearing viruses emitted by infectious animals remains unknown. In this study we characterized the concentration and size distribution of inhalable particles that transport influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine epidemic diarrhea virus (PEDV) generated by acutely infected pigs and assessed virus viability for each particle size range. Aerosols from experimentally infected pigs were sampled for 24 days using an Andersen cascade impactor able to separate particles by size (ranging from 0.4 to 10 micrometer (μm) in diameter). Air samples collected for the first 9, 20 and the last 3 days of the study were analyzed for IAV, PRRSV and PEDV, respectively, using quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantified as geometric mean copies/m(3) within each size range. IAV was detected in all particle size ranges in quantities ranging from 5.5x10(2) (in particles ranging from 1.1 to 2.1 μm) to 4.3x10(5) RNA copies/m(3) in the largest particles (9.0-10.0 μm). PRRSV was detected in all size ranges except particles between 0.7 and 2.1 μm in quantities ranging from 6x10(2) (0.4-0.7 μm) to 5.1x10(4) RNA copies/m(3) (9.0-10.0 μm). PEDV, an enteric virus, was detected in all particle sizes and in higher quantities than IAV and PRRSV (p < 0.0001) ranging from 1.3x10(6) (0.4-0.7 μm) to 3.5x10(8) RNA copies/m(3) (9.0-10.0 μm). Infectious status was demonstrated for the 3 viruses, and in the case of IAV and PRRSV, viruses were isolated from particles larger than 2.1 μm. In summary, our results indicated that airborne PEDV, IAV and PRRSV can be found in a

  17. Determination of Micro-Quantities of Chrysotile Asbestos by Dye Adsorption

    ERIC Educational Resources Information Center

    Markham, M. Clare; Wosczyna, Karen

    1976-01-01

    Airborne asbestos is analyzed by differential dye adsorption. Quantities can be estimated down to 100 mg. For industrial use, asbestos samples must be separated from interfering minerals by density flotation. (Author/BT)

  18. Airborne Microalgae: Insights, Opportunities, and Challenges

    PubMed Central

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  19. Estimation of inhaled airborne particle number concentration by subway users in Seoul, Korea.

    PubMed

    Kim, Minhae; Park, Sechan; Namgung, Hyeong-Gyu; Kwon, Soon-Bark

    2017-12-01

    Exposure to airborne particulate matter (PM) causes several diseases in the human body. The smaller particles, which have relatively large surface areas, are actually more harmful to the human body since they can penetrate deeper parts of the lungs or become secondary pollutants by bonding with other atmospheric pollutants, such as nitrogen oxides. The purpose of this study is to present the number of PM inhaled by subway users as a possible reference material for any analysis of the hazards to the human body arising from the inhalation of such PM. Two transfer stations in Seoul, Korea, which have the greatest number of users, were selected for this study. For 0.3-0.422 μm PM, particle number concentration (PNC) was highest outdoors but decreased as the tester moved deeper underground. On the other hand, the PNC between 1 and 10 μm increased as the tester moved deeper underground and showed a high number concentration inside the subway train as well. An analysis of the particles to which subway users are actually exposed to (inhaled particle number), using particle concentration at each measurement location, the average inhalation rate of an adult, and the average stay time at each location, all showed that particles sized 0.01-0.422 μm are mostly inhaled from the outdoor air whereas particles sized 1-10 μm are inhaled as the passengers move deeper underground. Based on these findings, we expect that the inhaled particle number of subway users can be used as reference data for an evaluation of the hazards to health caused by PM inhalation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biodiversity and concentrations of airborne fungi in large US office buildings from the BASE study

    NASA Astrophysics Data System (ADS)

    Tsai, Feng C.; Macher, Janet M.; Hung, Yun-Yi

    The Building Assessment Survey and Evaluation (BASE) study measured baseline concentrations of airborne fungi in 100 representative US office buildings in 1994-1998. Multiple samples for different sampling durations, sites, and times of the day were aggregated into building-wide indoor and outdoor average concentrations. Fungal concentrations were compared between locations (indoor vs. outdoor), sampling and analytical methods (culture vs. microscopy), and season (summer vs. winter). The arithmetic means (standard deviations) of the indoor/outdoor concentrations of culturable fungi and fungal spores were 100/680 (230/840) CFUm-3 and 270/6540 (1190/6780) sporem-3, respectively. Although fewer groups were observed indoors than outdoors, at lower average concentrations (except in two buildings), site-specific and building-wide indoor measurements had higher coefficients of variation. More groups were seen in summer, and aggregated concentrations tended to be higher than in winter except for culturable Aureobasidium spp. and Botrytis spp. outdoors and non-sporulating fungi in both locations. Rankings of the predominant fungi identified by both methods were similar, but overall indoor and outdoor spore concentrations were approximately 3 and 10 times higher, respectively, than concentrations of culturable fungi. In the 44 buildings with both measurements, the indoor and outdoor total culturable fungi to fungal spore ratios (total C/S ratios) were 1.27 and 0.25, with opposite seasonal patterns. The indoor C/S ratio was higher in summer than in winter (1.47 vs. 0.86; N=29 and 15, respectively), but the outdoor ratio was lower in summer (0.19 vs. 0.36, respectively). Comparison of the number of different fungal groups and individual occurrence in buildings and samples indicated that the outdoor environment and summer season were more diverse, but the proportional contributions of the groups were very similar suggesting that the indoor and outdoor environments were related

  1. Detection of airborne bacteria with disposable bio-precipitator and NanoGene assay.

    PubMed

    Lee, Eun-Hee; Chua, Beelee; Son, Ahjeong

    2016-09-15

    We demonstrated the detection of airborne bacteria by a disposable bio-precipitator and NanoGene assay combination. The bio-precipitator employed micro corona discharge at 1960V and at less than 35µA to simultaneously charge, capture and lyse the airborne bacteria. This was enabled by the use of a 15μL liquid anode. Using a custom exposure setup, the target bacterium Bacillus subtilis in the atomization solution was rendered airborne. After exposure, the liquid anode in the bio-precipitator was subsequently measured for DNA concentration and analyzed with the NanoGene assay. As the bacterial concentration increased from 0.0104 to 42.6 g-DCW/L the released DNA concentration in the liquid anode increased from 2.10±1.57 to 75.00±7.15ng/μL. More importantly, the NanoGene assay showed an increase in normalized fluorescence (gene quantification) from 18.03±1.18 to 49.71±1.82 as the bacterial concentrations increased from 0.0104 to 42.6 g-DCW/L. the electrical power consumption of the bio-precipitator was shown to be amenable for portable use. In addition, the detection limit of bio-precipitator and NanoGene assay combination in the context of environmentally relevant levels of airborne bacteria was also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Decreasing airborne contamination levels in high-risk hospital areas using a novel mobile air-treatment unit.

    PubMed

    Bergeron, V; Reboux, G; Poirot, J L; Laudinet, N

    2007-10-01

    To evaluate the performance of a new mobile air-treatment unit that uses nonthermal-plasma reactors for lowering the airborne bioburden in critical hospital environments and reducing the risk of nosocomial infection due to opportunistic airborne pathogens, such as Aspergillus fumigatus. Tests were conducted in 2 different high-risk hospital areas: an operating room under simulated conditions and rooms hosting patients in a pediatric hematology ward. Operating room testing provided performance evaluations of removal rates for airborne contamination (ie, particles larger than 0.5 microm) and overall lowering of the airborne bioburden (ie, colony-forming units of total mesophilic flora and fungal flora per cubic meter of air). In the hematology service, opportunistic and nonpathogenic airborne fungal levels in a patient's room equipped with an air-treatment unit were compared to those in a control room. In an operating room with a volume of 118 m(3), the time required to lower the concentration of airborne particles larger than 0.5 microm by 90% was decreased from 12 minutes with the existing high-efficiency particulate air filtration system to less than 2 minutes with the units tested, with a 2-log decrease in the steady-state levels of such particles (P<.01). Concurrently, total airborne mesophilic flora concentrations dropped by a factor of 2, and the concentrations of fungal species were reduced to undetectable levels (P<.01). The 12-day test period in the hematology ward revealed a significant reduction in airborne fungus levels (P<.01), with average reductions of 75% for opportunistic species and 82% for nonpathogenic species. Our data indicate that the mobile, nonthermal-plasma air treatment unit tested in this study can rapidly reduce the levels of airborne particles and significantly lower the airborne bioburden in high-risk hospital environments.

  3. Levels of airborne dust in furniture making factories in the High Wycombe area

    PubMed Central

    Hounam, R. F.; Williams, J.

    1974-01-01

    Hounam, R. F. and Williams, J. (1974).British Journal of Industrial Medicine,31, 1-9. Levels of airborne dust in furniture making factories in the High Wycombe area. A dust survey was carried out in five furniture making factories in, or in the vicinity of, High Wycombe. The results, which are among the first to be reported for the United Kingdom, have provided information on the concentrations and size distributions of airborne dust to which wood machinists are currently exposed. Although measured concentrations covered a wide range, the average concentration was similar to the threshold limit value of 5 mg m-3 provisionally recommended by the American Conference of Governmental Industrial Hygienists. A high proportion by mass of the airborne dust was of a size which will be deposited in the nasal passages on inhalation. Images PMID:4821408

  4. Concentrations of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio, from August 1971 to August 1972 and their dependence on wind direction: Complete data listing and concentration roses

    NASA Technical Reports Server (NTRS)

    King, R. B.; Neustadter, H. E.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio during 1971 and 1972. Daily values, maxima, geometric means and their standard deviations covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented on microfiche for 60 elements, and for a lesser number of days for 10 polycyclic aromatic hydrocarbon compounds (PAH), the aliphatic hydrocarbon compounds (AH) as a group and carbon. In addition, concentration roses showing directional properties are presented for 39 elements, 10 PAH and the AH as a group. The elements (except carbon) are shown both in terms of concentration and percentage of the suspended particulate matter.

  5. Potential health hazards associated with exposures to asbestos-containing drywall accessory products: A state-of-the-science assessment.

    PubMed

    Phelka, Amanda D; Finley, Brent L

    2012-01-01

    Until the late 1970s, chrysotile asbestos was an ingredient in most industrial and consumer drywall accessory products manufactured in the US. In 1977, the Consumer Product Safety Commission (CPSC) issued a ban of consumer patching compounds containing "respirable, free-form asbestos" based on their prediction of exceptionally high rates of asbestos-related diseases among individuals using patching compounds for as little as a few days. Although hundreds of thousands of workers and homeowners handling these products may have experienced exposure to asbestos prior to the ban, there has been no systematic effort to summarize and interpret the information relevant to the potential health effects of such exposures. In this analysis, we provide a comprehensive review and analysis of the scientific studies assessing fiber type and dimension, toxicological and epidemiological endpoints, and airborne fiber concentrations associated with joint compound use. We conclude that: 1) asbestos in drywall accessory products was primarily short fiber (< 5 µm) chrysotile, 2) asbestos in inhaled joint compound particulate is probably not biopersistent in the lung, 3) estimated cumulative chrysotile exposures experienced by workers and homeowners are below levels known to be associated with respiratory disease, and 4) mortality studies of drywall installers have not demonstrated a significantly increased incidence of death attributable to any asbestos-related disease. Consequently, contrary to the predictions of the CPSC, the current weight of evidence does not indicate any clear health risks associated with the use of asbestos-containing drywall accessory products. We also describe information gaps and suggest possible areas of future research.

  6. Examination of water spray airborne coal dust capture with three wetting agents

    PubMed Central

    Organiscak, J.A.

    2015-01-01

    Water spray applications are one of the principal means of controlling airborne respirable dust in coal mines. Since many coals are hydrophobic and not easily wetted by water, wetting agents can be added to the spray water in an effort to improve coal wetting and assist with dust capture. In order to study wetting agent effects on coal dust capture, laboratory experiments were conducted with three wetting agents used by the coal industry on -325 mesh sized Pocahontas No. 3 coal dust. Significant differences in coal dust sink times were observed among the three wetting agents at water mixture concentrations of 0.05%, 0.1% and 0.2%. The best wetting agent as identified by the coal dust sink test was only tested at the lowest 0.05% water mixture concentration and was found to have a negligible effect on spray airborne dust capture. Water spray airborne dust capture results for all three wetting agents tested at a 0.2% water mixture concentration showed that all three wetting agents exhibit similar but small improvements in dust capture efficiency as compared with water. These results indicate that the coal dust sink test may not be a good predictor for the capture of airborne dust. Additional research is needed to examine if the coal dust sink test is a better predictor of wetting agent dust suppression effects during cutting, loading, conveying and dumping of coal products by comparison to airborne dust capture from sprays. PMID:26251565

  7. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Liu, Li; Solmon, Fabien; Viovy, Nicolas; Khvorostyanov, Dmitry; Essl, Franz; Chuine, Isabelle; Colette, Augustin; Semenov, Mikhail A.; Schaffhauser, Alice; Storkey, Jonathan; Thibaudon, Michel; Epstein, Michelle M.

    2015-08-01

    Common ragweed (Ambrosia artemisiifolia) is an invasive alien species in Europe producing pollen that causes severe allergic disease in susceptible individuals. Ragweed plants could further invade European land with climate and land-use changes. However, airborne pollen evolution depends not only on plant invasion, but also on pollen production, release and atmospheric dispersion changes. To predict the effect of climate and land-use changes on airborne pollen concentrations, we used two comprehensive modelling frameworks accounting for all these factors under high-end and moderate climate and land-use change scenarios. We estimate that by 2050 airborne ragweed pollen concentrations will be about 4 times higher than they are now, with a range of uncertainty from 2 to 12 largely depending on the seed dispersal rate assumptions. About a third of the airborne pollen increase is due to on-going seed dispersal, irrespective of climate change. The remaining two-thirds are related to climate and land-use changes that will extend ragweed habitat suitability in northern and eastern Europe and increase pollen production in established ragweed areas owing to increasing CO2. Therefore, climate change and ragweed seed dispersal in current and future suitable areas will increase airborne pollen concentrations, which may consequently heighten the incidence and prevalence of ragweed allergy.

  8. Determination of heavy metals concentrations in airborne particulates matter (APM) from Manjung district, Perak using energy dispersive X-ray fluorescence (EDXRF) spectrometer

    NASA Astrophysics Data System (ADS)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-01

    Airborne particulates trace metals are considered as public health concern as it can enter human lungs through respiratory system. Generally, any substance that has been introduced to the atmosphere that can cause severe effects to living things and the environment is considered air pollution. Manjung, Perak is one of the development districts that is active with industrial activities. There are many industrial activities surrounding Manjung District area such as coal fired power plant, quarries and iron smelting which may contribute to the air pollution into the environment. This study was done to measure the concentrations of Hg, U, Th, K, Cu, Fe, Cr, Zn, As, Se, Pb and Cd in the Airborne Particulate Matter (APM) collected at nine locations in Manjung District area within 15 km radius towards three directions (North, North-East and South-East) in 5 km intervals. The samples were collected using mini volume air sampler with cellulose filter through total suspended particulate (TSP). The sampler was set up for eight hours with the flow rate of 5 L/min. The filter was weighed before and after sample collection using microbalance, to get the amount of APM and kept in desiccator before analyzing. The measurement was done using calibrated Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The air particulate concentrations were found below the Malaysia Air Quality Guidelines for TSP (260 µg/m3). All of the metals concentrations were also lower than the guidelines set by World Health Organization (WHO), Ontario Ministry of the Environment and Argonne National Laboratory, USA NCRP (1975). From the concentrations, the enrichment factor were calculated.

  9. Mining in subarctic Canada: airborne PM2.5 metal concentrations in two remote First Nations communities.

    PubMed

    Liberda, Eric N; Tsuji, Leonard J S; Peltier, Richard E

    2015-11-01

    Airborne particulate matter arising from upwind mining activities is a concern for First Nations communities in the western James Bay region of Ontario, Canada. Aerosol chemical components were collected in 2011 from two communities in northern Ontario. The chemical and mass concentration data of particulate matter collected during this study shows a significant difference in PM2.5 in Attawapiskat compared to Fort Albany. Elemental profiles indicate enhanced levels of some tracers thought to arise from mining activities, such as, K, Ni, and crustal materials. Both communities are remote and isolated from urban and industrial pollution sources, however, Attawapiskat First Nation has significantly enhanced levels of particulate matter, and it is likely that some of this arises from upwind mining activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. DIFFERENTIAL LUNG GENE EXPRESSION IN IMMUNOLOGICALLY-CHALLENGED RATS EXPOSED TO CONCENTRATED AIRBORNE PARTICULATES

    EPA Science Inventory

    Children residing in urbanized areas suffer disproportionately higher asthma-related morbidity and mortality. One explanation is that inner city children are exposured to higher levels of environmental asthma triggers such as airborne particulate matter. To elucidate gene-environ...

  11. What are the most important variables for Poaceae airborne pollen forecasting?

    PubMed

    Navares, Ricardo; Aznarte, José Luis

    2017-02-01

    In this paper, the problem of predicting future concentrations of airborne pollen is solved through a computational intelligence data-driven approach. The proposed method is able to identify the most important variables among those considered by other authors (mainly recent pollen concentrations and weather parameters), without any prior assumptions about the phenological relevance of the variables. Furthermore, an inferential procedure based on non-parametric hypothesis testing is presented to provide statistical evidence of the results, which are coherent to the literature and outperform previous proposals in terms of accuracy. The study is built upon Poaceae airborne pollen concentrations recorded in seven different locations across the Spanish province of Madrid. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air

    NASA Astrophysics Data System (ADS)

    O'Gorman, Céline M.; Fuller, Hubert T.

    2008-06-01

    Temporal and spatial variations in airborne spore concentrations of selected allergenic and pathogenic fungi were examined in Dublin, Ireland, in 2005. Air samples were taken at four outdoor locations in the city every 2 weeks, coupled with measurements of meteorological conditions. Total culturable airborne fungal spore concentrations in Dublin ranged from 30-6800 colony forming units per cubic metre of air (CFU m-3) over the 12-month period. Cladosporium, Penicillium, Aspergillus and Alternaria spores were constantly present in the Dublin atmosphere, representing >20% of the total culturable spore count. Concentrations of Cladosporium increased significantly in summer and reached allergenic threshold levels, peaking at over 3200 CFU m-3 in August. Penicillium spore concentrations never reached allergenic threshold levels, with average concentrations of <150 CFU m-3. Alternaria conidia formed only 0.3% of the total culturable fungal spore count and concentrations never exceeded 50 CFU m-3, attributable to the coastal position of Dublin and its low levels of arable production. The opportunistic human pathogen Aspergillus fumigatus was present throughout the year in nominal concentrations (<10 CFU m-3), but sporadic high counts were also recorded (300-400 CFU m-3), the potential health implications of which give cause for concern. Spores of neither Cryptococcus neoformans nor Stachybotrys chartarum were detected, but airborne basidiospores of Schizophyllum commune were evidenced by the dikaryotization of monokaryon tester strains following exposure to the air. The relationships between airborne fungal spore concentrations and meteorological factors were analysed by redundancy analysis and revealed positive correlations between temperature and Cladosporium and relative humidity and Penicillium and Aspergillus.

  13. Investigation of fluorine content in PM2.5 airborne particles of Istanbul, Turkey.

    PubMed

    Ozbek, Nil; Baltaci, Hakki; Baysal, Asli

    2016-07-01

    Fluorine determination in airborne samples is important due to its spread into the air from both natural and artificial sources. It can travel by wind over large distances before depositing on the Earth's surface. Its concentration in various matrices are limited and controlled by the regulations for causing health risks associated with environmental exposures. In this work, fluorine was determined in PM2.5 airborne samples by high-resolution continuum source electrothermal atomic absorption spectrometry. For these purpose, the PM2.5 airborne particulates were collected on quartz filters using high-volume samplers (500 L/min) in Istanbul (Turkey) for 96 h during January to June in 2 years. Then, instrumental and experimental parameters were optimized for the analyte in airborne samples. The validity of the method for the analyte was tested using standard reference material, and certified values were found in the limits of 95 % confidence level. The fluorine concentrations and meteorological conditions were compared statistically.

  14. Comparative performance of three sampling techniques to detect airborne Salmonella species in poultry farms.

    PubMed

    Adell, Elisa; Moset, Verónica; Zhao, Yang; Jiménez-Belenguer, Ana; Cerisuelo, Alba; Cambra-López, María

    2014-01-01

    Sampling techniques to detect airborne Salmonella species (spp.) in two pilot scale broiler houses were compared. Broilers were inoculated at seven days of age with a marked strain of Salmonella enteritidis. The rearing cycle lasted 42 days during the summer. Airborne Salmonella spp. were sampled weekly using impaction, gravitational settling, and impingement techniques. Additionally, Salmonella spp. were sampled on feeders, drinkers, walls, and in the litter. Environmental conditions (temperature, relative humidity, and airborne particulate matter (PM) concentration) were monitored during the rearing cycle. The presence of Salmonella spp. was determined by culture-dependent and molecular methods. No cultivable Salmonella spp. were recovered from the poultry houses' surfaces, the litter, or the air before inoculation. After inoculation, cultivable Salmonella spp. were recovered from the surfaces and in the litter. Airborne cultivable Salmonella spp. Were detected using impaction and gravitational settling one or two weeks after the detection of Salmonella spp. in the litter. No cultivable Salmonella spp. were recovered using impingement based on culture-dependent techniques. At low airborne concentrations, the use of impingement for the quantification or detection of cultivable airborne Salmonella spp. is not recommended. In these cases, a combination of culture-dependent and culture-independent methods is recommended. These data are valuable to improve current measures to control the transmission of pathogens in livestock environments and for optimising the sampling and detection of airborne Salmonella spp. in practical conditions.

  15. Assessment of airborne virus contamination in wastewater treatment plants.

    PubMed

    Masclaux, Frédéric G; Hotz, Philipp; Gashi, Drita; Savova-Bianchi, Dessislava; Oppliger, Anne

    2014-08-01

    Occupational exposure to bioaerosols in wastewater treatment plants (WWTP) and its consequence on workers' health are well documented. Most studies were devoted to enumerating and identifying cultivable bacteria and fungi, as well as measuring concentrations of airborne endotoxins, as these are the main health-related factors found in WWTP. Surprisingly, very few studies have investigated the presence and concentrations of airborne virus in WWTP. However, many enteric viruses are present in wastewater and, due to their small size, they should become aerosolized. Two in particular, the norovirus and the adenovirus, are extremely widespread and are the major causes of infectious gastrointestinal diseases reported around the world. The third one, hepatitis E virus, has an emerging status. This study׳s objectives were to detect and quantify the presence and concentrations of 3 different viruses (adenovirus, norovirus and the hepatitis E virus) in air samples from 31 WWTPs by using quantitative polymerase chain reaction (qPCR) during two different seasons and two consecutive years. Adenovirus was present in 100% of summer WWTP samples and 97% of winter samples. The highest airborne concentration measured was 2.27 × 10(6) genome equivalent/m(3) and, on average, these were higher in summer than in winter. Norovirus was detected in only 3 of the 123 air samples, and the hepatitis E virus was not detected. Concentrations of potentially pathogenic viral particles in WWTP air are non-negligible and could partly explain the work-related gastrointestinal symptoms often reported in employees in this sector. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Survey of airborne pollen in Hubei province of China.

    PubMed

    Liu, Guang-hui; Zhu, Rong-fei; Zhang, Wei; Li, Wen-jing; Wang, Zhong-xi; Chen, Huan

    2008-12-01

    To study the genera and seasonal distribution of airborne pollen in Hubei province of China, and its relationship with pollinosis. From November 2003 to October 2004, an airborne pollen investigation was performed in 16 chosen areas in 12 cities of Hubei province using gravity sedimentation technique. Meanwhile, univalent skin prick tests of pollens were performed and the invasion season was studied on 2,300 patients with pollinosis. Among them, 352 cases underwent the airway responsiveness measurements, and the correlation between airway responsiveness and results of pollen count was analyzed. A total of 61 pollen genera were observed and 257,520 pollens were collected. The peak of airborne pollen distribution occurred in two seasons each year: spring (March and April) and autumn (from August to October). The attack of pollinosis corresponded to the peak of pollen distribution. There was a significantly negative relationship between the provocation dose causing a 20% decrease of forced expiratory volume in one second (FEV1) from baseline and airborne pollen concentration (r= -0.6829, P < 0.05). This study provides useful information for airborne pollen epidemiology of Hubei province, and it provides important insights to clinical prevention, diagnosis, and treatment of pollen-related allergic diseases.

  17. Airborne Nicotine, Secondhand Smoke, and Precursors to Adolescent Smoking.

    PubMed

    McGrath, Jennifer J; Racicot, Simon; Okoli, Chizimuzo T C; Hammond, S Katharine; O'Loughlin, Jennifer

    2018-01-01

    Secondhand smoke (SHS) directly increases exposure to airborne nicotine, tobacco's main psychoactive substance. When exposed to SHS, nonsmokers inhale 60% to 80% of airborne nicotine, absorb concentrations similar to those absorbed by smokers, and display high levels of nicotine biomarkers. Social modeling, or observing other smokers, is a well-established predictor of smoking during adolescence. Observing smokers also leads to increased pharmacological exposure to airborne nicotine via SHS. The objective of this study is to investigate whether greater exposure to airborne nicotine via SHS increases the risk for smoking initiation precursors among never-smoking adolescents. Secondary students ( N = 406; never-smokers: n = 338, 53% girls, mean age = 12.9, SD = 0.4) participated in the AdoQuest II longitudinal cohort. They answered questionnaires about social exposure to smoking (parents, siblings, peers) and known smoking precursors (eg, expected benefits and/or costs, SHS aversion, smoking susceptibility, and nicotine dependence symptoms). Saliva and hair samples were collected to derive biomarkers of cotinine and nicotine. Adolescents wore a passive monitor for 1 week to measure airborne nicotine. Higher airborne nicotine was significantly associated with greater expected benefits ( R 2 = 0.024) and lower expected costs ( R 2 = 0.014). Higher social exposure was significantly associated with more temptation to try smoking ( R 2 = 0.025), lower aversion to SHS ( R 2 = 0.038), and greater smoking susceptibility ( R 2 = 0.071). Greater social exposure was significantly associated with more nicotine dependence symptoms; this relation worsened with higher nicotine exposure (cotinine R 2 = 0.096; airborne nicotine R 2 = 0.088). Airborne nicotine exposure via SHS is a plausible risk factor for smoking initiation during adolescence. Public health implications include limiting airborne nicotine through smoking bans in homes and cars, in addition to stringent restrictions

  18. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  19. Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons.

    PubMed

    Lv, Jinze; Zhu, Lizhong

    2013-03-01

    Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p < 0.05), and the slopes (1.2-4.54) indicated that ventilating like the model supermarket increased the potential health risks from low molecular weight PAHs. During the period when the central ventilation and air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.

  20. Occurrence of airborne vancomycin- and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran

    PubMed Central

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmad, Hossein; Hassanzadeh, Akbar

    2016-01-01

    Background: Airborne transmission of pathogenic resistant bacteria is well recognized as an important route for the acquisition of a wide range of nosocomial infections in hospitals. The aim of this study was to determine the prevalence of airborne vancomycin and gentamicin (VM and GM) resistant bacteria in different wards of four educational hospitals. Materials and Methods: A total of 64 air samples were collected from operating theater (OT), Intensive Care Unit (ICU), surgery ward, and internal medicine ward of four educational hospitals in Isfahan, Iran. Airborne culturable bacteria were collected using all glass impingers. Samples were analyzed for the detection of VM- and GM-resistant bacteria. Results: The average level of bacteria ranged from 99 to 1079 CFU/m3. The highest level of airborne bacteria was observed in hospital 4 (628 CFU/m3) and the highest average concentration of GM- and VM-resistant airborne bacteria were found in hospital 3 (22 CFU/m3). The mean concentration of airborne bacteria was the lowest in OT wards and GM- and VM-resistant airborne bacteria were not detected in this ward of hospitals. The highest prevalence of antibiotic-resistant airborne bacteria was observed in ICU ward. There was a statistically significant difference for the prevalence of VM-resistant bacteria between hospital wards (P = 0.012). Conclusion: Our finding showed that the relatively high prevalence of VM- and GM-resistant airborne bacteria in ICUs could be a great concern from the point of view of patients' health. These results confirm the necessity of application of effective control measures which significantly decrease the exposure of high-risk patients to potentially airborne nosocomial infections. PMID:27656612

  1. Occurrence of airborne vancomycin- and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmad, Hossein; Hassanzadeh, Akbar

    2016-01-01

    Airborne transmission of pathogenic resistant bacteria is well recognized as an important route for the acquisition of a wide range of nosocomial infections in hospitals. The aim of this study was to determine the prevalence of airborne vancomycin and gentamicin (VM and GM) resistant bacteria in different wards of four educational hospitals. A total of 64 air samples were collected from operating theater (OT), Intensive Care Unit (ICU), surgery ward, and internal medicine ward of four educational hospitals in Isfahan, Iran. Airborne culturable bacteria were collected using all glass impingers. Samples were analyzed for the detection of VM- and GM-resistant bacteria. The average level of bacteria ranged from 99 to 1079 CFU/m(3). The highest level of airborne bacteria was observed in hospital 4 (628 CFU/m(3)) and the highest average concentration of GM- and VM-resistant airborne bacteria were found in hospital 3 (22 CFU/m(3)). The mean concentration of airborne bacteria was the lowest in OT wards and GM- and VM-resistant airborne bacteria were not detected in this ward of hospitals. The highest prevalence of antibiotic-resistant airborne bacteria was observed in ICU ward. There was a statistically significant difference for the prevalence of VM-resistant bacteria between hospital wards (P = 0.012). Our finding showed that the relatively high prevalence of VM- and GM-resistant airborne bacteria in ICUs could be a great concern from the point of view of patients' health. These results confirm the necessity of application of effective control measures which significantly decrease the exposure of high-risk patients to potentially airborne nosocomial infections.

  2. Translocation of subcutaneously injected chrysotile fibres: potential cocarcinogenic effect on lung cancer induced in rats by inhalation of radon and its daughters.

    PubMed

    Monchaux, G; Chameaud, J; Morlier, J P; Janson, X; Morin, M; Bignon, J

    1989-01-01

    Exposure to radon 222 and its daughters has been shown to induce lung cancer in rats. The cocarcinogenic effect of intrapleurally injected mineral fibres in rats which have previously inhaled radon has also been established. The aim of this work was to establish whether a similar process could be induced at a distance from the lungs by subcutaneous injection of chrysotile fibres. Three groups of animals were used: (1) 109 rats which inhaled radon only (dose: 1600 working-level months (WLM]; (2) 109 rats given a subcutaneous injection in the sacrococcygeal region of 20 mg of chrysotile fibres after inhalation of the same dose of radon; and (3) 105 rats injected with fibres only. No mesotheliomas occurred in any of the 3 groups. The incidence of lung cancer was 55% in group 2, 49% in group 1 and 1% in group 3. Statistical analysis using Pike's model showed that the carcinogenic insult was slightly higher in group 2 than in group 1. Electron microscopy analysis of fibre translocation from the injection site showed that less than 1% of injected fibres migrated to the regional lymph-nodes and only about 0.01% to the lungs. After injection, the mean length of the fibres recovered in lung parenchyma increased with time, suggesting that short fibres are cleared by pulmonary macrophages whereas long fibres are trapped in the alveolar walls. Although the high tumour incidence observed in group 1 might have masked the cocarcinogenic effect induced by the fibres, it is possible that this effect can occur only at short distances.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. A principal component regression model to forecast airborne concentration of Cupressaceae pollen in the city of Granada (SE Spain), during 1995-2006.

    PubMed

    Ocaña-Peinado, Francisco M; Valderrama, Mariano J; Bouzas, Paula R

    2013-05-01

    The problem of developing a 2-week-on ahead forecast of atmospheric cypress pollen levels is tackled in this paper by developing a principal component multiple regression model involving several climatic variables. The efficacy of the proposed model is validated by means of an application to real data of Cupressaceae pollen concentration in the city of Granada (southeast of Spain). The model was applied to data from 11 consecutive years (1995-2005), with 2006 being used to validate the forecasts. Based on the work of different authors, factors as temperature, humidity, hours of sun and wind speed were incorporated in the model. This methodology explains approximately 75-80% of the variability in the airborne Cupressaceae pollen concentration.

  4. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality and Physical Agents Air Quality § 56.5001 Exposure limits for airborne contaminants. Except as... concentration shall be determined by phase contrast microscopy (PCM) using the OSHA Reference Method in OSHA's...

  5. Development of unauthorized airborne emission source identification procedure

    NASA Astrophysics Data System (ADS)

    Shtripling, L. O.; Bazhenov, V. V.; Varakina, N. S.; Kupriyanova, N. P.

    2018-01-01

    The paper presents the procedure for searching sources of unauthorized airborne emissions. To make reasonable regulation decisions on airborne pollutant emissions and to ensure the environmental safety of population, the procedure provides for the determination of a pollutant mass emission value from the source being the cause of high pollution level and the search of a previously unrecognized contamination source in a specified area. To determine the true value of mass emission from the source, the minimum of the mean-root-square mismatch criterion between the computed and measured pollutant concentration in the given location is used.

  6. Airborne particles released by crushing CNT composites

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Okayama, C.; Kotake, M.; Ata, S.; Matsui, Y.; Gotoh, K.

    2017-06-01

    We investigated airborne particles released as a result of crushing carbon nanotube (CNT) composites using a laboratory scale crusher with rotor blades. For each crushing test, five pellets (approximately 0.1 g) of a polymer (polystyrene, polyamide, or polycarbonate) containing multiwall CNTs (Nanocyl NC7000 or CNano Flotube9000) or no CNTs were placed in the container of the crusher. The airborne particles released by the crushing of the samples were measured. The real-time aerosol measurements showed increases in the concentration of nanometer- and micrometer-sized particles, regardless of the sample type, even when CNT-free polymers were crushed. The masses of the airborne particles collected on filters were below the detection limit, which indicated that the mass ratios of the airborne particles to the crushed pellets were lower than 0.02%. In the electron microscopic analysis, particles with protruding CNTs were observed. However, free-standing CNTs were not found, except for a poorly dispersed CNT-polystyrene composite. This study demonstrated that the crushing test using a laboratory scale crusher is capable of evaluating the potential release of CNTs as a result of crushing CNT composites. The advantage of this method is that only a small amount of sample (several pieces of pellets) is required.

  7. Use of direct versus indirect preparation data for assessing risk associated with airborne exposures at asbestos-contaminated sites.

    PubMed

    Goldade, Mary Patricia; O'Brien, Wendy Pott

    2014-01-01

    At asbestos-contaminated sites, exposure assessment requires measurement of airborne asbestos concentrations; however, the choice of preparation steps employed in the analysis has been debated vigorously among members of the asbestos exposure and risk assessment communities for many years. This study finds that the choice of preparation technique used in estimating airborne amphibole asbestos exposures for risk assessment is generally not a significant source of uncertainty. Conventionally, the indirect preparation method has been less preferred by some because it is purported to result in false elevations in airborne asbestos concentrations, when compared to direct analysis of air filters. However, airborne asbestos sampling in non-occupational settings is challenging because non-asbestos particles can interfere with the asbestos measurements, sometimes necessitating analysis via indirect preparation. To evaluate whether exposure concentrations derived from direct versus indirect preparation techniques differed significantly, paired measurements of airborne Libby-type amphibole, prepared using both techniques, were compared. For the evaluation, 31 paired direct and indirect preparations originating from the same air filters were analyzed for Libby-type amphibole using transmission electron microscopy. On average, the total Libby-type amphibole airborne exposure concentration was 3.3 times higher for indirect preparation analysis than for its paired direct preparation analysis (standard deviation = 4.1), a difference which is not statistically significant (p = 0.12, two-tailed, Wilcoxon signed rank test). The results suggest that the magnitude of the difference may be larger for shorter particles. Overall, neither preparation technique (direct or indirect) preferentially generates more precise and unbiased data for airborne Libby-type amphibole concentration estimates. The indirect preparation method is reasonable for estimating Libby-type amphibole exposure and

  8. Evaluation of asbestos-containing products and released fibers in home appliances.

    PubMed

    Hwang, Sung Ho; Park, Wha Me

    2016-09-01

    The purpose of this study was to detect asbestos-containing products and released asbestos fibers from home appliances. The authors investigated a total of 414 appliances manufactured between 1986 and 2007. Appliances were divided into three categories: large-sized electric appliances, small-sized electric appliances, and household items. Analysis for asbestos-containing material (ACM) was performed using polarized light microscopy (PLM) and stereoscopic microscopy. Air sampling was performed to measure airborne concentration of asbestos using a phase-contrast microscope (PCM). The results of the analysis for ACM in appliances show that large-sized electric appliances (refrigerators, washing machines, kimchi-refrigerators) and household items (bicycles, motorcycles, gas boilers) contain asbestos material and small-sized electric appliances do not contain asbestos material. All appliances with detected asbestos material showed typical characteristics of chrysotile (7-50%) and tremolite (7-10%). No released fibers of ACM were detected from the tested appliances when the appliances were operating. This study gives the basic information on asbestos risk to people who use home appliances. All appliances with detected asbestos material showed typical characteristics of chrysotile (7-50%) and tremolite (7-10%). No released fibers of ACM were detected from the tested appliances when the appliances were operating.

  9. Quantitative assessment of airborne exposures generated during common cleaning tasks: a pilot study

    PubMed Central

    2010-01-01

    Background A growing body of epidemiologic evidence suggests an association between exposure to cleaning products with asthma and other respiratory disorders. Thus far, these studies have conducted only limited quantitative exposure assessments. Exposures from cleaning products are difficult to measure because they are complex mixtures of chemicals with a range of physicochemical properties, thus requiring multiple measurement techniques. We conducted a pilot exposure assessment study to identify methods for assessing short term, task-based airborne exposures and to quantitatively evaluate airborne exposures associated with cleaning tasks simulated under controlled work environment conditions. Methods Sink, mirror, and toilet bowl cleaning tasks were simulated in a large ventilated bathroom and a small unventilated bathroom using a general purpose, a glass, and a bathroom cleaner. All tasks were performed for 10 minutes. Airborne total volatile organic compounds (TVOC) generated during the tasks were measured using a direct reading instrument (DRI) with a photo ionization detector. Volatile organic ingredients of the cleaning mixtures were assessed utilizing an integrated sampling and analytic method, EPA TO-17. Ammonia air concentrations were also measured with an electrochemical sensor embedded in the DRI. Results Average TVOC concentrations calculated for 10 minute tasks ranged 0.02 - 6.49 ppm and the highest peak concentrations observed ranged 0.14-11 ppm. TVOC time concentration profiles indicated that exposures above background level remained present for about 20 minutes after cessation of the tasks. Among several targeted VOC compounds from cleaning mixtures, only 2-BE was detectable with the EPA method. The ten minute average 2- BE concentrations ranged 0.30 -21 ppm between tasks. The DRI underestimated 2-BE exposures compared to the results from the integrated method. The highest concentration of ammonia of 2.8 ppm occurred during mirror cleaning

  10. Case Study of Airborne Pathogen Dispersion Patterns in Emergency Departments with Different Ventilation and Partition Conditions

    PubMed Central

    Cheong, Chang Heon; Lee, Seonhye

    2018-01-01

    The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system’s inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens. PMID:29534043

  11. Case Study of Airborne Pathogen Dispersion Patterns in Emergency Departments with Different Ventilation and Partition Conditions.

    PubMed

    Cheong, Chang Heon; Lee, Seonhye

    2018-03-13

    The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system's inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens.

  12. Inactivation of an enterovirus by airborne disinfectants

    PubMed Central

    2013-01-01

    Background The activity of airborne disinfectants on bacteria, fungi and spores has been reported. However, the issue of the virucidal effect of disinfectants spread by fogging has not been studied thoroughly. Methods A procedure has been developed to determine the virucidal activity of peracetic acid-based airborne disinfectants on a resistant non-enveloped virus poliovirus type 1. This virus was laid on a stainless carrier. The products were spread into the room by hot fogging at 55°C for 30 minutes at a concentration of 7.5 mL.m-3. Poliovirus inoculum, supplemented with 5%, heat inactivated non fat dry organic milk, were applied into the middle of the stainless steel disc and were dried under the air flow of a class II biological safety cabinet at room temperature. The Viral preparations were recovered by using flocked swabs and were titered on Vero cells using the classical Spearman-Kärber CPE reading method, the results were expressed as TCID50.ml-1. Results The infectious titer of dried poliovirus inocula was kept at 105 TCID50.mL-1 up to 150 minutes at room temperature. Dried inocula exposed to airborne peracetic acid containing disinfectants were recovered at 60 and 120 minutes post-exposition and suspended in culture medium again. The cytotoxicity of disinfectant containing medium was eliminated through gel filtration columns. A 4 log reduction of infectious titer of dried poliovirus inocula exposed to peracetic-based airborne disinfectant was obtained. Conclusion This study demonstrates that the virucidal activity of airborne disinfectants can be tested on dried poliovirus. PMID:23587047

  13. Exposure to airborne asbestos in buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.J.; Van Orden, D.R.; Corn, M.

    The concentration of airborne asbestos in buildings and its implication for the health of building occupants is a major public health issue. A total of 2892 air samples from 315 public, commercial, residential, school, and university buildings has been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result of exposure to the presence of asbestos containing materials (ACM). The average concentration of all asbestos structures was 0.02 structures/ml (s/ml) and the average concentration of asbestos greatermore » than or equal to 5 microns long was 0.00013 fibers/ml (f/ml). The concentration of asbestos was higher in schools than in other buildings. In 48% of indoor samples and 75% of outdoor samples, no asbestos fibers were detected. The observed airborne concentration in 74% of the indoor samples and 96% of the outdoor samples is below the Asbestos Hazard Emergency Response Act clearance level of 0.01 s/ml. Finally, using those fibers which could be seen optically, all indoor samples and all outdoor samples are below the Occupational Safety and Health Administration permissible exposure level of 0.1 f/ml for fibers greater than or equal to 5 microns in length. These results provide substantive verification of the findings of the U.S. Environmental Protection Agency public building study which found very low ambient concentrations of asbestos fibers in buildings with ACM, irrespective of the condition of the material in the buildings.« less

  14. Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Radke, L. F.; Langer, G.; Hindman, E. E., II

    1978-01-01

    Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.

  15. Airborne detection of diffuse carbon dioxide emissions at Mammoth Mountain, California

    USGS Publications Warehouse

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    1999-01-01

    We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at ~2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at ~3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels ~1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of ~250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at approximately 2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at approximately 3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels approximately 1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of approximately 250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.

  16. Exposure level and distribution characteristics of airborne bacteria and fungi in Seoul metropolitan subway stations.

    PubMed

    Kim, Ki Youn; Kim, Yoon Shin; Kim, Daekeun; Kim, Hyeon Tae

    2011-01-01

    The exposure level and distribution characteristics of airborne bacteria and fungi were assessed in the workers' activity areas (station office, bedroom, ticket office and driver's seat) and passengers' activity areas (station precinct, inside the passenger carriage, and platform) of the Seoul metropolitan subway. Among investigated areas, the levels of airborne bacteria and fungi in the workers' bedroom and station precincts were relatively high. No significant difference was found in the concentration of airborne bacteria and fungi between the underground and above ground activity areas of the subway. The genera identified in all subway activity areas with a 5% or greater detection rate were Staphylococcus, Micrococcus, Bacillus and Corynebacterium for airborne bacteria and Penicillium, Cladosporium, Chrysosporium, Aspergillus for airborne fungi. Staphylococcus and Micrococcus comprised over 50% of the total airborne bacteria and Penicillium and Cladosporium comprised over 60% of the total airborne fungi, thus these four genera are the predominant genera in the subway station.

  17. Epidemiology of malignant mesothelioma--an outline.

    PubMed

    McDonald, J Corbett

    2010-11-01

    In the 1960s and 1970s, well designed case-referent studies put beyond doubt that exposure to airborne asbestos fibres was a cause of malignant mesothelioma. Some 35 cohort mortality studies in a large variety of industries during the 20-year period, 1974-1994, showed a wide range of outcomes, but in general that the risk was higher in exposures which included amphiboles rather than chrysotile alone. Real progress began, however, with discoveries along several lines: the link between pleural changes and mineralogy, the concept and importance of biopersistence, the developments in counting and typing mineral fibres in lung tissue, and data on amphibole mining in South Africa and Australia for comparison with that on chrysotile in Canada and Italy. This led to the recognition of the potential contamination in North America of chrysotile with tremolite. A survey in Canada in 1980-1988 and other surveys demonstrated that crocidolite, amosite, and tremolite could explain almost all cases of mesothelioma. Effective confirmation of this was finally achieved with data on vermiculite miners in Libby, Montana, in the years 1983-1999, where exposure was to tremolite-actinolite and/or other amphibole fibres alone.

  18. Airborne radionuclides in the proglacial environment as indicators of sources and transfers of soil material.

    PubMed

    Łokas, Edyta; Wachniew, Przemysław; Jodłowski, Paweł; Gąsiorek, Michał

    2017-11-01

    A survey of artificial ( 137 Cs, 238 Pu, 239+240 Pu, 241 Am) and natural ( 226 Ra, 232 Th, 40 K, 210 Pb) radioactive isotopes in proglacial soils of an Arctic glacier have revealed high spatial variability of activity concentrations and inventories of the airborne radionuclides. Soil column 137 Cs inventories range from below the detection limit to nearly 120 kBq m -2 , this value significantly exceeding direct atmospheric deposition. This variability may result from the mixing of materials characterised by different contents of airborne radionuclides. The highest activity concentrations observed in the proglacial soils may result from the deposition of cryoconites, which have been shown to accumulate airborne radionuclides on the surface of glaciers. The role of cryoconites in radionuclide accumulation is supported by the concordant enrichment of the naturally occurring airborne 210 Pb in proglacial soil cores showing elevated levels of artificial radionuclides. The lithogenic radionuclides show less variability than the airborne radionuclides because their activity concentrations are controlled only by the mixing of material derived from the weathering of different parent rocks. Soil properties vary little within and between the profiles and there is no unequivocal relationship between them and the radionuclide contents. The inventories reflect the pathways and time variable inputs of soil material to particular sites of the proglacial zone. Lack of the airborne radionuclides reflects no deposition of material exposed to the atmosphere after the 1950s or its removal by erosion. Inventories above the direct atmospheric deposition indicate secondary deposition of radionuclide-bearing material. Very high inventories indicate sites where transport pathways of cryoconite material terminated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Studies on the size distribution of airborne microbes at home in Beijing].

    PubMed

    Fang, Zhi-Guo; Sun, Ping; Ouyang, Zhi-Yun; Liu, Peng; Sun, Li; Wang, Xiao-Yong

    2013-07-01

    The effect of airborne microbes on human health not only depends on their compositions (genera and species), but also on their concentrations and sizes. Moreover, there are different mechanisms of airborne microbes of different sizes with different effects on human health. The size distributions and median diameters were investigated in detail with imitated six-stage Andersen sampler in 31 selected family homes with children in Beijing. Results showed that there was similar distribution characteristics of airborne microbes in different home environment, different season, different child's sex, and different apartment's architecture, but different distribution characteristics between airborne bacteria and fungi were observed in family homes in Beijing. In general, although airborne bacteria and fungi were plotted with normal logarithmic distribution, the particle percentage of airborne bacteria increased gradually from stage 1 (> 8.2 microm) to stage 5 (1.0-2.0 microm), and then decreased dramatically in stage 6 (< 1.0 microm), the percentage of airborne fungi increased gradually from stage 1 to stage 4 (2.0-3.5 microm), and then decreased dramatically from stage 4 to stage 6. The size distributions of dominant fungi were different in different fungal genera. Cladosporium, Penicillium and Aspergillus were recorded with normal logarithmic distribution, with the highest percentage detected in stage 4, and Alternaria were observed with skew distribution, with the highest percentage detected in stage 2 (5.0-10.4 microm). Finally, the median diameters of airborne bacteria were larger than those of airborne fungi, and the lowest median diameter of airborne bacteria and fungi was found in winter, while there were no significant variations of airborne bacterial and fungal median diameters in spring, summer and autumn in a year in this study.

  20. Deriving the concentration of airborne ash with a CAS-DPOL instrument: assessing uncertainties introduced by the instrument design

    NASA Astrophysics Data System (ADS)

    Spanu, Antonio; Weinzierl, Bernadett; Freudenthaler, Volker; Sauer, Daniel; Gasteiger, Josef

    2016-04-01

    Explosive volcanic eruptions inject large amounts of gas and particles into the atmosphere resulting in strong impacts on anthropic systems and climate. Fine ash particles in suspension, even if at low concentrations, are a serious aviation safety hazard. A key point to predict the dispersion and deposition of volcanic ash is the knowledge of emitted mass and its particle size distribution. Usually the deposit is used to characterize the source but a large uncertainty is present for fine and very fine ash particles which are usually not well preserved. Conversely, satellite observations provide only column-integrated information and are strongly sensitive to cloud conditions above the ash plumes. Consequently, in situ measurements are fundamental to extend our knowledge on ash clouds, their properties, and interactions over the vertical extent of the atmosphere. Different in-situ instruments are available covering different particle size ranges using a variety of measurement techniques. Depending on the measurement technique, artefacts due to instrument setup and ambient conditions can strongly modify the measured number concentration and size distribution of the airborne particles. It is fundamental to correct for those effects to quantify the uncertainty associated with the measurement. Here we evaluate the potential of our optical light-scattering spectrometer CAS-DPOL to detect airborne mineral dust and volcanic ash (in the size range between 0.7μm and 50μm) and to provide a reliable estimation of the mass concentration, investigating the associate uncertainty. The CAS-DPOL instrument sizes particles by detecting the light scattered off the particle into a defined angle. The associated uncertainty depends on the optical instrument design and on unknown particles characteristics such as shape and material. Indirect measurements of mass concentrations are statistically reconstructed using the air flow velocity. Therefore, the detected concentration is strongly

  1. A Comparison between Airborne and Mountaintop Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    David, R.; Lowenthal, D. H.; Hallar, A. G.; McCubbin, I.; Avallone, L. M.; Mace, G. G.; Wang, Z.

    2014-12-01

    Complex terrain has a large impact on cloud dynamics and microphysics. Several studies have examined the microphysical details of orographically-enhanced clouds from either an aircraft or from a mountain top location. However, further research is needed to characterize the relationships between mountain top and airborne microphysical properties. During the winter of 2011, an airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured cloud droplet, ice crystal, and aerosol size distributions at SPL, located on the west summit of Mt. Werner at 3220m MSL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes while small crystal concentrations were routinely higher at the surface, suggesting ice nucleation near cloud base. The effects of aerosol concentrations and upwind stability on mountain top and downwind microphysics are considered.

  2. Distribution and identification of culturable airborne microorganisms in a Swiss milk processing facility.

    PubMed

    Brandl, Helmut; Fricker-Feer, Claudia; Ziegler, Dominik; Mandal, Jyotshna; Stephan, Roger; Lehner, Angelika

    2014-01-01

    Airborne communities (mainly bacteria) were sampled and characterized (concentration levels and diversity) at 1 outdoor and 6 indoor sites within a Swiss dairy production facility. Air samples were collected on 2 sampling dates in different seasons, one in February and one in July 2012 using impaction bioaerosol samplers. After cultivation, isolates were identified by mass spectrometry (matrix-assisted laser desorption/ionization-time-of-flight) and molecular (sequencing of 16S rRNA and rpoB genes) methods. In general, total airborne particle loads and total bacterial counts were higher in winter than in summer, but remained constant within each indoor sampling site at both sampling times (February and July). Bacterial numbers were generally very low (<100 cfu/m(3) of air) during the different steps of milk powder production. Elevated bacterial concentrations (with mean values of 391 ± 142 and 179 ± 33 cfu/m(3) of air during winter and summer sampling, respectively; n=15) occurred mainly in the "logistics area," where products in closed tins are packed in secondary packaging material and prepared for shipping. However, total bacterial counts at the outdoor site varied, with a 5- to 6-fold higher concentration observed in winter compared with summer. Twenty-five gram-positive and gram-negative genera were identified as part of the airborne microflora, with Bacillus and Staphylococcus being the most frequent genera identified. Overall, the culturable microflora community showed a composition typical and representative for the specific location. Bacterial counts were highly correlated with total airborne particles in the size range 1 to 5 µm, indicating that a simple surveillance system based upon counting of airborne particles could be implemented. The data generated in this study could be used to evaluate the effectiveness of the dairy plant's sanitation program and to identify potential sources of airborne contamination, resulting in increased food safety

  3. Concentrations, sources and geochemistry of airborne particulate matter at a major European airport.

    PubMed

    Amato, Fulvio; Moreno, Teresa; Pandolfi, Marco; Querol, Xavier; Alastuey, Andrés; Delgado, Ana; Pedrero, Manuel; Cots, Nuria

    2010-04-01

    Monitoring of aerosol particle concentrations (PM(10), PM(2.5), PM(1)) and chemical analysis (PM(10)) was undertaken at a major European airport (El Prat, Barcelona) for a whole month during autumn 2007. Concentrations of airborne PM at the airport were close to those at road traffic hotspots in the nearby Barcelona city, with means measuring 48 microg PM(10)/m(3), 21 microg PM(2.5)/m(3) and 17 microg PM(1)/m(3). Meteorological controls on PM at El Prat are identified as cleansing daytime sea breezes with abundant coarse salt particles, alternating with nocturnal land-sourced winds which channel air polluted by industry and traffic (PM(1)/PM(10) ratios > 0.5) SE down the Llobregat Valley. Chemical analyses of the PM(10) samples show that crustal PM is dominant (38% of PM(10)), followed by total carbon (OC + EC, 25%), secondary inorganic aerosols (SIA, 20%), and sea salt (6%). Local construction work for a new airport terminal was an important contributor to PM(10) crustal levels. Source apportionment modelling PCA-MLRA identifies five factors: industrial/traffic, crustal, sea salt, SIA, and K(+) likely derived from agricultural biomass burning. Whereas most of the atmospheric contamination concerning ambient air PM(10) levels at El Prat is not attributable directly to aircraft movement, levels of carbon are unusually high (especially organic carbon), as are metals possibly sourced from tyre detritus/smoke in runway dust (Ba, Zn, Mo) and from brake dust in ambient PM(10) (Cu, Sb), especially when the airport is at its most busy. We identify microflakes of aluminous alloys in ambient PM(10) filters derived from corroded fuselage and wings as an unequivocal and highly distinctive tracer for aircraft movement.

  4. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities.

    PubMed

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2017-02-28

    In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103-9.0×105 colony-forming units (CFU)/m3), while the lowest ones in winter (2.7×103-2.9×105 CFU/m3). The concentration increased from the beginning of the work shift and reached a plateau after 6-7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1):1-9. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  5. More on the dynamics of dust generation: the effects of mixing and sanding chrysotile, calcium carbonate, and other components on the characteristics of joint-compound dusts.

    PubMed

    Berman, D Wayne; Brorby, Gregory P; Sheehan, Patrick J; Bogen, Kenneth T; Holm, Stewart E

    2012-08-01

    An ongoing research effort designed to reconstruct the character of historical exposures associated with use of chrysotile-containing joint compounds naturally raised questions concerning how the character (e.g. particle size distributions) of dusts generated from use of recreated materials compares to dusts from similar materials manufactured historically. This also provided an opportunity to further explore the relative degree that the characteristics of dusts generated from a bulk material are mediated by the properties of the bulk material versus the mechanical processes applied to the bulk material by which the dust is generated. In the current study, the characteristics of dusts generated from a recreated ready mix and recreated dry mix were compared to each other, to dusts from a historical dry mix, and to dusts from the commercial chrysotile fiber (JM 7RF3) used in the recreated materials. The effect of sanding on the character of dusts generated from these materials was also explored. Dusts from the dry materials studied were generated and captured for analysis in a dust generator-elutriator. The recreated and historical joint compounds were also prepared, applied to drywall, and sanded inside sealed bags so that the particles produced from sanding could be introduced into the elutriator and captured for analysis. Comparisons of fiber size distributions in dusts from these materials suggest that dust from commercial fiber is different from dusts generated from the joint compounds, which are mixtures, and the differences persist whether the materials are sanded or not. Differences were also observed between sanded recreated ready mix and either the recreated dry mix or a historical dry mix, again whether sanded or not. In all cases, however, such differences disappeared when variances obtained from surrogate data were used to better represent the 'irreducible variation' of these materials. Even using the smaller study-specific variances, no differences were

  6. Spectroscopic and x-ray diffraction analyses of asbestos in the World Trade Center dust:

    USGS Publications Warehouse

    Swayze, Gregg A.; Clark, Roger N.; Sutley, Stephen J.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Meeker, Gregory P.; Brownfield, Isabelle; Livo, Keith E.; Morath, Laurie C.

    2009-01-01

    On September 17 and 18, 2001, samples of settled dust and airfall debris were collected from 34 sites within a 1-km radius of the WTC collapse site, including a sample from an indoor location unaffected by rainfall, and samples of insulation from two steel beams at Ground Zero. Laboratory spectral and x-ray diffraction analyses of the field samples detected trace levels of serpentine minerals, including chrysotile asbestos, in about two-thirds of the dust samples at concentrations at or below ~1 wt%. One sample of a beam coating material contained up to 20 wt% chrysotile asbestos. Analyses indicate that trace levels of chrysotile were distributed with the dust radially to distances greater than 0.75 km from Ground Zero. The chrysotile content of the dust is variable and may indicate that chrysotile asbestos was not distributed uniformly during the three collapse events.

  7. Detecting Airborne Mercury by Use of Polymer/Carbon Films

    NASA Technical Reports Server (NTRS)

    Shevade, Abhijit; Ryan, Margaret; Homer, Margie; Kisor, Adam; Jewell, April; Yen, Shiao-Pin; Manatt, Kenneth; Blanco, Mario; Goddard, William

    2009-01-01

    Films made of certain polymer/carbon composites have been found to be potentially useful as sensing films for detecting airborne elemental mercury at concentrations on the order of tens of parts per billion or more. That is to say, when the polymer/carbon composite films are exposed to air containing mercury vapor, their electrical resistances decrease by measurable amounts. Because airborne mercury is a health hazard, it is desirable to detect it with great sensitivity, especially in enclosed environments in which there is a risk of a mercury leak from lamps or other equipment. The present effort to develop polymerbased mercury-vapor sensors complements the work reported in NASA Tech Briefs Detecting Airborne Mercury by Use of Palladium Chloride (NPO- 44955), Vol. 33, No. 7 (July 2009), page 48 and De tecting Airborne Mer cury by Use of Gold Nanowires (NPO-44787), Vol. 33, No. 7 (July 2009), page 49. Like those previously reported efforts, the present effort is motivated partly by a need to enable operation and/or regeneration of sensors under relatively mild conditions more specifically, at temperatures closer to room temperature than to the elevated temperatures (greater than 100 C ) needed for regeneration of sensors based on noble-metal films. The present polymer/carbon films are made from two polymers, denoted EYN1 and EYN2 (see Figure 1), both of which are derivatives of poly-4-vinyl pyridine with amine functional groups. Composites of these polymers with 10 to 15 weight percent of carbon were prepared and solution-deposited onto the JPL ElectronicNose sensor substrates for testing. Preliminary test results showed that the resulting sensor films gave measurable indications of airborne mercury at concentrations on the order of tens of parts per billion (ppb) or more. The operating temperature range for the sensing films was 28 to 40 C and that the sensor films regenerated spontaneously, without heating above operating temperature (see Figure 2).

  8. Airborne black carbon concentrations over an urban region in western India-temporal variability, effects of meteorology, and source regions.

    PubMed

    Bapna, Mukund; Sunder Raman, Ramya; Ramachandran, S; Rajesh, T A

    2013-03-01

    This study characterizes over 5 years of high time resolution (5 min), airborne black carbon (BC) concentrations (July 2003 to December 2008) measured over Ahmedabad, an urban region in western India. The data were used to obtain different time averages of BC concentrations, and these averages were then used to assess the diurnal, seasonal, and annual variability of BC over the study region. Assessment of diurnal variations revealed a strong association between BC concentrations and vehicular traffic. Peaks in BC concentration were co-incident with the morning (0730 to 0830, LST) and late evening (1930 to 2030, LST) rush hour traffic. Additionally, diurnal variability in BC concentrations during major festivals (Diwali and Dushera during the months of October/November) revealed an increase in BC concentrations due to fireworks displays. Maximum half hourly BC concentrations during the festival days were as high as 79.8 μg m(-3). However, the high concentrations rapidly decayed suggesting that local meteorology during the festive season was favorable for aerosol dispersion. A multiple linear regression (MLR) model with BC as the dependent variable and meteorological parameters as independent variables was fitted. The variability in temperature, humidity, wind speed, and wind direction accounted for about 49% of the variability in measured BC concentrations. Conditional probability function (CPF) analysis was used to identify the geographical location of local source regions contributing to the effective BC measured (at 880 nm) at the receptor site. The east north-east (ENE) direction to the receptor was identified as a major source region. National highway (NH8) and two coal-fired thermal power stations (at Gandhinagar and Sabarmati) were located in the identified direction, suggesting that local traffic and power plant emissions were likely contributors to the measured BC.

  9. Assessment of airborne soy-hull allergen (Gly m 1) in the Port of Ancona, Italy.

    PubMed

    Antonicelli, L; Ruello, M L; Monsalve, R I; González, R; Fava, G; Bonifazi, F

    2010-10-01

    Epidemic asthma outbreaks are potentially a very high-risk medical situation in seaport towns where large volumes of soybean are loaded and unloaded Airborne allergen assessment plays a pivotal role in evaluating the resulting environmental pollution. The aim of this study was to measure the airborne Gly m 1 allergen level in the seaport of Ancona in order assess the soybean-specific allergenic risk for the city. Allergen and PM10 were evaluated at progressive distances from the port area. Allergen analysis was performed by monoclonal antibody-based immunoassay on the sampled filters. Daily meteorological data were obtained from the local meteorological station. For estimating the assimilative capacity of the atmosphere, an approach based on dispersive ventilation coefficient was tried. The allergen concentrations detected were low (range = 0.4-171 ng/m3). A decreasing gradient of the airborne allergen from the unloading area (22.1 +/- 41.2 ng/m3) to the control area (0.6 +/- 0.7 ng/m3) was detected. The concentration of the airborne Gly m 1 was not coupled with the presence of the soy-carrying ships in the port. A statistically significant relationship between airborne allergen, PM10 and local meteorological parameters quantifies the association with the atmospheric condition. Airborne Gly m 1 is part of the atmospheric dust of Ancona. The low level of this allergen seems consistent with the absence of asthma epidemic outbreak.

  10. Airborne imaging spectrometers developed in China

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Xue, Yongqi

    1998-08-01

    Airborne imaging spectral technology, principle means in airborne remote sensing, has been developed rapidly both in the world and in China recently. This paper describes Modular Airborne Imaging Spectrometer (MAIS), Operational Modular Airborne Imaging Spectrometer (OMAIS) and Pushbroom Hyperspectral Imagery (PHI) that have been developed or are being developed in Airborne Remote Sensing Lab of Shanghai Institute of Technical Physics, CAS.

  11. Respiratory health in chrysotile asbestos miners in British Columbia: a longitudinal study.

    PubMed Central

    Enarson, D A; Embree, V; MacLean, L; Grzybowski, S

    1988-01-01

    A respiratory survey was undertaken in chrysotile asbestos miners in British Columbia consisting of a questionnaire, spirometry, chest radiography, and physical examination. The tests were performed in 1977 and again in 1983. The population groups studied included 63 "exposed" (working in the plant more than nine years), 52 "controls" (working in the plant less than five years), and 38 residents of the village at the minesite. A subset of 39 was identified with high exposure (worked in the mill more than five years). Measured levels of environmental particulates were similar over the entire period of operation of the plant (1.4 to 14.0 million particles per cubic foot and 0.7-88.0 fibres/cc in the mill; 0.2 to 2.7 mpcf and 0.6 to 9.3 f/cc in the mine). The exposed groups were more likely to report cough and breathlessness than the two other groups and were also more likely to have abnormal FVC and chest x ray films (the latter not significant, p greater than 0.05) and to be more likely to have a combination of these abnormalities. There was no trend to progression in the combination of abnormalities associated with exposure on follow up. The heavily exposed group showed a significantly worse trend in FVC. This adverse trend was confined to those with initial abnormalities. Tobacco smoking did not increase the trend to progression in this group. PMID:2840111

  12. Airborne trace contaminants of possible interest in CELSS

    NASA Technical Reports Server (NTRS)

    Garavelli, J. S.

    1986-01-01

    One design goal of Closed Ecological Life Support Systems (CELSS) for long duration space missions is to maintain an atmosphere which is healthy for all the desirable biological species and not deleterious to any of the mechanical components in that atmosphere. CELESS design must take into account the interactions of at least six major components; (1) humans and animals, (2) higher plants, (3) microalgae, (4) bacteria and fungi, (5) the waste processing system, and (6) other mechanical systems. Each of these major components can be both a source and a target of airborne trace contaminants in a CELSS. A range of possible airborne trace contaminants is discussed within a chemical classification scheme. These contaminants are analyzed with respect to their probable sources among the six major components and their potential effects on those components. Data on airborne chemical contaminants detected in shuttle missions is presented along with this analysis. The observed concentrations of several classes of compounds, including hydrocarbons, halocarbons, halosilanes, amines and nitrogen oxides, are considered with respect to the problems which they present to CELSS.

  13. Deposition and retention of inhaled fibres: effects on incidence of lung cancer and mesothelioma.

    PubMed Central

    Lippmann, M

    1994-01-01

    A review of the literature on chronic inhalation studies in which rats were exposed to mineral fibres at known fibre number concentrations was undertaken to examine the specific roles of fibre length and composition on the incidences of both lung cancer and mesothelioma. For lung cancer, the percentage of lung tumours (y) could be described by a relation of the form y = a + bf + cf2, where f is the concentration of fibre numbers and a, b, and c are fitted constants. The correlation coefficients for the fitted curves were 0.76 for > 5 microns f/ml, 0.84 for > 10 microns f/ml, and 0.85 for > 20 microns f/ml. These seemed to be independent of fibre type. It has been shown that brief inhalation exposures to chrysotile fibre produces highly concentrated fibre deposits on bifurcations of alveolar ducts, and that many of these fibres are phagocytosed by the underlying type II epithelial cells within a few hours. Churg has shown that both chrysotile and amphibole fibres retained in the lungs of former miners and millers do not clear much with the years since last exposure. Thus, lung tumours may be caused by that small fraction of the inhaled fibres that are retained in the interstitium below small airway bifurcations where clearance processes are ineffective. By contrast, for mesothelioma, the (low) tumour yields seemed to be highly dependent upon fibre type. Combining the data from various studies by fibre type, the percentage of mesotheliomas was 0.6% for Zimbabwe (Rhodesian) chrysotile, 2.5% for the various amphiboles as a group, and 4.7% for Quebec (Canadian) chrysotile. This difference, together with the fact that Zimbabwe chrysotile has 2 to 3 orders of magnitude less than tremolite than Quebec chrysotile, provides support for the hypothesis that the mesotheliomas that have occurred among chrysotile miners and millers could be largely due to their exposures to tremolite fibres. The chrysotile fibres may be insufficiently biopersistent because if dissolution during

  14. Airborne Tactical Crossload Planner

    DTIC Science & Technology

    2017-12-01

    set out in the Airborne Standard Operating Procedure (ASOP). 14. SUBJECT TERMS crossload, airborne, optimization, integer linear programming ...they land to their respective sub-mission locations. In this thesis, we formulate and implement an integer linear program called the Tactical...to meet any desired crossload objectives. xiv We demonstrate TCP with two real-world tactical problems from recent airborne operations: one by the

  15. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.

    PubMed

    Miller, Arthur; Drake, Pamela L; Hintz, Patrick; Habjan, Matt

    2010-07-01

    An air quality survey was conducted at a precious metals refinery in order to evaluate worker exposures to airborne metals and to provide detailed characterization of the aerosols. Two areas within the refinery were characterized: a furnace room and an electro-refining area. In line with standard survey practices, both personal and area air filter samples were collected on 37-mm filters and analyzed for metals by inductively coupled plasma-atomic emission spectroscopy. In addition to the standard sampling, measurements were conducted using other tools, designed to provide enhanced characterization of the workplace aerosols. The number concentration and number-weighted particle size distribution of airborne particles were measured with a fast mobility particle sizer (FMPS). Custom-designed software was used to correlate particle concentration data with spatial location data to generate contour maps of particle number concentrations in the work areas. Short-term samples were collected in areas of localized high concentrations and analyzed using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) to determine particle morphology and elemental chemistry. Analysis of filter samples indicated that all of the workers were exposed to levels of silver above the Occupational Safety and Health Administration permissible exposure limit of 0.01 mg m(-3) even though the localized ventilation was functioning. Measurements with the FMPS indicated that particle number concentrations near the furnace increased up to 1000-fold above the baseline during the pouring of molten metal. Spatial mapping revealed localized elevated particle concentrations near the furnaces and plumes of particles rising into the stairwells and traveling to the upper work areas. Results of TEM/EDS analyses confirmed the high number of nanoparticles measured by the FMPS and indicated the aerosols were rich in metals including silver, lead, antimony, selenium, and zinc. Results of

  16. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  17. Pulsed Lidar Measurements of Atmospheric CO2 Column Concentration in the ASCENDS 2014 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A. K.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Chen, J. R.

    2015-12-01

    We report progress in demonstrating a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line by using 30 wavelength samples distributed across the lube. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength 10 times per second. The retrievals solve for the optimum CO2 absorption line shape and the column average CO2 concentrations using radiative transfer calculations based on HITRAN, the aircraft altitude, range to the scattering surface, and the atmospheric conditions. We compare these to CO2 concentrations sampled by in-situ sensors on the aircraft. The number of wavelength samples can be reduced in the retrievals. During the ASCENDS airborne campaign in 2013 two flights were made in February over snow in the Rocky Mountains and the Central Plains allowing measurement of snow-covered surface reflectivity. Several improvements were made to the lidar for the 2014 campaign. These included using a new step-locked laser diode source, and incorporating a new HgCdTe APD detector and analog digitizer into the lidar receiver. Testing showed this detector had higher sensitivity, analog response, and a more linear dynamic range than the PMT detector used previously. In 2014 flights were made in late August and early September over the California Central Valley, the redwood forests along the California coast, two desert areas in Nevada and California, and two flights above growing agriculture in Iowa. Two flights were also made under OCO-2 satellite ground tracks. Analyses show the retrievals of lidar range and CO2 column absorption, and mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, and through thin clouds and aerosol scattering. The lidar measurements clearly

  18. Occupational exposure to airborne contaminants during offshore oil drilling.

    PubMed

    Kirkhus, Niels E; Thomassen, Yngvar; Ulvestad, Bente; Woldbæk, Torill; Ellingsen, Dag G

    2015-07-01

    The aim was to study exposure to airborne contaminants in oil drillers during ordinary work. Personal samples were collected among 65 drill floor workers on four stationary and six moveable rigs in the Norwegian offshore sector. Air concentrations of drilling mud were determined based on measurements of the non-volatile mud components Ca and Fe. The median air concentration of mud was 140 μg m(-3). Median air concentrations of oil mist (180 μg m(-3)), oil vapour (14 mg m(-3)) and organic carbon (46 μg m(-3)) were also measured. All contaminants were detected in all work areas (drill floor, shaker area, mud pits, pump room, other areas). The highest air concentrations were measured in the shaker area, but the differences in air concentrations between working areas were moderate. Oil mist and oil vapour concentrations were statistically higher on moveable rigs than on stationary rigs, but after adjusting for differences in mud temperature the differences between rig types were no longer of statistical significance. Statistically significant positive associations were found between mud temperature and the concentrations of oil mist (Spearman's R = 0.46) and oil vapour (0.39), and between viscosity of base oil and oil mist concentrations. Use of pressure washers was associated with higher air concentrations of mud. A series of 18 parallel stationary samples showed a high and statistically significant association between concentrations of organic carbon and oil mist (r = 0.98). This study shows that workers are exposed to airborne non-volatilized mud components. Air concentrations of volatile mud components like oil mist and oil vapour were low, but were present in all the studied working areas.

  19. Characterization of airborne and bulk particulate from iron and steel manufacturing facilities.

    PubMed

    Machemer, Steven D

    2004-01-15

    Characterization of airborne and bulk particulate material from iron and steel manufacturing facilities, commonly referred to as kish, indicated graphite flakes and graphite flakes associated with spherical iron oxide particles were unique particle characteristics useful in identifying particle emissions from iron and steel manufacturing. Characterization of airborne particulate material collected in receptor areas was consistent with multiple atmospheric release events of kish particles from the local iron and steel facilities into neighboring residential areas. Kish particles deposited in nearby residential areas included an abundance of graphite flakes, tens of micrometers to millimeters in size, and spherical iron oxide particles, submicrometer to tens of micrometers in size. Bulk kish from local iron and steel facilities contained an abundance of similar particles. Approximately 60% of blast furnace kish by volume consisted of spherical iron oxide particles in the respirable size range. Basic oxygen furnace kish contained percent levels of strongly alkaline components such as calcium hydroxide. In addition, concentrations of respirable Mn in airborne particulate in residential areas and at local iron and steel facilities were approximately 1.6 and 53 times the inhalation reference concentration of 0.05 microg/m3 for chronic inhalation exposure of Mn, respectively. Thus, airborne release of kish may pose potential respirable particulate, corrosive, or toxic hazards for human health and/or a corrosive hazard for property and the environment.

  20. LEAVES AS INDICATORS OF EXPOSURE TO AIRBORNE VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The concentration of volatile organic compounds (VOCs) in leaves is primarily a product of airborne exposures and dependent upon bioconcentration factors and release rates. The bioconcentration factors for VOCs in grass are found to be related to their partitioning between octan...

  1. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  2. Indoor airborne endotoxin assessment in homes of Paris newborn babies.

    PubMed

    Dassonville, C; Demattei, C; Vacquier, B; Bex-Capelle, V; Seta, N; Momas, I

    2008-12-01

    The aims of this study were first to assess airborne endotoxin levels in the dwellings of 162 newborns living in Paris twice during a 1-year period, and second, to identify predictors for endotoxin concentrations using questionnaire data in relation to housing factors and living conditions. Air samples were collected on a glass fiber filter in polystyrene filter holders, using a pump at a flow rate of 3.5 l/min for 24 h placed in the main room of the home. Endotoxin levels were measured using a chromogenic kinetic Limulus Amoebocyte Lysate test. Geometric means (geometric standard deviation) of airborne endotoxin levels at two different visits were respectively 0.509 (4.289) EU/m3 and 0.557 (3.029) EU/m3. Airborne endotoxin levels were significantly increased: (i) in cold season (P = 0.024), with (ii) the presence of visible cockroaches in the previous 12 months at home (P < 0.001), (iii) increased number of inhabitants per square meter (P = 0.012), (iv) the high frequency of cleaning with the floor cloths (P = 0.0014), and (v) the low frequency of vacuuming (P = 0.0045). This study provided for the first time airborne endotoxin levels issued from repeated measurements in Paris dwellings. PRACTICAL IMPLICATIONS This analysis contributed to identify a few factors that determined indoor airborne endotoxin levels. However, the predictive model including housing factors and living conditions poorly estimated endotoxin levels. Consequently, multiple samples and longer sampling periods might improve the estimate of long-term airborne endotoxin exposure especially its variability, in cohort studies.

  3. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.

    PubMed

    Šálek, Ondřej; Matolín, Milan; Gryc, Lubomír

    2018-02-01

    Localization of size-limited gamma-ray anomalies plays a fundamental role in uranium prospecting and environmental studies. Possibilities of a newly developed mini-airborne gamma-ray spectrometric equipment were tested on a uranium anomaly near the village of Třebsko, Czech Republic. The measurement equipment was based on a scintillation gamma-ray spectrometer specially developed for unmanned aerial vehicles (UAV) mounted on powerful hexacopter. The gamma-ray spectrometer has two 103 cm 3 BGO scintillation detectors of relatively high sensitivity. The tested anomaly, which is 80 m by 40 m in size, was investigated by ground gamma-ray spectrometric measurement in a detail rectangular measurement grid. Average uranium concentration is 25 mg/kg eU attaining 700 mg/kg eU locally. The mini-airborne measurement across the anomaly was carried out on three 100 m long parallel profiles at eight flight altitudes from 5 to 40 m above the ground. The resulting 1 s 1024 channel gamma-ray spectra, recorded in counts per second (cps), were processed to concentration units of K, U and Th, while total count (TC) was reported in cps. Increased gamma ray intensity of the anomaly was indicated by mini-airborne measurement at all profiles and altitudes, including the highest altitude of 40 m, at which the recorded intensity is close to the natural radiation background. The reported instrument is able to record data with comparable quality as standard airborne survey, due to relative sensitive detector, lower flight altitude and relatively low flight speed of 1 m/s. The presented experiment brings new experience with using unmanned semi-autonomous aerial vehicles and the latest mini-airborne radiometric instrument. The experiment has demonstrated the instrument's ability to localize size-limited uranium anomalies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Resistance of Type 5 chemical protective clothing against nanometric airborne particles: Behavior of seams and zipper.

    PubMed

    Vinches, Ludwig; Hallé, Stéphane

    2017-12-01

    In the field of dermal protection, the use of chemical protective clothing (CPC) (including coveralls) are considered as the last barrier against airborne engineered nanomaterials (ENM). In the majority of cases, Type 5 CPC, used against solid particles (ISO 13982-1), perform well against ENM. But in a recent study, a penetration level (PL) of up to 8.5% of polydisperse sodium chloride airborne nanoparticles has been measured. Moreover, in all the previous studies, tests were performed on a sample of protective clothing material without seams or zippers. Thus, the potential for permeation through a zipper or seams has not yet been determined, even though these areas would be privileged entry points for airborne ENM. This work was designed to evaluate the PL of airborne ENM through coveralls and specifically the PL through the seams on different parts of the CPC and the zipper. Eight current models of CPC (Type 5) were selected. The samples were taken from places with and without seams and with a zipper. In some cases, a cover strip can be added to the zipper to enhance its sealing. Polydisperse nanoparticles were generated by nebulization of a sodium chloride solution. A penetration cell was developed to expose the sample to airborne nanometric particles. The NaCl particle concentration in number was measured with an ultrafine particle counter and the PL was defined as the downstream concentration divided by the upstream concentration. The results obtained show that the PL increased significantly in the presence of seams and could reach up to 90% depending on the seam's design. Moreover, this study classifies the different types of seams by their resistance against airborne ENM. As for the penetration of airborne NaCl particles through the zipper, the PL was greatly attenuated by the presence of a cover strip, but only for certain models of coveralls. Finally, the values of the pressure drop were directly linked to the type of seam. All of these conclusions provide

  5. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport

  6. EVALUATION OF AIRBORNE ASBESTOS CONCENTRATIONS BEFORE AND DURING AND O&M ACTIVITY: A CASE STUDY

    EPA Science Inventory

    The current lack of information regarding the impact of O&M activities on the potential for asbestos exposure to building staff and occupants prompted this study. This report presents a statistical evaluation of airborne asbestos data collected before and during an O&M activity i...

  7. Seasonal and diurnal variability in airborne mold from an indoor residential environment in northern New York.

    PubMed

    LeBouf, Ryan; Yesse, Liesel; Rossner, Alan

    2008-05-01

    It is well known that characterization of airborne bioaerosols in indoor environments is a challenge because of inherent irregularity in concentrations, which are influenced by many environmental factors. The primary aim of this study was to quantify the day-to-day variability of airborne fungal levels in a single residential environment over multiple seasons. Indoor air quality practitioners must recognize the inherent variability in airborne bio-aerosol measurements during data analysis of mold investigations. Changes in airborne fungi due to varying season and day is important to recognize when considering health impacts of these contaminants and when establishing effective controls. Using an Andersen N6 impactor, indoor and outdoor bioaerosol samples were collected on malt extract agar plates for 18 weekdays and 19 weekdays in winter and summer, respectively. Interday and intraday variability for the bioaerosols were determined for each sampler. Average fungal concentrations were 26 times higher during the summer months. Day-to-day fungal samples showed a relatively high inconsistency suggesting airborne fungal levels are very episodic and are influenced by several environmental factors. Summer bio-aerosol variability ranged from 7 to 36% and winter variability from 24 to 212%; these should be incorporated into results of indoor mold investigations. The second objective was to observe the relationship between biological and nonbiological particulate matter (PM). No correlation was observed between biological and nonbiological PM. Six side-by-side particulate samplers collected coarse PM (PM10) and fine PM (PM2.5) levels in both seasons. PM2.5 particulate concentrations were found to be statistically higher during summer months. Interday variability observed during this study suggests that indoor air quality practitioners must adjust their exposure assessment strategies to reflect the temporal variability in bioaerosol concentrations.

  8. Variation of airborne quartz in air of Beijing during the Asia-Pacific Economic Cooperation Economic Leaders' Meeting.

    PubMed

    Li, Gang; Li, Yingming; Zhang, Hongxing; Li, Honghua; Gao, Guanjun; Zhou, Qian; Gao, Yuan; Li, Wenjuan; Sun, Huizhong; Wang, Xiaoke; Zhang, Qinghua

    2016-01-01

    Quartz particles are a toxic component of airborne particulate matter (PM). Quartz concentrations were analyzed by X-ray diffraction in eighty-seven airborne PM samples collected from three locations in Beijing before, during, and after the Asia-Pacific Economic Cooperation (APEC) Leaders' Meeting in 2014. The results showed that the mean concentrations of quartz in PM samples from the two urban sites were considerably higher than those from the rural site. The quartz concentrations in samples collected after the APEC meeting, when the pollution restriction lever was lifted, were higher than those in the samples collected before or during the APEC meeting. The quartz concentrations ranged from 0.97 to 13.2 μg/m(3), which were among the highest values amid those reported from other countries. The highest quartz concentration exceeded the Californian Office of Environmental Health Hazard Assessment reference exposure level and was close to the occupational threshold limit values for occupational settings. Moreover, a correlation analysis showed that quartz concentrations were positively correlated with concentrations of pollution parameters PM10, PM2.5, SO2 and NOx, but were negatively correlated with O3 concentration. The results suggest that the airborne quartz particles may potentially pose health risks to the general population of Beijing. Copyright © 2015. Published by Elsevier B.V.

  9. Spatial and temporal distribution of airborne Bacillus thuringiensis var. kurstaki during an aerial spray program for gypsy moth eradication.

    PubMed

    Teschke, K; Chow, Y; Bartlett, K; Ross, A; van Netten, C

    2001-01-01

    We measured airborne exposures to the biological insecticide Bacillus thuringiensis var. kurstaki (Btk) during an aerial spray program to eradicate gypsy moths on the west coast of Canada. We aimed to determine whether staying indoors during spraying reduced exposures, to determine the rate of temporal decay of airborne concentrations, and to determine whether drift occurred outside the spray zone. During spraying, the average culturable airborne Btk concentration measured outdoors within the spray zone was 739 colony-forming units (CFU)/m3 of air. Outdoor air concentrations decreased over time, quickly in an initial phase with a half time of 3.3 hr, and then more slowly over the following 9 days, with an overall half-time of about 2.4 days. Inside residences during spraying, average concentrations were initially 2-5 times lower than outdoors, but at 5-6 hr after spraying began, indoor concentrations exceeded those outdoors, with an average of 244 CFU/m3 vs. 77 CFU/m3 outdoors, suggesting that the initial benefits of remaining indoors during spraying may not persist as outside air moves indoors with normal daily activities. There was drift of culturable Btk throughout a 125- to 1,000-meter band outside the spray zone where measurements were made, a consequence of the fine aerosol sizes that remained airborne (count median diameters of 4.3 to 7.2 microm). Btk concentrations outside the spray zone were related to wind speed and direction, but not to distance from the spray zone.

  10. Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mo; Xu, Baiqing; Wang, Ninglian

    Airborne black carbon (BC) mass concentrations were measured from November 2012 to June 2013 at Ranwu and Beiluhe, located in the southeastern and central Tibetan Plateau, respectively. Monthly mean BC concentrations showawinter (November–February) high (413.2 ng m $-$3) and spring (March–June) low(139.1 ng m $-$3) at Ranwu, but in contrast awinter lowand spring high at Beiluhe (204.8 and 621.6 ng m $-$3, respectively). By examining the meteorological conditions at various scales, we found that themonthly variation of airborne BC over the southeastern Tibetan Plateau (TP) was highly influenced by regional precipitation and over the hinterland by winds. Local precipitation atmore » both sites showed little impact on the seasonal variation of airborne BC concentrations. Potential BC source regions are identified using air mass backward trajectory analysis. At Ranwu, BC was dominated by the air masses from the northeastern India and Bangladesh in both winter and spring, whereas at Beiluhe it was largely contributed by air masses from the south slope of Himalayas in winter, and from the arid region in the north of the TP in spring. Thewinter and spring seasonal peak of BC in the southern TP is largely contributed by emissions from South Asia, and this seasonal variation is heavily influenced by the regional monsoon. In the northern TP, BC had high concentrations during spring and summer seasons, which is very likely associated with more efficient transport of BC over the arid regions on the north of Tibetan Plateau and in Central Asia. Airborne BC concentrations at the Ranwusampling site showed a significant diurnal cyclewith a peak shortly after sunrise followed by a decrease before noon in both winter and spring, likely shaped by local human activities and the diurnal variation of wind speed. At the Beiluhe sampling site, the diurnal variation of BC is different and less distinct.« less

  11. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  12. Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD)

    Atmospheric Science Data Center

    2016-10-18

    Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD) Wednesday, October 26, 2016 Join us on ... and flight data ranges are available. Registration is now open.  Access the full announcement   For TAD Information, ...

  13. Concentration and Viability of Airborne Bacteria Over the Kuroshio Extension Region in the Northwestern Pacific Ocean: Data From Three Cruises

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Murata, Kotaro; Fukuyama, Shinichiro; Kawai, Yoshimi; Oka, Eitarou; Uematsu, Mitsuo; Zhang, Daizhou

    2017-12-01

    Airborne bacteria have been shown to act as condensation and ice nuclei in mixed-phase clouds and are consequently hypothesized to have significant effects on atmospheric processes and even the global climate. However, few data are available regarding their concentration and variation in the air over the open ocean. Aerosol samples were collected during three cruises in the early summers of 2013, 2014, and 2016 over the Kuroshio Extension region of the northwest Pacific Ocean. The concentrations of viable and nonviable bacterial cells in the marine surface air were quantified using epifluorescence enumeration with the LIVE/DEAD BacLight stain. The concentrations of total bacteria varied between 1.0 × 104 and 2.5 × 105 cells m-3 and averaged 5.2 × 104, 1.0 × 105, and 7.5 × 104 cells m-3 in the three respective cruises. The viabilities, i.e., the ratios of the concentration of viable bacterial cells to that of total bacterial cells, ranged from 80% to 100% (average 93%), and the respective means were 93%, 89%, and 96% in the cruises. The total bacterial concentration had a close correlation with the wind speed near the sea surface, and the bacterial viability correlated negatively with the air temperature, sea surface temperature, and concentration of coarse particles (size > 1 μm). The deposition and sea spray fluxes of bacteria were roughly estimated as hundreds of cells m-2 s-1 on average. The limited data on bacterial concentration and viability from the three cruises indicate the rapid air-sea exchange of bacteria over the Kuroshio Extension region of the northwest Pacific Ocean.

  14. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  15. Recirculating Air Filtration Significantly Reduces Exposure to Airborne Nanoparticles

    PubMed Central

    Pui, David Y.H.; Qi, Chaolong; Stanley, Nick; Oberdörster, Günter; Maynard, Andrew

    2008-01-01

    Background Airborne nanoparticles from vehicle emissions have been associated with adverse effects in people with pulmonary and cardiovascular disease, and toxicologic studies have shown that nanoparticles can be more hazardous than their larger-scale counterparts. Recirculating air filtration in automobiles and houses may provide a low-cost solution to reducing exposures in many cases, thus reducing possible health risks. Objectives We investigated the effectiveness of recirculating air filtration on reducing exposure to incidental and intentionally produced airborne nanoparticles under two scenarios while driving in traffic, and while generating nanomaterials using gas-phase synthesis. Methods We tested the recirculating air filtration in two commercial vehicles when driving in traffic, as well as in a nonventilation room with a nanoparticle generator, simulating a nanomaterial production facility. We also measured the time-resolved aerosol size distribution during the in-car recirculation to investigate how recirculating air filtration affects particles of different sizes. We developed a recirculation model to describe the aerosol concentration change during recirculation. Results The use of inexpensive, low-efficiency filters in recirculation systems is shown to reduce nanoparticle concentrations to below levels found in a typical office within 3 min while driving through heavy traffic, and within 20 min in a simulated nanomaterial production facility. Conclusions Development and application of this technology could lead to significant reductions in airborne nanoparticle exposure, reducing possible risks to health and providing solutions for generating nanomaterials safely. PMID:18629306

  16. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  17. Direct analysis of airborne mite allergen (Der f1) in the residential atmosphere by chemifluorescent immunoassay using bioaerosol sampler.

    PubMed

    Miyajima, Kumiko; Suzuki, Yurika; Miki, Daisuke; Arai, Moeka; Arakawa, Takahiro; Shimomura, Hiroji; Shiba, Kiyoko; Mitsubayashi, Kohji

    2014-06-01

    Dermatophagoides farinae allergen (Der f1) is one of the most important indoor allergens associated with allergic diseases in humans. Mite allergen Der f1 is usually associated with particles of high molecular weight; thus, Der f1 is generally present in settled dust. However, a small quantity of Der f1 can be aerosolized and become an airborne component. Until now, a reliable method of detecting airborne Der f1 has not been developed. The aim of this study was to develop a fiber-optic chemifluorescent immunoassay for the detection of airborne Der f1. In this method, the Der f1 concentration measured on the basis of the intensity of fluorescence amplified by an enzymatic reaction between the labeled enzyme by a detection antibody and a fluorescent substrate. The measured Der f1 concentration was in the range from 0.49 to 250 ng/ml and a similar range was found by enzyme-linked immunosorbent assay (ELISA). This method was proved to be highly sensitive to Der f1 compared with other airborne allergens. For the implementation of airborne allergen measurement in a residential environment, a bioaerosol sampler was constructed. The airborne allergen generated by a nebulizer was conveyed to a newly sampler we developed for collecting airborne Der f1. The sampler was composed of polymethyl methacrylate (PMMA) cells for gas/liquid phases and some porous membranes which were sandwiched in between the two phases. Der f1 in air was collected by the sampler and measured using the fiber-optic immunoassay system. The concentration of Der f1 in aerosolized standards was in the range from 0.125 to 2.0 mg/m(3) and the collection rate of the device was approximately 0.2%. © 2013 Elsevier B.V. All rights reserved.

  18. Airborne relay-based regional positioning system.

    PubMed

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-05-28

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.

  19. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  20. Forced-air warming: a source of airborne contamination in the operating room?

    PubMed

    Albrecht, Mark; Gauthier, Robert; Leaper, David

    2009-10-10

    Forced-air-warming (FAW) is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room.We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25) in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower's internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17) and rinsing (n=9) techniques.Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 µm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 µm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers.The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 µm) that could, conceivably, settle onto the surgical site.

  1. Exposure to airborne microorganisms, dust and endotoxin during processing of peppermint and chamomile herbs on farms.

    PubMed

    Skórska, Czesława; Sitkowska, Jolanta; Krysińska-Traczyk, Ewa; Cholewa, Grazyna; Dutkiewicz, Jacek

    2005-01-01

    The aim of this study was to determine the levels of microorganisms, dust and endotoxin in the air during processing of peppermint (Mentha piperita) and chamomile (Matricaria recutita) by herb farmers, and to examine the species composition of airborne microflora. Air samples were collected on glass fibre filters by use of personal samplers on 13 farms owned by herb cultivating farmers, located in Lublin province (eastern Poland). The concentrations of total viable microorganisms (bacteria + fungi) in the farm air during processing of peppermint herb were large, within a range from 895.1-6,015.8 x 10(3) cfu/m(3) (median 1,055.3 x 10(3) cfu/m(3)). During processing of chamomile herb they were much lower and varied within a range from 0.88-295.6 x 10(3) cfu/m(3) (median 27.3 x 10(3) cfu/m(3)). Gram-negative bacteria distinctly prevailed during processing of peppermint leaves, forming 46.4-88.5 % of the total airborne microflora. During processing of chamomile herb, Gram-negative bacteria were dominant at 3 out of 6 sampling sites forming 54.7-75.3 % of total microflora, whereas at the remaining 3 sites the most common were fungi forming 46.2-99.9 % of the total count. The species Pantoea agglomerans (synonyms: Erwinia herbicola, Enterobacter agglomerans ), having strong allergenic and endotoxic properties, distinctly prevailed among Gram-negative isolates. Among fungi, the most common species was Alternaria alternata. The concentrations of airborne dust and endotoxin determined on the examined herb farms were large. The concentrations of airborne dust during peppermint and chamomile processing ranged from 86.7-958.9 mg/m(3), and from 1.1-499.2 mg/m(3), respectively (medians 552.3 mg/m(3) and 12.3 mg/m(3)). The concentrations of airborne endotoxin determined during peppermint and chamomile processing were within a wide range 1.53-208.33 microg/m(3) and 0.005-2604.19 microg/m(3) respectively (medians 57.3 microg/m(3) and 0.96 microg/m(3)). In conclusion, farmers

  2. Health assessment for New Lyme Landfill, Ashtabula, Ohio, Region 5. CERCLIS No. OHD980794614. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-30

    The New Lyme Landfill is a 40-acre facility operated from 1969 until 1978 as a trench and fill landfill with majority of the waste coming from industrial and commercial sources. Leachate includes both leachate seeps at the surface of the landfill and water that is either stagnant or moving very slowly in or out of the trenches. Organic compounds detected consisted of VOCs and phenolic compounds. Concentrations of inorganic compounds were generally an order-of-magnitude or more in ground water. Chrysotile asbestos fibers were found in two leachate water samples. The primary potential exposure pathways for leachate are direct contact ormore » inhalation of airborne asbestos fibers. Based on the nature of the contaminants and the hydrological conditions at the site, residential development of the area may not be suitable.« less

  3. Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production.

    PubMed

    Paoli, Luca; Winkler, Aldo; Guttová, Anna; Sagnotti, Leonardo; Grassi, Alice; Lackovičová, Anna; Senko, Dušan; Loppi, Stefano

    2017-05-01

    The content of selected elements (Al, As, Ca, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S, Ti, V and Zn) was measured in samples of the lichen Evernia prunastri exposed for 30, 90 and 180 days around a cement mill, limestone and basalt quarries and urban and agricultural areas in SW Slovakia. Lichens transplanted around the investigated quarries and the cement mill rapidly (30 days) reflected the deposition of dust-associated elements, namely Ca (at the cement mill and the limestone quarry) and Fe, Ti and V (around the cement mill and the basalt quarry), and their content remained significantly higher throughout the whole period (30-180 days) with respect to the surrounding environment. Airborne pollutants (such as S) progressively increased in the study area from 30 to 180 days. The magnetic properties of lichen transplants exposed for 180 days have been characterized and compared with those of native lichens (Xanthoria parietina) and neighbouring bark, soil and rock samples, in order to test the suitability of native and transplanted samples as air pollution magnetic biomonitors. The magnetic mineralogy was homogeneous in all samples, with the exception of the samples from the basalt quarry. The transplants showed excellent correlations between the saturation remanent magnetization (Mrs) and the content of Fe. Native samples had a similar magnetic signature, but the values of the concentration-dependent magnetic parameters were up to two orders of magnitude higher, reflecting higher concentrations of magnetic particles. The concentrations of As, Ca and Cr in lichens correlated with Mrs values after neglecting the samples from the basalt quarry, which showed distinct magnetic properties, suggesting the cement mill as a likely source. Conversely, Ti and Mn were mostly (but not exclusively) associated with dust from the basalt quarry. It is suggested that the natural geological characteristics of the substrate may strongly affect the magnetic properties of lichen thalli

  4. Detecting Airborne Mercury by Use of Gold Nanowires

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Soler, Jessica; Mung, Nosang; Nix, Megan

    2009-01-01

    Like the palladium chloride (PdCl2) films described in the immediately preceding article, gold nanowire sensors have been found to be useful for detecting airborne elemental mercury at concentrations on the order of parts per billion (ppb). Also like the PdCl2 films, gold nanowire sensors can be regenerated under conditions much milder than those necessary for regeneration of gold films that have been used as airborne-Hg sensors. The interest in nanowire sensors in general is prompted by the expectation that nanowires of a given material covering a given surface may exhibit greater sensitivity than does a film of the same material because nanowires have a greater surface area. In preparation for experiments to demonstrate this sensor concept, sensors were fabricated by depositing gold nanowires, variously, on microhotplate or microarray sensor substrates. In the experiments, the electrical resistances were measured while the sensors were exposed to air at a temperature of 25 C and relative humidity of about 30 percent containing mercury at various concentrations from 2 to 70 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury at ppb concentrations in room-temperature air and can be regenerated by exposure to clean flowing air at temperatures <40 C.

  5. [Respiratory protection provided by N95 filtering facepiece respirators and disposable medicine masks against airborne bacteria in different working environments].

    PubMed

    Lu, W; Zhu, X C; Zhang, X Y; Chen, Y T; Chen, W H

    2016-09-20

    Objective: To determine the relative protection provided by N95 filtering facepiece respirators (FFR) and disposable medicine masks (DMM) against airborne bacteria in different working environments. Methods: The field study was performed with 12 subjects wearing an N95 filtering facepiece respirator and a disposable medicine mask for 1h, respectively. Airborne microorganisms and bacteria samples from both the external (Ce) and the inner (Ci) surface of N95 FFR and DMM are collected. The Ce: Ci ratio was used to calculate the bacterial filtering proportion. Bacterial filtering efficiency (BFE) was measured using the JWL-2A Sampler. Results: The bacterial filtration efficiency of N95 FFR and DMM were 99.93% and 91.53%, respectively. There was significant difference between the two materials ( P <0.05). In summer, airborne bacterial concentration was higher than that in winter. In the same season, airborne bacterial concentration in hospital environment is higher than that in campus. The higher the airborne bacterial concentration, the greater bacterial contaminated on the external surface of the used masks. To all masks used in different working environment, bacterial contamination on the external surface was much greater than the inner surface ( P <0.01). Compared to N95 FFR, DMM had slighter bacterial contamination on the external surface and greater bacterial contamination on the inner surface. However, this difference was not significant ( P >0.05). The bacterial filtering proportion of N95 FFR is higher than DMM. These differences were significant in samples tested in summer ( P <0.05) , but were not significant in samples tested in winter ( P >0.05). Conclusion: Bacterial filtering efficiency of N95 respirator is superior to medicine mask, and this advantage become more obvious in high airborne bacterial concentration levels.

  6. Metagenomic investigation of the microbial diversity in a chrysotile asbestos mine pit pond, Lowell, Vermont, USA.

    PubMed

    Driscoll, Heather E; Vincent, James J; English, Erika L; Dolci, Elizabeth D

    2016-12-01

    Here we report on a metagenomics investigation of the microbial diversity in a serpentine-hosted aquatic habitat created by chrysotile asbestos mining activity at the Vermont Asbestos Group (VAG) Mine in northern Vermont, USA. The now-abandoned VAG Mine on Belvidere Mountain in the towns of Eden and Lowell includes three open-pit quarries, a flooded pit, mill buildings, roads, and > 26 million metric tons of eroding mine waste that contribute alkaline mine drainage to the surrounding watershed. Metagenomes and water chemistry originated from aquatic samples taken at three depths (0.5 m, 3.5 m, and 25 m) along the water column at three distinct, offshore sites within the mine's flooded pit (near 44°46'00.7673″, - 72°31'36.2699″; UTM NAD 83 Zone 18 T 0695720 E, 4960030 N). Whole metagenome shotgun Illumina paired-end sequences were quality trimmed and analyzed based on a translated nucleotide search of NCBI-NR protein database and lowest common ancestor taxonomic assignments. Our results show strata within the pit pond water column can be distinguished by taxonomic composition and distribution, pH, temperature, conductivity, light intensity, and concentrations of dissolved oxygen. At the phylum level, metagenomes from 0.5 m and 3.5 m contained a similar distribution of taxa and were dominated by Actinobacteria (46% and 53% of reads, respectively), Proteobacteria (45% and 38%, respectively), and Bacteroidetes (7% in both). The metagenomes from 25 m showed a greater diversity of phyla and a different distribution of reads than the two upper strata: Proteobacteria (60%), Actinobacteria (18%), Planctomycetes, (10%), Bacteroidetes (5%) and Cyanobacteria (2.5%), Armatimonadetes (< 1%), Verrucomicrobia (< 1%), Firmicutes (< 1%), and Nitrospirae (< 1%). Raw metagenome sequence data from each sample reside in NCBI's Short Read Archive (SRA ID: SRP056095) and are accessible through NCBI BioProject PRJNA277916.

  7. Airborne SAR systems for infrastructures monitoring

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio

    2017-04-01

    The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.

  8. Occupational exposure to airborne asbestos from phenolic molding material (Bakelite) during sanding, drilling, and related activities.

    PubMed

    Mowat, Fionna; Bono, Michael; Lee, R J; Tamburello, Susan; Paustenbach, Dennis

    2005-10-01

    In this study, a historical phenolic (Bakelite) molding material, BMMA-5353, was tested to determine the airborne concentrations of asbestos fibers released during four different activities (sawing, sanding, drilling, and cleanup of dust generated from these activities). Each activity was performed for 30 min, often in triplicate. The primary objective for testing BMMA-5353 was to quantitatively determine the airborne concentration of asbestos fibers, if any, in the breathing zone of workers. Uses of this product typically did not include sawing or sanding, but it may have been drilled occasionally. For this reason, only small quantities were sawed, sanded, and drilled in this simulation study. Personal (n = 40), area (n = 80), and background/clearance (n = 88) air samples were collected during each activity and analyzed for total fiber concentrations using phase contrast microscopy (PCM) and, for asbestos fiber counts, transmission electron microscopy (TEM). The raw PCM-total fiber concentrations were adjusted based on TEM analyses that reported the fraction of asbestos fibers, to derive a PCM-asbestos concentration that would enable calculation of an 8-hour time-weighted average (TWA). The estimated 8-hour TWAs ranged from 0.006 to 0.08 fibers per cubic centimeter using a variety of worker exposure scenarios. Therefore, assuming an exposure scenario in which a worker uses power tools to cut and sand products molded from BMMA-5353 and similar products in the manner evaluated in this study, airborne asbestos concentrations should not exceed current or historical occupational exposure limits.

  9. Risk assessment due to environmental exposures to fibrous particulates associated with taconite ore.

    PubMed

    Wilson, Richard; McConnell, Ernest E; Ross, M; Axten, Charles W; Nolan, Robert P

    2008-10-01

    In the early 1970s, it became a concern that exposure to the mineral fibers associated taconite ore processed in Silver Bay, Minnesota would cause asbestos-related disease including gastrointestinal cancer. At that time data gaps existed which have now been significantly reduced by further research. To further our understanding of the types of airborne fibers in Silver Bay we undertook a geological survey of their source the Peter Mitchell Pit, and found that there are no primary asbestos minerals at a detectable level. However we identified two non-asbestos types of fibrous minerals in very limited geological locales. Air sampling useful for risk assessment was done to determine the type, concentrations and size distribution of the population of airborne fibers around Silver Bay. Approximately 80% of the airborne fibers have elemental compositions consistent with cummingtonite-grunerite and the remaining 20% have elemental compositions in the tremolite-actinolite series. The mean airborne concentration of both fiber types is less than 0.00014 fibers per milliliter that is within the background level reported by the World Health Organization. We calculate the risk of asbestos-related mesothelioma and lung cancer using a variety of different pessimistic assumptions. (i) that all the non-asbestos fibers are as potent as asbestos fibers used in the EPA-IRIS listing for asbestos; with a calculated risk of asbestos-related cancer for environmental exposure at Silver Bay of 1 excess cancer in 28,500 lifetimes (or 35 excess cancers per 1,000,000 lifetimes) and secondly that taconite associated fibers are as potent as chrysotile the least potent form of asbestos. The calculated risk is less than 0.77 excess cancer case in 1,000,000 lifetimes. Finally, we briefly review the epidemiology studies of grunerite asbestos (amosite) focusing on the exposure conditions associated with increased risk of human mesothelioma.

  10. STATISTICAL ISSUES IN THE STUDY OF AIR POLLUTION INVOLVING AIRBORNE PARTICULATE MATTER

    EPA Science Inventory

    Epidemiological research in the early 1990s focusing on health effects of airborne particulate matter pointed to a statistical association between increases in concentration of particulate in ambient air and increases in daily nonaccidental mortality, particularly among the eld...

  11. The biological effect of asbestos exposure is dependent on ...

    EPA Pesticide Factsheets

    Abstract Functional groups on the surface of fibrous silicates can complex iron. We tested the postulate that 1) asbestos complexes and sequesters host cell iron resulting in a disruption of metal homeostasis and 2) this loss of essential metal results in an oxidative stress and biological effect in respiratory epithelial cells. Exposure of BEAS-2B cells to 50 μg/mL chrysotile resulted in diminished concentrations of mitochondrial iron. Pre-incubation of these cells with 200 μM ferric ammonium citrate (FAC) prevented significant mitochondrial iron loss following the same exposure. The host response to chrysotile included increased expression of the importer divalent metal transporter-1 (DMT1) supporting a functional iron deficiency. Incubation of BEAS-2B cells with both 200 μM FAC and 50 μg/mL chrysotile was associated with a greater cell accumulation of iron relative to either iron or chrysotile alone reflecting increased import to correct metal deficiency immediately following fiber exposure. Cellular oxidant generation was elevated after chrysotile exposure and this signal was diminished by co-incubation with 200 μM FAC. Similarly, exposure of BEAS-2B cells to 50 µg/mL chrysotile was associated with release of the pro-inflammatory mediators interleukin (IL)-6 and IL-8 and these changes were diminished by co-incubation with 200 μM FAC. We conclude that 1) the biological response following exposure to chrysotile is associated with complexation an

  12. Monitoring total endotoxin and (1 --> 3)-beta-D-glucan at the air exhaust of concentrated animal feeding operations.

    PubMed

    Yang, Xufei; Wang, Xinlei; Zhang, Yuanhui; Lee, Jongmin; Su, Jingwei; Gates, Richard S

    2013-10-01

    Mitigation of bioaerosol emissions from concentrated animal feeding operations (CAFOs) demands knowledge of bioaerosol concentrations feeding into an end-of-pipe air treatment process. The aim of this preliminary study was to measure total endotoxin and (1 --> 3)-beta-glucan concentrations at the air exhaust of 18 commercial CAFOs and to examine their variability with animal operation type (swine farrowing, swine gestation, swine weaning, swine finishing, manure belt laying hen, and tom turkey) and season (cold, mild, and hot). The measured airborne concentrations of total endotoxin ranged from 98 to 23,157 endotoxin units (EU)/m3, and the airborne concentrations of total (1 --> 3)-beta-D-glucan ranged from 2.4 to 537.9 ng/m3. Animal operation type in this study had a significant effect on airborne concentrations of total endotoxin and (1 --> 3)-beta-D-glucan but no significant effect on their concentrations in total suspended particulate (TSP). Both endotoxin and (1 --> 3)-beta-D-glucan attained their highest airborne concentrations in visited tom turkey buildings. Comparatively, season had no significant effect on airborne concentrations of total endotoxin or (1 --> 3)-beta-D-glucan. Endotoxin and (1 --> 3)-beta-glucan concentrations in TSP dust appeared to increase as the weather became warmer, and this seasonal effect was significant in swine buildings. Elevated indoor temperatures in the hot season were considered to facilitate the growth and propagation of bacteria and fungi, thus leading to higher biocomponent concentrations in TSP.

  13. High-Flow-Rate Impinger for the Study of Concentration, Viability, Metabolic Activity, and Ice-Nucleation Activity of Airborne Bacteria.

    PubMed

    Šantl-Temkiv, Tina; Amato, Pierre; Gosewinkel, Ulrich; Thyrhaug, Runar; Charton, Anaïs; Chicot, Benjamin; Finster, Kai; Bratbak, Gunnar; Löndahl, Jakob

    2017-10-03

    The study of airborne bacteria relies on a sampling strategy that preserves their integrity and in situ physiological state, e.g. viability, cultivability, metabolic activity, and ice-nucleation activity. Because ambient air harbors low concentrations of bacteria, an effective bioaerosol sampler should have a high sampling efficiency and a high airflow. We characterize a high-flow-rate impinger with respect to particle collection and retention efficiencies in the range 0.5-3.0 μm, and we investigated its ability to preserve the physiological state of selected bacterial species and seawater bacterial community in comparison with four commercial bioaerosol samplers. The collection efficiency increased with particle size and the cutoff diameter was between 0.5 and 1 μm. During sampling periods of 120-300 min, the impinger retained the cultivability, metabolic activity, viability, and ice-nucleation activity of investigated bacteria. Field studies in semiurban, high-altitude, and polar environments included periods of low bacterial air concentrations, thus demonstrating the benefits of the impinger's high flow rate. In conclusion, the impinger described here has many advantages compared with other bioaerosol samplers currently on the market: a potential for long sampling time, a high flow rate, a high sampling and retention efficiency, low costs, and applicability for diverse downstream microbiological and molecular analyses.

  14. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  15. Airborne lead and other elements derived from local fires in the Himalayas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, C.I.; Grimm, T.C.; Nasta, M.A.

    1981-12-18

    The combustion of wood and yak dung for heating and cooking in a populated Nepal Himalayan valley contributes significantly to the ambient airborne concentrations of lead, copper, aluminum, magnesium, and elemental and organic carbon. A comparison of the concentrations of these elements in fresh snow with corresponding values in air suggests that the pollution aerosol is confined to the valley, with pristine air aloft.

  16. Lung cancer mortality in North Carolina and South Carolina chrysotile asbestos textile workers.

    PubMed

    Elliott, Leslie; Loomis, Dana; Dement, John; Hein, Misty J; Richardson, David; Stayner, Leslie

    2012-06-01

    Studies of workers in two US cohorts of asbestos textile workers exposed to chrysotile (North Carolina (NC) and South Carolina (SC)) found increasing risk of lung cancer mortality with cumulative fibre exposure. However, the risk appeared to increase more steeply in SC, possibly due to differences in study methods. The authors conducted pooled analyses of the cohorts and investigated the exposure-disease relationship using uniform cohort inclusion criteria and statistical methods. Workers were included after 30 days of employment in a production job during qualifying years, and vital status ascertained through 2003 (2001 for SC). Poisson regression was used to estimate the exposure-response relationship between asbestos and lung cancer, using both exponential and linear relative rate models adjusted for age, sex, race, birth cohort and decade of follow-up. The cohort included 6136 workers, contributing 218,631 person-years of observation and 3356 deaths. Cumulative exposures at the four study facilities varied considerably. The pooled relative rate for lung cancer, comparing 100 f-yr/ml to 0 f-yr/ml, was 1.11 (95% CI 1.06 to 1.16) for the combined cohort, with different effects in the NC cohort (RR=1.10, 95% CI 1.03 to 1.16) and the SC cohort (RR = 1.67, 95% CI 1.44 to 1.93). Increased rates of lung cancer were significantly associated with cumulative fibre exposure overall and in both the Carolina asbestos-textile cohorts. Previously reported differences in exposure-response between the cohorts do not appear to be related to inclusion criteria or analytical methods.

  17. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-04-22

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30-500 nm, number concentration in range of 5 × 10²-10⁷ /cm³. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles.

  18. Compounds in airborne particulates - Salts and hydrocarbons. [at Cleveland, OH

    NASA Technical Reports Server (NTRS)

    King, R. B.; Antoine, A. C.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.

    1977-01-01

    Concentrations of 10 polycyclic aromatic hydrocarbons (PAH), the aliphatics as a group, sulfate, nitrate, fluoride, acidity, and carbon in the airborne particulate matter were measured at 16 sites in Cleveland, OH over a 1-year period during 1971 and 1972. Analytical methods used included gas chromatography, colorimetry, and combustion techniques. Uncertainties in the concentrations associated with the sampling procedures, and the analytical methods are evaluated. The data are discussed relative to other studies and source origins. High concentrations downwind of coke ovens for 3,4 benzopyrene are discussed. Hydrocarbon correlation studies indicated no significant relations among compounds studied.

  19. [Occupational exposure to airborne fungi and bacteria in a household recycled container sorting plant ].

    PubMed

    Solans, Xavier; Alonso, Rosa María; Constans, Angelina; Mansilla, Alfonso

    2007-06-01

    Several studies have showed an association between the work in waste treatment plants and occupational health problems such as irritation of skin, eyes and mucous membranes, pulmonary diseases, gastrointestinal problems and symptoms of organic dust toxic syndrome (ODTS). These symptoms have been related to bioaerosol exposure. The aim of this study was to investigate the occupational exposure to biological agents in a plant sorting source-separated packages (plastics materials, ferric and non-ferric metals) household waste. Airborne samples were collected with M Air T Millipore sampler. The concentration of total fungi and bacteria and gram-negative bacteria were determined and the most abundant genera were identified. The results shown that the predominant airborne microorganisms were fungi, with counts greater than 12,000 cfu/m(3) and gram-negative bacteria, with a environmental concentration between 1,395 and 5,280 cfu/m(3). In both cases, these concentrations were higher than levels obtained outside of the sorting plant. Among the fungi, the predominant genera were Penicillium and Cladosporium, whereas the predominant genera of gram-negative bacteria were Escherichia, Enterobacter, Klebsiella and Serratia. The present study shows that the workers at sorting source-separated packages (plastics materials, ferric and non-ferric metals) domestic waste plant may be exposed to airborne biological agents, especially fungi and gram-negative bacteria.

  20. Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas.

    PubMed

    Maya-Manzano, José María; Fernández-Rodríguez, Santiago; Smith, Matt; Tormo-Molina, Rafael; Reynolds, Andrew M; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Sadyś, Magdalena

    2016-11-15

    The pollen grains of Quercus spp. (oak trees) are allergenic. This study investigates airborne Quercus pollen in SW Spain with the aim identifying favourable conditions for atmospheric transport and potential sources areas. Two types of Quercus distribution maps were produced. Airborne Quercus pollen concentrations were measured at three sites located in the Extremadura region (SW Spain) for 3 consecutive years. The seasonal occurrence of Quercus pollen in the air was investigated, as well as days with pollen concentrations ≥80Pm(-3). The distance that Quercus pollen can be transported in appreciable numbers was calculated using clusters of back trajectories representing the air mass movement above the source areas (oak woodlands), and by using a state-of-the-art dispersion model. The two main potential sources of Quercus airborne pollen captured in SW Spain are Q. ilex subsp. ballota and Q. suber. The minimum distances between aerobiological stations and Quercus woodlands have been estimated as: 40km (Plasencia), 66km (Don Benito), 62km (Zafra) from the context of this study. Daily mean Quercus pollen concentration can exceed 1,700Pm(-3), levels reached not less than 24 days in a single year. High Quercus pollen concentration were mostly associated with moderate wind speed events (6-10ms(-1)), whereas that a high wind speed (16-20ms(-1)) seems to be associated with low concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  2. [Concentration and Size Distribution of Bioaerosols in Indoor Environment of University Dormitory During the Plum Rain Period].

    PubMed

    Liu, Ting; Li, Lu; Zhang, Jia-quan; Zhan, Chang-lin; Liu, Hong-xia; Zheng, Jing-ru; Yao, Rui-zhen; Cao, Jun-ji

    2016-04-15

    Bioaerosols of university dormitory can spread through air and cause a potential health risk for student staying in indoor environment. To quantify the characteristics of bioaerosols in indoor environment of university dormitory, concentration and size distribution of culturable bioaerosols were detected during the plum rain period, the correlations of culturable bioaerosol with concentration of particulate matter, the ambient temperature and relative humidity were analyzed using Spearman's correlation coefficient and finally the changes of size distribution of culturable bioaerosol caused by activities of students were detected. The results showed that the mean concentrations of culturable airborne bacteria and fungi were (2133 +/- 1617) CFUm' and (3111 +/- 2202) CFU x m(-3). The concentrations of culturable airborne bacteria and fungi exhibited negative correlation with PM1, PM2.5, and PM10, respectively. The respirable fractions of bacteria exhibited positive correlation with PM2.5, and the respirable fractions of fungi exhibited significant positive correlation with PM10. Ambient temperature had positive correlation with culturable airborne bacteria and fungi, and relative humidity had negative correlation with culturable airborne bacteria and fungi. In the afternoon, concentrations of culturable airborne fungi in indoor environment of university dormitory significantly increased, and the size distribution of culturable hioaerosols was different in the morning and afternoon.

  3. Exposure to airborne microorganisms, dust and endotoxin during processing of valerian roots on farms.

    PubMed

    Skórska, Czesława; Sitkowska, Jolanta; Krysińska-Traczyk, Ewa; Cholewa, Grazyna; Dutkiewicz, Jacek

    2005-01-01

    The aim of this study was to determine the levels of microorganisms, dust and endotoxin in the air during various stages of valerian (Valeriana officinalis) roots processing by herb farmers and to examine the species composition of airborne microflora. Air samples were collected on glass fibre filters by use of personal samplers on 15 farms owned by valerian cultivating farmers, located in Lublin province (eastern Poland). The concentrations of total viable microorganisms (bacteria + fungi) in the air showed a marked variability and were within a range of 0.95-7,966.6 x 10(3) cfu/m (3). Though median was relatively low (10.75 x 10(3) cfu/m (3)), on 4 farms the concentrations exceeded the level of 10(5) cfu/m (3) and on 1 farm the level of 10(6) cfu/m (3). During the processing of valerian roots, distinct changes could be observed in the composition of airborne microflora. In the first stages of processing, the freshly dug and washed roots until shaking in the drying room, the most numerous were Gram-negative bacteria of the family Pseudomonadaceae (mostly Stenotrophomonas maltophilia, Pseudomonas chlororaphis and Pseudomonas fluorescens). After drying, the dominant organisms were thermo-resistant endospore-forming bacilli (Bacillus spp.) and fungi, among which prevailed Aspergillus fumigatus. Altogether, 29 species or genera of bacteria and 19 species or genera of fungi were identified in the farm air during valerian processing, of these, 10 and 12 species or genera respectively were reported as having allergenic and/or immunotoxic properties. The concentrations of airborne dust and endotoxin on the examined farms were very large and ranged from 10.0-776.7 mg/m (3), and from 0.15-24,448.2 microg/m (3), respectively (medians 198.3 mg/m (3) and 40.48 microg/m (3)). In conclusion, farmers cultivating valerian could be exposed during processing of valerian roots to large concentrations of airborne microorganisms, dust and endotoxin posing a risk of work

  4. Monitor for detecting and assessing exposure to airborne nanoparticles

    NASA Astrophysics Data System (ADS)

    Marra, Johan; Voetz, Matthias; Kiesling, Heinz-Jürgen

    2010-01-01

    An important safety aspect of the workplace environment concerns the severity of its air pollution with nanoparticles (NP; <100 nm) and ultrafine particles (UFP; <300 nm). Depending on their size and chemical nature, exposure to these particles through inhalation can be hazardous because of their intrinsic ability to deposit in the deep lung regions and the possibility to subsequently pass into the blood stream. Recommended safety measures in the nanomaterials industry are pragmatic, aiming at exposure minimization in general, and advocating continuous control by monitoring both the workplace air pollution level and the personal exposure to airborne NPs. This article describes the design and operation of the Aerasense NP monitor that enables intelligence gathering in particular with respect to airborne particles in the 10-300 nm size range. The NP monitor provides real time information about their number concentration, average size, and surface areas per unit volume of inhaled air that deposit in the various compartments of the respiratory tract. The monitor's functionality relies on electrical charging of airborne particles and subsequent measurements of the total particle charge concentration under various conditions. Information obtained with the NP monitor in a typical workplace environment has been compared with simultaneously recorded data from a Scanning Mobility Particle Sizer (SMPS) capable of measuring the particle size distribution in the 11-1086 nm size range. When the toxicological properties of the engineered and/or released particles in the workplace are known, personal exposure monitoring allows a risk assessment to be made for a worker during each workday, when the workplace-produced particles can be distinguished from other (ambient) particles.

  5. Resuspension of soil as a source of airborne lead near industrial facilities and highways.

    PubMed

    Young, Thomas M; Heeraman, Deo A; Sirin, Gorkem; Ashbaugh, Lowell L

    2002-06-01

    Geologic materials are an important source of airborne particulate matter less than 10 microm aerodynamic diameter (PM10), but the contribution of contaminated soil to concentrations of Pb and other trace elements in air has not been documented. To examine the potential significance of this mechanism, surface soil samples with a range of bulk soil Pb concentrations were obtained near five industrial facilities and along roadsides and were resuspended in a specially designed laboratory chamber. The concentration of Pb and other trace elements was measured in the bulk soil, in soil size fractions, and in PM10 generated during resuspension of soils and fractions. Average yields of PM10 from dry soils ranged from 0.169 to 0.869 mg of PM10/g of soil. Yields declined approximately linearly with increasing geometric mean particle size of the bulk soil. The resulting PM10 had average Pb concentrations as high as 2283 mg/kg for samples from a secondary Pb smelter. Pb was enriched in PM10 by 5.36-88.7 times as compared with uncontaminated California soils. Total production of PM10 bound Pb from the soil samples varied between 0.012 and 1.2 mg of Pb/kg of bulk soil. During a relatively large erosion event, a contaminated site might contribute approximately 300 ng/m3 of PM10-bound Pb to air. Contribution of soil from contaminated sites to airborne element balances thus deserves consideration when constructing receptor models for source apportionment or attempting to control airborne Pb emissions.

  6. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change.

    PubMed

    García de León, David; García-Mozo, Herminia; Galán, Carmen; Alcázar, Purificación; Lima, Mauricio; González-Andújar, José L

    2015-10-15

    Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comprehensive analysis of airborne contaminants from recent Spacelab missions

    NASA Technical Reports Server (NTRS)

    Matney, M. L.; Boyd, J. F.; Covington, P. A.; Leano, H. J.; Pierson, D. L.; Limero, T. F.; James, J. T.

    1993-01-01

    The Shuttle experiences unique air contamination problems because of microgravity and the closed environment. Contaminant build-up in the closed atmosphere and the lack of a gravitational settling mechanism have produced some concern in previous missions about the amount of solid and volatile airborne contaminants in the Orbiter and Spacelab. Degradation of air quality in the Orbiter/Spacelab environment, through processes such as chemical contamination, high solid-particulate levels, and high microbial levels, may affect crew performance and health. A comprehensive assessment of the Shuttle air quality was undertaken during STS-40 and STS-42 missions, in which a variety of air sampling and monitoring techniques were employed to determine the contaminant load by characterizing and quantitating airborne contaminants. Data were collected on the airborne concentrations of volatile organic compounds, microorganisms, and particulate matter collected on Orbiter/Spacelab air filters. The results showed that STS-40/42 Orbiter/Spacelab air was toxicologically safe to breathe, except during STS-40 when the Orbiter Refrigerator/Freezer unit was releasing noxious gases in the middeck. On STS-40, the levels of airborne bacteria appeared to increase as the mission progressed; however, this trend was not observed for the STS-42 mission. Particulate matter in the Orbiter/Spacelab air filters was chemically analyzed in order to determine the source of particles. Only small amounts of rat hair and food bar (STS-40) and traces of soiless medium (STS-42) were detected in the Spacelab air filters, indicating that containment for Spacelab experiments was effective.

  8. Trapping of Individual Airborne Absorbing Particles Using a Counterflow Nozzle and Photophoretic Trap for Continuous Sampling and Analysis

    DTIC Science & Technology

    2014-03-19

    particles from air. The key parts of the system are a conical photophoretic optical trap and a counter-flow coaxial-double- nozzle that concentrates and then...distribution is unlimited. Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous...airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis Report Title We describe an

  9. Airborne cow allergen, ammonia and particulate matter at homes vary with distance to industrial scale dairy operations: an exposure assessment

    PubMed Central

    2011-01-01

    Background Community exposures to environmental contaminants from industrial scale dairy operations are poorly understood. The purpose of this study was to evaluate the impact of dairy operations on nearby communities by assessing airborne contaminants (particulate matter, ammonia, and cow allergen, Bos d 2) associated with dairy operations inside and outside homes. Methods The study was conducted in 40 homes in the Yakima Valley, Washington State where over 61 dairies operate. Results A concentration gradient was observed showing that airborne contaminants are significantly greater at homes within one-quarter mile (0.4 km) of dairy facilities, outdoor Bos d 2, ammonia, and TD were 60, eight, and two times higher as compared to homes greater than three miles (4.8 km) away. In addition median indoor airborne Bos d 2 and ammonia concentrations were approximately 10 and two times higher in homes within one-quarter mile (0.4 km) compared to homes greater than three miles (4.8 km) away. Conclusions These findings demonstrate that dairy operations increase community exposures to agents with known human health effects. This study also provides evidence that airborne biological contaminants (i.e. cow allergen) associated with airborne particulate matter are statistically elevated at distances up to three miles (4.8 km) from dairy operations. PMID:21838896

  10. Testing an innovative device against airborne Aspergillus contamination.

    PubMed

    Desoubeaux, Guillaume; Bernard, Marie-Charlotte; Gros, Valérie; Sarradin, Pierre; Perrodeau, Elodie; Vecellio, Laurent; Piscopo, Antoine; Chandenier, Jacques; Bernard, Louis

    2014-08-01

    Aspergillus fumigatus is a major airborne nosocomial pathogen that is responsible for severe mycosis in immunocompromised patients. We studied the efficacy of an innovative mobile air-treatment device in eliminating A. fumigatus from the air following experimental massive contamination in a high-security room. Viable mycological particles were isolated from sequential air samples in order to evaluate the device's effectiveness in removing the fungus. The concentration of airborne conidia was reduced by 95% in 18 min. Contamination was reduced below the detection threshold in 29 min, even when the machine was at the lowest airflow setting. In contrast, during spontaneous settling with no air treatment, conidia remained airborne for more than 1 h. This indoor air contamination model provided consistent and reproducible results. Because the air purifier proved to be effective at eliminating a major contaminant, it may prove useful in preventing air-transmitted disease agents. In an experimental space mimicking a hospital room, the AirLyse air purifier, which uses a combination of germicidal ultraviolet C irradiation and titanium photocatalysis, effectively eliminated Aspergillus conidia. Such a mobile device may be useful in routine practice for lowering microbiological air contamination in the rooms of patients at risk. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Implementation of a near-real time cross-border web-mapping platform on airborne particulate matter (PM) concentration with open-source software

    NASA Astrophysics Data System (ADS)

    Knörchen, Achim; Ketzler, Gunnar; Schneider, Christoph

    2015-01-01

    Although Europe has been growing together for the past decades, cross-border information platforms on environmental issues are still scarce. With regard to the establishment of a web-mapping tool on airborne particulate matter (PM) concentration for the Euregio Meuse-Rhine located in the border region of Belgium, Germany and the Netherlands, this article describes the research on methodical and technical backgrounds implementing such a platform. An open-source solution was selected for presenting the data in a Web GIS (OpenLayers/GeoExt; both JavaScript-based), applying other free tools for data handling (Python), data management (PostgreSQL), geo-statistical modelling (Octave), geoprocessing (GRASS GIS/GDAL) and web mapping (MapServer). The multilingual, made-to-order online platform provides access to near-real time data on PM concentration as well as additional background information. In an open data section, commented configuration files for the Web GIS client are being made available for download. Furthermore, all geodata generated by the project is being published under public domain and can be retrieved in various formats or integrated into Desktop GIS as Web Map Services (WMS).

  12. Occupational exposure to airborne mercury during gold mining operations near El Callao, Venezuela.

    PubMed

    Drake, P L; Rojas, M; Reh, C M; Mueller, C A; Jenkins, F M

    2001-04-01

    The National Institute for Occupational Safety and Health (NIOSH) recently conducted a cross-sectional study during gold mining operations near El Callao, Venezuela. The purpose of the study was to assess mercury exposures and mercury-related microdamage to the kidneys. The study consisted of concurrent occupational hygiene and biological monitoring, and an examination of the processing techniques employed at the different mining facilities. Mercury was used in these facilities to remove gold by forming a mercury-gold amalgam. The gold was purified either by heating the amalgam in the open with a propane torch or by using a small retort. Thirty-eight workers participated in this study. Some participants were employed by a large mining company, while others were considered "informal miners" (self-employed). Mercury exposure was monitored by sampling air from the workers' breathing zones. These full-shift air samples were used to calculate time-weighted average (TWA) mercury exposure concentrations. A questionnaire was administered and a spot urine sample was collected. Each urine sample was analyzed for mercury, creatinine, and N-acetyl-beta-D-glucosaminidase (NAG). The range for the 8-h TWA airborne mercury exposure concentrations was 0.1 to 6,315 micrograms/m3, with a mean of 183 micrograms/m3. Twenty percent of the TWA airborne mercury exposure measurements were above the NIOSH recommended exposure limit (REL) of 50 micrograms/m3, and 26% exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 micrograms/m3. The mean urine mercury concentration was 101 micrograms/g creatinine (microgram/g-Cr), and the data ranged from 2.5 to 912 micrograms/g-Cr. Forty-two percent of the study participants had urine mercury concentrations that exceeded the ACGIH biological exposure index (BEI) of 35 micrograms/g-Cr. Urinary NAG excretion is considered a biological marker of preclinical, nonspecific microdamage to the kidney

  13. Data Analysis of Airborne Electromagnetic Bathymetry.

    DTIC Science & Technology

    1985-04-01

    7 AD-R 58 889 DATA ANALYSIS OF AIRBORNE ELECTROMAGNETIC BRTHYMETRY i/i (U) NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL STRTION MS R ZOLLINGER...Naval Ocean Research and Development Activity NSTL, Mississippi 39529 NORDA Report 93 April 1985 AD-A158 809 - Data Analysis of Airborne Electromagnetic ...8217 - Foreword CI Airborne electromagnetic (AEM) systems have traditionally been used for detecting anomalous conductors in the

  14. Development of a fibre size-specific job-exposure matrix for airborne asbestos fibres.

    PubMed

    Dement, J M; Kuempel, E D; Zumwalde, R D; Smith, R J; Stayner, L T; Loomis, D

    2008-09-01

    To develop a method for estimating fibre size-specific exposures to airborne asbestos dust for use in epidemiological investigations of exposure-response relations. Archived membrane filter samples collected at a Charleston, South Carolina asbestos textile plant during 1964-8 were analysed by transmission electron microscopy (TEM) to determine the bivariate diameter/length distribution of airborne fibres by plant operation. The protocol used for these analyses was based on the direct transfer method published by the International Standards Organization (ISO), modified to enhance fibre size determinations, especially for long fibres. Procedures to adjust standard phase contrast microscopy (PCM) fibre concentration measures using the TEM data in a job-exposure matrix (JEM) were developed in order to estimate fibre size-specific exposures. A total of 84 airborne dust samples were used to measure diameter and length for over 18,000 fibres or fibre bundles. Consistent with previous studies, a small proportion of airborne fibres were longer than >5 microm in length, but the proportion varied considerably by plant operation (range 6.9% to 20.8%). The bivariate diameter/length distribution of airborne fibres was expressed as the proportion of fibres in 20 size-specific cells and this distribution demonstrated a relatively high degree of variability by plant operation. PCM adjustment factors also varied substantially across plant operations. These data provide new information concerning the airborne fibre characteristics for a previously studied textile facility. The TEM data demonstrate that the vast majority of airborne fibres inhaled by the workers were shorter than 5 mum in length, and thus not included in the PCM-based fibre counts. The TEM data were used to develop a new fibre size-specific JEM for use in an updated cohort mortality study to investigate the role of fibre dimension in the development of asbestos-related lung diseases.

  15. Comparative study of airborne Alternaria conidia levels in two cities in Castilla-La Mancha (central Spain), and correlations with weather-related variables.

    PubMed

    Sabariego, Silvia; Bouso, Veronica; Pérez-Badia, Rosa

    2012-01-01

    Alternaria conidia are among the airborne biological particles known to trigger allergic respiratory diseases. The presented paper reports on a study of seasonal variations in airborne Alternaria conidia concentrations in 2 cities in the central Spanish region of Castilla-La Mancha, Albacete and Toledo. The influence of weather-related variables on airborne conidia levels and distribution was also analysed. Sampling was carried out from 2008-2010 using a Hirst sampler, following the methodology established by the Spanish Aerobiology Network. Annual airborne Alternaria conidia counts were higher in Toledo (annual mean 3,936 conidia) than in Albacete (annual mean 2,268 conidia). Conidia were detected in the air throughout the year, but levels peaked between May-September. Considerable year-on-year variations were recorded both in total annual counts and in seasonal distribution. A significant positive correlation was generally found between mean daily Alternaria counts and both temperature and hours of sunlight, while a significant negative correlation was recorded for relative humidity, daily and cumulative rainfall, and wind speed. Regression models indicated that between 31%-52% of the variation in airborne Alternaria conidia concentrations could be explained by weather-related variables.

  16. Real-time detection of airborne fluorescent bioparticles in Antarctica

    NASA Astrophysics Data System (ADS)

    Crawford, Ian; Gallagher, Martin W.; Bower, Keith N.; Choularton, Thomas W.; Flynn, Michael J.; Ruske, Simon; Listowski, Constantino; Brough, Neil; Lachlan-Cope, Thomas; Fleming, Zoë L.; Foot, Virginia E.; Stanley, Warren R.

    2017-12-01

    We demonstrate, for the first time, continuous real-time observations of airborne bio-fluorescent aerosols recorded at the British Antarctic Survey's Halley VI Research Station, located on the Brunt Ice Shelf close to the Weddell Sea coast (lat 75°34'59'' S, long 26°10'0'' W) during Antarctic summer, 2015. As part of the NERC MAC (Microphysics of Antarctic Clouds) aircraft aerosol cloud interaction project, observations with a real-time ultraviolet-light-induced fluorescence (UV-LIF) spectrometer were conducted to quantify airborne biological containing particle concentrations along with dust particles as a function of wind speed and direction over a 3-week period. Significant, intermittent enhancements of both non- and bio-fluorescent particles were observed to varying degrees in very specific wind directions and during strong wind events. Analysis of the particle UV-induced emission spectra, particle sizes and shapes recorded during these events suggest the majority of particles were likely a subset of dust with weak fluorescence emission responses. A minor fraction, however, were likely primary biological particles that were very strongly fluorescent, with a subset identified as likely being pollen based on comparison with laboratory data obtained using the same instrument. A strong correlation of bio-fluorescent particles with wind speed was observed in some, but not all, periods. Interestingly, the fraction of fluorescent particles to total particle concentration also increased significantly with wind speed during these events. The enhancement in concentrations of these particles could be interpreted as due to resuspension from the local ice surface but more likely due to emissions from distal sources within Antarctica as well as intercontinental transport. Likely distal sources identified by back trajectory analyses and dispersion modelling were the coastal ice margin zones in Halley Bay consisting of bird colonies with likely associated high bacterial

  17. Slightly acidic electrolyzed water for reducing airborne microorganisms in a layer breeding house.

    PubMed

    Hao, Xiaoxia; Cao, Wei; Li, Baoming; Zhang, Qiang; Wang, Chaoyuan; Ge, Liangpeng

    2014-04-01

    Reducing airborne microorganisms may potentially improve the environment in layer breeding houses. The effectiveness of slightly acidic electrolyzed water (SAEW; pH 5.29-6.30) in reducing airborne microorganisms was investigated in a commercial layer house in northern China. The building had a tunnel-ventilation system, with an evaporative cooling. The experimental area was divided into five zones along the length of the house, with zone 1 nearest to an evaporative cooling pad and zone 5 nearest to the fans. The air temperature, relative humidity, dust concentration, and microbial population were measured at the sampling points in the five zones during the study period. The SAEW was sprayed by workers in the whole house. A six-stage air microbial sampler was used to measure airborne microbial population. Results showed that the population of airborne bacteria and fungi were sharply reduced by 0.71 x 10(5) and 2.82 x 10(3) colony-forming units (CFU) m(-3) after 30 min exposure to SAEW, respectively. Compared with the benzalkonium chloride (BC) solution and povidone-iodine (PVP-I) solution treatments, the population reductions of airborne fungi treated by SAEW were significantly (P < 0.05) more, even though the three disinfectants can decrease both the airborne bacteria and fungi significantly (P < 0.05) 30 min after spraying. There are no effective methods for reducing airborne microbial levels in tunnel-ventilated layer breeding houses; additionally, there is limited information available on airborne microorganism distribution. This research investigated the spatial distribution of microbial population, and the effectiveness of spraying slightly acidic electrolyzed water in reducing microbial levels. The research revealed that slightly acidic electrolyzed water spray was a potential method for reducing microbial presence in layer houses. The knowledge gained in this research about the microbial population variations in the building may assist producers in managing

  18. Detection and quantification of snow algae with an airborne imaging spectrometer.

    PubMed

    Painter, T H; Duval, B; Thomas, W H; Mendez, M; Heintzelman, S; Dozier, J

    2001-11-01

    We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, beta-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 microm and chlorophyll a and b absorption in the wavelength range from 0.6 to 0.7 microm. The integral of the scaled chlorophyll a and b absorption feature (I(0.68)) varies with algal concentration (C(a)). Using the relationship C(a) = 81019.2 I(0.68) + 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km(2) region imaged, the mean algal concentration was 1,306 cells ml(-1), the standard deviation was 1,740 cells ml(-1), and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km(2) snow-covered area, which gave an areal biomass concentration of 0.033 g/m(2).

  19. Detection and Quantification of Snow Algae with an Airborne Imaging Spectrometer

    PubMed Central

    Painter, Thomas H.; Duval, Brian; Thomas, William H.; Mendez, Maria; Heintzelman, Sara; Dozier, Jeff

    2001-01-01

    We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, β-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 μm and chlorophyll a and b absorption in the wavelength range from 0.6 to 0.7 μm. The integral of the scaled chlorophyll a and b absorption feature (I0.68) varies with algal concentration (Ca). Using the relationship Ca = 81019.2 I0.68 + 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km2 region imaged, the mean algal concentration was 1,306 cells ml−1, the standard deviation was 1,740 cells ml−1, and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km2 snow-covered area, which gave an areal biomass concentration of 0.033 g/m2. PMID:11679355

  20. Airborne concentrations of benzene for dock workers at the ExxonMobil refinery and chemical plant, Baton Rouge, Louisiana, USA (1977-2005).

    PubMed

    Widner, Thomas E; Gaffney, Shannon H; Panko, Julie M; Unice, Kenneth M; Burns, Amanda M; Kreider, Marisa; Marshall, J Ralph; Booher, Lindsay E; Gelat, Richard H; Paustenbach, Dennis J

    2011-03-01

    Benzene is a natural constituent of crude oil and natural gas (0.1-3.0% by volume). Materials that are refined from crude oil and natural gas contain some residual benzene. Few datasets have appeared in the peer-reviewed literature characterizing exposures to benzene at specific refineries or during specific tasks. In this study, historical samples of airborne benzene collected from 1977-2005 at the ExxonMobil Baton Rouge, Louisiana, USA, docks were evaluated. Workers were categorized into 11 job titles, and both non-task (≤180 min sample duration) and task-related (<180 min) benzene concentrations were assessed. Approximately 800 personal air samples (406 non-task and 397 task-related) were analyzed. Non-task samples showed that concentrations varied significantly across job titles and generally resulted from exposures during short-duration tasks such as tank sampling. The contractor - tankerman job title had the highest average concentration [N=38, mean 1.4 parts per million (ppm), standard deviation (SD) 2.6]. Task-related samples indicated that the highest exposures were associated with the disconnection of cargo loading hoses (N=134, mean 11 ppm, SD 32). Non-task samples for specific job categories showed that concentrations have decreased over the past 30 years. Recognizing the potential for benzene exposure, this facility has required workers to use respiratory protective equipment during selected tasks and activities; thus, the concentrations measured were likely greater than those that the employee actually experienced. This study provides a job title- and task-focused analysis of occupational exposure to benzene during dock facility operations that is insightful for understanding the Baton Rouge facility and others similar to it over the past 30 years.

  1. Relationships between ground and airborne gamma-ray spectrometric survey data, North Ras Millan, Southern Sinai Peninsula, Egypt.

    PubMed

    Youssef, Mohamed A S

    2016-02-01

    In the last decades of years, there was considerable growth in the use of airborne gamma-ray spectrometry. With this growth, there was an increasing need to standardize airborne measurements, so that they can be independent of survey parameters. Acceptable procedures were developed for converting airborne to ground gamma-ray spectrometric measurements of total-count intensity as well as, potassium, equivalent uranium and equivalent thorium concentrations, due to natural sources of radiation. The present study aims mainly to establish relationships between ground and airborne gamma-ray spectrometric data, North Ras Millan, Southern Sinai Peninsula, Egypt. The relationships between airborne and ground gamma-ray spectrometric data were deduced for the original and separated rock units in the study area. Various rocks in the study area, represented by Quaternary Wadi sediments, Cambro-Ordovician sandstones, basic dykes and granites, are shown on the detailed geologic map. The structures are displayed, which located on the detailed geologic map, are compiled from the integration of previous geophysical and surface geological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Anthropogenic Osmium in Airborne Particles from Woods Hole, Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, B.; Sen, I. S.; Geboy, N.

    2012-12-01

    The global geochemical cycle of osmium has been significantly disturbed by the introduction of automobile exhaust catalysts to convert noxious gas emissions into more benign forms. Anthropogenic osmium has been reported in rainwater, snow, and in the urban airborne particles from around the world to reveal global-scale osmium pollution [1, 2]. In this study, we report on the platinum group element (PGE) concentrations and osmium isotope ratios of airborne particles (PM10) collected in Woods Hole, a small coastal town in Massachusetts to better understand inputs of anthropogenic osmium to rural environments. We further investigate the use of osmium isotopes to track sources of airborne particles and support source apportionment studies on a continental scale. The samples used in this study were collected at Woods Hole Oceanographic Institution over one year (2008-2009). From this collection twelve samples for which the backward air mass trajectories have been determined were selected for osmium isotope analyses. Our results show that the osmium and platinum concentrations are an order of magnitude lower when compared to downtown Boston [2]. The average Os, Pt and Ir concentrations are 0.006±0.012, 0.019±0.023, and 0.685±0.634 pg m-3, respectively. The 187Os/188Os of the aerosols range from 0.275 to 0.788. As continental crust is radiogenic (187Os/188Os >1) and PGE ore bodies generally have unradiogenic 187Os/188Os (~0.2), the unradiogenic 187Os/188Os signature of the aerosols indicates anthropogenic contributions. With 95% of the total osmium mobilization on land being attributed to human activities [3], it is clear that human imprint on airborne particles is not restricted to urban centers with high traffic flows, but also affects rural environments. Aerosol particles that have backward air mass trajectories from the Southwest, the densely populated and industrialized Eastern seaboard, are characterized by unradiogenic osmium, while air masses from the North

  3. Prospecting by sampling and analysis of airborne particulates and gases

    DOEpatents

    Sehmel, G.A.

    1984-05-01

    A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

  4. Airborne organophosphate pesticides drift in Mediterranean climate: The importance of secondary drift

    NASA Astrophysics Data System (ADS)

    Zivan, Ohad; Segal-Rosenheimer, Michal; Dubowski, Yael

    2016-02-01

    Pesticide application is a short-term air-pollution episode with near and far field effects due to atmospheric drift. In order to better evaluate resulting air concentrations in nearby communities following pesticide application, measurements of airborne pesticides were conducted at ∼70 m from field edge. This was done following three different application events of the organophosphate pesticide Chlorpyrifos in a persimmon orchard. Complementary information on larger spatial scale was obtained using CALPUFF modeling in which application and meteorological data was used to better evaluate dispersion patterns. Measurements indicated high airborne concentrations during application hours (few μg m-3 for 8 h average), which dropped to tens of ng m-3 in the following days. Measured atmospheric concentrations show that secondary drift (i.e., post-application drift) involves significant loads of pesticides and hence should not be ignored in exposure considerations. Furthermore, CALPUFF modeling revealed the complex dispersion pattern when weak winds prevailed, and showed that during the 24 h after application air concentrations reached levels above the hourly Texas effect screening level (0.1 μg m-3). Interestingly, weak winds on the night after application resulted in a secondary peak in measured and modeled air concentrations. Long exposure time (when secondary drift is considered) and concentrations measured following such common air-assisted orchard application, suggest pesticide drift may have health repercussions that are currently unknown, and emphasize the need for further epidemiological studies.

  5. Airborne particulate matter and spacecraft internal environments

    NASA Technical Reports Server (NTRS)

    Liu, Benjamin Y. H.; Rubow, Kenneth L.; Mcmurry, Peter H.; Kotz, Thomas J.; Russo, Dane

    1991-01-01

    Instrumentation, consisting of a Shuttle Particle Sampler (SPS) and a Shuttle Particle Monitor (SPM), has been developed to characterize the airborne particulate matter in the Space Shuttle cabin during orbital flight. The SPS size selectively collects particles in four size fractions (0-2.5, 2.5-10, 10-100, and greater than 100 microns) which are analyzed postflight for mass concentration and size distribution, elemental composition, and morphology. The SPM provides a continuous record of particle concentration through photometric light scattering. Measurements were performed onboard Columbia, OV-102, during the flight of STS-32 in January 1990. No significant changes were observed in the particle mass concentration, size distribution, or chemical composition in samples collected during flight-day 2 and flight-day 7. The total mass concentration was 56 microg/cu cm with approximately half of the particles larger than 100 microns. Elemental analysis showed that roughly 70 percent of the particles larger than 2.5 microns were carbonaceous with small amounts of other elements present. The SPM showed no temporal or spatial variation in particle mass concentration during the mission.

  6. Spatial Patterns of Airborne Exposures of Tungsten and Cobalt in Fallon, Nevada, From Lichens and Surface Sediments

    NASA Astrophysics Data System (ADS)

    Sheppard, P. R.; Speakman, R. J.; Ridenour, G.; Glascock, M. D.; Farris, C.; Witten, M. L.

    2005-12-01

    This paper describes spatial patterns of airborne exposures of heavy metals in Fallon, Nevada, where a cluster of childhood leukemia has been on-going since 1997. Lichen chemistry, the measurement and interpretation of element concentrations in lichens, and surface sediment chemistry were used. Lichens were collected from within as well as from well outside of Fallon. Surface sediments were collected in a gridded spatial pattern, also within and outside of Fallon. Both the lichen and the surface sediment samples were measured chemically for a large suite of metals and other elements. Lichens indicate that Fallon itself has a high dual airborne exposure of tungsten and cobalt relative to sites well away from the town. Surface sediments samples also show high peaks of tungsten and cobalt within Fallon with nothing more than background contents away from the town. The tungsten and cobalt peaks coincide spatially with one another, with the highest values located right at a "hard-metal" facility that processes these metals. This present research confirms earlier research on total suspended particulates showing that Fallon is distinct in Nevada for its high dual exposure of airborne tungsten and cobalt and that the source of these two metals can be pinpointed to the hard-metal industry that exists just north of Highway 50 and west of Highway 95. While it is still not possible to conclude that high airborne exposure of tungsten and/or cobalt causes childhood leukemia, it can now be concluded beyond reasonable doubt that Fallon is unique environmentally due to its high airborne concentrations of tungsten and cobalt. Given that Fallon's cluster of childhood leukemia is the "most convincing cluster ever reported," it stands to reason that additional biomedical research should directly test the leukogenecity of combined airborne exposures of tungsten and cobalt.

  7. Airborne exposures to monoethanolamine, glycol ethers, and benzyl alcohol during professional cleaning: a pilot study.

    PubMed

    Melchior Gerster, Fabian; Brenna Hopf, Nancy; Pierre Wild, Pascal; Vernez, David

    2014-08-01

    A growing body of epidemiologic evidence suggests an association between exposure to cleaning products and respiratory dysfunction. Due to the lack of quantitative assessments of respiratory exposures to airborne irritants and sensitizers among professional cleaners, the culpable substances have yet to be identified. Focusing on previously identified irritants, our aims were to determine (i) airborne concentrations of monoethanolamine (MEA), glycol ethers, and benzyl alcohol (BA) during different cleaning tasks performed by professional cleaning workers and assess their determinants; and (ii) air concentrations of formaldehyde, a known indoor air contaminant. Personal air samples were collected in 12 cleaning companies, and analyzed by conventional methods. Nearly all air concentrations [MEA (n = 68), glycol ethers (n = 79), BA (n = 15), and formaldehyde (n = 45)] were far below (<1/10) of the corresponding Swiss occupational exposure limits (OEL), except for ethylene glycol mono-n-butyl ether (EGBE). For butoxypropanol and BA, no OELs exist. Although only detected once, EGBE air concentrations (n = 4) were high (49.48-58.72mg m(-3)), and close to the Swiss OEL (49mg m(-3)). When substances were not noted as present in safety data sheets of cleaning products used but were measured, air concentrations showed no presence of MEA, while the glycol ethers were often present, and formaldehyde was universally detected. Exposure to MEA was affected by its amount used (P = 0.036), and spraying (P = 0.000) and exposure to butoxypropanol was affected by spraying (P = 0.007) and cross-ventilation (P = 0.000). Professional cleaners were found to be exposed to multiple airborne irritants at low concentrations, thus these substances should be considered in investigations of respiratory dysfunctions in the cleaning industry; especially in specialized cleaning tasks such as intensive floor cleaning. © The Author 2014. Published by Oxford University Press on behalf of the British

  8. Prediction of size-fractionated airborne particle-bound metals using MLR, BP-ANN and SVM analyses.

    PubMed

    Leng, Xiang'zi; Wang, Jinhua; Ji, Haibo; Wang, Qin'geng; Li, Huiming; Qian, Xin; Li, Fengying; Yang, Meng

    2017-08-01

    Size-fractionated heavy metal concentrations were observed in airborne particulate matter (PM) samples collected from 2014 to 2015 (spanning all four seasons) from suburban (Xianlin) and industrial (Pukou) areas in Nanjing, a megacity of southeast China. Rapid prediction models of size-fractionated metals were established based on multiple linear regression (MLR), back propagation artificial neural network (BP-ANN) and support vector machine (SVM) by using meteorological factors and PM concentrations as input parameters. About 38% and 77% of PM 2.5 concentrations in Xianlin and Pukou, respectively, were beyond the Chinese National Ambient Air Quality Standard limit of 75 μg/m 3 . Nearly all elements had higher concentrations in industrial areas, and in winter among the four seasons. Anthropogenic elements such as Pb, Zn, Cd and Cu showed larger percentages in the fine fraction (ø≤2.5 μm), whereas the crustal elements including Al, Ba, Fe, Ni, Sr and Ti showed larger percentages in the coarse fraction (ø > 2.5 μm). SVM showed a higher training correlation coefficient (R), and lower mean absolute error (MAE) as well as lower root mean square error (RMSE), than MLR and BP-ANN for most metals. All the three methods showed better prediction results for Ni, Al, V, Cd and As, whereas relatively poor for Cr and Fe. The daily airborne metal concentrations in 2015 were then predicted by the fully trained SVM models and the results showed the heaviest pollution of airborne heavy metals occurred in December and January, whereas the lightest pollution occurred in June and July. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Airborne lidar mapping of vertical ozone distributions in support of the 1990 Clean Air Act Amendments

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Nielsen, Norman B.; Livingston, John M.

    1992-01-01

    The 1990 Clean Air Act Amendments mandated attainment of the ozone standard established by the U.S. Environmental Protection Agency. Improved photochemical models validated by experimental data are needed to develop strategies for reducing near surface ozone concentrations downwind of urban and industrial centers. For more than 10 years, lidar has been used on large aircraft to provide unique information on ozone distributions in the atmosphere. However, compact airborne lidar systems are needed for operation on small aircraft of the type typically used on regional air quality investigations to collect data with which to develop and validate air quality models. Data presented in this paper will consist of a comparison between airborne differential absorption lidar (DIAL) and airborne in-situ ozone measurements. Also discussed are future plans to improve the airborne ultraviolet-DIAL for ozone and other gas observations and addition of a Fourier Transform Infrared (FTIR) emission spectrometer to investigate the effects of other gas species on vertical ozone distribution.

  10. Source Identification Of Airborne Antimony On The Basis Of The Field Monitoring And The Source Profiling

    NASA Astrophysics Data System (ADS)

    Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.

    2008-12-01

    The results of the long-term monitoring of airborne particulate matter (APM) in Tokyo indicated that APM have been extremely enriched with antimony (Sb) compared to crustal composition. This observation suggests that the airborne Sb is distinctly derived from human activities. According to the material flow analysis, automotive brake abrasion dust and fly ash from waste incinerator were suspected as the significant Sb sources. To clarify the emission sources of the airborne Sb, elemental composition, particle size distribution, and morphological profiles of dust particles collected from two possible emission sources were characterized and compared to the field observation data. Brake abrasion dust samples were generated by using a brake dynamometer. During the abrasion test, particle size distribution was measured by an aerodynamic particle sizer spectrometer. Concurrently, size- classified dust particles were collected by an Andersen type air sampler. Fly ash samples were collected from several municipal waste incinerators, and the bulk ash samples were re-dispersed into an enclosed chamber. The measurement of particle size distribution and the collection of size-classified ash particles were conducted by the same methodologies as described previously. Field observations of APM were performed at a roadside site and a residential site by using an Andersen type air sampler. Chemical analyses of metallic elements were performed by an inductively coupled plasma atomic emission spectrometry and an inductively coupled plasma mass spectrometr. Morphological profiling of the individual particle was conducted by a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. High concentration of Sb was detected from both of two possible sources. Particularly, Sb concentrations in a brake abrasion dust were extremely high compared to that in an ambient APM, suggesting that airborne Sb observed at the roadside might have been largely derived from

  11. Structural Variation in the Bacterial Community Associated with Airborne Particulate Matter in Beijing, China, during Hazy and Nonhazy Days.

    PubMed

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2018-05-01

    The structural variation of the bacterial community associated with particulate matter (PM) was assessed in an urban area of Beijing during hazy and nonhazy days. Sampling for different PM fractions (PM 2.5 [<2.5 μm], PM 10 [<10 μm], and total suspended particulate) was conducted using three portable air samplers from September 2014 to February 2015. The airborne bacterial community in these samples was analyzed using the Illumina MiSeq platform with bacterium-specific primers targeting the 16S rRNA gene. A total of 1,707,072 reads belonging to 6,009 operational taxonomic units were observed. The airborne bacterial community composition was significantly affected by PM fractions ( R = 0.157, P < 0.01). In addition, the relative abundances of several genera significantly differed between samples with various haze levels; for example, Methylobacillus , Tumebacillus , and Desulfurispora spp. increased in heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature, SO 2 concentration, relative humidity, PM 10 concentration, and CO concentration were significant factors that associated with airborne bacterial community composition. Only six genera increased across PM 10 samples ( Dokdonella , Caenimonas , Geminicoccus , and Sphingopyxis ) and PM 2.5 samples ( Cellulomonas and Rhizobacter ), while a large number of taxa significantly increased in total suspended particulate samples, such as Paracoccus , Kocuria , and Sphingomonas Network analysis indicated that Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Overall, the findings presented here suggest that diverse airborne bacterial communities are associated with PM and provide further understanding of bacterial community structure in the atmosphere during hazy and nonhazy days. IMPORTANCE The results presented here represent an analysis of the airborne bacterial community associated with particulate matter (PM) and

  12. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    NASA Technical Reports Server (NTRS)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  13. Detection of airborne carbon nanotubes based on the reactivity of the embedded catalyst.

    PubMed

    Neubauer, N; Kasper, G

    2015-01-01

    A previously described method for detecting catalyst particles in workplace air((1,2)) was applied to airborne carbon nanotubes (CNT). It infers the CNT concentration indirectly from the catalytic activity of metallic nanoparticles embedded as part of the CNT production process. Essentially, one samples airborne CNT onto a filter enclosed in a tiny chemical reactor and then initiates a gas-phase catalytic reaction on the sample. The change in concentration of one of the reactants is then determined by an IR sensor as measure of activity. The method requires a one-point calibration with a CNT sample of known mass. The suitability of the method was tested with nickel containing (25 or 38% by weight), well-characterized multi-walled CNT aerosols generated freshly in the lab for each experiment. Two chemical reactions were investigated, of which the oxidation of CO to CO2 at 470°C was found to be more effective, because nearly 100% of the nickel was exposed at that temperature by burning off the carbon, giving a linear relationship between CO conversion and nickel mass. Based on the investigated aerosols, a lower detection limit of 1 μg of sampled nickel was estimated. This translates into sampling times ranging from minutes to about one working day, depending on airborne CNT concentration and catalyst content, as well as sampling flow rate. The time for the subsequent chemical analysis is on the order of minutes, regardless of the time required to accumulate the sample and can be done on site.

  14. Health Risk Impacts of Exposure to Airborne Metals and Benzo(a)Pyrene during Episodes of High PM10 Concentrations in Poland.

    PubMed

    Widziewicz, Kamila; Rogula-Kozlowska, Wioletta; Loska, Krzysztof; Kociszewska, Karolina; Majewski, Grzegorz

    2018-01-01

    To check whether health risk impacts of exposure to airborne metals and Benzo(a) Pyrene during episodes of high PM10 concentrations lead to an increased number of lung cancer cases in Poland. In this work, we gathered data from 2002 to 2014 concerning the ambient concentrations of PM10 and PM10-bound carcinogenic Benzo(a)pyrene [B(a)P] and As, Cd, Pb, and Ni. With the use of the criterion of the exceedance in the daily PM10 mass concentration on at least 50% of all the analyzed stations, the PM10 maxima's were selected. Lung cancer occurrences in periods with and without the episodes were further compared. During a 12-year period, 348 large-scale smog episodes occurred in Poland. A total of 307 of these episodes occurred in the winter season, which is characterized by increased emissions from residential heating. The occurrence of episodes significantly (P < 0.05) increased the concentrations of PM10-bound carcinogenic As, Cd, Pb, Ni, and B(a)P. During these events, a significant increase in the overall health risk from those PM10-related compounds was also observed. The highest probability of lung cancer occurrences was found in cities, and the smallest probability was found in the remaining areas outside the cities and agglomerations. The link between PM pollution and cancer risk in Poland is a serious public health threat that needs further investigation. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  15. Relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts.

    PubMed

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy.

  16. Analysis of Airborne Betula Pollen in Finland; a 31-Year Perspective

    PubMed Central

    Yli-Panula, Eija; Fekedulegn, Desta Bey; Green, Brett James; Ranta, Hanna

    2009-01-01

    In this 31-year retrospective study, we examined the influence of meteorology on airborne Betula spp. (birch) pollen concentrations in Turku, Finland. The seasonal incidence of airborne birch pollen in Turku occurred over a brief period each year during spring (April 30 – May 31). Mean peak concentrations were restricted to May (May 5 to 13). Statistically significant increases in the annual accumulated birch pollen sum and daily maximum values were observed over the study period. Birch pollen counts collected in April were retrospectively shown to increase over the duration of the study. Increases in April temperature values were also significantly associated with the earlier onset of the birch pollen season. Furthermore, the number of days where daily birch pollen concentrations exceeded 10 and 1,000 grains/m3 also increased throughout the study period. These data demonstrate that increases in temperature, especially during months preceding the onset of the birch pollen season, favor preseason phenological development and pollen dispersal. Birch pollen derived from other geographical locations may also contribute to the aerospora of Turku, Finland. To date, the public health burden associated with personal exposure to elevated birch pollen loads remains unclear and is the focus of future epidemiological research. PMID:19578456

  17. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  18. Exposure to airborne asbestos in thermal power plants in Mongolia

    PubMed Central

    Damiran, Naransukh; Silbergeld, Ellen K; Frank, Arthur L; Lkhasuren, Oyuntogos; Ochir, Chimedsuren; Breysse, Patrick N

    2015-01-01

    Background: Coal-fired thermal power plants (TPPs) in Mongolia use various types of asbestos-containing materials (ACMs) in thermal insulation of piping systems, furnaces, and other products. Objective: To investigate the occupational exposure of insulation workers to airborne asbestos in Mongolian power plants. Methods: Forty-seven air samples were collected from four power plants in Mongolia during the progress of insulation work. The samples were analyzed by phase contrast microscopy (PCM) and transmission electron microscopy (TEM). Results: The average phase contrast microscopy equivalent (PCME) asbestos fiber concentration was 0.93 f/cm3. Sixteen of the 41 personal and one of the area samples exceeded the United States Occupational Safety and Health Administration (US OSHA) short-term exposure limit of 1.0 f/cm3. If it is assumed that the short-term samples collected are representative of full-shift exposure, then the exposures are approximately 10 times higher than the US OSHA 8-hour permissible exposure limit of 0.1 f/cm3. Conclusion: Power plant insulation workers are exposed to airborne asbestos at concentrations that exceed the US OSHA Permissible Exposure Limit. Action to mitigate the risks should be taken in Mongolia. PMID:25730489

  19. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-01-01

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30–500 nm, number concentration in range of 5 × 102–5 × 107 /cm3. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles. PMID:28441740

  20. Exposure to airborne asbestos in thermal power plants in Mongolia.

    PubMed

    Damiran, Naransukh; Silbergeld, Ellen K; Frank, Arthur L; Lkhasuren, Oyuntogos; Ochir, Chimedsuren; Breysse, Patrick N

    2015-01-01

    Coal-fired thermal power plants (TPPs) in Mongolia use various types of asbestos-containing materials (ACMs) in thermal insulation of piping systems, furnaces, and other products. To investigate the occupational exposure of insulation workers to airborne asbestos in Mongolian power plants. Forty-seven air samples were collected from four power plants in Mongolia during the progress of insulation work. The samples were analyzed by phase contrast microscopy (PCM) and transmission electron microscopy (TEM). The average phase contrast microscopy equivalent (PCME) asbestos fiber concentration was 0·93 f/cm(3). Sixteen of the 41 personal and one of the area samples exceeded the United States Occupational Safety and Health Administration (US OSHA) short-term exposure limit of 1·0 f/cm(3). If it is assumed that the short-term samples collected are representative of full-shift exposure, then the exposures are approximately 10 times higher than the US OSHA 8-hour permissible exposure limit of 0·1 f/cm(3). Power plant insulation workers are exposed to airborne asbestos at concentrations that exceed the US OSHA Permissible Exposure Limit. Action to mitigate the risks should be taken in Mongolia.

  1. Free-surface microfluidics for detection of airborne explosives

    NASA Astrophysics Data System (ADS)

    Meinhart, Carl; Piorek, Brian; Banerjee, Sanjoy; Lee, Seung Joon; Moskovits, Martin

    2008-11-01

    A novel microfluidic, remote-sensing, chemical detection platform has been developed for real-time sensing of airborne agents. The key enabling technology is a newly developed concept termed Free-Surface Fluidics (FSF), where one or more fluidic surfaces of a microchannel flow are confined by surface tension and exposed to the surrounding atmosphere. The result is a unique open channel flow environment that is driven by pressure through surface tension, and not subject to body forces, such as gravity. Evaporation and flow rates are controlled by microchannel geometry, surface chemistry and precisely-controlled temperature profiles. The free-surface fluidic architecture is combined with Surface-Enhanced Raman Spectroscopy (SERS) to allow for real-time profiling of atmospheric species and detection of airborne agents. The aggregation of SERS nanoparticles is controlled using microfluidics, to obtain dimer nanoparticle clusters at known streamwise positions in the microchannel. These dimers form SERS hot-spots, which amplify the Raman signal by 8 -- 10 orders of magnitude. Results indicate that explosive agents such as DNT, TNT, RDX, TATP and picric acid in the surrounding atmosphere can be readily detected by the SERS system. Due to the amplification of the SERS system, explosive molecules with concentrations of parts per trillion can be detected, even in the presence of interferent molecules having six orders of magnitude higher concentration.

  2. Effect of manual feeding on the level of farmer's exposure to airborne contaminants in the confinement nursery pig house.

    PubMed

    Kim, Ki-Youn; Ko, Han-Jong; Kim, Hyeon-Tae; Kim, Chi-Nyon; Kim, Yoon-Shin; Roh, Young-Man

    2008-04-01

    The objective of the study is to demonstrate an effect of manual feeding on the level of farmer's exposure to airborne contaminants in the confinement nursery pig house. The levels of all the airborne contaminants besides respirable dust, total airborne fungi and ammonia were significantly higher in the treated nursery pig house with feeding than the control nursery pig house without feeding. Although there is no significant difference in respirable dust and total airborne fungi between the treatment and the control, their concentrations in the treated nursery pig house were also higher than the control nursery pig house. The result that the level of ammonia in the treated nursery pig house is lower than the control nursery pig house would be reasoned by the mechanism of ammonia generation in the pig house and adsorption property of ammonia to dust particles. In conclusion, manual feeding by farmer increased the exposure level of airborne contaminants compared to no feeding activity.

  3. Assessment of airborne environmental bacteria and related factors in 25 underground railway stations in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Hwang, Sung Ho; Yoon, Chung Sik; Ryu, Kyong Nam; Paik, Samuel Y.; Cho, Jun Ho

    2010-05-01

    This study assessed bacterial concentrations in indoor air at 25 underground railway stations in Seoul, Korea, and investigated various related factors including the presence of platform screen doors (PSD), depth of the station, year of construction, temperature, relative humidity, and number of passengers. A total of 72 aerosol samples were collected from all the stations. Concentrations of total airborne bacteria (TAB) ranged from not detected (ND) to 4997 CFU m -3, with an overall geometric mean (GM) of 191 CFU m -3. Airborne bacteria were detected at 23 stations (92%) and Gram-negative bacteria (GNB) were detected at two stations (8%). TAB concentrations of four stations (16%) exceeded 800 CFU m -3, the Korea indoor bio-aerosol guideline. The results of the study showed that TAB concentrations at the stations without PSD showed higher TAB concentrations than those with PSD, though not at statistically significant levels. TAB concentrations of deeper stations revealed significantly higher levels than those of shallower stations. Based on this study, it is recommended that mitigation measures be applied to improve the indoor air quality (IAQ) of underground railway stations in Seoul, with focused attention on deeper stations.

  4. Characterisation of allergens and airborne fungi in low and middle-income homes of primary school children in Durban, South Africa

    PubMed Central

    Jafta, Nkosana; Batterman, Stuart A.; Gqaleni, Nceba; Naidoo, Rajen N.; Robins, Thomas G.

    2012-01-01

    The South Durban Health Study is a population-based study that examined the relationship between exposure to ambient air pollutants and respiratory disease among school children with high prevalence of asthma who resided in two purposely-selected communities in north and south Durban, KwaZulu-Natal, South Africa. From these participants, a subgroup of 135 families was selected for investigation of household characteristics potentially related to respiratory health. In these households, a walkthrough investigation was conducted, and settled dust and air samples were collected for allergen and fungal measurements using standardised techniques. Asp f1 allergen was detected in all homes, and Bla g1 allergen was detected in half of the homes. House dust allergens, Der f1 and Der p1 exceeded concentrations associated with risk of sensitization and exacerbation of asthma in 3 and 13%, respectively, of the sampled homes, while Bla g1 exceeded guidance values in 13% of the homes. Although airborne fungal concentrations in sleep areas and indoors were lower than outdoor concentrations, they exceeded 1000 CFU/m3 in 29% of the homes. Multivariate analyses identified several home characteristics that were predictors of airborne fungal concentrations, including moisture, ventilation, floor type and bedding type. Airborne fungal concentrations were similar indoors and outdoors, which likely reduced the significance of housing and indoor factors as determinants of indoor concentrations. Conclusion Allergen concentrations were highly variable in homes, and a portion of the variability can be attributed to easily-recognised conditions. PMID:22674665

  5. Airborne laser-diode-array illuminator assessment for the night vision's airborne mine-detection arid test

    NASA Astrophysics Data System (ADS)

    Stetson, Suzanne; Weber, Hadley; Crosby, Frank J.; Tinsley, Kenneth; Kloess, Edmund; Nevis, Andrew J.; Holloway, John H., Jr.; Witherspoon, Ned H.

    2004-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station"s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army"s Night Vision Lab"s Airborne Mine Detection Arid Test. By participating in Night Vision"s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.

  6. AIRBORNE BACTERIA IN THE ATMOSPHERIC SURFACE LAYER: TEMPORAL DISTRIBUTION ABOVE A GRASS SEED FIELD

    EPA Science Inventory

    Temporal airborne bacterial concentrations and meteorological conditions were measured above a grass seed field in the Willamette River Valley, near Corvallis, Oregon, in the summer of 1993. he report describes the changes in the atmospheric surface layer over a grass seed field ...

  7. Asthmatic responses to airborne acid aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.

    1991-06-01

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any,more » were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.« less

  8. The epidemiology of mesothelioma in historical context.

    PubMed

    McDonald, J C; McDonald, A D

    1996-09-01

    Primary malignant mesothelial tumours were recognized by pathologists before asbestiform minerals (chrysotile, crocidolite and amosite) were mined commercially. The discovery, 40 yrs ago, of a causal link with crocidolite and the wide-ranging epidemiological studies which followed are the subject of this review. Early case-control and descriptive surveys, supplemented by cohort studies in insulation workers and chrysotile miners, quickly demonstrated major occupational and geographical differences, with high risk in naval dockyard areas and in the heating trades. In the 1980s, reliable cohort surveys showed that in mining and in the manufacture of asbestos products the mesothelioma risk was much higher when exposure included crocidolite or amosite than chrysotile alone. However, qualitative and quantitative information on exposure was too often inadequate for this evidence to be conclusive. Well-controlled lung fibre analyses have reduced these deficiencies and demonstrated the probable implications of the greater biopersistence of amphibole fibres. Chrysotile for industrial use often contains low concentrations of fibrous tremolite, which may well explain the few cases of mesothelioma associated with this type of asbestos. Progress in this field has been much retarded by controversy, for which the 20 year gap between the availability of reliable estimates of risk for the mining of chrysotile and that for crocidolite or amosite may have been largely responsible.

  9. Airborne Power Ultrasonic Technologies for Intensification of Food and Environmental Processes

    NASA Astrophysics Data System (ADS)

    Riera, Enrique; Acosta, Víctor M.; Bon, José; Aleixandre, Manuel; Blanco, Alfonso; Andrés, Roque R.; Cardoni, Andrea; Martinez, Ignacio; Herranz, Luís E.; Delgado, Rosario; Gallego-Juárez, Juan A.

    Airborne power ultrasound is a green technology with a great potential for food and environmental applications, among others. This technology aims at producing permanent changes in objects and substances by means of the propagation of high-intensity waves through air and multiphase media. Specifically, the nonlinear effects produced in such media are responsible for the beneficial repercussions of ultrasound in airborne applications. Processing enhancement is achieved through minimizing the impedance mismatch between the ultrasonic radiator source and the medium by the generation of large vibration displacements and the concentration of energy radiation thus overcoming the high acoustic absorption of fluids, and in particular of gases such as air. Within this work the enhancing effects of airborne power ultrasound in various solid/liquid/gas applications including drying of solid and semi-solid substances, and the agglomeration of tiny particles in air cleaning processes are presented. Moreover, the design of new ultrasonic devices capable of generating these effects are described along with practical methods aimed at maintaining a stable performance of the tuned systems at operational powers. Hence, design strategies based on finite element modelling (FEM) and experimental methods consolidated through the years for material and tuned assembly characterizations are highlighted.

  10. An update on airborne contact dermatitis.

    PubMed

    Huygens, S; Goossens, A

    2001-01-01

    This review is an update of 2 previously published articles on airborne contact dermatoses. Because reports in the literature often omit the term 'airborne', 18 volumes of Contact Dermatitis (April 1991-June 2000), 8 volumes of the American Journal of Contact Dermatitis (1992 1999) and 4 volumes of La Lettre du Gerda (1996-1999) were screened, and the cases cited were classified as to history, lesion locations, sensitization sources, and other factors. Reports on airborne dermatitis are increasingly being published, sometimes in relation to specific occupational areas.

  11. Relationships among Indoor, Outdoor, and Personal Airborne Japanese Cedar Pollen Counts

    PubMed Central

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy. PMID:26110813

  12. Airborne Detection and Tracking of Geologic Leakage Sites

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Allamraju, Rakshit; Axelrod, Allan; Brown, Calvin; Chowdhary, Girish; Mitchell, Taylor

    2014-11-01

    Safe storage of CO2 to reduce greenhouse gas emissions without adversely affecting energy use or hindering economic growth requires development of monitoring technology that is capable of validating storage permanence while ensuring the integrity of sequestration operations. Soil gas monitoring has difficulty accurately distinguishing gas flux signals related to leakage from those associated with meteorologically driven changes of soil moisture and temperature. Integrated ground and airborne monitoring systems are being deployed capable of directly detecting CO2 concentration in storage sites. Two complimentary approaches to detecting leaks in the carbon sequestration fields are presented. The first approach focuses on reducing the requisite network communication for fusing individual Gaussian Process (GP) CO2 sensing models into a global GP CO2 model. The GP fusion approach learns how to optimally allocate the static and mobile sensors. The second approach leverages a hierarchical GP-Sigmoidal Gaussian Cox Process for airborne predictive mission planning to optimally reducing the entropy of the global CO2 model. Results from the approaches will be presented.

  13. An Overview of the Challenges with and Proposed Solutions for the Ingest and Distribution Processes For Airborne Data Management

    NASA Astrophysics Data System (ADS)

    Northup, E. A.; Beach, A. L., III; Early, A. B.; Kusterer, J.; Quam, B.; Wang, D.; Chen, G.

    2015-12-01

    The current data management practices for NASA airborne field projects have successfully served science team data needs over the past 30 years to achieve project science objectives, however, users have discovered a number of issues in terms of data reporting and format. The ICARTT format, a NASA standard since 2010, is currently the most popular among the airborne measurement community. Although easy for humans to use, the format standard is not sufficiently rigorous to be machine-readable, and there lacks a standard variable naming convention among the many airborne measurement variables. This makes data use and management tedious and resource intensive, and also create problems in Distributed Active Archive Center (DAAC) data ingest procedures and distribution. Further, most DAACs use metadata models that concentrate on satellite data observations, making them less prepared to deal with airborne data. There also exists a substantial amount of airborne data distributed by websites designed for science team use that are less friendly to users unfamiliar with operations of airborne field studies. A number of efforts are underway to help overcome the issues with airborne data discovery and distribution. The ICARTT Refresh Earth Science Data Systems Working Group (ESDSWG) was established to enable a platform for atmospheric science data providers, users, and data managers to collaborate on developing new criteria for the file format in an effort to enhance airborne data usability. In addition, the NASA Langley Research Center Atmospheric Science Data Center (ASDC) has developed the Toolsets for Airborne Data (TAD) to provide web-based tools and centralized access to airborne in situ measurements of atmospheric composition. This presentation will discuss the aforementioned challenges and attempted solutions in an effort to demonstrate how airborne data management can be improved to streamline data ingest and discoverability to a broader user community.

  14. Radon potential mapping of the Tralee-Castleisland and Cavan areas (Ireland) based on airborne gamma-ray spectrometry and geology.

    PubMed

    Appleton, J D; Doyle, E; Fenton, D; Organo, C

    2011-06-01

    The probability of homes in Ireland having high indoor radon concentrations is estimated on the basis of known in-house radon measurements averaged over 10 km × 10 km grid squares. The scope for using airborne gamma-ray spectrometer data for the Tralee-Castleisland area of county Kerry and county Cavan to predict the radon potential (RP) in two distinct areas of Ireland is evaluated in this study. Airborne data are compared statistically with in-house radon measurements in conjunction with geological and ground permeability data to establish linear regression models and produce radon potential maps. The best agreement between the percentage of dwellings exceeding the reference level (RL) for radon concentrations in Ireland (% > RL), estimated from indoor radon data, and modelled RP in the Tralee-Castleisland area is produced using models based on airborne gamma-ray spectrometry equivalent uranium (eU) and ground permeability data. Good agreement was obtained between the % > RL from indoor radon data and RP estimated from eU data in the Cavan area using terrain specific models. In both areas, RP maps derived from eU data are spatially more detailed than the published 10 km grid map. The results show the potential for using airborne radiometric data for producing RP maps.

  15. An exposure study of bystanders and workers during the installation and removal of asbestos gaskets and packing.

    PubMed

    Mangold, Carl; Clark, Katherine; Madl, Amy; Paustenbach, Dennis

    2006-02-01

    From 1982 until 1991, a series of studies was performed to evaluate the airborne concentration of chrysotile asbestos associated with replacing gaskets and packing materials. These studies were conducted by the senior author in response to concerns raised by a report from the Navy in 1978 on asbestos exposures associated with gasket work. A series of studies was conducted because results of those who worked with gaskets within the Navy study did not address the background concentrations of asbestos in the work areas, which may have been significant due to the presence of asbestos insulation in the ships and shipyards. The intent of the studies performed from 1982 through 1991 was to re-create the Navy's work practices in a contaminant-free environment during an 8-hour workday (so the data could be compared with the OSHA permissible exposure limit [PEL]). Samples were collected to characterize personal and area airborne asbestos concentrations associated with the formation, removal, and storage of gaskets, as well as the scraping of flanges and the replacement of valve packing. The results indicate that the 8-hour time-weighted average (TWA) exposures of pipefitters and other tradesmen who performed these activities were below the current PEL and all previous PELs. Specifically, the highest average 8-hour TWA concentration measured for workers manipulating asbestos gaskets during this study was 0.030 f/cc (during gasket removal and flange face scraping onboard a naval ship). Likewise, the 8-hour TWA breathing zone concentrations of a worker removing and replacing asbestos valve packing did not exceed 0.016 f/cc. In most cases, the concentrations were not distinguishable from ambient levels of asbestos in the ships or the general environment. These results are not surprising given that asbestos fibers in gasket materials are encapsulated within a binder.

  16. The dustfall collector--a simple passive tool for long-term collection of airborne dust: a project under the Danish Mould in Buildings program (DAMIB).

    PubMed

    Würtz, H; Sigsgaard, T; Valbjørn, O; Doekes, G; Meyer, H W

    2005-01-01

    A newly developed dustfall device that collects airborne dust by sedimentation has been evaluated in Danish schools. Dust collected over 140 days was compared with airborne dust sampled during single school days and settled floor dust sampled at the end of a school day. Measurements of culturable fungi in air samples corresponded well to those from the dustfall collector in mechanically but not naturally ventilated rooms. Levels of beta(1 --> 3)glucan and culturable fungi in dust from the dustfall collector and settled floor dust did not agree well. Up to 10 times more beta(1 --> 3)glucan per milligram dust was found in the dustfall collectors than in settled floor dust. Only in dust from the dustfall collector was the mass concentration of culturable fungi (cfu/mg) significantly correlated with the degree of dampness. The culturability of fungi in the 140-day dustfall samples tended to be lower than in other types of samples. Nonetheless, the results indicated that the dustfall collector can be used to estimate the median concentration of airborne culturable fungi, provided identical sampling periods are used for all samples. The collector is cost effective and simple to use. Traditional ways of assessing exposure to microorganisms by sampling airborne dust or dust from floors have several disadvantages. In the present paper, a new sampler, the dustfall collector, which collects airborne dust by sedimentation over a period of months, is introduced. Tests of this collector indicate that it can be used to estimate the mean concentration of airborne culturable fungi but not beta(1 --> 3)glucan over a long period and that the method can differentiate between buildings with different levels of water damage.

  17. Reliability and validity of expert assessment based on airborne and urinary measures of nickel and chromium exposure in the electroplating industry.

    PubMed

    Chen, Yu-Cheng; Coble, Joseph B; Deziel, Nicole C; Ji, Bu-Tian; Xue, Shouzheng; Lu, Wei; Stewart, Patricia A; Friesen, Melissa C

    2014-11-01

    The reliability and validity of six experts' exposure ratings were evaluated for 64 nickel-exposed and 72 chromium-exposed workers from six Shanghai electroplating plants based on airborne and urinary nickel and chromium measurements. Three industrial hygienists and three occupational physicians independently ranked the exposure intensity of each metal on an ordinal scale (1-4) for each worker's job in two rounds: the first round was based on responses to an occupational history questionnaire and the second round also included responses to an electroplating industry-specific questionnaire. The Spearman correlation (r(s)) was used to compare each rating's validity to its corresponding subject-specific arithmetic mean of four airborne or four urinary measurements. Reliability was moderately high (weighted kappa range=0.60-0.64). Validity was poor to moderate (r(s)=-0.37-0.46) for both airborne and urinary concentrations of both metals. For airborne nickel concentrations, validity differed by plant. For dichotomized metrics, sensitivity and specificity were higher based on urinary measurements (47-78%) than airborne measurements (16-50%). Few patterns were observed by metal, assessment round, or expert type. These results suggest that, for electroplating exposures, experts can achieve moderately high agreement and (reasonably) distinguish between low and high exposures when reviewing responses to in-depth questionnaires used in population-based case-control studies.

  18. Reliability and validity of expert assessment based on airborne and urinary measures of nickel and chromium exposure in the electroplating industry

    PubMed Central

    Chen, Yu-Cheng; Coble, Joseph B; Deziel, Nicole C.; Ji, Bu-Tian; Xue, Shouzheng; Lu, Wei; Stewart, Patricia A; Friesen, Melissa C

    2014-01-01

    The reliability and validity of six experts’ exposure ratings were evaluated for 64 nickel-exposed and 72 chromium-exposed workers from six Shanghai electroplating plants based on airborne and urinary nickel and chromium measurements. Three industrial hygienists and three occupational physicians independently ranked the exposure intensity of each metal on an ordinal scale (1–4) for each worker's job in two rounds: the first round was based on responses to an occupational history questionnaire and the second round also included responses to an electroplating industry-specific questionnaire. Spearman correlation (rs) was used to compare each rating's validity to its corresponding subject-specific arithmetic mean of four airborne or four urinary measurements. Reliability was moderately-high (weighted kappa range=0.60–0.64). Validity was poor to moderate (rs= -0.37–0.46) for both airborne and urinary concentrations of both metals. For airborne nickel concentrations, validity differed by plant. For dichotomized metrics, sensitivity and specificity were higher based on urinary measurements (47–78%) than airborne measurements (16–50%). Few patterns were observed by metal, assessment round, or expert type. These results suggest that, for electroplating exposures, experts can achieve moderately-high agreement and (reasonably) distinguish between low and high exposures when reviewing responses to in-depth questionnaires used in population-based case-control studies. PMID:24736099

  19. Quick response airborne command post communications

    NASA Astrophysics Data System (ADS)

    Blaisdell, Randy L.

    1988-08-01

    National emergencies and strategic crises come in all forms and sizes ranging from natural disasters at one end of the scale up to and including global nuclear warfare at the other. Since the early 1960s the U.S. Government has spent billions of dollars fielding airborne command posts to ensure continuity of government and the command and control function during times of theater conventional, theater nuclear, and global nuclear warfare. Unfortunately, cost has prevented the extension of the airborne command post technology developed for these relatively unlikely events to the lower level, though much more likely to occur, crises such as natural disasters, terrorist acts, political insurgencies, etc. This thesis proposes the implementation of an economical airborne command post concept to address the wide variety of crises ignored by existing military airborne command posts. The system is known as the Quick Response Airborne Command Post (QRAC Post) and is based on the exclusive use of commercially owned and operated aircraft, and commercially available automated data processing and communications resources. The thesis addresses the QRAC Post concept at a systems level and is primarily intended to demonstrate how current technology can be exploited to economically achieve a national objective.

  20. Characterization of particulate matter concentrations and bioaerosol on each floor at a building in Seoul, Korea.

    PubMed

    Oh, Hyeon-Ju; Jeong, Na-Na; Chi, Woo-Bae; Seo, Ji-Hoon; Jun, Si-Moon; Sohn, Jong-Ryeul

    2015-10-01

    Particulate matter (PM) in buildings are mostly sourced from the transport of outdoor particles through a heating, ventilation, and air conditioning (HVAC) system and generation of particle within the building itself. We investigated the concentrations and characteristic of indoor and outdoor particles and airborne bacteria concentrations across four floors of a building located in a high-traffic area. In all the floors we studied (first, second, fifth, and eighth), the average concentrations of particles less than 10 μm (PM10) in winter for were higher than those in summer. On average, a seasonal variation in the PM10 level was found for the first, fifth, and eighth floors, such that higher values occurred in the winter season, compared to the summer season. In addition, in winter, the indoor concentrations of PM10 on the first, fifth, and eighth floors were higher than those of the outdoor PM10. The maximum level of airborne bacteria concentration was found in a fifth floor office, which held a private academy school consisting of many students. Results indicated that the airborne bacteria remained at their highest concentration throughout the weekday period and varied by students' activity. The correlation coefficient (R (2)) and slope of linear approximation for the concentrations of particulate matter were used to evaluate the relationship between the indoor and outdoor particulate matter. These results can be used to predict both the indoor particle levels and the risk of personal exposure to airborne bacteria.

  1. A survey of natural terrestrial and airborne radionuclides in moss samples from the peninsular Thailand.

    PubMed

    Wattanavatee, Komrit; Krmar, Miodrag; Bhongsuwan, Tripob

    2017-10-01

    The aim of this study was to determine the activity concentrations of natural terrestrial radionuclides ( 238 U, 226 Ra, 232 Th and 40 K) and airborne radionuclides ( 210 Pb, 210 Pb ex and 7 Be) in natural terrestrial mosses. The collected moss samples (46) representing 17 species were collected from 17 sampling localities in the National Parks and Wildlife Sanctuaries of Thailand, situated in the mountainous areas between the northern and the southern ends of peninsular Thailand (∼7-12 °N, 99-102 °E). Activity concentrations of radionuclides in the samples were measured using a low background gamma spectrometer. The results revealed non-uniform spatial distributions of all the radionuclides in the study area. Principal component analysis and cluster analysis revealed two distinct origins for the studied radionuclides, and furthermore, the Pearson correlations were strong within 226 Ra, 232 Th, 238 U and 40 K as well as within 210 Pb and 210 Pb ex , but there was no significant correlation between these two groups. Also 7 Be was uncorrelated to the others, as expected due to different origins of the airborne and terrestrial radionuclides. The radionuclide activities of moss samples varied by moss species, topography, geology, and meteorology of each sampling area. The observed abnormally high concentrations of some radionuclides probably indicate that the concentrations of airborne and terrestrial radionuclides in moss samples were directly related to local geological features of the sampling site, or that high levels of 7 Be were most probably linked with topography and regional NE monsoonal winds from mainland China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids

    NASA Astrophysics Data System (ADS)

    Wiseman, Clare L. S.; Zereini, Fathi

    2014-06-01

    The purpose of this study is to assess the solubility of traffic-related metal(loid)s associated with airborne PM of human health concern, employing a physiologically-based extraction test with simulated lung fluids (artificial lysosomal fluid (ALF) and Gamble's solution). Airborne PM (PM10, PM2.5 and PM1) samples were collected in Frankfurt am Main, Germany, using a high volume sampler. Following extraction of the soluble metal(loid) fractions, sample filters were digested with a high pressure asher. Metal(loid) concentrations (As, Ce, Co, Cr, Cu, Mn, Ni, Pb, Sb, Ti and V) were determined in extracts and digests per ICP-Q-MS. All metal(loid)s occurred at detectable concentrations in the three airborne PM fractions. Copper was the most abundant element in mass terms, with mean concentrations of 105 and 53 ng/m3 in PM10 and PM2.5, respectively. Many of the metal(loid)s were observed to be soluble in simulated lung fluids, with Cu, As, V and Sb demonstrating the highest overall mobility in airborne PM. For instance, all four elements associated with PM10 had a solubility of >80% in ALF (24 h). Clearly, solubility is strongly pH dependent, as reflected by the higher relative mobility of samples extracted with the acidic ALF. Given their demonstrated solubility, this study provides indirect evidence that a number of toxic metal(loid)s are likely to possess an enhanced pulmonary toxic potential upon their inhalation. The co-presence of many toxic elements of concern in airborne PM suggests an assessment of health risk must consider the possible interactive impacts of multi-element exposures.

  3. Effect of airborne particle on SO 2-calcite reaction

    NASA Astrophysics Data System (ADS)

    Böke, Hasan; Göktürk, E. Hale; Caner-Saltık, Emine N.; Demirci, Şahinde

    1999-02-01

    In modern urban atmosphere, sulphur dioxide (SO 2) attacks calcite (CaCO 3) in calcareous stone-producing gypsum (CaSO 4·2H 2O) which forms crust at rain sheltered surfaces and accelerates erosion at areas exposed to rain. The airborne particles collected on stone surfaces have always been considered to enhance the gypsum crust formation and thus it is believed that they should be removed from the surface to decrease the effects of SO 2. In this study, our aim was to investigate this event by carrying out a series of experiments in laboratory using pure calcium carbonate powder to represent calcareous stone. Sodium montmorillonite, activated carbon, ferric oxide, vanadium pentoxide and cupric chloride were mixed in the pure calcium carbonate powder as substitutes of the airborne particles in the polluted atmosphere. The samples have been exposed at nearly 10 ppmv SO 2 concentrations at 90% relative humidity conditions in a reaction chamber for several days. The mineralogical composition of the exposed samples were determined by X-ray diffraction (XRD) analysis and infrared spectrometer (IR). Sulphation reaction products, calcium sulphite hemihydrate, gypsum and unreacted calcite, were determined quantitatively using IR. Exposed samples have also been investigated morphologically using a scanning electron microscope (SEM). Experimental results reveal that calcium sulphite hemihydrate is the main reaction product of the SO 2-calcite reaction. It turns out that airborne particles play an important catalytic role in the oxidation of calcium sulphite hemihydrate into gypsum, although their presence does not very significantly affect the extent of sulphation reaction. This behaviour of airborne particles is explained by the presence of liquid film on the calcium carbonate surface where a series of reactions in the gas-liquid-solid interfaces takes place.

  4. Effects of studded tires on roadside airborne dust pollution in Niigata, Japan

    NASA Astrophysics Data System (ADS)

    Fukuzaki, Norio; Yanaka, Takaaki; Urushiyama, Yoshio

    Two series of dust samples, collected by Andersen impactors (denoted by AN) and low-volume air samplers (denoted by LV), were investigated with respect to roadside airborne dusts collected in two different periods in 1983. These were the periods (i) with studded tires (February and March) and (ii) without studded tires (October). Multi-element determinations of these samples were made by neutron activation analysis and atomic absorption spectrometry. The total concentration of AN in roadside air for period (i) was about three times higher than for the period without studded tires. The lithophilic elements such as Na, Al, K, Ca, Ti, Fe and Th, and component-metal elements of stud tip, W and Ta, produced a significant increase in atmospheric concentration in winter. The contribution of pavement material, one of the most interesting components of airborne particles in this study, was related to total AN and LV by the chemical element balance method. It made up only 16 percent (9.1 μgm -3) of AN in October, compared with 46 percent (70.2 μgm -3) in February. It was also observed that the atmospheric concentrations of pavement debris to total LV decreased with the distance from the road to each sampling site.

  5. The Role of Airborne Proteins in Atopic Dermatitis

    PubMed Central

    Hostetler, Sarah Grim; Kaffenberger, Benjamin; Hostetler, Todd

    2010-01-01

    Atopic dermatitis is a common, chronic skin condition. A subpopulation of patients may have cutaneous exposure to common airborne proteins exacerbating their disease through direct proteolytic activity, direct activation of proteinase-activated receptor-2 itch receptors, and immunoglobulin E binding. The most common airborne proteins significant in atopic dermatitis include house dust mites, cockroach, pet dander, and multiple pollens. The literature on atopy patch testing, skin-prick testing, and specific IgE is mixed, with greater support for the use of atopy patch test. Patients with airborne proteins contributing to their disease typically have lesions predominately on air-exposed skin surfaces including the face, neck, and arms; a history of exacerbations after exposure to airborne proteins; severe disease resistant to conventional therapies; and concurrent asthma. Treatment strategies include airborne protein avoidance, removal of airborne proteins from the skin, and barrier repair. Further research is needed to establish the benefit of allergen-specific immunotherapy. PMID:20725535

  6. Spatial variations in atmospheric CO2 concentrations during the ARCTAS-CARB 2008 Summer Campaign

    NASA Astrophysics Data System (ADS)

    Vadrevu, K. P.; Choi, Y.; Vay, S. A.

    2009-12-01

    The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) was a major NASA field campaign designed to understand the transport and transformation of trace gases and aerosols on transcontinental and intercontinental scales and their impact on the composition of the arctic atmosphere and climate. Preceding the summer ARCTAS deployment, measurements were conducted over the state of California in collaboration with the California Air Resources Board (CARB) utilizing the airborne chemistry payload already integrated on the NASA DC-8. In situ CO2 measurements were made using a modified infrared CO2 gas analyzer having a precision of 0.1 ppmv and accuracy of ±0.25 ppmv traceable to the WMO scale. This analysis focuses on the atmospheric CO2 variability and biospheric/atmospheric exchange over California. We used multi-satellite remote sensing datasets to relate airborne observations of CO2 to infer sources and sinks. Georeferencing the airborne CO2 transect data with the LANDSAT derived land cover datasets over California suggested significant spatial variations. The airborne CO2 concentrations were found to be 375-380ppm over the Pacific ocean, 385-391ppm in the highly vegetated agricultural areas, 400-420 in the near coastal areas and greater than 425ppmv in the urban areas. Analysis from MODIS fire products suggested significant fires in northern California. CO2 emissions exceeded 425ppmv in the fire affected regions, where mostly Douglas and White Fir conifers and mixed Chaparral vegetation was burnt. Analysis from GOES-East and GOES-West visible satellite imagery suggested significant smoke plumes moving from northern California towards Nevada and Idaho. To infer the biospheric uptake of CO2, we tested the potential correlations between airborne CO2 data and MODIS normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Results suggested significant anti-correlations between the airborne CO2 data and

  7. Domestic Asbestos Exposure: A Review of Epidemiologic and Exposure Data

    PubMed Central

    Goswami, Emily; Craven, Valerie; Dahlstrom, David L.; Alexander, Dominik; Mowat, Fionna

    2013-01-01

    Inhalation of asbestos resulting from living with and handling the clothing of workers directly exposed to asbestos has been established as a possible contributor to disease. This review evaluates epidemiologic studies of asbestos-related disease or conditions (mesothelioma, lung cancer, and pleural and interstitial abnormalities) among domestically exposed individuals and exposure studies that provide either direct exposure measurements or surrogate measures of asbestos exposure. A meta-analysis of studies providing relative risk estimates (n = 12) of mesothelioma was performed, resulting in a summary relative risk estimate (SRRE) of 5.02 (95% confidence interval [CI]: 2.48–10.13). This SRRE pertains to persons domestically exposed via workers involved in occupations with a traditionally high risk of disease from exposure to asbestos (i.e., asbestos product manufacturing workers, insulators, shipyard workers, and asbestos miners). The epidemiologic studies also show an elevated risk of interstitial, but more likely pleural, abnormalities (n = 6), though only half accounted for confounding exposures. The studies are limited with regard to lung cancer (n = 2). Several exposure-related studies describe results from airborne samples collected within the home (n = 3), during laundering of contaminated clothing (n = 1) or in controlled exposure simulations (n = 5) of domestic exposures, the latter of which were generally associated with low-level chrysotile-exposed workers. Lung burden studies (n = 6) were also evaluated as a surrogate of exposure. In general, available results for domestic exposures are lower than the workers’ exposures. Recent simulations of low-level chrysotile-exposed workers indicate asbestos levels commensurate with background concentrations in those exposed domestically. PMID:24185840

  8. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  9. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  10. Airborne Lidar Surface Topography (LIST) Simulator

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  11. Ferruginous compounds in the airborne particulate matter of the metropolitan area of Belo Horizonte, Minas Gerais, Brazil.

    PubMed

    Tavares, Fernanda Vasconcelos Fonseca; Ardisson, José Domingos; Rodrigues, Paulo César Horta; Fabris, José Domingos; Fernandez-Outon, Luis Eugenio; Feliciano, Vanusa Maria Delage

    2017-08-01

    Samples of soil, iron ore, and airborne particulate matter (size <10 μm) were analyzed with the main goal of investigating the differentiating physicochemical properties of their ferruginous compounds. These data were used to identify whether the sources of airborne particulate matter in the metropolitan area of Belo Horizonte, Minas Gerais, Brazil, are either from natural origin, as, for instance, re-suspension of particles from soil, or due to anthropogenic activities, meaning that it would be originated from the many iron ore minings surrounding the metropolitan area. Numerical simulations were used to model the atmospheric dispersion of the airborne particulate matter emitted by iron mining located at the Iron Quadrangle geodomain, Minas Gerais. Results from these numerical simulations supported identifying the sites with the highest concentrations of airborne particulate matter in the metropolitan area. Samples of these suspended materials were collected at the selected sites by using high-volume air samplers. The physicochemical features of the solid materials were assessed by X-ray fluorescence, X-ray diffraction, magnetometry, and 57 Fe Mössbauer spectroscopy. The soil materials were found to be rich in quartz, aluminum, organic matter, and low contents of iron, mainly as low crystalline iron oxides. The samples of the iron ores, on the other hand, contain high concentration of iron, dominantly as relatively pure and crystalline hematite (α-Fe 2 O 3 ). The samples of the airborne particulate matter are rich in iron, mainly as hematite, but contained also quartz, aluminum, and calcium. Mössbauer spectroscopy was used to evaluate the hyperfine structure of 57 Fe of the hematite both from the iron ore and the soil samples. The structural characteristics of the hematite of these particulate materials were further explored. The direct influence of the iron ore mining on the composition of the airborne particulate matter was clearly evidenced based on the

  12. New Methods for Personal Exposure Monitoring for Airborne Particles

    PubMed Central

    Koehler, Kirsten A.; Peters, Thomas

    2016-01-01

    Airborne particles have been associated with a range of adverse cardiopulmonary outcomes, which has driven its monitoring at stationary, central sites throughout the world. Individual exposures, however, can differ substantially from concentrations measured at central sites due to spatial variability across a region and sources unique to the individual, such as cooking or cleaning in homes, traffic emissions during commutes, and widely varying sources encountered at work. Personal monitoring with small, battery-powered instruments enables the measurement of an individual’s exposure as they go about their daily activities. Personal monitoring can substantially reduce exposure misclassification and improve the power to detect relationships between particulate pollution and adverse health outcomes. By partitioning exposures to known locations and sources, it may be possible to account for variable toxicity of different sources. This review outlines recent advances in the field of personal exposure assessment for particulate pollution. Advances in battery technology have improved the feasibility of 24-hour monitoring, providing the ability to more completely attribute exposures to microenvironment (e.g., work, home, commute). New metrics to evaluate the relationship between particulate matter and health are also being considered, including particle number concentration, particle composition measures, and particle oxidative load. Such metrics provide opportunities to develop more precise associations between airborne particles and health and may provide opportunities for more effective regulations. PMID:26385477

  13. Feasibility of surveying pesticide coverage with airborne fluorometer

    NASA Technical Reports Server (NTRS)

    Stoertz, G. E.; Hemphill, W. R.

    1970-01-01

    Response of a Fraunhofer line discriminator (FLD) to varying distributions of granulated corncobs stained with varying concentrations of Rhodamine WT dye was tested on the ground and from an H-19 helicopter. The granules are used as a vehicle for airborne emplacement of poison to control fire ants in the eastern and southeastern United States. Test results showed that the granules are detectable by FLD but that the concentration must be too great to be practical with the present apparatus. Possible methods for enhancement of response may include: (1) increasing dye concentration; (2) incorporating with the poisoned granules a second material to carry the dye alone; (3) use of a more strongly fluorescent substance (at 5890 A); (4) modifying the time interval after dyeing, or modifying the method of dyeing; (5) modifying the FLD for greater efficiency, increased field of view or larger optics; or (6) experimenting with laser-stimulated fluorescence.

  14. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  15. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  16. Analysis of airborne and waterborne particles around a taconite ore processing facility.

    PubMed

    Axten, Charles W; Foster, David

    2008-10-01

    Since the mid-1970s, samples of airborne and waterborne fibrous particulates have been collected in the area of the Northshore Taconite Ore Processing Facility by the Minnesota Department of Health (MDH), the Minnesota Pollution Control Agency (PCA), and the University of Minnesota. Indirect sample preparation has consistently been used although other aspects of the sampling methods and sites have varied and analytical procedures were altered over time as more accurate and precise microscopy methods were developed (i.e., phase contrast optical microscopy, transmission electron microscopy, transmission electron microscopy with energy dispersive spectroscopy). In the mid-1970s, levels of airborne fibrous particulate in the Silver Bay area averaged from 0.00030 to 0.03 f/ml. This level was significantly greater than levels of similar particulates in the St. Paul, MN area, although two of the Silver Bay sampling sites, considered individually, did not indicate levels of fibrous particulate markedly different than that seen in St. Paul. More recent sampling data (i.e., 1990-2001) indicate mean concentration of airborne fibrous particulates (amphibole-like fibrous particulates) of 0.0020 f/ml with a range of values from 0.0001 to 0.0140 f/ml. Such levels are not significantly different from those seen in other non-urban environments in the US and Europe. Concentrations of fibrous particulates in water samples were higher in the mid-1970 when iron ore tailings were being deposited in Lake Superior, but since the tailings have been deposited on land waterborne levels of fibrous particulate in the Beaver River have remained relatively constant averaging in the range of 7.5 MFL. This level is only slightly in excess of the current EPA drinking water standard for fibrous particulates. Review and consideration of this data is important in determining the potential health risks associated with airborne and waterborne fibrous particulates in the areas of the Northshore Taconite

  17. Travels of airborne pollen. Final report, 1 Oct 1970--31 Dec 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The following studies were conducted on the transport and dispersion of airborne pollen: (a) Development and evaluation of sampling devices for pollen; (b) development and evaluation techniques for tagging pollen in living plants with dyes and radioisotopes; (c) dispersion and deposition of pollen from known sources of various configurations; (d) effects of forested areas on the removal of pollen from the atmosphere; (e) concentration variations of pollen, natural sources with distance, height, time and other variables; (f) feasibility of predicting ragweed pollen concentrations, unknown sources; (g) measurements on ragweed pollen concentrations in a large source-free area; and (h) comparisons ofmore » the ragweed pollen concentrations before and after ragweed eradication efforts. (GRA)« less

  18. Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: A review.

    PubMed

    Ai, Z T; Melikov, A K

    2018-07-01

    This article reviews past studies of airborne transmission between occupants in indoor environments, focusing on the spread of expiratory droplet nuclei from mouth/nose to mouth/nose for non-specific diseases. Special attention is paid to summarizing what is known about the influential factors, the inappropriate simplifications of the thermofluid boundary conditions of thermal manikins, the challenges facing the available experimental techniques, and the limitations of available evaluation methods. Secondary issues are highlighted, and some new ways to improve our understanding of airborne transmission indoors are provided. The characteristics of airborne spread of expiratory droplet nuclei between occupants, which are influenced correlatively by both environmental and personal factors, were widely revealed under steady-state conditions. Owing to the different boundary conditions used, some inconsistent findings on specific influential factors have been published. The available instrumentation was too slow to provide accurate concentration profiles for time-dependent evaluations of events with obvious time characteristics, while computational fluid dynamics (CFD) studies were mainly performed in the framework of inherently steady Reynolds-averaged Navier-Stokes modeling. Future research needs in 3 areas are identified: the importance of the direction of indoor airflow patterns, the dynamics of airborne transmission, and the application of CFD simulations. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Open-air sprays for capturing and controlling airborne float coal dust on longwall faces

    PubMed Central

    Beck, T.W.; Seaman, C.E.; Shahan, M.R.; Mischler, S.E.

    2018-01-01

    Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening. PMID:29348700

  20. Open-air sprays for capturing and controlling airborne float coal dust on longwall faces.

    PubMed

    Beck, T W; Seaman, C E; Shahan, M R; Mischler, S E

    2018-01-01

    Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening.

  1. Results of airborne measurements in the plume near and far from the 2014 Bardarbunga-Holuhraun eruption.

    NASA Astrophysics Data System (ADS)

    Arnason, Gylfi; Eliasson, Jonas; Weber, Konradin; Boehlke, Christoph; Palsson, Thorgeir; Rognvaldsson, Olafur; Thorsteinsson, Throstur; Platt, Ulrich; Tirpitz, Lukas; Jones, Roderic L.; Smith, Paul D.

    2015-04-01

    The Volcanic Ash Research (VAR) group is focused on airborne measurement of ash contamination to support safe air travel. In relations to the recent eruption, the group measured ash and several gaseous species in the plume 10-300 km from the volcano. The eruption emitted ash turned out to be mostly in the fine aerosol range (much less than 10 micrometers in diameter). Our highest measured concentrations were lower than 1 mg/m3 indicating that commercial air traffic was not threatened (greater than 2 mg/m3) by the ash contamination. But we measured sulfur dioxide (SO2 ) up to 90 mg/m3, which presented a potentially dangerous pollution problem. However, airborne measurements indicate that the sulfur concentration decays (probably due to scavenging) as the plume is carried by the wind from the volcano, which limits the area of immediate danger to the public. Here we present size distribution for particulate matter collected during flights, near and far from the crater at various times. The particle data is then compared with simultaneously collected sulfur dioxide data and the rate of decay of is estimated. Sulfur and particle concentration variations with height in the far plume are presented. Some airborne measurements for H2S, NO, NO2 and CO2 will also be presented. This includes correlation matrices for simultaneous measurements of these gases and comparison to National Air Quality Standards and background values.

  2. Approach to the characterization of the airborne organic matter (benzene soluble) in the atmosphere of Mexico City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravo, H.; Baez, A.P.

    1961-01-01

    Three areas of Mexico City were chosen from which to obtain samples of aromatic airborne particles. The samples were analyzed in order to have a broad idea of the composition of the material. The downtown area contained the highest concentration of organic benzene soluble material in the airborne particles, with the highest concentrations during the winter months. A combined sample (Ciudad Universitaria and Tacuba) was analyzed and gave the following figures of benzene soluble material in mg/g: fluoranthene - 160; pyrene - 210; benzo(a)anthracene - 47; benzo(a)pyrene - 82; benzo(e)pyrene - 150; benzo(g,h,i)perylene - 340; coronene - 160. A moremore » complete study is recommended in order to establish the actual parameters of the organic content in Mexico City's atmosphere.« less

  3. Airborne pollen and suicide mortality in Tokyo, 2001-2011.

    PubMed

    Stickley, Andrew; Sheng Ng, Chris Fook; Konishi, Shoko; Koyanagi, Ai; Watanabe, Chiho

    2017-05-01

    Prior research has indicated that pollen might be linked to suicide mortality although the few studies that have been undertaken to date have produced conflicting findings and been limited to Western settings. This study examined the association between the level of airborne pollen and suicide mortality in Tokyo, Japan in the period from 2001 to 2011. The daily number of suicide deaths was obtained from the Japanese Ministry of Health, Labour and Welfare, with pollen data being obtained from the Tokyo Metropolitan Institute of Public Health. A time-stratified case-crossover study was performed to examine the association between different levels of pollen concentration and suicide mortality. During the study period there were 5185 male and 2332 female suicides in the pollen season (February to April). For men there was no association between airborne pollen and suicide mortality. For women, compared to when there was no airborne pollen, the same-day (lag 0) pollen level of 30 to <100 grains per cm 2 was associated with an approximately 50% increase in the odds for suicide (e.g. 30 to <50 grains per cm 2 : odds ratio 1.574, 95% confidence interval 1.076-2.303, p=0.020). The estimates remained fairly stable after adjusting for air pollutants and after varying the cut-points that defined the pollen levels. Our results indicate that pollen is associated with female suicide mortality in Tokyo. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Determining a pre-mining radiological baseline from historic airborne gamma surveys: a case study.

    PubMed

    Bollhöfer, Andreas; Beraldo, Annamarie; Pfitzner, Kirrilly; Esparon, Andrew; Doering, Che

    2014-01-15

    Knowing the baseline level of radioactivity in areas naturally enriched in radionuclides is important in the uranium mining context to assess radiation doses to humans and the environment both during and after mining. This information is particularly useful in rehabilitation planning and developing closure criteria for uranium mines as only radiation doses additional to the natural background are usually considered 'controllable' for radiation protection purposes. In this case study we have tested whether the method of contemporary groundtruthing of a historic airborne gamma survey could be used to determine the pre-mining radiological conditions at the Ranger mine in northern Australia. The airborne gamma survey was flown in 1976 before mining started and groundtruthed using ground gamma dose rate measurements made between 2007 and 2009 at an undisturbed area naturally enriched in uranium (Anomaly 2) located nearby the Ranger mine. Measurements of (226)Ra soil activity concentration and (222)Rn exhalation flux density at Anomaly 2 were made concurrent with the ground gamma dose rate measurements. Algorithms were developed to upscale the ground gamma data to the same spatial resolution as the historic airborne gamma survey data using a geographic information system, allowing comparison of the datasets. Linear correlation models were developed to estimate the pre-mining gamma dose rates, (226)Ra soil activity concentrations, and (222)Rn exhalation flux densities at selected areas in the greater Ranger region. The modelled levels agreed with measurements made at the Ranger Orebodies 1 and 3 before mining started, and at environmental sites in the region. The conclusion is that our approach can be used to determine baseline radiation levels, and provide a benchmark for rehabilitation of uranium mines or industrial sites where historical airborne gamma survey data are available and an undisturbed radiological analogue exists to groundtruth the data. © 2013.

  5. Airborne exposure patterns from a passenger source in aircraft cabins

    PubMed Central

    Bennett, James S.; Jones, Byron W.; Hosni, Mohammad H.; Zhang, Yuanhui; Topmiller, Jennifer L.; Dietrich, Watts L.

    2015-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  6. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula.

    PubMed

    Silva-Palacios, Inmaculada; Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-02-01

    Cupressaceae includes species cultivated as ornamentals in the urban environment. This study aims to investigate airborne pollen data for Cupressaceae on the southwestern Iberian Peninsula over a 21-year period and to analyse the trends in these data and their relationship with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1993 to 2013 in Badajoz (SW Spain). The main pollen season for Cupressaceae lasted, on average, 58 days, ranging from 55 to 112 days, from 24 January to 22 March. Furthermore, a short-term forecasting model has been developed for daily pollen concentrations. The model proposed to forecast the airborne pollen concentration is described by one equation. This expression is composed of two terms: the first term represents the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term is obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological parameters multiplied by a fitting coefficient. Temperature was the main meteorological factor by its influence over daily pollen forecast, being the rain the second most important factor. This model represents a good approach to a continuous balance model of Cupressaceae pollen concentration and is supported by a close agreement between the observed and predicted mean concentrations. The novelty of the proposed model is the analysis of meteorological parameters that are not frequently used in Aerobiology.

  8. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  9. Enhanced Army Airborne Forces: A New Joint Operational Capability

    DTIC Science & Technology

    2014-01-01

    that are trained to carry out airborne operations, including the 75th Ranger Regiment and Army special forces. Today’s airborne forces lack protected...Operation Just Cause Airborne units were used extensively in Panama, and the 82nd Air- borne’s 1st Brigade and the 75th Ranger Regiment were both...carry out airborne operations, including the 75th Ranger Regiment and Army special forces. The changes made to transition the Army into a force

  10. An Overview of the Challenges With and Proposed Solutions for the Ingest and Distribution Processes for Airborne Data Management

    NASA Technical Reports Server (NTRS)

    Beach, Aubrey; Northup, Emily; Early, Amanda; Wang, Dali; Kusterer, John; Quam, Brandi; Chen, Gao

    2015-01-01

    The current data management practices for NASA airborne field projects have successfully served science team data needs over the past 30 years to achieve project science objectives, however, users have discovered a number of issues in terms of data reporting and format. The ICARTT format, a NASA standard since 2010, is currently the most popular among the airborne measurement community. Although easy for humans to use, the format standard is not sufficiently rigorous to be machine-readable. This makes data use and management tedious and resource intensive, and also create problems in Distributed Active Archive Center (DAAC) data ingest procedures and distribution. Further, most DAACs use metadata models that concentrate on satellite data observations, making them less prepared to deal with airborne data.

  11. Geoid determination by airborne gravimetry - principles and applications

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.

    2009-12-01

    The operational development of long-range airborne gravimetry has meant that large areas can be covered in a short time frame with high-quality medium-wavelength gravity field data, perfectly matching the needs of geoid determination. Geoid from a combination of surface, airborne and satellite data not only is able to cover the remaining large data voids on the earth, notably Antarctica and tropical jungle regions, but also provide seamless coverage across the coastal zone, and tie in older marine and land gravity data. Airborne gravity can therefore provide essential data for GPS applications both on land and at sea, e.g. for marine construction projects such as bridges, wind mill farms etc. Current operational accuracies with the DTU-Space/UiB airborne system are in the 1-2 mGal range, which translates into geoid accuracies of 5-10 cm, dependent on track spacing. In the paper we will outline the current accuracy of airborne gravity and geoid determination, and show examples from recent international airborne gravity campaigns, aimed at either providing national survey infrastructure, or scientific applications for e.g. oceanography or sea-ice thickness determination.

  12. Dual channel airborne hygrometer for climate research

    NASA Astrophysics Data System (ADS)

    Tatrai, David; Gulyas, Gabor; Bozoki, Zoltan; Szabo, Gabor

    2015-04-01

    Airborne hygrometry has an increasing role in climate research and nowadays the determination of cloud content especially of cirrus clouds is gaining high interest. The greatest challenges for such measurements are being used from ground level up to the lower stratosphere with appropriate precision and accuracy the low concentration and varying environment pressure. Such purpose instrument was probably presented first by our research group [1-2]. The development of the system called WaSUL-Hygro and some measurement results will be introduced. The measurement system is based on photoacoustic spectroscopy and contains two measuring cells, one is used to measure water vapor concentration which is typically sampled by a sideward or backward inlet, while the second one measures total water content (water vapor plus ice crystals) after evaporation in a forward facing sampler. The two measuring cells are simultaneously illuminated through with one distributed feedback diode laser (1371 or 1392 nm). Two early versions have been used within the CARIBIC project. During the recent years, efforts were made to turn the system into a more reliable and robust one [3]. The first important development was the improvement of the wavelength stabilization method of the applied laser. As a result the uncertainty of the wavelength is less than 40fm, which corresponds to less than 0.05% of PA signal uncertainty. This PA signal uncertainty is lower than the noise level of the system itself. The other main development was the improvement of the concentration determination algorithm. For this purpose several calibration and data evaluation methods were developed, the combination of the latest ones have made the system traceable to the humidity generator applied during the calibration within 1.5% relative deviation or within noise level, whichever is greater. The improved system was several times blind tested at the Environmental Simulation Facility (Forschungszentrum Jülich, Germany) in

  13. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  14. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  15. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  16. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  17. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  18. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  19. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use.

  20. Waste Workers’ Exposure to Airborne Fungal and Bacterial Species in the Truck Cab and During Waste Collection

    PubMed Central

    Madsen, Anne Mette; Alwan, Taif; Ørberg, Anders; Uhrbrand, Katrine; Jørgensen, Marie Birk

    2016-01-01

    A large number of people work with garbage collection, and exposure to microorganisms is considered an occupational health problem. However, knowledge on microbial exposure at species level is limited. The aim of the study was to achieve knowledge on waste collectors’ exposure to airborne inhalable fungal and bacterial species during waste collection with focus on the transport of airborne microorganisms into the truck cab. Airborne microorganisms were collected with samplers mounted in the truck cab, on the workers’ clothes, and outdoors. Fungal and bacterial species were quantified and identified. The study showed that the workers were exposed to between 112 and 4.8×104 bacteria m−3 air and 326 and 4.6×104 fungi m−3 air. The personal exposures to bacteria and fungi were significantly higher than the concentrations measured in the truck cabs and in the outdoor references. On average, the fungal and bacterial concentrations in truck cabs were 111 and 7.7 times higher than outdoor reference measurements. In total, 23 fungal and 38 bacterial species were found and identified. Most fungal species belonged to the genus Penicillium and in total 11 Penicillium species were found. Identical fungal species were often found both in a personal sample and in the same person’s truck cab, but concentrations were on average 27 times higher in personal samples. Concentrations of fungal and bacterial species found only in the personal samples were lower than concentrations of species also found in truck cabs. Skin-related bacteria constituted a large fraction of bacterial isolates found in personal and truck cab samples. In total, six Staphylococcus species were found. In outdoor samples, no skin-related bacteria were found. On average, concentrations of bacterial species found both in the truck cab and personal samples were 77 times higher in personal samples than in truck cab samples. In conclusion, high concentrations of fungi were found in truck cabs, but the

  1. Release of airborne particles and Ag and Zn compounds from nanotechnology-enabled consumer sprays: Implications for inhalation exposure

    NASA Astrophysics Data System (ADS)

    Calderón, Leonardo; Han, Taewon T.; McGilvery, Catriona M.; Yang, Letao; Subramaniam, Prasad; Lee, Ki-Bum; Schwander, Stephan; Tetley, Teresa D.; Georgopoulos, Panos G.; Ryan, Mary; Porter, Alexandra E.; Smith, Rachel; Chung, Kian Fan; Lioy, Paul J.; Zhang, Junfeng; Mainelis, Gediminas

    2017-04-01

    The increasing prevalence and use of nanotechnology-enabled consumer products have increased potential consumer exposures to nanoparticles; however, there is still a lack of data characterizing such consumer exposure. The research reported here investigated near-field airborne exposures due to the use of 13 silver (Ag)-based and 5 zinc (Zn)-based consumer sprays. The products were sprayed into a specially designed glove box, and all products were applied with equal spraying duration and frequency. Size distribution and concentration of the released particles were assessed using a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. Inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate the presence of metals in all investigated products. Spray liquids and airborne particles from select products were examined using transmission electron microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDS). We found that all sprays produced airborne particles ranging in size from nano-sized particles (<100 nm) to coarse particles (>2.5 μm); however, there was a substantial variation in the released particle concentration depending on a product. The total aerosol mass concentration was dominated by the presence of coarse particles, and it ranged from ∼30 μg/m3 to ∼30,000 μg/m3. The TEM verified the presence of nanoparticles and their agglomerates in liquid and airborne states. The products were found to contain not only Ag and Zn compounds - as advertised on the product labeling - but also a variety of other metals including lithium, strontium, barium, lead, manganese and others. The results presented here can be used as input to model population exposures as well as form a basis for human health effects studies due to the use nanotechnology-enabled products.

  2. Nepal and Papua Airborne Gravity Surveys

    NASA Astrophysics Data System (ADS)

    Olesen, A. V.; Forsberg, R.; Kasenda, F.; Einarsson, I.; Manandhar, N.

    2011-12-01

    Airborne gravimetry offers a fast and economic way to cover vast areas and it allows access to otherwise difficult accessible areas like mountains, jungles and the near coastal zone. It has the potential to deliver high resolution and bias free data that may bridge the spectral gap between global satellite gravity models and the high resolution gravity information embedded in digital terrain models. DTU Space has for more than a decade done airborne gravity surveys in many parts of the world. Most surveys were done with a LaCoste & Romberg S-meter updated for airborne use. This instrument has proven to deliver near bias free data when properly processed. A Chekan AM gravimeter was recently added to the airborne gravity mapping system and will potentially enhance the spatial resolution and the robustness of the system. This paper will focus on results from two recent surveys over Nepal, flown in December 2010, and over Papua (eastern Indonesia), flown in May and June 2011. Both surveys were flown with the new double gravimeter setup and initial assessment of system performance indicates improved spatial resolution compared to the single gravimeter system. Comparison to EGM08 and to the most recent GOCE models highlights the impact of the new airborne gravity data in both cases. A newly computed geoid model for Nepal based on the airborne data allows for a more precise definition of the height of Mt. Everest in a global height system. This geoid model suggests that the height of Mt. Everest should be increased by approximately 1 meter. The paper will also briefly discuss system setup and will highlight a few essential processing steps that ensure that bias problems are minimized and spatial resolution enhanced.

  3. Airborne exposure to trihalomethanes from tap water in homes with refrigeration-type and evaporative cooling systems.

    PubMed

    Kerger, Brent D; Suder, David R; Schmidt, Chuck E; Paustenbach, Dennis J

    2005-03-26

    This study evaluates airborne concentrations of common trihalomethane compounds (THM) in selected living spaces of homes supplied with chlorinated tap water containing >85 ppb total THM. Three small homes in an arid urban area were selected, each having three bedrooms, a full bath, and approximately 1000 square feet; two homes had standard (refrigeration-type) central air conditioning and the third had a central evaporative cooling system ("swamp cooler"). A high-end water-use pattern was used at each home in this exposure simulation. THM were concurrently measured on 4 separate test days in tap water and air in the bathroom, living room, the bedroom closest to the bathroom, and outside using Summa canisters. Chloroform (trichloromethane, TCM), bromodichloromethane (BDCM), and dibromochloromethane (DBCM) concentrations were quantified using U.S. EPA Method TO-14. The apparent volatilization fraction consistently followed the order: TCM > BDCM > DBCM. Relatively low airborne THM concentrations (similar to outdoors) were found in the living room and bedroom samples for the home with evaporative cooling, while the refrigeration-cooled homes showed significantly higher THM levels (three- to fourfold). This differential remained after normalizing the air concentrations based on estimated THM throughput or water concentrations. These findings indicate that, despite higher throughput of THM-containing water in homes using evaporative coolers, the higher air exchange rates associated with these systems rapidly clears THM to levels similar to ambient outdoor concentrations.

  4. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  5. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  6. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  7. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  8. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  9. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  10. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  11. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  12. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  13. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  14. Exposure to culturable airborne bioaerosols during noodle manufacturing in central Taiwan.

    PubMed

    Tsai, Min-Yi; Liu, Hui-Ming

    2009-02-15

    Biological hazards associated with the manufacturing of noodles have not been well characterized in Taiwan. This is an issue that flour workers can be exposed to bioaerosols (airborne fungi and bacteria) resulting flour-induced occupational asthma or allergic diseases. This study is to survey the species and concentrations of bioaerosols at different sites within a noodle factory for one year, and to investigate the effects of environmental factors on concentrations of bioaerosols. Air samples were taken twice a day, one day each month using a MAS-100 bioaerosol sampler. Nine species of culturable fungi were identified, with the main airborne fungi being Cladosporium, Penicillium, Aspergillus spp., non-sporing isolates and yeasts. Cladosporium, Penicillium and Aspergillus were the dominant fungal isolates in the indoor and outdoor air samples. Micrococcus spp. and Staphylococcus xylosus were the dominant bacterial isolates. Peak fungal and bacterial concentrations occurred at the crushing site, with mean values of 3082 and 12,616 CFU/m3. Meanwhile, the most prevalent fungi and bacteria at the crushing site were in ranges of 2.1-1.1 microm and 1.1-0.65 microm, respectively. Significant seasonal differences in total bacterial concentration were observed at all sampling sites (P<0.05). Moreover, significant seasonal differences were observed for most of the fungal genera except Fusarium. Levels of Aspergillus and Rhizopus differed significantly during the two sampling times, as did levels of Micrococcus spp. and Staphylococcus arlettae. Regarding the same operation procedures, relative humidity affected fungi levels more than temperature did. However, crushing generated the highest concentration of bioaerosols among all operation procedures. Furthermore, levels of bacteria at sites fitted with ventilation systems were lower than at sites without ventilation systems, especially at the crushing site. Therefore, we recommend these workers at the crushing site wear

  15. NASA Program of Airborne Optical Observations.

    PubMed

    Bader, M; Wagoner, C B

    1970-02-01

    NASA's Ames Research Center currently operates a Convair 990 four-engine jet transport as a National Facility for airborne scientific research (astronomy, aurora, airglow, meteorology, earth resources). This aircraft can carry about twelve experiments to 12 km for several hours. A second aircraft, a twin-engine Lear Jet, has been used on a limited basis for airborne science and can carry one experiment to 15 km for 1 h. Mobility and altitude are the principal advantages over ground sites, while large payload and personnel carrying capabilities, combined with ease of operations and relatively low cost, are the main advantages compared to balloons, rockets, or satellites. Typical airborne instrumentation and scientific results are presented.

  16. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices.

    PubMed

    Godish, Diana; Godish, Thad

    2008-02-01

    This study was conducted to evaluate (i) procedures used to collect, prepare, and count total airborne mold spore/particle concentrations, and (ii) the relative field performance of three commercially available total airborne mold spore/particle sampling devices. Differences between factory and laboratory airflow calibration values of axial fan-driven sampling instruments (used in the study) indicated a need for laboratory calibration using a mass flow meter to ensure that sample results were accurately calculated. An aniline blue-amended Calberla's solution adjusted to a pH of 4.2-4.4 provided good sample mounting/counting results using Dow Corning high vacuum grease, Dow Corning 280A adhesive, and Dow Corning 316 silicone release spray for samples collected using mini-Burkard and Allergenco samplers. Count variability among analysts was most pronounced in 5% counts of relatively low mold particle deposition density samples and trended downward with increased count percentage and particle deposition density. No significant differences were observed among means of 5, 10, and 20% counts and among analysts; a significant interaction effect was observed between analysts' counts and particle deposition densities. Significantly higher mini-Burkard and Air-O-Cell total mold spore/particle counts for 600x vs. 400x (1.9 and 2.3 x higher, respectively), 1000x vs. 600x (1.9 and 2.2 x higher, respectively) and 1000x vs. 400x (3.6 and 4.6 x higher, respectively) comparisons indicated that 1000x magnification counts best quantified total airborne mold spore/particles using light microscopy, and that lower magnification counts may result in unacceptable underreporting of airborne mold spore/particle concentrations. Modest but significantly higher (1.2x) total mold spore concentrations were observed with Allergenco vs. mini-Burkard samples collected in co-located, concurrently operated sampler studies; moderate but significantly higher mini-Burkard count values (1.4x) were

  17. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  18. 10 CFR Appendix C to Part 835 - Derived Air Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Exposure During Immersion in a Cloud of Airborne Radioactive Material C Appendix C to Part 835 Energy... Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of Airborne Radioactive... identifying the need for posting of airborne radioactivity areas in accordance with § 835.603(d). b. The air...

  19. Airborne particle-bound brominated flame retardants: Levels, size distribution and indoor-outdoor exchange.

    PubMed

    Zhu, Yue-Shan; Yang, Wan-Dong; Li, Xiu-Wen; Ni, Hong-Gang; Zeng, Hui

    2018-02-01

    The quality of indoor environments has a significant impact on public health. Usually, an indoor environment is treated as a static box, in which physicochemical reactions of indoor air contaminants are negligible. This results in conservative estimates for primary indoor air pollutant concentrations, while also ignoring secondary pollutants. Thus, understanding the relationship between indoor and outdoor particles and particle-bound pollutants is of great significance. For this reason, we collected simultaneous indoor and outdoor measurements of the size distribution of airborne brominated flame retardant (BFR) congeners. The time-dependent concentrations of indoor particles and particle-bound BFRs were then estimated with the mass balance model, accounting for the outdoor concentration, indoor source strength, infiltration, penetration, deposition and indoor resuspension. Based on qualitative observation, the size distributions of ΣPBDE and ΣHBCD were characterized by bimodal peaks. According to our results, particle-bound BDE209 and γ-HBCD underwent degradation. Regardless of the surface adsorption capability of particles and the physicochemical properties of the target compounds, the concentration of BFRs in particles of different size fractions seemed to be governed by the particle distribution. Based on our estimations, for airborne particles and particle-bound BFRs, a window-open ventilated room only takes a quarter of the time to reach an equilibrium between the concentration of pollutants inside and outside compared to a closed room. Unfortunately, indoor pollutants and outdoor pollutants always exist simultaneously, which poses a window-open-or-closed dilemma to achieve proper ventilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Trends in airborne pollen and pollen-season-related features of anemophilous species in Jaen (south Spain): A 23-year perspective

    NASA Astrophysics Data System (ADS)

    Ruiz-Valenzuela, Luis; Aguilera, Fátima

    2018-05-01

    Over the last few decades, global warming is prompting phenological changes in numerous plant species across Europe, and a trend towards rising airborne pollen concentrations has been detected. This study, focused on the most frequent pollen types from arboreal and herbaceous species in the airborne spectrum of Jaen (southern Spain), revealed significant changes in airborne pollen intensity and duration of the pollen season over the 23-year study period. Here Cupressaceae, Olea, Pinus, Platanus, Quercus as arboreal taxa and Plantago as herbaceous taxa were the most important with notable changes of at least three pollen season characteristics. Airborne pollen trends from arboreal taxa with high to very high allergenic potential are rising in line with the local temperature increasing trend, and their pollen seasons tend to end later and last longer. However, both the pollen concentrations and the duration of the pollen season of some herbaceous taxa are declining. The climate conditions projected for south Europe under different greenhouse emissions scenarios could continue to prompt greater pollen release and longer pollen season in tree species, especially those that flowering in winter and early spring, but these warming trends might be adverse for the local development of some herbaceous species and favorable for others sharing the same ecological niche. If similar warming trends accompany long-term climate change, greater exposure times to seasonal allergens may occur with subsequent effects on health.

  1. An overview of Airborne Data for Assessing Models (ADAM): a web development effort to effectively disseminate airborne data products

    NASA Astrophysics Data System (ADS)

    Mangosing, D. C.; Chen, G.; Kusterer, J.; Rinsland, P.; Perez, J.; Sorlie, S.; Parker, L.

    2011-12-01

    One of the objectives of the NASA Langley Research Center's MEaSURES project, "Creating a Unified Airborne Database for Model Assessment", is the development of airborne Earth System Data Records (ESDR) for the regional and global model assessment and validation activities performed by the tropospheric chemistry and climate modeling communities. The ongoing development of ADAM, a web site designed to access a unified, standardized and relational ESDR database, meets this objective. The ESDR database is derived from publically available data sets, from NASA airborne field studies to airborne and in-situ studies sponsored by NOAA, NSF, and numerous international partners. The ADAM web development activities provide an opportunity to highlight a growing synergy between the Airborne Science Data for Atmospheric Composition (ASD-AC) group at NASA Langley and the NASA Langley's Atmospheric Sciences Data Center (ASDC). These teams will collaborate on the ADAM web application by leveraging the state-of-the-art service and message-oriented data distribution architecture developed and implemented by ASDC and using a web-based tool provided by the ASD-AC group whose user interface accommodates the nuanced perspective of science users in the atmospheric chemistry and composition and climate modeling communities.

  2. Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment.

    PubMed

    Brasel, T L; Martin, J M; Carriker, C G; Wilson, S C; Straus, D C

    2005-11-01

    The existence of airborne mycotoxins in mold-contaminated buildings has long been hypothesized to be a potential occupant health risk. However, little work has been done to demonstrate the presence of these compounds in such environments. The presence of airborne macrocyclic trichothecene mycotoxins in indoor environments with known Stachybotrys chartarum contamination was therefore investigated. In seven buildings, air was collected using a high-volume liquid impaction bioaerosol sampler (SpinCon PAS 450-10) under static or disturbed conditions. An additional building was sampled using an Andersen GPS-1 PUF sampler modified to separate and collect particulates smaller than conidia. Four control buildings (i.e., no detectable S. chartarum growth or history of water damage) and outdoor air were also tested. Samples were analyzed using a macrocyclic trichothecene-specific enzyme-linked immunosorbent assay (ELISA). ELISA specificity was tested using phosphate-buffered saline extracts of the fungal genera Aspergillus, Chaetomium, Cladosporium, Fusarium, Memnoniella, Penicillium, Rhizopus, and Trichoderma, five Stachybotrys strains, and the indoor air allergens Can f 1, Der p 1, and Fel d 1. For test buildings, the results showed that detectable toxin concentrations increased with the sampling time and short periods of air disturbance. Trichothecene values ranged from <10 to >1,300 pg/m3 of sampled air. The control environments demonstrated statistically significantly (P < 0.001) lower levels of airborne trichothecenes. ELISA specificity experiments demonstrated a high specificity for the trichothecene-producing strain of S. chartarum. Our data indicate that airborne macrocyclic trichothecenes can exist in Stachybotrys-contaminated buildings, and this should be taken into consideration in future indoor air quality investigations.

  3. Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres

    NASA Astrophysics Data System (ADS)

    Madureira, Joana; Paciência, Inês; Rufo, João Cavaleiro; Pereira, Cristiana; Teixeira, João Paulo; de Oliveira Fernandes, Eduardo

    2015-05-01

    Until now the influence of risk factors resulting from exposure to biological agents in indoor air has been far less studied than outdoor pollution; therefore the uncertainty of health risks, and how to effectively prevent these, remains. This study aimed (i) to quantify airborne cultivable bacterial and fungal concentrations in four different types of indoor environment as well as to identify the recovered fungi; (ii) to assess the impact of outdoor bacterial and fungal concentrations on indoor air; (iii) to investigate the influence of carbon dioxide (CO2), temperature and relative humidity on bacterial and fungal concentrations; and (iv) to estimate bacterial and fungal dose rate for children (3-5 years old and 8-10 years old) in comparison with the elderly. Air samples were collected in 68 homes, 9 child day-care centres, 20 primary schools and 22 elderly care centres, in a total of 264 rooms with a microbiological air sampler and using tryptic soy agar and malt extract agar culture media for bacteria and fungi growth, respectively. For each building, one outdoor representative location were identified and simultaneously studied. The results showed that child day-care centres were the indoor microenvironment with the highest median bacterial and fungal concentrations (3870 CFU/m3 and 415 CFU/m3, respectively), whereas the lowest median concentrations were observed in elderly care centres (222 CFU/m3 and 180 CFU/m3, respectively). Indoor bacterial concentrations were significantly higher than outdoor concentrations (p < 0.05); whereas the indoor/outdoor ratios for the obtained fungal concentrations were approximately around the unit. Indoor CO2 levels were associated with the bacterial concentration, probably due to occupancy and insufficient ventilation. Penicillium and Cladosporium were the most frequently occurring fungi. Children's had two times higher dose rate to biological pollutants when compared to adult individuals. Thus, due to children

  4. An update on airborne contact dermatitis: 2001-2006.

    PubMed

    Santos, Raquel; Goossens, An

    2007-12-01

    Reports on airborne dermatoses are mainly published in the context of occupational settings. Hence, in recent years, dermatologists and also occupational physicians have become increasingly aware of the airborne source of contact dermatitis, resulting mainly from exposure to irritants or allergens. However, their occurrence is still underestimated, because reports often omit the term 'airborne' in relation to dust or volatile allergens. For the present update, we screened the journals 'Contact Dermatitis' (July 2000 to December 2006); 'Dermatitis', formerly named 'American Journal of Contact Dermatitis'; 'La Lettre du Gerda' (January 2000 to December 2006); and also included relevant articles from other journals published during the same period. This resulted in an updated list of airborne dermatitis causes.

  5. Determination of 3,6-dinitrobenzo[e]pyrene in surface soil and airborne particles by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Hasei, Tomohiro; Watanabe, Tetsushi; Hirayama, Teruhisa

    2006-11-24

    We developed a sensitive analytical method and an efficient clean-up method to quantify 3,6-dinitrobenzo[e]pyrene (3,6-DNBeP) in surface soil and airborne particles. After purification using a silica gel column and two reversed-phase columns, 3,6-DNBeP was reduced to 3,6-diaminobenzo[e]pyrene by a catalyst column and analyzed by high-performance liquid chromatography (HPLC) with a fluorescence detector. 3,6-DNBeP was detected in all of the soil samples and airborne particles examined. The concentration of 3,6-DNBeP in surface soil and airborne particles was determined in the ranges of 347-5007 pg/g of soil and 137-1238 fg/m3, respectively.

  6. Bats Increase the Number of Cultivable Airborne Fungi in the "Nietoperek" Bat Reserve in Western Poland.

    PubMed

    Kokurewicz, Tomasz; Ogórek, Rafał; Pusz, Wojciech; Matkowski, Krzysztof

    2016-07-01

    The "Nietoperek" bat reserve located in Western Poland is one of the largest bat hibernation sites in the European Union with nearly 38,000 bats from 12 species. Nietoperek is part of a built underground fortification system from WWII. The aims of the study were (1) to determine the fungal species composition and changes during hibernation season in relation to bat number and microclimatic conditions and (2) evaluate the potential threat of fungi for bat assemblages and humans visiting the complex. Airborne fungi were collected in the beginning, middle and end of hibernation period (9 November 2013 and 17 January and 15 March 2014) in 12 study sites, one outside and 11 inside the complex. Ambient temperature (T a) and relative humidity (RH) were measured by the use of data loggers, and species composition of bats was recorded from the study sites. The collision method (Air Ideal 3P) sampler was used to detect 34 species of airborne fungi including Pseudogymnoascus destructans (Pd). The density of airborne fungi isolated from the outdoor air samples varied from 102 to 242 CFU/1 m(3) of air and from 12 to 1198 CFU in the underground air samples. There was a positive relationship between number of bats and the concentration of fungi. The concentration of airborne fungi increased with the increase of bats number. Analysis of other possible ways of spore transport to the underground indicated that the number of bats was the primary factor determining the number of fungal spores in that hibernation site. Microclimatic conditions where Pd was found (median 8.7 °C, min-max 6.1-9.9 °C and 100 %, min-max 77.5-100.0 %) were preferred by hibernating Myotis myotis and Myotis daubentonii; therefore, these species are most probably especially prone to infection by this fungi species. The spores of fungi found in the underground can be pathogenic for humans and animals, especially for immunocompromised persons, even though their concentrations did not exceed limits and

  7. An analysis of historical exposures of pressmen to airborne benzene (1938-2006).

    PubMed

    Novick, Rachel M; Keenan, James J; Gross, Sherilyn A; Paustenbach, Dennis J

    2013-07-01

    Benzene is an aromatic hydrocarbon that, with sufficient cumulative lifetime doses, can cause acute myelogenous leukemia. Because of its volatility and solvent properties, it was used in the printing industry in inks, ink solvents, and cleaning agents from the 1930s to the 1970s. This analysis represents the first known attempt to gather and synthesize the available data on historical airborne benzene concentrations in printing facilities and exposures to pressmen. The sources of fugitive benzene vapors from printing operations have been identified as evaporation from ink fountains, exposed sections of the printing cylinder, the paper web, the paper post exit, and spilled ink. In addition, specific activities that could lead to benzene exposure, such as filling the fountains, using solvents to clean the press, and using solvents as personal cleaning agents, potentially occurred multiple times per work period. Eighteen studies were identified that reported workplace airborne concentrations in printing facilities between 1938 and 2006. Typical benzene air concentrations, considering both personal and area samples of various durations, were as high as 200 p.p.m. in the 1930s through the 1950s, 3-35 p.p.m. in the 1960s, 1.3-16 p.p.m. in the 1970s, 0.013-1 in the 1980s, and far less than 1 p.p.m. in the 1990s and 2000s. The decrease in benzene air concentrations by the late 1970s was likely to be linked to the decreased benzene content of printing materials, increased engineering controls, and to more stringent occupational exposure limits.

  8. Identification of dangerous fibers: some examples in Northern Italy

    NASA Astrophysics Data System (ADS)

    Zanetti, Giovanna; Marini, Paola; Giorgis, Ilaria

    2016-04-01

    The presence of asbestiform minerals has to be foreseen in the planning of infrastructural activities: Asbestos can be a component of sedimentary rocks or of mafic and ultra mafic metamorphic rocks. Surveys and core drilling, in addition to providing important information on the quality of the rock and its geotechnical characteristics, allow for a prediction of the presence of asbestiform minerals in the areas affected by mining or infrastructural activities. During the excavation, workers can be exposed to the asbestos risk, therefore, the control of the air quality and of the excavated materials are fundamental for the safety of involved people. In this work some problems we met in the analysis of airborne filters and bulk samples from sites in northern Italy are presented. The asbestos fibers present in rocks as accessory minerals, are often different in habit and dimension from the well-known asbestos fibers used as industrial minerals and moreover can be erroneously identified as minerals morphologically and chemically similar present in the same rock or environment. In the case of tunnel muck it could be contaminated by substances used for the excavation that could modify colours and optical properties of asbestos minerals. In the PCOM (Phase Contrast Optical Microscope) analysis chrysotile, sepiolite and antigorite, due to their different refraction index, when the fibers have dimension > 0,5 micron and aren't contaminated by lubricant can be easely identified even if the morphology of chrysotile is very similar to that of sepiolite. In Electron Scanning Microscope (SEM) the discrimination between chrysotile and antigorite on the airborne filters is not always possible because the fibers of thin dimensions show similar habit and spectrum. In the case of the tremolite amphibole, morphology changes from prismatic to fibrous depending on its origin (p.eg. Monastero, Val Grana, Verrayes, Brachiello). Both prismatic and asbestiform tremolite (Gamble and Gibbs

  9. High Energy 2-Micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  10. Measurement of airborne gunshot particles in a ballistics laboratory by sector field inductively coupled plasma mass spectrometry.

    PubMed

    Diaz, Ernesto; Sarkis, Jorge E Souza; Viebig, Sônia; Saldiva, Paulo

    2012-01-10

    The present study aimed determines lead (Pb), antimony (Sb) and barium (Ba) as the major elements present in GSR in the environmental air of the Ballistics Laboratory of the São Paulo Criminalistics Institute (I.C.-S.P.), São Paulo, SP, Brazil. Micro environmental monitors (mini samplers) were located at selected places. The PM(2.5) fraction of this airborne was collected in, previously weighted filters, and analyzed by sector field inductively coupled plasma mass spectrometer (SF-HR-ICP-MS). The higher values of the airborne lead, antimony and barium, were found at the firing range (lead (Pb): 58.9 μg/m(3); barium (Ba): 6.9 μg/m(3); antimony (Sb): 7.3 μg/m(3)). The mean value of the airborne in this room during 6 monitored days was Pb: 23.1 μg/m(3); Ba: 2.2 μg/m(3); Sb: 1.5 μg/m(3). In the water tank room, the air did not show levels above the limits of concern. In general the airborne lead changed from day to day, but the barium and antimony remained constant. Despite of that, the obtained values suggest that the workers may be exposed to airborne lead concentration that can result in an unhealthy environment and could increase the risk of chronic intoxication. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Airborne pollutant concentrations and health risks in selected Apulia region (IT) areas: preliminary results from the Jonico-Salentino project

    NASA Astrophysics Data System (ADS)

    Buccolieri, Riccardo; Genga, Alessandra; De Donno, Antonella; Siciliano, Tiziana; Siciliano, Maria; Serio, Francesca; Grassi, Tiziana; Rispoli, Gennaro; Cavaiola, Mattia; Lionello, Piero

    2017-04-01

    The Jonico-Salentino project (PJS) is a multidisciplinary study funded by Apulia Region (Det. N. 188_RU - 10/11/2015) aiming to assess health risk of people living in the cities of Lecce, Brindisi and Taranto. Citizens are exposed to emissions from industrial sources, biomass burning, vehicular, naval and air traffic, as well as from natural radioactive sources (radon). In this context, this work presents some preliminary results obtained by the Unit of University of Salento (Lecce) during an experimental campaign carried out in the study areas. The campaign is devoted to (i) sample particulate matter (PM), (ii) measure micro-meteorological variables and (iii) evaluate exposure levels of residents to main pollutants. Specifically, PM is sampled using a low volume sampler, while meteorological variables (wind speed components and direction temperature, relative humidity, precipitation and global solar radiation) are measured by advanced instrumentation such as ultrasonic anemometers which allows for the estimation of turbulence fluxes. The early effects of exposure to air pollutants is evaluated by the frequency of micronucleus (a biomarker of DNA damage) in exfoliated buccal cells collected using a soft-bristled toothbrush from oral mucosa of primary school children enrolled in the study. PM concentration data collected during the campaign are characterised from a chemical and morphological point of view; the analysis of different groups of particles allows identifying different natural and anthropogenic emission sources. This is done in conjunction to the investigation of the influence of local meteorology to elucidate the contribution of specific types of sources on final concentration levels. Finally, all data are used to assess the health risk of people living in the study areas as consequence of exposure to airborne pollutants.

  12. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.

    PubMed

    Gandolfi, I; Bertolini, V; Bestetti, G; Ambrosini, R; Innocente, E; Rampazzo, G; Papacchini, M; Franzetti, A

    2015-06-01

    The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5-V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 (2-) and Mg(2+) concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites.

  13. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  14. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  15. Asbestos exposure from gaskets during disassembly of a medium duty diesel engine.

    PubMed

    Liukonen, Larry R; Weir, Francis W

    2005-03-01

    Diesel engines have historically used asbestos-containing gaskets leading to concerns of fiber release and mechanic exposure. Other published studies regarding asbestos fiber release during gasket removal have reported on short-duration events; were conducted under simulated work conditions; or had other limitations. There are no comprehensive studies relating to diesel engine gaskets under conditions similar to those reported herein, evaluating asbestos fiber release from gaskets during all facets of a complete disassembly and cleaning of a medium duty diesel engine in a busy repair and service shop by a journeyman mechanic. Asbestos content of all gaskets was identified; all disassembly tasks were described and timed; and personal and area air monitoring was conducted for each task. Twenty seven of thirty three gaskets contained chrysotile asbestos in concentrations that ranged from 5 to 70%. All but one air monitoring sample reported results below the limit of reliable detection even though plumes of visible dust were evident during various removal, cleaning, and buffing procedures. The detection limit for airborne asbestos fibers in this investigation was influenced by the presence of other shop dust in the air. Our investigation demonstrates that using shop-standard procedures in an established repair facility, a journeyman mechanic has very little potential for exposure to airborne asbestos fibers during disassembly of an engine, approximately 10% or less than that currently considered to be acceptable by OSHA.

  16. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  17. Parameterization of gaseous constituencies concentration profiles in the planetary boundary layer as required in support of airborne and satellite borne sensors

    NASA Technical Reports Server (NTRS)

    Kindle, E. C.; Condon, E.; Casas, J.

    1976-01-01

    The research to develop the capabilities for sensing air pollution constituencies using satellite or airborne remote sensors is reported. Sensor evaluation and calibration are analyzed including data reduction. The proposed follow-on research is presented.

  18. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  19. [Phylogenetic diversity of airborne microbes in Qingdao downtown in autumn].

    PubMed

    Wang, Lin; Song, Zhi-wen; Xu, Ai-ling; Wu, Deng-deng; Xia, Yan

    2015-04-01

    To determine the community structure of airborne microbes in Qingdao downtown in autumn, the airborne bacteria and fungi were collected by the KC-6120 air sampler and analyzed using the 16S/18S rDNA gene clone library method. Phylogenetic analysis of airborne bacteria showed that they belonged to six major phylogenetic groups: Proteobacteria (78. 8%), Firmicutes (14.6%), Actinobacteria (4.0%), Planctomycetes (1.3%), Cyanobacteria (0.7%), and Deinococcus-Thermus (0.7%). The dominant genera of airborne bacteria included Acinetobacter (39.7%), Staphylococcus (11.3%), Sphingomonas (8.6%), Paracoccus (6.0%) and Massilia (5.3%). The main types of airborne fungi were Ascomycota (97.5%) and Basidiomycota (2.5%). Dominant genera of airborne fungi included Pyrenophora (76.5%), Xylaria (13.6%) and Exophiala (2.5%). The pathogens or conditioned pathogens, such as Acinetobacter, Staphylococcus, or Sphingomonas were detected in the airborne bacteria, whereas certain kinds of fungi, such as P. graminea, X. hypoxylon and Zasmidium angulare that could cause a variety of crop diseases were also detected.

  20. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  1. Laboratory evaluation of airborne particulate control treatments for simulated aircraft crash recovery operations involving carbon fiber composite materials.

    PubMed

    Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel

    2015-01-01

    This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p < 0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.

  2. Laboratory evaluation of airborne particulate control treatments for simulated aircraft crash recovery operations involving carbon fiber composite materials.

    PubMed

    Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel

    2015-01-01

    This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p<0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.

  3. Cigarettes vs. e-cigarettes: Passive exposure at home measured by means of airborne marker and biomarkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballbè, Montse; Catalan Network of Smoke-free Hospitals, L'Hospitalet de Llobregat, Barcelona; Cancer Prevention and Control Group, Institut d'Investigació Biomèdica de Bellvitge – IDIBELL, L’Hospitalet de Llobregat, Barcelona

    Background: There is scarce evidence about passive exposure to the vapour released or exhaled from electronic cigarettes (e-cigarettes) under real conditions. The aim of this study is to characterise passive exposure to nicotine from e-cigarettes' vapour and conventional cigarettes' smoke at home among non-smokers under real-use conditions. Methods: We conducted an observational study with 54 non-smoker volunteers from different homes: 25 living at home with conventional smokers, 5 living with nicotine e-cigarette users, and 24 from control homes (not using conventional cigarettes neither e-cigarettes). We measured airborne nicotine at home and biomarkers (cotinine in saliva and urine). We calculated geometricmore » mean (GM) and geometric standard deviations (GSD). We also performed ANOVA and Student's t tests for the log-transformed data. We used Bonferroni-corrected t-tests to control the family error rate for multiple comparisons at 5%. Results: The GMs of airborne nicotine were 0.74 μg/m{sup 3} (GSD=4.05) in the smokers’ homes, 0.13 μg/m{sup 3} (GSD=2.4) in the e-cigarettes users’ homes, and 0.02 μg/m{sup 3} (GSD=3.51) in the control homes. The GMs of salivary cotinine were 0.38 ng/ml (GSD=2.34) in the smokers’ homes, 0.19 ng/ml (GSD=2.17) in the e-cigarettes users’ homes, and 0.07 ng/ml (GSD=1.79) in the control homes. Salivary cotinine concentrations of the non-smokers exposed to e-cigarette's vapour at home (all exposed ≥2 h/day) were statistically significant different that those found in non-smokers exposed to second-hand smoke ≥2 h/day and in non-smokers from control homes. Conclusions: The airborne markers were statistically higher in conventional cigarette homes than in e-cigarettes homes (5.7 times higher). However, concentrations of both biomarkers among non-smokers exposed to conventional cigarettes and e-cigarettes’ vapour were statistically similar (only 2 and 1.4 times higher, respectively). The levels of airborne nicotine and

  4. Enumerating Spore-Forming Bacteria Airborne with Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Barengoltz, Jack

    2006-01-01

    A laboratory method has been conceived to enable the enumeration of (1) Cultivable bacteria and bacterial spores that are, variously, airborne by themselves or carried by, parts of, or otherwise associated with, other airborne particles; and (2) Spore-forming bacteria among all of the aforementioned cultivable microbes.

  5. [Airborne asbestos fibers: law references, TLV, considerations].

    PubMed

    Massola, A

    2003-01-01

    The ACGIH proposal of 0.1 fibers/liter as TLV for airborne asbestos fibers isn't a properly parameter, because it is applicable in work environments and the Italian legislation has forbidden every work which employs asbestos from 1993 [Law 257/92 and Min.Dec. 6/9/94]. Actually in Italy the application of a TLV is only referred to two analytical results: A) 20 ff/liter by CPOM analysis, B) 2 ff/liter by SEM analysis. We think that a CPOM 4-5 ff/liter is a no trespassing limit and over this concentration alarm may be notified. Waste disposal of asbestos materials must be properly disposed in a restricted area.

  6. Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea.

    PubMed

    Murphy, Shane M; Agrawal, Harshit; Sorooshian, Armin; Padró, Luz T; Gates, Harmony; Hersey, Scott; Welch, W A; Lung, H; Miller, J W; Cocker, David R; Nenes, Athanasios; Jonsson, Haflidi H; Flagan, Richard C; Seinfeld, John H

    2009-07-01

    We report the first joint shipboard and airborne study focused on the chemical composition and water-uptake behavior of particulate ship emissions. The study focuses on emissions from the main propulsion engine of a Post-Panamax class container ship cruising off the central coast of California and burning heavy fuel oil. Shipboard sampling included micro-orifice uniform deposit impactors (MOUDI) with subsequent off-line analysis, whereas airborne measurements involved a number of real-time analyzers to characterize the plume aerosol, aged from a few seconds to over an hour. The mass ratio of particulate organic carbon to sulfate at the base of the ship stack was 0.23 +/- 0.03, and increased to 0.30 +/- 0.01 in the airborne exhaust plume, with the additional organic mass in the airborne plume being concentrated largely in particles below 100 nm in diameter. The organic to sulfate mass ratio in the exhaust aerosol remained constant during the first hour of plume dilution into the marine boundary layer. The mass spectrum of the organic fraction of the exhaust aerosol strongly resembles that of emissions from other diesel sources and appears to be predominantly hydrocarbon-like organic (HOA) material. Background aerosol which, based on air mass back trajectories, probably consisted of aged ship emissions and marine aerosol, contained a lower organic mass fraction than the fresh plume and had a much more oxidized organic component. A volume-weighted mixing rule is able to accurately predict hygroscopic growth factors in the background aerosol but measured and calculated growth factors do not agree for aerosols in the ship exhaust plume. Calculated CCN concentrations, at supersaturations ranging from 0.1 to 0.33%, agree well with measurements in the ship-exhaust plume. Using size-resolved chemical composition instead of bulk submicrometer composition has little effect on the predicted CCN concentrations because the cutoff diameter for CCN activation is larger than the

  7. Influence of indoor environmental factors on mass transfer parameters and concentrations of semi-volatile organic compounds.

    PubMed

    Wei, Wenjuan; Mandin, Corinne; Ramalho, Olivier

    2018-03-01

    Semi-volatile organic compounds (SVOCs) in indoor environments can partition among the gas phase, airborne particles, settled dust, and available surfaces. The mass transfer parameters of SVOCs, such as the mass transfer coefficient and the partition coefficient, are influenced by indoor environmental factors. Subsequently, indoor SVOC concentrations and thus occupant exposure can vary depending on environmental factors. In this review, the influence of six environmental factors, i.e., indoor temperature, humidity, ventilation, airborne particle concentration, source loading factor, and reactive chemistry, on the mass transfer parameters and indoor concentrations of SVOCs was analyzed and tentatively quantified. The results show that all mass transfer parameters vary depending on environmental factors. These variations are mostly characterized by empirical equations, particularly for humidity. Theoretical calculations of these parameters based on mass transfer mechanisms are available only for the emission of SVOCs from source surfaces when airborne particles are not present. All mass transfer parameters depend on the temperature. Humidity influences the partition of SVOCs among different phases and is associated with phthalate hydrolysis. Ventilation has a combined effect with the airborne particle concentration on SVOC emission and their mass transfer among different phases. Indoor chemical reactions can produce or eliminate SVOCs slowly. To better model the dynamic SVOC concentration indoors, the present review suggests studying the combined effect of environmental factors in real indoor environments. Moreover, interactions between indoor environmental factors and human activities and their influence on SVOC mass transfer processes should be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Domestic airborne black carbon and exhaled nitric oxide in children in NYC

    PubMed Central

    Cornell, Alexandra G.; Chillrud, Steven N.; Mellins, Robert B.; Acosta, Luis M.; Miller, Rachel L.; Quinn, James W.; Yan, Beizhan; Divjan, Adnan; Olmedo, Omar E.; Lopez-Pintado, Sara; Kinney, Patrick L.; Perera, Frederica P.; Jacobson, Judith S.; Goldstein, Inge F.; Rundle, Andrew G.; Perzanowski, Matthew S.

    2012-01-01

    Differential exposure to combustion by-products and allergens may partially explain the marked disparity in asthma prevalence (3%–18%) among New York City neighborhoods. Subclinical changes in airway inflammation can be measured by fractional exhaled nitric oxide (FeNO). FeNO could be used to test independent effects of these environmental exposures on airway inflammation. Seven and eight year-old children from neighborhoods with lower (range 3–9%, n=119) and higher (range 11–18%, n=121) asthma prevalence participated in an asthma case-control study. During home visits, FeNO was measured, and samples of bed dust (allergens) and air (black carbon) were collected. Neighborhood built-environment characteristics were assessed for the 500m surrounding participants’ homes. Airborne black carbon concentrations in homes correlated with neighborhood asthma prevalence (P<0.001) and neighborhood densities of truck routes (P<0.001) and buildings burning residual oil (P<0.001). FeNO concentrations were higher among asthmatics with compared to asthmatics without frequent wheeze (≥4 times/year) (P=0.002). FeNO concentrations correlated with domestic black carbon among children without seroatopy (P=0.012) and with dust mite allergen among children with seroatopy (P=0.020). The association between airborne black carbon in homes and both neighborhood asthma prevalence and FeNO suggest that further public health interventions on truck emissions standards and residual oil use are warranted. PMID:22377682

  9. Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach.

    PubMed

    Midander, Klara; Elihn, Karine; Wallén, Anna; Belova, Lyuba; Karlsson, Anna-Karin Borg; Wallinder, Inger Odnevall

    2012-06-15

    Continuous daily measurements of airborne particles were conducted during specific periods at an underground platform within the subway system of the city center of Stockholm, Sweden. Main emphasis was placed on number concentration, particle size distribution, soot content (analyzed as elemental and black carbon) and surface area concentration. Conventional measurements of mass concentrations were conducted in parallel as well as analysis of particle morphology, bulk- and surface composition. In addition, the presence of volatile and semi volatile organic compounds within freshly collected particle fractions of PM(10) and PM(2.5) were investigated and grouped according to functional groups. Similar periodic measurements were conducted at street level for comparison. The investigation clearly demonstrates a large dominance in number concentration of airborne nano-sized particles compared to coarse particles in the subway. Out of a mean particle number concentration of 12000 particles/cm(3) (7500 to 20000 particles/cm(3)), only 190 particles/cm(3) were larger than 250 nm. Soot particles from diesel exhaust, and metal-containing particles, primarily iron, were observed in the subway aerosol. Unique measurements on freshly collected subway particle size fractions of PM(10) and PM(2.5) identified several volatile and semi-volatile organic compounds, the presence of carcinogenic aromatic compounds and traces of flame retardants. This interdisciplinary and multi-analytical investigation aims to provide an improved understanding of reported adverse health effects induced by subway aerosols. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ...-1279; Notice No. 11-07] Notification for Airborne Wind Energy Systems (AWES) AGENCY: Federal Aviation... CFR) part 77, ``Safe, Efficient Use and Preservation of the Navigable Airspace,'' to airborne wind energy systems (AWES). In addition, this notice requests information from airborne wind energy system...

  11. CYTOTOXIC EFFECTS OF SOME MINERAL DUSTS ON SYRIAN HAMSTER PERITONEAL MACROPHAGES

    PubMed Central

    Bey, Elke; Harington, J. S.

    1971-01-01

    Hamster peritoneal macrophages were grown in cell culture and their response to various conditions was examined. The cultures responded favorably to high concentrations of serum and to medium which had been preconditioned by contact with tumor cells. After 2–3 days of adaptation, they entered into a period of stability which lasted from the 4th to the 9th day. Macrophage cultures in this stable phase were treated with various samples of mineral dusts and their response determined by counting the number of viable macrophages/cm2 at intervals over a period of 72 hr. Crystalline silica Snowit was found to be nontoxic. Amorphous silica Fransil caused a characteristic cytotoxic effect and a rapid decline in cell population at doses less than 150 µg/5 x 105 cells. Of the three different kinds of asbestos used, chrysotile was toxic and amosite and crocidolite nontoxic at equivalent concentrations. A comparison of two preparations of chrysotile which differed in surface area showed that weight rather than surface area determines toxicity. Pretreatment of chrysotile with tryptose phosphate broth under drastic conditions accelerated but did not increase the final intensity of the cytotoxic effect. PMID:4101804

  12. Development of acute exposure guideline levels for airborne exposures to hazardous substances.

    PubMed

    Krewski, Daniel; Bakshi, Kulbir; Garrett, Roger; Falke, Ernest; Rusch, George; Gaylor, David

    2004-04-01

    Hazardous substances can be released into the atmosphere due to industrial and transportation accidents, fires, tornadoes, earthquakes, and terrorists, thereby exposing workers and the nearby public to potential adverse health effects. Various enforceable guidelines have been set by regulatory agencies for worker and ambient air quality. However, these exposure levels generally are not applicable to rare lifetime acute exposures, which possibly could occur at high concentrations. Acute exposure guideline levels (AEGLs) provide estimates of concentrations for airborne exposures for an array of short durations that possibly could cause mild (AEGL-1), severe, irreversible, potentially disabling adverse health effects (AEGL-2), or life threatening effects (AEGL-3). These levels can be useful for emergency responders and planners in reducing or eliminating potential risks to the public. Procedures and methodologies for deriving AEGLs are reviewed in this paper that have been developed in the United States, with direct input from international representatives of OECD member-countries, by the National Advisory Committee for Acute Exposure Guidelines for Hazardous Substances and reviewed by the National Research Council. Techniques are discussed for the extrapolation of effects across different exposure durations. AEGLs provide a viable approach for assisting in the prevention, planning, and response to acute airborne exposures to toxic agents.

  13. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  14. Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Dirk; Weibring, P.; Walega, J.

    2015-02-01

    We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.

  15. Interaction of PM2.5 airborne particulates with ZnO and TiO2 nanoparticles and their effect on bacteria.

    PubMed

    Baysal, Asli; Saygin, Hasan; Ustabasi, Gul Sirin

    2017-12-21

    A significant knowledge gap in nanotechnology is the absence of standardized protocols for examining and comparison the effect of metal oxide nanoparticles on different environment media. Despite the large number of studies on ecotoxicity of nanoparticles, most of them disregard the particles physicochemical transformation under real exposure conditions and interaction with different environmental components like air, soil, water, etc. While one of the main exposure ways is inhalation and/or atmosphere for human and environment, there is no investigation between airborne particulates and nanoparticles. In this study, some metal oxide nanoparticle (ZnO and TiO 2 ) transformation and behavior in PM2.5 air particulate media were examined and evaluated by the influence on nanoparticle physicochemical properties (size, surface charge, surface functionalization) and on bacterium (Gram-positive Bacillus subtilis, Staphylococcus aureus/Gram-negative Escherichia coli, Pseudomonas aeruginosa bacteria) by testing in various concentrations of PM2.5 airborne particulate media to contribute to their environmental hazard and risk assessment in atmosphere. PM2.5 airborne particulate media affected their toxicity and physicochemical properties when compared the results obtained in controlled conditions. ZnO and TiO 2 surfaces were functionalized mainly with sulfoxide groups in PM2.5 air particulates. In addition, tested particles were not observed to be toxic in controlled conditions. However, these were observed inhibition in PM2.5 airborne particulates media by the exposure concentration. These observations and dependence of the bacteria viability ratio explain the importance of particulate matter-nanoparticle interaction.

  16. 30 CFR 57.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of exposure to airborne contaminants... Underground § 57.5005 Control of exposure to airborne contaminants. Control of employee exposure to harmful airborne contaminants shall be, insofar as feasible, by prevention of contamination, removal by exhaust...

  17. Appendix : airborne incidents : an econometric analysis of severity

    DOT National Transportation Integrated Search

    2014-12-19

    This is the Appendix for Airborne Incidents: An Econometric Analysis of Severity Report. : Airborne loss of separation incidents occur when an aircraft breaches the defined separation limit (vertical and/or horizontal) with another aircraft or terrai...

  18. Airborne survey of major air basins in California

    NASA Technical Reports Server (NTRS)

    Gloria, H. R.; Bradburn, G.; Reinisch, R. F.; Pitts, J. N., Jr.; Behar, J. V.; Zafonte, L.

    1974-01-01

    An instrumented aircraft was used to study the chemical and transport properties of air pollution in two major urban centers in California and to survey certain aspects of air pollution within this state. State-of-the-art measurement techniques and sampling procedures are discussed. It is found that meteorological transport mechanisms are better portrayed by vertical pollutant profiles. Airborne measurements define the nature of the mixing layer for atmospheric pollutants. Results show that the pollutants are found to be concentrated in distinct layers up to at least 18,000 feet and the O3 buildup occurring in advected air masses is a result of a continuous photochemical aging of air mass.

  19. Networked Airborne Communications Using Adaptive Multi Beam Directional Links

    DTIC Science & Technology

    2016-03-05

    Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach

  20. Scratched: World War II Airborne Operations That Never Happened

    DTIC Science & Technology

    2014-05-22

    Approved for Public Release; Distribution is Unlimited SCRATCHED: WORLD WAR II AIRBORNE OPERATIONS THAT NEVER HAPPENED A Monograph by...2. REPORT TYPE Master’s Thesis 3. DATES COVERED (From - To) JUN 2013-MAY 2014 4. TITLE AND SUBTITLE Scratched: World War II Airborne...Maastricht gap, to get Allied troops through the West Wall. For numerous reasons, the overall Allied airborne effort of World War II provided mixed

  1. [Remote sensing of atmospheric trace gas by airborne passive FTIR].

    PubMed

    Gao, Min-quang; Liu, Wen-qing; Zhang, Tian-shu; Liu, Jian-guo; Lu, Yi-huai; Wang, Ya-ping; Xu, Liang; Zhu, Jun; Chen, Jun

    2006-12-01

    The present article describes the details of aviatic measurement for remote sensing trace gases in atmosphere under various surface backgrounds with airborne passive FTIR. The passive down viewing and remote sensing technique used in the experiment is discussed. The method of acquiring atmospheric trace gases infrared characteristic spectra in complicated background and the algorithm of concentration retrieval are discussed. The concentrations of CO and N2O of boundary-layer atmosphere in experimental region below 1000 m are analyzed quantitatively. This measurement technique and the data analysis method, which does not require a previously measured background spectrum, allow fast and mobile remote detection and identification of atmosphere trace gas in large area, and also can be used for urgent monitoring of pollution accidental breakout.

  2. A Lagrangian particle model to predict the airborne spread of foot-and-mouth disease virus

    NASA Astrophysics Data System (ADS)

    Mayer, D.; Reiczigel, J.; Rubel, F.

    Airborne spread of bioaerosols in the boundary layer over a complex terrain is simulated using a Lagrangian particle model, and applied to modelling the airborne spread of foot-and-mouth disease (FMD) virus. Two case studies are made with study domains located in a hilly region in the northwest of the Styrian capital Graz, the second largest town in Austria. Mountainous terrain as well as inhomogeneous and time varying meteorological conditions prevent from application of so far used Gaussian dispersion models, while the proposed model can handle these realistically. In the model, trajectories of several thousands of particles are computed and the distribution of virus concentration near the ground is calculated. This allows to assess risk of infection areas with respect to animal species of interest, such as cattle, swine or sheep. Meteorological input data like wind field and other variables necessary to compute turbulence were taken from the new pre-operational version of the non-hydrostatic numerical weather prediction model LMK ( Lokal-Modell-Kürzestfrist) running at the German weather service DWD ( Deutscher Wetterdienst). The LMK model provides meteorological parameters with a spatial resolution of about 2.8 km. To account for the spatial resolution of 400 m used by the Lagrangian particle model, the initial wind field is interpolated upon the finer grid by a mass consistent interpolation method. Case studies depict a significant influence of local wind systems on the spread of virus. Higher virus concentrations at the upwind side of the hills and marginal concentrations in the lee are well observable, as well as canalization effects by valleys. The study demonstrates that the Lagrangian particle model is an appropriate tool for risk assessment of airborne spread of virus by taking into account the realistic orographic and meteorological conditions.

  3. Satellite and airborne IR sensor validation by an airborne interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumley, L.E.; Delst, P.F. van; Moeller, C.C.

    1996-11-01

    The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 andmore » HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.« less

  4. The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Jordan, D. E.; Bui, T. V.; Ueyama, R.; Singh, H. B.; Lawson, P.; Thornberry, T.; Diskin, G.; McGill, M.; hide

    2016-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes.

  5. Plants as sources of airborne bacteria, including ice nucleation-active bacteria.

    PubMed

    Lindemann, J; Constantinidou, H A; Barchet, W R; Upper, C D

    1982-11-01

    Vertical wind shear and concentration gradients of viable, airborne bacteria were used to calculate the upward flux of viable cells above bare soil and canopies of several crops. Concentrations at soil or canopy height varied from 46 colony-forming units per m over young corn and wet soil to 663 colony-forming units per m over dry soil and 6,500 colony-forming units per m over a closed wheat canopy. In simultaneous samples, concentrations of viable bacteria in the air 10 m inside an alfalfa field were fourfold higher than those over a field with dry, bare soil immediately upwind. The upward flux of viable bacteria over alfalfa was three- to fourfold greater than over dry soil. Concentrations of ice nucleation-active bacteria were higher over plants than over soil. Thus, plant canopies may constitute a major source of bacteria, including ice nucleation-active bacteria, in the air.

  6. Novel method for estimation of the indoor-to-outdoor airborne radioactivity ratio following the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Tan, Yanliang; Ishikawa, Tetsuo; Janik, Miroslaw; Tokonami, Shinji; Hosoda, Masahiro; Sorimachi, Atsuyuki; Kearfott, Kimberlee

    2015-12-01

    The accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan resulted in significant releases of fission products. While substantial data exist concerning outdoor air radioactivity following the accident, the resulting indoor radioactivity remains pure speculation without a proper method for estimating the ratio of the indoor to outdoor airborne radioactivity, termed the airborne sheltering factor (ASF). Lacking a meaningful value of the ASF, it is difficult to assess the inhalation doses to residents and evacuees even when outdoor radionuclide concentrations are available. A simple model was developed and the key parameters needed to estimate the ASF were obtained through data fitting of selected indoor and outdoor airborne radioactivity measurement data obtained following the accident at a single location. Using the new model with values of the air exchange rate, interior air volume, and the inner surface area of the dwellings, the ASF can be estimated for a variety of dwelling types. Assessment of the inhalation dose to individuals readily follows from the value of the ASF, the person's indoor occupancy factor, and the measured outdoor radioactivity concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comparison of fungal spores concentrations measured with wideband integrated bioaerosol sensor and Hirst methodology

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, S.; Tormo-Molina, R.; Lemonis, N.; Clot, B.; O'Connor, D. J.; Sodeau, John R.

    2018-02-01

    The aim of this work was to provide both a comparison of traditional and novel methodologies for airborne spores detection (i.e. the Hirst Burkard trap and WIBS-4) and the first quantitative study of airborne fungal concentrations in Payerne (Western Switzerland) as well as their relation to meteorological parameters. From the traditional method -Hirst trap and microscope analysis-, sixty-three propagule types (spores, sporangia and hyphae) were identified and the average spore concentrations measured over the full period amounted to 4145 ± 263.0 spores/m3. Maximum values were reached on July 19th and on August 6th. Twenty-six spore types reached average levels above 10 spores/m3. Airborne fungal propagules in Payerne showed a clear seasonal pattern, increasing from low values in early spring to maxima in summer. Daily average concentrations above 5000 spores/m3 were almost constant in summer from mid-June onwards. Weather parameters showed a relevant role for determining the observed spore concentrations. Coniferous forest, dominant in the surroundings, may be a relevant source for airborne fungal propagules as their distribution and predominant wind directions are consistent with the origin. The comparison between the two methodologies used in this campaign showed remarkably consistent patterns throughout the campaign. A correlation coefficient of 0.9 (CI 0.76-0.96) was seen between the two over the time period for daily resolutions (Hirst trap and WIBS-4). This apparent co-linearity was seen to fall away once increased resolution was employed. However at higher resolutions upon removal of Cladosporium species from the total fungal concentrations (Hirst trap), an increased correlation coefficient was again noted between the two instruments (R = 0.81 with confidence intervals of 0.74 and 0.86).

  8. In vitro evaluation of pulmonary deposition of airborne volcanic ash

    NASA Astrophysics Data System (ADS)

    Lähde, Anna; Sæunn Gudmundsdottir, Sigurbjörg; Joutsensaari, Jorma; Tapper, Unto; Ruusunen, Jarno; Ihalainen, Mika; Karhunen, Tommi; Torvela, Tiina; Jokiniemi, Jorma; Järvinen, Kristiina; Gíslason, Sigurður Reynir; Briem, Haraldur; Gizurarson, Sveinbjörn

    2013-05-01

    There has been an increasing interest in the effects of volcanic eruption on the environment, climate, and health following two recent volcanic eruptions in Iceland. Although health issues are mainly focused on subjects living close to the eruption due to the high concentration of airborne ash and gasses in close vicinity to the volcanoes, the ash may also reach high altitude and get distributed thousands of kilometers away from the volcano. Ash particles used in the studies were collected at the Eyjafjallajökull and Grímsvötn eruption sites. The composition, size, density and morphology of the particles were analyzed and the effect of particle properties on the re-dispersion and lung deposition were studied. The aerodynamic size and morphology of the particles were consistent with field measurement results obtained during the eruptions. Due to their size and structure, the ash particles can be re-suspended and transported into the lungs. The total surface area of submicron ash particles deposited into the alveolar and tracheobronchial regions of the lungs were 3-9% and 1-2%, respectively. Although the main fraction of the surface area is deposited in the head airways region, a significant amount of particles can deposit into the alveolar and tracheobronchial regions. The results indicate that a substantial increase in the concentration of respirable airborne ash particles and associated health hazard can take place if the deposited ash particles are re-suspended under dry, windy conditions or by outdoor human activity.

  9. 30 CFR 56.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of exposure to airborne contaminants... Air Quality and Physical Agents Air Quality § 56.5005 Control of exposure to airborne contaminants. Control of employee exposure to harmful airborne contaminants shall be, insofar as feasible, by prevention...

  10. NASA airborne laser altimetry and ICESat-2 post-launch data validation

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Neumann, T.; Studinger, M.; Hawley, R. L.; Markus, T.

    2016-12-01

    A series of NASA airborne lidars have made repeated surveys over an 11,000-m ground-based kinematic GPS traverse near Summit Station, Greenland. These ground-based data were used to assess the surface elevation bias and measurement precision of two airborne laser altimeters: Airborne Topographic Mapper (ATM) and Land, Vegetation, and Ice Sensor (LVIS). Data from the ongoing monthly traverses allowed for the assessment of 8 airborne lidar campaigns; elevation biases for these altimeters were less than 12.2 cm, while assessments of surface measurement precision were less than 9.1 cm. Results from the analyses of the Greenland ground-based GPS and airborne lidar data provide guidance for validation strategies for Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products. Specifically, a nested approach to validation is required, where ground-based GPS data are used to constrain the bias and measurement precision of the airborne lidar data; airborne surveys can then be designed and conducted on longer length-scales to provide the amount of airborne data required to make more statistically meaningful assessments of satellite elevation data. This nested validation approach will continue for the ground-traverse in Greenland; further, the ICESat-2 Project Science Office has plans to conduct similar coordinated ground-based and airborne data collection in Antarctica.

  11. Asbestos and carcinogenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, J.C.; McDonald, A.D.

    1990-08-24

    It is alleged that there have been 67 or more cases of mesothelioma among Quebec chrysotile miners and millers. Of the many thousand individuals employed by the Quebec chrysotile mining and milling industry since its inception, no one known how many have died or of these how many from mesothelioma. At a 1989 meeting in Ottawa, Ontario, Canada, it was stated that a cohort of 11,379 persons born between 1891 and 1920 and employed for 1 month or more, there had been 11 cases of mesothelioma among 4,547 deaths to the end of 1975; by 1978 there were 18 cases,more » and a follow-up to 1990 will soon be completed. More than 70% of the cohort have now died, and a study of a subsample indicates that the eventual number of cases of mesotheliomas may be about 30. A disproportionate number of these (at least seven) were exposed to crocidolite in a small local factory, and one had substantial exposure to amosite. Could the remaining cases be attributed to fibrous tremolite contamination Whether or not chrysotile per se is capable of inducing mesothelioma, it is clear that workers whose exposure has been only to commercial chrysotile have suffered much less from mesothelioma than, for example, those exposed for even a few months to crocidolite in gas mask filter manufacture or cigarette filter manufacture, in whom 16 to 19% of all deaths were attributable to this cause. In the general population of the Quebec chrysotile mining towns, exposed over generations to chrysotile concentrations far greater than anything encountered in public buildings, there have been few if any cases of mesothelioma attributable to nonoccupational exposure.« less

  12. Investigating Ozone Sources in California Using AJAX Airborne Measurements and Models: Implications for Stratospheric Intrusion and Long Range Transport

    NASA Technical Reports Server (NTRS)

    Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Pierce, R. Bradley; Tanaka, Tomoaki; Gore, Warren

    2016-01-01

    High ozone concentrations at low altitudes near the surface were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on May 30, 2012. We investigate the causes of the elevated ozone concentrations using the airborne measurements and various models. GEOSchem and WRF-STILT model simulations show that the contribution from local sources is small. From MERRA reanalysis, it is found that high potential vorticity (PV) is observed at low altitudes. This high PV appears to be only partially coming through the stratospheric intrusions because the air inside the high PV region is moist, which shows that mixing appears to be enhanced in the low altitudes. Considering that diabatic heating can also produce high PV in the lower troposphere, high ozone is partially coming through stratospheric intrusion, but this cannot explain the whole ozone concentration in the target areas of the western U.S. A back-trajectory model is utilized to see where the air masses originated. The air masses of the target areas came from the lower stratosphere (LS), upper (UT), mid- (MT), and lower troposphere (LT). The relative number of trajectories coming from LS and UT is low (7.7% and 7.6%, respectively) compared to that from LT (64.1%), but the relative ozone concentration coming from LS and UT is high (38.4% and 20.95%, respectively) compared to that from LT (17.7%). The air mass coming from LT appears to be mostly coming from Asia. Q diagnostics show that there is sufficient mixing along the trajectory to indicate that ozone from the different origins is mixed and transported to the western U.S. This study shows that high ozone concentrations can be detected by airborne measurements, which can be analyzed by integrated platforms such as models, reanalysis, and satellite data.

  13. Warriors from the Sky: US Army Airborne Operational Art in Normandy

    DTIC Science & Technology

    2017-05-25

    capabilities required for conducting a cross- Channel joint forcible entry operation. This included the identification of specific missions for the airborne...cross- Channel joint forcible entry operation. This included the identification of specific missions for the airborne forces. As a result, the airborne...Operation Market Garden, Holland 1944 (HQ, 82 Airborne Division: Feb 1946), 4. Market Garden, following the invasion in Normandy, was the first

  14. Airborne persistent toxic substances (PTSs) in China: occurrence and its implication associated with air pollution.

    PubMed

    Wang, Pu; Zhang, Qinghua; Li, Yingming; Matsiko, Julius; Zhang, Ya; Jiang, Guibin

    2017-08-16

    In recent years, China suffered from extensive air pollution due to the rapidly expanding economic and industrial developments. Its severe impact on human health has raised great concern currently. Persistent toxic substances (PTSs), a large group of environmental pollutants, have also received much attention due to their adverse effects on both the ecosystem and public health. However, limited studies have been conducted to reveal the airborne PTSs associated with air pollution at the national scale in China. In this review, we summarized the occurrence and variation of airborne PTSs in China, especially in megacities. These PTSs included polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), halogenated flame retardants (HFRs), perfluorinated compounds (PFCs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) and heavy metals. The implication of their occurrence associated with air pollution was discussed, and the emission source of these chemicals was concluded. Most reviewed studies have been conducted in east and south China with more developed economy and industry. Severe contamination of airborne PTSs generally occurred in megacities with large populations, such as Guangzhou, Shanghai and Beijing. However, the summarized results suggested that industrial production and product consumption are the major sources of most PTSs in the urban environment, while unintentional emission during anthropogenic activities is an important contributor to airborne PTSs. It is important that fine particles serve as a major carrier of most airborne PTSs, which facilitates the long-range atmospheric transport (LRAT) of PTSs, and therefore, increases the exposure risk of the human body to these pollutants. This implied that not only the concentration and chemical composition of fine particles but also the absorbed PTSs are of particular concern when air pollution occurs.

  15. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  16. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  17. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    NASA Technical Reports Server (NTRS)

    Webster, Chris; Freudinger, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  18. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    NASA Astrophysics Data System (ADS)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  19. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  20. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  1. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; hide

    2015-01-01

    ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data were accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research. Further, this airborne capability can be responsive to first flush rain events that deliver higher concentrations of sediments and pollution to coastal waters via watersheds and overland flow.

  2. Quantitative measurement of airborne cockroach allergen in New York City apartments

    PubMed Central

    Esposito, W. A.; Chew, G. L.; Correa, J. C.; Chillrud, S. N.; Miller, R. L.; Kinney, P. L.

    2013-01-01

    We designed and tested a sampling and analysis system for quantitative measurement of airborne cockroach allergen with sufficient sensitivity for residential exposure assessment. Integrated 1-week airborne particle samples were collected at 10–15 LPM in 19 New York City apartments in which an asthmatic child who was allergic to cockroach allergen resided. Four simultaneous air samples were collected in each home: at heights of 0.3 and 1 m in the child's bedroom and in the kitchen. Extracts of air samples were analyzed by ELISA for the cockroach allergen Bla g2, modified by amplifying the colorimetric signal generated via use of AMPLI-Q detection system (DAKO Corporation, Carpinteria, CA, USA). Settled dust samples were quantified by conventional ELISA. Of the homes where cockroach allergen was detected in settled dust, Bla g2 also was detected in 87% and 93% of air samples in the bedroom and kitchen, respectively. Airborne Bla g2 levels were highly correlated within and between the bedroom and kitchen locations (P < 0.001). Expressed as picogram per cubic meter, the room average geometric mean for Bla g2 concentrations was 1.9 pg/m3 (95% CI 0.63, 4.57) and 3.8 pg/m3 (95% CI 1.35, 9.25) in bedrooms and kitchens, respectively. This method offers an attractive supplement to settled dust sampling for cockroach allergen exposure health studies. PMID:21658130

  3. Cigarettes vs. e-cigarettes: Passive exposure at home measured by means of airborne marker and biomarkers.

    PubMed

    Ballbè, Montse; Martínez-Sánchez, Jose M; Sureda, Xisca; Fu, Marcela; Pérez-Ortuño, Raúl; Pascual, José A; Saltó, Esteve; Fernández, Esteve

    2014-11-01

    There is scarce evidence about passive exposure to the vapour released or exhaled from electronic cigarettes (e-cigarettes) under real conditions. The aim of this study is to characterise passive exposure to nicotine from e-cigarettes' vapour and conventional cigarettes' smoke at home among non-smokers under real-use conditions. We conducted an observational study with 54 non-smoker volunteers from different homes: 25 living at home with conventional smokers, 5 living with nicotine e-cigarette users, and 24 from control homes (not using conventional cigarettes neither e-cigarettes). We measured airborne nicotine at home and biomarkers (cotinine in saliva and urine). We calculated geometric mean (GM) and geometric standard deviations (GSD). We also performed ANOVA and Student's t tests for the log-transformed data. We used Bonferroni-corrected t-tests to control the family error rate for multiple comparisons at 5%. The GMs of airborne nicotine were 0.74 μg/m(3) (GSD=4.05) in the smokers' homes, 0.13 μg/m(3) (GSD=2.4) in the e-cigarettes users' homes, and 0.02 μg/m(3) (GSD=3.51) in the control homes. The GMs of salivary cotinine were 0.38 ng/ml (GSD=2.34) in the smokers' homes, 0.19 ng/ml (GSD=2.17) in the e-cigarettes users' homes, and 0.07 ng/ml (GSD=1.79) in the control homes. Salivary cotinine concentrations of the non-smokers exposed to e-cigarette's vapour at home (all exposed ≥ 2 h/day) were statistically significant different that those found in non-smokers exposed to second-hand smoke ≥ 2 h/day and in non-smokers from control homes. The airborne markers were statistically higher in conventional cigarette homes than in e-cigarettes homes (5.7 times higher). However, concentrations of both biomarkers among non-smokers exposed to conventional cigarettes and e-cigarettes' vapour were statistically similar (only 2 and 1.4 times higher, respectively). The levels of airborne nicotine and cotinine concentrations in the homes with e-cigarette users were higher

  4. [The effect of the ventilation rate on air particle and air microbe concentration in operating rooms with conventional ventilation. 1. Measurement without surgical activity].

    PubMed

    Kruppa, B; Rüden, H

    1993-05-01

    The question was if a reduction of airborne particles and bacteria in conventionally (turbulently), ventilated operating theatres in comparison to Laminar-Airflow (LAF) operating theatres does occur at high air-exchange-rates. Within the framework of energy consumption measures the influence of air-exchange-rates on airborne particle and bacteria concentrations was determined in two identical operating theatres with conventional ventilation (wall diffusor panel) at the air-exchange-rates 7.5, 10, 15 and 20/h without surgical activity. This was established by means of the statistical procedure of analysis of variance. Especially for the comparison of the air-exchange-rates 7.5 and 15/h statistical differences were found for airborne particle concentrations in supply and ambient air. Concerning airborne bacteria concentrations no differences were found among the various air-exchange-rates. Explanation of variance is quite high for non-viable particles (supply air: 37%, ambient air: 81%) but negligible for viable particles (bacteria) with values below 15%.

  5. Modeling of estuarne chlorophyll a from an airborne scanner

    USGS Publications Warehouse

    Khorram, Siamak; Catts, Glenn P.; Cloern, James E.; Knight, Allen W.

    1987-01-01

    Near simultaneous collection of 34 surface water samples and airborne multispectral scanner data provided input for regression models developed to predict surface concentrations of estuarine chlorophyll a. Two wavelength ratios were employed in model development. The ratios werechosen to capitalize on the spectral characteristics of chlorophyll a, while minimizing atmospheric influences. Models were then applied to data previously acquired over the study area thre years earlier. Results are in the form of color-coded displays of predicted chlorophyll a concentrations and comparisons of the agreement among measured surface samples and predictions basedon coincident remotely sensed data. The influence of large variations in fresh-water inflow to the estuary are clearly apparent in the results. The synoptic view provided by remote sensing is another method of examining important estuarine dynamics difficult to observe from in situ sampling alone.

  6. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    EPA Science Inventory

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. Active sampling with DNPH-coated solid sorbents has been widely used for sampling airborne carbonyls; ...

  7. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    EPA Science Inventory

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. DNPH active-sampling is a method widely used for sampling airborne aldehydes and ketones (carbonyls); ...

  8. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States

    NASA Astrophysics Data System (ADS)

    Panko, Julie M.; Chu, Jennifer; Kreider, Marisa L.; Unice, Ken M.

    2013-06-01

    In addition to industrial facilities, fuel combustion, forest fires and dust erosion, exhaust and non-exhaust vehicle emissions are an important source of ambient air respirable particulate matter (PM10). Non-exhaust vehicle emissions are formed from wear particles of vehicle components such as brakes, clutches, chassis and tires. Although the non-exhaust particles are relatively minor contributors to the overall ambient air particulate load, reliable exposure estimates are few. In this study, a global sampling program was conducted to quantify tire and road wear particles (TRWP) in the ambient air in order to understand potential human exposures and the overall contribution of these particles to the PM10. The sampling was conducted in Europe, the United States and Japan and the sampling locations were selected to represent a variety of settings including both rural and urban core; and within each residential, commercial and recreational receptors. The air samples were analyzed using validated chemical markers for rubber polymer based on a pyrolysis technique. Results indicated that TRWP concentrations in the PM10 fraction were low with averages ranging from 0.05 to 0.70 μg m-3, representing an average PM10 contribution of 0.84%. The TRWP concentration in air was associated with traffic load and population density, but the trend was not statistically significant. Further, significant differences across days were not observed. This study provides a robust dataset to understand potential human exposures to airborne TRWP.

  9. Airborne bacteria and fungi associated with waste-handling work.

    PubMed

    Park, Donguk; Ryu, Seunghun; Kim, Shinbum; Byun, Hyaejeong; Yoon, Chungsik; Lee, Kyeongmin

    2013-01-01

    Municipal workers handling household waste are potentially exposed to a variety of toxic and pathogenic substances, in particular airborne bacteria, gram-negative bacteria (GNB), and fungi. However, relatively little is known about the conditions under which exposure is facilitated. This study assessed levels of airborne bacteria, GNB, and fungi, and examined these in relation to the type of waste-handling activity (collection, transfer, transport, and sorting at the waste preprocessing plant), as well as a variety of other environmental and occupational factors. Airborne microorganisms were sampled using an Andersen single-stage sampler equipped with agar plates containing the appropriate nutritional medium and then cultured to determine airborne levels. Samples were taken during collection, transfer, transport, and sorting of household waste. Multiple regression analysis was used to identify environmental and occupational factors that significantly affect airborne microorganism levels during waste-handling activities. The "type of waste-handling activity" was the only factor that significantly affected airborne levels of bacteria and GNB, accounting for 38% (P = 0.029) and 50% (P = 0.0002) of the variation observed in bacteria and GNB levels, respectively. In terms of fungi, the type of waste-handling activity (R2 = 0.76) and whether collection had also occurred on the day prior to sampling (P < 0.0001, R2 = 0.78) explained most of the observed variation. Given that the type of waste-handling activity was significantly correlated with levels of bacteria, GNB, and fungi, we suggest that various engineering, administrative, and regulatory measures should be considered to reduce the occupational exposure to airborne microorganisms in the waste-handling industry.

  10. Focusing particle concentrator with application to ultrafine particles

    DOEpatents

    Hering, Susanne; Lewis, Gregory; Spielman, Steven R.

    2013-06-11

    Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.

  11. Determination of airborne nanoparticles from welding operations.

    PubMed

    Gomes, João Fernando Pereira; Albuquerque, Paula Cristina Silva; Miranda, Rosa Maria Mendes; Vieira, Maria Teresa Freire

    2012-01-01

    The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.

  12. Elemental composition of airborne particulates and source identification - An extensive one year survey. [in Cleveland, OH

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.

    1976-01-01

    Concentrations of 60 chemical elements in the airborne particulate matter were measured at 16 sites in Cleveland, OH over a 1 year period during 1971 and 1972 (45 to 50 sampling days). Analytical methods used included instrumental neutron activation, emission spectroscopy, and combustion techniques. Uncertainties in the concentrations associated with the sampling procedures, the analytical methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data are discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification.

  13. Room model based Monte Carlo simulation study of the relationship between the airborne dose rate and the surface-deposited radon progeny.

    PubMed

    Sun, Kainan; Field, R William; Steck, Daniel J

    2010-01-01

    The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through a Monte Carlo simulation study based on the extended Jacobi room model. Airborne dose rates were calculated from the unattached and attached potential alpha-energy concentrations (PAECs) using two dosimetric models. Surface-deposited (218)Po and (214)Po were significantly correlated with radon concentration, PAECs, and airborne dose rate (p-values <0.0001) in both non-smoking and smoking environments. However, in non-smoking environments, the deposited radon progeny were not highly correlated to the attached PAEC. In multiple linear regression analysis, natural logarithm transformation was performed for airborne dose rate as a dependent variable, as well as for radon and deposited (218)Po and (214)Po as predictors. In non-smoking environments, after adjusting for the effect of radon, deposited (214)Po was a significant positive predictor for one dose model (RR 1.46, 95% CI 1.27-1.67), while deposited (218)Po was a negative predictor for the other dose model (RR 0.90, 95% CI 0.83-0.98). In smoking environments, after adjusting for radon and room size, deposited (218)Po was a significant positive predictor for one dose model (RR 1.10, 95% CI 1.02-1.19), while a significant negative predictor for the other model (RR 0.90, 95% CI 0.85-0.95). After adjusting for radon and deposited (218)Po, significant increases of 1.14 (95% CI 1.03-1.27) and 1.13 (95% CI 1.05-1.22) in the mean dose rates were found for large room sizes relative to small room sizes in the different dose models.

  14. Airborne bacterial contaminations in typical Chinese wet market with live poultry trade.

    PubMed

    Gao, Xin-Lei; Shao, Ming-Fei; Luo, Yi; Dong, Yu-Fang; Ouyang, Feng; Dong, Wen-Yi; Li, Ji

    2016-12-01

    Chinese wet markets with live poultry trade have been considered as major sources of pathogen dissemination, and sites for horizontal transfer of bacterial and viral pathogens. In this study, the pathogenic bacteria and antibiotic resistant genes (ARGs) in air samples collected at a typical Chinese wet market had been analysis and quantified. Corynebacterium minutissimum and other pathogenic bacteria accounted for 0.81-8.02% of the whole microbial community in different air samples. The four ARGs quantified in this study showed a comparable relative concentration (copies/ng_DNA) with municipal wastewater. Poultry manures were demonstrated to be important microbial contamination source in wet market, which was supported by both microbial composition based source tracking and the quantification of airborne microbial density. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Our results indicate bioaerosols acted as important route for the transmissions of pathogens and ARGs. Continued surveillance of airborne microbial contamination is required in poultry trade wet market. Urban live poultry markets are important sources of pathogen dissemination, and sites for horizontal transfer of viral and bacterial pathogens. In the present field-study, pathogenic bacteria and antibiotic resistance genes were focused to provide quantitative information on the levels of microbial contaminations at the indoor air of wet markets. Results demonstrated that poultry manures were important microbial contamination source in wet market, and in the meanwhile bioaerosols were identified as important route for the transmissions of microbial contaminants. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry

  15. Study on analysis from sources of error for Airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  16. Airborne gamma radiation soil moisture measurements over short flight lines

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  17. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For...

  18. ASBESTOS CONCENTRATIONS TWO YEARS AFTER ABATEMENT IN SEVENTEEN SCHOOLS

    EPA Science Inventory

    Airborne asbestos concentrations were measured at 17 schools that underwent an asbestos abatement 2 years before in 1988. These 17 schools, which involved 20 abatement sites, were part of a study conducted by the U.S. Environmental Protection Agency (EPA) and the New Jersey Depar...

  19. Investigation of Ozone Sources in California Using AJAX Airborne Measurements and Models: Implications for Stratospheric Intrusion and Long Range Transport

    NASA Technical Reports Server (NTRS)

    Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Pierce, R. Bradley; Tanaka, Tomoaki; Gore, Warren

    2015-01-01

    High ozone concentrations at low altitudes near the surface were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on May 30, 2012. We investigate the causes of the elevated ozone concentrations using the airborne measurements and various models. GEOS-chem and WRF-STILT model simulations show that the contribution from local sources is small. From MERRA reanalysis, it is found that high potential vorticity (PV) is observed at low altitudes. This high PV appears to be only partially coming through the stratospheric intrusions because the air inside the high PV region is moist, which shows that mixing appears to be enhanced in the low altitudes. Considering that diabatic heating can also produce high PV in the lower troposphere, high ozone is partially coming through stratospheric intrusion, but this cannot explain the whole ozone concentration in the target areas of the western U.S. A back-trajectory model is utilized to see where the air masses originated. The air masses of the target areas came from the lower stratosphere (LS), upper (UT), mid- (MT), and lower troposphere (LT). The relative number of trajectories coming from LS and UT is low (7.7 and 7.6, respectively) compared to that from LT (64.1), but the relative ozone concentration coming from LS and UT is high (38.4 and 20.95, respectively) compared to that from LT (17.7). The air mass coming from LT appears to be mostly coming from Asia. Q diagnostics show that there is sufficient mixing along the trajectory to indicate that ozone from the different origins is mixed and transported to the western U.S. This study shows that high ozone concentrations can be detected by airborne measurements, which can be analyzed by integrated platforms such as models, reanalysis, and satellite data.

  20. A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Thomas, T. J.; Chace, A. S.

    1974-01-01

    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration.

  1. Dynamics of airborne fungal populations in a large office building

    NASA Technical Reports Server (NTRS)

    Burge, H. A.; Pierson, D. L.; Groves, T. O.; Strawn, K. F.; Mishra, S. K.

    2000-01-01

    The increasing concern with bioaerosols in large office buildings prompted this prospective study of airborne fungal concentrations in a newly constructed building on the Gulf coast. We collected volumetric culture plate air samples on 14 occasions over the 18-month period immediately following building occupancy. On each sampling occasion, we collected duplicate samples from three sites on three floors of this six-story building, and an outdoor sample. Fungal concentrations indoors were consistently below those outdoors, and no sample clearly indicated fungal contamination in the building, although visible growth appeared in the ventilation system during the course of the study. We conclude that modern mechanically ventilated buildings prevent the intrusion of most of the outdoor fungal aerosol, and that even relatively extensive air sampling protocols may not sufficiently document the microbial status of buildings.

  2. [Corpuscular mutagenesis and its prevention].

    PubMed

    Daugel'-Dauge, N O; Durnev, A D; Kulakova, A V; Seredenin, S B; Velichkovskiĭ, B T

    1995-01-01

    The carcinogenic and mutagenic activity of dust containing chrysotile-asbestos and zeolites, as well as the role of active oxygen species in their cytotoxic and mutagenic actions are discussed. Superoxide dismutase (50 mg/ml) was demonstrated to prevent the mutagenic effects of chrysotile-asbestos and latex, catalase (20 mg/ml) to prevent the same of zeolites in experiments on cultured human whole blood. The intraperitoneal administration of dusts of chrysotile-asbestos and zeolites in a dose of 50 mg/kg to C57B1/6 mice was found to elevate the count of cells with chromosomal aberrations in the peritoneal liquid and bone marrow cells of mice, which was dependent on dust exposure time. It was revealed that ascorbic acid, rutin, chemically modified flavonoid of Scutellaria Baicalensis Georgy, drugs such as bemitil and thomersol in the broad range of concentrations (10(-7)-10(-3) M) decreased or completely reduced the clustogenic action of zeolites and chrysotile-asbestos on cultured human whole blood. The ability of bemitil (1.8-19 mg/kg) rather than the others to prevent the mutagenic effect of chrysotile-asbestos was confirmed by the method of recording chromosomal aberrations in the cells of peritoneal liquid and bone marrow in mice. The findings suggest that the mutagenic effects of the corpuscular xenobiotics under study are mediated by active oxygen species and that the use of the models in vitro and in vivo is adequate for investigations into corpuscular mutagenesis. Based on their own data and literature data, the authors have defined possible lines of further research of corpuscular mutagenesis.

  3. Exposure to airborne culturable microorganisms and endotoxin in two Italian poultry slaughterhouses.

    PubMed

    Paba, Emilia; Chiominto, Alessandra; Marcelloni, Anna Maria; Proietto, Anna Rita; Sisto, Renata

    2014-01-01

    Even if slaughterhouses' workers handle large amounts of organic material and are potentially exposed to a wide range of biological agents, relatively little and not recent data are available. The main objective of this study was to characterize indoor concentrations of airborne bacteria, fungi, and endotoxin mod = Im (endotoxin∼Gram-negative*plant*filter) in two Italian poultry slaughterhouses. Air samples near air handling units inlets were also collected. Since there are not standardized protocols for endotoxin sampling and extraction procedures, an additional aim of the study was to compare the extraction efficiency of three different filter.. The study was also aimed at determining the correlation between concentrations of Gram-negative bacteria and endotoxin. In Plant A bacterial levels ranged from 17.5 to 2.6×10(3) CFU/m3. The highest concentrations were observed in evisceration area of chickens, between the automatic detachment of the neck and washing offal, and near birds coupling before hair-chilling. The highest mean value of Gram-negative (266.5 CFU/m3) was found near the washing offal of turkeys. In Plant B bacterial concentration ranged from 35 to 8×10(3) CFU/m3. The highest concentration. with the highest value of Gram-negative (248 CFU/m3), was found after defeathering. Fungal concentrations were overall lower than those found for bacteria (range: 0-205 CFU/m3 in Plant A and 0-146.2 CFU/m3 in Plant B). The microbial flora was dominated by Gram-negative and coagulase-negative staphylococci for bacteria and by species belonging to Cladosporium, Penicillium and Aspergillus genera for molds. The highest endotoxin concentrations were measured in washing offal for Plant A (range: 122.7-165.9 EU/m3) and after defeathering for Plant B (range: 0.83-38.85 EU/m3). In this study airborne microorganisms concentrations were lower than those found in similar occupational settings and below the occupational limits proposed by some authors. However, these

  4. SGA-WZ: A New Strapdown Airborne Gravimeter

    PubMed Central

    Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping; Zhang, Kaidong

    2012-01-01

    Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS) after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given. PMID:23012545

  5. Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum.

    PubMed

    Pfefferkorn, Frank E; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; McCarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M Abbas; Gruetzmacher, George; Hoover, Mark D

    2010-07-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 microm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 microm) with 1-s resolution, lung deposited surface areas, and PM(2.5) concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 microm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at approximately 30 and approximately 550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at approximately 4.0 x 10(5) particles cm(-3), whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm(-3), depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10-100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) microg m(-3); the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may

  6. Characterization of Exposures to Airborne Nanoscale Particles During Friction Stir Welding of Aluminum

    PubMed Central

    Pfefferkorn, Frank E.; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; Mccarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M. Abbas; Gruetzmacher, George; Hoover, Mark D.

    2010-01-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 μm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 μm) with 1-s resolution, lung deposited surface areas, and PM2.5 concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 μm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at ∼30 and ∼550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at ∼4.0 × 105 particles cm−3, whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm−3, depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10–100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) μg m−3; the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may exist, especially in larger scale industrial

  7. Airborne microorganisms associated with grain handling.

    PubMed

    Swan, J R; Crook, B

    1998-01-01

    There is substantial evidence that workers handling grain develop allergic respiratory symptoms. Microbiological contaminants are likely to be a significant contributing factor. Worker's exposure to microorganisms contaminating grain dust in the UK was therefore examined. Aerobiological studies were made when grain was being handled on farms and also during bulk handling of grain in dockside terminals. A quantitative and qualitative microbiological examination of the airborne grain dust was carried out. Samples of airborne grain dust were collected and viable bacteria, fungi and actinomycetes were grown, isolated and identified. It was found that workers handling grain or working close to grain at farms and docks were frequently exposed to more than 1 million bacteria and fungi per m3 air, and that airborne bacteria and fungi exceeded 10(4) per m3 air in all areas sampled. The qualitative examination of the samples showed that the predominant microorganisms present differed between freshly harvested grain and stored grain, but not between different types of grain.

  8. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  9. The Western Airborne Contaminant Assessment Project (WACAP): An interdisciplinary evaluation of the impacts of airborne contaminants in Western U.S. National Parks

    EPA Science Inventory

    The Western Airborne Contaminants Assessment Project (WACAP) was initiated in 2002 by the National Park Service to determine if airborne contaminants were having an impact on remote western ecosystems. Multiple sample media (snow, water, sediment, fish and terrestrial vegetation...

  10. Geronimo: Planning Considerations for Employing Airborne Forces

    DTIC Science & Technology

    2017-05-25

    Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that... operation , a planner must adhere to joint planning considerations and understand the Air Force and Army requirements. Today the Army maintains only...one brigade and two battalions of deployable conventional airborne combat power. The special operations community also is airborne capable, and the

  11. Airborne Network Optimization with Dynamic Network Update

    DTIC Science & Technology

    2015-03-26

    Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University...Member Dr. Barry E. Mullins Member AFIT-ENG-MS-15-M-030 Abstract Modern networks employ congestion and routing management algorithms that can perform...airborne networks. Intelligent agents can make use of Kalman filter predictions to make informed decisions to manage communication in airborne networks. The

  12. 47 CFR 22.925 - Prohibition on airborne operation of cellular telephones.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Prohibition on airborne operation of cellular... CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.925 Prohibition on airborne... any other type of aircraft must not be operated while such aircraft are airborne (not touching the...

  13. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  14. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  15. [Occupational exposure to airborne chemical substances in paintings conservators].

    PubMed

    Jezewska, Anna; Szewczyńska, Małgorzata; Woźnica, Agnieszka

    2014-01-01

    This paper presents the results of the quantitative study of the airborne chemical substances detected in the conservator's work environment. The quantitative tests were carried out in 6 museum easel paintings conservation studios. The air test samples were taken at various stages of restoration works, such as cleaning, doubling, impregnation, varnishing, retouching, just to name a few. The chemical substances in the sampled air were measured by the GC-FID (gas chromatography with flame ionization detector) test method. The study results demonstrated that concentrations of airborne substances, e.g., toluene, 1,4-dioxane, turpentine and white spirit in the work environment of paintings conservators exceeded the values allowed by hygiene standards. It was found that exposure levels to the same chemical agents, released during similar activities, varied for different paintings conservation studios. It is likely that this discrepancy resulted from the indoor air exchange system for a given studio (e.g. type of ventilation and its efficiency), the size of the object under maintenance, and also from the methodology and protection used by individual employees. The levels of organic solvent vapors, present in the workplace air in the course of painting conservation, were found to be well above the occupational exposure limits, thus posing a threat to the worker's health.

  16. Evaluation of airborne asbestos exposure from routine handling of asbestos-containing wire gauze pads in the research laboratory.

    PubMed

    Garcia, Ediberto; Newfang, Daniel; Coyle, Jayme P; Blake, Charles L; Spencer, John W; Burrelli, Leonard G; Johnson, Giffe T; Harbison, Raymond D

    2018-07-01

    Three independently conducted asbestos exposure evaluations were conducted using wire gauze pads similar to standard practice in the laboratory setting. All testing occurred in a controlled atmosphere inside an enclosed chamber simulating a laboratory setting. Separate teams consisting of a laboratory technician, or technician and assistant simulated common tasks involving wire gauze pads, including heating and direct wire gauze manipulation. Area and personal air samples were collected and evaluated for asbestos consistent with the National Institute of Occupational Safety Health method 7400 and 7402, and the Asbestos Hazard Emergency Response Act (AHERA) method. Bulk gauze pad samples were analyzed by Polarized Light Microscopy and Transmission Electron Microscopy to determine asbestos content. Among air samples, chrysotile asbestos was the only fiber found in the first and third experiments, and tremolite asbestos for the second experiment. None of the air samples contained asbestos in concentrations above the current permissible regulatory levels promulgated by OSHA. These findings indicate that the level of asbestos exposure when working with wire gauze pads in the laboratory setting is much lower than levels associated with asbestosis or asbestos-related lung cancer and mesothelioma. Copyright © 2018. Published by Elsevier Inc.

  17. A resonance-free nano-film airborne ultrasound emitter

    NASA Astrophysics Data System (ADS)

    Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias

    2013-01-01

    In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.

  18. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  19. Spacecraft maximum allowable concentrations for selected airborne contaminants, volume 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMAC's) for contaminants, and to review SMAC's for various spacecraft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee on Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMAC's for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMAC's for 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the first 11 SMAC reports that have been reviewed for their application of the guidelines developed in the first phase of this activity and approved by the subcommittee.

  20. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the